Sample records for complex study designs

  1. Optimum study designs.

    PubMed

    Gu, C; Rao, D C

    2001-01-01

    Because simplistic designs will lead to prohibitively large sample sizes, the optimization of genetic study designs is critical for successfully mapping genes for complex diseases. Creative designs are necessary for detecting and amplifying the usually weak signals for complex traits. Two important outcomes of a study design--power and resolution--are implicitly tied together by the principle of uncertainty. Overemphasis on either one may lead to suboptimal designs. To achieve optimality for a particular study, therefore, practical measures such as cost-effectiveness must be used to strike a balance between power and resolution. In this light, the myriad of factors involved in study design can be checked for their effects on the ultimate outcomes, and the popular existing designs can be sorted into building blocks that may be useful for particular situations. It is hoped that imaginative construction of novel designs using such building blocks will lead to enhanced efficiency in finding genes for complex human traits.

  2. Study designs for identification of rare disease variants in complex diseases: the utility of family-based designs.

    PubMed

    Ionita-Laza, Iuliana; Ottman, Ruth

    2011-11-01

    The recent progress in sequencing technologies makes possible large-scale medical sequencing efforts to assess the importance of rare variants in complex diseases. The results of such efforts depend heavily on the use of efficient study designs and analytical methods. We introduce here a unified framework for association testing of rare variants in family-based designs or designs based on unselected affected individuals. This framework allows us to quantify the enrichment in rare disease variants in families containing multiple affected individuals and to investigate the optimal design of studies aiming to identify rare disease variants in complex traits. We show that for many complex diseases with small values for the overall sibling recurrence risk ratio, such as Alzheimer's disease and most cancers, sequencing affected individuals with a positive family history of the disease can be extremely advantageous for identifying rare disease variants. In contrast, for complex diseases with large values of the sibling recurrence risk ratio, sequencing unselected affected individuals may be preferable.

  3. Simulation methods to estimate design power: an overview for applied research.

    PubMed

    Arnold, Benjamin F; Hogan, Daniel R; Colford, John M; Hubbard, Alan E

    2011-06-20

    Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research.

  4. Simulation methods to estimate design power: an overview for applied research

    PubMed Central

    2011-01-01

    Background Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. Methods We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. Results We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Conclusions Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research. PMID:21689447

  5. The balanced incomplete block design is not suitable for the evaluation of complex interventions.

    PubMed

    Trietsch, Jasper; Leffers, Pieter; van Steenkiste, Ben; Grol, Richard; van der Weijden, Trudy

    2014-12-01

    In quality of care research, the balanced incomplete block (BIB) design is regularly claimed to have been used when evaluating complex interventions. In this article, we reflect on the appropriateness of using this design for evaluating complex interventions. Literature study using PubMed and handbooks. After studying various articles on health services research that claim to have applied the BIB and the original methodological literature on this design, it became clear that the applied method is in fact not a BIB design. We conclude that the use of this design is not suited for evaluating complex interventions. We stress that, to prevent improper use of terms, more attention should be paid to proper referencing of the original methodological literature. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The Study of the Relationship between Probabilistic Design and Axiomatic Design Methodology. Volume 2

    NASA Technical Reports Server (NTRS)

    Onwubiko, Chin-Yere; Onyebueke, Landon

    1996-01-01

    The structural design, or the design of machine elements, has been traditionally based on deterministic design methodology. The deterministic method considers all design parameters to be known with certainty. This methodology is, therefore, inadequate to design complex structures that are subjected to a variety of complex, severe loading conditions. A nonlinear behavior that is dependent on stress, stress rate, temperature, number of load cycles, and time is observed on all components subjected to complex conditions. These complex conditions introduce uncertainties; hence, the actual factor of safety margin remains unknown. In the deterministic methodology, the contingency of failure is discounted; hence, there is a use of a high factor of safety. It may be most useful in situations where the design structures are simple. The probabilistic method is concerned with the probability of non-failure performance of structures or machine elements. It is much more useful in situations where the design is characterized by complex geometry, possibility of catastrophic failure, sensitive loads and material properties. Also included: Comparative Study of the use of AGMA Geometry Factors and Probabilistic Design Methodology in the Design of Compact Spur Gear Set.

  7. Implementation of Complexity Analyzing Based on Additional Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Li, Na; Liang, Yanhong; Liu, Fang

    According to the Complexity Theory, there is complexity in the system when the functional requirement is not be satisfied. There are several study performances for Complexity Theory based on Axiomatic Design. However, they focus on reducing the complexity in their study and no one focus on method of analyzing the complexity in the system. Therefore, this paper put forth a method of analyzing the complexity which is sought to make up the deficiency of the researches. In order to discussing the method of analyzing the complexity based on additional effect, this paper put forth two concepts which are ideal effect and additional effect. The method of analyzing complexity based on additional effect combines Complexity Theory with Theory of Inventive Problem Solving (TRIZ). It is helpful for designers to analyze the complexity by using additional effect. A case study shows the application of the process.

  8. A Comparison of Prose and Algorithms for Presenting Complex Instructions. Document Design Project, Technical Report No. 17.

    ERIC Educational Resources Information Center

    Holland, V. Melissa; Rose, Andrew

    Complex conditional instructions ("if X, then do Y") are prevalent in public documents, where they typically appear in prose form. Results of two previous studies have shown that conditional instructions become very difficult to process as the structure becomes more complex. A study was designed to investigate whether this difficulty can…

  9. Studying complex interventions: reflections from the FEMHealth project on evaluating fee exemption policies in West Africa and Morocco.

    PubMed

    Marchal, Bruno; Van Belle, Sara; De Brouwere, Vincent; Witter, Sophie

    2013-11-08

    The importance of complexity in health care policy-making and interventions, as well as research and evaluation is now widely acknowledged, but conceptual confusion reigns and few applications of complexity concepts in research design have been published. Taking user fee exemption policies as an entry point, we explore the methodological consequences of 'complexity' for health policy research and evaluation. We first discuss the difference between simple, complicated and complex and introduce key concepts of complex adaptive systems theory. We then apply these to fee exemption policies. We describe how the FEMHealth research project attempts to address the challenges of complexity in its evaluation of fee exemption policies for maternal care. We present how the development of a programme theory for fee exemption policies was used to structure the overall design. This allowed for structured discussions on the hypotheses held by the researchers and helped to structure, integrate and monitor the sub-studies. We then show how the choice of data collection methods and tools for each sub-study was informed by the overall design. Applying key concepts from complexity theory proved useful in broadening our view on fee exemption policies and in developing the overall research design. However, we encountered a number of challenges, including maintaining adaptiveness of the design during the evaluation, and ensuring cohesion in the disciplinary diversity of the research teams. Whether the programme theory can fulfil its claimed potential to help making sense of the findings is yet to be tested. Experience from other studies allows for some moderate optimism. However, the biggest challenge complexity throws at health system researchers may be to deal with the unknown unknowns and the consequence that complex issues can only be understood in retrospect. From a complexity theory point of view, only plausible explanations can be developed, not predictive theories. Yet here, theory-driven approaches may help.

  10. Hidden Stories: Uncovering the Visual Metaphor for Education and Communication

    ERIC Educational Resources Information Center

    Hube, Amy M.; Tremblay, Kenneth R., Jr.; Leigh, Katharine E.

    2015-01-01

    Design solutions have become increasingly complex and based on a rapidly growing body of knowledge. In order to articulate a design solution to a client, the graphic use of the design narrative can effectively communicate complex ideas. Two case study interventions were conducted in an interior design program in which students were introduced to…

  11. Complexity-Based Learning and Teaching: A Case Study in Higher Education

    ERIC Educational Resources Information Center

    Fabricatore, Carlo; López, María Ximena

    2014-01-01

    This paper presents a learning and teaching strategy based on complexity science and explores its impacts on a higher education game design course. The strategy aimed at generating conditions fostering individual and collective learning in educational complex adaptive systems, and led the design of the course through an iterative and adaptive…

  12. Prospective power calculations for the Four Lab study of a multigenerational reproductive/developmental toxicity rodent bioassay using a complex mixture of disinfection by-products in the low-response region.

    PubMed

    Dingus, Cheryl A; Teuschler, Linda K; Rice, Glenn E; Simmons, Jane Ellen; Narotsky, Michael G

    2011-10-01

    In complex mixture toxicology, there is growing emphasis on testing environmentally representative doses that improve the relevance of results for health risk assessment, but are typically much lower than those used in traditional toxicology studies. Traditional experimental designs with typical sample sizes may have insufficient statistical power to detect effects caused by environmentally relevant doses. Proper study design, with adequate statistical power, is critical to ensuring that experimental results are useful for environmental health risk assessment. Studies with environmentally realistic complex mixtures have practical constraints on sample concentration factor and sample volume as well as the number of animals that can be accommodated. This article describes methodology for calculation of statistical power for non-independent observations for a multigenerational rodent reproductive/developmental bioassay. The use of the methodology is illustrated using the U.S. EPA's Four Lab study in which rodents were exposed to chlorinated water concentrates containing complex mixtures of drinking water disinfection by-products. Possible experimental designs included two single-block designs and a two-block design. Considering the possible study designs and constraints, a design of two blocks of 100 females with a 40:60 ratio of control:treated animals and a significance level of 0.05 yielded maximum prospective power (~90%) to detect pup weight decreases, while providing the most power to detect increased prenatal loss.

  13. Prospective Power Calculations for the Four Lab Study of A Multigenerational Reproductive/Developmental Toxicity Rodent Bioassay Using A Complex Mixture of Disinfection By-Products in the Low-Response Region

    PubMed Central

    Dingus, Cheryl A.; Teuschler, Linda K.; Rice, Glenn E.; Simmons, Jane Ellen; Narotsky, Michael G.

    2011-01-01

    In complex mixture toxicology, there is growing emphasis on testing environmentally representative doses that improve the relevance of results for health risk assessment, but are typically much lower than those used in traditional toxicology studies. Traditional experimental designs with typical sample sizes may have insufficient statistical power to detect effects caused by environmentally relevant doses. Proper study design, with adequate statistical power, is critical to ensuring that experimental results are useful for environmental health risk assessment. Studies with environmentally realistic complex mixtures have practical constraints on sample concentration factor and sample volume as well as the number of animals that can be accommodated. This article describes methodology for calculation of statistical power for non-independent observations for a multigenerational rodent reproductive/developmental bioassay. The use of the methodology is illustrated using the U.S. EPA’s Four Lab study in which rodents were exposed to chlorinated water concentrates containing complex mixtures of drinking water disinfection by-products. Possible experimental designs included two single-block designs and a two-block design. Considering the possible study designs and constraints, a design of two blocks of 100 females with a 40:60 ratio of control:treated animals and a significance level of 0.05 yielded maximum prospective power (~90%) to detect pup weight decreases, while providing the most power to detect increased prenatal loss. PMID:22073030

  14. [Design of Complex Cavity Structure in Air Route System of Automated Peritoneal Dialysis Machine].

    PubMed

    Quan, Xiaoliang

    2017-07-30

    This paper introduced problems about Automated Peritoneal Dialysis machine(APD) that the lack of technical issues such as the structural design of the complex cavities. To study the flow characteristics of this special structure, the application of ANSYS CFX software is used with k-ε turbulence model as the theoretical basis of fluid mechanics. The numerical simulation of flow field simulation result in the internal model can be gotten after the complex structure model is imported into ANSYS CFX module. Then, it will present the distribution of complex cavities inside the flow field and the flow characteristics parameter, which will provide an important reference design for APD design.

  15. Evaluation design for a complex intervention program targeting loneliness in non-institutionalized elderly Dutch people

    PubMed Central

    2010-01-01

    Background The aim of this paper is to provide the rationale for an evaluation design for a complex intervention program targeting loneliness among non-institutionalized elderly people in a Dutch community. Complex public health interventions characteristically use the combined approach of intervening on the individual and on the environmental level. It is assumed that the components of a complex intervention interact with and reinforce each other. Furthermore, implementation is highly context-specific and its impact is influenced by external factors. Although the entire community is exposed to the intervention components, each individual is exposed to different components with a different intensity. Methods/Design A logic model of change is used to develop the evaluation design. The model describes what outcomes may logically be expected at different points in time at the individual level. In order to address the complexity of a real-life setting, the evaluation design of the loneliness intervention comprises two types of evaluation studies. The first uses a quasi-experimental pre-test post-test design to evaluate the effectiveness of the overall intervention. A control community comparable to the intervention community was selected, with baseline measurements in 2008 and follow-up measurements scheduled for 2010. This study focuses on changes in the prevalence of loneliness and in the determinants of loneliness within individuals in the general elderly population. Complementarily, the second study is designed to evaluate the individual intervention components and focuses on delivery, reach, acceptance, and short-term outcomes. Different means of project records and surveys among participants are used to collect these data. Discussion Combining these two evaluation strategies has the potential to assess the effectiveness of the overall complex intervention and the contribution of the individual intervention components thereto. PMID:20836840

  16. Role of design complexity in technology improvement.

    PubMed

    McNerney, James; Farmer, J Doyne; Redner, Sidney; Trancik, Jessika E

    2011-05-31

    We study a simple model for the evolution of the cost (or more generally the performance) of a technology or production process. The technology can be decomposed into n components, each of which interacts with a cluster of d - 1 other components. Innovation occurs through a series of trial-and-error events, each of which consists of randomly changing the cost of each component in a cluster, and accepting the changes only if the total cost of the cluster is lowered. We show that the relationship between the cost of the whole technology and the number of innovation attempts is asymptotically a power law, matching the functional form often observed for empirical data. The exponent α of the power law depends on the intrinsic difficulty of finding better components, and on what we term the design complexity: the more complex the design, the slower the rate of improvement. Letting d as defined above be the connectivity, in the special case in which the connectivity is constant, the design complexity is simply the connectivity. When the connectivity varies, bottlenecks can arise in which a few components limit progress. In this case the design complexity depends on the details of the design. The number of bottlenecks also determines whether progress is steady, or whether there are periods of stasis punctuated by occasional large changes. Our model connects the engineering properties of a design to historical studies of technology improvement.

  17. Complexity and Chaos - State-of-the-Art; Formulations and Measures of Complexity

    DTIC Science & Technology

    2007-09-01

    Systems (SoS) Section. His research interests are oriented toward the study, design and engineering of military complex systems through the lens of the...Approved for release by This work is part of project 15bp01 – Defensive Software Design . © Her Majesty the Queen in Right of Canada...16 2.35 Minimum Number of Sub Groups

  18. Biotinylated platinum(IV) complexes designed to target cancer cells.

    PubMed

    Zhao, Jian; Hua, Wuyang; Xu, Gang; Gou, Shaohua

    2017-11-01

    Three biotinylated platinum(IV) complexes (1-3) were designed and synthesized. The resulting platinum(IV) complexes exhibited effective cytotoxicity against the tested cancer cell lines, especially complex 1, which was 2.0-9.6-fold more potent than cisplatin. These complexes were found to be rapidly reduced to their activated platinum(II) counterparts by glutathione or ascorbic acid under biologically relevant condition. Additional molecular docking studies revealed that the biotin moieties of all Pt(IV) complexes can effectively bind with the streptavidin through the noncovalent interactions. Besides, introduction of the biotin group can obviously promote the cancer cell uptake of platinum when treated with complex 1, particularly in cisplatin-resistant SGC-7901/Cis cancer cells. Further mechanistic studies on complex 1 indicated that it activated the expression of Bax, and induced cytochrome c release from the mitochondria, and finally activated caspase-3. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Application of 3D Laser Scanning Technology in Complex Rock Foundation Design

    NASA Astrophysics Data System (ADS)

    Junjie, Ma; Dan, Lu; Zhilong, Liu

    2017-12-01

    Taking the complex landform of Tanxi Mountain Landscape Bridge as an example, the application of 3D laser scanning technology in the mapping of complex rock foundations is studied in this paper. A set of 3D laser scanning technologies are formed and several key engineering problems are solved. The first is 3D laser scanning technology of complex landforms. 3D laser scanning technology is used to obtain a complete 3D point cloud data model of the complex landform. The detailed and accurate results of the surveying and mapping decrease the measuring time and supplementary measuring times. The second is 3D collaborative modeling of the complex landform. A 3D model of the complex landform is established based on the 3D point cloud data model. The super-structural foundation model is introduced for 3D collaborative design. The optimal design plan is selected and the construction progress is accelerated. And the last is finite-element analysis technology of the complex landform foundation. A 3D model of the complex landform is introduced into ANSYS for building a finite element model to calculate anti-slide stability of the rock, and provides a basis for the landform foundation design and construction.

  20. Evaluation design for a complex intervention program targeting loneliness in non-institutionalized elderly Dutch people.

    PubMed

    de Vlaming, Rianne; Haveman-Nies, Annemien; Van't Veer, Pieter; de Groot, Lisette Cpgm

    2010-09-13

    The aim of this paper is to provide the rationale for an evaluation design for a complex intervention program targeting loneliness among non-institutionalized elderly people in a Dutch community. Complex public health interventions characteristically use the combined approach of intervening on the individual and on the environmental level. It is assumed that the components of a complex intervention interact with and reinforce each other. Furthermore, implementation is highly context-specific and its impact is influenced by external factors. Although the entire community is exposed to the intervention components, each individual is exposed to different components with a different intensity. A logic model of change is used to develop the evaluation design. The model describes what outcomes may logically be expected at different points in time at the individual level. In order to address the complexity of a real-life setting, the evaluation design of the loneliness intervention comprises two types of evaluation studies. The first uses a quasi-experimental pre-test post-test design to evaluate the effectiveness of the overall intervention. A control community comparable to the intervention community was selected, with baseline measurements in 2008 and follow-up measurements scheduled for 2010. This study focuses on changes in the prevalence of loneliness and in the determinants of loneliness within individuals in the general elderly population. Complementarily, the second study is designed to evaluate the individual intervention components and focuses on delivery, reach, acceptance, and short-term outcomes. Different means of project records and surveys among participants are used to collect these data. Combining these two evaluation strategies has the potential to assess the effectiveness of the overall complex intervention and the contribution of the individual intervention components thereto.

  1. Causal inferences on the effectiveness of complex social programs: Navigating assumptions, sources of complexity and evaluation design challenges.

    PubMed

    Chatterji, Madhabi

    2016-12-01

    This paper explores avenues for navigating evaluation design challenges posed by complex social programs (CSPs) and their environments when conducting studies that call for generalizable, causal inferences on the intervention's effectiveness. A definition is provided of a CSP drawing on examples from different fields, and an evaluation case is analyzed in depth to derive seven (7) major sources of complexity that typify CSPs, threatening assumptions of textbook-recommended experimental designs for performing impact evaluations. Theoretically-supported, alternative methodological strategies are discussed to navigate assumptions and counter the design challenges posed by the complex configurations and ecology of CSPs. Specific recommendations include: sequential refinement of the evaluation design through systems thinking, systems-informed logic modeling; and use of extended term, mixed methods (ETMM) approaches with exploratory and confirmatory phases of the evaluation. In the proposed approach, logic models are refined through direct induction and interactions with stakeholders. To better guide assumption evaluation, question-framing, and selection of appropriate methodological strategies, a multiphase evaluation design is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A study on axial and torsional resonant mode matching for a mechanical system with complex nonlinear geometries

    NASA Astrophysics Data System (ADS)

    Watson, Brett; Yeo, Leslie; Friend, James

    2010-06-01

    Making use of mechanical resonance has many benefits for the design of microscale devices. A key to successfully incorporating this phenomenon in the design of a device is to understand how the resonant frequencies of interest are affected by changes to the geometric parameters of the design. For simple geometric shapes, this is quite easy, but for complex nonlinear designs, it becomes significantly more complex. In this paper, two novel modeling techniques are demonstrated to extract the axial and torsional resonant frequencies of a complex nonlinear geometry. The first decomposes the complex geometry into easy to model components, while the second uses scaling techniques combined with the finite element method. Both models overcome problems associated with using current analytical methods as design tools, and enable a full investigation of how changes in the geometric parameters affect the resonant frequencies of interest. The benefit of such models is then demonstrated through their use in the design of a prototype piezoelectric ultrasonic resonant micromotor which has improved performance characteristics over previous prototypes.

  3. Safety assessment for the postictal confusional phase following complex partial seizure.

    PubMed

    Tucker, C

    1985-06-01

    Misunderstanding of the postictal confusional state that follows the complex partial seizure has caused emotional and physical harm to patients. Concern about this phenomenon and its effects upon the patient prompted this study to explore, describe, and document one method of intervention to lessen these harmful effects. An evaluative descriptive research design was employed to assess patient safety during and after the postictal confusional phase following a complex partial seizure. A closed-structured questionnaire and participant observation were the methods used to collect data for this study. A Level of Safety Tool was specifically designed for this study.

  4. Scale Development and Initial Tests of the Multidimensional Complex Adaptive Leadership Scale for School Principals: An Exploratory Mixed Method Study

    ERIC Educational Resources Information Center

    Özen, Hamit; Turan, Selahattin

    2017-01-01

    This study was designed to develop the scale of the Complex Adaptive Leadership for School Principals (CAL-SP) and examine its psychometric properties. This was an exploratory mixed method research design (ES-MMD). Both qualitative and quantitative methods were used to develop and assess psychometric properties of the questionnaire. This study…

  5. Understanding Gender, Creativity, and Entrepreneurial Intentions

    ERIC Educational Resources Information Center

    Smith, Ronda Marie; Sardeshmukh, Shruti R.; Combs, Gwendolyn M.

    2016-01-01

    Purpose: The purpose of this paper is to explore the complex relationships between gender and entrepreneurial intentions. Design/methodology/approach: This paper uses a two study design where the second study is a constructive replication of the first study. The first study uses a cross-sectional design, while the second uses a design where data…

  6. A case study on topology optimized design for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Gebisa, A. W.; Lemu, H. G.

    2017-12-01

    Topology optimization is an optimization method that employs mathematical tools to optimize material distribution in a part to be designed. Earlier developments of topology optimization considered conventional manufacturing techniques that have limitations in producing complex geometries. This has hindered the topology optimization efforts not to fully be realized. With the emergence of additive manufacturing (AM) technologies, the technology that builds a part layer upon a layer directly from three dimensional (3D) model data of the part, however, producing complex shape geometry is no longer an issue. Realization of topology optimization through AM provides full design freedom for the design engineers. The article focuses on topologically optimized design approach for additive manufacturing with a case study on lightweight design of jet engine bracket. The study result shows that topology optimization is a powerful design technique to reduce the weight of a product while maintaining the design requirements if additive manufacturing is considered.

  7. Turbine design using complex modes and substructuring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olausson, H.L.; Torby, B.J.

    1988-10-01

    A complex modal-analysis method for studying the behavior of a turbine near its design speed is presented. The modal calculations account for gyroscopic moments as well as nonsymmetric bearing effects. Results of calculations performed for a 650 MW ASEA STAL turbine installation are presented. 12 references.

  8. Design of stereoelectronically promoted super lewis acids and unprecedented chemistry of their complexes.

    PubMed

    Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek

    2014-09-01

    A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Feedback (F) Fueling Adaptation (A) Network Growth (N) and Self-Organization (S): A Complex Systems Design and Evaluation Approach to Professional Development

    ERIC Educational Resources Information Center

    Yoon, Susan A.; Klopfer, Eric

    2006-01-01

    This paper reports on the efficacy of a professional development framework premised on four complex systems design principles: Feedback, Adaptation, Network Growth and Self-organization (FANS). The framework is applied to the design and delivery of the first 2 years of a 3-year study aimed at improving teacher and student understanding of…

  10. Identifying Complex Cultural Interactions in the Instructional Design Process: A Case Study of a Cross-Border, Cross-Sector Training for Innovation Program

    ERIC Educational Resources Information Center

    Russell, L. Roxanne; Kinuthia, Wanjira L.; Lokey-Vega, Anissa; Tsang-Kosma, Winnie; Madathany, Reeny

    2013-01-01

    The purpose of this research is to identify complex cultural dynamics in the instructional design process of a cross-sector, cross-border training environment by applying Young's (2009) Culture-Based Model (CBM) as a theoretical framework and taxonomy for description of the instructional design process under the conditions of one case. This…

  11. Tackling complexities in understanding the social determinants of health: the contribution of ethnographic research.

    PubMed

    Bandyopadhyay, Mridula

    2011-11-25

    The complexities inherent in understanding the social determinants of health are often not well-served by quantitative approaches. My aim is to show that well-designed and well-conducted ethnographic studies have an important contribution to make in this regard. Ethnographic research designs are a difficult but rigorous approach to research questions that require us to understand the complexity of people's social and cultural lives. I draw on an ethnographic study to describe the complexities of studying maternal health in a rural area in India. I then show how the lessons learnt in that setting and context can be applied to studies done in very different settings. I show how ethnographic research depends for rigour on a theoretical framework for sample selection; why immersion in the community under study, and rapport building with research participants, is important to ensure rich and meaningful data; and how flexible approaches to data collection lead to the gradual emergence of an analysis based on intense cross-referencing with community views and thus a conclusion that explains the similarities and differences observed. When using ethnographic research design it can be difficult to specify in advance the exact details of the study design. Researchers can encounter issues in the field that require them to change what they planned on doing. In rigorous ethnographic studies, the researcher in the field is the research instrument and needs to be well trained in the method. Ethnographic research is challenging, but nevertheless provides a rewarding way of researching complex health problems that require an understanding of the social and cultural determinants of health.

  12. A complex-network perspective on Alexander's wholeness

    NASA Astrophysics Data System (ADS)

    Jiang, Bin

    2016-12-01

    The wholeness, conceived and developed by Christopher Alexander, is what exists to some degree or other in space and matter, and can be described by precise mathematical language. However, it remains somehow mysterious and elusive, and therefore hard to grasp. This paper develops a complex network perspective on the wholeness to better understand the nature of order or beauty for sustainable design. I bring together a set of complexity-science subjects such as complex networks, fractal geometry, and in particular underlying scaling hierarchy derived by head/tail breaks - a classification scheme and a visualization tool for data with a heavy-tailed distribution, in order to make Alexander's profound thoughts more accessible to design practitioners and complexity-science researchers. Through several case studies (some of which Alexander studied), I demonstrate that the complex-network perspective helps reduce the mystery of wholeness and brings new insights to Alexander's thoughts on the concept of wholeness or objective beauty that exists in fine and deep structure. The complex-network perspective enables us to see things in their wholeness, and to better understand how the kind of structural beauty emerges from local actions guided by the 15 fundamental properties, and in particular by differentiation and adaptation processes. The wholeness goes beyond current complex network theory towards design or creation of living structures.

  13. Transforming Multidisciplinary Customer Requirements to Product Design Specifications

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-Jie; Ding, Guo-Fu; Qin, Sheng-Feng; Li, Rong; Yan, Kai-Yin; Xiao, Shou-Ne; Yang, Guang-Wu

    2017-09-01

    With the increasing of complexity of complex mechatronic products, it is necessary to involve multidisciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisciplinary customer requirements modeling method is provided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with different team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.

  14. Development of Design Rules for Reliable Antisense RNA Behavior in E. coli.

    PubMed

    Hoynes-O'Connor, Allison; Moon, Tae Seok

    2016-12-16

    A key driver of synthetic biology is the development of designable genetic parts with predictable behaviors that can be quickly implemented in complex genetic systems. However, the intrinsic complexity of gene regulation can make the rational design of genetic parts challenging. This challenge is apparent in the design of antisense RNA (asRNA) regulators. Though asRNAs are well-known regulators, the literature governing their design is conflicting and leaves the synthetic biology community without clear asRNA design rules. The goal of this study is to perform a comprehensive experimental characterization and statistical analysis of 121 unique asRNA regulators in order to resolve the conflicts that currently exist in the literature. asRNAs usually consist of two regions, the Hfq binding site and the target binding region (TBR). First, the behaviors of several high-performing Hfq binding sites were compared, in terms of their ability to improve repression efficiencies and their orthogonality. Next, a large-scale analysis of TBR design parameters identified asRNA length, the thermodynamics of asRNA-mRNA complex formation, and the percent of target mismatch as key parameters for TBR design. These parameters were used to develop simple asRNA design rules. Finally, these design rules were applied to construct both a simple and a complex genetic circuit containing different asRNAs, and predictable behavior was observed in both circuits. The results presented in this study will drive synthetic biology forward by providing useful design guidelines for the construction of asRNA regulators with predictable behaviors.

  15. Complexity in Design-Driven Innovation: A Case Study of Knowledge Transfer Flow in Subsea Seismic Sensor Technology and Design Education

    ERIC Educational Resources Information Center

    Pavel, Nenad; Berg, Arild

    2015-01-01

    To the extent previously claimed, concept exploration is not the key to product innovation. However, companies that are design-focused are twice as innovative as those that are not. To study design-driven innovation and its occurrence in design education, two case studies are conducted. The first is an example of design practice which includes…

  16. Life in the Hive: Supporting Inquiry into Complexity Within the Zone of Proximal Development

    NASA Astrophysics Data System (ADS)

    Danish, Joshua A.; Peppler, Kylie; Phelps, David; Washington, Dianna

    2011-10-01

    Research into students' understanding of complex systems typically ignores young children because of misinterpretations of young children's competencies. Furthermore, studies that do recognize young children's competencies tend to focus on what children can do in isolation. As an alternative, we propose an approach to designing for young children that is grounded in the notion of the Zone of Proximal Development (Vygotsky 1978) and leverages Activity Theory to design learning environments. In order to highlight the benefits of this approach, we describe our process for using Activity Theory to inform the design of new software and curricula in a way that is productive for young children to learn concepts that we might have previously considered to be "developmentally inappropriate". As an illuminative example, we then present a discussion of the design of the BeeSign simulation software and accompanying curriculum which specifically designed from an Activity Theory perspective to engage young children in learning about complex systems (Danish 2009a, b). Furthermore, to illustrate the benefits of this approach, we will present findings from a new study where 40 first- and second-grade students participated in the BeeSign curriculum to learn about how honeybees collect nectar from a complex systems perspective. We conclude with some practical suggestions for how such an approach to using Activity Theory for research and design might be adopted by other science educators and designers.

  17. Navigating the Turbulent Waters of School Reform Guided by Complexity Theory

    ERIC Educational Resources Information Center

    White, David G.; Levin, James A.

    2016-01-01

    The goal of this research study has been to develop, implement, and evaluate a school reform design experiment at a continuation high school with low-income, low-performing underrepresented minority students. The complexity sciences served as a theoretical framework for this design experiment. Treating an innovative college preparatory program as…

  18. Challenges in Integrating a Complex Systems Computer Simulation in Class: An Educational Design Research

    ERIC Educational Resources Information Center

    Loke, Swee-Kin; Al-Sallami, Hesham S.; Wright, Daniel F. B.; McDonald, Jenny; Jadhav, Sheetal; Duffull, Stephen B.

    2012-01-01

    Complex systems are typically difficult for students to understand and computer simulations offer a promising way forward. However, integrating such simulations into conventional classes presents numerous challenges. Framed within an educational design research, we studied the use of an in-house built simulation of the coagulation network in four…

  19. The contribution of case study design to supporting research on Clubhouse psychosocial rehabilitation.

    PubMed

    Raeburn, Toby; Schmied, Virginia; Hungerford, Catherine; Cleary, Michelle

    2015-10-01

    Psychosocial Clubhouses provide recovery-focused psychosocial rehabilitation to people with serious mental illness at over 300 sites in more than 30 countries worldwide. To deliver the services involved, Clubhouses employ a complex mix of theory, programs and relationships, with this complexity presenting a number of challenges to those undertaking Clubhouse research. This paper provides an overview of the usefulness of case study designs for Clubhouse researchers; and suggests ways in which the evaluation of Clubhouse models can be facilitated. The paper begins by providing a brief explanation of the Clubhouse model of psychosocial rehabilitation, and the need for ongoing evaluation of the services delivered. This explanation is followed by an introduction to case study design, with consideration given to the way in which case studies have been used in past Clubhouse research. It is posited that case study design provides a methodological framework that supports the analysis of either quantitative, qualitative or a mixture of both types of data to investigate complex phenomena in their everyday contexts, and thereby support the development of theory. As such, case study approaches to research are well suited to the Clubhouse environment. The paper concludes with recommendations for future Clubhouse researchers who choose to employ a case study design. While the quality of case study research that explores Clubhouses has been variable in the past, if applied in a diligent manner, case study design has a valuable contribution to make in future Clubhouse research.

  20. Cross-modal links among vision, audition, and touch in complex environments.

    PubMed

    Ferris, Thomas K; Sarter, Nadine B

    2008-02-01

    This study sought to determine whether performance effects of cross-modal spatial links that were observed in earlier laboratory studies scale to more complex environments and need to be considered in multimodal interface design. It also revisits the unresolved issue of cross-modal cuing asymmetries. Previous laboratory studies employing simple cues, tasks, and/or targets have demonstrated that the efficiency of processing visual, auditory, and tactile stimuli is affected by the modality, lateralization, and timing of surrounding cues. Very few studies have investigated these cross-modal constraints in the context of more complex environments to determine whether they scale and how complexity affects the nature of cross-modal cuing asymmetries. Amicroworld simulation of battlefield operations with a complex task set and meaningful visual, auditory, and tactile stimuli was used to investigate cuing effects for all cross-modal pairings. Significant asymmetric performance effects of cross-modal spatial links were observed. Auditory cues shortened response latencies for collocated visual targets but visual cues did not do the same for collocated auditory targets. Responses to contralateral (rather than ipsilateral) targets were faster for tactually cued auditory targets and each visual-tactile cue-target combination, suggesting an inhibition-of-return effect. The spatial relationships between multimodal cues and targets significantly affect target response times in complex environments. The performance effects of cross-modal links and the observed cross-modal cuing asymmetries need to be examined in more detail and considered in future interface design. The findings from this study have implications for the design of multimodal and adaptive interfaces and for supporting attention management in complex, data-rich domains.

  1. Stabilizing Group Treatment for Complex Posttraumatic Stress Disorder Related to Childhood Abuse Based on Psycho-Education and Cognitive Behavioral Therapy: A Pilot Study

    ERIC Educational Resources Information Center

    Dorrepaal, Ethy; Thomaes, Kathleen; Smit, Johannes H.; van Balkom, Anton J. L. M.; van Dyck, Richard; Veltman, Dick J.; Draijer, Nel

    2010-01-01

    Objective: This study tests a Stabilizing Group Treatment protocol, designed for the management of the long-term sequelae of child abuse, that is, Complex Posttraumatic Stress Disorder (Complex PTSD). Evidence-based treatment for this subgroup of PTSD patients is largely lacking. This stabilizing treatment aims at improving Complex PTSD using…

  2. A review of human factors challenges of complex adaptive systems: discovering and understanding chaos in human performance.

    PubMed

    Karwowski, Waldemar

    2012-12-01

    In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.

  3. Improving the Effectiveness of Professional Education: Learning Managerial Accounting via a Complex Case.

    ERIC Educational Resources Information Center

    Carter, Melissa; And Others

    To give students more experience with real situations, many professional schools use case studies in their courses. Creating complex cases, case experiences that immerse students in complex problems, rather than mere case studies that require armchair analysis should help students gain better and more integrated knowledge. Designing, implementing,…

  4. Capturing the experiences of patients across multiple complex interventions: a meta-qualitative approach

    PubMed Central

    Webster, Fiona; Christian, Jennifer; Mansfield, Elizabeth; Bhattacharyya, Onil; Hawker, Gillian; Levinson, Wendy; Naglie, Gary; Pham, Thuy-Nga; Rose, Louise; Schull, Michael; Sinha, Samir; Stergiopoulos, Vicky; Upshur, Ross; Wilson, Lynn

    2015-01-01

    Objectives The perspectives, needs and preferences of individuals with complex health and social needs can be overlooked in the design of healthcare interventions. This study was designed to provide new insights on patient perspectives drawing from the qualitative evaluation of 5 complex healthcare interventions. Setting Patients and their caregivers were recruited from 5 interventions based in primary, hospital and community care in Ontario, Canada. Participants We included 62 interviews from 44 patients and 18 non-clinical caregivers. Intervention Our team analysed the transcripts from 5 distinct projects. This approach to qualitative meta-evaluation identifies common issues described by a diverse group of patients, therefore providing potential insights into systems issues. Outcome measures This study is a secondary analysis of qualitative data; therefore, no outcome measures were identified. Results We identified 5 broad themes that capture the patients’ experience and highlight issues that might not be adequately addressed in complex interventions. In our study, we found that: (1) the emergency department is the unavoidable point of care; (2) patients and caregivers are part of complex and variable family systems; (3) non-medical issues mediate patients’ experiences of health and healthcare delivery; (4) the unanticipated consequences of complex healthcare interventions are often the most valuable; and (5) patient experiences are shaped by the healthcare discourses on medically complex patients. Conclusions Our findings suggest that key assumptions about patients that inform intervention design need to be made explicit in order to build capacity to better understand and support patients with multiple chronic diseases. Across many health systems internationally, multiple models are being implemented simultaneously that may have shared features and target similar patients, and a qualitative meta-evaluation approach, thus offers an opportunity for cumulative learning at a system level in addition to informing intervention design and modification. PMID:26351182

  5. Tackling complexities in understanding the social determinants of health: the contribution of ethnographic research

    PubMed Central

    2011-01-01

    Objective The complexities inherent in understanding the social determinants of health are often not well-served by quantitative approaches. My aim is to show that well-designed and well-conducted ethnographic studies have an important contribution to make in this regard. Ethnographic research designs are a difficult but rigorous approach to research questions that require us to understand the complexity of people’s social and cultural lives. Approach I draw on an ethnographic study to describe the complexities of studying maternal health in a rural area in India. I then show how the lessons learnt in that setting and context can be applied to studies done in very different settings. Results I show how ethnographic research depends for rigour on a theoretical framework for sample selection; why immersion in the community under study, and rapport building with research participants, is important to ensure rich and meaningful data; and how flexible approaches to data collection lead to the gradual emergence of an analysis based on intense cross-referencing with community views and thus a conclusion that explains the similarities and differences observed. Conclusion When using ethnographic research design it can be difficult to specify in advance the exact details of the study design. Researchers can encounter issues in the field that require them to change what they planned on doing. In rigorous ethnographic studies, the researcher in the field is the research instrument and needs to be well trained in the method. Implication Ethnographic research is challenging, but nevertheless provides a rewarding way of researching complex health problems that require an understanding of the social and cultural determinants of health. PMID:22168509

  6. A Parallel Trade Study Architecture for Design Optimization of Complex Systems

    NASA Technical Reports Server (NTRS)

    Kim, Hongman; Mullins, James; Ragon, Scott; Soremekun, Grant; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    Design of a successful product requires evaluating many design alternatives in a limited design cycle time. This can be achieved through leveraging design space exploration tools and available computing resources on the network. This paper presents a parallel trade study architecture to integrate trade study clients and computing resources on a network using Web services. The parallel trade study solution is demonstrated to accelerate design of experiments, genetic algorithm optimization, and a cost as an independent variable (CAIV) study for a space system application.

  7. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix G: LRB for the STS system study level 2 requirements, revision 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Requirements are presented for shuttle system definition; performance and design characteristics; shuttle vehicle end item performance and design characteristics; ground operations complex performance and design characteristics; operability and system design and construction standards; and quality control.

  8. Serious games and blended learning; effects on performance and motivation in medical education.

    PubMed

    Dankbaar, Mary

    2017-02-01

    More efficient, flexible training models are needed in medical education. Information technology offers the tools to design and develop effective and more efficient training. The aims of this thesis were: 1) Compare the effectiveness of blended versus classroom training for the acquisition of knowledge; 2) Investigate the effectiveness and critical design features of serious games for performance improvement and motivation. Five empirical studies were conducted to answer the research questions and a descriptive study on an evaluation framework to assess serious games was performed. The results of the research studies indicated that: 1) For knowledge acquisition, blended learning is equally effective and attractive for learners as classroom learning; 2) A serious game with realistic, interactive cases improved complex cognitive skills for residents, with limited self-study time. Although the same game was motivating for inexperienced medical students and stimulated them to study longer, it did not improve their cognitive skills, compared with what they learned from an instructional e‑module. This indicates an 'expertise reversal effect', where a rich learning environment is effective for experts, but may be contra-productive for novices (interaction of prior knowledge and complexity of format). A blended design is equally effective and attractive as classroom training. Blended learning facilitates adaptation to the learners' knowledge level, flexibility in time and scalability of learning. Games may support skills learning, provided task complexity matches the learner's competency level. More design-based research is needed on the effects of task complexity and other design features on performance improvement, for both novices and experts.

  9. The Effects of Cognitive Task Complexity on L2 Oral Production

    ERIC Educational Resources Information Center

    Levkina, Mayya; Gilabert, Roger

    2012-01-01

    This paper examines the impact of task complexity on L2 production. The study increases task complexity by progressively removing pre-task planning time and increasing the number of elements. The combined effects of manipulating these two variables of task complexity simultaneously are also analyzed. Using a repeated measures design, 42…

  10. Design and Use of a Learning Object for Finding Complex Polynomial Roots

    ERIC Educational Resources Information Center

    Benitez, Julio; Gimenez, Marcos H.; Hueso, Jose L.; Martinez, Eulalia; Riera, Jaime

    2013-01-01

    Complex numbers are essential in many fields of engineering, but students often fail to have a natural insight of them. We present a learning object for the study of complex polynomials that graphically shows that any complex polynomials has a root and, furthermore, is useful to find the approximate roots of a complex polynomial. Moreover, we…

  11. Numerical Investigations of Interactions between the Knee-Thigh-Hip Complex with Vehicle Interior Structures.

    PubMed

    Kim, Yong Sun; Choi, Hyeong Ho; Cho, Young Nam; Park, Yong Jae; Lee, Jong B; Yang, King H; King, Albert I

    2005-11-01

    Although biomechanical studies on the knee-thigh-hip (KTH) complex have been extensive, interactions between the KTH and various vehicular interior design parameters in frontal automotive crashes for newer models have not been reported in the open literature to the best of our knowledge. A 3D finite element (FE) model of a 50(th) percentile male KTH complex, which includes explicit representations of the iliac wing, acetabulum, pubic rami, sacrum, articular cartilage, femoral head, femoral neck, femoral condyles, patella, and patella tendon, has been developed to simulate injuries such as fracture of the patella, femoral neck, acetabulum, and pubic rami of the KTH complex. Model results compared favorably against regional component test data including a three-point bending test of the femur, axial loading of the isolated knee-patella, axial loading of the KTH complex, axial loading of the femoral head, and lateral loading of the isolated pelvis. The model was further integrated into a Wayne State University upper torso model and validated against data obtained from whole body sled tests. The model was validated against these experimental data over a range of impact speeds, impactor masses and boundary conditions. Using Design Of Experiment (DOE) methods based on Taguchi's approach and the developed FE model of the whole body, including the KTH complex, eight vehicular interior design parameters, namely the load limiter force, seat belt elongation, pretensioner inlet amount, knee-knee bolster distance, knee bolster angle, knee bolster stiffness, toe board angle and impact speed, each with either two or three design levels, were simulated to predict their respective effects on the potential of KTH injury in frontal impacts. Simulation results proposed best design levels for vehicular interior design parameters to reduce the injury potential of the KTH complex due to frontal automotive crashes. This study is limited by the fact that prediction of bony fracture was based on an element elimination method available in the LS-DYNA code. No validation study was conducted to determine if this method is suitable when simulating fractures of biological tissues. More work is still needed to further validate the FE model of the KTH complex to increase its reliability in the assessment of various impact loading conditions associated with vehicular crash scenarios.

  12. A Silent Revolution: From Sketching to Coding--A Case Study on Code-Based Design Tool Learning

    ERIC Educational Resources Information Center

    Xu, Song; Fan, Kuo-Kuang

    2017-01-01

    Along with the information technology rising, Computer Aided Design activities are becoming more modern and more complex. But learning how to operation these new design tools has become the main problem lying in front of each designer. This study was purpose on finding problems encountered during code-based design tools learning period of…

  13. 76 FR 23608 - Revision to Proposed Collection; Comment Request; Formative Research Methodology Studies for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... conduct survey and instrument design and administration, focus groups, cognitive interviews, and health..., recruitment, consent and questionnaire design, and retention activities. Under separate notice, the NCS also... study of this size and complexity, the NCS was designed to include a preliminary pilot study known as...

  14. 76 FR 23605 - New Proposed Collection; Comment Request; Study Logistic Formative Research Methodology Studies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... formative research relating to instrument design and modality with a view to reduce item and unit non... clearance to conduct survey and instrument design and administration, focus groups, cognitive interviews... conduct the detailed preparation needed for a study of this size and complexity, the NCS was designed to...

  15. Function-Oriented Synthesis: How to Design Simplified Analogues of Antibacterial Nucleoside Natural Products?

    PubMed

    Ichikawa, Satoshi

    2016-06-01

    It is important to pursue function-oriented synthesis (FOS), a strategy for the design of less structurally complex targets with comparable or superior activity that can be made in a practical manner, because compared to synthetic drugs, many biologically relevant natural products possess large and complex chemical structures that may restrict chemical modifications in a structure-activity relationship study. In this account, we describe recent efforts to simplify complex nucleoside natural products including caprazamycins. Considering the structure-activity relationship study with several truncated analogues, three types of simplified derivatives, namely, oxazolidine, isoxazolidine, and lactam-fused isoxazolidine-containing uridine derivatives, were designed and efficiently synthesized. These simplified derivatives have exhibited promising antibacterial activities. A significant feature of our studies is the rational and drastic simplification of the molecular architecture of caprazamycins. This study provides a novel strategy for the development of a new type of antibacterial agent effective against drug-resistant bacteria. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Moving bed reactor setup to study complex gas-solid reactions.

    PubMed

    Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih

    2007-08-01

    A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.

  17. Study of mould design and forming process on advanced polymer-matrix composite complex structure

    NASA Astrophysics Data System (ADS)

    Li, S. J.; Zhan, L. H.; Bai, H. M.; Chen, X. P.; Zhou, Y. Q.

    2015-07-01

    Advanced carbon fibre-reinforced polymer-matrix composites are widely applied to aviation manufacturing field due to their outstanding performance. In this paper, the mould design and forming process of the complex composite structure were discussed in detail using the hat stiffened structure as an example. The key issues of the moulddesign were analyzed, and the corresponding solutions were also presented. The crucial control points of the forming process such as the determination of materials and stacking sequence, the temperature and pressure route of the co-curing process were introduced. In order to guarantee the forming quality of the composite hat stiffened structure, a mathematical model about the aperture of rubber mandrel was introduced. The study presented in this paper may provide some actual references for the design and manufacture of the important complex composite structures.

  18. Methodological issues in oral health research: intervention studies.

    PubMed

    O'Mullane, Denis; James, Patrice; Whelton, Helen; Parnell, Carmel

    2012-02-01

    To provide a broad overview of methodological issues in the design and evaluation of intervention studies in dental public health, with particular emphasis on explanatory trials, pragmatic trials and complex interventions. We present a narrative summary of selected publications from the literature outlining both historical and recent challenges in the design and evaluation of intervention studies and describe some recent tools that may help researchers to address these challenges. It is now recognised that few intervention studies in dental public health are purely explanatory or pragmatic. We describe the PRECIS tool which can be used by trialists to assess and display the position of their trial on a continuum between the extremes of explanatory and pragmatic trials. The tool aims to help trialists make design decisions that are in line with their stated aims. The increasingly complex nature of dental public health interventions presents particular design and evaluation challenges. The revised Medical Research Council (MRC) guidance for the development and evaluation of complex interventions which emphasises the importance of planning and process evaluation is a welcome development. We briefly describe the MRC guidance and outline some examples of complex interventions in the field of oral health. The role of observational studies in monitoring public health interventions when the conduct of RCTs is not appropriate or feasible is acknowledged. We describe the STROBE statement and outline the implications of the STROBE guidelines for dental public health. The methodological challenges in the design, conduct and reporting of intervention studies in oral health are considerable. The need to provide reliable evidence to support innovative new strategies in oral health policy is a major impetus in these fields. No doubt the 'Methodological Issues in Oral Health Research' group will have further opportunities to highlight this work. © 2012 John Wiley & Sons A/S.

  19. Automated a complex computer aided design concept generated using macros programming

    NASA Astrophysics Data System (ADS)

    Rizal Ramly, Mohammad; Asrokin, Azharrudin; Abd Rahman, Safura; Zulkifly, Nurul Ain Md

    2013-12-01

    Changing a complex Computer Aided design profile such as car and aircraft surfaces has always been difficult and challenging. The capability of CAD software such as AutoCAD and CATIA show that a simple configuration of a CAD design can be easily modified without hassle, but it is not the case with complex design configuration. Design changes help users to test and explore various configurations of the design concept before the production of a model. The purpose of this study is to look into macros programming as parametric method of the commercial aircraft design. Macros programming is a method where the configurations of the design are done by recording a script of commands, editing the data value and adding a certain new command line to create an element of parametric design. The steps and the procedure to create a macro programming are discussed, besides looking into some difficulties during the process of creation and advantage of its usage. Generally, the advantages of macros programming as a method of parametric design are; allowing flexibility for design exploration, increasing the usability of the design solution, allowing proper contained by the model while restricting others and real time feedback changes.

  20. Using Video Modeling to Teach Complex Social Sequences to Children with Autism

    ERIC Educational Resources Information Center

    Nikopoulos, Christos K.; Keenan, Mickey

    2007-01-01

    This study comprised of two experiments was designed to teach complex social sequences to children with autism. Experimental control was achieved by collecting data using means of within-system design methodology. Across a number of conditions children were taken to a room to view one of the four short videos of two people engaging in a simple…

  1. The Design and Use of Decision Support Systems by Academic Departments. AIR 1987 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Johnson, F. Craig

    The design and use of a departmental decision support system at Florida State University are described from the perspective of a department head. The decisions selected for study are ones of adequacy, equitability, quality, efficiency, and consistency. The complexity of the decision is related to the complexity of the support system. The major…

  2. Transferrin-functionalized nanographene oxide for delivery of platinum complexes to enhance cancer-cell selectivity and apoptosis-inducing efficacy.

    PubMed

    Zhu, Hai; Zhou, Binwei; Chan, Leung; Du, Yanxin; Chen, Tianfeng

    2017-01-01

    Rational design and construction of delivery nanosystems for anticancer metal complexes is a crucial strategy to improve solubility under physiological conditions and permeability and retention behavior in tumor cells. Therefore, in this study, we designed and synthesize a transferrin (Tf)-conjugated nanographene oxide (NGO) nanosystem as a cancer-targeted nanocarrier of Pt complexes (Tf-NGO@Pt). This nanodelivery system exhibited good solubility under physiological conditions. Moreover, Tf-NGO@Pt showed higher anticancer efficacy against MCF human breast cancer cells than the free Pt complex, and effectively inhibited cancer-cell migration and invasion, with involvement of reactive oxygen species overproduction. In addition, nanolization also enhanced the penetration ability and inhibitory effect of the Pt complex toward MCF7 breast cancer-cell tumor spheroids. The enhancement of anticancer efficacy was positively correlated with increased cellular uptake and cellular drug retention. This study provides a new strategy to facilitate the future application of metal complexes in cancer therapy.

  3. Combined qualitative and quantitative research designs.

    PubMed

    Seymour, Jane

    2012-12-01

    Mixed methods research designs have been recognized as important in addressing complexity and are recommended particularly in the development and evaluation of complex interventions. This article reports a review of studies in palliative care published between 2010 and March 2012 that combine qualitative and quantitative approaches. A synthesis of approaches to mixed methods research taken in 28 examples of published research studies of relevance to palliative and supportive care is provided, using a typology based on a classic categorization put forward in 1992. Mixed-method studies are becoming more frequently employed in palliative care research and resonate with the complexity of the palliative care endeavour. Undertaking mixed methods research requires a sophisticated understanding of the research process and recognition of some of the underlying complexities encountered when working with different traditions and perspectives on issues of: sampling, validity, reliability and rigour, different sources of data and different data collection and analysis techniques.

  4. 2-Deoxyglucose conjugated platinum (II) complexes for targeted therapy: design, synthesis, and antitumor activity.

    PubMed

    Mi, Qian; Ma, Yuru; Gao, Xiangqian; Liu, Ran; Liu, Pengxing; Mi, Yi; Fu, Xuegang; Gao, Qingzhi

    2016-11-01

    Malignant neoplasms exhibit an elevated rate of glycolysis over normal cells. To target the Warburg effect, we designed a new series of 2-deoxyglucose (2-DG) conjugated platinum (II) complexes for glucose transporter 1 (GLUT1)-mediated anticancer drug delivery. The potential GLUT1 transportability of the complexes was investigated through a comparative molecular docking analysis utilizing the latest GLUT1 protein crystal structure. The key binding site for 2-DG as GLUT1's substrate was identified with molecular dynamics simulation, and the docking study demonstrated that the 2-DG conjugated platinum (II) complexes can be recognized by the same binding site as potential GLUT1 substrate. The conjugates were synthesized and evaluated for in vitro cytotoxicity study with seven human cancer cell lines. The results of this study revealed that 2-DG conjugated platinum (II) complexes are GLUT1 transportable substrates and exhibit improved cytotoxicities in cancer cell lines that over express GLUT1 when compared to the clinical drug, Oxaliplatin. The correlation between GLUT1 expression and antitumor effects are also confirmed. The study provides fundamental information supporting the potential of the 2-DG conjugated platinum (II) complexes as lead compounds for further pharmaceutical R&D.

  5. Expert systems for superalloy studies

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    There are many areas in science and engineering which require knowledge of an extremely complex foundation of experimental results in order to design methodologies for developing new materials or products. Superalloys are an area which fit well into this discussion in the sense that they are complex combinations of elements which exhibit certain characteristics. Obviously the use of superalloys in high performance, high temperature systems such as the Space Shuttle Main Engine is of interest to NASA. The superalloy manufacturing process is complex and the implementation of an expert system within the design process requires some thought as to how and where it should be implemented. A major motivation is to develop a methodology to assist metallurgists in the design of superalloy materials using current expert systems technology. Hydrogen embrittlement is disasterous to rocket engines and the heuristics can be very complex. Attacking this problem as one module in the overall design process represents a significant step forward. In order to describe the objectives of the first phase implementation, the expert system was designated Hydrogen Environment Embrittlement Expert System (HEEES).

  6. Learning from the Pros: How Experienced Designers Translate Instructional Design Models into Practice

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; York, Cindy S.; Gedik, Nuray

    2009-01-01

    Understanding how experienced designers approach complex design problems provides new perspectives on how they translate instructional design (ID) models and processes into practice. In this article, the authors describe the results of a study in which 16 "seasoned" designers shared compelling stories from practice that offered insights into their…

  7. Cognitive Activity-based Design Methodology for Novice Visual Communication Designers

    ERIC Educational Resources Information Center

    Kim, Hyunjung; Lee, Hyunju

    2016-01-01

    The notion of design thinking is becoming more concrete nowadays, as design researchers and practitioners study the thinking processes involved in design and employ the concept of design thinking to foster better solutions to complex and ill-defined problems. The goal of the present research is to develop a cognitive activity-based design…

  8. A Design Research Study of a Curriculum and Diagnostic Assessment System for a Learning Trajectory on Equipartitioning

    ERIC Educational Resources Information Center

    Confrey, Jere; Maloney, Alan

    2015-01-01

    Design research studies provide significant opportunities to study new innovations and approaches and how they affect the forms of learning in complex classroom ecologies. This paper reports on a two-week long design research study with twelve 2nd through 4th graders using curricular materials and a tablet-based diagnostic assessment system, both…

  9. Preliminary design study of a baseline MIUS

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.; Shields, V. E.; Rippey, J. O.; Roberts, H. L.; Wadle, R. C.; Wallin, S. P.; Gill, W. L.; White, E. H.; Monzingo, R.

    1977-01-01

    Results of a conceptual design study to establish a baseline design for a modular integrated utility system (MIUS) are presented. The system concept developed a basis for evaluating possible projects to demonstrate an MIUS. For the baseline study, climate conditions for the Washington, D.C., area were used. The baseline design is for a high density apartment complex of 496 dwelling units with a planned full occupancy of approximately 1200 residents. Environmental considerations and regulations for the MIUS installation are discussed. Detailed cost data for the baseline MIUS are given together with those for design and operating variations under climate conditions typified by Las Vegas, Nevada, Houston, Texas, and Minneapolis, Minnesota. In addition, results of an investigation of size variation effects, for 300 and 1000 unit apartment complexes, are presented. Only conceptual aspects of the design are discussed. Results regarding energy savings and costs are intended only as trend information and for use in relative comparisons. Alternate heating, ventilation, and air conditioning concepts are considered in the appendix.

  10. A nonparametric method to generate synthetic populations to adjust for complex sampling design features.

    PubMed

    Dong, Qi; Elliott, Michael R; Raghunathan, Trivellore E

    2014-06-01

    Outside of the survey sampling literature, samples are often assumed to be generated by a simple random sampling process that produces independent and identically distributed (IID) samples. Many statistical methods are developed largely in this IID world. Application of these methods to data from complex sample surveys without making allowance for the survey design features can lead to erroneous inferences. Hence, much time and effort have been devoted to develop the statistical methods to analyze complex survey data and account for the sample design. This issue is particularly important when generating synthetic populations using finite population Bayesian inference, as is often done in missing data or disclosure risk settings, or when combining data from multiple surveys. By extending previous work in finite population Bayesian bootstrap literature, we propose a method to generate synthetic populations from a posterior predictive distribution in a fashion inverts the complex sampling design features and generates simple random samples from a superpopulation point of view, making adjustment on the complex data so that they can be analyzed as simple random samples. We consider a simulation study with a stratified, clustered unequal-probability of selection sample design, and use the proposed nonparametric method to generate synthetic populations for the 2006 National Health Interview Survey (NHIS), and the Medical Expenditure Panel Survey (MEPS), which are stratified, clustered unequal-probability of selection sample designs.

  11. A nonparametric method to generate synthetic populations to adjust for complex sampling design features

    PubMed Central

    Dong, Qi; Elliott, Michael R.; Raghunathan, Trivellore E.

    2017-01-01

    Outside of the survey sampling literature, samples are often assumed to be generated by a simple random sampling process that produces independent and identically distributed (IID) samples. Many statistical methods are developed largely in this IID world. Application of these methods to data from complex sample surveys without making allowance for the survey design features can lead to erroneous inferences. Hence, much time and effort have been devoted to develop the statistical methods to analyze complex survey data and account for the sample design. This issue is particularly important when generating synthetic populations using finite population Bayesian inference, as is often done in missing data or disclosure risk settings, or when combining data from multiple surveys. By extending previous work in finite population Bayesian bootstrap literature, we propose a method to generate synthetic populations from a posterior predictive distribution in a fashion inverts the complex sampling design features and generates simple random samples from a superpopulation point of view, making adjustment on the complex data so that they can be analyzed as simple random samples. We consider a simulation study with a stratified, clustered unequal-probability of selection sample design, and use the proposed nonparametric method to generate synthetic populations for the 2006 National Health Interview Survey (NHIS), and the Medical Expenditure Panel Survey (MEPS), which are stratified, clustered unequal-probability of selection sample designs. PMID:29200608

  12. Studying the HIT-Complexity Interchange.

    PubMed

    Kuziemsky, Craig E; Borycki, Elizabeth M; Kushniruk, Andre W

    2016-01-01

    The design and implementation of health information technology (HIT) is challenging, particularly when it is being introduced into complex settings. While complex adaptive system (CASs) can be a valuable means of understanding relationships between users, HIT and tasks, much of the existing work using CASs is descriptive in nature. This paper addresses that issue by integrating a model for analyzing task complexity with approaches for HIT evaluation and systems analysis. The resulting framework classifies HIT-user tasks and issues as simple, complicated or complex, and provides insight on how to study them.

  13. Simplifying Operational Design

    DTIC Science & Technology

    2012-05-01

    centuries of historical case studies, tracing the 9 evolution and development of what was then in 1997 operational theory. Naveh called his...major cases against operational design is the IDF’s application of SOD in 2006 against Hezbollah in Lebanon. While many blamed Israel’s lack of success...networked centricity.68 This is not the case . War, like ecosystems and economies, is a complex adaptive system. The interactive complexity that comprises

  14. Heuristics in Managing Complex Clinical Decision Tasks in Experts’ Decision Making

    PubMed Central

    Islam, Roosan; Weir, Charlene; Del Fiol, Guilherme

    2016-01-01

    Background Clinical decision support is a tool to help experts make optimal and efficient decisions. However, little is known about the high level of abstractions in the thinking process for the experts. Objective The objective of the study is to understand how clinicians manage complexity while dealing with complex clinical decision tasks. Method After approval from the Institutional Review Board (IRB), three clinical experts were interviewed the transcripts from these interviews were analyzed. Results We found five broad categories of strategies by experts for managing complex clinical decision tasks: decision conflict, mental projection, decision trade-offs, managing uncertainty and generating rule of thumb. Conclusion Complexity is created by decision conflicts, mental projection, limited options and treatment uncertainty. Experts cope with complexity in a variety of ways, including using efficient and fast decision strategies to simplify complex decision tasks, mentally simulating outcomes and focusing on only the most relevant information. Application Understanding complex decision making processes can help design allocation based on the complexity of task for clinical decision support design. PMID:27275019

  15. Heuristics in Managing Complex Clinical Decision Tasks in Experts' Decision Making.

    PubMed

    Islam, Roosan; Weir, Charlene; Del Fiol, Guilherme

    2014-09-01

    Clinical decision support is a tool to help experts make optimal and efficient decisions. However, little is known about the high level of abstractions in the thinking process for the experts. The objective of the study is to understand how clinicians manage complexity while dealing with complex clinical decision tasks. After approval from the Institutional Review Board (IRB), three clinical experts were interviewed the transcripts from these interviews were analyzed. We found five broad categories of strategies by experts for managing complex clinical decision tasks: decision conflict, mental projection, decision trade-offs, managing uncertainty and generating rule of thumb. Complexity is created by decision conflicts, mental projection, limited options and treatment uncertainty. Experts cope with complexity in a variety of ways, including using efficient and fast decision strategies to simplify complex decision tasks, mentally simulating outcomes and focusing on only the most relevant information. Understanding complex decision making processes can help design allocation based on the complexity of task for clinical decision support design.

  16. Beyond access: a case study on the intersection between accessibility, sustainability, and universal design.

    PubMed

    Gossett, Andrea; Mirza, Mansha; Barnds, Ann Kathleen; Feidt, Daisy

    2009-11-01

    A growing emphasis has been placed on providing equal opportunities for all people, particularly people with disabilities, to support participation. Barriers to participation are represented in part by physical space restrictions. This article explores the decision-making process during the construction of a new office building housing a disability-rights organization. The building project featured in this study was developed on the principles of universal design, maximal accessibility, and sustainability to support access and participation. A qualitative case study approach was used involving collection of data through in-depth interviews with key decision-makers; non-participant observations at design meetings; and on-site tours. Qualitative thematic analysis along with the development of a classification system was used to understand specific building elements and the relevant decision processes from which they resulted. Recording and analyzing the design process revealed several key issues including grassroots involvement of stakeholders; interaction between universal design and sustainable design; addressing diversity through flexibility and universality; and segregationist accessibility versus universal design. This case study revealed complex interactions between accessibility, universal design, and sustainability. Two visual models were proposed to understand and analyze these complexities.

  17. User evaluations of design complexity: the impact of visual perceptions for effective online health communication.

    PubMed

    Lazard, Allison; Mackert, Michael

    2014-10-01

    This paper highlights the influential role of design complexity for users' first impressions of health websites. An experimental design was utilized to investigate whether a website's level of design complexity impacts user evaluations. An online questionnaire measured the hypothesized impact of design complexity on predictors of message effectiveness. Findings reveal that increased design complexity was positively associated with higher levels of perceived design esthetics, attitude toward the website, perceived message comprehensibility, perceived ease of use, perceived usefulness, perceived message quality, perceived informativeness, and perceived visual informativeness. This research gives further evidence that design complexity should be considered an influential variable for health communicators to effectively reach their audiences, as it embodies the critical first step for message evaluation via electronic platforms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Complexity or Meaning in Health Professional Education and Practice?

    ERIC Educational Resources Information Center

    Lowe, Wendy Anne

    2014-01-01

    Objectives: Discourses of complexity have entered health professional education. This paper explores the meaning of complexity by asking how health professionals are educated and some of the consequences of that education. Design: A qualitative study was carried out drawing on reflexivity, discourse analysis and grounded methodology. Setting: Two…

  19. Designing Better Scaffolding in Teaching Complex Systems with Graphical Simulations

    ERIC Educational Resources Information Center

    Li, Na

    2013-01-01

    Complex systems are an important topic in science education today, but they are usually difficult for secondary-level students to learn. Although graphic simulations have many advantages in teaching complex systems, scaffolding is a critical factor for effective learning. This dissertation study was conducted around two complementary research…

  20. Can Vocabulary Lessons Increase the Amount of Complex Syntax Produced by Head Start Teachers? A Pilot Study

    ERIC Educational Resources Information Center

    Van Horne, Amanda Owen; Curran, Maura; Hall, Jessica

    2017-01-01

    In this pilot study, we examine the suitability of materials for a vocabulary intervention designed to influence the amount of complex syntax teachers use in at-risk preschool classrooms. Six Head Start classrooms were assigned to one of two vocabulary interventions: a condition using cognitive verbs, which are biased toward complex syntax (e.g.…

  1. Capturing the experiences of patients across multiple complex interventions: a meta-qualitative approach.

    PubMed

    Webster, Fiona; Christian, Jennifer; Mansfield, Elizabeth; Bhattacharyya, Onil; Hawker, Gillian; Levinson, Wendy; Naglie, Gary; Pham, Thuy-Nga; Rose, Louise; Schull, Michael; Sinha, Samir; Stergiopoulos, Vicky; Upshur, Ross; Wilson, Lynn

    2015-09-08

    The perspectives, needs and preferences of individuals with complex health and social needs can be overlooked in the design of healthcare interventions. This study was designed to provide new insights on patient perspectives drawing from the qualitative evaluation of 5 complex healthcare interventions. Patients and their caregivers were recruited from 5 interventions based in primary, hospital and community care in Ontario, Canada. We included 62 interviews from 44 patients and 18 non-clinical caregivers. Our team analysed the transcripts from 5 distinct projects. This approach to qualitative meta-evaluation identifies common issues described by a diverse group of patients, therefore providing potential insights into systems issues. This study is a secondary analysis of qualitative data; therefore, no outcome measures were identified. We identified 5 broad themes that capture the patients' experience and highlight issues that might not be adequately addressed in complex interventions. In our study, we found that: (1) the emergency department is the unavoidable point of care; (2) patients and caregivers are part of complex and variable family systems; (3) non-medical issues mediate patients' experiences of health and healthcare delivery; (4) the unanticipated consequences of complex healthcare interventions are often the most valuable; and (5) patient experiences are shaped by the healthcare discourses on medically complex patients. Our findings suggest that key assumptions about patients that inform intervention design need to be made explicit in order to build capacity to better understand and support patients with multiple chronic diseases. Across many health systems internationally, multiple models are being implemented simultaneously that may have shared features and target similar patients, and a qualitative meta-evaluation approach, thus offers an opportunity for cumulative learning at a system level in addition to informing intervention design and modification. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Small Group Health Insurance Reform in Rhode Island: Promises and Pitfalls of the HEALTHpact Plan

    PubMed Central

    Alan Miller, Edward; Trivedi, Amal; Kuo, Sylvia; Mor, Vincent

    2011-01-01

    Objective This study analyzes what design elements inhibited enrollment in HEALTHpact. Study Setting HEALTHpact is a high deductible plan with a premium capped at 10 percent of the average Rhode Island wage. Deductibles are reduced if enrollees meet wellness criteria. Study Design Qualitative case study. Data Collection Archival documents and 23 interviews. Principal Findings Inclusion of a subsidy would have led to lower premiums and more generous coverage. Although priced lower than other plans, HEALTHpact still did not offer good value for most firms. Wellness incentives also were too complex. Conclusions Subsidies for purchase of insurance coverage are critical to national reform of the small group market. Designers also will need to carefully balance program complexity with innovation in encouraging wellness and product appeal. PMID:21054375

  3. Recoding Numerics to Geometrics for Complex Discrimination Tasks; A Feasibility Study of Coding Strategy.

    ERIC Educational Resources Information Center

    Simpkins, John D.

    Processing complex multivariate information effectively when relational properties of information sub-groups are ambiguous is difficult for man and man-machine systems. However, the information processing task is made easier through code study, cybernetic planning, and accurate display mechanisms. An exploratory laboratory study designed for the…

  4. A model-based design and validation approach with OMEGA-UML and the IF toolset

    NASA Astrophysics Data System (ADS)

    Ben-hafaiedh, Imene; Constant, Olivier; Graf, Susanne; Robbana, Riadh

    2009-03-01

    Intelligent, embedded systems such as autonomous robots and other industrial systems are becoming increasingly more heterogeneous with respect to the platforms on which they are implemented, and thus the software architecture more complex to design and analyse. In this context, it is important to have well-defined design methodologies which should be supported by (1) high level design concepts allowing to master the design complexity, (2) concepts for the expression of non-functional requirements and (3) analysis tools allowing to verify or invalidate that the system under development will be able to conform to its requirements. We illustrate here such an approach for the design of complex embedded systems on hand of a small case study used as a running example for illustration purposes. We briefly present the important concepts of the OMEGA-RT UML profile, we show how we use this profile in a modelling approach, and explain how these concepts are used in the IFx verification toolbox to integrate validation into the design flow and make scalable verification possible.

  5. Full potential methods for analysis/design of complex aerospace configurations

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Szema, Kuo-Yen; Bonner, Ellwood

    1986-01-01

    The steady form of the full potential equation, in conservative form, is employed to analyze and design a wide variety of complex aerodynamic shapes. The nonlinear method is based on the theory of characteristic signal propagation coupled with novel flux biasing concepts and body-fitted mapping procedures. The resulting codes are vectorized for the CRAY XMP and the VPS-32 supercomputers. Use of the full potential nonlinear theory is demonstrated for a single-point supersonic wing design and a multipoint design for transonic maneuver/supersonic cruise/maneuver conditions. Achievement of high aerodynamic efficiency through numerical design is verified by wind tunnel tests. Other studies reported include analyses of a canard/wing/nacelle fighter geometry.

  6. Quantum Chemical Design Guidelines for Absorption and Emission Color Tuning of fac-Ir(ppy)₃ Complexes.

    PubMed

    Natori, Yoshiki; Kitagawa, Yasutaka; Aoki, Shogo; Teramoto, Rena; Tada, Hayato; Era, Iori; Nakano, Masayoshi

    2018-03-05

    The fac -Ir(ppy)₃ complex, where ppy denotes 2-phenylpyridine, is one of the well-known luminescent metal complexes having a high quantum yield. However, there have been no specific molecular design guidelines for color tuning. For example, it is still unclear how its optical properties are changed when changing substitution groups of ligands. Therefore, in this study, differences in the electronic structures and optical properties among several substituted fac -Ir(ppy)₃ derivatives are examined in detail by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. On the basis of those results, we present rational design guidelines for absorption and emission color tuning by modifying the species of substituents and their substitution positions.

  7. Flipped Instruction in English Language Teacher Education: A Design-­Based Study in a Complex, Open-­Ended Learning Environment

    ERIC Educational Resources Information Center

    Egbert, Joy; Herman, David; Lee, HyunGyung

    2015-01-01

    Reports of flipped classrooms across areas in the field of ESL are rare, and those that address the complexities of ESL teacher education, particularly the methods course in which procedural knowledge is privileged over declarative knowledge, are even rarer. This paper uses a design-­-based research (DBR) approach to explore the flip of an ESL…

  8. Superstructure-based Design and Optimization of Batch Biodiesel Production Using Heterogeneous Catalysts

    NASA Astrophysics Data System (ADS)

    Nuh, M. Z.; Nasir, N. F.

    2017-08-01

    Biodiesel as a fuel comprised of mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oil and animal fat. Biodiesel production is complex process which need systematic design and optimization. However, no case study using the process system engineering (PSE) elements which are superstructure optimization of batch process, it involves complex problems and uses mixed-integer nonlinear programming (MINLP). The PSE offers a solution to complex engineering system by enabling the use of viable tools and techniques to better manage and comprehend the complexity of the system. This study is aimed to apply the PSE tools for the simulation of biodiesel process and optimization and to develop mathematical models for component of the plant for case A, B, C by using published kinetic data. Secondly, to determine economic analysis for biodiesel production, focusing on heterogeneous catalyst. Finally, the objective of this study is to develop the superstructure for biodiesel production by using heterogeneous catalyst. The mathematical models are developed by the superstructure and solving the resulting mixed integer non-linear model and estimation economic analysis by using MATLAB software. The results of the optimization process with the objective function of minimizing the annual production cost by batch process from case C is 23.2587 million USD. Overall, the implementation a study of process system engineering (PSE) has optimized the process of modelling, design and cost estimation. By optimizing the process, it results in solving the complex production and processing of biodiesel by batch.

  9. Effects of borehole design on complex electrical resistivity measurements: laboratory validation and numerical experiments

    NASA Astrophysics Data System (ADS)

    Treichel, A.; Huisman, J. A.; Zhao, Y.; Zimmermann, E.; Esser, O.; Kemna, A.; Vereecken, H.

    2012-12-01

    Geophysical measurements within a borehole are typically affected by the presence of the borehole. The focus of the current study is to quantify the effect of borehole design on broadband electrical impedance tomography (EIT) measurements within boreholes. Previous studies have shown that effects on the real part of the electrical resistivity are largest for boreholes with large diameters and for materials with a large formation factor. However, these studies have not considered the effect of the well casing and the filter gravel on the measurement of the real part of the electrical resistivity. In addition, the effect of borehole design on the imaginary part of the electrical resistivity has not been investigated yet. Therefore, the aim of this study is to investigate the effect of borehole design on the complex electrical resistivity using laboratory measurements and numerical simulations. In order to do so, we developed a high resolution two dimensional axisymmetric finite element model (FE) that enables us to simulate the effects of several key borehole design parameters (e.g. borehole diameter, thickness of PVC well casing) on the measurement process. For the material surrounding the borehole, realistic values for complex resistivity were obtained from a database of laboratory measurements of complex resistivity from the test site Krauthausen (Germany). The slotted PVC well casing is represented by an effective resistivity calculated from the water-filled slot volume and the PVC volume. Measurements with and without PVC well casing were made with a four-electrode EIT logging tool in a water-filled rain barrel. The initial comparison for the case that the logging tool was inserted in the PVC well casing showed a considerable mismatch between measured and modeled values. It was required to consider a complete electrode model instead of point electrodes to remove this mismatch. This validated model was used to investigate in detail how complex resistivity measurements with different electrode configurations are affected by borehole design. Finally, the plausibility of our results was verified by comparing the simulation results with borehole EIT measurements made at the test site Krauthausen.

  10. Task Complexity, the Cognition Hypothesis, and Interaction in CMC and FTF Environments

    ERIC Educational Resources Information Center

    Baralt, Melissa Lorrain

    2010-01-01

    The construct of cognitive complexity has played an increasingly important role in studies on task design, which aim to explore how increases in the cognitive complexity of tasks differentially mediate interaction and learning outcomes (Kim, 2009; Gilabert, Baron, & Llanes, 2009; Kim & Tracy-Ventura, forthcoming; Nuevo, 2006; Revesz, 2009,…

  11. A Study of Students' Reasoning about Probabilistic Causality: Implications for Understanding Complex Systems and for Instructional Design

    ERIC Educational Resources Information Center

    Grotzer, Tina A.; Solis, S. Lynneth; Tutwiler, M. Shane; Cuzzolino, Megan Powell

    2017-01-01

    Understanding complex systems requires reasoning about causal relationships that behave or appear to behave probabilistically. Features such as distributed agency, large spatial scales, and time delays obscure co-variation relationships and complex interactions can result in non-deterministic relationships between causes and effects that are best…

  12. Stuttering Frequency in Relation to Lexical Diversity, Syntactic Complexity, and Utterance Length

    ERIC Educational Resources Information Center

    Wagovich, Stacy A.; Hall, Nancy E.

    2018-01-01

    Children's frequency of stuttering can be affected by utterance length, syntactic complexity, and lexical content of language. Using a unique small-scale within-subjects design, this study explored whether language samples that contain more stuttering have (a) longer, (b) syntactically more complex, and (c) lexically more diverse utterances than…

  13. Discrete structural features among interface residue-level classes.

    PubMed

    Sowmya, Gopichandran; Ranganathan, Shoba

    2015-01-01

    Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs.

  14. Discrete structural features among interface residue-level classes

    PubMed Central

    2015-01-01

    Background Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Results Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Conclusions Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs. PMID:26679043

  15. The Complex Dynamics of Student Engagement in Novel Engineering Design Activities

    NASA Astrophysics Data System (ADS)

    McCormick, Mary

    In engineering design, making sense of "messy," design situations is at the heart of the discipline (Schon, 1983); engineers in practice bring structure to design situations by organizing, negotiating, and coordinating multiple aspects (Bucciarelli, 1994; Stevens, Johri, & O'Connor, 2014). In classroom settings, however, students are more often given well-defined, content-focused engineering tasks (Jonassen, 2014). These tasks are based on the assumption that elementary students are unable to grapple with the complexity or open-endedness of engineering design (Crismond & Adams, 2012). The data I present in this dissertation suggest the opposite. I show that students are not only able to make sense of, or frame (Goffman, 1974), complex design situations, but that their framings dynamically involve their nascent abilities for engineering design. The context of this work is Novel Engineering, a larger research project that explores using children's literature as an access point for engineering design. Novel Engineering activities are inherently messy: there are characters with needs, settings with implicit constraints, and rich design situations. In a series of three studies, I show how students' framings of Novel Engineering design activities involve their reasoning and acting as beginning engineers. In the first study, I show two students whose caring for the story characters contributes to their stability in framing the task: they identify the needs of their fictional clients and iteratively design a solution to meet their clients' needs. In the second, I show how students' shifting and negotiating framings influence their engineering assumptions and evaluation criteria. In the third, I show how students' coordinating framings involve navigating a design process to meet clients' needs, classroom expectations, and technical requirements. Collectively, these studies contribute to literature by documenting students' productive beginnings in engineering design. The implications span research and practice, specifically targeting how we attend to and support students as they engage in engineering design.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, Billy W.; Silva, Nuwan De; Windus, Theresa L.

    Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R 2(O)P-link-P(O)R 2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theorymore » and the performance of known bis-phosphine oxide extractants. For the case where link is -CH 2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the ‘anomalous aryl strengthening’ effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.« less

  17. A study of the spreading scheme for viral marketing based on a complex network model

    NASA Astrophysics Data System (ADS)

    Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong

    2010-02-01

    Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.

  18. Embracing Social Sustainability in Design Education: A Reflection on a Case Study in Haiti

    ERIC Educational Resources Information Center

    Kjøllesdal, Anders; Asheim, Jonas; Boks, Casper

    2014-01-01

    Sustainable design issues are complex and multi-faceted and need integration in the education of young designers. Current research recommends a holistic view based on problem-solving and inter-disciplinary work, yet few design educators have brought these ideas to their full consequence. Sustainability education for designers is still often rooted…

  19. 76 FR 23603 - New Proposed Collection; Comment Request; Environmental Science Formative Research Methodology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... generic clearance to conduct survey and instrument design and administration, focus groups, cognitive... study of this size and complexity, the NCS was designed to include a preliminary pilot study known as... the Main Study. At every phase of the NCS, the multiple methodological studies conducted during the...

  20. Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease

    PubMed Central

    Altman, Michael D.; Nalivaika, Ellen A.; Prabu-Jeyabalan, Moses; Schiffer, Celia A.; Tidor, Bruce

    2009-01-01

    Drug resistance in HIV-1 protease, a barrier to effective treatment, is generally caused by mutations in the enzyme that disrupt inhibitor binding but still allow for substrate processing. Structural studies with mutant, inactive enzyme, have provided detailed information regarding how the substrates bind to the protease yet avoid resistance mutations; insights obtained inform the development of next generation therapeutics. Although structures have been obtained of complexes between substrate peptide and inactivated (D25N) protease, thermodynamic studies of peptide binding have been challenging due to low affinity. Peptides that bind tighter to the inactivated protease than the natural substrates would be valuable for thermodynamic studies as well as to explore whether the structural envelope observed for substrate peptides is a function of weak binding. Here, two computational methods — namely, charge optimization and protein design — were applied to identify peptide sequences predicted to have higher binding affinity to the inactivated protease, starting from an RT–RH derived substrate peptide. Of the candidate designed peptides, three were tested for binding with isothermal titration calorimetry, with one, containing a single threonine to valine substitution, measured to have more than a ten-fold improvement over the tightest binding natural substrate. Crystal structures were also obtained for the same three designed peptide complexes; they show good agreement with computational prediction. Thermodynamic studies show that binding is entropically driven, more so for designed affinity enhanced variants than for the starting substrate. Structural studies show strong similarities between natural and tighter-binding designed peptide complexes, which may have implications in understanding the molecular mechanisms of drug resistance in HIV-1 protease. PMID:17729291

  1. Quasi-experimental study designs series-paper 10: synthesizing evidence for effects collected from quasi-experimental studies presents surmountable challenges.

    PubMed

    Becker, Betsy Jane; Aloe, Ariel M; Duvendack, Maren; Stanley, T D; Valentine, Jeffrey C; Fretheim, Atle; Tugwell, Peter

    2017-09-01

    To outline issues of importance to analytic approaches to the synthesis of quasi-experiments (QEs) and to provide a statistical model for use in analysis. We drew on studies of statistics, epidemiology, and social-science methodology to outline methods for synthesis of QE studies. The design and conduct of QEs, effect sizes from QEs, and moderator variables for the analysis of those effect sizes were discussed. Biases, confounding, design complexities, and comparisons across designs offer serious challenges to syntheses of QEs. Key components of meta-analyses of QEs were identified, including the aspects of QE study design to be coded and analyzed. Of utmost importance are the design and statistical controls implemented in the QEs. Such controls and any potential sources of bias and confounding must be modeled in analyses, along with aspects of the interventions and populations studied. Because of such controls, effect sizes from QEs are more complex than those from randomized experiments. A statistical meta-regression model that incorporates important features of the QEs under review was presented. Meta-analyses of QEs provide particular challenges, but thorough coding of intervention characteristics and study methods, along with careful analysis, should allow for sound inferences. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Near-optimal experimental design for model selection in systems biology.

    PubMed

    Busetto, Alberto Giovanni; Hauser, Alain; Krummenacher, Gabriel; Sunnåker, Mikael; Dimopoulos, Sotiris; Ong, Cheng Soon; Stelling, Jörg; Buhmann, Joachim M

    2013-10-15

    Biological systems are understood through iterations of modeling and experimentation. Not all experiments, however, are equally valuable for predictive modeling. This study introduces an efficient method for experimental design aimed at selecting dynamical models from data. Motivated by biological applications, the method enables the design of crucial experiments: it determines a highly informative selection of measurement readouts and time points. We demonstrate formal guarantees of design efficiency on the basis of previous results. By reducing our task to the setting of graphical models, we prove that the method finds a near-optimal design selection with a polynomial number of evaluations. Moreover, the method exhibits the best polynomial-complexity constant approximation factor, unless P = NP. We measure the performance of the method in comparison with established alternatives, such as ensemble non-centrality, on example models of different complexity. Efficient design accelerates the loop between modeling and experimentation: it enables the inference of complex mechanisms, such as those controlling central metabolic operation. Toolbox 'NearOED' available with source code under GPL on the Machine Learning Open Source Software Web site (mloss.org).

  3. Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants

    DOE PAGES

    McCann, Billy W.; Silva, Nuwan De; Windus, Theresa L.; ...

    2016-02-17

    Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R 2(O)P-link-P(O)R 2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theorymore » and the performance of known bis-phosphine oxide extractants. For the case where link is -CH 2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the ‘anomalous aryl strengthening’ effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.« less

  4. Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments.

    PubMed

    Spinks, Jean; Mortimer, Duncan

    2016-02-03

    The provision of additional information is often assumed to improve consumption decisions, allowing consumers to more accurately weigh the costs and benefits of alternatives. However, increasing the complexity of decision problems may prompt changes in information processing. This is particularly relevant for experimental methods such as discrete choice experiments (DCEs) where the researcher can manipulate the complexity of the decision problem. The primary aims of this study are (i) to test whether consumers actually process additional information in an already complex decision problem, and (ii) consider the implications of any such 'complexity-driven' changes in information processing for design and analysis of DCEs. A discrete choice experiment (DCE) is used to simulate a complex decision problem; here, the choice between complementary and conventional medicine for different health conditions. Eye-tracking technology is used to capture the number of times and the duration that a participant looks at any part of a computer screen during completion of DCE choice sets. From this we can analyse what has become known in the DCE literature as 'attribute non-attendance' (ANA). Using data from 32 participants, we model the likelihood of ANA as a function of choice set complexity and respondent characteristics using fixed and random effects models to account for repeated choice set completion. We also model whether participants are consistent with regard to which characteristics (attributes) they consider across choice sets. We find that complexity is the strongest predictor of ANA when other possible influences, such as time pressure, ordering effects, survey specific effects and socio-demographic variables (including proxies for prior experience with the decision problem) are considered. We also find that most participants do not apply a consistent information processing strategy across choice sets. Eye-tracking technology shows promise as a way of obtaining additional information from consumer research, improving DCE design, and informing the design of policy measures. With regards to DCE design, results from the present study suggest that eye-tracking data can identify the point at which adding complexity (and realism) to DCE choice scenarios becomes self-defeating due to unacceptable increases in ANA. Eye-tracking data therefore has clear application in the construction of guidelines for DCE design and during piloting of DCE choice scenarios. With regards to design of policy measures such as labelling requirements for CAM and conventional medicines, the provision of additional information has the potential to make difficult decisions even harder and may not have the desired effect on decision-making.

  5. Five schools of thought about complexity: Implications for design and process science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warfield, J.N.

    1996-12-31

    The prevalence of complexity is a fact of life in virtually all aspects of system design today. Five schools of thought concerning complexity seem to be present in areas where people strive to gain more facility with difficult issues: (1) Interdisciplinary or Cross-Disciplinary {open_quotes}approaches{close_quotes} or {open_quotes}methods{close_quotes} (fostered by the Association for Integrative Studies, a predominantly liberal-arts faculty activity), (2) Systems Dynamics (fostered by Jay Forrester, Dennis Meadows, Peter Senge, and others closely associated with MIT), (3) Chaos Theory (arising in small groups in many locations), (4) Adaptive Systems Theory (predominantly associated with the Santa Fe Institute), and (5) The Structure-Basedmore » school (developed by the author, his colleagues and associates). A comparison of these five schools of thought will be offered, in order to show the implications of them upon the development and application of design and process science. The following criteria of comparison will be used: (a) how complexity is defined, (b) analysis versus synthesis, (c) potential for acquiring practical competence in coping with complexity, and (d) relationship to underlying formalisms that facilitate computer assistance in applications. Through these comparisons, the advantages and disadvantages of each school of thought can be clarified, and the possibilities of changes in the educational system to provide for the management of complexity in system design can be articulated.« less

  6. Modeling and Simulation for Mission Operations Work System Design

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.

    2003-01-01

    Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.

  7. Age-related differences in complex monitoring performance.

    DOT National Transportation Integrated Search

    1981-04-01

    The present study examined the effect of age on the ability to sustain attention to a complex monitoring task. The visual display was designed to resemble an air traffic control radar display containing alphanumeric symbols. Subjects in age groups 18...

  8. Advanced computer-aided design for bone tissue-engineering scaffolds.

    PubMed

    Ramin, E; Harris, R A

    2009-04-01

    The design of scaffolds with an intricate and controlled internal structure represents a challenge for tissue engineering. Several scaffold-manufacturing techniques allow the creation of complex architectures but with little or no control over the main features of the channel network such as the size, shape, and interconnectivity of each individual channel, resulting in intricate but random structures. The combined use of computer-aided design (CAD) systems and layer-manufacturing techniques allows a high degree of control over these parameters with few limitations in terms of achievable complexity. However, the design of complex and intricate networks of channels required in CAD is extremely time-consuming since manually modelling hundreds of different geometrical elements, all with different parameters, may require several days to design individual scaffold structures. An automated design methodology is proposed by this research to overcome these limitations. This approach involves the investigation of novel software algorithms, which are able to interact with a conventional CAD program and permit the automated design of several geometrical elements, each with a different size and shape. In this work, the variability of the parameters required to define each geometry has been set as random, but any other distribution could have been adopted. This methodology has been used to design five cubic scaffolds with interconnected pore channels that range from 200 to 800 microm in diameter, each with an increased complexity of the internal geometrical arrangement. A clinical case study, consisting of an integration of one of these geometries with a craniofacial implant, is then presented.

  9. Tailored information for cancer patients on the Internet: effects of visual cues and language complexity on information recall and satisfaction.

    PubMed

    van Weert, Julia C M; van Noort, Guda; Bol, Nadine; van Dijk, Liset; Tates, Kiek; Jansen, Jesse

    2011-09-01

    This study was designed to investigate the effects of visual cues and language complexity on satisfaction and information recall using a personalised website for lung cancer patients. In addition, age effects were investigated. An experiment using a 2 (complex vs. non-complex language)×3 (text only vs. photograph vs. drawing) factorial design was conducted. In total, 200 respondents without cancer were exposed to one of the six conditions. Respondents were more satisfied with the comprehensibility of both websites when they were presented with a visual cue. A significant interaction effect was found between language complexity and photograph use such that satisfaction with comprehensibility improved when a photograph was added to the complex language condition. Next, an interaction effect was found between age and satisfaction, which indicates that adding a visual cue is more important for older adults than younger adults. Finally, respondents who were exposed to a website with less complex language showed higher recall scores. The use of visual cues enhances satisfaction with the information presented on the website, and the use of non-complex language improves recall. The results of the current study can be used to improve computer-based information systems for patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. A mechanistic study and computational prediction of iron, cobalt and manganese cyclopentadienone complexes for hydrogenation of carbon dioxide.

    PubMed

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2016-10-13

    A series of cobalt and manganese cyclopentadienone complexes are proposed and examined computationally as promising catalysts for hydrogenation of CO 2 to formic acid with total free energies as low as 20.0 kcal mol -1 in aqueous solution. Density functional theory study of the newly designed cobalt and manganese complexes and experimentally reported iron cyclopentadienone complexes reveals a stepwise hydride transfer mechanism with a water or a methanol molecule assisted proton transfer for the cleavage of H 2 as the rate-determining step.

  11. How to Construct a Mixed Methods Research Design.

    PubMed

    Schoonenboom, Judith; Johnson, R Burke

    2017-01-01

    This article provides researchers with knowledge of how to design a high quality mixed methods research study. To design a mixed study, researchers must understand and carefully consider each of the dimensions of mixed methods design, and always keep an eye on the issue of validity. We explain the seven major design dimensions: purpose, theoretical drive, timing (simultaneity and dependency), point of integration, typological versus interactive design approaches, planned versus emergent design, and design complexity. There also are multiple secondary dimensions that need to be considered during the design process. We explain ten secondary dimensions of design to be considered for each research study. We also provide two case studies showing how the mixed designs were constructed.

  12. Understanding complex clinical reasoning in infectious diseases for improving clinical decision support design.

    PubMed

    Islam, Roosan; Weir, Charlene R; Jones, Makoto; Del Fiol, Guilherme; Samore, Matthew H

    2015-11-30

    Clinical experts' cognitive mechanisms for managing complexity have implications for the design of future innovative healthcare systems. The purpose of the study is to examine the constituents of decision complexity and explore the cognitive strategies clinicians use to control and adapt to their information environment. We used Cognitive Task Analysis (CTA) methods to interview 10 Infectious Disease (ID) experts at the University of Utah and Salt Lake City Veterans Administration Medical Center. Participants were asked to recall a complex, critical and vivid antibiotic-prescribing incident using the Critical Decision Method (CDM), a type of Cognitive Task Analysis (CTA). Using the four iterations of the Critical Decision Method, questions were posed to fully explore the incident, focusing in depth on the clinical components underlying the complexity. Probes were included to assess cognitive and decision strategies used by participants. The following three themes emerged as the constituents of decision complexity experienced by the Infectious Diseases experts: 1) the overall clinical picture does not match the pattern, 2) a lack of comprehension of the situation and 3) dealing with social and emotional pressures such as fear and anxiety. All these factors contribute to decision complexity. These factors almost always occurred together, creating unexpected events and uncertainty in clinical reasoning. Five themes emerged in the analyses of how experts deal with the complexity. Expert clinicians frequently used 1) watchful waiting instead of over- prescribing antibiotics, engaged in 2) theory of mind to project and simulate other practitioners' perspectives, reduced very complex cases into simple 3) heuristics, employed 4) anticipatory thinking to plan and re-plan events and consulted with peers to share knowledge, solicit opinions and 5) seek help on patient cases. The cognitive strategies to deal with decision complexity found in this study have important implications for design future decision support systems for the management of complex patients.

  13. The Effects of Syntactic and Lexical Complexity on the Comprehension of Elementary Science Texts

    ERIC Educational Resources Information Center

    Arya, Diana J.; Hiebert, Elfrieda H.; Pearson, P. David

    2011-01-01

    In this study we examined the effects of syntactic and lexical complexity on third-grade students' comprehension of science texts. A total of 16 expository texts were designed to represent systematic differences in levels of syntactic and lexical complexity across four science-related topics ("Tree Frogs, Soil, Jelly Beans and…

  14. Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study

    PubMed Central

    Mao, Keya; Xiao, Songhua; Liu, Zhengsheng; Zhang, Yonggang; Zhang, Xuesong; Wang, Zheng; Lu, Ning; Shourong, Zhu; Xifeng, Zhang; Geng, Cui; Baowei, Liu

    2010-01-01

    Surgical treatment of complex severe spinal deformity, involving a scoliosis Cobb angle of more than 90° and kyphosis or vertebral and rib deformity, is challenging. Preoperative two-dimensional images resulting from plain film radiography, computed tomography (CT) and magnetic resonance imaging provide limited morphometric information. Although the three-dimensional (3D) reconstruction CT with special software can view the stereo and rotate the spinal image on the screen, it cannot show the full-scale spine and cannot directly be used on the operation table. This study was conducted to investigate the application of computer-designed polystyrene models in the treatment of complex severe spinal deformity. The study involved 16 cases of complex severe spinal deformity treated in our hospital between 1 May 2004 and 31 December 2007; the mean ± SD preoperative scoliosis Cobb angle was 118° ± 27°. The CT scanning digital imaging and communication in medicine (DICOM) data sets of the affected spinal segments were collected for 3D digital reconstruction and rapid prototyping to prepare computer-designed polystyrene models, which were applied in the treatment of these cases. The computer-designed polystyrene models allowed 3D observation and measurement of the deformities directly, which helped the surgeon to perform morphological assessment and communicate with the patient and colleagues. Furthermore, the models also guided the choice and placement of pedicle screws. Moreover, the models were used to aid in virtual surgery and guide the actual surgical procedure. The mean ± SD postoperative scoliosis Cobb angle was 42° ± 32°, and no serious complications such as spinal cord or major vascular injury occurred. The use of computer-designed polystyrene models could provide more accurate morphometric information and facilitate surgical correction of complex severe spinal deformity. PMID:20213294

  15. An Associational Model for the Diffusion of Complex Innovations.

    ERIC Educational Resources Information Center

    Barnett, George A.

    A paradigm for the study of the diffusion of complex innovations through a society is presented in this paper; the paradigm is useful for studying sociocultural change as innovations diffuse. The model is designed to account for change within social systems rather than in individuals, although it would also be consistent with information…

  16. A Tale of Three Classes: Case Studies in Course Complexity

    ERIC Educational Resources Information Center

    Gill, T. Grandon; Jones, Joni

    2010-01-01

    This paper examines the question of decomposability versus complexity of teaching situations by presenting three case studies of MIS courses. Because all three courses were highly successful in their observed outcomes, the paper hypothesizes that if the attributes of effective course design are decomposable, one would expect to see a large number…

  17. Interpersonal Complexity: A Cognitive Component of Person-Centered Care

    ERIC Educational Resources Information Center

    Medvene, Louis; Grosch, Kerry; Swink, Nathan

    2006-01-01

    Purpose: This study concerns one component of the ability to provide person-centered care: the cognitive skill of perceiving others in relatively complex terms. This study tested the effectiveness of a social motivation for increasing the number of psychological constructs used to describe an unfamiliar senior citizen. Design and Methods:…

  18. How Do High School Students Solve Probability Problems? A Mixed Methods Study on Probabilistic Reasoning

    ERIC Educational Resources Information Center

    Heyvaert, Mieke; Deleye, Maarten; Saenen, Lore; Van Dooren, Wim; Onghena, Patrick

    2018-01-01

    When studying a complex research phenomenon, a mixed methods design allows to answer a broader set of research questions and to tap into different aspects of this phenomenon, compared to a monomethod design. This paper reports on how a sequential equal status design (QUAN ? QUAL) was used to examine students' reasoning processes when solving…

  19. Experiment Design for Complex VTOL Aircraft with Distributed Propulsion and Tilt Wing

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Landman, Drew

    2015-01-01

    Selected experimental results from a wind tunnel study of a subscale VTOL concept with distributed propulsion and tilt lifting surfaces are presented. The vehicle complexity and automated test facility were ideal for use with a randomized designed experiment. Design of Experiments and Response Surface Methods were invoked to produce run efficient, statistically rigorous regression models with minimized prediction error. Static tests were conducted at the NASA Langley 12-Foot Low-Speed Tunnel to model all six aerodynamic coefficients over a large flight envelope. This work supports investigations at NASA Langley in developing advanced configurations, simulations, and advanced control systems.

  20. Variable Complexity Structural Optimization of Shells

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Venkataraman, Satchi

    1999-01-01

    Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-2110 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition, several modeling issues for the design of shells of revolution were studied.

  1. Variable Complexity Structural Optimization of Shells

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Venkataraman, Satchi

    1998-01-01

    Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-1808 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition several modeling issues for the design of shells of revolution were studied.

  2. Visualization-based decision support for value-driven system design

    NASA Astrophysics Data System (ADS)

    Tibor, Elliott

    In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations with a Value-Driven Design formulation. The visualization methods are also used to assist in the decomposition of a value function, by representing attribute sensitivities to aid with trade-off studies. Lastly, visualization is used to enable greater understanding of the subsystem relationships, by displaying derivative-based couplings, and the design uncertainties, through implementation of utility theory. The use of these visualization methods is shown to enhance the decision-making capabilities of the designer by granting them a more holistic view of the complex design space.

  3. Navigating complex sample analysis using national survey data.

    PubMed

    Saylor, Jennifer; Friedmann, Erika; Lee, Hyeon Joo

    2012-01-01

    The National Center for Health Statistics conducts the National Health and Nutrition Examination Survey and other national surveys with probability-based complex sample designs. Goals of national surveys are to provide valid data for the population of the United States. Analyses of data from population surveys present unique challenges in the research process but are valuable avenues to study the health of the United States population. The aim of this study was to demonstrate the importance of using complex data analysis techniques for data obtained with complex multistage sampling design and provide an example of analysis using the SPSS Complex Samples procedure. Illustration of challenges and solutions specific to secondary data analysis of national databases are described using the National Health and Nutrition Examination Survey as the exemplar. Oversampling of small or sensitive groups provides necessary estimates of variability within small groups. Use of weights without complex samples accurately estimates population means and frequency from the sample after accounting for over- or undersampling of specific groups. Weighting alone leads to inappropriate population estimates of variability, because they are computed as if the measures were from the entire population rather than a sample in the data set. The SPSS Complex Samples procedure allows inclusion of all sampling design elements, stratification, clusters, and weights. Use of national data sets allows use of extensive, expensive, and well-documented survey data for exploratory questions but limits analysis to those variables included in the data set. The large sample permits examination of multiple predictors and interactive relationships. Merging data files, availability of data in several waves of surveys, and complex sampling are techniques used to provide a representative sample but present unique challenges. In sophisticated data analysis techniques, use of these data is optimized.

  4. Complex monitoring performance and the coronary-prone Type A behavior pattern.

    DOT National Transportation Integrated Search

    1986-03-01

    The present study examined the possible relationship of the coronary-prone Type A behavior pattern to performance of a complex monitoring task. The task was designed to functionally simulate the general task characteristics of future, highly automate...

  5. An exploratory investigation of various assessment instruments as correlates of complex visual monitoring performance.

    DOT National Transportation Integrated Search

    1980-10-01

    The present study examined a variety of possible predictors of complex monitoring performance. The criterion task was designed to resemble that of a highly automated air traffic control radar system containing computer-generated alphanumeric displays...

  6. Participatory Design, User Involvement and Health IT Evaluation.

    PubMed

    Kushniruk, Andre; Nøhr, Christian

    2016-01-01

    End user involvement and input into the design and evaluation of information systems has been recognized as being a critical success factor in the adoption of information systems. Nowhere is this need more critical than in the design of health information systems. Consistent with evidence from the general software engineering literature, the degree of user input into design of complex systems has been identified as one of the most important factors in the success or failure of complex information systems. The participatory approach goes beyond user-centered design and co-operative design approaches to include end users as more active participants in design ideas and decision making. Proponents of participatory approaches argue for greater end user participation in both design and evaluative processes. Evidence regarding the effectiveness of increased user involvement in design is explored in this contribution in the context of health IT. The contribution will discuss several approaches to including users in design and evaluation. Challenges in IT evaluation during participatory design will be described and explored along with several case studies.

  7. Design complexity and strength of laterality are correlated in New Caledonian crows' pandanus tool manufacture

    PubMed Central

    Hunt, Gavin R; Corballis, Michael C; Gray, Russell D

    2006-01-01

    Population-level laterality is generally considered to reflect functional brain specialization. Consequently, the strength of population-level laterality in manipulatory tasks is predicted to positively correlate with task complexity. This relationship has not been investigated in tool manufacture. Here, we report the correlation between strength of laterality and design complexity in the manufacture of New Caledonian crows' three pandanus tool designs: wide, narrow and stepped designs. We documented indirect evidence of over 5800 tool manufactures on 1232 pandanus trees at 23 sites. We found that the strength of laterality in tool manufacture was correlated with design complexity in three ways: (i) the strongest effect size among the population-level edge biases for each design was for the more complex, stepped design, (ii) the strength of laterality at individual sites was on average greater for the stepped design than it was for the simpler wide and narrow, non-stepped designs, and (iii) there was a positive, but non-significant, trend for a correlation between the strength of laterality and the number of steps on a stepped tool. These three aspects together indicate that greater design complexity generally elicits stronger lateralization of crows' pandanus tool manufacture. PMID:16600891

  8. Design complexity and strength of laterality are correlated in New Caledonian crows' pandanus tool manufacture.

    PubMed

    Hunt, Gavin R; Corballis, Michael C; Gray, Russell D

    2006-05-07

    Population-level laterality is generally considered to reflect functional brain specialization. Consequently, the strength of population-level laterality in manipulatory tasks is predicted to positively correlate with task complexity. This relationship has not been investigated in tool manufacture. Here, we report the correlation between strength of laterality and design complexity in the manufacture of New Caledonian crows' three pandanus tool designs: wide, narrow and stepped designs. We documented indirect evidence of over 5,800 tool manufactures on 1,232 pandanus trees at 23 sites. We found that the strength of laterality in tool manufacture was correlated with design complexity in three ways: (i) the strongest effect size among the population-level edge biases for each design was for the more complex, stepped design, (ii) the strength of laterality at individual sites was on average greater for the stepped design than it was for the simpler wide and narrow, non-stepped designs, and (iii) there was a positive, but non-significant, trend for a correlation between the strength of laterality and the number of steps on a stepped tool. These three aspects together indicate that greater design complexity generally elicits stronger lateralization of crows' pandanus tool manufacture.

  9. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo.

    PubMed

    Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Ramezani, Mohammad; Lavaee, Parirokh; Jalalian, Seyed Hamid; Robati, Rezvan Yazdian; Abnous, Khalil

    2016-05-01

    Clinical use of epirubicin (Epi) in the treatment of cancer has been limited, due to its cardiotoxicity. Targeted delivery of chemotherapeutic agents could increase their efficacy and reduce their off-target effects. High drug loading and excellent stability of DNA dendrimers make these DNA nanostructures unique candidates for biological applications. In this study a modified and promoted dendrimer using three kinds of aptamers (MUC1, AS1411 and ATP aptamers) was designed for targeted delivery of Epi and its efficacy was evaluated in target cells including MCF-7 cells (breast cancer cell) and C26 cells (murine colon carcinoma cell). Aptamers (Apts)-Dendrimer-Epi complex formation was analyzed by fluorometric analysis and gel retardation assay. Release profiles of Epi from the designed complex were assessed at pHs 5.4 and 7.4. For MTT assay (cytotoxic study) MCF-7 and C26 cells (target cells) and CHO cells (Chinese hamster ovary cell, nontarget) were treated with Epi, Apts-Dendrimer-Epi complex and Apts-Dendrimer conjugate. Internalization was evaluated using flow cytometry analysis. Finally, the developed complex was used for inhibition of tumor growth in vivo. 25μM Epi was efficiently intercalated to 1μM dendrimer. Epi was released from the Apts-Dendrimer-Epi complex in a pH-sensitive manner (more release at pH 5.5). The results of flow cytometry analysis indicated that the designed complex was efficiently internalized into target cells, but not into control cells. The internalization data were confirmed by the results of MTT assay. Apts-Dendrimer-Epi complex had less cytotoxicity in CHO cells compared to Epi alone. The complex had more cytotoxicity in C26 and MCF-7 cells compared to Epi alone. Moreover, the Apts-Dendrimer-Epi complex could efficiently prohibit tumor growth in vivo. In conclusion, the designed targeted drug delivery system inherited characteristics of pH-dependent drug release, high drug loading and tumor targeting in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Operationalising elaboration theory for simulation instruction design: a Delphi study.

    PubMed

    Haji, Faizal A; Khan, Rabia; Regehr, Glenn; Ng, Gary; de Ribaupierre, Sandrine; Dubrowski, Adam

    2015-06-01

    The aim of this study was to assess the feasibility of incorporating the Delphi process within the simplifying conditions method (SCM) described in elaboration theory (ET) to identify conditions impacting the complexity of procedural skills for novice learners. We generated an initial list of conditions impacting the complexity of lumbar puncture (LP) from key informant interviews (n = 5) and a literature review. Eighteen clinician-educators from six different medical specialties were subsequently recruited as expert panellists. Over three Delphi rounds, these panellists rated: (i) their agreement with the inclusion of the simple version of the conditions in a representative ('epitome') training scenario, and (ii) how much the inverse (complex) version increases LP complexity for a novice. Cronbach's α-values were used to assess inter-rater agreement. All panellists completed Rounds 1 and 2 of the survey and 17 completed Round 3. In Round 1, Cronbach's α-values were 0.89 and 0.94 for conditions that simplify and increase LP complexity, respectively; both values increased to 0.98 in Rounds 2 and 3. With the exception of 'high CSF (cerebral spinal fluid) pressure', panellists agreed with the inclusion of all conditions in the simplest (epitome) training scenario. Panellists rated patient movement, spinal anatomy, patient cooperativeness, body habitus, and the presence or absence of an experienced assistant as having the greatest impact on the complexity of LP. This study demonstrated the feasibility of using expert consensus to establish conditions impacting the complexity of procedural skills, and the benefits of incorporating the Delphi method into the SCM. These data can be used to develop and sequence simulation scenarios in a progressively challenging manner. If the theorised learning gains associated with ET are realised, the methods described in this study may be applied to the design of simulation training for other procedural and non-procedural skills, thereby advancing the agenda of theoretically based instruction design in health care simulation. © 2015 John Wiley & Sons Ltd.

  11. Study protocol: developing a decision system for inclusive housing: applying a systematic, mixed-method quasi-experimental design.

    PubMed

    Zeeman, Heidi; Kendall, Elizabeth; Whitty, Jennifer A; Wright, Courtney J; Townsend, Clare; Smith, Dianne; Lakhani, Ali; Kennerley, Samantha

    2016-03-15

    Identifying the housing preferences of people with complex disabilities is a much needed, but under-developed area of practice and scholarship. Despite the recognition that housing is a social determinant of health and quality of life, there is an absence of empirical methodologies that can practically and systematically involve consumers in this complex service delivery and housing design market. A rigorous process for making effective and consistent development decisions is needed to ensure resources are used effectively and the needs of consumers with complex disability are properly met. This 3-year project aims to identify how the public and private housing market in Australia can better respond to the needs of people with complex disabilities whilst simultaneously achieving key corporate objectives. First, using the Customer Relationship Management framework, qualitative (Nominal Group Technique) and quantitative (Discrete Choice Experiment) methods will be used to quantify the housing preferences of consumers and their carers. A systematic mixed-method, quasi-experimental design will then be used to quantify the development priorities of other key stakeholders (e.g., architects, developers, Government housing services etc.) in relation to inclusive housing for people with complex disabilities. Stakeholders randomly assigned to Group 1 (experimental group) will participate in a series of focus groups employing Analytical Hierarchical Process (AHP) methodology. Stakeholders randomly assigned to Group 2 (control group) will participate in focus groups employing existing decision making processes to inclusive housing development (e.g., Risk, Opportunity, Cost, Benefit considerations). Using comparative stakeholder analysis, this research design will enable the AHP methodology (a proposed tool to guide inclusive housing development decisions) to be tested. It is anticipated that the findings of this study will enable stakeholders to incorporate consumer housing preferences into commercial decisions. Housing designers and developers will benefit from the creation of a parsimonious set of consumer-led housing preferences by which to make informed investments in future housing and contribute to future housing policy. The research design has not been applied in the Australian research context or elsewhere, and will provide a much needed blueprint for market investment to develop viable, consumer directed inclusive housing options for people with complex disability.

  12. Design scenarios for renovation of sports complex: a case study

    NASA Astrophysics Data System (ADS)

    Nižetić, S.

    2018-02-01

    This paper elaborates design scenarios for a sports complex in Croatia from a technical and economic aspect. Different energy options are analysed and two are additionally addressed and discussed as the most viable ones. The possibilities of sports complex renovation are shown by properly choosing the appropriate energy concept and thus reducing the overall cost for produced thermal energy by around 33% and reducing the carbon dioxide emission by a factor of 1.8 in comparison with its present state. Finally, this study presents an example of good practice, where renewable energy solutions can be proposed and where it is possible to cover around 70-80% of overall yearly costs from achieved energy savings for the novel plant that is assumed to be financed through a bank loan.

  13. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David

    1997-01-01

    An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat complete configuration designs subject to multiple design points and geometric constraints. Examples are presented for both transonic and supersonic configurations ranging from wing alone designs to complex configuration designs involving wing, fuselage, nacelles and pylons.

  14. Networks consolidation program: Maintenance and Operations (M&O) staffing estimates

    NASA Technical Reports Server (NTRS)

    Goodwin, J. P.

    1981-01-01

    The Mark IV-A consolidate deep space and high elliptical Earth orbiter (HEEO) missions tracking and implements centralized control and monitoring at the deep space communications complexes (DSCC). One of the objectives of the network design is to reduce maintenance and operations (M&O) costs. To determine if the system design meets this objective an M&O staffing model for Goldstone was developed which was used to estimate the staffing levels required to support the Mark IV-A configuration. The study was performed for the Goldstone complex and the program office translated these estimates for the overseas complexes to derive the network estimates.

  15. Mannose-conjugated platinum complexes reveals effective tumor targeting mediated by glucose transporter 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ran; Li, Hong; Gao, Xiangqian

    Despite numerous studies that report the glucose derived glycoconjugates as antitumor candidates, using mannose as sugar motif for specific tumor targeting remains less studied. In this research, two novel mannose-conjugated platinum complexes 4a and 4b that target the Warburg effect were designed, synthesized and evaluated for their antitumor activities in vitro and in vivo. Compared with oxaliplatin, both complexes exhibited substantial enhancement in water solubility as well as excellent or comparative cytotoxicity in six human cancer cell lines. Cytotoxicity assessments on Glucose transporter 1 (GLUT1) down-regulated or overexpressed cells and platinum accumulation study demonstrated that cellular uptake of compound 4a was regulatedmore » by GLUT1. In particular, 4a induced apoptosis in HT29 cells by suppressing expression of Bcl-2 and Bcl-XL, which preliminary explained the mechanism origin of antitumor effect. As indicated by its maximum tolerated dose-finding assay and in vivo anticancer activity, compound 4a exhibits better safety and efficacy profile than oxaliplatin. The findings of this study indicate the possibility of subjecting mannose-conjugated platinum complexes as lead compounds for further preclinical evaluation. - Highlights: • Mannose-conjugated platinum complexes were designed and synthesized to target glucose transporter 1(GLUT1). • Mannose-conjugated platinum complex 4a transport across cancer cells through GLUT1. • Mannose-conjugated platinum complex 4a induce apoptosis in HT29 cells. • Mannose-conjugated platinum complex 4a antitumor activities were more potent than those of oxaliplatin.« less

  16. A novel low-complexity digital filter design for wearable ECG devices

    PubMed Central

    Mehrnia, Alireza

    2017-01-01

    Wearable and implantable Electrocardiograph (ECG) devices are becoming prevailing tools for continuous real-time personal health monitoring. The ECG signal can be contaminated by various types of noise and artifacts (e.g., powerline interference, baseline wandering) that must be removed or suppressed for accurate ECG signal processing. Limited device size, power consumption and cost are critical issues that need to be carefully considered when designing any portable health monitoring device, including a battery-powered ECG device. This work presents a novel low-complexity noise suppression reconfigurable finite impulse response (FIR) filter structure for wearable ECG and heart monitoring devices. The design relies on a recently introduced optimally-factored FIR filter method. The new filter structure and several of its useful features are presented in detail. We also studied the hardware complexity of the proposed structure and compared it with the state-of-the-art. The results showed that the new ECG filter has a lower hardware complexity relative to the state-of-the-art ECG filters. PMID:28384272

  17. A novel low-complexity digital filter design for wearable ECG devices.

    PubMed

    Asgari, Shadnaz; Mehrnia, Alireza

    2017-01-01

    Wearable and implantable Electrocardiograph (ECG) devices are becoming prevailing tools for continuous real-time personal health monitoring. The ECG signal can be contaminated by various types of noise and artifacts (e.g., powerline interference, baseline wandering) that must be removed or suppressed for accurate ECG signal processing. Limited device size, power consumption and cost are critical issues that need to be carefully considered when designing any portable health monitoring device, including a battery-powered ECG device. This work presents a novel low-complexity noise suppression reconfigurable finite impulse response (FIR) filter structure for wearable ECG and heart monitoring devices. The design relies on a recently introduced optimally-factored FIR filter method. The new filter structure and several of its useful features are presented in detail. We also studied the hardware complexity of the proposed structure and compared it with the state-of-the-art. The results showed that the new ECG filter has a lower hardware complexity relative to the state-of-the-art ECG filters.

  18. Complementarity of stability patches at the interfaces of protein complexes: Implication for the structural organization of energetic hot spots.

    PubMed

    Kuttner, Yosef Y; Engel, Stanislav

    2018-02-01

    A rational design of protein complexes with defined functionalities and of drugs aimed at disrupting protein-protein interactions requires fundamental understanding of the mechanisms underlying the formation of specific protein complexes. Efforts to develop efficient small-molecule or protein-based binders often exploit energetic hot spots on protein surfaces, namely, the interfacial residues that provide most of the binding free energy in the complex. The molecular basis underlying the unusually high energy contribution of the hot spots remains obscure, and its elucidation would facilitate the design of interface-targeted drugs. To study the nature of the energetic hot spots, we analyzed the backbone dynamic properties of contact surfaces in several protein complexes. We demonstrate that, in most complexes, the backbone dynamic landscapes of interacting surfaces form complementary "stability patches," in which static areas from the opposing surfaces superimpose, and that these areas are predominantly located near the geometric center of the interface. We propose that a diminished enthalpy-entropy compensation effect augments the degree to which residues positioned within the complementary stability patches contribute to complex affinity, thereby giving rise to the energetic hot spots. These findings offer new insights into the nature of energetic hot spots and the role that backbone dynamics play in facilitating intermolecular recognition. Mapping the interfacial stability patches may provide guidance for protein engineering approaches aimed at improving the stability of protein complexes and could facilitate the design of ligands that target complex interfaces. © 2017 Wiley Periodicals, Inc.

  19. Managing the Complexity of Design Problems through Studio-Based Learning

    ERIC Educational Resources Information Center

    Cennamo, Katherine; Brandt, Carol; Scott, Brigitte; Douglas, Sarah; McGrath, Margarita; Reimer, Yolanda; Vernon, Mitzi

    2011-01-01

    The ill-structured nature of design problems makes them particularly challenging for problem-based learning. Studio-based learning (SBL), however, has much in common with problem-based learning and indeed has a long history of use in teaching students to solve design problems. The purpose of this ethnographic study of an industrial design class,…

  20. Explorations in Teaching Sustainable Design: A Studio Experience in Interior Design/Architecture

    ERIC Educational Resources Information Center

    Gurel, Meltem O.

    2010-01-01

    This article argues that a design studio can be a dynamic medium to explore the creative potential of the complexity of sustainability from its technological to social ends. The study seeks to determine the impact of an interior design/architecture studio experience that was initiated to teach diverse meanings of sustainability and to engage the…

  1. Using mixed methods research in medical education: basic guidelines for researchers.

    PubMed

    Schifferdecker, Karen E; Reed, Virginia A

    2009-07-01

    Mixed methods research involves the collection, analysis and integration of both qualitative and quantitative data in a single study. The benefits of a mixed methods approach are particularly evident when studying new questions or complex initiatives and interactions, which is often the case in medical education research. Basic guidelines for when to use mixed methods research and how to design a mixed methods study in medical education research are not readily available. The purpose of this paper is to remedy that situation by providing an overview of mixed methods research, research design models relevant for medical education research, examples of each research design model in medical education research, and basic guidelines for medical education researchers interested in mixed methods research. Mixed methods may prove superior in increasing the integrity and applicability of findings when studying new or complex initiatives and interactions in medical education research. They deserve an increased presence and recognition in medical education research.

  2. Design Automation Using Script Languages. High-Level CAD Templates in Non-Parametric Programs

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Bazán, A. M.

    2017-10-01

    The main purpose of this work is to study the advantages offered by the application of traditional techniques of technical drawing in processes for automation of the design, with non-parametric CAD programs, provided with scripting languages. Given that an example drawing can be solved with traditional step-by-step detailed procedures, is possible to do the same with CAD applications and to generalize it later, incorporating references. In today’s modern CAD applications, there are striking absences of solutions for building engineering: oblique projections (military and cavalier), 3D modelling of complex stairs, roofs, furniture, and so on. The use of geometric references (using variables in script languages) and their incorporation into high-level CAD templates allows the automation of processes. Instead of repeatedly creating similar designs or modifying their data, users should be able to use these templates to generate future variations of the same design. This paper presents the automation process of several complex drawing examples based on CAD script files aided with parametric geometry calculation tools. The proposed method allows us to solve complex geometry designs not currently incorporated in the current CAD applications and to subsequently create other new derivatives without user intervention. Automation in the generation of complex designs not only saves time but also increases the quality of the presentations and reduces the possibility of human errors.

  3. Bacterial flagella and Type III secretion: case studies in the evolution of complexity.

    PubMed

    Pallen, M J; Gophna, U

    2007-01-01

    Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.

  4. Evidence for a Simplicity Principle: Teaching Common Complex Grapheme-to-Phonemes Improves Reading and Motivation in At-Risk Readers

    ERIC Educational Resources Information Center

    Chen, Victoria; Savage, Robert S.

    2014-01-01

    This study examines the effects of teaching common complex grapheme-to-phoneme correspondences (GPCs) on reading and reading motivation for at-risk readers using a randomised control trial design with taught intervention and control conditions. One reading programme taught children complex GPCs ordered by their frequency of occurrence in…

  5. Dynamic Modeling as a Cognitive Regulation Scaffold for Developing Complex Problem-Solving Skills in an Educational Massively Multiplayer Online Game Environment

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Ge, Xun; Ifenthaler, Dirk; Law, Victor

    2011-01-01

    Following a design-based research framework, this article reports two empirical studies with an educational MMOG, called "McLarin's Adventures," on facilitating 9th-grade students' complex problem-solving skill acquisition in interdisciplinary STEM education. The article discusses the nature of complex and ill-structured problem solving…

  6. Conditioned Emotional Response: Performance Decrement in Humans as a Function of Task Complexity. Final Report.

    ERIC Educational Resources Information Center

    Sachs, David A.; May, Jack G., Jr.

    This study was designed to investigate the effects of increasing levels of task complexity on the conditioned emotional response (CER) with human subjects (Ss). Three hypotheses were proposed: (1) the CER would increase as task complexity increased, (2) there would be sex differences between Ss with respect to the interaction between the CER and…

  7. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent

    USDA-ARS?s Scientific Manuscript database

    Nested association mapping (NAM) is a novel genetic mating design that combines the advantages of linkage analysis and association mapping. This design provides opportunities to study the inheritance of complex traits, but also requires more advanced statistical methods. In this paper, we present th...

  8. Tele-Immersion: Preferred Infrastructure for Anatomy Instruction

    ERIC Educational Resources Information Center

    Silverstein, Jonathan C.; Ehrenfeld, Jesse M.; Croft, Darin A.; Dech, Fred W.; Small, Stephen; Cook, Sandy

    2006-01-01

    Understanding spatial relationships among anatomic structures is an essential skill for physicians. Traditional medical education--using books, lectures, physical models, and cadavers--may be insufficient for teaching complex anatomical relationships. This study was designed to measure whether teaching complex anatomy to medical students using…

  9. Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.

    1998-01-01

    This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.

  10. Care coordination of multimorbidity: a scoping study

    PubMed Central

    Burau, Viola

    2015-01-01

    Background A key challenge in healthcare systems worldwide is the large number of patients who suffer from multimorbidity; despite this, most systems are organized within a single-disease framework. Objective The present study addresses two issues: the characteristics and preconditions of care coordination for patients with multimorbidity; and the factors that promote or inhibit care coordination at the levels of provider organizations and healthcare professionals. Design The analysis is based on a scoping study, which combines a systematic literature search with a qualitative thematic analysis. The search was conducted in November 2013 and included the PubMed, CINAHL, and Web of Science databases, as well as the Cochrane Library, websites of relevant organizations and a hand-search of reference lists. The analysis included studies with a wide range of designs, from industrialized countries, in English, German and the Scandinavian languages, which focused on both multimorbidity/comorbidity and coordination of integrated care. Results The analysis included 47 of the 226 identified studies. The central theme emerging was complexity. This related to both specific medical conditions of patients with multimorbidity (case complexity) and the organization of care delivery at the levels of provider organizations and healthcare professionals (care complexity). Conclusions In terms of how to approach care coordination, one approach is to reduce complexity and the other is to embrace complexity. Either way, future research must take a more explicit stance on complexity and also gain a better understanding of the role of professionals as a prerequisite for the development of new care coordination interventions. PMID:29090157

  11. Guidelines and Capabilities for Designing Human Missions

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  12. Guidelines and Capabilities for Designing Human Missions

    NASA Astrophysics Data System (ADS)

    2002-03-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  13. The joint use of resilience engineering and lean production for work system design: A study in healthcare.

    PubMed

    Rosso, Caroline Brum; Saurin, Tarcisio Abreu

    2018-09-01

    Although lean production (LP) has been increasingly adopted in healthcare systems, its benefits often fall short of expectations. This might be partially due to the failure of lean to account for the complexity of healthcare. This paper discusses the joint use of principles of LP and resilience engineering (RE), which is an approach for system design inspired by complexity science. Thus, a framework for supporting the design of socio-technical systems, which combines insights from LP and RE, was developed and tested in a system involving a patient flow from an emergency department to an intensive care unit. Based on this empirical study, as well as on extant theory, eight design propositions that support the framework application were developed. Both the framework and its corresponding propositions can contribute to the design of socio-technical systems that are at the same time safe and efficient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Exploiting non-covalent π interactions for catalyst design

    NASA Astrophysics Data System (ADS)

    Neel, Andrew J.; Hilton, Margaret J.; Sigman, Matthew S.; Toste, F. Dean

    2017-03-01

    Molecular recognition, binding and catalysis are often mediated by non-covalent interactions involving aromatic functional groups. Although the relative complexity of these so-called π interactions has made them challenging to study, theory and modelling have now reached the stage at which we can explain their physical origins and obtain reliable insight into their effects on molecular binding and chemical transformations. This offers opportunities for the rational manipulation of these complex non-covalent interactions and their direct incorporation into the design of small-molecule catalysts and enzymes.

  15. CEM-designer: design of custom expression microarrays in the post-ENCODE Era.

    PubMed

    Arnold, Christian; Externbrink, Fabian; Hackermüller, Jörg; Reiche, Kristin

    2014-11-10

    Microarrays are widely used in gene expression studies, and custom expression microarrays are popular to monitor expression changes of a customer-defined set of genes. However, the complexity of transcriptomes uncovered recently make custom expression microarray design a non-trivial task. Pervasive transcription and alternative processing of transcripts generate a wealth of interweaved transcripts that requires well-considered probe design strategies and is largely neglected in existing approaches. We developed the web server CEM-Designer that facilitates microarray platform independent design of custom expression microarrays for complex transcriptomes. CEM-Designer covers (i) the collection and generation of a set of unique target sequences from different sources and (ii) the selection of a set of sensitive and specific probes that optimally represents the target sequences. Probe design itself is left to third party software to ensure that probes meet provider-specific constraints. CEM-Designer is available at http://designpipeline.bioinf.uni-leipzig.de. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The De Novo Design of Protein-Protein Interfaces

    DTIC Science & Technology

    it was our intention to add to this body by engineering de novo (from scratch) protein/protein complexes. Using this inverse approach we have furthered...key physical features needed to drive specific protein/protein interactions. It is considered inverse because, instead of studying natural complexes

  17. Modeling OPC complexity for design for manufacturability

    NASA Astrophysics Data System (ADS)

    Gupta, Puneet; Kahng, Andrew B.; Muddu, Swamy; Nakagawa, Sam; Park, Chul-Hong

    2005-11-01

    Increasing design complexity in sub-90nm designs results in increased mask complexity and cost. Resolution enhancement techniques (RET) such as assist feature addition, phase shifting (attenuated PSM) and aggressive optical proximity correction (OPC) help in preserving feature fidelity in silicon but increase mask complexity and cost. Data volume increase with rise in mask complexity is becoming prohibitive for manufacturing. Mask cost is determined by mask write time and mask inspection time, which are directly related to the complexity of features printed on the mask. Aggressive RET increase complexity by adding assist features and by modifying existing features. Passing design intent to OPC has been identified as a solution for reducing mask complexity and cost in several recent works. The goal of design-aware OPC is to relax OPC tolerances of layout features to minimize mask cost, without sacrificing parametric yield. To convey optimal OPC tolerances for manufacturing, design optimization should drive OPC tolerance optimization using models of mask cost for devices and wires. Design optimization should be aware of impact of OPC correction levels on mask cost and performance of the design. This work introduces mask cost characterization (MCC) that quantifies OPC complexity, measured in terms of fracture count of the mask, for different OPC tolerances. MCC with different OPC tolerances is a critical step in linking design and manufacturing. In this paper, we present a MCC methodology that provides models of fracture count of standard cells and wire patterns for use in design optimization. MCC cannot be performed by designers as they do not have access to foundry OPC recipes and RET tools. To build a fracture count model, we perform OPC and fracturing on a limited set of standard cells and wire configurations with all tolerance combinations. Separately, we identify the characteristics of the layout that impact fracture count. Based on the fracture count (FC) data from OPC and mask data preparation runs, we build models of FC as function of OPC tolerances and layout parameters.

  18. An overview of the genetic dissection of complex traits.

    PubMed

    Rao, D C

    2008-01-01

    Thanks to the recent revolutionary genomic advances such as the International HapMap consortium, resolution of the genetic architecture of common complex traits is beginning to look hopeful. While demonstrating the feasibility of genome-wide association (GWA) studies, the pathbreaking Wellcome Trust Case Control Consortium (WTCCC) study also serves to underscore the critical importance of very large sample sizes and draws attention to potential problems, which need to be addressed as part of the study design. Even the large WTCCC study had vastly inadequate power for several of the associations reported (and confirmed) and, therefore, most of the regions harboring relevant associations may not be identified anytime soon. This chapter provides an overview of some of the key developments in the methodological approaches to genetic dissection of common complex traits. Constrained Bayesian networks are suggested as especially useful for analysis of pathway-based SNPs. Likewise, composite likelihood is suggested as a promising method for modeling complex systems. It discusses the key steps in a study design, with an emphasis on GWA studies. Potential limitations highlighted by the WTCCC GWA study are discussed, including problems associated with massive genotype imputation, analysis of pooled national samples, shared controls, and the critical role of interactions. GWA studies clearly need massive sample sizes that are only possible through genuine collaborations. After all, for common complex traits, the question is not whether we can find some pieces of the puzzle, but how large and what kind of a sample we need to (nearly) solve the genetic puzzle.

  19. Exploring the Molecular Design of Protein Interaction Sites with Molecular Dynamics Simulations and Free Energy Calculations†

    PubMed Central

    Liang, Shide; Li, Liwei; Hsu, Wei-Lun; Pilcher, Meaghan N.; Uversky, Vladimir; Zhou, Yaoqi; Dunker, A. Keith; Meroueh, Samy O.

    2009-01-01

    The significant work that has been invested toward understanding protein–protein interaction has not translated into significant advances in structure-based predictions. In particular redesigning protein surfaces to bind to unrelated receptors remains a challenge, partly due to receptor flexibility, which is often neglected in these efforts. In this work, we computationally graft the binding epitope of various small proteins obtained from the RCSB database to bind to barnase, lysozyme, and trypsin using a previously derived and validated algorithm. In an effort to probe the protein complexes in a realistic environment, all native and designer complexes were subjected to a total of nearly 400 ns of explicit-solvent molecular dynamics (MD) simulation. The MD data led to an unexpected observation: some of the designer complexes were highly unstable and decomposed during the trajectories. In contrast, the native and a number of designer complexes remained consistently stable. The unstable conformers provided us with a unique opportunity to define the structural and energetic factors that lead to unproductive protein–protein complexes. To that end we used free energy calculations following the MM-PBSA approach to determine the role of nonpolar effects, electrostatics and entropy in binding. Remarkably, we found that a majority of unstable complexes exhibited more favorable electrostatics than native or stable designer complexes, suggesting that favorable electrostatic interactions are not prerequisite for complex formation between proteins. However, nonpolar effects remained consistently more favorable in native and stable designer complexes reinforcing the importance of hydrophobic effects in protein–protein binding. While entropy systematically opposed binding in all cases, there was no observed trend in the entropy difference between native and designer complexes. A series of alanine scanning mutations of hot-spot residues at the interface of native and designer complexes showed less than optimal contacts of hot-spot residues with their surroundings in the unstable conformers, resulting in more favorable entropy for these complexes. Finally, disorder predictions revealed that secondary structures at the interface of unstable complexes exhibited greater disorder than the stable complexes. PMID:19113835

  20. Guidelines and Recommendations for Developing Interactive eHealth Apps for Complex Messaging in Health Promotion.

    PubMed

    Heffernan, Kayla Joanne; Chang, Shanton; Maclean, Skye Tamara; Callegari, Emma Teresa; Garland, Suzanne Marie; Reavley, Nicola Jane; Varigos, George Andrew; Wark, John Dennis

    2016-02-09

    The now ubiquitous catchphrase, "There's an app for that," rings true owing to the growing number of mobile phone apps. In excess of 97,000 eHealth apps are available in major app stores. Yet the effectiveness of these apps varies greatly. While a minority of apps are developed grounded in theory and in conjunction with health care experts, the vast majority are not. This is concerning given the Hippocratic notion of "do no harm." There is currently no unified formal theory for developing interactive eHealth apps, and development is especially difficult when complex messaging is required, such as in health promotion and prevention. This paper aims to provide insight into the creation of interactive eHealth apps for complex messaging, by leveraging the Safe-D case study, which involved complex messaging required to guide safe but sufficient UV exposure for vitamin D synthesis in users. We aim to create recommendations for developing interactive eHealth apps for complex messages based on the lessons learned during Safe-D app development. For this case study we developed an Apple and Android app, both named Safe-D, to safely improve vitamin D status in young women through encouraging safe ultraviolet radiation exposure. The app was developed through participatory action research involving medical and human computer interaction researchers, subject matter expert clinicians, external developers, and target users. The recommendations for development were created from analysis of the development process. By working with clinicians and implementing disparate design examples from the literature, we developed the Safe-D app. From this development process, recommendations for developing interactive eHealth apps for complex messaging were created: (1) involve a multidisciplinary team in the development process, (2) manage complex messages to engage users, and (3) design for interactivity (tailor recommendations, remove barriers to use, design for simplicity). This research has provided principles for developing interactive eHealth apps for complex messaging as guidelines by aggregating existing design concepts and expanding these concepts and new learnings from our development process. A set of guidelines to develop interactive eHealth apps generally, and specifically those for complex messaging, was previously missing from the literature; this research has contributed these principles. Safe-D delivers complex messaging simply, to aid education, and explicitly, considering user safety.

  1. Guidelines and Recommendations for Developing Interactive eHealth Apps for Complex Messaging in Health Promotion

    PubMed Central

    Heffernan, Kayla Joanne; Maclean, Skye Tamara; Callegari, Emma Teresa; Garland, Suzanne Marie; Reavley, Nicola Jane; Varigos, George Andrew; Wark, John Dennis

    2016-01-01

    Background The now ubiquitous catchphrase, “There’s an app for that,” rings true owing to the growing number of mobile phone apps. In excess of 97,000 eHealth apps are available in major app stores. Yet the effectiveness of these apps varies greatly. While a minority of apps are developed grounded in theory and in conjunction with health care experts, the vast majority are not. This is concerning given the Hippocratic notion of “do no harm.” There is currently no unified formal theory for developing interactive eHealth apps, and development is especially difficult when complex messaging is required, such as in health promotion and prevention. Objective This paper aims to provide insight into the creation of interactive eHealth apps for complex messaging, by leveraging the Safe-D case study, which involved complex messaging required to guide safe but sufficient UV exposure for vitamin D synthesis in users. We aim to create recommendations for developing interactive eHealth apps for complex messages based on the lessons learned during Safe-D app development. Methods For this case study we developed an Apple and Android app, both named Safe-D, to safely improve vitamin D status in young women through encouraging safe ultraviolet radiation exposure. The app was developed through participatory action research involving medical and human computer interaction researchers, subject matter expert clinicians, external developers, and target users. The recommendations for development were created from analysis of the development process. Results By working with clinicians and implementing disparate design examples from the literature, we developed the Safe-D app. From this development process, recommendations for developing interactive eHealth apps for complex messaging were created: (1) involve a multidisciplinary team in the development process, (2) manage complex messages to engage users, and (3) design for interactivity (tailor recommendations, remove barriers to use, design for simplicity). Conclusions This research has provided principles for developing interactive eHealth apps for complex messaging as guidelines by aggregating existing design concepts and expanding these concepts and new learnings from our development process. A set of guidelines to develop interactive eHealth apps generally, and specifically those for complex messaging, was previously missing from the literature; this research has contributed these principles. Safe-D delivers complex messaging simply, to aid education, and explicitly, considering user safety. PMID:26860623

  2. The International Design Study for the Neutrino Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, K.

    2008-02-21

    The International Design Study for a future Neutrino Factory and super-beam facility (the ISS) established the physics case for a high-precision programme of long-baseline neutrino-oscillation measurements. The ISS also identified baseline specifications for the Neutrino Factory accelerator complex and the neutrino detector systems. This paper summarises the objectives of the International Design Study for the Neutrino Factory (the IDS-NF). The IDS-NF will build on the work of the ISS to deliver a Reference Design Report for the Neutrino Factory by 2012/13 and an Interim Design Report by 2010/11.

  3. Residential Interior Design as Complex Composition: A Case Study of a High School Senior's Composing Process

    ERIC Educational Resources Information Center

    Smagorinsky, Peter; Zoss, Michelle; Reed, Patty M.

    2006-01-01

    This research analyzed the composing processes of one high school student as she designed the interiors of homes for a course in interior design. Data included field notes, an interview with the teacher, artifacts from the class, and the focal student's concurrent and retrospective protocols in relation to her design of home interiors. The…

  4. Software design and documentation language

    NASA Technical Reports Server (NTRS)

    Kleine, H.

    1977-01-01

    A communications medium to support the design and documentation of complex software applications is studied. The medium also provides the following: (1) a processor which can convert design specifications into an intelligible, informative machine reproducible document; (2) a design and documentation language with forms and syntax that are simple, unrestrictive, and communicative; and (3) methodology for effective use of the language and processor.

  5. Big-Data Based Decision-Support Systems to Improve Clinicians' Cognition.

    PubMed

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians' cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems.

  6. Big-Data Based Decision-Support Systems to Improve Clinicians’ Cognition

    PubMed Central

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians’ cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems. PMID:27990498

  7. Managing Increasing Complexity in Undergraduate Digital Media Design Education: The Impact and Benefits of Multidisciplinary Collaboration

    ERIC Educational Resources Information Center

    Fleischmann, Katja; Daniel, Ryan

    2013-01-01

    Increasing complexity is one of the most pertinent issues when discussing the role and future of design, designers and their education. The evolving nature of digital media technology has resulted in a profession in a state of flux with increasingly complex communication and design problems. The ability to collaborate and interact with other…

  8. VBOT: Motivating computational and complex systems fluencies with constructionist virtual/physical robotics

    NASA Astrophysics Data System (ADS)

    Berland, Matthew W.

    As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?

  9. Energy absorption capabilities of complex thin walled structures

    NASA Astrophysics Data System (ADS)

    Tarlochan, F.; AlKhatib, Sami

    2017-10-01

    Thin walled structures have been used in the area of energy absorption during an event of a crash. A lot of work has been done on tubular structures. Due to limitation of manufacturing process, complex geometries were dismissed as potential solutions. With the advancement in metal additive manufacturing, complex geometries can be realized. As a motivation, the objective of this study is to investigate computationally the crash performance of complex tubular structures. Five designs were considered. In was found that complex geometries have better crashworthiness performance than standard tubular structures used currently.

  10. Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules.

    PubMed Central

    Bouvier, M; Wiley, D C

    1996-01-01

    Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides. Images Fig. 2 Fig. 4 PMID:8643447

  11. Assessing the Effectiveness of a Computer Simulation for Teaching Ecological Experimental Design

    ERIC Educational Resources Information Center

    Stafford, Richard; Goodenough, Anne E.; Davies, Mark S.

    2010-01-01

    Designing manipulative ecological experiments is a complex and time-consuming process that is problematic to teach in traditional undergraduate classes. This study investigates the effectiveness of using a computer simulation--the Virtual Rocky Shore (VRS)--to facilitate rapid, student-centred learning of experimental design. We gave a series of…

  12. Image Making and Meaning: Educational Benefits to Studying Design in the 21st Century

    ERIC Educational Resources Information Center

    Wynn, Nancy

    2007-01-01

    Over the past 27 years, the influence of technology has revolutionized the professional practice of Design and its products produced. At the same time, technology has also created more advanced and complex pedagogy for design education. However regardless of technology's influence, critical thinking, problem solving, and presentation are still…

  13. The Effect of Planning Sub-Processes on L2 Writing Fluency, Grammatical Complexity, and Lexical Complexity

    ERIC Educational Resources Information Center

    Johnson, Mark D.; Mercado, Leonardo; Acevedo, Anthony

    2012-01-01

    This study contributes to L2 writing research which seeks to tie predictions of the Limited Attentional Capacity Model (Skehan, 1998; Skehan & Foster, 2001) and Cognition Hypothesis (Robinson, 2001, 2005, 2011a, 2011b) to models of working memory in L1 writing (Kellogg, 1996). The study uses a quasi-experimental research design to investigate…

  14. A Satellite Mortality Study to Support Space Systems Lifetime Prediction

    NASA Technical Reports Server (NTRS)

    Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory

    2013-01-01

    Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.

  15. Understanding Complex Natural Systems by Articulating Structure-Behavior-Function Models

    ERIC Educational Resources Information Center

    Vattam, Swaroop S.; Goel, Ashok K.; Rugaber, Spencer; Hmelo-Silver, Cindy E.; Jordan, Rebecca; Gray, Steven; Sinha, Suparna

    2011-01-01

    Artificial intelligence research on creative design has led to Structure-Behavior-Function (SBF) models that emphasize functions as abstractions for organizing understanding of physical systems. Empirical studies on understanding complex systems suggest that novice understanding is shallow, typically focusing on their visible structures and…

  16. Evaluation of a technique to simplify depictions of visually complex aeronautical procedures for NextGen

    DOT National Transportation Integrated Search

    2013-10-04

    Performance based navigation supports the design of more precise flight procedures. However, these new procedures can be visually complex, which may impact the usability of charts that depict the procedures. The purpose of the study was to evaluate w...

  17. The effect of visual taskload on critical flicker frequency (CFF) change during performance of a complex monitoring task.

    DOT National Transportation Integrated Search

    1985-10-01

    The present study examined the effect of differing levels of visual taskload on critical flicker frequency (CFF) change during performance of a complex monitoring task. The task employed was designed to functionally simulate the general task characte...

  18. 76 FR 23609 - New Proposed Collection; Comment Request; Biospecimen and Physical Measures Formative Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... has obtained an OMB generic clearance to conduct survey and instrument design and administration... conduct the detailed preparation needed for a study of this size and complexity, the NCS was designed to... methodological studies conducted during the Vanguard phase will inform the implementation and analysis plan for...

  19. Using mixed methods to develop and evaluate complex interventions in palliative care research.

    PubMed

    Farquhar, Morag C; Ewing, Gail; Booth, Sara

    2011-12-01

    there is increasing interest in combining qualitative and quantitative research methods to provide comprehensiveness and greater knowledge yield. Mixed methods are valuable in the development and evaluation of complex interventions. They are therefore particularly valuable in palliative care research where the majority of interventions are complex, and the identification of outcomes particularly challenging. this paper aims to introduce the role of mixed methods in the development and evaluation of complex interventions in palliative care, and how they may be used in palliative care research. the paper defines mixed methods and outlines why and how mixed methods are used to develop and evaluate complex interventions, with a pragmatic focus on design and data collection issues and data analysis. Useful texts are signposted and illustrative examples provided of mixed method studies in palliative care, including a detailed worked example of the development and evaluation of a complex intervention in palliative care for breathlessness. Key challenges to conducting mixed methods in palliative care research are identified in relation to data collection, data integration in analysis, costs and dissemination and how these might be addressed. the development and evaluation of complex interventions in palliative care benefit from the application of mixed methods. Mixed methods enable better understanding of whether and how an intervention works (or does not work) and inform the design of subsequent studies. However, they can be challenging: mixed method studies in palliative care will benefit from working with agreed protocols, multidisciplinary teams and engaging staff with appropriate skill sets.

  20. Mixed-method research protocol: defining and operationalizing patient-related complexity of nursing care in acute care hospitals.

    PubMed

    Huber, Evelyn; Kleinknecht-Dolf, Michael; Müller, Marianne; Kugler, Christiane; Spirig, Rebecca

    2017-06-01

    To define the concept of patient-related complexity of nursing care in acute care hospitals and to operationalize it in a questionnaire. The concept of patient-related complexity of nursing care in acute care hospitals has not been conclusively defined in the literature. The operationalization in a corresponding questionnaire is necessary, given the increased significance of the topic, due to shortened lengths of stay and increased patient morbidity. Hybrid model of concept development and embedded mixed-methods design. The theoretical phase of the hybrid model involved a literature review and the development of a working definition. In the fieldwork phase of 2015 and 2016, an embedded mixed-methods design was applied with complexity assessments of all patients at five Swiss hospitals using our newly operationalized questionnaire 'Complexity of Nursing Care' over 1 month. These data will be analysed with structural equation modelling. Twelve qualitative case studies will be embedded. They will be analysed using a structured process of constructing case studies and content analysis. In the final analytic phase, the quantitative and qualitative data will be merged and added to the results of the theoretical phase for a common interpretation. Cantonal Ethics Committee Zurich judged the research programme as unproblematic in December 2014 and May 2015. Following the phases of the hybrid model and using an embedded mixed-methods design can reach an in-depth understanding of patient-related complexity of nursing care in acute care hospitals, a final version of the questionnaire and an acknowledged definition of the concept. © 2016 John Wiley & Sons Ltd.

  1. The neural correlates of strategic reading comprehension: cognitive control and discourse comprehension.

    PubMed

    Moss, Jarrod; Schunn, Christian D; Schneider, Walter; McNamara, Danielle S; Vanlehn, Kurt

    2011-09-15

    Neuroimaging studies of text comprehension conducted thus far have shed little light on the brain mechanisms underlying strategic learning from text. Thus, the present study was designed to answer the question of what brain areas are active during performance of complex reading strategies. Reading comprehension strategies are designed to improve a reader's comprehension of a text. For example, self-explanation is a complex reading strategy that enhances existing comprehension processes. It was hypothesized that reading strategies would involve areas of the brain that are normally involved in reading comprehension along with areas that are involved in strategic control processes because the readers are intentionally using a complex reading strategy. Subjects were asked to reread, paraphrase, and self-explain three different texts in a block design fMRI study. Activation was found in both executive control and comprehension areas, and furthermore, learning from text was associated with activation in the anterior prefrontal cortex (aPFC). The authors speculate that the aPFC may play a role in coordinating the internal and external modes of thought that are necessary for integrating new knowledge from texts with prior knowledge. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. A systems-based approach for integrated design of materials, products and design process chains

    NASA Astrophysics Data System (ADS)

    Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh

    2007-12-01

    The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by applying the method to the MESM design problem, we show that the integrated design of materials and products can be carried out more efficiently by explicitly accounting for design process decisions with the hierarchy of models.

  3. Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella.

    PubMed

    Vutukuri, Hanumantha Rao; Bet, Bram; van Roij, René; Dijkstra, Marjolein; Huck, Wilhelm T S

    2017-12-01

    The quest for designing new self-propelled colloids is fuelled by the demand for simple experimental models to study the collective behaviour of their more complex natural counterparts. Most synthetic self-propelled particles move by converting the input energy into translational motion. In this work we address the question if simple self-propelled spheres can assemble into more complex structures that exhibit rotational motion, possibly coupled with translational motion as in flagella. We exploit a combination of induced dipolar interactions and a bonding step to create permanent linear bead chains, composed of self-propelled Janus spheres, with a well-controlled internal structure. Next, we study how flexibility between individual swimmers in a chain can affect its swimming behaviour. Permanent rigid chains showed only active rotational or spinning motion, whereas longer semi-flexible chains showed both translational and rotational motion resembling flagella like-motion, in the presence of the fuel. Moreover, we are able to reproduce our experimental results using numerical calculations with a minimal model, which includes full hydrodynamic interactions with the fluid. Our method is general and opens a new way to design novel self-propelled colloids with complex swimming behaviours, using different complex starting building blocks in combination with the flexibility between them.

  4. Chaos and complexity by design

    DOE PAGES

    Roberts, Daniel A.; Yoshida, Beni

    2017-04-20

    We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame poten-tial,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We also show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. In addition, we prove that these 2k-point correlators for Pauli operators completely determine the k-foldmore » channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.« less

  5. Design, Synthesis of Novel Platinum(II) Glycoconjugates, and Evaluation of Their Antitumor Effects.

    PubMed

    Han, Jianbin; Gao, Xiangqian; Liu, Ran; Yang, Jinna; Zhang, Menghua; Mi, Yi; Shi, Ying; Gao, Qingzhi

    2016-06-01

    A new series of sugar-conjugated (trans-R, R-cyclohexane-1, 2-diamine)-2-halo-malonato-platinum(II) complexes were designed and synthesized to target tumor-specific glucose transporters (GLUTs). The water solubility of the sugar-conjugated platinum (II) complexes was greatly improved by average of 570-fold, 33-fold, and 94-fold, respectively, compared to cisplatin (1.0 mg/mL), carboplatin (17.1 mg/mL), and the newest generation of clinical drug oxaliplatin (6.0 mg/mL). Despite the high water solubility, the platinum(II) glycoconjugates exhibited a notable increase in cytotoxicity by a margin of 1.5- to 6.0-fold in six different human cancer cell lines with respect to oxaliplatin. The potential GLUT1 transportability of the complexes was investigated through a molecular docking study and was confirmed with GLUT1 inhibitor-mediated cytotoxicity dependency evaluation. The results showed that the sugar-conjugated platinum(II) complexes can be recognized by the glucose recognition binding site of GLUT1 and their cell killing effect depends highly on the GLUT1 inhibitor, quercetin. The research presenting a prospective concept for targeted therapy anticancer drug design, and with the analysis of the synthesis, water solubility, antitumor activity, and the transportability of the platinum(II) glycoconjugates, this study provides fundamental data supporting the inherent potential of these designed conjugates as lead compounds for GLUT-mediated tumor targeting. © 2016 John Wiley & Sons A/S.

  6. Designing with non-linear viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy

    2017-11-01

    Material design is typically limited to hard materials or simple fluids; however, design with more complex materials can provide ways to enhance performance. Using the Criminale-Ericksen-Filbey (CEF) constitutive model in the thin film lubrication limit, we derive a modified Reynolds Equation (based on asymptotic analysis) that includes shear thinning, first normal stress, and terminal regime viscoelastic effects. This allows for designing non-linear viscoelastic fluids in thin-film creeping flow scenarios, i.e. optimizing the shape of rheological material properties to achieve different design objectives. We solve the modified Reynolds equation using the pseudo-spectral method, and describe a case study in full-film lubricated sliding where optimal fluid properties are identified. These material-agnostic property targets can then guide formulation of complex fluids which may use polymeric, colloidal, or other creative approaches to achieve the desired non-Newtonian properties.

  7. Designing Complexity

    ERIC Educational Resources Information Center

    Glanville, Ranulph

    2007-01-01

    This article considers the nature of complexity and design, as well as relationships between the two, and suggests that design may have much potential as an approach to improving human performance in situations seen as complex. It is developed against two backgrounds. The first is a world view that derives from second order cybernetics and radical…

  8. Robust Fixed-Structure Controller Synthesis

    NASA Technical Reports Server (NTRS)

    Corrado, Joseph R.; Haddad, Wassim M.; Gupta, Kajal (Technical Monitor)

    2000-01-01

    The ability to develop an integrated control system design methodology for robust high performance controllers satisfying multiple design criteria and real world hardware constraints constitutes a challenging task. The increasingly stringent performance specifications required for controlling such systems necessitates a trade-off between controller complexity and robustness. The principle challenge of the minimal complexity robust control design is to arrive at a tractable control design formulation in spite of the extreme complexity of such systems. Hence, design of minimal complexitY robust controllers for systems in the face of modeling errors has been a major preoccupation of system and control theorists and practitioners for the past several decades.

  9. Cooperative dual catalysis: application to the highly enantioselective conjugate cyanation of unsaturated imides.

    PubMed

    Sammis, Glenn M; Danjo, Hiroshi; Jacobsen, Eric N

    2004-08-18

    Cooperative heterobimetallic catalysis was used as a design principle to achieve a highly reactive system for the enantioselective conjugate addition of cyanide to alpha,beta-unsaturated imides. A dual-catalyst pathway involving chiral (salen)Al complex 1b and chiral (pybox)Er complex 4b provides measurable improvements in rates and enantioselectivities relative to single-catalyst systems. Mechanistic studies point to a cooperative bimetallic mechanism involving activation of the imide by the Al complex and activation of cyanide by the Er complex.

  10. Sustainability Actions in Australia

    ERIC Educational Resources Information Center

    Webster, Jenni; Robinson, Leigh; Trimper, Kelvin; Salagaras, Stan

    2007-01-01

    This article presents Australian case studies of educational buildings with environmentally sustainable designs. This includes the new public school complex for Williamstown High School and the Peel Learning Centre designed for Murdoc University. This article also includes sustainability initiatives by private developers working in collaboration…

  11. Handling Qualities Evaluations of Low Complexity Model Reference Adaptive Controllers for Reduced Pitch and Roll Damping Scenarios

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Johnson, Marcus; Nguyen, Nhan

    2011-01-01

    National Aeronautics and Space Administration (NASA) researchers have conducted a series of flight experiments designed to study the effects of varying levels of adaptive controller complexity on the performance and handling qualities of an aircraft under various simulated failure or damage conditions. A baseline, nonlinear dynamic inversion controller was augmented with three variations of a model reference adaptive control design. The simplest design consisted of a single adaptive parameter in each of the pitch and roll axes computed using a basic gradient-based update law. A second design was built upon the first by increasing the complexity of the update law. The third and most complex design added an additional adaptive parameter to each axis. Flight tests were conducted using NASA s Full-scale Advanced Systems Testbed, a highly modified F-18 aircraft that contains a research flight control system capable of housing advanced flight controls experiments. Each controller was evaluated against a suite of simulated failures and damage ranging from destabilization of the pitch and roll axes to significant coupling between the axes. Two pilots evaluated the three adaptive controllers as well as the non-adaptive baseline controller in a variety of dynamic maneuvers and precision flying tasks designed to uncover potential deficiencies in the handling qualities of the aircraft, and adverse interactions between the pilot and the adaptive controllers. The work was completed as part of the Integrated Resilient Aircraft Control Project under NASA s Aviation Safety Program.

  12. Structural Insights into the Molecular Design of Flutolanil Derivatives Targeted for Fumarate Respiration of Parasite Mitochondria.

    PubMed

    Inaoka, Daniel Ken; Shiba, Tomoo; Sato, Dan; Balogun, Emmanuel Oluwadare; Sasaki, Tsuyoshi; Nagahama, Madoka; Oda, Masatsugu; Matsuoka, Shigeru; Ohmori, Junko; Honma, Teruki; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu

    2015-07-07

    Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.

  13. Structural Insights into the Molecular Design of Flutolanil Derivatives Targeted for Fumarate Respiration of Parasite Mitochondria

    PubMed Central

    Inaoka, Daniel Ken; Shiba, Tomoo; Sato, Dan; Balogun, Emmanuel Oluwadare; Sasaki, Tsuyoshi; Nagahama, Madoka; Oda, Masatsugu; Matsuoka, Shigeru; Ohmori, Junko; Honma, Teruki; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu

    2015-01-01

    Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs. PMID:26198225

  14. Best Practices for Designing Online Learning Environments for 3D Modeling Curricula: A Delphi Study

    ERIC Educational Resources Information Center

    Mapson, Kathleen Harrell

    2011-01-01

    The purpose of this study was to develop an inventory of best practices for designing online learning environments for 3D modeling curricula. Due to the instructional complexity of three-dimensional modeling, few have sought to develop this type of course for online teaching and learning. Considering this, the study aimed to collectively aggregate…

  15. Using Concept Maps to Monitor Knowledge Structure Changes in a Science Classroom

    NASA Astrophysics Data System (ADS)

    Cook, Leah J.

    The aim of this research is to determine what differences may exist in students' structural knowledge while using a variety of concept mapping assessments. A concept map can be used as an assessment which connects concepts in a knowledge domain. A single assessment may not be powerful enough to establish how students' new knowledge relates to prior knowledge. More research is needed to establish how various aspects of the concept mapping task influence the output of map creation by students. Using multiple concept maps and pre-instruction and post-instruction VNOS instruments during a 16-week semester, this study was designed to investigate the impact of concept map training and the impact of assessment design on the created maps. Also, this study was designed to determine what differences can be observed between expert and novice maps and if similarities and differences exist between concept maps and an open-ended assessment. Participants created individual maps and the maps were analyzed for structural complexity, overall structure, and content. The concept maps were then compared by their timing, design, and scores. The results indicate that concept mapping training does significantly impact the shape and structure complexity of the map created by students. Additionally, these data support that students should be frequently reminded of appropriate concept mapping skills and opportunities so that good mapping skills will be utilized. Changing the assessment design does appear to be able to impact the overall structure and complexity of created maps, while narrowing the content focus of the map does not necessarily restrict the overall structure or the complexity. Furthermore, significant differences in structural complexity were observed between novice and expert mappers. The fluctuations of NOS concepts identified in student created maps may suggest why some students were still confused or had incorrect conceptions of NOS, despite explicit and reflective instruction throughout the semester.

  16. How to Get the Recommender Out of the Lab?

    NASA Astrophysics Data System (ADS)

    Picault, Jérome; Ribière, Myriam; Bonnefoy, David; Mercer, Kevin

    A personalised system is a complex system made of many interacting parts, from data ingestion to presenting the results to the users. A plethora of methods, tools, algorithms and approaches exist for each piece of such a system: many data and metadata processing methods, many user models, many filtering techniques, many accuracy metrics, many personalisation levels. In addition, a realworld recommender is a piece of an even larger and more complex environment on which there is little control: often the recommender is part of a larger application introducing constraints for the design of the recommender, e.g. the data may not be in a suitable format, or the environment may impose some architectural or privacy constraints. This can make the task of building such a recommender system daunting, and it is easy to make errors. Based on the experience of the authors and the study of other works, this chapter intends to be a guide on the design, implementation and evaluation of personalised systems. It presents the different aspects that must be studied before the design is even started, and how to avoid pitfalls, in a hands-on approach. The chapter presents the main factors to take into account to design a recommender system, and illustrates them through case studies of existing systems to help navigate in the many and complex choices that have to be faced.

  17. Using Neural Networks in the Mapping of Mixed Discrete/Continuous Design Spaces With Application to Structural Design

    DTIC Science & Technology

    1994-02-01

    desired that the problem to which the design space mapping techniques were applied be easily analyzed, yet provide a design space with realistic complexity...consistent fully stressed solution. 3 DESIGN SPACE MAPPING In order to reduce the computational expense required to optimize design spaces, neural networks...employed in this study. Some of the issues involved in using neural networks to do design space mapping are how to configure the neural network, how much

  18. Operationally efficient propulsion system study (OEPSS) data book. Volume 7; Launch Operations Index (LOI) Design Features and Options

    NASA Technical Reports Server (NTRS)

    Ziese, James M.

    1992-01-01

    A design tool of figure of merit was developed that allows the operability of a propulsion system design to be measured. This Launch Operations Index (LOI) relates Operations Efficiency to System Complexity. The figure of Merit can be used by conceptual designers to compare different propulsion system designs based on their impact on launch operations. The LOI will improve the design process by making sure direct launch operations experience is a necessary feedback to the design process.

  19. Design, syntheses, characterization, and cytotoxicity studies of novel heterobinuclear oxindolimine copper(II)-platinum(II) complexes.

    PubMed

    Aranda, Esther Escribano; Matias, Tiago Araújo; Araki, Koiti; Vieira, Adriana Pires; de Mattos, Elaine Andrade; Colepicolo, Pio; Luz, Carolina Portela; Marques, Fábio Luiz Navarro; da Costa Ferreira, Ana Maria

    2016-12-01

    Herein, the design and syntheses of two new mononuclear oxindolimine-copper(II) (1 and 2) and corresponding heterobinuclear oxindolimine Cu(II)Pt(II) complexes (3 and 4), are described. All the isolated complexes were characterized by spectroscopic techniques (UV/Vis, IR, EPR), in addition to elemental analysis and mass spectrometry. Cyclic voltammetry (CV) measurements showed that in all cases, one-electron quasi-reversible waves were observed, and ascribed to the formation of corresponding copper(I) complexes. Additionally, waves related to oxindolimine ligand reduction was verified, and confirmed using analogous oxindolimine-Zn(II) complexes. The Pt(IV/II) reduction, and corresponding oxidation, for complexes 3 and 4 occurred at very close values to those observed for cisplatin. By complementary fluorescence studies, it was shown that glutathione (GSH) cannot reduce any of these complexes, under the experimental conditions (room temperature, phosphate buffer 50mM, pH7.4), using an excess of 20-fold [GSH]. All these complexes showed characteristic EPR spectral profile, with parameters values g ǁ >g ⊥ suggesting an axially distorted environment around the copper(II) center. Interactions with calf thymus-DNA, monitored by circular dichroism (CD), indicated different effects modulated by the ligands. Finally, the cytotoxicity of each complex was tested toward different tumor cells, in comparison to cisplatin, and low values of IC 50 in the range 0.6 to 4.0μM were obtained, after 24 or 48h incubation at 37°C. The obtained results indicate that such complexes can be promising alternative antitumor agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Multiheteromacrocycles that Complex Metal Ions. Fourth Progress Report, 1 May 1977 -- 30 April 1978

    DOE R&D Accomplishments Database

    Cram, D. J.

    1978-01-15

    Results are reported in a program to design, synthesize, and evaluate polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions. Work during the reporting period was devoted to synthesis and study of cyclohexametaphenylenes and cyclic phosphine oxides. (JRD)

  1. Design of Automated Guidance to Support Effortful Revisions and Knowledge Integration in Science Learning

    ERIC Educational Resources Information Center

    Tansomboon, Charissa

    2017-01-01

    Students studying complex science topics can benefit from receiving immediate, personalized guidance. Supporting students to revise their written explanations in science can help students to integrate disparate ideas and develop a coherent, generative account of complex scientific topics. Using natural language processing to analyze student…

  2. Communication Partners Supporting Children with Complex Communication Needs Who Use AAC: A Systematic Review

    ERIC Educational Resources Information Center

    Shire, Stephanie Y.; Jones, Nancy

    2015-01-01

    Communication partners who efficiently use augmentative and alternative communication (AAC) are essential interaction partners for children learning to communicate using AAC. This systematic review examines studies targeting interventions designed to help communication partners support children with complex communication needs who use AAC.…

  3. Tutoring and Multi-Agent Systems: Modeling from Experiences

    ERIC Educational Resources Information Center

    Bennane, Abdellah

    2010-01-01

    Tutoring systems become complex and are offering varieties of pedagogical software as course modules, exercises, simulators, systems online or offline, for single user or multi-user. This complexity motivates new forms and approaches to the design and the modelling. Studies and research in this field introduce emergent concepts that allow the…

  4. Effects of Task Planning and Rhetorical Mode of Writing on Lexical Complexity, Syntactic Complexity, and Overall Writing Quality of EFL Writers' Task Performance

    ERIC Educational Resources Information Center

    Yildiz, Mine; Yesilyurt, Savas

    2017-01-01

    Based on Robinson's Triadic Componential Framework and the definition of task planning by Ellis (2005), this study was carried out to find out the effects of task planning and rhetorical mode on lexical and syntactic complexity, and overall writing quality of writing production of EFL learners. Following a repeated-measures design, the present…

  5. Reinforcing Visual Grouping Cues to Communicate Complex Informational Structure.

    PubMed

    Bae, Juhee; Watson, Benjamin

    2014-12-01

    In his book Multimedia Learning [7], Richard Mayer asserts that viewers learn best from imagery that provides them with cues to help them organize new information into the correct knowledge structures. Designers have long been exploiting the Gestalt laws of visual grouping to deliver viewers those cues using visual hierarchy, often communicating structures much more complex than the simple organizations studied in psychological research. Unfortunately, designers are largely practical in their work, and have not paused to build a complex theory of structural communication. If we are to build a tool to help novices create effective and well structured visuals, we need a better understanding of how to create them. Our work takes a first step toward addressing this lack, studying how five of the many grouping cues (proximity, color similarity, common region, connectivity, and alignment) can be effectively combined to communicate structured text and imagery from real world examples. To measure the effectiveness of this structural communication, we applied a digital version of card sorting, a method widely used in anthropology and cognitive science to extract cognitive structures. We then used tree edit distance to measure the difference between perceived and communicated structures. Our most significant findings are: 1) with careful design, complex structure can be communicated clearly; 2) communicating complex structure is best done with multiple reinforcing grouping cues; 3) common region (use of containers such as boxes) is particularly effective at communicating structure; and 4) alignment is a weak structural communicator.

  6. Assembly of Xylanases into Designer Cellulosomes Promotes Efficient Hydrolysis of the Xylan Component of a Natural Recalcitrant Cellulosic Substrate

    PubMed Central

    Moraïs, Sarah; Barak, Yoav; Hadar, Yitzhak; Wilson, David B.; Shoham, Yuval; Lamed, Raphael; Bayer, Edward A.

    2011-01-01

    ABSTRACT In nature, the complex composition and structure of the plant cell wall pose a barrier to enzymatic degradation. Nevertheless, some anaerobic bacteria have evolved for this purpose an intriguing, highly efficient multienzyme complex, the cellulosome, which contains numerous cellulases and hemicellulases. The rod-like cellulose component of the plant cell wall is embedded in a colloidal blend of hemicelluloses, a major component of which is xylan. In order to enhance enzymatic degradation of the xylan component of a natural complex substrate (wheat straw) and to study the synergistic action among different xylanases, we have employed a variation of the designer cellulosome approach by fabricating a tetravalent complex that includes the three endoxylanases of Thermobifida fusca (Xyn10A, Xyn10B, and Xyn11A) and an Xyl43A β-xylosidase from the same bacterium. Here, we describe the conversion of Xyn10A and Xyl43A to the cellulosomal mode. The incorporation of the Xyl43A enzyme together with the three endoxylanases into a common designer cellulosome served to enhance the level of reducing sugars produced during wheat straw degradation. The enhanced synergistic action of the four xylanases reflected their immediate juxtaposition in the complex, and these tetravalent xylanolytic designer cellulosomes succeeded in degrading significant (~25%) levels of the total xylan component of the wheat straw substrate. The results suggest that the incorporation of xylanases into cellulosome complexes is advantageous for efficient decomposition of recalcitrant cellulosic substrates—a distinction previously reserved for cellulose-degrading enzymes. PMID:22086489

  7. Influence of ligand-bridged substitution on the exchange coupling constant of chromium-wheels host complexes: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Sadeghi Googheri, Motahare; Abolhassani, Mohammad Reza; Mirzaei, Mahmoud

    2018-05-01

    Designing and introducing novel wheel-shaped supramolecular as host complexes with new magnetic properties is the theme of the day. So in this study, new eight binuclear chromium (III) complexes, as models of real chromium-wheel host complexes, were designed based on changing of bridged-ligands and exchange coupling constants (J) of them were calculated using the broken symmetry density functional theory approach. Substitution of fluorine ligand in fluoro-bridged model [Cr2F(tBuCO2)2(H2O)2(OH)4]-1 by halogen anions (Cl-, Br- and I- ) decreased the antiferromagnetic exchange coupling between Cr(III) centres such that by going from F- to I- the J values became more positive. In the case of hydroxo-bridged model [Cr2OH(tBuCO2)2(H2O)2(OH)4]-1, replacement of hydroxyl by methoxy anion (OMe-) strengthened the antiferromagnetic property of the complex but substitution by sulfanide (SH-) and amide (NH2-) anions weakened it and changed the nature of complexes to ferromagnetic. Because of their different magnetic properties, these new investigated complexes can be suggested as interesting synthetic targets. Also, the J value changes due to ligand substitution were evaluated and it was found that the Cr-X bond strength and partial charges of involved atoms were the most effective factors on it.

  8. The Evolution and Evaluation of an Online Role Play through Design-Based Research

    ERIC Educational Resources Information Center

    Beckmann, Elizabeth A.; Mahanty, Sango

    2016-01-01

    This paper presents selected findings from a 5-year design-based research case study of the evolution of an online role play that allows postgraduate students to explore the complexities inherent in land rights negotiations between indigenous peoples and others. In the context of Laurillard's (2002) conversational framework and a design-based…

  9. Learning Problem-Solving through Making Games at the Game Design and Learning Summer Program

    ERIC Educational Resources Information Center

    Akcaoglu, Mete

    2014-01-01

    Today's complex and fast-evolving world necessitates young students to possess design and problem-solving skills more than ever. One alternative method of teaching children problem-solving or thinking skills has been using computer programming, and more recently, game-design tasks. In this pre-experimental study, a group of middle school…

  10. Investigation of model-based physical design restrictions (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Lucas, Kevin; Baron, Stanislas; Belledent, Jerome; Boone, Robert; Borjon, Amandine; Couderc, Christophe; Patterson, Kyle; Riviere-Cazaux, Lionel; Rody, Yves; Sundermann, Frank; Toublan, Olivier; Trouiller, Yorick; Urbani, Jean-Christophe; Wimmer, Karl

    2005-05-01

    As lithography and other patterning processes become more complex and more non-linear with each generation, the task of physical design rules necessarily increases in complexity also. The goal of the physical design rules is to define the boundary between the physical layout structures which will yield well from those which will not. This is essentially a rule-based pre-silicon guarantee of layout correctness. However the rapid increase in design rule requirement complexity has created logistical problems for both the design and process functions. Therefore, similar to the semiconductor industry's transition from rule-based to model-based optical proximity correction (OPC) due to increased patterning complexity, opportunities for improving physical design restrictions by implementing model-based physical design methods are evident. In this paper we analyze the possible need and applications for model-based physical design restrictions (MBPDR). We first analyze the traditional design rule evolution, development and usage methodologies for semiconductor manufacturers. Next we discuss examples of specific design rule challenges requiring new solution methods in the patterning regime of low K1 lithography and highly complex RET. We then evaluate possible working strategies for MBPDR in the process development and product design flows, including examples of recent model-based pre-silicon verification techniques. Finally we summarize with a proposed flow and key considerations for MBPDR implementation.

  11. Complex socio-technical systems: Characterization and management guidelines.

    PubMed

    Righi, Angela Weber; Saurin, Tarcisio Abreu

    2015-09-01

    Although ergonomics has paid increasing attention to the perspective of complexity, methods for its operationalization are scarce. This study introduces a framework for the operationalization of the "attribute view" of complexity, which involves: (i) the delimitation of the socio-technical system (STS); (ii) the description of four complexity attributes, namely a large number of elements in dynamic interactions, a wide diversity of elements, unexpected variability, and resilience; (iii) the assessment of six management guidelines, namely design slack, give visibility to processes and outcomes, anticipate and monitor the impacts of small changes, monitor the gap between prescription and practice, encourage diversity of perspectives when making decisions, and create an environment that supports resilience; and (iv) the identification of leverage points for improving the STS design, based on both the analysis of relationships among the attributes and their classification as irreducible/manageable complexity, and liability/asset. The use of the framework is illustrated by the study of an emergency department of a University hospital. Data collection involved analysis of documents, observations of work at the front-line, interviews with employees, and the application of questionnaires. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Complex facial deformity reconstruction with a surgical guide incorporating a built-in occlusal stent as the positioning reference.

    PubMed

    Fang, Jing-Jing; Liu, Jia-Kuang; Wu, Tzu-Chieh; Lee, Jing-Wei; Kuo, Tai-Hong

    2013-05-01

    Computer-aided design has gained increasing popularity in clinical practice, and the advent of rapid prototyping technology has further enhanced the quality and predictability of surgical outcomes. It provides target guides for complex bony reconstruction during surgery. Therefore, surgeons can efficiently and precisely target fracture restorations. Based on three-dimensional models generated from a computed tomographic scan, precise preoperative planning simulation on a computer is possible. Combining the interdisciplinary knowledge of surgeons and engineers, this study proposes a novel surgical guidance method that incorporates a built-in occlusal wafer that serves as the positioning reference.Two patients with complex facial deformity suffering from severe facial asymmetry problems were recruited. In vitro facial reconstruction was first rehearsed on physical models, where a customized surgical guide incorporating a built-in occlusal stent as the positioning reference was designed to implement the surgery plan. This study is intended to present the authors' preliminary experience in a complex facial reconstruction procedure. It suggests that in regions with less information, where intraoperative computed tomographic scans or navigation systems are not available, our approach could be an effective, expedient, straightforward aid to enhance surgical outcome in a complex facial repair.

  13. Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becthel Jacobs Company LLC

    2002-11-01

    The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Buildingmore » 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.« less

  14. Advanced Cloning Tools for Construction of Designer Cellulosomes.

    PubMed

    Kahn, Amaranta; Bayer, Edward A; Moraïs, Sarah

    2018-01-01

    Cellulose deconstruction is achieved in nature through two main enzymatic paradigms, i.e., free enzymes and enzymatic complexes (called cellulosomes). Gaining insights into the mechanism of action and synergy among the different cellulases is of high interest, notably in the field of renewable energy, and specifically, for the conversion of cellulosic biomass to soluble sugars, en route to biofuels. In this context, designer cellulosomes are artificially assembled, chimaeric protein complexes that are used as a tool to comparatively study cellulose degradation by different enzymatic paradigms, and could also serve to improve cellulose deconstruction. Various molecular biology techniques are employed in order to design and engineer the various components of designer cellulosomes. In this chapter, we describe the cloning processes through which the appropriate modules are selected and assembled at the molecular level.

  15. Using archetypes to design services for high users of healthcare.

    PubMed

    Vaillancourt, Samuel; Shahin, Ilan; Aggarwal, Payal; Pomedli, Steve; Hayden, Leigh; Pus, Laura; Bhattacharyya, Onil

    2014-01-01

    A subset of people with complex health and social needs account for the majority of healthcare costs in Ontario. There is broad agreement that better solutions for these patients could lead to better health outcomes and lower costs, but we have few tools to design services around their diverse needs. Predictive modelling may help determine numbers of high users, but design methods such as user archetypes may offer important ways of understanding how to meet their needs. We studied a range of patient profiles and interviews with frequent emergency department users to develop four archetypes of patients with complex needs to orient the service design process. These can be refined and adapted for use within initiatives like Health Links to help provide more appropriate cost-effective care.

  16. Binding of small molecules at interface of protein-protein complex - A newer approach to rational drug design.

    PubMed

    Gurung, A B; Bhattacharjee, A; Ajmal Ali, M; Al-Hemaid, F; Lee, Joongku

    2017-02-01

    Protein-protein interaction is a vital process which drives many important physiological processes in the cell and has also been implicated in several diseases. Though the protein-protein interaction network is quite complex but understanding its interacting partners using both in silico as well as molecular biology techniques can provide better insights for targeting such interactions. Targeting protein-protein interaction with small molecules is a challenging task because of druggability issues. Nevertheless, several studies on the kinetics as well as thermodynamic properties of protein-protein interactions have immensely contributed toward better understanding of the affinity of these complexes. But, more recent studies on hot spots and interface residues have opened up new avenues in the drug discovery process. This approach has been used in the design of hot spot based modulators targeting protein-protein interaction with the objective of normalizing such interactions.

  17. Using case study within a sequential explanatory design to evaluate the impact of specialist and advanced practice roles on clinical outcomes: the SCAPE study.

    PubMed

    Lalor, Joan G; Casey, Dympna; Elliott, Naomi; Coyne, Imelda; Comiskey, Catherine; Higgins, Agnes; Murphy, Kathy; Devane, Declan; Begley, Cecily

    2013-04-08

    The role of the clinical nurse/midwife specialist and advanced nurse/midwife practitioner is complex not least because of the diversity in how the roles are operationalised across health settings and within multidisciplinary teams. This aim of this paper is to use The SCAPE Study: Specialist Clinical and Advanced Practitioner Evaluation in Ireland to illustrate how case study was used to strengthen a Sequential Explanatory Design. In Phase 1, clinicians identified indicators of specialist and advanced practice which were then used to guide the instrumental case study design which formed the second phase of the larger study. Phase 2 used matched case studies to evaluate the effectiveness of specialist and advanced practitioners on clinical outcomes for service users. Data were collected through observation, documentary analysis, and interviews. Observations were made of 23 Clinical Specialists or Advanced Practitioners, and 23 matched clinicians in similar matched non-postholding sites, while they delivered care. Forty-one service users, 41 clinicians, and 23 Directors of Nursing or Midwifery were interviewed, and 279 service users completed a survey based on the components of CS and AP practice identified in Phase 1. A coding framework, and the generation of cross tabulation matrices in NVivo, was used to make explicit how the outcome measures were confirmed and validated from multiple sources. This strengthened the potential to examine single cases that seemed 'different', and allowed for cases to be redefined. Phase 3 involved interviews with policy-makers to set the findings in context. Case study is a powerful research strategy to use within sequential explanatory mixed method designs, and adds completeness to the exploration of complex issues in clinical practice. The design is flexible, allowing the use of multiple data collection methods from both qualitative and quantitative paradigms. Multiple approaches to data collection are needed to evaluate the impact of complex roles and interventions in health care outcomes and service delivery. Case study design is an appropriate methodology to use when study outcomes relate to clinical practice.

  18. Solar power satellite system definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Configuration concepts, option sizes, and systems definitions study design evolutions are reviewed. The main features of the present reference design silicon solar cell solar power satellite are described, as well as the provisions for space construction and support systems. The principal study accomplishments and conclusions are summarized according to the following tasks: (1) baseline critique; (2) construction and maintenance; (3) industrial complex needs, cost estimates, and production capacity; (4) launch complex requirements at KSC or at an offshore facility; (5) integration of the SPS/ground power network; (6) technology advancement and development; (7) costs and schedules; and (8) exploratory technology: laser annealing of solar cells degraded by proton irradiation, and a fiber-optic phase distribution link at 980 MHz.

  19. Exploiting the User: Adapting Personas for Use in Security Visualization Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoll, Jennifer C.; McColgin, David W.; Gregory, Michelle L.

    It has long been noted that visual representations of complex information can facilitate rapid understanding of data {citation], even with respect to ComSec applications {citation]. Recognizing that visualizations can increase usability in ComSec applications, [Zurko, Sasse] have argued that there is a need to create more usable security visualizations. (VisSec) However, usability of applications generally fall into the domain of Human Computer Interaction (HCI), which generally relies on heavy-weight user-centered design (UCD) processes. For example, the UCD process can involve many prototype iterations, or an ethnographic field study that can take months to complete. The problem is that VisSec projectsmore » generally do not have the resources to perform ethnographic field studies, or to employ complex UCD methods. They often are running on tight deadlines and budgets that can not afford standard UCD methods. In order to help resolve the conflict of needing more usable designs in ComSec, but not having the resources to employ complex UCD methods, in this paper we offer a stripped-down lighter weight version of a UCD process which can help with capturing user requirements. The approach we use is personas which a user requirements capturing method arising out of the Participatory Design philosophy [Grudin02].« less

  20. Exploiting non-covalent π interactions for catalyst design

    PubMed Central

    Neel, Andrew J.; Hilton, Margaret J.; Sigman, Matthew S.; Toste, F. Dean

    2018-01-01

    Molecular recognition, binding and catalysis are often mediated by non-covalent interactions involving aromatic functional groups. Although the relative complexity of these so-called π interactions has made them challenging to study, theory and modelling have now reached the stage at which we can explain their physical origins and obtain reliable insight into their effects on molecular binding and chemical transformations. This offers opportunities for the rational manipulation of these complex non-covalent interactions and their direct incorporation into the design of small-molecule catalysts and enzymes. PMID:28358089

  1. Case-Based Instructional Practices: A Multiple-Case Study from Torts, Marketing, and Online Instructional Design Classes

    ERIC Educational Resources Information Center

    Jung, Ji yoon

    2017-01-01

    The purpose of this study is to provide a comprehensive account on case-based instructional practices. Semester-long participant observation records in torts, marketing, and online instructional design classes, instructor interviews, course syllabi and teaching materials were used to describe the within-class complexity of the practices in terms…

  2. Design of copper DNA intercalators with leishmanicidal activity.

    PubMed

    Navarro, Maribel; Cisneros-Fajardo, Efrén José; Sierralta, Aníbal; Fernández-Mestre, Mercedes; Silva, Pedro; Arrieche, Dwight; Marchán, Edgar

    2003-04-01

    The complexes [Cu(dppz)(NO(3))]NO(3) (1), [Cu(dppz)(2)(NO(3))]NO(3) (2), [Cu(dpq)(NO(3))]NO(3) (3), and [Cu(dpq)(2)(NO(3))]NO(3) (4) were synthesized and characterized by elemental analysis, FAB-mass spectrometry, EPR, UV, and IR spectroscopies, and molar conductivity. DNA interaction studies showed that intercalation is an important way of interacting with DNA for these complexes. The biological activity of these copper complexes was evaluated on Leishmania braziliensis promastigotes, and the results showed leishmanicidal activity. Preliminary ultrastructural studies with the most active complex (2) at 1 h revealed parasite swelling and binucleated cells. This finding suggests that the leishmanicidal activity of the copper complexes could be associated with their interaction with the parasitic DNA.

  3. Evaluating Device Design and Cleanability of Orthopedic Device Models Contaminated with a Clinically Relevant Bone Test Soil.

    PubMed

    Lucas, Anne D; Nagaraja, Srinidhi; Gordon, Edward A; Hitchins, Victoria M

    2015-01-01

    Reusable medical devices need to be cleaned prior to disinfection or sterilization and subsequent use to prevent infections. The cleanability of medical devices depends in part on the design of the device. This study examined how models of orthopedic medical devices of increasing complexity retain calcium phosphate bone cement, a relevant test soil for these devices. The dye Alizarin Red S and micro-computed tomography (μCT) were used to assess the amount and location of bone cement debris in a series of model orthopedic devices. Testing was performed after soiling and cleaning once, and soiling and cleaning 10 times. The color change of the dye after reacting with the bone cement was useful for indicating the presence of bone cement in these models. High-resolution μCT analysis provided the volume and location of the bone cement. Models that were more complex retained significantly more bone debris than simpler designs. Model devices repeatedly soiled and cleaned 10 times retained significantly more bone debris than those soiled and cleaned once. Significantly more bone cement was retained in the more complex lumen structures. This information may be useful in designing reusable orthopedic devices, and other complex medical devices with lumens.

  4. Research study concerning the 3D printing adittion (FDM-fused deposition modeling) to design UAV (UAV-unconventional aerial vehicle) structures

    NASA Astrophysics Data System (ADS)

    Pascu, Nicoleta Elisabeta; CǎruÅ£aşu, Nicoleta LuminiÅ£a.; Geambaşu, Gabriel George; Adîr, Victor Gabriel; Arion, Aurel Florin; Ivaşcu, Laura

    2018-02-01

    Aerial vehicles have become indispensable. There are in this field UAV (Unconventional Aerial vehicle) and transportation airplanes and other aerospace vehicles for spatial tourism. Today, the research and development activity in aerospace industry is focused to obtain a good and efficient design for airplanes, to solve the problem of high pollution and to reduce the noise. For these goals are necessary to realize light and resistant components. The aerospace industry products are, generally, very complex concerning geometric shapes and the costs are high, usually. Due to the progress in this field (products obtained using FDM) was possible to reduce the number of used tools, welding belts, and, of course, to eliminate a lot of machine tools. In addition, the complex shapes are easier product using this high technology, the cost is more attractive and the time is lower. This paper allows to present a few aspects about FDM technology and the obtained structures using it, as follows: computer geometric modeling (different designing softs) to design and redesign complex structures using 3D printing, for this kind of vehicles; finite element analysis to identify what is the influence of design for different structures; testing the structures.

  5. Design of microarray experiments for genetical genomics studies.

    PubMed

    Bueno Filho, Júlio S S; Gilmour, Steven G; Rosa, Guilherme J M

    2006-10-01

    Microarray experiments have been used recently in genetical genomics studies, as an additional tool to understand the genetic mechanisms governing variation in complex traits, such as for estimating heritabilities of mRNA transcript abundances, for mapping expression quantitative trait loci, and for inferring regulatory networks controlling gene expression. Several articles on the design of microarray experiments discuss situations in which treatment effects are assumed fixed and without any structure. In the case of two-color microarray platforms, several authors have studied reference and circular designs. Here, we discuss the optimal design of microarray experiments whose goals refer to specific genetic questions. Some examples are used to illustrate the choice of a design for comparing fixed, structured treatments, such as genotypic groups. Experiments targeting single genes or chromosomic regions (such as with transgene research) or multiple epistatic loci (such as within a selective phenotyping context) are discussed. In addition, microarray experiments in which treatments refer to families or to subjects (within family structures or complex pedigrees) are presented. In these cases treatments are more appropriately considered to be random effects, with specific covariance structures, in which the genetic goals relate to the estimation of genetic variances and the heritability of transcriptional abundances.

  6. Designing effective animations for computer science instruction

    NASA Astrophysics Data System (ADS)

    Grillmeyer, Oliver

    This study investigated the potential for animations of Scheme functions to help novice computer science students understand difficult programming concepts. These animations used an instructional framework inspired by theories of constructivism and knowledge integration. The framework had students make predictions, reflect, and specify examples to animate to promote autonomous learning and result in more integrated knowledge. The framework used animated pivotal cases to help integrate disconnected ideas and restructure students' incomplete ideas by illustrating weaknesses in their existing models. The animations scaffolded learners, making the thought processes of experts more visible by modeling complex and tacit information. The animation design was guided by prior research and a methodology of design and refinement. Analysis of pilot studies led to the development of four design concerns to aid animation designers: clearly illustrate the mapping between objects in animations with the actual objects they represent, show causal connections between elements, draw attention to the salient features of the modeled system, and create animations that reduce complexity. Refined animations based on these design concerns were compared to computer-based tools, text-based instruction, and simpler animations that do not embody the design concerns. Four studies comprised this dissertation work. Two sets of animated presentations of list creation functions were compared to control groups. No significant differences were found in support of animations. Three different animated models of traces of recursive functions ranging from concrete to abstract representations were compared. No differences in learning gains were found between the three models in test performance. Three models of animations of applicative operators were compared with students using the replacement modeler and the Scheme interpreter. Significant differences were found favoring animations that addressed causality and salience in their design. Lastly, two binary tree search algorithm animations designed to reduce complexity were compared with hand-tracing of calls. Students made fewer mistakes in predicting the tree traversal when guided by the animations. However, the posttest findings were inconsistent. In summary, animations designed based on the design concerns did not consistently add value to instruction in the form investigated in this research.

  7. Study on planning and design of ecological tourist rural complex for the elderly

    NASA Astrophysics Data System (ADS)

    Han, Zhoulin; Jiang, Nan; He, Yunxiao; Long, Yanping

    2018-03-01

    In order to deal with the increasingly serious aging problem in China, a new model about serving the aged better needs to be explored. This paper puts forward the concept of ecological tourist rural complex for the elderly, a novel pattern that combining the rural retirement place with pastoral complex which is proposed recently. A concrete example of Deteng complex in Mianyang is given to explore the construction condition and planning approach. Three important aspects including pastoral, ecology, serving the aged are the core elements to develop ecological tourist rural complex for the elderly.

  8. Modelling and simulation of complex sociotechnical systems: envisioning and analysing work environments

    PubMed Central

    Hettinger, Lawrence J.; Kirlik, Alex; Goh, Yang Miang; Buckle, Peter

    2015-01-01

    Accurate comprehension and analysis of complex sociotechnical systems is a daunting task. Empirically examining, or simply envisioning the structure and behaviour of such systems challenges traditional analytic and experimental approaches as well as our everyday cognitive capabilities. Computer-based models and simulations afford potentially useful means of accomplishing sociotechnical system design and analysis objectives. From a design perspective, they can provide a basis for a common mental model among stakeholders, thereby facilitating accurate comprehension of factors impacting system performance and potential effects of system modifications. From a research perspective, models and simulations afford the means to study aspects of sociotechnical system design and operation, including the potential impact of modifications to structural and dynamic system properties, in ways not feasible with traditional experimental approaches. This paper describes issues involved in the design and use of such models and simulations and describes a proposed path forward to their development and implementation. Practitioner Summary: The size and complexity of real-world sociotechnical systems can present significant barriers to their design, comprehension and empirical analysis. This article describes the potential advantages of computer-based models and simulations for understanding factors that impact sociotechnical system design and operation, particularly with respect to process and occupational safety. PMID:25761227

  9. Designing Cognitive Complexity in Mathematical Problem-Solving Items

    ERIC Educational Resources Information Center

    Daniel, Robert C.; Embretson, Susan E.

    2010-01-01

    Cognitive complexity level is important for measuring both aptitude and achievement in large-scale testing. Tests for standards-based assessment of mathematics, for example, often include cognitive complexity level in the test blueprint. However, little research exists on how mathematics items can be designed to vary in cognitive complexity level.…

  10. Expert systems for space power supply - Design, analysis, and evaluation

    NASA Technical Reports Server (NTRS)

    Cooper, Ralph S.; Thomson, M. Kemer; Hoshor, Alan

    1987-01-01

    The feasibility of applying expert systems to the conceptual design, analysis, and evaluation of space power supplies in particular, and complex systems in general is evaluated. To do this, the space power supply design process and its associated knowledge base were analyzed and characterized in a form suitable for computer emulation of a human expert. The existing expert system tools and the results achieved with them were evaluated to assess their applicability to power system design. Some new concepts for combining program architectures (modular expert systems and algorithms) with information about the domain were applied to create a 'deep' system for handling the complex design problem. NOVICE, a code to solve a simplified version of a scoping study of a wide variety of power supply types for a broad range of missions, has been developed, programmed, and tested as a concrete feasibility demonstration.

  11. Creating targeted initial populations for genetic product searches in heterogeneous markets

    NASA Astrophysics Data System (ADS)

    Foster, Garrett; Turner, Callaway; Ferguson, Scott; Donndelinger, Joseph

    2014-12-01

    Genetic searches often use randomly generated initial populations to maximize diversity and enable a thorough sampling of the design space. While many of these initial configurations perform poorly, the trade-off between population diversity and solution quality is typically acceptable for small-scale problems. Navigating complex design spaces, however, often requires computationally intelligent approaches that improve solution quality. This article draws on research advances in market-based product design and heuristic optimization to strategically construct 'targeted' initial populations. Targeted initial designs are created using respondent-level part-worths estimated from discrete choice models. These designs are then integrated into a traditional genetic search. Two case study problems of differing complexity are presented to illustrate the benefits of this approach. In both problems, targeted populations lead to computational savings and product configurations with improved market share of preferences. Future research efforts to tailor this approach and extend it towards multiple objectives are also discussed.

  12. Development and Optimization of Dispersible Tablet of Bacopa monnieri with Improved Functionality for Memory Enhancement.

    PubMed

    Thakkar, Vaishali Tejas; Deshmukh, Amol; Hingorani, Lal; Juneja, Payal; Baldaniya, Lalji; Patel, Asha; Pandya, Tosha; Gohel, Mukesh

    2017-01-01

    The Bacopa monnieri is traditional Ayurvedic medicine, and reported for memory-enhancing effects. The Bacoside is poorly soluble, bitter in taste and responsible for the memory enhancement action. Memory enhancer is commonly prescribed for children or elder people. Poor solubility, patient compliance and bitterness were a major driving force to develop taste masked β-cyclodextrin complex and dispersible tablets. The inclusion complex of Bacopa monnieri and β-cyclodextrin was prepared in different molar ratios of Bacopa monnieri by Co-precipitation method. Phase solubility study was conducted to evaluate the effect of β-cyclodextrin on aqueous solubility of Bacoside A. The characterization was determined by Fourier transformation infrared spectroscopy (FTIR),Differential scanning calorimetry (DSC) and X-ray diffraction study (XRD).Crospovidone and croscarmallose sodium were used as super disintigrant. The 3 2 full factorial design was adopted to investigate the influence of two superdisintegrants on the wetting time and disntegration time of the tablets. The result revels that molar ratio (1:4) of inclusion complex enhance 3-fold solubility. Full factorial design was successfully employed for the optimization of dispersible tablet of B. monnieri . The short-term accelerated stability study confirmed that high stability of B. monnieri in inclusion complex.

  13. Implementation research design: integrating participatory action research into randomized controlled trials

    PubMed Central

    Leykum, Luci K; Pugh, Jacqueline A; Lanham, Holly J; Harmon, Joel; McDaniel, Reuben R

    2009-01-01

    Background A gap continues to exist between what is known to be effective and what is actually delivered in the usual course of medical care. The goal of implementation research is to reduce this gap. However, a tension exists between the need to obtain generalizeable knowledge through implementation trials, and the inherent differences between healthcare organizations that make standard interventional approaches less likely to succeed. The purpose of this paper is to explore the integration of participatory action research and randomized controlled trial (RCT) study designs to suggest a new approach for studying interventions in healthcare settings. Discussion We summarize key elements of participatory action research, with particular attention to its collaborative, reflective approach. Elements of participatory action research and RCT study designs are discussed and contrasted, with a complex adaptive systems approach used to frame their integration. Summary The integration of participatory action research and RCT design results in a new approach that reflects not only the complex nature of healthcare organizations, but also the need to obtain generalizeable knowledge regarding the implementation process. PMID:19852784

  14. Using Systems Theory to Examine Patient and Nurse Structures, Processes, and Outcomes in Centralized and Decentralized Units.

    PubMed

    Real, Kevin; Fay, Lindsey; Isaacs, Kathy; Carll-White, Allison; Schadler, Aric

    2018-01-01

    This study utilizes systems theory to understand how changes to physical design structures impact communication processes and patient and staff design-related outcomes. Many scholars and researchers have noted the importance of communication and teamwork for patient care quality. Few studies have examined changes to nursing station design within a systems theory framework. This study employed a multimethod, before-and-after, quasi-experimental research design. Nurses completed surveys in centralized units and later in decentralized units ( N = 26 pre , N = 51 post ). Patients completed surveys ( N = 62 pre ) in centralized units and later in decentralized units ( N = 49 post ). Surveys included quantitative measures and qualitative open-ended responses. Patients preferred the decentralized units because of larger single-occupancy rooms, greater privacy/confidentiality, and overall satisfaction with design. Nurses had a more complex response. Nurses approved the patient rooms, unit environment, and noise levels in decentralized units. However, they reported reduced access to support spaces, lower levels of team/mentoring communication, and less satisfaction with design than in centralized units. Qualitative findings supported these results. Nurses were more positive about centralized units and patients were more positive toward decentralized units. The results of this study suggest a need to understand how system components operate in concert. A major contribution of this study is the inclusion of patient satisfaction with design, an important yet overlooked fact in patient satisfaction. Healthcare design researchers and practitioners may consider how changing system interdependencies can lead to unexpected changes to communication processes and system outcomes in complex systems.

  15. Mechanistic Indicators of Childhood Asthma (MICA): piloting an integrative design for evaluating environmental health

    EPA Science Inventory

    Background: Modem methods in molecular biology and advanced computational tools show promise in elucidating complex interactions that occur between genes and environmental factors in diseases such as asthma; however appropriately designed studies are critical for these methods to...

  16. Cryptic or pseudocryptic: can morphological methods inform copepod taxonomy? An analysis of publications and a case study of the Eurytemora affinis species complex

    PubMed Central

    Lajus, Dmitry; Sukhikh, Natalia; Alekseev, Victor

    2015-01-01

    Interest in cryptic species has increased significantly with current progress in genetic methods. The large number of cryptic species suggests that the resolution of traditional morphological techniques may be insufficient for taxonomical research. However, some species now considered to be cryptic may, in fact, be designated pseudocryptic after close morphological examination. Thus the “cryptic or pseudocryptic” dilemma speaks to the resolution of morphological analysis and its utility for identifying species. We address this dilemma first by systematically reviewing data published from 1980 to 2013 on cryptic species of Copepoda and then by performing an in-depth morphological study of the former Eurytemora affinis complex of cryptic species. Analyzing the published data showed that, in 5 of 24 revisions eligible for systematic review, cryptic species assignment was based solely on the genetic variation of forms without detailed morphological analysis to confirm the assignment. Therefore, some newly described cryptic species might be designated pseudocryptic under more detailed morphological analysis as happened with Eurytemora affinis complex. Recent genetic analyses of the complex found high levels of heterogeneity without morphological differences; it is argued to be cryptic. However, next detailed morphological analyses allowed to describe a number of valid species. Our study, using deep statistical analyses usually not applied for new species describing, of this species complex confirmed considerable differences between former cryptic species. In particular, fluctuating asymmetry (FA), the random variation of left and right structures, was significantly different between forms and provided independent information about their status. Our work showed that multivariate statistical approaches, such as principal component analysis, can be powerful techniques for the morphological discrimination of cryptic taxons. Despite increasing cryptic species designations, morphological techniques have great potential in determining copepod taxonomy. PMID:26120427

  17. Management Design Theories

    NASA Astrophysics Data System (ADS)

    Pries-Heje, Jan; Baskerville, Richard L.

    This paper elaborates a design science approach for management planning anchored to the concept of a management design theory. Unlike the notions of design theories arising from information systems, management design theories can appear as a system of technological rules, much as a system of hypotheses or propositions can embody scientific theories. The paper illus trates this form of management design theories with three grounded cases. These grounded cases include a software process improvement study, a user involvement study, and an organizational change study. Collectively these studies demonstrate how design theories founded on technological rules can not only improve the design of information systems, but that these concepts have great practical value for improving the framing of strategic organi zational design decisions about such systems. Each case is either grounded in an empirical sense, that is to say, actual practice, or it is grounded to practices described extensively in the practical literature. Such design theories will help managers more easily approach complex, strategic decisions.

  18. Feasibility study of a cyclotron complex for hadron therapy

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2018-04-01

    An accelerator complex for hadron therapy based on a chain of cyclotrons is under development at JINR (Dubna, Russia), and the corresponding conceptual design is under preparation. The complex mainly consists of two superconducting cyclotrons. The first accelerator is a compact cyclotron used as an injector to the main accelerator, which is a six-fold separated sector machine. The facility is intended for generation of protons and carbon beams. The H2+ and 12C6+ ions from the corresponding ECR ion sources are accelerated in the injector-cyclotron up to the output energy of 70 MeV/u. Then, the H2+ ions are extracted from the injector by a stripping foil, and the resulting proton beam with the energy of 70 MeV is used for medical purposes. After acceleration in the main cyclotron, the carbon beam can be either used directly for therapy or introduced to the main cyclotron for obtaining the final energy of 400 MeV/u. The basic requirements to the project are the following: compliance to medical requirements, compact size, feasible design, and high reliability of all systems of the complex. The advantages of the dual cyclotron design can help reaching these goals. The initial calculations show that this design is technically feasible with acceptable beam dynamics. The accelerator complex with a relatively compact size can be a good solution for medical applications. The basic parameters of the facility and detailed investigation of the magnetic system and beam dynamics are described.

  19. Characterizing complexity in socio-technical systems: a case study of a SAMU Medical Regulation Center.

    PubMed

    Righi, Angela Weber; Wachs, Priscila; Saurin, Tarcísio Abreu

    2012-01-01

    Complexity theory has been adopted by a number of studies as a benchmark to investigate the performance of socio-technical systems, especially those that are characterized by relevant cognitive work. However, there is little guidance on how to assess, systematically, the extent to which a system is complex. The main objective of this study is to carry out a systematic analysis of a SAMU (Mobile Emergency Medical Service) Medical Regulation Center in Brazil, based on the core characteristics of complex systems presented by previous studies. The assessment was based on direct observations and nine interviews: three of them with regulator of emergencies medical doctor, three with radio operators and three with telephone attendants. The results indicated that, to a great extent, the core characteristics of complexity are magnified) due to basic shortcomings in the design of the work system. Thus, some recommendations are put forward with a view to reducing unnecessary complexity that hinders the performance of the socio-technical system.

  20. Observation-Driven Configuration of Complex Software Systems

    NASA Astrophysics Data System (ADS)

    Sage, Aled

    2010-06-01

    The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.

  1. Life in the Hive: Supporting Inquiry into Complexity within the Zone of Proximal Development

    ERIC Educational Resources Information Center

    Danish, Joshua A.; Peppler, Kylie; Phelps, David; Washington, DiAnna

    2011-01-01

    Research into students' understanding of complex systems typically ignores young children because of misinterpretations of young children's competencies. Furthermore, studies that do recognize young children's competencies tend to focus on what children can do in isolation. As an alternative, we propose an approach to designing for young children…

  2. Investigations of a Complex, Realistic Task: Intentional, Unsystematic, and Exhaustive Experimenters

    ERIC Educational Resources Information Center

    McElhaney, Kevin W.; Linn, Marcia C.

    2011-01-01

    This study examines how students' experimentation with a virtual environment contributes to their understanding of a complex, realistic inquiry problem. We designed a week-long, technology-enhanced inquiry unit on car collisions. The unit uses new technologies to log students' experimentation choices. Physics students (n = 148) in six diverse high…

  3. Learning Platform for Study of Power Electronic Application in Power Systems

    ERIC Educational Resources Information Center

    Bauer, P.; Rompelman, O.

    2005-01-01

    Present engineering has to deal with increasingly complex systems. In particular, this is the case in electrical engineering. Though this is obvious in microelectronics, also in the field of power systems engineers have to design, operate and maintain highly complex systems such as power grids, energy converters and electrical drives. This is…

  4. Medically Complex Home Care and Caregiver Strain

    ERIC Educational Resources Information Center

    Moorman, Sara M.; Macdonald, Cameron

    2013-01-01

    Purpose of the study: To examine (a) whether the content of caregiving tasks (i.e., nursing vs. personal care) contributes to variation in caregivers' strain and (b) whether the level of complexity of nursing tasks contributes to variation in strain among caregivers providing help with such tasks. Design and methods: The data came from the Cash…

  5. Roles of Working Memory Performance and Instructional Strategy in Complex Cognitive Task Performance

    ERIC Educational Resources Information Center

    Cevik, V.; Altun, A.

    2016-01-01

    This study aims to investigate how working memory (WM) performances and instructional strategy choices affect learners' complex cognitive task performance in online environments. Three different e-learning environments were designed based on Merrill's (2006a) model of instructional strategies. The lack of experimental research on his framework is…

  6. Impact of Static Graphics, Animated Graphics and Mental Imagery on a Complex Learning Task

    ERIC Educational Resources Information Center

    Lai, Feng-Qi; Newby, Timothy J.

    2012-01-01

    The present study compared the impact of different categories of graphics used within a complex learning task. One hundred eighty five native English speaking undergraduates participated in a task that required learning 18 Chinese radicals and their English equivalent translations. A post-test only control group design compared performance…

  7. From a Disciplinary to an Interdisciplinary Design Research: Developing an Integrative Approach for Design

    ERIC Educational Resources Information Center

    Chou, Wen Huei; Wong, Ju-Joan

    2015-01-01

    As the new generation of designers face more complex design issues, the forms of design research start to shift towards a user-centred approach to problem-solving. The cooperation and communication among various fields and specialisations are becoming more complex; in many practical design cases, in particular, technology developers face…

  8. A systematic composite service design modeling method using graph-based theory.

    PubMed

    Elhag, Arafat Abdulgader Mohammed; Mohamad, Radziah; Aziz, Muhammad Waqar; Zeshan, Furkh

    2015-01-01

    The composite service design modeling is an essential process of the service-oriented software development life cycle, where the candidate services, composite services, operations and their dependencies are required to be identified and specified before their design. However, a systematic service-oriented design modeling method for composite services is still in its infancy as most of the existing approaches provide the modeling of atomic services only. For these reasons, a new method (ComSDM) is proposed in this work for modeling the concept of service-oriented design to increase the reusability and decrease the complexity of system while keeping the service composition considerations in mind. Furthermore, the ComSDM method provides the mathematical representation of the components of service-oriented design using the graph-based theoryto facilitate the design quality measurement. To demonstrate that the ComSDM method is also suitable for composite service design modeling of distributed embedded real-time systems along with enterprise software development, it is implemented in the case study of a smart home. The results of the case study not only check the applicability of ComSDM, but can also be used to validate the complexity and reusability of ComSDM. This also guides the future research towards the design quality measurement such as using the ComSDM method to measure the quality of composite service design in service-oriented software system.

  9. A Systematic Composite Service Design Modeling Method Using Graph-Based Theory

    PubMed Central

    Elhag, Arafat Abdulgader Mohammed; Mohamad, Radziah; Aziz, Muhammad Waqar; Zeshan, Furkh

    2015-01-01

    The composite service design modeling is an essential process of the service-oriented software development life cycle, where the candidate services, composite services, operations and their dependencies are required to be identified and specified before their design. However, a systematic service-oriented design modeling method for composite services is still in its infancy as most of the existing approaches provide the modeling of atomic services only. For these reasons, a new method (ComSDM) is proposed in this work for modeling the concept of service-oriented design to increase the reusability and decrease the complexity of system while keeping the service composition considerations in mind. Furthermore, the ComSDM method provides the mathematical representation of the components of service-oriented design using the graph-based theoryto facilitate the design quality measurement. To demonstrate that the ComSDM method is also suitable for composite service design modeling of distributed embedded real-time systems along with enterprise software development, it is implemented in the case study of a smart home. The results of the case study not only check the applicability of ComSDM, but can also be used to validate the complexity and reusability of ComSDM. This also guides the future research towards the design quality measurement such as using the ComSDM method to measure the quality of composite service design in service-oriented software system. PMID:25928358

  10. Models in the Design and Validation of Eddy Current Inspection for Cracking in the Shuttle Reaction Control System Thruster

    NASA Technical Reports Server (NTRS)

    Aldrin, John C.; Williams, Phillip A.; Wincheski, Russell (Buzz) A.

    2008-01-01

    A case study is presented for using models in eddy current NDE design for crack detection in Shuttle Reaction Control System thruster components. Numerical methods were used to address the complex geometry of the part and perform parametric studies of potential transducer designs. Simulations were found to show agreement with experimental results. Accurate representation of the coherent noise associated with the measurement and part geometry was found to be critical to properly evaluate the best probe designs.

  11. Low-Complexity Adaptive Multisine Waveform Design for Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Clerckx, Bruno; Bayguzina, Ekaterina

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in the last decade. Recently, channel-adaptive waveforms have been shown to significantly increase the DC power level at the output of the rectifier. However the design of those waveforms is generally computationally complex and does not lend itself easily to practical implementation. We here propose a low-complexity channel-adaptive multisine waveform design whose performance is very close to that of the optimal design. Performance evaluations confirm the benefits of the new design in various rectifier topologies.

  12. PRACA Enhancement Pilot Study Report: Engineering for Complex Systems Program (formerly Design for Safety), DFS-IC-0006

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David; Schreiner, John

    2002-01-01

    This technology evaluation report documents the findings and recommendations of the Engineering for Complex Systems Program (formerly Design for Safety) PRACA Enhancement Pilot Study of the Space Shuttle Program's (SSP's) Problem Reporting and Corrective Action (PRACA) System. A team at NASA Ames Research Center (ARC) performed this Study. This Study was initiated as a follow-on to the NASA chartered Shuttle Independent Assessment Team (SIAT) review (performed in the Fall of 1999) which identified deficiencies in the current PRACA implementation. The Pilot Study was launched with an initial qualitative assessment and technical review performed during January 2000 with the quantitative formal Study (the subject of this report) started in March 2000. The goal of the PRACA Enhancement Pilot Study is to evaluate and quantify the technical aspects of the SSP PRACA systems and recommend enhancements to address deficiencies and in preparation for future system upgrades.

  13. Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.

    2012-01-01

    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.

  14. Prospects of application of additive technologies for increasing the efficiency of impeller machines

    NASA Astrophysics Data System (ADS)

    Belova, O. V.; Borisov, Yu. A.

    2017-08-01

    Impeller machine is a device in which the flow path carries out the supply (or retraction) of mechanical energy to the flow of a working fluid passing through the machine. To increase the efficiency of impeller machines, it is necessary to use design modern technologies, namely the use of numerical methods for conducting research in the field of gas dynamics, as well as additive manufacturing (AM) for the of both prototypes and production model. AM technologies are deservedly rightly called revolutionary because they give unique possibility for manufacturing products, creating perfect forms, both light and durable. The designers face the challenge of developing a new design methodology, since AM allows the use of the concept of "Complexity For Free". The "Complexity For Free" conception is based on: complexity of the form; hierarchical complexity; complexity of the material; functional complexity. The new technical items design method according to a functional principle is also investigated.

  15. Nonlinear and adaptive control

    NASA Technical Reports Server (NTRS)

    Athans, Michael

    1989-01-01

    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies.

  16. Variable Complexity Optimization of Composite Structures

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    2002-01-01

    The use of several levels of modeling in design has been dubbed variable complexity modeling. The work under the grant focused on developing variable complexity modeling strategies with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and design against uncertainty using response surface techniques.

  17. The complexity of role balance: support for the Model of Juggling Occupations.

    PubMed

    Evans, Kiah L; Millsteed, Jeannine; Richmond, Janet E; Falkmer, Marita; Falkmer, Torbjorn; Girdler, Sonya J

    2014-09-01

    This pilot study aimed to establish the appropriateness of the Model of Juggling Occupations in exploring the complex experience of role balance amongst working women with family responsibilities living in Perth, Australia. In meeting this aim, an evaluation was conducted of a case study design, where data were collected through a questionnaire, time diary, and interview. Overall role balance varied over time and across participants. Positive indicators of role balance occurred frequently in the questionnaires and time diaries, despite the interviews revealing a predominance of negative evaluations of role balance. Between-role balance was achieved through compatible role overlap, buffering, and renewal. An exploration of within-role balance factors demonstrated that occupational participation, values, interests, personal causation, and habits were related to role balance. This pilot study concluded that the Model of Juggling Occupations is an appropriate conceptual framework to explore the complex and dynamic experience of role balance amongst working women with family responsibilities. It was also confirmed that the case study design, including the questionnaire, time diary, and interview methods, is suitable for researching role balance from this perspective.

  18. Optimization of the intravenous glucose tolerance test in T2DM patients using optimal experimental design.

    PubMed

    Silber, Hanna E; Nyberg, Joakim; Hooker, Andrew C; Karlsson, Mats O

    2009-06-01

    Intravenous glucose tolerance test (IVGTT) provocations are informative, but complex and laborious, for studying the glucose-insulin system. The objective of this study was to evaluate, through optimal design methodology, the possibilities of more informative and/or less laborious study design of the insulin modified IVGTT in type 2 diabetic patients. A previously developed model for glucose and insulin regulation was implemented in the optimal design software PopED 2.0. The following aspects of the study design of the insulin modified IVGTT were evaluated; (1) glucose dose, (2) insulin infusion, (3) combination of (1) and (2), (4) sampling times, (5) exclusion of labeled glucose. Constraints were incorporated to avoid prolonged hyper- and/or hypoglycemia and a reduced design was used to decrease run times. Design efficiency was calculated as a measure of the improvement with an optimal design compared to the basic design. The results showed that the design of the insulin modified IVGTT could be substantially improved by the use of an optimized design compared to the standard design and that it was possible to use a reduced number of samples. Optimization of sample times gave the largest improvement followed by insulin dose. The results further showed that it was possible to reduce the total sample time with only a minor loss in efficiency. Simulations confirmed the predictions from PopED. The predicted uncertainty of parameter estimates (CV) was low in all tested cases, despite the reduction in the number of samples/subject. The best design had a predicted average CV of parameter estimates of 19.5%. We conclude that improvement can be made to the design of the insulin modified IVGTT and that the most important design factor was the placement of sample times followed by the use of an optimal insulin dose. This paper illustrates how complex provocation experiments can be improved by sequential modeling and optimal design.

  19. A case report of evaluating a large-scale health systems improvement project in an uncontrolled setting: a quality improvement initiative in KwaZulu-Natal, South Africa.

    PubMed

    Mate, Kedar S; Ngidi, Wilbroda Hlolisile; Reddy, Jennifer; Mphatswe, Wendy; Rollins, Nigel; Barker, Pierre

    2013-11-01

    New approaches are needed to evaluate quality improvement (QI) within large-scale public health efforts. This case report details challenges to large-scale QI evaluation, and proposes solutions relying on adaptive study design. We used two sequential evaluative methods to study a QI effort to improve delivery of HIV preventive care in public health facilities in three districts in KwaZulu-Natal, South Africa, over a 3-year period. We initially used a cluster randomised controlled trial (RCT) design. During the RCT study period, tensions arose between intervention implementation and evaluation design due to loss of integrity of the randomisation unit over time, pressure to implement changes across the randomisation unit boundaries, and use of administrative rather than functional structures for the randomisation. In response to this loss of design integrity, we switched to a more flexible intervention design and a mixed-methods quasiexperimental evaluation relying on both a qualitative analysis and an interrupted time series quantitative analysis. Cluster RCT designs may not be optimal for evaluating complex interventions to improve implementation in uncontrolled 'real world' settings. More flexible, context-sensitive evaluation designs offer a better balance of the need to adjust the intervention during the evaluation to meet implementation challenges while providing the data required to evaluate effectiveness. Our case study involved HIV care in a resource-limited setting, but these issues likely apply to complex improvement interventions in other settings.

  20. Evaluation of complex community-based childhood obesity prevention interventions.

    PubMed

    Karacabeyli, D; Allender, S; Pinkney, S; Amed, S

    2018-05-16

    Multi-setting, multi-component community-based interventions have shown promise in preventing childhood obesity; however, evaluation of these complex interventions remains a challenge. The objective of the study is to systematically review published methodological approaches to outcome evaluation for multi-setting community-based childhood obesity prevention interventions and synthesize a set of pragmatic recommendations. MEDLINE, CINAHL and PsycINFO were searched from inception to 6 July 2017. Papers were included if the intervention targeted children ≤18 years, engaged at least two community sectors and described their outcome evaluation methodology. A single reviewer conducted title and abstract scans, full article review and data abstraction. Directed content analysis was performed by three reviewers to identify prevailing themes. Thirty-three studies were included, and of these, 26 employed a quasi-experimental design; the remaining were randomized control trials. Body mass index was the most commonly measured outcome, followed by health behaviour change and psychosocial outcomes. Six themes emerged, highlighting advantages and disadvantages of active vs. passive consent, quasi-experimental vs. randomized control trials, longitudinal vs. repeat cross-sectional designs and the roles of process evaluation and methodological flexibility in evaluating complex interventions. Selection of study designs and outcome measures compatible with community infrastructure, accompanied by process evaluation, may facilitate successful outcome evaluation. © 2018 World Obesity Federation.

  1. Personalizing Biomaterials for Precision Nanomedicine Considering the Local Tissue Microenvironment.

    PubMed

    Oliva, Nuria; Unterman, Shimon; Zhang, Yi; Conde, João; Song, Hyun Seok; Artzi, Natalie

    2015-08-05

    New advances in (nano)biomaterial design coupled with the detailed study of tissue-biomaterial interactions can open a new chapter in personalized medicine, where biomaterials are chosen and designed to match specific tissue types and disease states. The notion of a "one size fits all" biomaterial no longer exists, as growing evidence points to the value of customizing material design to enhance (pre)clinical performance. The complex microenvironment in vivo at different tissue sites exhibits diverse cell types, tissue chemistry, tissue morphology, and mechanical stresses that are further altered by local pathology. This complex and dynamic environment may alter the implanted material's properties and in turn affect its in vivo performance. It is crucial, therefore, to carefully study tissue context and optimize biomaterials considering the implantation conditions. This practice would enable attaining predictable material performance and enhance clinical outcomes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Evaluation of 3-D graphics software: A case study

    NASA Technical Reports Server (NTRS)

    Lores, M. E.; Chasen, S. H.; Garner, J. M.

    1984-01-01

    An efficient 3-D geometry graphics software package which is suitable for advanced design studies was developed. The advanced design system is called GRADE--Graphics for Advanced Design. Efficiency and ease of use are gained by sacrificing flexibility in surface representation. The immediate options were either to continue development of GRADE or to acquire a commercially available system which would replace or complement GRADE. Test cases which would reveal the ability of each system to satisfy the requirements were developed. A scoring method which adequately captured the relative capabilities of the three systems was presented. While more complex multi-attribute decision methods could be used, the selected method provides all the needed information without being so complex that it is difficult to understand. If the value factors are modestly perturbed, system Z is a clear winner based on its overall capabilities. System Z is superior in two vital areas: surfacing and ease of interface with application programs.

  3. BIOMONITORING OF EXPOSURE IN FARMWORKER STUDIES

    EPA Science Inventory

    Though biomonitoring has been used in many occupational and environmental health and exposure studies, we are only beginning to understand the complexities and uncertainties involved with the biomonitoring process -- from study design, to sample collection, to chemical analysis -...

  4. Mating behavior and the evolution of sperm design

    PubMed Central

    Schärer, Lukas; Littlewood, D. Timothy J.; Waeschenbach, Andrea; Yoshida, Wataru; Vizoso, Dita B.

    2011-01-01

    Sperm are the most diverse of all animal cell types, and much of the diversity in sperm design is thought to reflect adaptations to the highly variable conditions under which sperm function and compete to achieve fertilization. Recent work has shown that these conditions often evolve rapidly as a consequence of multiple mating, suggesting a role for sexual selection and sexual conflict in the evolution of sperm design. However, very little of the striking diversity in sperm design is understood functionally, particularly in internally fertilizing organisms. We use phylogenetic comparative analyses covering 16 species of the hermaphroditic flatworm genus Macrostomum to show that a complex sperm design is associated with reciprocal mating and that this complexity is lost secondarily when hypodermic insemination—sperm injection through the epidermis—evolves. Specifically, the complex sperm design, which includes stiff lateral bristles, is likely a male persistence trait associated with sexual conflicts over the fate of received ejaculates and linked to female resistance traits, namely an intriguing postcopulatory sucking behavior and a thickened epithelium of the sperm-receiving organ. Our results suggest that the interactions between sperm donor, sperm, and sperm recipient can change drastically when hypodermic insemination evolves, involving convergent evolution of a needle-like copulatory organ, a simpler sperm design, and a simpler female genital morphology. Our study documents that a shift in the mating behavior may alter fundamentally the conditions under which sperm compete and thereby lead to a drastic change in sperm design. PMID:21220334

  5. The LITERACY-Portal as the Subject of a Case Study on a Human-Centered Design Solution Supporting Users with Special Needs

    ERIC Educational Resources Information Center

    Hagelkruys, Dominik; Motschnig, Renate

    2017-01-01

    Case studies help to reflect and to capture information about complex processes and domains and to make it reusable for future application in related contexts. In the case study reported in this article, we aim to capture and share processes and experience that we gained while designing a web-portal for supporting the specific user group of…

  6. The study design elements employed by researchers in preclinical animal experiments from two research domains and implications for automation of systematic reviews.

    PubMed

    O'Connor, Annette M; Totton, Sarah C; Cullen, Jonah N; Ramezani, Mahmood; Kalivarapu, Vijay; Yuan, Chaohui; Gilbert, Stephen B

    2018-01-01

    Systematic reviews are increasingly using data from preclinical animal experiments in evidence networks. Further, there are ever-increasing efforts to automate aspects of the systematic review process. When assessing systematic bias and unit-of-analysis errors in preclinical experiments, it is critical to understand the study design elements employed by investigators. Such information can also inform prioritization of automation efforts that allow the identification of the most common issues. The aim of this study was to identify the design elements used by investigators in preclinical research in order to inform unique aspects of assessment of bias and error in preclinical research. Using 100 preclinical experiments each related to brain trauma and toxicology, we assessed design elements described by the investigators. We evaluated Methods and Materials sections of reports for descriptions of the following design elements: 1) use of comparison group, 2) unit of allocation of the interventions to study units, 3) arrangement of factors, 4) method of factor allocation to study units, 5) concealment of the factors during allocation and outcome assessment, 6) independence of study units, and 7) nature of factors. Many investigators reported using design elements that suggested the potential for unit-of-analysis errors, i.e., descriptions of repeated measurements of the outcome (94/200) and descriptions of potential for pseudo-replication (99/200). Use of complex factor arrangements was common, with 112 experiments using some form of factorial design (complete, incomplete or split-plot-like). In the toxicology dataset, 20 of the 100 experiments appeared to use a split-plot-like design, although no investigators used this term. The common use of repeated measures and factorial designs means understanding bias and error in preclinical experimental design might require greater expertise than simple parallel designs. Similarly, use of complex factor arrangements creates novel challenges for accurate automation of data extraction and bias and error assessment in preclinical experiments.

  7. Definition and Measurement of Complexity in the Context of Safety Assurance

    DTIC Science & Technology

    2016-11-01

    design for each sys- tem and on a larger design from a NASA report. The complexity measurement must be matched to available review time to determine...ARP4754A to Flight Critical Systems.” NASA , 2015. http://ntrs.nasa.gov/search.jsp?R=20160001634 [Rayner 2016] Rayner, Keith; Schotter, Elizabeth R...systems. We tested it on a second design for each system and on a larger design from a NASA report. The complexity measurement must be matched to

  8. MSFC Sortie Laboratory Environmental Control System (ECS) phase B design study results

    NASA Technical Reports Server (NTRS)

    Ignatonis, A. J.; Mitchell, K. L.

    1974-01-01

    Phase B effort of the Sortie Lab program has concluded. Results of that effort are presented which pertain to the definitions of the environmental control system (ECS). Numerous design studies were performed in Phase B to investigate system feasibility, complexity, weight, and cost. The results and methods employed for these design studies are included. An autonomous Sortie Lab ECS was developed which utilizes a deployed space radiator. Total system weight was projected to be 1814.4 kg including the radiator and fluids. ECS power requirements were estimated at 950 watts.

  9. Novel Framework for Reduced Order Modeling of Aero-engine Components

    NASA Astrophysics Data System (ADS)

    Safi, Ali

    The present study focuses on the popular dynamic reduction methods used in design of complex assemblies (millions of Degrees of Freedom) where numerous iterations are involved to achieve the final design. Aerospace manufacturers such as Rolls Royce and Pratt & Whitney are actively seeking techniques that reduce computational time while maintaining accuracy of the models. This involves modal analysis of components with complex geometries to determine the dynamic behavior due to non-linearity and complicated loading conditions. In such a case the sub-structuring and dynamic reduction techniques prove to be an efficient tool to reduce design cycle time. The components whose designs are finalized can be dynamically reduced to mass and stiffness matrices at the boundary nodes in the assembly. These matrices conserve the dynamics of the component in the assembly, and thus avoid repeated calculations during the analysis runs for design modification of other components. This thesis presents a novel framework in terms of modeling and meshing of any complex structure, in this case an aero-engine casing. In this study the affect of meshing techniques on the run time are highlighted. The modal analysis is carried out using an extremely fine mesh to ensure all minor details in the structure are captured correctly in the Finite Element (FE) model. This is used as the reference model, to compare against the results of the reduced model. The study also shows the conditions/criteria under which dynamic reduction can be implemented effectively, proving the accuracy of Criag-Bampton (C.B.) method and limitations of Static Condensation. The study highlights the longer runtime needed to produce the reduced matrices of components compared to the overall runtime of the complete unreduced model. Although once the components are reduced, the assembly run is significantly. Hence the decision to use Component Mode Synthesis (CMS) is to be taken judiciously considering the number of iterations that may be required during the design cycle.

  10. Designing To Learn about Complex Systems.

    ERIC Educational Resources Information Center

    Hmelo, Cindy E.; Holton, Douglas L.; Kolodner, Janet L.

    2000-01-01

    Indicates the presence of complex structural, behavioral, and functional relations to understanding. Reports on a design experiment in which 6th grade children learned about the human respiratory system by designing artificial lungs and building partial working models. Makes suggestions for successful learning from design activities. (Contains 44…

  11. Ruthenium complexes with phenylterpyridine derivatives target cell membrane and trigger death receptors-mediated apoptosis in cancer cells.

    PubMed

    Deng, Zhiqin; Gao, Pan; Yu, Lianling; Ma, Bin; You, Yuanyuan; Chan, Leung; Mei, Chaoming; Chen, Tianfeng

    2017-06-01

    Elucidation of the communication between metal complexes and cell membrane may provide useful information for rational design of metal-based anticancer drugs. Herein we synthesized a novel class of ruthenium (Ru) complexes containing phtpy derivatives (phtpy = phenylterpyridine), analyzed their structure-activity relationship and revealed their action mechanisms. The result showed that, the increase in the planarity of hydrophobic Ru complexes significantly enhanced their lipophilicity and cellular uptake. Meanwhile, the introduction of nitro group effectively improved their anticancer efficacy. Further mechanism studies revealed that, complex (2c), firstly accumulated on cell membrane and interacted with death receptors to activate extrinsic apoptosis signaling pathway. The complex was then transported into cell cytoplasm through transferrin receptor-mediated endocytosis. Most of the intracellular 2c accumulated in cell plasma, decreasing the level of cellular ROS, inducing the activation of caspase-9 and thus intensifying the apoptosis. At the same time, the residual 2c can translocate into cell nucleus to interact with DNA, induce DNA damage, activate p53 pathway and enhance apoptosis. Comparing with cisplatin, 2c possesses prolonged circulation time in blood, comparable antitumor ability and importantly, much lower toxicity in vivo. Taken together, this study uncovers the role of membrane receptors in the anticancer actions of Ru complexes, and provides fundamental information for rational design of membrane receptor targeting anticancer drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Design, use and introduction of the practice of measureable complexes for psychophysiological studies].

    PubMed

    Bokser, O Ia; Gurtovoĭ, E S

    1997-01-01

    The paper outlines a background of chronoreaction measurement, an important trend of psychophysiological studies. It mainly deals with the chronoreaction measuring methods and tools introduced into production.

  13. Reconsidering species boundaries in the Ceratocystis paradoxa complex, including a new species from oil palm and cacao in Cameroon.

    PubMed

    Mbenoun, Michael; Wilhelm de Beer, Z; Wingfield, Michael J; Wingfield, Brenda D; Roux, Jolanda

    2014-01-01

    The Ceratocystis paradoxa complex accommodates a group of fungal pathogens that have become specialized to infect mostly monocotyledonous plants. Four species currently are recognized in this group, including C. paradoxa, which has a widespread distribution and broad host range. In this study, multigene phylogenetic analyses involving sequences of the ITS, β-tubulin and TEF-1α gene loci, in combination with phenotypic and mating studies, were used to characterize purported C. paradoxa isolates from Cameroon and to compare them with isolates from elsewhere, including protologs and type specimens of known species. We show that the C. paradoxa complex comprises substantially greater species diversity than previously recognized. One new species in this group is described from Cameroon as Ceratocystis cerberus, while C. paradoxa sensu stricto (s. str.) and four other species are redefined. Lectotypes are designated for C. ethacetica and Endoconidium fragrans (synonym of C. ethacetica), while epitypes are designated for C. paradoxa s. str., C. ethacetica and C. musarum. A neotype is designated for Catenularia echinata (synonym of C. ethacetica) and two species, previously treated in Thielaviopsis, are transferred to Ceratocystis. © 2014 by The Mycological Society of America.

  14. Using VCL as an Aspect-Oriented Approach to Requirements Modelling

    NASA Astrophysics Data System (ADS)

    Amálio, Nuno; Kelsen, Pierre; Ma, Qin; Glodt, Christian

    Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns.

  15. Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.

    1997-01-01

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeb, Rula A.; Hawley, Elisabeth L.

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-termmore » management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies that illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, time frame, and potential remedial effectiveness. This presentation is intended to inform DOE program managers, state regulators, practitioners and other stakeholders who are evaluating technical cleanup challenges within their own programs, and establishing programmatic approaches to evaluating and implementing long-term management approaches. Case studies provide examples of long-term management designations and strategies to manage and remediate groundwater at complex sites. At least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. Long-term management designations are not a way to 'do nothing' or walk away from a site. Instead, soil and groundwater within the zone is managed to be protective of human health and the environment. Understanding when and how to adopt a long-term management approach can lead to cost savings and the more efficient use of resources across DOE and at numerous other industrial and military sites across the U.S. This presentation provides context for assessing the use and appropriate role of alternative endpoints and supporting long-term management designations in final remedies. (authors)« less

  17. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  18. Distributed Revisiting: An Analytic for Retention of Coherent Science Learning

    ERIC Educational Resources Information Center

    Svihla, Vanessa; Wester, Michael J.; Linn, Marcia C.

    2015-01-01

    Designing learning experiences that support the development of coherent understanding of complex scientific phenomena is challenging. We sought to identify analytics that can also guide such designs to support retention of coherent understanding. Based on prior research that distributing study of material over time supports retention, we explored…

  19. Controlling Split Attention and Redundancy in Physical Therapy Instruction

    ERIC Educational Resources Information Center

    Pociask, Fredrick D.; Morrison, Gary R.

    2008-01-01

    In this study, we examined the effectiveness of instructional materials designed to control redundancy and split attention in the teaching of complex orthopedic physical therapy skills. Participants included 41 first-year physical therapy students. The modified instruction group received a modified unit of instruction designed to reduce cognitive…

  20. Are Water-Related Leadership Development Programs Designed to Be Effective? An Exploratory Study

    ERIC Educational Resources Information Center

    Burbach, Mark E.; Floress, Kristin; Kaufman, Eric K.

    2015-01-01

    Water resource professionals and others involved in managing water resources face increasingly complex challenges. Effective leadership development programs are needed to produce water leaders who can address these challenges. Leadership programs must be designed not simply to increase participants' environmental and leadership knowledge but to…

  1. Design and implementation of an intranet dashboard.

    PubMed

    Wolpin, S E

    2005-01-01

    Healthcare organizations are complex systems and well served by efficient feedback mechanisms. Many organizations have invested in data warehouses; however there are few tools for automatically extracting and delivering relevant measures to decision makers. This research study resulted in the design and implementation of an intranet dashboard linked to a data warehouse.

  2. Variable-Speed Power-Turbine for the Large Civil Tilt Rotor

    NASA Technical Reports Server (NTRS)

    Suchezky, Mark; Cruzen, G. Scott

    2012-01-01

    Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.

  3. Planning and evaluation parameters for offshore complexes

    NASA Technical Reports Server (NTRS)

    Sincoff, M. Z. (Editor); Dajani, J. S. (Editor)

    1976-01-01

    Issues are presented for consideration in the planning and design of offshore artificial complexes. The construction of such complexes, their social, economic, and ecological impacts, and the legal-political-institutional environments within which their development could occur, are discussed. Planning, design, and construction of near-shore complexes located off the Mid-Atlantic coast of the United States is emphasized.

  4. Sky-blue emitting bridged diiridium complexes: beneficial effects of intramolecular π-π stacking.

    PubMed

    Congrave, Daniel G; Hsu, Yu-Ting; Batsanov, Andrei S; Beeby, Andrew; Bryce, Martin R

    2018-02-06

    The potential of intramolecular π-π interactions to influence the photophysical properties of diiridium complexes is an unexplored topic, and provides the motivation for the present study. A series of diarylhydrazide-bridged diiridium complexes functionalised with phenylpyridine (ppy)-based cyclometalating ligands is reported. It is shown by NMR studies in solution and single crystal X-ray analysis that intramolecular π-π interactions between the bridging and cyclometalating ligands rigidify the complexes leading to high luminescence quantum efficiencies in solution and in doped films. Fluorine substituents on the phenyl rings of the bridge promote the intramolecular π-π interactions. Notably, these non-covalent interactions are harnessed in the rational design and synthesis of the first examples of highly emissive sky-blue diiridium complexes featuring conjugated bridging ligands, for which they play a vital role in the structural and photophysical properties. Experimental results are supported by computational studies.

  5. [Not Available].

    PubMed

    Paturzo, Marco; Colaceci, Sofia; Clari, Marco; Mottola, Antonella; Alvaro, Rosaria; Vellone, Ercole

    2016-01-01

    . Mixed methods designs: an innovative methodological approach for nursing research. The mixed method research designs (MM) combine qualitative and quantitative approaches in the research process, in a single study or series of studies. Their use can provide a wider understanding of multifaceted phenomena. This article presents a general overview of the structure and design of MM to spread this approach in the Italian nursing research community. The MM designs most commonly used in the nursing field are the convergent parallel design, the sequential explanatory design, the exploratory sequential design and the embedded design. For each method a research example is presented. The use of MM can be an added value to improve clinical practices as, through the integration of qualitative and quantitative methods, researchers can better assess complex phenomena typical of nursing.

  6. Application of type synthesis theory to the redesign of a complex surgical instrument.

    PubMed

    Lim, Jonas J B; Erdman, Arthur G

    2002-06-01

    Surgical instruments consist of basic mechanical components such as gears, links, pivots, sliders, etc., which are common in mechanical design. This paper describes the application of a method in the analysis and design of complex surgical instruments such as those employed in laparoscopic surgery. This is believed to be the first application of type synthesis theory to a complex medical instrument. Type synthesis is a methodology that can be applied during the conceptual phase of mechanical design. A handle assembly from a patented laparoscopic surgical stapler is used to illustrate the application of the design method developed. Type synthesis is applied on specific subsystems of the mechanism within the handle assembly where alternative design concepts are generated. Chosen concepts are then combined to form a new conceptual design for the handle assembly. The new handle assembly is improved because it has fewer number of parts, is a simpler design and is easier to assemble. Surgical instrument designers may use the methodology presented here to analyze the mechanical subsystems within complex instruments and to create new options that may offer improvements to the original design.

  7. Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures.

    PubMed

    Wang, Pengfei; Wu, Siyu; Tian, Cheng; Yu, Guimei; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2016-10-11

    Current tile-based DNA self-assembly produces simple repetitive or highly symmetric structures. In the case of 2D lattices, the unit cell often contains only one basic tile because the tiles often are symmetric (in terms of either the backbone or the sequence). In this work, we have applied retrosynthetic analysis to determine the minimal asymmetric units for complex DNA nanostructures. Such analysis guides us to break the intrinsic structural symmetries of the tiles to achieve high structural complexities. This strategy has led to the construction of several DNA nanostructures that are not accessible from conventional symmetric tile designs. Along with previous studies, herein we have established a set of four fundamental rules regarding tile-based assembly. Such rules could serve as guidelines for the design of DNA nanostructures.

  8. Analyzing SystemC Designs: SystemC Analysis Approaches for Varying Applications

    PubMed Central

    Stoppe, Jannis; Drechsler, Rolf

    2015-01-01

    The complexity of hardware designs is still increasing according to Moore's law. With embedded systems being more and more intertwined and working together not only with each other, but also with their environments as cyber physical systems (CPSs), more streamlined development workflows are employed to handle the increasing complexity during a system's design phase. SystemC is a C++ library for the design of hardware/software systems, enabling the designer to quickly prototype, e.g., a distributed CPS without having to decide about particular implementation details (such as whether to implement a feature in hardware or in software) early in the design process. Thereby, this approach reduces the initial implementation's complexity by offering an abstract layer with which to build a working prototype. However, as SystemC is based on C++, analyzing designs becomes a difficult task due to the complex language features that are available to the designer. Several fundamentally different approaches for analyzing SystemC designs have been suggested. This work illustrates several different SystemC analysis approaches, including their specific advantages and shortcomings, allowing designers to pick the right tools to assist them with a specific problem during the design of a system using SystemC. PMID:25946632

  9. Analyzing SystemC Designs: SystemC Analysis Approaches for Varying Applications.

    PubMed

    Stoppe, Jannis; Drechsler, Rolf

    2015-05-04

    The complexity of hardware designs is still increasing according to Moore's law. With embedded systems being more and more intertwined and working together not only with each other, but also with their environments as cyber physical systems (CPSs), more streamlined development workflows are employed to handle the increasing complexity during a system's design phase. SystemC is a C++ library for the design of hardware/software systems, enabling the designer to quickly prototype, e.g., a distributed CPS without having to decide about particular implementation details (such as whether to implement a feature in hardware or in software) early in the design process. Thereby, this approach reduces the initial implementation's complexity by offering an abstract layer with which to build a working prototype. However, as SystemC is based on C++, analyzing designs becomes a difficult task due to the complex language features that are available to the designer. Several fundamentally different approaches for analyzing SystemC designs have been suggested. This work illustrates several different SystemC analysis approaches, including their specific advantages and shortcomings, allowing designers to pick the right tools to assist them with a specific problem during the design of a system using SystemC.

  10. How to Assess Professional Competencies in Education for Sustainability?: An Approach from a Perspective of Complexity

    ERIC Educational Resources Information Center

    Garcia, Maria Rosa; Junyent, Mercè; Fonolleda, Marta

    2017-01-01

    Purpose: This study aims to contribute to the professional competency approach in Education for Sustainability (ES) from the perspective of complexity and to the assessment of these competencies. Design/methodology/approach: A qualitative research process was used, which consisted of two main phases--a documentary analysis of the internationally…

  11. Training Social Workers and Human Service Professionals to Address the Complex Financial Needs of Clients

    ERIC Educational Resources Information Center

    Frey, Jodi Jacobson; Hopkins, Karen; Osteen, Philip; Callahan, Christine; Hageman, Sally; Ko, Jungyai

    2017-01-01

    In social work and other community-based human services settings, clients often present with complex financial problems. As a need for more formal training is beginning to be addressed, evaluation of existing training is important, and this study evaluates outcomes from the Financial Stability Pathway (FSP) project. Designed to prepare…

  12. The Influence of Relational Complexity and Strategy Selection on Children's Reasoning in the Latin Square Task

    ERIC Educational Resources Information Center

    Perret, Patrick; Bailleux, Christine; Dauvier, Bruno

    2011-01-01

    The present study focused on children's deductive reasoning when performing the Latin Square Task, an experimental task designed to explore the influence of relational complexity. Building on Birney, Halford, and Andrew's (2006) research, we created a version of the task that minimized nonrelational factors and introduced new categories of items.…

  13. Modeling the Stress Complexities of Teaching and Learning of School Physics in Nigeria

    ERIC Educational Resources Information Center

    Emetere, Moses E.

    2014-01-01

    This study was designed to investigate the validity of the stress complexity model (SCM) to teaching and learning of school physics in Abuja municipal area council of Abuja, North. About two hundred students were randomly selected by a simple random sampling technique from some schools within the Abuja municipal area council. A survey research…

  14. Gas-analytic measurement complexes of Baikal atmospheric-limnological observatory

    NASA Astrophysics Data System (ADS)

    Pestunov, D. A.; Shamrin, A. M.; Shmargunov, V. P.; Panchenko, M. V.

    2015-11-01

    The paper presents the present-day structure of stationary and mobile hardware-software gas-analytical complexes of Baikal atmospheric-limnological observatory (BALO) Siberian Branch Russian Academy of Sciences (SB RAS), designed to study the processes of gas exchange of carbon-containing gases in the "atmosphere-water" system, which are constantly updated to include new measuring and auxiliary instrumentation.

  15. Alternative Endpoints and Approaches Selected for the Remediation of Contaminated Groundwater at Complex Sites

    NASA Astrophysics Data System (ADS)

    Deeb, R. A.; Hawley, E.

    2011-12-01

    This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and alternative remedial strategies for groundwater remediation under a variety of Federal and state cleanup programs, including technical impracticability (TI) and other Applicable or Relevant and Appropriate Requirement (ARAR) waivers, state and local designations such as groundwater management zones, Alternate Concentration Limits (ACLs), use of monitored natural attenuation (MNA) over long timeframes, and more. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies to illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, timeframe, and potential remedial effectiveness. Case studies provide examples of the flexible, site-specific, application of alternative endpoints and alternative remedial strategies that have been used in the past to manage and remediate groundwater contamination at complex sites. For example, at least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. These designations typically indicate that groundwater contamination is present above permissible levels. Soil and groundwater within these zones are managed to protect human health and the environment. Lesson learned for the analyses conducted and the case studies evaluated allow for a more careful consideration of alternative, beneficial, and cost-effective cleanup objectives and metrics that can be achieved over the short-term (while eventually meeting long-term cleanup objectives or demonstrating the applicability of alternative endpoints), thus improving the site cleanup process at complex sites where appropriate.

  16. CVO driver fatigue and complex in-vehicle systems

    DOT National Transportation Integrated Search

    1997-10-01

    As one of a series of studies aimed at gathering data to develop human factors design guidelines for Advanced Traveler Information Systems (ATIS) and Commercial Vehicle Operations (CVO), the present study utilized a driving simulator to study CVO dri...

  17. From path models to commands during additive printing of large-scale architectural designs

    NASA Astrophysics Data System (ADS)

    Chepchurov, M. S.; Zhukov, E. M.; Yakovlev, E. A.; Matveykin, V. G.

    2018-05-01

    The article considers the problem of automation of the formation of large complex parts, products and structures, especially for unique or small-batch objects produced by a method of additive technology [1]. Results of scientific research in search for the optimal design of a robotic complex, its modes of operation (work), structure of its control helped to impose the technical requirements on the technological process for manufacturing and design installation of the robotic complex. Research on virtual models of the robotic complexes allowed defining the main directions of design improvements and the main goal (purpose) of testing of the the manufactured prototype: checking the positioning accuracy of the working part.

  18. Using genetic prediction from known complex disease Loci to guide the design of next-generation sequencing experiments.

    PubMed

    Jostins, Luke; Levine, Adam P; Barrett, Jeffrey C

    2013-01-01

    A central focus of complex disease genetics after genome-wide association studies (GWAS) is to identify low frequency and rare risk variants, which may account for an important fraction of disease heritability unexplained by GWAS. A profusion of studies using next-generation sequencing are seeking such risk alleles. We describe how already-known complex trait loci (largely from GWAS) can be used to guide the design of these new studies by selecting cases, controls, or families who are most likely to harbor undiscovered risk alleles. We show that genetic risk prediction can select unrelated cases from large cohorts who are enriched for unknown risk factors, or multiply-affected families that are more likely to harbor high-penetrance risk alleles. We derive the frequency of an undiscovered risk allele in selected cases and controls, and show how this relates to the variance explained by the risk score, the disease prevalence and the population frequency of the risk allele. We also describe a new method for informing the design of sequencing studies using genetic risk prediction in large partially-genotyped families using an extension of the Inside-Outside algorithm for inference on trees. We explore several study design scenarios using both simulated and real data, and show that in many cases genetic risk prediction can provide significant increases in power to detect low-frequency and rare risk alleles. The same approach can also be used to aid discovery of non-genetic risk factors, suggesting possible future utility of genetic risk prediction in conventional epidemiology. Software implementing the methods in this paper is available in the R package Mangrove.

  19. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme.

    PubMed

    Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K

    2013-01-01

    Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.

  20. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    NASA Astrophysics Data System (ADS)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  1. DNA Binding and Antitumor Activity of α-Diimineplatinum(II) and Palladium(II) Dithiocarbamate Complexes

    PubMed Central

    Mansouri-Torshizi, Hassan; Saeidifar, Maryam; Khosravi, Fatemeh; Divsalar, Adeleh; Saboury, Ali Akbar; Hassani, Fatemeh

    2011-01-01

    The two water-soluble designed platinum(II) complex, [Pt(Oct-dtc)(bpy)]NO3 (Oct-dtc = Octyldithiocarbamate and bpy = 2,2′ -bipyridine) and palladium(II) complex, [Pd(Oct-dtc)(bpy)]NO3, have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR, 1H NMR, and electronic spectra studies. Studies of antitumor activity of these complexes against human cell tumor lines (K562) have been carried out. They show Ic50 values lower than that of cisplatin. The complexes have been investigated for their interaction with calf thymus DNA (CT-DNA) by utilizing the electronic absorption spectroscopy, fluorescence spectra, and ethidium bromide displacement and gel filtration techniques. Both of these water-soluble complexes bound cooperatively and intercalatively to the CT-DNA at very low concentrations. Several binding and thermodynamic parameters are also described. PMID:22110410

  2. A Principled Approach to the Specification of System Architectures for Space Missions

    NASA Technical Reports Server (NTRS)

    McKelvin, Mark L. Jr.; Castillo, Robert; Bonanne, Kevin; Bonnici, Michael; Cox, Brian; Gibson, Corrina; Leon, Juan P.; Gomez-Mustafa, Jose; Jimenez, Alejandro; Madni, Azad

    2015-01-01

    Modern space systems are increasing in complexity and scale at an unprecedented pace. Consequently, innovative methods, processes, and tools are needed to cope with the increasing complexity of architecting these systems. A key systems challenge in practice is the ability to scale processes, methods, and tools used to architect complex space systems. Traditionally, the process for specifying space system architectures has largely relied on capturing the system architecture in informal descriptions that are often embedded within loosely coupled design documents and domain expertise. Such informal descriptions often lead to misunderstandings between design teams, ambiguous specifications, difficulty in maintaining consistency as the architecture evolves throughout the system development life cycle, and costly design iterations. Therefore, traditional methods are becoming increasingly inefficient to cope with ever-increasing system complexity. We apply the principles of component-based design and platform-based design to the development of the system architecture for a practical space system to demonstrate feasibility of our approach using SysML. Our results show that we are able to apply a systematic design method to manage system complexity, thus enabling effective data management, semantic coherence and traceability across different levels of abstraction in the design chain. Just as important, our approach enables interoperability among heterogeneous tools in a concurrent engineering model based design environment.

  3. Improving the evidence base in palliative care to inform practice and policy: thinking outside the box.

    PubMed

    Aoun, Samar M; Nekolaichuk, Cheryl

    2014-12-01

    The adoption of evidence-based hierarchies and research methods from other disciplines may not completely translate to complex palliative care settings. The heterogeneity of the palliative care population, complexity of clinical presentations, and fluctuating health states present significant research challenges. The aim of this narrative review was to explore the debate about the use of current evidence-based approaches for conducting research, such as randomized controlled trials and other study designs, in palliative care, and more specifically to (1) describe key myths about palliative care research; (2) highlight substantive challenges of conducting palliative care research, using case illustrations; and (3) propose specific strategies to address some of these challenges. Myths about research in palliative care revolve around evidence hierarchies, sample heterogeneity, random assignment, participant burden, and measurement issues. Challenges arise because of the complex physical, psychological, existential, and spiritual problems faced by patients, families, and service providers. These challenges can be organized according to six general domains: patient, system/organization, context/setting, study design, research team, and ethics. A number of approaches for dealing with challenges in conducting research fall into five separate domains: study design, sampling, conceptual, statistical, and measures and outcomes. Although randomized controlled trials have their place whenever possible, alternative designs may offer more feasible research protocols that can be successfully implemented in palliative care. Therefore, this article highlights "outside the box" approaches that would benefit both clinicians and researchers in the palliative care field. Ultimately, the selection of research designs is dependent on a clearly articulated research question, which drives the research process. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  4. Differential Impact of Unguided versus Guided Use of a Multimedia Introduction to Equine Obstetrics in Veterinary Education

    ERIC Educational Resources Information Center

    Govaere Jan, L. J.; de Kruif, Aart; Valcke, Martin

    2012-01-01

    In view of supporting the study of the complex domain of equine obstetrics, a Foal"in"Mare multimedia package with 3D designs has been developed. The present study centers on questions as to the most optimal implementation of the multimedia package in veterinary education. In a pretest-posttest cross-over design, students were randomly assigned to…

  5. Keys to Successful Implementation and Sustainment of Managed Maintenance for Healthcare Facilities

    DTIC Science & Technology

    2004-03-23

    second they involve studying those phenomena in all their complexity (Leedy and Ormrod, 2001). According to Denzin and Lincoln (1994), qualitative...people being studied (Leedy and Ormrod, 2001). Research Design Methodological Triangulation Denzin and Lincoln (1994) suggest because different...the setting. This dual view is refereed to as methodological triangulation ( Denzin and Lincoln , 1994). A research design develops a logical plan for

  6. [Systems epidemiology].

    PubMed

    Huang, T; Li, L M

    2018-05-10

    The era of medical big data, translational medicine and precision medicine brings new opportunities for the study of etiology of chronic complex diseases. How to implement evidence-based medicine, translational medicine and precision medicine are the challenges we are facing. Systems epidemiology, a new field of epidemiology, combines medical big data with system biology and examines the statistical model of disease risk, the future risk simulation and prediction using the data at molecular, cellular, population, social and ecological levels. Due to the diversity and complexity of big data sources, the development of study design and analytic methods of systems epidemiology face new challenges and opportunities. This paper summarizes the theoretical basis, concept, objectives, significances, research design and analytic methods of systems epidemiology and its application in the field of public health.

  7. Designing Infographics to support teaching complex science subject: A comparison between static and animated Infographics

    NASA Astrophysics Data System (ADS)

    Hassan, Hesham Galal

    This thesis explores the proper principles and rules for creating excellent infographics that communicate information successfully and effectively. Not only does this thesis examine the creation of Infographics, it also tries to answer which format, Static or Animated Infographics, is the most effective when used as a teaching-aid framework for complex science subjects, and if compelling Infographics in the preferred format facilitate the learning experience. The methodology includes the creation of infographic using two formats (Static and Animated) of a fairly complex science subject (Phases Of The Moon), which were then tested for their efficacy as a whole, and the two formats were compared in terms of information comprehension and retention. My hypothesis predicts that the creation of an infographic using the animated format would be more effective in communicating a complex science subject (Phases Of The Moon), specifically when using 3D computer animation to visualize the topic. This would also help different types of learners to easily comprehend science subjects. Most of the animated infographics produced nowadays are created for marketing and business purposes and do not implement the analytical design principles required for creating excellent information design. I believe that science learners are still in need of more variety in their methods of learning information, and that infographics can be of great assistance. The results of this thesis study suggests that using properly designed infographics would be of great help in teaching complex science subjects that involve spatial and temporal data. This could facilitate learning science subjects and consequently impact the interest of young learners in STEM.

  8. 77 FR 38840 - Submission for OMB Review; Comment Request: Child Health Disparities Substudy for the National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... needed for a study of this size and complexity, the NCS was designed to include a preliminary pilot study... parallel with the Main Study. At every phase of the NCS, the multiple methodological studies conducted...

  9. Specification and Design Methodologies for High-Speed Fault-Tolerant Array Algorithms and Structures for VLSI.

    DTIC Science & Technology

    1987-06-01

    evaluation and chip layout planning for VLSI digital systems. A high-level applicative (functional) language, implemented at UCLA, allows combining of...operating system. 2.1 Introduction The complexity of VLSI requires the application of CAD tools at all levels of the design process. In order to be...effective, these tools must be adaptive to the specific design. In this project we studied a design method based on the use of applicative languages

  10. Challenges in designing, conducting, and reporting oral health behavioral intervention studies in primary school age children: methodological issues

    PubMed Central

    Cooper, Anna Mary; Coffey, Margaret; Dugdill, Lindsey

    2014-01-01

    Often within oral health, clinical outcome measures dominate trial design rather than behavioral outcome measures, and often there is a reliance on proxy self-reporting of children’s behavior with no corroboration through triangulation of measures. The complexity of the interventions involved in oral health intervention is often overlooked in trial design, and more flexible pragmatic designs that take account of the research context may be more appropriate. Some of the limitations in oral health behavioral intervention studies (trials) in primary school age children were reported in a recently published Cochrane review. This paper aims to critically discuss the findings of a recent Cochrane review in terms of the methodological implications that arise for future design, development, measurement, and reporting of oral health trials in primary school age children. Key components of the UK Medical Research Council’s framework for the design and evaluation of complex interventions are discussed in relation to using taxonomies of behavior change. This paper is not designed to be a definitive guide but aims to bring learning from other areas of public health and health promotion into dental public health. Ultimately, the aim is to aid the design of more successful interventions that produce long-term behavioral changes in children in relation to toothbrushing and nighttime sugar snacking. PMID:27774028

  11. A Study of Consistency in Design Selection and the Rank Ordering of Alternatives Using a Value Driven Design Approach

    NASA Astrophysics Data System (ADS)

    Subramanian, Tenkasi R.

    In the current day, with the rapid advancement in technology, engineering design is growing in complexity. Nowadays, engineers have to deal with design problems that are large, complex and involving multi-level decision analyses. With the increase in complexity and size of systems, the production and development cost tend to overshoot the allocated budget and resources. This often results in project delays and project cancellation. This is particularly true for aerospace systems. Value Driven Design proves to be means to strengthen the design process and help counter such trends. Value Driven is a novel framework for optimization which puts stakeholder preferences at the forefront of the design process to capture their true preferences to present system alternatives that are consistent the stakeholder's expectations. Traditional systems engineering techniques promote communication of stakeholder preferences in the form of requirements which confines the design space by imposing additional constraints on it. This results in a design that does not capture the true preferences of the stakeholder. Value Driven Design provides an alternate approach to design wherein a value function is created that corresponds to the true preferences of the stakeholder. The applicability of VDD broad, but it is imperative to first explore its feasibility to ensure the development of an efficient, robust and elegant system design. The key to understanding the usability of VDD is to investigate the formation, propagation and use of a value function. This research investigates the use of rank correlation metrics to ensure consistent rank ordering of design alternatives, while investigating the fidelity of the value function. The impact of design uncertainties on rank ordering. A satellite design system consisting of a satellite, ground station and launch vehicle is used to demonstrate the use of the metrics to aid in decision support during the design process.

  12. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    PubMed Central

    Chang, Shu-Wei; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-01-01

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future. PMID:29271937

  13. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    PubMed

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  14. Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning

    PubMed Central

    Ettlinger, Marc; Wong, Patrick C. M.

    2016-01-01

    Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085

  15. Nondestructive evaluation of the complex modulus master curve of asphalt concrete specimens

    NASA Astrophysics Data System (ADS)

    Gudmarsson, A.; Ryden, N.; Birgisson, B.

    2013-01-01

    The dynamic Young's modulus of asphalt concrete is directly related to pavement quality and is used in thickness design of pavements. There is a need for a nondestructive laboratory method to evaluate the complex modulus, which can be linked to nondestructive field measurements. This study applies seismic measurements to an asphalt concrete beam where resonant acoustic spectroscopy and optimization of frequency response functions are used to estimate the complex moduli. A good estimation of the master curve is obtained.

  16. Supporting Space Systems Design via Systems Dependency Analysis Methodology

    NASA Astrophysics Data System (ADS)

    Guariniello, Cesare

    The increasing size and complexity of space systems and space missions pose severe challenges to space systems engineers. When complex systems and Systems-of-Systems are involved, the behavior of the whole entity is not only due to that of the individual systems involved but also to the interactions and dependencies between the systems. Dependencies can be varied and complex, and designers usually do not perform analysis of the impact of dependencies at the level of complex systems, or this analysis involves excessive computational cost, or occurs at a later stage of the design process, after designers have already set detailed requirements, following a bottom-up approach. While classical systems engineering attempts to integrate the perspectives involved across the variety of engineering disciplines and the objectives of multiple stakeholders, there is still a need for more effective tools and methods capable to identify, analyze and quantify properties of the complex system as a whole and to model explicitly the effect of some of the features that characterize complex systems. This research describes the development and usage of Systems Operational Dependency Analysis and Systems Developmental Dependency Analysis, two methods based on parametric models of the behavior of complex systems, one in the operational domain and one in the developmental domain. The parameters of the developed models have intuitive meaning, are usable with subjective and quantitative data alike, and give direct insight into the causes of observed, and possibly emergent, behavior. The approach proposed in this dissertation combines models of one-to-one dependencies among systems and between systems and capabilities, to analyze and evaluate the impact of failures or delays on the outcome of the whole complex system. The analysis accounts for cascading effects, partial operational failures, multiple failures or delays, and partial developmental dependencies. The user of these methods can assess the behavior of each system based on its internal status and on the topology of its dependencies on systems connected to it. Designers and decision makers can therefore quickly analyze and explore the behavior of complex systems and evaluate different architectures under various working conditions. The methods support educated decision making both in the design and in the update process of systems architecture, reducing the need to execute extensive simulations. In particular, in the phase of concept generation and selection, the information given by the methods can be used to identify promising architectures to be further tested and improved, while discarding architectures that do not show the required level of global features. The methods, when used in conjunction with appropriate metrics, also allow for improved reliability and risk analysis, as well as for automatic scheduling and re-scheduling based on the features of the dependencies and on the accepted level of risk. This dissertation illustrates the use of the two methods in sample aerospace applications, both in the operational and in the developmental domain. The applications show how to use the developed methodology to evaluate the impact of failures, assess the criticality of systems, quantify metrics of interest, quantify the impact of delays, support informed decision making when scheduling the development of systems and evaluate the achievement of partial capabilities. A larger, well-framed case study illustrates how the Systems Operational Dependency Analysis method and the Systems Developmental Dependency Analysis method can support analysis and decision making, at the mid and high level, in the design process of architectures for the exploration of Mars. The case study also shows how the methods do not replace the classical systems engineering methodologies, but support and improve them.

  17. Scenarios, personas and user stories from design ethnography: Evidence-based design representations of communicable disease investigations

    PubMed Central

    Turner, Anne M; Reeder, Blaine; Ramey, Judith

    2014-01-01

    Purpose Despite years of effort and millions of dollars spent to create a unified electronic communicable disease reporting systems, the goal remains elusive. A major barrier has been a lack of understanding by system designers of communicable disease (CD) work and the public health workers who perform this work. This study reports on the application of User Center Design representations, traditionally used for improving interface design, to translate the complex CD work identified through ethnographic studies to guide designers and developers of CD systems. The purpose of this work is to: (1) better understand public health practitioners and their information workflow with respect to communicable disease (CD) monitoring and control at a local health department, and (2) to develop evidence-based design representations that model this CD work to inform the design of future disease surveillance systems. Methods We performed extensive onsite semi-structured interviews, targeted work shadowing and a focus group to characterize local health department communicable disease workflow. Informed by principles of design ethnography and user-centered design (UCD) we created persona, scenarios and user stories to accurately represent the user to system designers. Results We sought to convey to designers the key findings from ethnographic studies: 1) that public health CD work is mobile and episodic, in contrast to current CD reporting systems, which are stationary and fixed 2) health department efforts are focused on CD investigation and response rather than reporting and 3) current CD information systems must conform to PH workflow to ensure their usefulness. In an effort to illustrate our findings to designers, we developed three contemporary design-support representations: persona, scenario, and user story. Conclusions Through application of user centered design principles, we were able to create design representations that illustrate complex public health communicable disease workflow and key user characteristics to inform the design of CD information systems for public health. PMID:23618996

  18. Methodological approach in determination of small spatial units in a highly complex terrain in atmospheric pollution research: the case of Zasavje region in Slovenia.

    PubMed

    Kukec, Andreja; Boznar, Marija Z; Mlakar, Primoz; Grasic, Bostjan; Herakovic, Andrej; Zadnik, Vesna; Zaletel-Kragelj, Lijana; Farkas, Jerneja; Erzen, Ivan

    2014-05-01

    The study of atmospheric air pollution research in complex terrains is challenged by the lack of appropriate methodology supporting the analysis of the spatial relationship between phenomena affected by a multitude of factors. The key is optimal design of a meaningful approach based on small spatial units of observation. The Zasavje region, Slovenia, was chosen as study area with the main objective to investigate in practice the role of such units in a test environment. The process consisted of three steps: modelling of pollution in the atmosphere with dispersion models, transfer of the results to geographical information system software, and then moving on to final determination of the function of small spatial units. A methodology capable of designing useful units for atmospheric air pollution research in highly complex terrains was created, and the results were deemed useful in offering starting points for further research in the field of geospatial health.

  19. Development and Optimization of Dispersible Tablet of Bacopa monnieri with Improved Functionality for Memory Enhancement

    PubMed Central

    Thakkar, Vaishali Tejas; Deshmukh, Amol; Hingorani, Lal; Juneja, Payal; Baldaniya, Lalji; Patel, Asha; Pandya, Tosha; Gohel, Mukesh

    2017-01-01

    Introduction: The Bacopa monnieri is traditional Ayurvedic medicine, and reported for memory-enhancing effects. The Bacoside is poorly soluble, bitter in taste and responsible for the memory enhancement action. Memory enhancer is commonly prescribed for children or elder people. Objective: Poor solubility, patient compliance and bitterness were a major driving force to develop taste masked β-cyclodextrin complex and dispersible tablets. Materials and Methods: The inclusion complex of Bacopa monnieri and β-cyclodextrin was prepared in different molar ratios of Bacopa monnieri by Co-precipitation method. Phase solubility study was conducted to evaluate the effect of β-cyclodextrin on aqueous solubility of Bacoside A. The characterization was determined by Fourier transformation infrared spectroscopy (FTIR),Differential scanning calorimetry (DSC) and X-ray diffraction study (XRD).Crospovidone and croscarmallose sodium were used as super disintigrant. The 32 full factorial design was adopted to investigate the influence of two superdisintegrants on the wetting time and disntegration time of the tablets. Conclusion: The result revels that molar ratio (1:4) of inclusion complex enhance 3-fold solubility. Full factorial design was successfully employed for the optimization of dispersible tablet of B. monnieri. The short-term accelerated stability study confirmed that high stability of B. monnieri in inclusion complex. PMID:28979076

  20. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    NASA Astrophysics Data System (ADS)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  1. An analysis of the influence of framework aspects on the study design of health economic modeling evaluations.

    PubMed

    Gurtner, Sebastian

    2013-04-01

    Research and practical guidelines have many implications for how to structure a health economic study. A major focus in recent decades has been the quality of health economic research. In practice, the factors influencing a study design are not limited to the quest for quality. Moreover, the framework of the study is important. This research addresses three major questions related to these framework aspects. First, we want to know whether the design of health economic studies has changed over time. Second, we want to know how the subject of a study, whether it is a process or product innovation, influences the parameters of the study design. Third, one of the most important questions we will answer is whether and how the study's source of funding has an impact on the design of the research. To answer these questions, a total of 234 health economic studies were analyzed using a correspondence analysis and a logistic regression analysis. All three categories of framework factors have an influence on the aspects of the study design. Health economic studies have evolved over time, leading to the use of more advanced methods like complex sensitivity analyses. Additionally, the patient's point of view has increased in importance. The evaluation of product innovations has focused more on utility concepts. On the other hand, the source of funding may influence only a few aspects of the study design, such as the use of evaluation methods, the source of data, and the use of certain utility measures. The most important trends in health care, such as the emphasis on the patients' point of view, become increasingly established in health economic evaluations with the passage of time. Although methodological challenges remain, modern information and communication technologies provide a basis for increasing the complexity and quality of health economic studies if used frequently.

  2. Complexity and robustness

    PubMed Central

    Carlson, J. M.; Doyle, John

    2002-01-01

    Highly optimized tolerance (HOT) was recently introduced as a conceptual framework to study fundamental aspects of complexity. HOT is motivated primarily by systems from biology and engineering and emphasizes, (i) highly structured, nongeneric, self-dissimilar internal configurations, and (ii) robust yet fragile external behavior. HOT claims these are the most important features of complexity and not accidents of evolution or artifices of engineering design but are inevitably intertwined and mutually reinforcing. In the spirit of this collection, our paper contrasts HOT with alternative perspectives on complexity, drawing on real-world examples and also model systems, particularly those from self-organized criticality. PMID:11875207

  3. The Emergence of an Amplified Mindset of Design: Implications for Postgraduate Design Education

    ERIC Educational Resources Information Center

    Moreira, Mafalda; Murphy, Emma; McAra-McWilliam, Irene

    2016-01-01

    In a global scenario of complexity, research shows that emerging design practices are changing and expanding, creating a complex and ambiguous disciplinary landscape. This directly impacts on the field of design education, calling for new, flexible models able to tackle future practitioners' needs, unknown markets and emergent societal cultures.…

  4. Evaluating Long-Term Complex Professional Development: Using a Variation of the Cohort Control Design

    ERIC Educational Resources Information Center

    Sample Mcmeeking, Laura B.; Cobb, R. Brian; Basile, Carole

    2010-01-01

    This paper introduces a variation on the post-test only cohort control design and addresses questions concerning both the methodological credibility and the practical utility of employing this design variation in evaluations of large-scale complex professional development programmes in mathematics education. The original design and design…

  5. Design of magnetic gene complexes as effective and serum resistant gene delivery systems for mesenchymal stem cells.

    PubMed

    Zhang, Tian-Yuan; Wu, Jia-He; Xu, Qian-Hao; Wang, Xia-Rong; Lu, Jingxiong; Hu, Ying; Jo, Jun-Ichiro; Yamamoto, Masaya; Ling, Daishun; Tabata, Yasuhiko; Gao, Jian-Qing

    2017-03-30

    Gene engineered mesenchymal stem cells (MSCs) have been proposed as promising tools for their various applications in biomedicine. Nevertheless, the lack of an effective and safe way to genetically modify these stem cells is still a major obstacle in the current studies. Herein, we designed novel magnetic complexes by assembling cationized pullulan derivatives with magnetic iron oxide nanoparticles for delivering target genes to MSCs. Results showed that this complexes achieved effective gene expression with the assistance of external magnetic field, and resisted the adverse effect induced by serum proteins on the gene delivery. Moreover, neither significant cytotoxicity nor the interference on the osteogenic differentiation to MSCs were observed after magnetofection. Further studies revealed that this effective and serum resistant gene transfection was partly due to the accelerated and enhanced intracellular uptake process driven by external magnetic field. To conclude, the current study presented a novel option for genetic modification of MSCs in an effective, relatively safe and serum compatible way. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. MAST Propellant and Delivery System Design Methods

    NASA Technical Reports Server (NTRS)

    Nadeem, Uzair; Mc Cleskey, Carey M.

    2015-01-01

    A Mars Aerospace Taxi (MAST) concept and propellant storage and delivery case study is undergoing investigation by NASA's Element Design and Architectural Impact (EDAI) design and analysis forum. The MAST lander concept envisions landing with its ascent propellant storage tanks empty and supplying these reusable Mars landers with propellant that is generated and transferred while on the Mars surface. The report provides an overview of the data derived from modeling between different methods of propellant line routing (or "lining") and differentiate the resulting design and operations complexity of fluid and gaseous paths based on a given set of fluid sources and destinations. The EDAI team desires a rough-order-magnitude algorithm for estimating the lining characteristics (i.e., the plumbing mass and complexity) associated different numbers of vehicle propellant sources and destinations. This paper explored the feasibility of preparing a mathematically sound algorithm for this purpose, and offers a method for the EDAI team to implement.

  7. Unit with Fluidized Bed for Gas-Vapor Activation of Different Carbonaceous Materials for Various Purposes: Design, Computation, Implementation.

    PubMed

    Strativnov, Eugene

    2017-12-01

    We propose the technology of obtaining the promising material with wide specter of application-activated nanostructured carbon. In terms of technical indicators, it will stand next to the materials produced by complex regulations with the use of costly chemical operations. It can be used for the following needs: as a sorbent for hemosorption and enterosorption, for creation of the newest source of electric current (lithium and zinc air batteries, supercapacitors), and for processes of short-cycle adsorption gas separation.In this study, the author gives recommendations concerning the design of the apparatus with fluidized bed and examples of calculation of specific devices. The whole given information can be used as guidelines for the design of energy effective aggregates. Calculation and design of the reactor were carried out using modern software complexes (ANSYS and SolidWorks).

  8. 77 FR 9666 - National Institute of Child Health and Human Development; New Proposed Collection; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... preparation needed for a study of this size and complexity, the NCS was designed to include a preliminary... parallel with the Main Study. At every phase of the NCS, the multiple methodological studies conducted...

  9. Health care organizations as complex systems: new perspectives on design and management.

    PubMed

    McDaniel, Reuben R; Driebe, Dean J; Lanham, Holly Jordan

    2013-01-01

    We discuss the impact of complexity science on the design and management of health care organizations over the past decade. We provide an overview of complexity science issues and their impact on thinking about health care systems, particularly with the rising importance of information systems. We also present a complexity science perspective on current issues in today's health care organizations and suggest ways that this perspective might help in approaching these issues. We review selected research, focusing on work in which we participated, to identify specific examples of applications of complexity science. We then take a look at information systems in health care organizations from a complexity viewpoint. Complexity science is a fundamentally different way of understanding nature and has influenced the thinking of scholars and practitioners as they have attempted to understand health care organizations. Many scholars study health care organizations as complex adaptive systems and through this perspective develop new management strategies. Most important, perhaps, is the understanding that attention to relationships and interdependencies is critical for developing effective management strategies. Increased understanding of complexity science can enhance the ability of researchers and practitioners to develop new ways of understanding and improving health care organizations. This analysis opens new vistas for scholars and practitioners attempting to understand health care organizations as complex adaptive systems. The analysis holds value for those already familiar with this approach as well as those who may not be as familiar.

  10. Process Mining-Based Method of Designing and Optimizing the Layouts of Emergency Departments in Hospitals.

    PubMed

    Rismanchian, Farhood; Lee, Young Hoon

    2017-07-01

    This article proposes an approach to help designers analyze complex care processes and identify the optimal layout of an emergency department (ED) considering several objectives simultaneously. These objectives include minimizing the distances traveled by patients, maximizing design preferences, and minimizing the relocation costs. Rising demand for healthcare services leads to increasing demand for new hospital buildings as well as renovating existing ones. Operations management techniques have been successfully applied in both manufacturing and service industries to design more efficient layouts. However, high complexity of healthcare processes makes it challenging to apply these techniques in healthcare environments. Process mining techniques were applied to address the problem of complexity and to enhance healthcare process analysis. Process-related information, such as information about the clinical pathways, was extracted from the information system of an ED. A goal programming approach was then employed to find a single layout that would simultaneously satisfy several objectives. The layout identified using the proposed method improved the distances traveled by noncritical and critical patients by 42.2% and 47.6%, respectively, and minimized the relocation costs. This study has shown that an efficient placement of the clinical units yields remarkable improvements in the distances traveled by patients.

  11. Spacecraft Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Manshadi, Farzin; Rahmat-Samii, Yahya; Cramer, Paul

    1990-01-01

    Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required.

  12. High lift selected concepts

    NASA Technical Reports Server (NTRS)

    Henderson, M. L.

    1979-01-01

    The benefits to high lift system maximum life and, alternatively, to high lift system complexity, of applying analytic design and analysis techniques to the design of high lift sections for flight conditions were determined and two high lift sections were designed to flight conditions. The influence of the high lift section on the sizing and economics of a specific energy efficient transport (EET) was clarified using a computerized sizing technique and an existing advanced airplane design data base. The impact of the best design resulting from the design applications studies on EET sizing and economics were evaluated. Flap technology trade studies, climb and descent studies, and augmented stability studies are included along with a description of the baseline high lift system geometry, a calculation of lift and pitching moment when separation is present, and an inverse boundary layer technique for pressure distribution synthesis and optimization.

  13. ART/Ada design project, phase 1. Task 2 report: Detailed design

    NASA Technical Reports Server (NTRS)

    Allen, Bradley P.

    1988-01-01

    Various issues are studied in the context of the design of an Ada based expert system building tool. Using an existing successful design as a starting point, the impact is analyzed of the Ada language and Ada development methodologies on that design, the Ada system is redesigned, and its performance is analyzed using both complexity-theoretic and empirical techniques. The algorithms specified in the overall design are refined, resolving and documenting any open design issues, identifying each system module, documenting the internal architecture and control logic, and describing the primary data structures involved in the module.

  14. Developing a framework for qualitative engineering: Research in design and analysis of complex structural systems

    NASA Technical Reports Server (NTRS)

    Franck, Bruno M.

    1990-01-01

    The research is focused on automating the evaluation of complex structural systems, whether for the design of a new system or the analysis of an existing one, by developing new structural analysis techniques based on qualitative reasoning. The problem is to identify and better understand: (1) the requirements for the automation of design, and (2) the qualitative reasoning associated with the conceptual development of a complex system. The long-term objective is to develop an integrated design-risk assessment environment for the evaluation of complex structural systems. The scope of this short presentation is to describe the design and cognition components of the research. Design has received special attention in cognitive science because it is now identified as a problem solving activity that is different from other information processing tasks (1). Before an attempt can be made to automate design, a thorough understanding of the underlying design theory and methodology is needed, since the design process is, in many cases, multi-disciplinary, complex in size and motivation, and uses various reasoning processes involving different kinds of knowledge in ways which vary from one context to another. The objective is to unify all the various types of knowledge under one framework of cognition. This presentation focuses on the cognitive science framework that we are using to represent the knowledge aspects associated with the human mind's abstraction abilities and how we apply it to the engineering knowledge and engineering reasoning in design.

  15. Model for Predicting the Performance of Planetary Suit Hip Bearing Designs

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar

    2012-01-01

    Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance

  16. Accuracy assessment with complex sampling designs

    Treesearch

    Raymond L. Czaplewski

    2010-01-01

    A reliable accuracy assessment of remotely sensed geospatial data requires a sufficiently large probability sample of expensive reference data. Complex sampling designs reduce cost or increase precision, especially with regional, continental and global projects. The General Restriction (GR) Estimator and the Recursive Restriction (RR) Estimator separate a complex...

  17. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.

    PubMed

    Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2017-07-17

    Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the rational synthesis of complexes with long coherence times.

  18. Cross-Cultural Language Learning and Web Design Complexity

    ERIC Educational Resources Information Center

    Park, Ji Yong

    2015-01-01

    Accepting the fact that culture and language are interrelated in second language learning (SLL), the web sites should be designed to integrate with the cultural aspects. Yet many SLL web sites fail to integrate with the cultural aspects and/or focus on language acquisition only. This study identified three issues: (1) anthropologists'…

  19. Design and Implementation of an Intranet Dashboard

    PubMed Central

    Wolpin, SE

    2005-01-01

    Healthcare organizations are complex systems and well served by efficient feedback mechanisms. Many organizations have invested in data warehouses; however there are few tools for automatically extracting and delivering relevant measures to decision makers. This research study resulted in the design and implementation of an intranet dashboard linked to a data warehouse PMID:16779440

  20. An Empirical Study of Eight Nonparametric Tests in Hierarchical Regression.

    ERIC Educational Resources Information Center

    Harwell, Michael; Serlin, Ronald C.

    When normality does not hold, nonparametric tests represent an important data-analytic alternative to parametric tests. However, the use of nonparametric tests in educational research has been limited by the absence of easily performed tests for complex experimental designs and analyses, such as factorial designs and multiple regression analyses,…

  1. Correlating Trainee Attributes to Performance in 3D CAD Training

    ERIC Educational Resources Information Center

    Hamade, Ramsey F.; Artail, Hassan A.; Sikstrom, Sverker

    2007-01-01

    Purpose: The purpose of this exploratory study is to identify trainee attributes relevant for development of skills in 3D computer-aided design (CAD). Design/methodology/approach: Participants were trained to perform cognitive tasks of comparable complexity over time. Performance data were collected on the time needed to construct test models, and…

  2. The Interaction between Multimedia Data Analysis and Theory Development in Design Research

    ERIC Educational Resources Information Center

    van Nes, Fenna; Doorman, Michiel

    2010-01-01

    Mathematics education researchers conducting instruction experiments using a design research methodology are challenged with the analysis of often complex and large amounts of qualitative data. In this paper, we present two case studies that show how multimedia analysis software can greatly support video data analysis and theory development in…

  3. High-contrast Imager for Complex Aperture Telescopes (HICAT): II. Design overview and first light results

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Choquet, Elodie; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Elliot, Erin; Wallace, J. Kent; Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc; Long, Chris A.; Anderson, Rachel; DiFelice, Audrey; Soummer, Rémi

    2014-08-01

    We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitude­ induced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modelling of the testbed. We also report on the testbed optical and optomechanical alignment performance, coronagraph design and manufacturing, and preliminary first light results.

  4. Scenarios, personas and user stories: user-centered evidence-based design representations of communicable disease investigations.

    PubMed

    Turner, Anne M; Reeder, Blaine; Ramey, Judith

    2013-08-01

    Despite years of effort and millions of dollars spent to create unified electronic communicable disease reporting systems, the goal remains elusive. A major barrier has been a lack of understanding by system designers of communicable disease (CD) work and the public health workers who perform this work. This study reports on the application of user-centered design representations, traditionally used for improving interface design, to translate the complex CD work identified through ethnographic studies to guide designers and developers of CD systems. The purpose of this work is to: (1) better understand public health practitioners and their information workflow with respect to CD monitoring and control at a local health agency, and (2) to develop evidence-based design representations that model this CD work to inform the design of future disease surveillance systems. We performed extensive onsite semi-structured interviews, targeted work shadowing and a focus group to characterize local health agency CD workflow. Informed by principles of design ethnography and user-centered design we created persona, scenarios and user stories to accurately represent the user to system designers. We sought to convey to designers the key findings from ethnographic studies: (1) public health CD work is mobile and episodic, in contrast to current CD reporting systems, which are stationary and fixed, (2) health agency efforts are focused on CD investigation and response rather than reporting and (3) current CD information systems must conform to public health workflow to ensure their usefulness. In an effort to illustrate our findings to designers, we developed three contemporary design-support representations: persona, scenario, and user story. Through application of user-centered design principles, we were able to create design representations that illustrate complex public health communicable disease workflow and key user characteristics to inform the design of CD information systems for public health. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. [Methodological design for the National Survey Violence Against Women in Mexico].

    PubMed

    Olaiz, Gustavo; Franco, Aurora; Palma, Oswaldo; Echarri, Carlos; Valdez, Rosario; Herrera, Cristina

    2006-01-01

    To describe the methodology, the research designs used, the estimation and sample selection, variable definitions, collection instruments, and operative design and analytical procedures for the National Survey Violence Against Women in Mexico. A complex (two-step) cross-sectional study was designed and the qualitative design was carried out using in-depth interviews and participant observation in health care units. We obtained for the quantitative study a total of 26 240 interviews in women users of health services and 2 636 questionnaires for health workers; the survey is representative of the 32 Mexican states. For the qualitative study 26 in-depth interviews were conducted with female users and 60 interviews with health workers in the States of Quintana Roo, Coahuila and the Federal District.

  6. The effect of multiple external representations (MERs) worksheets toward complex system reasoning achievement

    NASA Astrophysics Data System (ADS)

    Sumarno; Ibrahim, M.; Supardi, Z. A. I.

    2018-03-01

    The application of a systems approach to assessing biological systems provides hope for a coherent understanding of cell dynamics patterns and their relationship to plant life. This action required the reasoning about complex systems. In other sides, there were a lot of researchers who provided the proof about the instructional successions. They involved the multiple external representations which improved the biological learning. The researcher conducted an investigation using one shoot case study design which involved 30 students in proving that the MERs worksheets could affect the student's achievement of reasoning about complex system. The data had been collected based on test of reasoning about complex system and student's identification result who worked through MERs. The result showed that only partially students could achieve reasoning about system complex, but their MERs skill could support their reasoning ability of complex system. This study could bring a new hope to develop the MERs worksheet as a tool to facilitate the reasoning about complex system.

  7. Copper complexes as a source of redox active MRI contrast agents.

    PubMed

    Dunbar, Lynsey; Sowden, Rebecca J; Trotter, Katherine D; Taylor, Michelle K; Smith, David; Kennedy, Alan R; Reglinski, John; Spickett, Corinne M

    2015-10-01

    The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.

  8. An Application of Generalizability Theory and Many-Facet Rasch Measurement Using a Complex Problem-Solving Skills Assessment

    ERIC Educational Resources Information Center

    Smith, Jr., Everett V.; Kulikowich, Jonna M.

    2004-01-01

    This study describes the use of generalizability theory (GT) and many-facet Rasch measurement (MFRM) to evaluate psychometric properties of responses obtained from an assessment designed to measure complex problem-solving skills. The assessment revolved around the school activity of kickball. The task required of each student was to decide on a…

  9. A Complexity Approach to Psychological Well-Being in Adolescence: Major Strengths and Methodological Issues

    ERIC Educational Resources Information Center

    Gonzalez, Monica; Casas, Ferran; Coenders, Germa

    2007-01-01

    Psychological well-being in adolescence is an increasing field of study. Deepening in its knowledge during this period of life can be of a lot of help to the designing of more adjusted prevention programs aimed to avoid or reduce the problems adolescents might be experiencing. Complexity theories can be a productive alternative to the important…

  10. Predictors of Successful Discharge from Out-of-Home Care among Children with Complex Needs

    ERIC Educational Resources Information Center

    Yampolskaya, Svetlana; Kershaw, Mary Ann; Banks, Steve

    2006-01-01

    We examined the predictors for successful discharge from out-of-home care of children with complex needs placed in a novel comprehensive service intervention (Manatee Model) and compared their discharge experiences to their out-of-home counterparts from the same county. The study design consisted of a longitudinal two-year comparison of these two…

  11. A phosphorescent rhenium(I) histone deacetylase inhibitor: mitochondrial targeting and paraptosis induction.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Lin, Yan-Nan; Ji, Liang-Nian; Mao, Zong-Wan

    2015-05-14

    In this report, we designed a histone deacetylase-targeted phosphorescent Re(I) complex ReLMito. Colocalization studies suggested that ReLMito could specially localize to mitochondria. We also demonstrated that ReLMito could induce paraptosis in cancer cells. These features endowed the complex with potential to induce and monitor mitochondrial morphological changes during the paraptosis simultaneously.

  12. Concept of a Cloud Service for Data Preparation and Computational Control on Custom HPC Systems in Application to Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Puzyrkov, Dmitry; Polyakov, Sergey; Podryga, Viktoriia; Markizov, Sergey

    2018-02-01

    At the present stage of computer technology development it is possible to study the properties and processes in complex systems at molecular and even atomic levels, for example, by means of molecular dynamics methods. The most interesting are problems related with the study of complex processes under real physical conditions. Solving such problems requires the use of high performance computing systems of various types, for example, GRID systems and HPC clusters. Considering the time consuming computational tasks, the need arises of software for automatic and unified monitoring of such computations. A complex computational task can be performed over different HPC systems. It requires output data synchronization between the storage chosen by a scientist and the HPC system used for computations. The design of the computational domain is also quite a problem. It requires complex software tools and algorithms for proper atomistic data generation on HPC systems. The paper describes the prototype of a cloud service, intended for design of atomistic systems of large volume for further detailed molecular dynamic calculations and computational management for this calculations, and presents the part of its concept aimed at initial data generation on the HPC systems.

  13. The High Cost of Complexity in Experimental Design and Data Analysis: Type I and Type II Error Rates in Multiway ANOVA.

    ERIC Educational Resources Information Center

    Smith, Rachel A.; Levine, Timothy R.; Lachlan, Kenneth A.; Fediuk, Thomas A.

    2002-01-01

    Notes that the availability of statistical software packages has led to a sharp increase in use of complex research designs and complex statistical analyses in communication research. Reports a series of Monte Carlo simulations which demonstrate that this complexity may come at a heavier cost than many communication researchers realize. Warns…

  14. Estimating occupancy rates with imperfect detection under complex survey designs

    EPA Science Inventory

    Monitoring the occurrence of specific amphibian species is of interest. Typically, the monitoring design is a complex design that involves stratification and unequal probability of selection. When conducting field visits to selected sites, a common problem is that during a singl...

  15. BeeSign: Designing to Support Mediated Group Inquiry of Complex Science by Early Elementary Students

    ERIC Educational Resources Information Center

    Danish, Joshua A.; Peppler, Kylie; Phelps, David

    2010-01-01

    All too often, designers assume that complex science and cycles of inquiry are beyond the capabilities of young children (5-8 years old). However, with carefully designed mediators, we argue that such concepts are well within their grasp. In this paper we describe two design iterations of the BeeSign simulation software that was designed to help…

  16. Reliability and validity of the C-BiLLT: a new instrument to assess comprehension of spoken language in young children with cerebral palsy and complex communication needs.

    PubMed

    Geytenbeek, Joke J; Mokkink, Lidwine B; Knol, Dirk L; Vermeulen, R Jeroen; Oostrom, Kim J

    2014-09-01

    In clinical practice, a variety of diagnostic tests are available to assess a child's comprehension of spoken language. However, none of these tests have been designed specifically for use with children who have severe motor impairments and who experience severe difficulty when using speech to communicate. This article describes the process of investigating the reliability and validity of the Computer-Based Instrument for Low Motor Language Testing (C-BiLLT), which was specifically developed to assess spoken Dutch language comprehension in children with cerebral palsy and complex communication needs. The study included 806 children with typical development, and 87 nonspeaking children with cerebral palsy and complex communication needs, and was designed to provide information on the psychometric qualities of the C-BiLLT. The potential utility of the C-BiLLT as a measure of spoken Dutch language comprehension abilities for children with cerebral palsy and complex communication needs is discussed.

  17. Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Neil P.; Sheffler, William; Sawaya, Michael R.

    2015-09-17

    We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method canmore » be used to design a wide variety of self-assembling protein nanomaterials.« less

  18. From Paper to PDA: Design and Evaluation of a Clinical Ward Instruction on a Mobile Device

    NASA Astrophysics Data System (ADS)

    Kanstrup, Anne Marie; Stage, Jan

    Mobile devices with small screens and minimal facilities for interaction are increasingly being used in complex human activities for accessing and processing information, while the user is moving. This paper presents a case study of the design and evaluation of a mobile system, which involved transformation of complex text and tables to digital format on a PDA. The application domain was an emergency medical ward, and the user group was junior registrars. We designed a PDA-based system for accessing information, focusing on the ward instruction, implemented a prototype and evaluated it for usability and utility. The evaluation results indicate significant problems in the interaction with the system as well as the extent to which the system is useful for junior registrars in their daily work.

  19. [Patient-related complexity in nursing care - Collective case studies in the acute care hospital].

    PubMed

    Gurtner, Caroline; Spirig, Rebecca; Staudacher, Diana; Huber, Evelyn

    2018-06-04

    Patient-related complexity in nursing care - Collective case studies in the acute care hospital Abstract. Patient-related complexity of nursing is defined by the three characteristics "instability", "uncertainty", and "variability". Complexity increased in the past years, due to reduced hospital length of stay and a growing number of patients with chronic and multiple diseases. We investigated the phenomenon of patient-related complexity from the point of view of nurses and clinical nurse specialists in an acute care hospital. In the context of a collective case study design, nurses and clinical nurse specialists assessed the complexity of nursing situations with a questionnaire. Subsequently, we interviewed nurses and clinical nurse specialists about their evaluation of patient-related complexity. In a within-case-analysis we summarized data inductively to create case narratives. By means of a cross-case-analysis we compared the cases with regard to deductively derived characteristics. The four cases exemplarily showed that the degree of complexity depends on the controllability and predictability of clinical problems. Additionally, complexity increases or decreases, according to patients' individual resources. Complex patient situations demand professional expertise, experience, communicative competencies and the ability for reflection. Beginner nurses would benefit from support and advice by experienced nurses to develop these skills.

  20. Statistical assessment on a combined analysis of GRYN-ROMN-UCBN upland vegetation vital signs

    USGS Publications Warehouse

    Irvine, Kathryn M.; Rodhouse, Thomas J.

    2014-01-01

    As of 2013, Rocky Mountain and Upper Columbia Basin Inventory and Monitoring Networks have multiple years of vegetation data and Greater Yellowstone Network has three years of vegetation data and monitoring is ongoing in all three networks. Our primary objective is to assess whether a combined analysis of these data aimed at exploring correlations with climate and weather data is feasible. We summarize the core survey design elements across protocols and point out the major statistical challenges for a combined analysis at present. The dissimilarity in response designs between ROMN and UCBN-GRYN network protocols presents a statistical challenge that has not been resolved yet. However, the UCBN and GRYN data are compatible as they implement a similar response design; therefore, a combined analysis is feasible and will be pursued in future. When data collected by different networks are combined, the survey design describing the merged dataset is (likely) a complex survey design. A complex survey design is the result of combining datasets from different sampling designs. A complex survey design is characterized by unequal probability sampling, varying stratification, and clustering (see Lohr 2010 Chapter 7 for general overview). Statistical analysis of complex survey data requires modifications to standard methods, one of which is to include survey design weights within a statistical model. We focus on this issue for a combined analysis of upland vegetation from these networks, leaving other topics for future research. We conduct a simulation study on the possible effects of equal versus unequal probability selection of points on parameter estimates of temporal trend using available packages within the R statistical computing package. We find that, as written, using lmer or lm for trend detection in a continuous response and clm and clmm for visually estimated cover classes with “raw” GRTS design weights specified for the weight argument leads to substantially different results and/or computational instability. However, when only fixed effects are of interest, the survey package (svyglm and svyolr) may be suitable for a model-assisted analysis for trend. We provide possible directions for future research into combined analysis for ordinal and continuous vital sign indictors.

  1. Using SysML to model complex systems for security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, Lester Arturo

    2010-08-01

    As security systems integrate more Information Technology the design of these systems has tended to become more complex. Some of the most difficult issues in designing Complex Security Systems (CSS) are: Capturing Requirements: Defining Hardware Interfaces: Defining Software Interfaces: Integrating Technologies: Radio Systems: Voice Over IP Systems: Situational Awareness Systems.

  2. Peptide-mediated vectorization of metal complexes: conjugation strategies and biomedical applications.

    PubMed

    Soler, Marta; Feliu, Lidia; Planas, Marta; Ribas, Xavi; Costas, Miquel

    2016-08-16

    The rich chemical and structural versatility of transition metal complexes provides numerous novel paths to be pursued in the design of molecules that exert particular chemical or physicochemical effects that could operate over specific biological targets. However, the poor cell permeability of metallodrugs represents an important barrier for their therapeutic use. The conjugation between metal complexes and a functional peptide vector can be regarded as a versatile and potential strategy to improve their bioavailability and accumulation inside cells, and the site selectivity of their effect. This perspective lies in reviewing the recent advances in the design of metallopeptide conjugates for biomedical applications. Additionally, we highlight the studies where this approach has been directed towards the incorporation of redox active metal centers into living organisms for modulating the cellular redox balance, as a tool with application in anticancer therapy.

  3. Design of refractive laser beam shapers to generate complex irradiance profiles

    NASA Astrophysics Data System (ADS)

    Li, Meijie; Meuret, Youri; Duerr, Fabian; Vervaeke, Michael; Thienpont, Hugo

    2014-05-01

    A Gaussian laser beam is reshaped to have specific irradiance distributions in many applications in order to ensure optimal system performance. Refractive optics are commonly used for laser beam shaping. A refractive laser beam shaper is typically formed by either two plano-aspheric lenses or by one thick lens with two aspherical surfaces. Ray mapping is a general optical design technique to design refractive beam shapers based on geometric optics. This design technique in principle allows to generate any rotational-symmetric irradiance profile, yet in literature ray mapping is mainly developed to transform a Gaussian irradiance profile to a uniform profile. For more complex profiles especially with low intensity in the inner region, like a Dark Hollow Gaussian (DHG) irradiance profile, ray mapping technique is not directly applicable in practice. In order to these complex profiles, the numerical effort of calculating the aspherical surface points and fitting a surface with sufficient accuracy increases considerably. In this work we evaluate different sampling approaches and surface fitting methods. This allows us to propose and demonstrate a comprehensive numerical approach to efficiently design refractive laser beam shapers to generate rotational-symmetric collimated beams with a complex irradiance profile. Ray tracing analysis for several complex irradiance profiles demonstrates excellent performance of the designed lenses and the versatility of our design procedure.

  4. Study of metallic structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1977-01-01

    A structural design study was made, to assess the relative merits of various metallic structural concepts and materials for an advanced supersonic aircraft cruising at Mach 2.7. Preliminary studies were made to ensure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, select structural concepts and materials, and define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology. Criteria, analysis methods, and results are presented. The effect on design methods of using the computerized structural design system was appraised, and recommendations are presented concerning further development of design tools, development of materials and structural concepts, and research on basic technology.

  5. Stream channel responses and soil loss at off-highway vehicle stream crossings in the Ouachita National Forest

    Treesearch

    Daniel A. Marion; Jonathan D. Phillips; Chad Yocum; Stephanie H. Mehlhope

    2014-01-01

    This study investigates the geomorphic effects of ford-type stream crossings in an off-highway vehicle (OHV) trail complex in the Ouachita National Forest, Arkansas. At a total of 15 crossing sites, we used a disturbed vs. undisturbed study design to assess soil truncation and an upstream vs. downstream design to assess in-channel effects. The 15 sites ranged from OHV...

  6. Applying an Activity Theory Lens to Designing Instruction for Learning about the Structure, Behavior, and Function of a Honeybee System

    ERIC Educational Resources Information Center

    Danish, Joshua A.

    2014-01-01

    This article reports on a study in which activity theory was used to design, implement, and analyze a 10-week curriculum unit about how honeybees collect nectar with a particular focus on complex systems concepts. Students (n = 42) in a multi-year kindergarten and 1st-grade classroom participated in this study as part of their 10 regular classroom…

  7. On synchronisation of a class of complex chaotic systems with complex unknown parameters via integral sliding mode control

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed; Karami-Mollaee, Ali

    2018-06-01

    Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters. Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.

  8. On the required complexity of vehicle dynamic models for use in simulation-based highway design.

    PubMed

    Brown, Alexander; Brennan, Sean

    2014-06-01

    This paper presents the results of a comprehensive project whose goal is to identify roadway design practices that maximize the margin of safety between the friction supply and friction demand. This study is motivated by the concern for increased accident rates on curves with steep downgrades, geometries that contain features that interact in all three dimensions - planar curves, grade, and superelevation. This complexity makes the prediction of vehicle skidding quite difficult, particularly for simple simulation models that have historically been used for road geometry design guidance. To obtain estimates of friction margin, this study considers a range of vehicle models, including: a point-mass model used by the American Association of State Highway Transportation Officials (AASHTO) design policy, a steady-state "bicycle model" formulation that considers only per-axle forces, a transient formulation of the bicycle model commonly used in vehicle stability control systems, and finally, a full multi-body simulation (CarSim and TruckSim) regularly used in the automotive industry for high-fidelity vehicle behavior prediction. The presence of skidding--the friction demand exceeding supply--was calculated for each model considering a wide range of vehicles and road situations. The results indicate that the most complicated vehicle models are generally unnecessary for predicting skidding events. However, there are specific maneuvers, namely braking events within lane changes and curves, which consistently predict the worst-case friction margins across all models. This suggests that any vehicle model used for roadway safety analysis should include the effects of combined cornering and braking. The point-mass model typically used by highway design professionals may not be appropriate to predict vehicle behavior on high-speed curves during braking in low-friction situations. However, engineers can use the results of this study to help select the appropriate vehicle dynamic model complexity to use in the highway design process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. An Algorithm for Integrated Subsystem Embodiment and System Synthesis

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper

    1997-01-01

    Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft.

  10. A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

  11. Structural diversity of silver (I) azine complexes - Effect of substituents and counter anions

    NASA Astrophysics Data System (ADS)

    Patra, Goutam Kumar; Mukherjee, Anindita; Mitra, Partha; Adarsh, N. N.

    2011-08-01

    Three new Ag(I) complexes, 1, 2, and 3 of two azine ligands diacetyl dihydrazone ( L1) and benzil dihydrazone ( L2) have been synthesized and characterized by single crystal X-ray diffraction studies (for 2 and 3), X-ray powder diffraction studies( 1 and 2), elemental analyses, IR and UV-VIS spectroscopy and TGA analysis. They represent one-dimensional polymeric assemblies and discrete dinuclear Ag(I) complex depending on functionality of the ligands and the counter anions. Tetrahedral as well as square pyramidal coordination motifs of the silver (I) ions have been observed in the supramolecular designing of such hybrid organic-inorganic materials.

  12. Linear control theory for gene network modeling.

    PubMed

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  13. A SURVEY OF LABORATORY AND STATISTICAL ISSUES RELATED TO FARMWORKER EXPOSURE STUDIES

    EPA Science Inventory

    Developing internally valid, and perhaps generalizable, farmworker exposure studies is a complex process that involves many statistical and laboratory considerations. Statistics are an integral component of each study beginning with the design stage and continuing to the final da...

  14. 1983 AFOSR/AFRPL Chemical Rocket Research Meeting, Abstracts and Agenda. Includes: Abstracts on Advanced Diagnostics of Reacting Flow, 28 February - 3 March 1983, Lancaster, California.

    DTIC Science & Technology

    1983-02-01

    blow-off stability and fractional conversion was evaluated for design of an experimental study of these phenomena. The apparatus designed will be...the development of an array of experimental methods and test strategies designed to unravel a complex process that is very difficult to observe directly...this effort of lead field theoretic analysis as a design basis has made that possible. The experimental phase of the effort has three major

  15. Proceedings of the Conference on the Design of Experiments in Army Research Development and Testing (28th) Held at Monterey, California on 20-22 October 1982

    DTIC Science & Technology

    1983-06-01

    program specifically designed to solve IME equations. The IME measure is a useful index because it translates system performance characteristics of...8.0 SUMMARY The purpose of this study was to design the field evaluation of a camou- flage system in such a manner that the camoufleur could...analysis of complex factorial designs and their associated systems of confounding ((44), [46)) and to the introduction of incomplete block designs . My

  16. Managing complex research datasets using electronic tools: A meta-analysis exemplar

    PubMed Central

    Brown, Sharon A.; Martin, Ellen E.; Garcia, Theresa J.; Winter, Mary A.; García, Alexandra A.; Brown, Adama; Cuevas, Heather E.; Sumlin, Lisa L.

    2013-01-01

    Meta-analyses of broad scope and complexity require investigators to organize many study documents and manage communication among several research staff. Commercially available electronic tools, e.g., EndNote, Adobe Acrobat Pro, Blackboard, Excel, and IBM SPSS Statistics (SPSS), are useful for organizing and tracking the meta-analytic process, as well as enhancing communication among research team members. The purpose of this paper is to describe the electronic processes we designed, using commercially available software, for an extensive quantitative model-testing meta-analysis we are conducting. Specific electronic tools improved the efficiency of (a) locating and screening studies, (b) screening and organizing studies and other project documents, (c) extracting data from primary studies, (d) checking data accuracy and analyses, and (e) communication among team members. The major limitation in designing and implementing a fully electronic system for meta-analysis was the requisite upfront time to: decide on which electronic tools to use, determine how these tools would be employed, develop clear guidelines for their use, and train members of the research team. The electronic process described here has been useful in streamlining the process of conducting this complex meta-analysis and enhancing communication and sharing documents among research team members. PMID:23681256

  17. Managing complex research datasets using electronic tools: a meta-analysis exemplar.

    PubMed

    Brown, Sharon A; Martin, Ellen E; Garcia, Theresa J; Winter, Mary A; García, Alexandra A; Brown, Adama; Cuevas, Heather E; Sumlin, Lisa L

    2013-06-01

    Meta-analyses of broad scope and complexity require investigators to organize many study documents and manage communication among several research staff. Commercially available electronic tools, for example, EndNote, Adobe Acrobat Pro, Blackboard, Excel, and IBM SPSS Statistics (SPSS), are useful for organizing and tracking the meta-analytic process as well as enhancing communication among research team members. The purpose of this article is to describe the electronic processes designed, using commercially available software, for an extensive, quantitative model-testing meta-analysis. Specific electronic tools improved the efficiency of (a) locating and screening studies, (b) screening and organizing studies and other project documents, (c) extracting data from primary studies, (d) checking data accuracy and analyses, and (e) communication among team members. The major limitation in designing and implementing a fully electronic system for meta-analysis was the requisite upfront time to decide on which electronic tools to use, determine how these tools would be used, develop clear guidelines for their use, and train members of the research team. The electronic process described here has been useful in streamlining the process of conducting this complex meta-analysis and enhancing communication and sharing documents among research team members.

  18. Engineering Design Thinking

    ERIC Educational Resources Information Center

    Lammi, Matthew; Becker, Kurt

    2013-01-01

    Engineering design thinking is "a complex cognitive process" including divergence-convergence, a systems perspective, ambiguity, and collaboration (Dym, Agogino, Eris, Frey, & Leifer, 2005, p. 104). Design is often complex, involving multiple levels of interacting components within a system that may be nested within or connected to other systems.…

  19. Design, synthesis and evaluation of a new Mn - Contrast agent for MR imaging of myocardium based on the DTPA-phenylpentadecanoic acid complex

    NASA Astrophysics Data System (ADS)

    Belyanin, Maxim L.; Stepanova, Elena V.; Valiev, Rashid R.; Filimonov, Victor D.; Usov, Vladimir Y.; Borodin, Oleg Y.; Ågren, Hans

    2016-11-01

    In the present paper we describe the first synthesis and evaluation of a novel Mn (II) complex (DTPA-PPDA Mn (II)) which contains a C-15 fatty acid moiety that has high affinity to the heart muscle. The complexation energy of DTPA-PPDA Mn (II) evaluated by quantum chemistry methodology indicates that it essentially exceeds the corresponding value for the known DTPA Mn (II) complex. Molecular docking revealed that the affinity of the designed complex to the heart-type transport protein H-FABP well exceeds that of lauric acid. Phantom experiments in low-field MRI the designed contrast agent provides MR imaging comparable to gadopentetic acid.

  20. DIY 3D printing of custom orthopaedic implants: a proof of concept study.

    PubMed

    Frame, Mark; Leach, William

    2014-03-01

    3D printing is an emerging technology that is primarily used for aiding the design and prototyping of implants. As this technology has evolved it has now become possible to produce functional and definitive implants manufactured using a 3D printing process. This process, however, previously required a large financial investment in complex machinery and professionals skilled in 3D product design. Our pilot study's aim was to design and create a 3D printed custom orthopaedic implant using only freely available consumer hardware and software.

  1. Chip Design Process Optimization Based on Design Quality Assessment

    NASA Astrophysics Data System (ADS)

    Häusler, Stefan; Blaschke, Jana; Sebeke, Christian; Rosenstiel, Wolfgang; Hahn, Axel

    2010-06-01

    Nowadays, the managing of product development projects is increasingly challenging. Especially the IC design of ASICs with both analog and digital components (mixed-signal design) is becoming more and more complex, while the time-to-market window narrows at the same time. Still, high quality standards must be fulfilled. Projects and their status are becoming less transparent due to this complexity. This makes the planning and execution of projects rather difficult. Therefore, there is a need for efficient project control. A main challenge is the objective evaluation of the current development status. Are all requirements successfully verified? Are all intermediate goals achieved? Companies often develop special solutions that are not reusable in other projects. This makes the quality measurement process itself less efficient and produces too much overhead. The method proposed in this paper is a contribution to solve these issues. It is applied at a German design house for analog mixed-signal IC design. This paper presents the results of a case study and introduces an optimized project scheduling on the basis of quality assessment results.

  2. Pyviko: an automated Python tool to design gene knockouts in complex viruses with overlapping genes.

    PubMed

    Taylor, Louis J; Strebel, Klaus

    2017-01-07

    Gene knockouts are a common tool used to study gene function in various organisms. However, designing gene knockouts is complicated in viruses, which frequently contain sequences that code for multiple overlapping genes. Designing mutants that can be traced by the creation of new or elimination of existing restriction sites further compounds the difficulty in experimental design of knockouts of overlapping genes. While software is available to rapidly identify restriction sites in a given nucleotide sequence, no existing software addresses experimental design of mutations involving multiple overlapping amino acid sequences in generating gene knockouts. Pyviko performed well on a test set of over 240,000 gene pairs collected from viral genomes deposited in the National Center for Biotechnology Information Nucleotide database, identifying a point mutation which added a premature stop codon within the first 20 codons of the target gene in 93.2% of all tested gene-overprinted gene pairs. This shows that Pyviko can be used successfully in a wide variety of contexts to facilitate the molecular cloning and study of viral overprinted genes. Pyviko is an extensible and intuitive Python tool for designing knockouts of overlapping genes. Freely available as both a Python package and a web-based interface ( http://louiejtaylor.github.io/pyViKO/ ), Pyviko simplifies the experimental design of gene knockouts in complex viruses with overlapping genes.

  3. QSAR studies in the discovery of novel type-II diabetic therapies.

    PubMed

    Abuhammad, Areej; Taha, Mutasem O

    2016-01-01

    Type-II diabetes mellitus (T2DM) is a complex chronic disease that represents a major therapeutic challenge. Despite extensive efforts in T2DM drug development, therapies remain unsatisfactory. Currently, there are many novel and important antidiabetic drug targets under investigation by many research groups worldwide. One of the main challenges to develop effective orally active hypoglycemic agents is off-target effects. Computational tools have impacted drug discovery at many levels. One of the earliest methods is quantitative structure-activity relationship (QSAR) studies. QSAR strategies help medicinal chemists understand the relationship between hypoglycemic activity and molecular properties. Hence, QSAR may hold promise in guiding the synthesis of specifically designed novel ligands that demonstrate high potency and target selectivity. This review aims to provide an overview of the QSAR strategies used to model antidiabetic agents. In particular, this review focuses on drug targets that raised recent scientific interest and/or led to successful antidiabetic agents in the market. Special emphasis has been made on studies that led to the identification of novel antidiabetic scaffolds. Computer-aided molecular design and discovery techniques like QSAR have a great potential in designing leads against complex diseases such as T2DM. Combined with other in silico techniques, QSAR can provide more useful and rational insights to facilitate the discovery of novel compounds. However, since T2DM is a complex disease that includes several faulty biological targets, multi-target QSAR studies are recommended in the future to achieve efficient antidiabetic therapies.

  4. EMILiO: a fast algorithm for genome-scale strain design.

    PubMed

    Yang, Laurence; Cluett, William R; Mahadevan, Radhakrishnan

    2011-05-01

    Systems-level design of cell metabolism is becoming increasingly important for renewable production of fuels, chemicals, and drugs. Computational models are improving in the accuracy and scope of predictions, but are also growing in complexity. Consequently, efficient and scalable algorithms are increasingly important for strain design. Previous algorithms helped to consolidate the utility of computational modeling in this field. To meet intensifying demands for high-performance strains, both the number and variety of genetic manipulations involved in strain construction are increasing. Existing algorithms have experienced combinatorial increases in computational complexity when applied toward the design of such complex strains. Here, we present EMILiO, a new algorithm that increases the scope of strain design to include reactions with individually optimized fluxes. Unlike existing approaches that would experience an explosion in complexity to solve this problem, we efficiently generated numerous alternate strain designs producing succinate, l-glutamate and l-serine. This was enabled by successive linear programming, a technique new to the area of computational strain design. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Study/experimental/research design: much more than statistics.

    PubMed

    Knight, Kenneth L

    2010-01-01

    The purpose of study, experimental, or research design in scientific manuscripts has changed significantly over the years. It has evolved from an explanation of the design of the experiment (ie, data gathering or acquisition) to an explanation of the statistical analysis. This practice makes "Methods" sections hard to read and understand. To clarify the difference between study design and statistical analysis, to show the advantages of a properly written study design on article comprehension, and to encourage authors to correctly describe study designs. The role of study design is explored from the introduction of the concept by Fisher through modern-day scientists and the AMA Manual of Style. At one time, when experiments were simpler, the study design and statistical design were identical or very similar. With the complex research that is common today, which often includes manipulating variables to create new variables and the multiple (and different) analyses of a single data set, data collection is very different than statistical design. Thus, both a study design and a statistical design are necessary. Scientific manuscripts will be much easier to read and comprehend. A proper experimental design serves as a road map to the study methods, helping readers to understand more clearly how the data were obtained and, therefore, assisting them in properly analyzing the results.

  6. An intelligent advisor for the design manager

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Padula, Sharon L.

    1989-01-01

    A design problem is viewed as a complex system divisible into modules. Before the design of a complex system can begin, much time and money are spent in determining the couplings among modules and the presence of iterative loops. This is important because the design manager must know how to group the modules into substems and how to assign subsystems to design teams so that changes in one subsystem will have predictable effects on other subsystems. Determining these subsystems is not an easy, straightforward process and often important couplings are overlooked. Moreover, the planning task must be repeated as new information becomes available or as the design specifications change. The purchase of this research effort is to develop a knowledge-based tool to act as an intelligent advisor for the design manager. This tool identifies the subsystems of a complex design problem, orders them into a well-structured format, and marks the couplings among the subsystems to facilitate the use of multilevel tools. The tool was tested in the decomposition of the COFS (Control of Flexible Structures) mast design which has about 50 modules. This test indicated that this type of approach could lead to a substantial savings by organizing and displaying a complex problem as a sequence of subsystems easily divisible among design teams.

  7. Creating and validating GIS measures of urban design for health research.

    PubMed

    Purciel, Marnie; Neckerman, Kathryn M; Lovasi, Gina S; Quinn, James W; Weiss, Christopher; Bader, Michael D M; Ewing, Reid; Rundle, Andrew

    2009-12-01

    Studies relating urban design to health have been impeded by the unfeasibility of conducting field observations across large areas and the lack of validated objective measures of urban design. This study describes measures for five dimensions of urban design - imageability, enclosure, human scale, transparency, and complexity - created using public geographic information systems (GIS) data from the US Census and city and state government. GIS measures were validated for a sample of 588 New York City block faces using a well-documented field observation protocol. Correlations between GIS and observed measures ranged from 0.28 to 0.89. Results show valid urban design measures can be constructed from digital sources.

  8. Creating and validating GIS measures of urban design for health research

    PubMed Central

    Purciel, Marnie; Neckerman, Kathryn M.; Lovasi, Gina S.; Quinn, James W.; Weiss, Christopher; Bader, Michael D.M.; Ewing, Reid; Rundle, Andrew

    2012-01-01

    Studies relating urban design to health have been impeded by the unfeasibility of conducting field observations across large areas and the lack of validated objective measures of urban design. This study describes measures for five dimensions of urban design – imageability, enclosure, human scale, transparency, and complexity – created using public geographic information systems (GIS) data from the US Census and city and state government. GIS measures were validated for a sample of 588 New York City block faces using a well-documented field observation protocol. Correlations between GIS and observed measures ranged from 0.28 to 0.89. Results show valid urban design measures can be constructed from digital sources. PMID:22956856

  9. Forced migrants involved in setting the agenda and designing research to reduce impacts of complex emergencies: combining Swarm with patient and public involvement.

    PubMed

    Brainard, Julii Suzanne; Al Assaf, Enana; Omasete, Judith; Leach, Steve; Hammer, Charlotte C; Hunter, Paul R

    2017-01-01

    The UK's National Institute for Health Research (NIHR) Health Protection Research Unit in Emergency Preparedness and Response was asked to undertake research on how to reduce the impact of complex national/international emergencies on public health. How to focus the research and decide on priority topics was challenging, given the nature of complex events. Using a type of structured brain-storming, the researchers identified the ongoing UK, European and international migration crisis as both complex and worthy of deeper research. To further focus the research, two representatives of forced migrant communities were invited to join the project team as patient and public (PPI) representatives. They attended regular project meetings, insightfully contributed to and advised on practical aspects of potential research areas. The representatives identified cultural obstacles and community needs and helped choose the final research study design, which was to interview forced migrants about their strategies to build emotional resilience and prevent mental illness. The representatives also helped design recruitment documents, and undertake recruitment and interviewer training. Many events with wide-ranging negative health impacts are notable for complexity: lack of predictability, non-linear feedback mechanisms and unexpected consequences. A multi-disciplinary research team was tasked with reducing the public health impacts from complex events, but without a pre-specified topic area or research design. This report describes using patient and public involvement within an adaptable but structured development process to set research objectives and aspects of implementation. An agile adaptive development approach, sometimes described as swarm , was used to identify possible research areas. Swarm is meant to quickly identify strengths and weaknesses of any candidate project, to accelerate early failure before resources are invested. When aspects of the European migration crisis were identified as a potential priority topic area, two representatives of forced migrant communities were recruited to explore possible research ideas. These representatives helped set the specific research objectives and advised on aspects of implementation, still within the swarm framework for project development. Over ten months, many research ideas were considered by the collaborative working group in a series of six group meetings, supplemented by email contact in between. Up to four possible research ideas were scrutinised at any one meeting, with a focus on identifying practical or desirable aspects of each proposed project. Interest settled on a study to solicit original data about successful strategies that forced migrants use to adapt to life in the UK, with an emphasis on successfully promoting resilience and minimizing emotional distress. "Success in resettlement" was identified to be a more novel theme than "barriers to adaption" research. A success approach encourages participation when individuals may find discussion of mental illness stigmatising. The patient representatives helped with design of patient-facing and interview training materials, interviewer training (mock interviews), and aspects of the recruitment. Using patient and public involvement (PPI) within an early failure development approach that itself arises from theory on complex adaptive systems, we successfully implemented a dynamic development process to determine research topic and study design. The PPI representatives were closely involved in setting research objectives and aspects of implementation.

  10. [Evaluation of the quality of Anales Españoles de Pediatría versus Medicina Clínica].

    PubMed

    Bonillo Perales, A

    2002-08-01

    To compare the scientific methodology and quality of articles published in Anales Españoles de Pediatría and Medicina Clínica. A stratified and randomized selection of 40 original articles published in 2001 in Anales Españoles de Pediatría and Medicina Clínica was made. Methodological errors in the critical analysis of original articles (21 items), epidemiological design, sample size, statistical complexity and levels of scientific evidence in both journals were compared using the chi-squared and/or Student's t-test. No differences were found between Anales Españoles de Pediatría and Medicina Clínica in the critical evaluation of original articles (p > 0.2). In original articles published in Anales Españoles de Pediatría, the designs were of lower scientific evidence (a lower proportion of clinical trials, cohort and case-control studies) (17.5 vs 42.5 %, p 0.05), sample sizes were smaller (p 0.003) and there was less statistical complexity in the results section (p 0.03). To improve the scientific quality of Anales Españoles de Pediatría, improved study designs, larger sample sizes and greater statistical complexity are required in its articles.

  11. Reducing the complexity of the software design process with object-oriented design

    NASA Technical Reports Server (NTRS)

    Schuler, M. P.

    1991-01-01

    Designing software is a complex process. How object-oriented design (OOD), coupled with formalized documentation and tailored object diagraming techniques, can reduce the complexity of the software design process is described and illustrated. The described OOD methodology uses a hierarchical decomposition approach in which parent objects are decomposed into layers of lower level child objects. A method of tracking the assignment of requirements to design components is also included. Increases in the reusability, portability, and maintainability of the resulting products are also discussed. This method was built on a combination of existing technology, teaching experience, consulting experience, and feedback from design method users. The discussed concepts are applicable to hierarchal OOD processes in general. Emphasis is placed on improving the design process by documenting the details of the procedures involved and incorporating improvements into those procedures as they are developed.

  12. A Complex Systems Approach to Causal Discovery in Psychiatry.

    PubMed

    Saxe, Glenn N; Statnikov, Alexander; Fenyo, David; Ren, Jiwen; Li, Zhiguo; Prasad, Meera; Wall, Dennis; Bergman, Nora; Briggs, Ernestine C; Aliferis, Constantin

    2016-01-01

    Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach--the Complex Systems-Causal Network (CS-CN) method-designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of traumatized children (replication study). Finally, the CS-CN method was applied in a controlled experiment using a 'gold standard' dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment). The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro) and high-level (macro) insights and thus represents a promising approach for complex systems-oriented research in psychiatry.

  13. Effects of chemical disinfectant solutions on the stability and accuracy of the dental impression complex.

    PubMed

    Rios, M P; Morgano, S M; Stein, R S; Rose, L

    1996-10-01

    Currently available impression materials were not designed for disinfection or sterilization, and it is conceivable that disinfectants may adversely affect impressions. This study evaluated the accuracy and dimensional stability of polyether (Permadyne/Impregum) and polyvinyl siloxane (Express) impression materials retained by their adhesives in two different acrylic resin tray designs (perforated and nonperforated) when the materials were immersed for either 30 or 60 minutes in three high-level disinfectants. Distilled water and no solution served as controls. A stainless steel test analog similar to ADA specification No. 19 was used. A total of 400 impressions were made with all combinations of impression materials, tray designs, disinfectant, and soaking times. Samples were evaluated microscopically before and after immersion and 48 hours after soaking. Results indicated that these two impression materials were dimensionally stable. Because the results emphasized the stability and accuracy of the impression complex under various conditions, dentists can perform disinfection procedures similar to the protocol of this study without concern for clinically significant distortion of the impression.

  14. Position Paper: Designing Complex Systems to Support Interdisciplinary Cognitive Work

    NASA Technical Reports Server (NTRS)

    Greene, Melissa T.; Papalambros, Panos Y.; Mcgowan, Anna-Maria R.

    2016-01-01

    The paper argues that the field we can call cognitive science of interdisciplinary collaboration is an important area of study for improving design of Large-Scale Complex Systems (LaCES) and supporting cognitive work. The paper mostly raised questions that have been documented in earlier qualitative analysis studies, and provided possible avenues of exploration for addressing them. There are likely further contributions from additional disciplines beyond those mentioned in this paper that should be considered and integrated into such a cognitive science framework. Knowledge and awareness of various perspectives will help to inform the types of interventions available for improving LaCES design and functionality. For example, a cognitive interpretation of interdisciplinary collaborations in LaCES elucidated the need for a "translator" or "mediator" in helping subject matter experts to transcend language boundaries, mitigate single discipline bias, support integrative activities, and correct misaligned objectives. Additional research in this direction is likely to uncover similar gaps and opportunities for improvements in practice.

  15. Design Study for the Asteroid Redirect Vehicle (ARV) Composite Primary Bulkhead

    NASA Technical Reports Server (NTRS)

    Cressman, Thomas O.; Paddock, David A.

    2017-01-01

    A design study was undertaken of a carbon fiber primary bulkhead for a large solar electric propulsion (SEP) spacecraft. The bulkhead design, supporting up to 16 t of xenon propellant, progressed from one consisting of many simple parts with many complex joints, to one consisting of a few complex parts with a few simple joints. The unique capabilities of composites led to a topology that transitioned loads from bending to in-plane tension and shear, with low part count. This significantly improved bulkhead manufacturability, cost, and mass. The stiffness-driven structure utilized high-modulus M55J fiber unidirectional prepregs. A full-scale engineering demonstration unit (EDU) of the concept was used to demonstrate manufacturability of the concept. Actual labor data was obtained, which could be extrapolated to a full bulkhead. The effort demonstrated the practicality of using high-modulus fiber (HMF) composites for unique shape topologies that minimize mass and cost. The lessons are applicable to primary and secondary aerospace structures that are stiffness driven.

  16. Comparing Methods for Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Lai, Chok Fung

    2011-01-01

    This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.

  17. Complex sample survey estimation in static state-space

    Treesearch

    Raymond L. Czaplewski

    2010-01-01

    Increased use of remotely sensed data is a key strategy adopted by the Forest Inventory and Analysis Program. However, multiple sensor technologies require complex sampling units and sampling designs. The Recursive Restriction Estimator (RRE) accommodates this complexity. It is a design-consistent Empirical Best Linear Unbiased Prediction for the state-vector, which...

  18. Designing an Educational Game with Ten Steps to Complex Learning

    ERIC Educational Resources Information Center

    Enfield, Jacob

    2012-01-01

    Few instructional design (ID) models exist which are specific for developing educational games. Moreover, those extant ID models have not been rigorously evaluated. No ID models were found which focus on educational games with complex learning objectives. "Ten Steps to Complex Learning" (TSCL) is based on the four component instructional…

  19. Systems science and obesity policy: a novel framework for analyzing and rethinking population-level planning.

    PubMed

    Johnston, Lee M; Matteson, Carrie L; Finegood, Diane T

    2014-07-01

    We demonstrate the use of a systems-based framework to assess solutions to complex health problems such as obesity. We coded 12 documents published between 2004 and 2013 aimed at influencing obesity planning for complex systems design (9 reports from US and Canadian governmental or health authorities, 1 Cochrane review, and 2 Institute of Medicine reports). We sorted data using the intervention-level framework (ILF), a novel solutions-oriented approach to complex problems. An in-depth comparison of 3 documents provides further insight into complexity and systems design in obesity policy. The majority of strategies focused mainly on changing the determinants of energy imbalance (food intake and physical activity). ILF analysis brings to the surface actions aimed at higher levels of system function and points to a need for more innovative policy design. Although many policymakers acknowledge obesity as a complex problem, many strategies stem from the paradigm of individual choice and are limited in scope. The ILF provides a template to encourage natural systems thinking and more strategic policy design grounded in complexity science.

  20. Do complexity-informed health interventions work? A scoping review.

    PubMed

    Brainard, Julii; Hunter, Paul R

    2016-09-20

    The lens of complexity theory is widely advocated to improve health care delivery. However, empirical evidence that this lens has been useful in designing health care remains elusive. This review assesses whether it is possible to reliably capture evidence for efficacy in results or process within interventions that were informed by complexity science and closely related conceptual frameworks. Systematic searches of scientific and grey literature were undertaken in late 2015/early 2016. Titles and abstracts were screened for interventions (A) delivered by the health services, (B) that explicitly stated that complexity science provided theoretical underpinning, and (C) also reported specific outcomes. Outcomes had to relate to changes in actual practice, service delivery or patient clinical indicators. Data extraction and detailed analysis was undertaken for studies in three developed countries: Canada, UK and USA. Data were extracted for intervention format, barriers encountered and quality aspects (thoroughness or possible biases) of evaluation and reporting. From 5067 initial finds in scientific literature and 171 items in grey literature, 22 interventions described in 29 articles were selected. Most interventions relied on facilitating collaboration to find solutions to specific or general problems. Many outcomes were very positive. However, some outcomes were measured only subjectively, one intervention was designed with complexity theory in mind but did not reiterate this in subsequent evaluation and other interventions were credited as compatible with complexity science but reported no relevant theoretical underpinning. Articles often omitted discussion on implementation barriers or unintended consequences, which suggests that complexity theory was not widely used in evaluation. It is hard to establish cause and effect when attempting to leverage complex adaptive systems and perhaps even harder to reliably find evidence that confirms whether complexity-informed interventions are usually effective. While it is possible to show that interventions that are compatible with complexity science seem efficacious, it remains difficult to show that explicit planning with complexity in mind was particularly valuable. Recommendations are made to improve future evaluation reports, to establish a better evidence base about whether this conceptual framework is useful in intervention design and implementation.

  1. Simulation of Propellant Loading System Senior Design Implement in Computer Algorithm

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak

    2010-01-01

    Propellant loading from the Storage Tank to the External Tank is one of the very important and time consuming pre-launch ground operations for the launch vehicle. The propellant loading system is a complex integrated system involving many physical components such as the storage tank filled with cryogenic fluid at a very low temperature, the long pipe line connecting the storage tank with the external tank, the external tank along with the flare stack, and vent systems for releasing the excess fuel. Some of the very important parameters useful for design purpose are the prediction of pre-chill time, loading time, amount of fuel lost, the maximum pressure rise etc. The physics involved for mathematical modeling is quite complex due to the fact the process is unsteady, there is phase change as some of the fuel changes from liquid to gas state, then conjugate heat transfer in the pipe walls as well as between solid-to-fluid region. The simulation is very tedious and time consuming too. So overall, this is a complex system and the objective of the work is student's involvement and work in the parametric study and optimization of numerical modeling towards the design of such system. The students have to first become familiar and understand the physical process, the related mathematics and the numerical algorithm. The work involves exploring (i) improved algorithm to make the transient simulation computationally effective (reduced CPU time) and (ii) Parametric study to evaluate design parameters by changing the operational conditions

  2. Subband Image Coding with Jointly Optimized Quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.

    1995-01-01

    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.

  3. Developing Seventh Grade Students' Understanding of Complex Environmental Problems with Systems Tools and Representations: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Doganca Kucuk, Zerrin; Saysel, Ali Kerem

    2018-01-01

    A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A…

  4. Product Knowledge and Product Involvement as Moderators of the Effects of Information on Purchase Decisions: A Case Study Using the Perfect Information Frontier Approach.

    ERIC Educational Resources Information Center

    Bei, Lien-Ti; Widdows, Richard

    1999-01-01

    Using a 2x2x2 factorial design, data from 282 respondents illustrate that people with more product knowledge ("experts") are more likely to be persuaded by complex than simple product information. "Novices" reacted similarly to simple and complex information. The type of information provided influences purchasing decisions. (SK)

  5. Evaluation Report: Year 2 Implementation of the Small High Schools Initiative Manual Complex, Denver, Colorado

    ERIC Educational Resources Information Center

    Goldfeder, Elizabeth; Ross, Steven M.

    2003-01-01

    This report presents the findings of a study conducted by the Center for Research in Educational Policy (CREP) on the second year of implementation of the Small Schools Initiative at the Manual High School Complex. The major goal of this research was to evaluate perceived progress and outcomes at all three high schools. The design and methodology…

  6. Mars Rover Concept Vehicle

    NASA Image and Video Library

    2017-06-05

    Crowds gather around the scientifically-themed Mars rover concept vehicle at the Kennedy Space Center Visitor Complex. It is a part of the "Summer of Mars" program designed to provide a survey of NASA's studies of the Red Planet. The builders of the rover, Parker Brothers Concepts of Port Canaveral, Florida, incorporated input into its design from NASA subject matter experts.

  7. Case Study of Using Resources about Sonar Operators To Teach Instructional Design.

    ERIC Educational Resources Information Center

    Mclellan, Hilary

    1993-01-01

    Describes a fictional account of the work of a submarine sonar operator ("The Hunt for Red October" by Tom Clancy) that captures the practitioner in a complex real-world work context featuring sophisticated electronic technologies. Describes how fiction can be adapted for and used as a basis for instructional design students to explore…

  8. Student Multimedia Autobiographies: The Roles of Technology, Personal Narrative, and Signifying Practices

    ERIC Educational Resources Information Center

    Keane, Julie Thompson

    2010-01-01

    In 2009, the Parsons StoryCorps qualitative case study was designed to closely observe the complexity of youth engagement with digital media for self-presentation in an afterschool digital storytelling project designed to provide students with rich, varied uses of technology in a urban middle school in North Carolina. Several frameworks were…

  9. A Web-Based Adaptive Tutor to Teach PCR Primer Design

    ERIC Educational Resources Information Center

    van Seters, Janneke R.; Wellink, Joan; Tramper, Johannes; Goedhart, Martin J.; Ossevoort, Miriam A.

    2012-01-01

    When students have varying prior knowledge, personalized instruction is desirable. One way to personalize instruction is by using adaptive e-learning to offer training of varying complexity. In this study, we developed a web-based adaptive tutor to teach PCR primer design: the PCR Tutor. We used part of the Taxonomy of Educational Objectives (the…

  10. Enhancing Learning Effectiveness in Digital Design Courses through the Use of Programmable Logic Boards

    ERIC Educational Resources Information Center

    Zhu, Yi; Weng, T.; Cheng, Chung-Kuan

    2009-01-01

    Incorporating programmable logic devices (PLD) in digital design courses has become increasingly popular. The advantages of using PLDs, such as complex programmable logic devices (CPLDs) and field programmable gate arrays (FPGA), have been discussed before. However, previous studies have focused on the experiences from the point of view of the…

  11. Designing for Learning: Online Social Networks as a Classroom Environment

    ERIC Educational Resources Information Center

    Casey, Gail; Evans, Terry

    2011-01-01

    This paper deploys notions of emergence, connections, and designs for learning to conceptualize high school students' interactions when using online social media as a learning environment. It makes links to chaos and complexity theories and to fractal patterns as it reports on a part of the first author's action research study, conducted while she…

  12. Lessons from the Sea: A Case Study of an Experiential MBA International Management Course

    ERIC Educational Resources Information Center

    Chaves, Wanda V.; Yacovelli, Steven R.

    2008-01-01

    This article describes the design and implementation of a unique course developed to deeply engage MBA students in the complexities of the field of international management. This experiential course was designed around an integrative project based on the cruise industry. The professor worked with the leadership team of a major cruise line to…

  13. Practicing Low-Context Communication Strategies in Online Course Design for International Students Studying in the U.S.

    ERIC Educational Resources Information Center

    Lalla, Sharon

    2015-01-01

    A myriad of cultural differences can take educators in a multitude of directions when planning intentional design strategies in an online course to become more inclusive of international student needs. The topic of cultural diversity is a complex discussion. Nevertheless, there are ways educators can begin to practice culturally inclusive…

  14. PeptideNavigator: An interactive tool for exploring large and complex data sets generated during peptide-based drug design projects.

    PubMed

    Diller, Kyle I; Bayden, Alexander S; Audie, Joseph; Diller, David J

    2018-01-01

    There is growing interest in peptide-based drug design and discovery. Due to their relatively large size, polymeric nature, and chemical complexity, the design of peptide-based drugs presents an interesting "big data" challenge. Here, we describe an interactive computational environment, PeptideNavigator, for naturally exploring the tremendous amount of information generated during a peptide drug design project. The purpose of PeptideNavigator is the presentation of large and complex experimental and computational data sets, particularly 3D data, so as to enable multidisciplinary scientists to make optimal decisions during a peptide drug discovery project. PeptideNavigator provides users with numerous viewing options, such as scatter plots, sequence views, and sequence frequency diagrams. These views allow for the collective visualization and exploration of many peptides and their properties, ultimately enabling the user to focus on a small number of peptides of interest. To drill down into the details of individual peptides, PeptideNavigator provides users with a Ramachandran plot viewer and a fully featured 3D visualization tool. Each view is linked, allowing the user to seamlessly navigate from collective views of large peptide data sets to the details of individual peptides with promising property profiles. Two case studies, based on MHC-1A activating peptides and MDM2 scaffold design, are presented to demonstrate the utility of PeptideNavigator in the context of disparate peptide-design projects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  16. Report: Optimization study of the preparation factors for argan oil microcapsule based on hybrid-level orthogonal array design via SPSS modeling.

    PubMed

    Zhao, Xi; Wu, Xiaoli; Zhou, Hui; Jiang, Tao; Chen, Chun; Liu, Mingshi; Jin, Yuanbao; Yang, Dongsheng

    2014-11-01

    To optimize the preparation factors for argan oil microcapsule using complex coacervation of chitosan cross-linked with gelatin based on hybrid-level orthogonal array design via SPSS modeling. Eight relatively significant factors were firstly investigated and selected as calculative factors for the orthogonal array design from the total of ten factors effecting the preparation of argan oil microcapsule by utilizing the single factor variable method. The modeling of hybrid-level orthogonal array design was built in these eight factors with the relevant levels (9, 9, 9, 9, 7, 6, 2 and 2 respectively). The preparation factors for argan oil microcapsule were investigated and optimized according to the results of hybrid-level orthogonal array design. The priorities order and relevant optimum levels of preparation factors standard to base on the percentage of microcapsule with the diameter of 30~40 μm via SPSS. Experimental data showed that the optimum factors were controlling the chitosan/gelatin ratio, the systemic concentration and the core/shell ratio at 1:2, 1.5% and 1:7 respectively, presetting complex coacervation pH at 6.4, setting cross-linking time and complex coacervation at 75 min and 30 min, using the glucose-delta lactone as the type of cross-linking agent, and selecting chitosan with the molecular weight of 2000~3000.

  17. Minimal perceptrons for memorizing complex patterns

    NASA Astrophysics Data System (ADS)

    Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo

    2016-11-01

    Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.

  18. DeMAID: A Design Manager's Aide for Intelligent Decomposition user's guide

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    A design problem is viewed as a complex system divisible into modules. Before the design of a complex system can begin, the couplings among modules and the presence of iterative loops is determined. This is important because the design manager must know how to group the modules into subsystems and how to assign subsystems to design teams so that changes in one subsystem will have predictable effects on other subsystems. Determining these subsystems is not an easy, straightforward process and often important couplings are overlooked. Moreover, the planning task must be repeated as new information become available or as the design specifications change. The purpose of this research is to develop a knowledge-based tool called the Design Manager's Aide for Intelligent Decomposition (DeMAID) to act as an intelligent advisor for the design manager. DeMaid identifies the subsystems of a complex design problem, orders them into a well-structured format, and marks the couplings among the subsystems to facilitate the use of multilevel tools. DeMAID also provides the design manager with the capability of examining the trade-offs between sequential and parallel processing. This type of approach could lead to a substantial savings or organizing and displaying a complex problem as a sequence of subsystems easily divisible among design teams. This report serves as a User's Guide for the program.

  19. Formal Verification of Complex Systems based on SysML Functional Requirements

    DTIC Science & Technology

    2014-12-23

    Formal Verification of Complex Systems based on SysML Functional Requirements Hoda Mehrpouyan1, Irem Y. Tumer2, Chris Hoyle2, Dimitra Giannakopoulou3...requirements for design of complex engineered systems. The proposed ap- proach combines a SysML modeling approach to document and structure safety requirements...methods and tools to support the integration of safety into the design solution. 2.1. SysML for Complex Engineered Systems Traditional methods and tools

  20. Study of structural design concepts for an arrow wing supersonic transport configuration, volume 1. Tasks 1 and 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A structural design study was made, based on a 1975 level of technology, to assess the relative merits of structural concepts and materials for an advanced supersonic transport cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, to integrate the propulsion system with the airframe, to select structural concepts and materials, and to define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology and for use in future studies of aerostructural trades, and application of advanced technology. Criteria, analysis methods, and results are presented.

  1. Designed Proteins Induce the Formation of Nanocage-containing Extracellular Vesicles

    PubMed Central

    Votteler, Jörg; Ogohara, Cassandra; Yi, Sue; Hsia, Yang; Nattermann, Una; Belnap, David M.; King, Neil P.; Sundquist, Wesley I.

    2017-01-01

    Complex biological processes are often performed by self-organizing nanostructures comprising multiple classes of macromolecules, such as ribosomes (proteins and RNA) or enveloped viruses (proteins, nucleic acids, and lipids). Approaches have been developed for designing self-assembling structures consisting of either nucleic acids1,2 or proteins3–5, but strategies for engineering hybrid biological materials are only beginning to emerge6,7. Here, we describe the design of self-assembling protein nanocages that direct their own release from human cells inside small vesicles in a manner that resembles some viruses. We refer to these hybrid biomaterials as Enveloped Protein Nanocages (EPNs). Robust EPN biogenesis required protein sequence elements that encode three distinct functions: membrane binding, self-assembly, and recruitment of the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery8. A variety of synthetic proteins with these functional elements induced EPN biogenesis, highlighting the modularity and generality of the design strategy. Biochemical and electron cryomicroscopic (cryo-EM) analyses revealed that one design, EPN-01, comprised small (~100 nm) vesicles containing multiple protein nanocages that closely matched the structure of the designed 60-subunit self-assembling scaffold9. EPNs that incorporated the vesicular stomatitis viral glycoprotein (VSV-G) could fuse with target cells and deliver their contents, thereby transferring cargoes from one cell to another. These studies show how proteins can be programmed to direct the formation of hybrid biological materials that perform complex tasks, and establish EPNs as a novel class of designed, modular, genetically-encoded nanomaterials that can transfer molecules between cells. PMID:27919066

  2. Theory of Change: a theory-driven approach to enhance the Medical Research Council's framework for complex interventions

    PubMed Central

    2014-01-01

    Background The Medical Research Councils’ framework for complex interventions has been criticized for not including theory-driven approaches to evaluation. Although the framework does include broad guidance on the use of theory, it contains little practical guidance for implementers and there have been calls to develop a more comprehensive approach. A prospective, theory-driven process of intervention design and evaluation is required to develop complex healthcare interventions which are more likely to be effective, sustainable and scalable. Methods We propose a theory-driven approach to the design and evaluation of complex interventions by adapting and integrating a programmatic design and evaluation tool, Theory of Change (ToC), into the MRC framework for complex interventions. We provide a guide to what ToC is, how to construct one, and how to integrate its use into research projects seeking to design, implement and evaluate complex interventions using the MRC framework. We test this approach by using ToC within two randomized controlled trials and one non-randomized evaluation of complex interventions. Results Our application of ToC in three research projects has shown that ToC can strengthen key stages of the MRC framework. It can aid the development of interventions by providing a framework for enhanced stakeholder engagement and by explicitly designing an intervention that is embedded in the local context. For the feasibility and piloting stage, ToC enables the systematic identification of knowledge gaps to generate research questions that strengthen intervention design. ToC may improve the evaluation of interventions by providing a comprehensive set of indicators to evaluate all stages of the causal pathway through which an intervention achieves impact, combining evaluations of intervention effectiveness with detailed process evaluations into one theoretical framework. Conclusions Incorporating a ToC approach into the MRC framework holds promise for improving the design and evaluation of complex interventions, thereby increasing the likelihood that the intervention will be ultimately effective, sustainable and scalable. We urge researchers developing and evaluating complex interventions to consider using this approach, to evaluate its usefulness and to build an evidence base to further refine the methodology. Trial registration Clinical trials.gov: NCT02160249 PMID:24996765

  3. Theory of Change: a theory-driven approach to enhance the Medical Research Council's framework for complex interventions.

    PubMed

    De Silva, Mary J; Breuer, Erica; Lee, Lucy; Asher, Laura; Chowdhary, Neerja; Lund, Crick; Patel, Vikram

    2014-07-05

    The Medical Research Councils' framework for complex interventions has been criticized for not including theory-driven approaches to evaluation. Although the framework does include broad guidance on the use of theory, it contains little practical guidance for implementers and there have been calls to develop a more comprehensive approach. A prospective, theory-driven process of intervention design and evaluation is required to develop complex healthcare interventions which are more likely to be effective, sustainable and scalable. We propose a theory-driven approach to the design and evaluation of complex interventions by adapting and integrating a programmatic design and evaluation tool, Theory of Change (ToC), into the MRC framework for complex interventions. We provide a guide to what ToC is, how to construct one, and how to integrate its use into research projects seeking to design, implement and evaluate complex interventions using the MRC framework. We test this approach by using ToC within two randomized controlled trials and one non-randomized evaluation of complex interventions. Our application of ToC in three research projects has shown that ToC can strengthen key stages of the MRC framework. It can aid the development of interventions by providing a framework for enhanced stakeholder engagement and by explicitly designing an intervention that is embedded in the local context. For the feasibility and piloting stage, ToC enables the systematic identification of knowledge gaps to generate research questions that strengthen intervention design. ToC may improve the evaluation of interventions by providing a comprehensive set of indicators to evaluate all stages of the causal pathway through which an intervention achieves impact, combining evaluations of intervention effectiveness with detailed process evaluations into one theoretical framework. Incorporating a ToC approach into the MRC framework holds promise for improving the design and evaluation of complex interventions, thereby increasing the likelihood that the intervention will be ultimately effective, sustainable and scalable. We urge researchers developing and evaluating complex interventions to consider using this approach, to evaluate its usefulness and to build an evidence base to further refine the methodology. Clinical trials.gov: NCT02160249.

  4. Theory of reliable systems. [systems analysis and design

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1973-01-01

    The analysis and design of reliable systems are discussed. The attributes of system reliability studied are fault tolerance, diagnosability, and reconfigurability. Objectives of the study include: to determine properties of system structure that are conducive to a particular attribute; to determine methods for obtaining reliable realizations of a given system; and to determine how properties of system behavior relate to the complexity of fault tolerant realizations. A list of 34 references is included.

  5. Modeling Electromagnetic Scattering From Complex Inhomogeneous Objects

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Reddy, C. J.

    2011-01-01

    This software innovation is designed to develop a mathematical formulation to estimate the electromagnetic scattering characteristics of complex, inhomogeneous objects using the finite-element-method (FEM) and method-of-moments (MoM) concepts, as well as to develop a FORTRAN code called FEMOM3DS (Finite Element Method and Method of Moments for 3-Dimensional Scattering), which will implement the steps that are described in the mathematical formulation. Very complex objects can be easily modeled, and the operator of the code is not required to know the details of electromagnetic theory to study electromagnetic scattering.

  6. Systematic procedure for designing processes with multiple environmental objectives.

    PubMed

    Kim, Ki-Joo; Smith, Raymond L

    2005-04-01

    Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems due to the complex nature of the problems, the need for complex assessments, and the complicated analysis of multidimensional results. In this paper, a novel systematic procedure is presented for designing processes with multiple environmental objectives. This procedure has four steps: initialization, screening, evaluation, and visualization. The first two steps are used for systematic problem formulation based on mass and energy estimation and order of magnitude analysis. In the third step, an efficient parallel multiobjective steady-state genetic algorithm is applied to design environmentally benign and economically viable processes and to provide more accurate and uniform Pareto optimal solutions. In the last step a new visualization technique for illustrating multiple objectives and their design parameters on the same diagram is developed. Through these integrated steps the decision-maker can easily determine design alternatives with respect to his or her preferences. Most importantly, this technique is independent of the number of objectives and design parameters. As a case study, acetic acid recovery from aqueous waste mixtures is investigated by minimizing eight potential environmental impacts and maximizing total profit. After applying the systematic procedure, the most preferred design alternatives and their design parameters are easily identified.

  7. Task design influences prosociality in captive chimpanzees (Pan troglodytes).

    PubMed

    House, Bailey R; Silk, Joan B; Lambeth, Susan P; Schapiro, Steven J

    2014-01-01

    Chimpanzees confer benefits on group members, both in the wild and in captive populations. Experimental studies of how animals allocate resources can provide useful insights about the motivations underlying prosocial behavior, and understanding the relationship between task design and prosocial behavior provides an important foundation for future research exploring these animals' social preferences. A number of studies have been designed to assess chimpanzees' preferences for outcomes that benefit others (prosocial preferences), but these studies vary greatly in both the results obtained and the methods used, and in most cases employ procedures that reduce critical features of naturalistic social interactions, such as partner choice. The focus of the current study is on understanding the link between experimental methodology and prosocial behavior in captive chimpanzees, rather than on describing these animals' social motivations themselves. We introduce a task design that avoids isolating subjects and allows them to freely decide whether to participate in the experiment. We explore key elements of the methods utilized in previous experiments in an effort to evaluate two possibilities that have been offered to explain why different experimental designs produce different results: (a) chimpanzees are less likely to deliver food to others when they obtain food for themselves, and (b) evidence of prosociality may be obscured by more "complex" experimental apparatuses (e.g., those including more components or alternative choices). Our results suggest that the complexity of laboratory tasks may generate observed variation in prosocial behavior in laboratory experiments, and highlights the need for more naturalistic research designs while also providing one example of such a paradigm.

  8. Synthesis, structure, biochemical, and docking studies of a new dinitrosyl iron complex [Fe2(μ-SC4H3SCH2)2(NO)4

    NASA Astrophysics Data System (ADS)

    Davidovich, P. B.; Fischer, A. I.; Korchagin, D. V.; Panchuk, V. V.; Shchukarev, A. V.; Garabadzhiu, A. V.; Belyaev, A. N.

    2015-07-01

    A new dinitrosyl iron complex of binuclear structure [Fe2(μ-S-2-methylthiophene)2(NO)4] was first synthesized and structurally characterized by XRD and theoretical methods. Using caspase-3 as an example it was shown that [Fe2(μ-S-2-methylthiophene)2(NO)4] and its analog [Fe2(μ-S-2-methylfurane)2(NO)4] can inhibit the action of active site cysteine proteins; the difference in inhibitory activity was explained by molecular docking studies. Biochemical and in silico studies give grounds that the biological activity of dinitrosyl iron complexes is a μ-SR bridging ligand structure function. Thus the rational design strategy of [Fe2(μ-SR)2(NO)4] complexes can be applied to make NO prodrugs with high affinity to therapeutically significant targets involved in cancer and inflammation.

  9. Complex disease and phenotype mapping in the domestic dog

    PubMed Central

    Hayward, Jessica J.; Castelhano, Marta G.; Oliveira, Kyle C.; Corey, Elizabeth; Balkman, Cheryl; Baxter, Tara L.; Casal, Margret L.; Center, Sharon A.; Fang, Meiying; Garrison, Susan J.; Kalla, Sara E.; Korniliev, Pavel; Kotlikoff, Michael I.; Moise, N. S.; Shannon, Laura M.; Simpson, Kenneth W.; Sutter, Nathan B.; Todhunter, Rory J.; Boyko, Adam R.

    2016-01-01

    The domestic dog is becoming an increasingly valuable model species in medical genetics, showing particular promise to advance our understanding of cancer and orthopaedic disease. Here we undertake the largest canine genome-wide association study to date, with a panel of over 4,200 dogs genotyped at 180,000 markers, to accelerate mapping efforts. For complex diseases, we identify loci significantly associated with hip dysplasia, elbow dysplasia, idiopathic epilepsy, lymphoma, mast cell tumour and granulomatous colitis; for morphological traits, we report three novel quantitative trait loci that influence body size and one that influences fur length and shedding. Using simulation studies, we show that modestly larger sample sizes and denser marker sets will be sufficient to identify most moderate- to large-effect complex disease loci. This proposed design will enable efficient mapping of canine complex diseases, most of which have human homologues, using far fewer samples than required in human studies. PMID:26795439

  10. An Action Research to Optimize the Well-Being of Older People in Nursing Homes: Challenges and Strategies for Implementing a Complex Intervention.

    PubMed

    Bourbonnais, Anne; Ducharme, Francine; Landreville, Philippe; Michaud, Cécile; Gauthier, Marie-Andrée; Lavallée, Marie-Hélène

    2018-03-01

    Few studies have been conducted on strategies to promote the implementation of complex interventions in nursing homes (NHs). This article presents a pilot study intended to assess the strategies that would enable the optimal implementation of a complex intervention approach in NHs based on the meanings of screams of older people living with Alzheimer's disease. An action research approach was used with 19 formal and family caregivers from five NHs. Focus groups and individual interviews were held to assess different implementation strategies. A number of challenges were identified, as were strategies to overcome them. These latter included interactive training, intervention design, and external support. This study shows the feasibility of implementing a complex intervention to optimize older people's well-being. The article shares strategies that may promote the implementation of these types of interventions in NHs.

  11. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics.

    PubMed

    Vaseem, Mohammad; McKerricher, Garret; Shamim, Atif

    2016-01-13

    Currently, silver-nanoparticle-based inkjet ink is commercially available. This type of ink has several serious problems such as a complex synthesis protocol, high cost, high sintering temperatures (∼200 °C), particle aggregation, nozzle clogging, poor shelf life, and jetting instability. For the emerging field of printed electronics, these shortcomings in conductive inks are barriers for their widespread use in practical applications. Formulating particle-free silver inks has potential to solve these issues and requires careful design of the silver complexation. The ink complex must meet various requirements, such as in situ reduction, optimum viscosity, storage and jetting stability, smooth uniform sintered films, excellent adhesion, and high conductivity. This study presents a robust formulation of silver-organo-complex (SOC) ink, where complexing molecules act as reducing agents. The 17 wt % silver loaded ink was printed and sintered on a wide range of substrates with uniform surface morphology and excellent adhesion. The jetting stability was monitored for 5 months to confirm that the ink was robust and highly stable with consistent jetting performance. Radio frequency inductors, which are highly sensitive to metal quality, were demonstrated as a proof of concept on flexible PEN substrate. This is a major step toward producing high-quality electronic components with a robust inkjet printing process.

  12. Application of quality by design concept to develop a dual gradient elution stability-indicating method for cloxacillin forced degradation studies using combined mixture-process variable models.

    PubMed

    Zhang, Xia; Hu, Changqin

    2017-09-08

    Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. DOSIMETRY AND REPRODUCTIVE/DEVELOPMENTAL STUDY DESIGN AND INTERPRETATION FOR RISK OR SAFETY ASSESSMENT

    EPA Science Inventory

    Increasingly reproductive and developmental toxicity studies are utilized in assessing the potential for adverse affects in pregnant women, nursing infants, and children. These studies largely have been utilized based upon the dose to the mother due to the complexity of describin...

  14. The design of dual-mode complex signal processors based on quadratic modular number codes

    NASA Astrophysics Data System (ADS)

    Jenkins, W. K.; Krogmeier, J. V.

    1987-04-01

    It has been known for a long time that quadratic modular number codes admit an unusual representation of complex numbers which leads to complete decoupling of the real and imaginary channels, thereby simplifying complex multiplication and providing error isolation between the real and imaginary channels. This paper first presents a tutorial review of the theory behind the different types of complex modular rings (fields) that result from particular parameter selections, and then presents a theory for a 'dual-mode' complex signal processor based on the choice of augmented power-of-2 moduli. It is shown how a diminished-1 binary code, used by previous designers for the realization of Fermat number transforms, also leads to efficient realizations for dual-mode complex arithmetic for certain augmented power-of-2 moduli. Then a design is presented for a recursive complex filter based on a ROM/ACCUMULATOR architecture and realized in an augmented power-of-2 quadratic code, and a computer-generated example of a complex recursive filter is shown to illustrate the principles of the theory.

  15. Automated Design of Complex Dynamic Systems

    PubMed Central

    Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni

    2014-01-01

    Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969

  16. Inducing Axial Chirality in a Supramolecular Catalyst.

    PubMed

    Wenz, Katharina Marie; Leonhardt-Lutterbeck, Günter; Breit, Bernhard

    2018-03-06

    A new type of ligand, which is able to form axially chiral, supramolecular complexes was designed using DFT calculations. Two chiral monomers, each featuring a covalently bound chiral auxiliary, form a bidentate phosphine ligand with a twisted, hydrogen-bonded backbone upon coordination to a transition metal center which results in two diastereomeric, tropos complexes. The ratio of the diastereomers in solution is very temperature- and solvent-dependent. Rhodium and platinum complexes were analyzed through a combination of NMR studies, ESI-MS measurements, as well as UV-VIS and circular dichroism spectroscopy. The chiral self-organized ligands were evaluated in the rhodium-catalyzed asymmetric hydrogenation of α-dehydrogenated amino acids and resulted in good conversion and high enantioselectivity. This research opens the way for new ligand designs based on stereocontrol of supramolecular assemblies through stereodirecting chiral centers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  18. Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Arun K.; Brindisi, Margherita; Nyalapatla, Prasanth R.

    Based upon molecular insights from the X-ray structures of inhibitor-bound HIV-1 protease complexes, we have designed a series of isophthalamide-derived inhibitors incorporating substituted pyrrolidines, piperidines and thiazolidines as P2-P3 ligands for specific interactions in the S2-S3 extended site. Compound 4b has shown an enzyme Ki of 0.025 nM and antiviral IC50 of 69 nM. An X-ray crystal structure of inhibitor 4b-HIV-1 protease complex was determined at 1.33 Å resolution. We have also determined X-ray structure of 3b-bound HIV-1 protease at 1.27 Å resolution. These structures revealed important molecular insight into the inhibitor–HIV-1 protease interactions in the active site.

  19. Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4.

    PubMed

    Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming

    2013-02-01

    CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.

  20. Using SEM to Analyze Complex Survey Data: A Comparison between Design-Based Single-Level and Model-Based Multilevel Approaches

    ERIC Educational Resources Information Center

    Wu, Jiun-Yu; Kwok, Oi-man

    2012-01-01

    Both ad-hoc robust sandwich standard error estimators (design-based approach) and multilevel analysis (model-based approach) are commonly used for analyzing complex survey data with nonindependent observations. Although these 2 approaches perform equally well on analyzing complex survey data with equal between- and within-level model structures…

  1. A Theory of Complex Adaptive Inquiring Organizations: Application to Continuous Assurance of Corporate Financial Information

    ERIC Educational Resources Information Center

    Kuhn, John R., Jr.

    2009-01-01

    Drawing upon the theories of complexity and complex adaptive systems and the Singerian Inquiring System from C. West Churchman's seminal work "The Design of Inquiring Systems" the dissertation herein develops a systems design theory for continuous auditing systems. The dissertation consists of discussion of the two foundational theories,…

  2. Complex Burn Region Module (CBRM) update

    NASA Technical Reports Server (NTRS)

    Adams, Carl L.; Jenkins, Billy

    1991-01-01

    Presented here is a Complex Burn Region Module (CBRM) update for the Solid Rocket Internal Ballistics Module (SRIBM) Program for the Advanced Solid Rocket Motor (ASRM) design/performance assessments. The goal was to develop an improved version of the solid rocket internal ballistics module program that contains a diversified complex region model for motor grain design, performance prediction, and evaluation.

  3. Social cohesion through football: a quasi-experimental mixed methods design to evaluate a complex health promotion program

    PubMed Central

    2010-01-01

    Social isolation and disengagement fragments local communities. Evidence indicates that refugee families are highly vulnerable to social isolation in their countries of resettlement. Research to identify approaches to best address this is needed. Football United is a program that aims to foster social inclusion and cohesion in areas with high refugee settlement in New South Wales, Australia, through skills and leadership development, mentoring, and the creation of links with local community and corporate leaders and organisations. The Social Cohesion through Football study's broad goal is to examine the implementation of a complex health promotion program, and to analyse the processes involved in program implementation. The study will consider program impact on individual health and wellbeing, social inclusion and cohesion, as well as analyse how the program by necessity interacts and adapts to context during implementation, a concept we refer to as plasticity. The proposed study will be the first prospective cohort impact study to our knowledge to assess the impact of a comprehensive integrated program using football as a vehicle for fostering social inclusion and cohesion in communities with high refugee settlement. Methods/design A quasi-experimental cohort study design with treatment partitioning involving four study sites. The study employs a 'dose response' model, comparing those with no involvement in the Football United program with those with lower or higher levels of participation. A range of qualitative and quantitative measures will be used in the study. Study participants' emotional well being, resilience, ethnic identity and other group orientation, feelings of social inclusion and belonging will be measured using a survey instrument complemented by relevant data drawn from in-depth interviews, self reporting measures and participant observation. The views of key informants from the program and the wider community will also be solicited. Discussion The complexity of the Football United program poses challenges for measurement, and requires the study design to be responsive to the dynamic nature of the program and context. Assessment of change is needed at multiple levels, drawing on mixed methods and multidisciplinary approaches in implementation and evaluation. Attention to these challenges has underpinned the design and methods in the Social Cohesion through Football study, which will use a unique and innovative combination of measures that have not been applied together previously in social inclusion/cohesion and sport and social inclusion/cohesion program research. PMID:20920361

  4. Effects of complex aural stimuli on mental performance.

    PubMed

    Vij, Mohit; Aghazadeh, Fereydoun; Ray, Thomas G; Hatipkarasulu, Selen

    2003-06-01

    The objective of this study is to investigate the effect of complex aural stimuli on mental performance. A series of experiments were designed to obtain data for two different analyses. The first analysis is a "Stimulus" versus "No-stimulus" comparison for each of the four dependent variables, i.e. quantitative ability, reasoning ability, spatial ability and memory of an individual, by comparing the control treatment with the rest of the treatments. The second set of analysis is a multi-variant analysis of variance for component level main effects and interactions. The two component factors are tempo of the complex aural stimuli and sound volume level, each administered at three discrete levels for all four dependent variables. Ten experiments were conducted on eleven subjects. It was found that complex aural stimuli influence the quantitative and spatial aspect of the mind, while the reasoning ability was unaffected by the stimuli. Although memory showed a trend to be worse with the presence of complex aural stimuli, the effect was statistically insignificant. Variation in tempo and sound volume level of an aural stimulus did not significantly affect the mental performance of an individual. The results of these experiments can be effectively used in designing work environments.

  5. β-Cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in vitro

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Jiang, Ling-Juan; Zhang, Yan-Ping; Li, Jun-Bo

    2012-09-01

    In this work, the optimal clathration condition was investigated for the preparation of aspirin-β-cyclodextrin (Asp-β-CD) inclusion complex using design of experiment (DOE) methodology. A 3-level, 3-factor Box-Behnken design with a total of 17 experimental runs was used. The Asp-β-CD inclusion complex was prepared by saturated solution method. The influence on the embedding rate was investigated, including molar ratio of β-CD to Asp, clathration temperature and clathration time, and the optimum values of such three test variables were found to be 0.82, 49°C and 2.0 h, respectively. The embedding rate could be up to 61.19%. The formation of the bonding between -COOH group of Asp and O-H group of β-CD might play an important role in the process of clathration according to FT-IR spectra. Release kinetics of Asp from inclusion complex was studied for the evaluation of drug release mechanism and diffusion coefficients. The results showed that the drug release from matrix occurred through Fickian diffusion mechanism. The cumulative release of Asp reached only 40% over 24 h, so the inclusion complex could potentially be applied as a long-acting delivery system.

  6. Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.

    PubMed

    Huynh, Linh; Tagkopoulos, Ilias

    2015-08-21

    In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees.

  7. Infography use to requirements specification for the design of the building

    NASA Astrophysics Data System (ADS)

    Losev, Konstantin; Sinenko, Sergey

    2017-10-01

    The study contributes to a growing body of research Transport infrastructure in a construction object life cycle management and presents areas in which further investigation is needed. The object of study are Railway buildings and structures and the Employer’s information requirements (EIR) for design of individual residential building. The task of the study was to determine necessary and sufficient scope of parameters which contained in inforaphic form of EIR comparing with traditional text form of EIR. Also, the task was to determine what categories of the traditional EIR are transferred to an infographic representation form and what categories are ignored in case of a relatively low complexity building. Methods that have been used in the study were infographical representation of text and further expert evaluation. Conclusions of the study present the necessary and sufficient scope of parameters for inforaphic form of EIR, the relations between infographic parameters and categories of the EIR traditional form and subcategories of the traditional EIR that are ignored in case of a relatively low complexity building.

  8. Rational Design of an Electron-Reservoir Pt(II) Complex for Efficient Photocatalytic Hydrogen Production from Water.

    PubMed

    Whang, Dong Ryeol; Park, Soo Young

    2015-10-12

    Herein we report a Pt(II) complex containing a 4,4'-bis[4-(triphenylsilyl)phenyl]-2,2'-bipyridine ligand as a molecular catalyst for water splitting. Systematic studies of the electrochemical and electronic properties of this catalyst, in comparison with two control complexes, reveal electron-reservoir characteristics upon two-electron reduction. A turnover number of 510,000 was recorded by employing this complex as a water reduction catalyst in combination with a state-of-the-art photosensitizer and N,N-dimethylaniline as a sacrificial electron donor, which represents a large improvement over the control complexes that do not contain the tetraphenylsilyl ligand substitution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application of advanced multidisciplinary analysis and optimization methods to vehicle design synthesis

    NASA Technical Reports Server (NTRS)

    Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.

  10. The evaluation of complex interventions in palliative care: an exploration of the potential of case study research strategies.

    PubMed

    Walshe, Catherine

    2011-12-01

    Complex, incrementally changing, context dependent and variable palliative care services are difficult to evaluate. Case study research strategies may have potential to contribute to evaluating such complex interventions, and to develop this field of evaluation research. This paper explores definitions of case study (as a unit of study, a process, and a product) and examines the features of case study research strategies which are thought to confer benefits for the evaluation of complex interventions in palliative care settings. Ten features of case study that are thought to be beneficial in evaluating complex interventions in palliative care are discussed, drawing from exemplars of research in this field. Important features are related to a longitudinal approach, triangulation, purposive instance selection, comprehensive approach, multiple data sources, flexibility, concurrent data collection and analysis, search for proving-disproving evidence, pattern matching techniques and an engaging narrative. The limitations of case study approaches are discussed including the potential for subjectivity and their complex, time consuming and potentially expensive nature. Case study research strategies have great potential in evaluating complex interventions in palliative care settings. Three key features need to be exploited to develop this field: case selection, longitudinal designs, and the use of rival hypotheses. In particular, case study should be used in situations where there is interplay and interdependency between the intervention and its context, such that it is difficult to define or find relevant comparisons.

  11. Assessing the influence of reactor system design criteria on the performance of model colon fermentation units.

    PubMed

    Moorthy, Arun S; Eberl, Hermann J

    2014-04-01

    Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Accessible information for people with complex communication needs.

    PubMed

    Owens, Janet S

    2006-09-01

    Information can be empowering if it is accessible. While a number of known information access barriers have been reported for the broader group of people with disabilities, specific information issues for people with complex communication needs have not been previously reported. In this consumer-focused study, the accessibility of information design and dissemination practices were discussed by 17 people with complex communication needs; by eight parents, advocates, therapists, and agency representatives in focus groups; and by seven individuals in individual interviews. Participants explored issues and made recommendations for content, including language, visual and audio supports; print accessibility; physical access; and human support for information access. Consumer-generated accessibility guidelines were an outcome of this study.

  13. Development and optimization of press coated tablets of release engineered valsartan for pulsatile delivery.

    PubMed

    Shah, Sunny; Patel, Romik; Soniwala, Moinuddin; Chavda, Jayant

    2015-01-01

    The present work is aimed to develop and optimize pulsatile delivery during dissolution of an improved formulation of valsartan to coordinate the drug release with circadian rhythm. Preliminary studies suggested that β cyclodextrin could improve the solubility of valsartan and showed AL type solubility curve. A 1:1 stoichiometric ratio of valsartan to β cyclodextrin was revealed from phase solubility studies and Job's plot. The prepared complex showed significantly better dissolution efficiency (p < 0.05) compared to pure drug, which could be due to the formation of inclusion complex as revealed from FTIR and DSC studies. Continuous dissolution-absorption studies revealed that absorption of drug from valsartan β cyclodextrin complex was significantly higher (p < 0.05) compared to pure drug, in second part press-coated tablets of valsartan β cyclodextrin complex were subsequently prepared and application of the Plackett-Burman screening design revealed that HPMC K4M and EC showed significant effect on lag time. A 3(2) full factorial design was used to measure the response of HPMC K4M and EC on lag time and time taken for 90% drug release (T90). The optimized batch prepared according to the levels obtained from the desirability function had a lag time of 6 h and consisted of HPMC K4M:ethylcellulose in a 1:1.5 ratio with 180 mg of coating and revealed a close agreement between observed and predicted value (R(2 )= 0.9694).

  14. Design and Synthesis of Non-Peptide Mimetics Mapping the Immunodominant Myelin Basic Protein (MBP83–96) Epitope to Function as T-Cell Receptor Antagonists

    PubMed Central

    Yannakakis, Mary-Patricia; Simal, Carmen; Tzoupis, Haralambos; Rodi, Maria; Dargahi, Narges; Prakash, Monica; Mouzaki, Athanasia; Platts, James A.; Apostolopoulos, Vasso; Tselios, Theodore V.

    2017-01-01

    Encephalitogenic T cells are heavily implicated in the pathogenesis of multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system. Their stimulation is triggered by the formation of a trimolecular complex between the human leukocyte antigen (HLA), an immunodominant myelin basic protein (MBP) epitope, and the T cell receptor (TCR). We detail herein our studies directed towards the rational design and synthesis of non-peptide mimetic molecules, based on the immunodominant MBP83–96 epitope that is recognized by the TCR in complex with HLA. We focused our attention on the inhibition of the trimolecular complex formation and consequently the inhibition of proliferation of activated T cells. A structure-based pharmacophore model was generated, in view of the interactions between the TCR and the HLA-MBP83–96 complex. As a result, new candidate molecules were designed based on lead compounds obtained through the ZINC database. Moreover, semi-empirical and density functional theory methods were applied for the prediction of the binding energy between the proposed non-peptide mimetics and the TCR. We synthesized six molecules that were further evaluated in vitro as TCR antagonists. Analogues 15 and 16 were able to inhibit to some extent the stimulation of T cells by the immunodominant MBP83–99 peptide from immunized mice. Inhibition was followed to a lesser degree by analogues 17 and 18 and then by analogue 19. These studies show that lead compounds 15 and 16 may be used for immunotherapy against MS. PMID:28594344

  15. Design and Synthesis of Non-Peptide Mimetics Mapping the Immunodominant Myelin Basic Protein (MBP83-96) Epitope to Function as T-Cell Receptor Antagonists.

    PubMed

    Yannakakis, Mary-Patricia; Simal, Carmen; Tzoupis, Haralambos; Rodi, Maria; Dargahi, Narges; Prakash, Monica; Mouzaki, Athanasia; Platts, James A; Apostolopoulos, Vasso; Tselios, Theodore V

    2017-06-08

    Encephalitogenic T cells are heavily implicated in the pathogenesis of multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system. Their stimulation is triggered by the formation of a trimolecular complex between the human leukocyte antigen (HLA), an immunodominant myelin basic protein (MBP) epitope, and the T cell receptor (TCR). We detail herein our studies directed towards the rational design and synthesis of non-peptide mimetic molecules, based on the immunodominant MBP 83-96 epitope that is recognized by the TCR in complex with HLA. We focused our attention on the inhibition of the trimolecular complex formation and consequently the inhibition of proliferation of activated T cells. A structure-based pharmacophore model was generated, in view of the interactions between the TCR and the HLA-MBP 83-96 complex. As a result, new candidate molecules were designed based on lead compounds obtained through the ZINC database. Moreover, semi-empirical and density functional theory methods were applied for the prediction of the binding energy between the proposed non-peptide mimetics and the TCR. We synthesized six molecules that were further evaluated in vitro as TCR antagonists. Analogues 15 and 16 were able to inhibit to some extent the stimulation of T cells by the immunodominant MBP 83-99 peptide from immunized mice. Inhibition was followed to a lesser degree by analogues 17 and 18 and then by analogue 19 . These studies show that lead compounds 15 and 16 may be used for immunotherapy against MS.

  16. Structured Light-Matter Interactions Enabled By Novel Photonic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litchinitser, Natalia; Feng, Liang

    The synergy of complex materials and complex light is expected to add a new dimension to the science of light and its applications [1]. The goal of this program is to investigate novel phenomena emerging at the interface of these two branches of modern optics. While metamaterials research was largely focused on relatively “simple” linearly or circularly polarized light propagation in “complex” nanostructured, carefully designed materials with properties not found in nature, many singular optics studies addressed “complex” structured light transmission in “simple” homogeneous, isotropic, nondispersive transparent media, where both spin and orbital angular momentum are independently conserved. However, ifmore » both light and medium are complex so that structured light interacts with a metamaterial whose optical materials properties can be designed at will, the spin or angular momentum can change, which leads to spin-orbit interaction and many novel optical phenomena that will be studied in the proposed project. Indeed, metamaterials enable unprecedented control over light propagation, opening new avenues for using spin and quantum optical phenomena, and design flexibility facilitating new linear and nonlinear optical properties and functionalities, including negative index of refraction, magnetism at optical frequencies, giant optical activity, subwavelength imaging, cloaking, dispersion engineering, and unique phase-matching conditions for nonlinear optical interactions. In this research program we focused on structured light-matter interactions in complex media with three particularly remarkable properties that were enabled only with the emergence of metamaterials: extreme anisotropy, extreme material parameters, and magneto-electric coupling–bi-anisotropy and chirality.« less

  17. Making intelligent systems team players: Case studies and design issues. Volume 1: Human-computer interaction design

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.

    1991-01-01

    Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.

  18. Designing Critique for Knowledge Integration

    NASA Astrophysics Data System (ADS)

    Sato, Mie Elissa

    Generating explanations is central to science and has the potential to have a powerful impact on students' conceptual understanding in science instruction. However, improving conceptual understanding by generating explanations is a fraught affair: students may struggle with the sense of false clarity that may arise from generating explanations, fail to detect gaps in their understanding, and dismiss salient information that contradict their beliefs. Critiquing explanations has the potential to counteract these pitfalls by exposing students to alternative ideas to contrast with their own. This dissertation seeks to clarify how to design critique in technology-enhanced science instruction to support students in revising their explanations about scientific phenomena, and in doing so, refining their conceptual understanding. Using the Knowledge Integration framework, I revised two technology-enhanced curriculum units, Plate Tectonics and Global Climate Change, in a design partnership between teachers, researchers, and technologists. I conducted a series of studies with sixth-grade students to investigate the conditions under which guided critique of explanations can support revision. The pilot critique study investigated the impact of the revised Plate Tectonics unit on students' understanding of convection, as well as of a preliminary design of critique where students generated and applied their own criteria for what makes a good explanation in science. The guidance study explored how incorporating a complex selection task that features meta-explanatory criteria into critique supports students in distinguishing among different criteria, as well as how students use peer or expert guidance on their initial explanation during revision. The critique study investigated how designing critique with a complex selection task that features plausible alternative ideas and giving guidance on students' critiques support students in distinguishing among a range of relevant ideas and making productive revisions to their initial explanations. These studies clarify how critique can be designed to help students sort through various ideas in their conceptual repertoire, be they ideas about meta-explanatory criteria or science ideas about a specific phenomenon. The study findings illuminate the challenges of guiding students to examine or re-examine the full range of ideas for knowledge integration. Students struggle to identify salient, missing, or normative ideas in their own or another explanation, and to incorporate their insights in a coherent way through revision. The studies demonstrate that embedding complex selection tasks in critique encourages students to consider a broad range of ideas and supports them in making conceptual revisions of their explanations. The results have implications for the design of critique in technology-enhanced science instruction.

  19. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    PubMed

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be systematically controlled by changing the components. Finally, theoretical calculations based on cocrystals with unique stacking could widen our understanding of structure-property relationships and in turn help us design high-performance semiconductors based on DA complexes. In this Account, we focus on discussing organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure-property relationships. We have also fabricated and investigated devices based on these binary crystals. This interdisciplinary work combines techniques from the fields of self-assembly, crystallography, condensed-matter physics, and theoretical chemistry. Researchers have designed new complex systems, including donor and acceptor compounds that self-assemble in feasible ways into highly ordered cocrystals. We demonstrate that using this crystallization method can easily realize ambipolar or unipolar transport. To further improve device performance, we propose several design strategies, such as using new kinds of donors and acceptors, modulating the energy alignment of the donor (ionization potential, IP) and acceptor (electron affinity, EA) components, and extending the π-conjugated backbones. In addition, we have found that when we use molecular "doping" (2:1 cocrystallization), the charge-transport nature of organic semiconductors can be switched from hole-transport-dominated to electron-transport-dominated. We expect that the formation of cocrystals through the complexation of organic donor and acceptor species will serve as a new strategy to develop semiconductors for organic electronics with superior performances over their corresponding individual components.

  20. Relative stabilities of triple helices composed of combinations of DNA, RNA and 2'-O-methyl-RNA backbones: chimeric circular oligonucleotides as probes.

    PubMed

    Wang, S; Kool, E T

    1995-04-11

    Described is a systematic study of the effects of varied backbone structure on the stabilities of pyr.pur.pyr triple helices. The effects were measured using six circular 34 base oligonucleotides containing DNA (D), RNA (R) and/or 2'-O-methyl-RNA (M) residues designed to bind a complementary single-stranded purine target strand by triple helix formation. Eighteen different backbone combinations were studied at pH 5.5 and 7.0 by optical melting experiments and the results compared with the stabilities of the corresponding Watson-Crick duplexes. When the target purine strand is DNA, all circles form pH-dependent triple helical complexes which are considerably stronger than the duplexes alone. When RNA is the target, five of the nine complexes studied are of the pH-dependent triplex type and the other four complexes are not significantly stronger than the corresponding duplexes. The results are useful in the design of the highest affinity ligands for single- and double-stranded DNAs and RNAs and also point out novel ways to engender DNA- or RNA-selective binding.

  1. A Study on Spectro-Analytical Aspects, DNA - Interaction, Photo-Cleavage, Radical Scavenging, Cytotoxic Activities, Antibacterial and Docking Properties of 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione and its Metal Complexes.

    PubMed

    Ravi, Mudavath; Chennam, Kishan Prasad; Ushaiah, B; Eslavath, Ravi Kumar; Perugu, Shyam; Ajumeera, Rajanna; Devi, Ch Sarala

    2015-09-01

    The focus of the present work is on the design, synthesis, characterization, DNA-interaction, photo-cleavage, radical scavenging, in-vitro cytotoxicity, antimicrobial, docking and kinetic studies of Cu (II), Cd (II), Ce (IV) and Zr (IV) metal complexes of an imine derivative, 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione. The investigation of metal ligand interactions for the determination of composition of metal complexes, corresponding kinetic studies and antioxidant activity in solution was carried out by spectrophotometric methods. The synthesized metal complexes were characterized by EDX analysis, Mass, IR, (1)H-NMR, (13)C-NMR and UV-Visible spectra. DNA binding studies of metal complexes with Calf thymus (CT) DNA were carried out at room temperature by employing UV-Vis electron absorption, fluorescence emission and viscosity measurement techniques. The results revealed that these complexes interact with DNA through intercalation. The results of in vitro antibacterial studies showed the enhanced activity of chelating agent in metal chelated form and thus inferring scope for further development of new therapeutic drugs. Cell viability experiments indicated that all complexes showed significant dose dependent cytotoxicity in selected cell lines. The molecular modeling and docking studies were carried out with energy minimized structures of metal complexes to identify the receptor to metal interactions.

  2. A genetic algorithm for solving supply chain network design model

    NASA Astrophysics Data System (ADS)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  3. The Generation of Situational Awareness within Autonomous Systems - A Near to Mid term Study - Analysis

    DTIC Science & Technology

    2006-07-01

    mobility in complex terrain, robot system designers are still seeking workable processes for mapbuilding, with enduring problems that either require...human) robot system designers /users can seek to control the consequences of robot actions, deliberate or otherwise. A notable particular application...operators a sufficient feeling of presence; if not, robot system designers will have to provide autonomy to the robot to make up for the gaps in human input

  4. Knowledge modeling tool for evidence-based design.

    PubMed

    Durmisevic, Sanja; Ciftcioglu, Ozer

    2010-01-01

    The aim of this study is to take evidence-based design (EBD) to the next level by activating available knowledge, integrating new knowledge, and combining them for more efficient use by the planning and design community. This article outlines a framework for a performance-based measurement tool that can provide the necessary decision support during the design or evaluation of a healthcare environment by estimating the overall design performance of multiple variables. New knowledge in EBD adds continuously to complexity (the "information explosion"), and it becomes impossible to consider all aspects (design features) at the same time, much less their impact on final building performance. How can existing knowledge and the information explosion in healthcare-specifically the domain of EBD-be rendered manageable? Is it feasible to create a computational model that considers many design features and deals with them in an integrated way, rather than one at a time? The found evidence is structured and readied for computation through a "fuzzification" process. The weights are calculated using an analytical hierarchy process. Actual knowledge modeling is accomplished through a fuzzy neural tree structure. The impact of all inputs on the outcome-in this case, patient recovery-is calculated using sensitivity analysis. Finally, the added value of the model is discussed using a hypothetical case study of a patient room. The proposed model can deal with the complexities of various aspects and the relationships among variables in a coordinated way, allowing existing and new pieces of evidence to be integrated in a knowledge tree structure that facilitates understanding of the effects of various design interventions on overall design performance.

  5. Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants.

    PubMed

    Peel, Sean; Bhatia, Satyajeet; Eggbeer, Dominic; Morris, Daniel S; Hayhurst, Caroline

    2017-06-01

    Previously published evidence has established major clinical benefits from using computer-aided design, computer-aided manufacturing, and additive manufacturing to produce patient-specific devices. These include cutting guides, drilling guides, positioning guides, and implants. However, custom devices produced using these methods are still not in routine use, particularly by the UK National Health Service. Oft-cited reasons for this slow uptake include the following: a higher up-front cost than conventionally fabricated devices, material-choice uncertainty, and a lack of long-term follow-up due to their relatively recent introduction. This article identifies a further gap in current knowledge - that of design rules, or key specification considerations for complex computer-aided design/computer-aided manufacturing/additive manufacturing devices. This research begins to address the gap by combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial patient case studies. In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual environment. Three cases translated these digital plans into theatre via polymer surgical guides. Four cases utilised additive manufacturing to fabricate titanium implants. One implant was machined from polyether ether ketone. From the literature, articles with relevant abstracts were analysed to extract design considerations. In all, 19 frequently recurring design considerations were extracted from previous publications. Nine new design considerations were extracted from the case studies - on the basis of subjective clinical evaluation. These were synthesised to produce a design considerations framework to assist clinicians with prescribing and design engineers with modelling. Promising avenues for further research are proposed.

  6. Evidence-based design and evaluation of a whole genome sequencing clinical report for the reference microbiology laboratory.

    PubMed

    Crisan, Anamaria; McKee, Geoffrey; Munzner, Tamara; Gardy, Jennifer L

    2018-01-01

    Microbial genome sequencing is now being routinely used in many clinical and public health laboratories. Understanding how to report complex genomic test results to stakeholders who may have varying familiarity with genomics-including clinicians, laboratorians, epidemiologists, and researchers-is critical to the successful and sustainable implementation of this new technology; however, there are no evidence-based guidelines for designing such a report in the pathogen genomics domain. Here, we describe an iterative, human-centered approach to creating a report template for communicating tuberculosis (TB) genomic test results. We used Design Study Methodology-a human centered approach drawn from the information visualization domain-to redesign an existing clinical report. We used expert consults and an online questionnaire to discover various stakeholders' needs around the types of data and tasks related to TB that they encounter in their daily workflow. We also evaluated their perceptions of and familiarity with genomic data, as well as its utility at various clinical decision points. These data shaped the design of multiple prototype reports that were compared against the existing report through a second online survey, with the resulting qualitative and quantitative data informing the final, redesigned, report. We recruited 78 participants, 65 of whom were clinicians, nurses, laboratorians, researchers, and epidemiologists involved in TB diagnosis, treatment, and/or surveillance. Our first survey indicated that participants were largely enthusiastic about genomic data, with the majority agreeing on its utility for certain TB diagnosis and treatment tasks and many reporting some confidence in their ability to interpret this type of data (between 58.8% and 94.1%, depending on the specific data type). When we compared our four prototype reports against the existing design, we found that for the majority (86.7%) of design comparisons, participants preferred the alternative prototype designs over the existing version, and that both clinicians and non-clinicians expressed similar design preferences. Participants showed clearer design preferences when asked to compare individual design elements versus entire reports. Both the quantitative and qualitative data informed the design of a revised report, available online as a LaTeX template. We show how a human-centered design approach integrating quantitative and qualitative feedback can be used to design an alternative report for representing complex microbial genomic data. We suggest experimental and design guidelines to inform future design studies in the bioinformatics and microbial genomics domains, and suggest that this type of mixed-methods study is important to facilitate the successful translation of pathogen genomics in the clinic, not only for clinical reports but also more complex bioinformatics data visualization software.

  7. Evidence-based design and evaluation of a whole genome sequencing clinical report for the reference microbiology laboratory

    PubMed Central

    Crisan, Anamaria; McKee, Geoffrey; Munzner, Tamara

    2018-01-01

    Background Microbial genome sequencing is now being routinely used in many clinical and public health laboratories. Understanding how to report complex genomic test results to stakeholders who may have varying familiarity with genomics—including clinicians, laboratorians, epidemiologists, and researchers—is critical to the successful and sustainable implementation of this new technology; however, there are no evidence-based guidelines for designing such a report in the pathogen genomics domain. Here, we describe an iterative, human-centered approach to creating a report template for communicating tuberculosis (TB) genomic test results. Methods We used Design Study Methodology—a human centered approach drawn from the information visualization domain—to redesign an existing clinical report. We used expert consults and an online questionnaire to discover various stakeholders’ needs around the types of data and tasks related to TB that they encounter in their daily workflow. We also evaluated their perceptions of and familiarity with genomic data, as well as its utility at various clinical decision points. These data shaped the design of multiple prototype reports that were compared against the existing report through a second online survey, with the resulting qualitative and quantitative data informing the final, redesigned, report. Results We recruited 78 participants, 65 of whom were clinicians, nurses, laboratorians, researchers, and epidemiologists involved in TB diagnosis, treatment, and/or surveillance. Our first survey indicated that participants were largely enthusiastic about genomic data, with the majority agreeing on its utility for certain TB diagnosis and treatment tasks and many reporting some confidence in their ability to interpret this type of data (between 58.8% and 94.1%, depending on the specific data type). When we compared our four prototype reports against the existing design, we found that for the majority (86.7%) of design comparisons, participants preferred the alternative prototype designs over the existing version, and that both clinicians and non-clinicians expressed similar design preferences. Participants showed clearer design preferences when asked to compare individual design elements versus entire reports. Both the quantitative and qualitative data informed the design of a revised report, available online as a LaTeX template. Conclusions We show how a human-centered design approach integrating quantitative and qualitative feedback can be used to design an alternative report for representing complex microbial genomic data. We suggest experimental and design guidelines to inform future design studies in the bioinformatics and microbial genomics domains, and suggest that this type of mixed-methods study is important to facilitate the successful translation of pathogen genomics in the clinic, not only for clinical reports but also more complex bioinformatics data visualization software. PMID:29340235

  8. The molecular shape and the field similarities as criteria to interpret SAR studies for fragment-based design of platinum(IV) anticancer agents. Correlation of physicochemical properties with cytotoxicity.

    PubMed

    Lorenzo, Julia; Montaña, Ángel M

    2016-09-01

    Molecular shape similarity and field similarity have been used to interpret, in a qualitative way, the structure-activity relationships in a selected series of platinum(IV) complexes with anticancer activity. MM and QM calculations have been used to estimate the electron density, electrostatic potential maps, partial charges, dipolar moments and other parameters to correlate the stereo-electronic properties with the differential biological activity of complexes. Extended Electron Distribution (XED) field similarity has been also evaluated for the free 1,4-diamino carrier ligands, in a fragment-based drug design approach, comparing Connolly solvent excluded surface, hydrophobicity field surface, Van der Waals field surface, nucleophilicity field surface, electrophilicity field surface and the extended electron-distribution maxima field points. A consistency has been found when comparing the stereo-electronic properties of the studied series of platinum(IV) complexes and/or the free ligands evaluated and their in vitro anticancer activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Self-determined mechanisms in complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Jian; Shan, Xiuming; Ren, Yong; Ma, Zhengxin

    2008-03-01

    Self-organized networks are pervasive in communication systems such as the Internet, overlay networks, peer-to-peer networks, and cluster-based services. These networks evolve into complex topologies, under specific driving forces, i.e. user demands, technological innovations, design objectives and so on. Our study focuses on the driving forces behind individual evolutions of network components, and their stimulation and domination to the self-organized networks which are defined as self-determined mechanisms in this paper. Understanding forces underlying the evolution of networks should enable informed design decisions and help to avoid unwanted surprises, such as congestion collapse. A case study on the macroscopic evolution of the Internet topology of autonomous systems under a specific driving force is then presented. Using computer simulations, it is found that the power-law degree distribution can originate from a connection preference to larger numbers of users, and that the small-world property can be caused by rapid growth in the number of users. Our results provide a new feasible perspective to understand intrinsic fundamentals in the topological evolution of complex networks.

  10. DHM simulation in virtual environments: a case-study on control room design.

    PubMed

    Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G

    2012-01-01

    This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team.

  11. Analyses of the Complexity of Patients Undergoing Attended Polysomnography in the Era of Home Sleep Apnea Tests

    PubMed Central

    Colaco, Brendon; Herold, Daniel; Johnson, Matthew; Roellinger, Daniel; Naessens, James M.; Morgenthaler, Timothy I.

    2018-01-01

    Study Objectives: Health care complexity includes dimensions of patient comorbidity and the level of services needed to meet patient demands. Home sleep apnea tests (HSAT) are increasingly used to test medically uncomplicated patients suspected of having moderate to severe obstructive sleep apnea (OSA). Patients with significant comorbidities or other sleep disorders are not candidates for HSAT and require attended in-center polysomnography. We hypothesized that this trend would result in increasingly complex patients being studied in sleep centers. Methods: Our study had two parts. To ascertain trends in sleep patient comorbidity, we used administrative diagnostic codes from patients undergoing polysomnography at the Mayo Clinic Center for Sleep Medicine from 2005 to June 2015 to calculate the Charlson and the Elixhauser comorbidity indices. We measured the level of services provided in two ways: (1) in a subset of patients from the past 2 months of 2015, we evaluated correlation of these morbidity indices with an internally developed Polysomnogram Clinical Index (PSGCI) rating anticipated patient care needs from 0 to 3 and (2) we measured the sleep study complexity based on polysomnography protocol design. Results: In 43,780 patients studied from 2005 to June 2015, the Charlson index increased from a mean of 1.38 to 1.88 (3.1% per year, P < .001) and the mean Elixhauser index increased from 2.61 to 3.35 (2.5% per year, P < .001). Both comorbidity indices were significantly higher at the highest (Level 3) level of the PSGCI (P < .001), and sleep study complexity increased over time. Conclusions: The complexity of patients undergoing attended polysomnography has increased by 28% to 36% over the past decade as measured by validated comorbidity indices, and these indices correlate with the complexity of rendered care during polysomnography. These findings have implications for increasing requirements for staffing, monitoring capabilities, and facility design of future sleep centers. Commentary: A commentary on this article appears in this issue on page 499. Citation: Colaco B, Herold D, Johnson M, Roellinger D, Naessens JM, Morgenthaler TI. Analyses of the complexity of patients undergoing attended polysomnography in the era of home sleep apnea tests. J Clin Sleep Med. 2018;14(4):631–639. PMID:29609716

  12. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  13. Design considerations to improve cognitive ergonomic issues of unmanned vehicle interfaces utilizing video game controllers.

    PubMed

    Oppold, P; Rupp, M; Mouloua, M; Hancock, P A; Martin, J

    2012-01-01

    Unmanned (UAVs, UCAVs, and UGVs) systems still have major human factors and ergonomic challenges related to the effective design of their control interface systems, crucial to their efficient operation, maintenance, and safety. Unmanned system interfaces with a human centered approach promote intuitive interfaces that are easier to learn, and reduce human errors and other cognitive ergonomic issues with interface design. Automation has shifted workload from physical to cognitive, thus control interfaces for unmanned systems need to reduce mental workload on the operators and facilitate the interaction between vehicle and operator. Two-handed video game controllers provide wide usability within the overall population, prior exposure for new operators, and a variety of interface complexity levels to match the complexity level of the task and reduce cognitive load. This paper categorizes and provides taxonomy for 121 haptic interfaces from the entertainment industry that can be utilized as control interfaces for unmanned systems. Five categories of controllers were based on the complexity of the buttons, control pads, joysticks, and switches on the controller. This allows the selection of the level of complexity needed for a specific task without creating an entirely new design or utilizing an overly complex design.

  14. Mapping Self-Confidence Levels of Nurses in Their Provision of Nursing Care to Others with Alcohol and Tobacco Dependence, Using Rasch Scaling

    ERIC Educational Resources Information Center

    Blackman, Ian; de Crespigny, Charlotte; Parker, Steve

    2006-01-01

    This study seeks to identify factors that influence the perceived complexity of providing nursing care to others (who are dependent on alcohol and tobacco) and the confidence of undergraduate student nurses to carry out this care. The research project is designed to explore whether there is a difference between the perceived complexities of 57…

  15. Workspace Program for Complex-Number Arithmetic

    NASA Technical Reports Server (NTRS)

    Patrick, M. C.; Howell, Leonard W., Jr.

    1986-01-01

    COMPLEX is workspace program designed to empower APL with complexnumber capabilities. Complex-variable methods provide analytical tools invaluable for applications in mathematics, science, and engineering. COMPLEX written in APL.

  16. Simulations for designing and interpreting intervention trials in infectious diseases.

    PubMed

    Halloran, M Elizabeth; Auranen, Kari; Baird, Sarah; Basta, Nicole E; Bellan, Steven E; Brookmeyer, Ron; Cooper, Ben S; DeGruttola, Victor; Hughes, James P; Lessler, Justin; Lofgren, Eric T; Longini, Ira M; Onnela, Jukka-Pekka; Özler, Berk; Seage, George R; Smith, Thomas A; Vespignani, Alessandro; Vynnycky, Emilia; Lipsitch, Marc

    2017-12-29

    Interventions in infectious diseases can have both direct effects on individuals who receive the intervention as well as indirect effects in the population. In addition, intervention combinations can have complex interactions at the population level, which are often difficult to adequately assess with standard study designs and analytical methods. Herein, we urge the adoption of a new paradigm for the design and interpretation of intervention trials in infectious diseases, particularly with regard to emerging infectious diseases, one that more accurately reflects the dynamics of the transmission process. In an increasingly complex world, simulations can explicitly represent transmission dynamics, which are critical for proper trial design and interpretation. Certain ethical aspects of a trial can also be quantified using simulations. Further, after a trial has been conducted, simulations can be used to explore the possible explanations for the observed effects. Much is to be gained through a multidisciplinary approach that builds collaborations among experts in infectious disease dynamics, epidemiology, statistical science, economics, simulation methods, and the conduct of clinical trials.

  17. Reducing Adult Obesity in Childhood: Parental Influence on the Food Choices of Children

    ERIC Educational Resources Information Center

    Watkins, Francine; Jones, Sue

    2015-01-01

    Objective: The aim of this study was to identify the complexities and pressures faced by parents when trying to embed knowledge of healthy eating in their children's lifestyles. Design: Qualitative design using focus groups with parents and children aged 10 to 11 years. Methods: The research was conducted in two phases. The first phase involved…

  18. Impact of Classroom Design on Teacher Pedagogy and Student Engagement and Performance in Mathematics

    ERIC Educational Resources Information Center

    Imms, Wesley; Byers, Terry

    2017-01-01

    A resurgence in interest in classroom and school design has highlighted how little we know about the impact of learning environments on student and teacher performance. This is partly because of a lack of research methods capable of controlling the complex variables inherent to space and education. In a unique study that overcame such difficulties…

  19. E-Learning Optimization: The Relative and Combined Effects of Mental Practice and Modeling on Enhanced Podcast-Based Learning--A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Alam, Fahad; Boet, Sylvain; Piquette, Dominique; Lai, Anita; Perkes, Christopher P.; LeBlanc, Vicki R.

    2016-01-01

    Enhanced podcasts increase learning, but evidence is lacking on how they should be designed to optimize their effectiveness. This study assessed the impact two learning instructional design methods (mental practice and modeling), either on their own or in combination, for teaching complex cognitive medical content when incorporated into enhanced…

  20. "Faces" and Complexities of Continuing Higher Education Units: A Postmodern Approach

    ERIC Educational Resources Information Center

    Stephenson, Sandria S.

    2010-01-01

    This study examines the dynamics of continuing higher education units within the sociopolitical context of higher education institutions. A qualitative approach to data collection and analysis was the study's design, while the theoretical frame was a postmodern, symbolic, theoretical approach to organizational studies. Results show that continuing…

  1. A Constructive Controversy Approach to "Case Studies"

    ERIC Educational Resources Information Center

    Bird, Sharon R.; Erickson, Karla A.

    2010-01-01

    On the basis of analysis of student responses to a case study titled "Drinks and Dinner," the authors evaluate the pedagogical potential of using constructive controversy case studies to teach about inequality. "Drinks and Dinner" is designed to capture the complexity of social interactions that defy simple solutions to engage students in…

  2. Crystal structure of an EfPDF complex with Met-Ala-Ser based on crystallographic packing.

    PubMed

    Nam, Ki Hyun; Kim, Kook-Han; Kim, Eunice Eun Kyeong; Hwang, Kwang Yeon

    2009-04-17

    PDF (peptide deformylase) plays a critical role in the production of mature proteins by removing the N-formyl polypeptide of nascent proteins in the prokaryote cell system. This protein is essential for bacterial growth, making it an attractive target for the design of new antibiotics. Accordingly, PDF has been evaluated as a drug target; however, architectural mechanism studies of PDF have not yet fully elucidated its molecular function. We recently reported the crystal structure of PDF produced by Enterococcus faecium [K.H. Nam, J.I. Ham, A. Priyadarshi, E.E. Kim, N. Chung, K.Y. Hwang, "Insight into the antibacterial drug design and architectural mechanism of peptide recognition from the E. faecium peptide deformylase structure", Proteins 74 (2009) 261-265]. Here, we present the crystal structure of the EfPDF complex with MAS (Met-Ser-Ala), thereby not only delineating the architectural mechanism for the recognition of mimic-peptides by N-terminal cleaved expression peptide, but also suggesting possible targets for rational design of antibacterial drugs. In addition to their implications for drug design, these structural studies will facilitate elucidation of the architectural mechanism responsible for the peptide recognition of PDF.

  3. Using conceptual work products of health care to design health IT.

    PubMed

    Berry, Andrew B L; Butler, Keith A; Harrington, Craig; Braxton, Melissa O; Walker, Amy J; Pete, Nikki; Johnson, Trevor; Oberle, Mark W; Haselkorn, Jodie; Paul Nichol, W; Haselkorn, Mark

    2016-02-01

    This paper introduces a new, model-based design method for interactive health information technology (IT) systems. This method extends workflow models with models of conceptual work products. When the health care work being modeled is substantially cognitive, tacit, and complex in nature, graphical workflow models can become too complex to be useful to designers. Conceptual models complement and simplify workflows by providing an explicit specification for the information product they must produce. We illustrate how conceptual work products can be modeled using standard software modeling language, which allows them to provide fundamental requirements for what the workflow must accomplish and the information that a new system should provide. Developers can use these specifications to envision how health IT could enable an effective cognitive strategy as a workflow with precise information requirements. We illustrate the new method with a study conducted in an outpatient multiple sclerosis (MS) clinic. This study shows specifically how the different phases of the method can be carried out, how the method allows for iteration across phases, and how the method generated a health IT design for case management of MS that is efficient and easy to use. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Study/Experimental/Research Design: Much More Than Statistics

    PubMed Central

    Knight, Kenneth L.

    2010-01-01

    Abstract Context: The purpose of study, experimental, or research design in scientific manuscripts has changed significantly over the years. It has evolved from an explanation of the design of the experiment (ie, data gathering or acquisition) to an explanation of the statistical analysis. This practice makes “Methods” sections hard to read and understand. Objective: To clarify the difference between study design and statistical analysis, to show the advantages of a properly written study design on article comprehension, and to encourage authors to correctly describe study designs. Description: The role of study design is explored from the introduction of the concept by Fisher through modern-day scientists and the AMA Manual of Style. At one time, when experiments were simpler, the study design and statistical design were identical or very similar. With the complex research that is common today, which often includes manipulating variables to create new variables and the multiple (and different) analyses of a single data set, data collection is very different than statistical design. Thus, both a study design and a statistical design are necessary. Advantages: Scientific manuscripts will be much easier to read and comprehend. A proper experimental design serves as a road map to the study methods, helping readers to understand more clearly how the data were obtained and, therefore, assisting them in properly analyzing the results. PMID:20064054

  5. Design, Synthesis, and Biological Evaluation of Benzimidazole-Derived Biocompatible Copper(II) and Zinc(II) Complexes as Anticancer Chemotherapeutics

    PubMed Central

    AlAjmi, Mohamed F.; Hussain, Afzal; Khan, Azmat Ali; Shaikh, Perwez Alam; Khan, Rais Ahmad

    2018-01-01

    Herein, we have synthesized and characterized a new benzimidazole-derived “BnI” ligand and its copper(II) complex, [Cu(BnI)2], 1, and zinc(II) complex, [Zn(BnI)2], 2, using elemental analysis and various spectroscopic techniques. Interaction of complexes 1 and 2 with the biomolecules viz. HSA (human serum albumin) and DNA were studied using absorption titration, fluorescence techniques, and in silico molecular docking studies. The results exhibited the significant binding propensity of both complexes 1 and 2, but complex 1 showed more avid binding to HSA and DNA. Also, the nuclease activity of 1 and 2 was analyzed for pBR322 DNA, and the results obtained confirmed the potential of the complexes to cleave DNA. Moreover, the mechanistic pathway was studied in the presence of various radical scavengers, which revealed that ROS (reactive oxygen species) are responsible for the nuclease activity in complex 1, whereas in complex 2, the possibility of hydrolytic cleavage also exists. Furthermore, the cytotoxicity of the ligand and complexes 1 and 2 were studied on a panel of five different human cancer cells, namely: HepG2, SK-MEL-1, HT018, HeLa, and MDA-MB 231, and compared with the standard drug, cisplatin. The results are quite promising against MDA-MB 231 (breast cancer cell line of 1), with an IC50 value that is nearly the same as the standard drug. Apoptosis was induced by complex 1 on MDA-MB 231 cells predominantly as studied by flow cytometry (FACS). The adhesion and migration of cancer cells were also examined upon treatment of complexes 1 and 2. Furthermore, the in vivo chronic toxicity profile of complexes 1 and 2 was also studied on all of the major organs of the mice, and found them to be less toxic. Thus, the results warrant further investigations of complex 1. PMID:29772746

  6. Design, Synthesis, and Biological Evaluation of Benzimidazole-Derived Biocompatible Copper(II) and Zinc(II) Complexes as Anticancer Chemotherapeutics.

    PubMed

    AlAjmi, Mohamed F; Hussain, Afzal; Rehman, Md Tabish; Khan, Azmat Ali; Shaikh, Perwez Alam; Khan, Rais Ahmad

    2018-05-16

    Herein, we have synthesized and characterized a new benzimidazole-derived "BnI" ligand and its copper(II) complex, [Cu(BnI)₂], 1 , and zinc(II) complex, [Zn(BnI)₂], 2 , using elemental analysis and various spectroscopic techniques. Interaction of complexes 1 and 2 with the biomolecules viz. HSA (human serum albumin) and DNA were studied using absorption titration, fluorescence techniques, and in silico molecular docking studies. The results exhibited the significant binding propensity of both complexes 1 and 2 , but complex 1 showed more avid binding to HSA and DNA. Also, the nuclease activity of 1 and 2 was analyzed for pBR322 DNA, and the results obtained confirmed the potential of the complexes to cleave DNA. Moreover, the mechanistic pathway was studied in the presence of various radical scavengers, which revealed that ROS (reactive oxygen species) are responsible for the nuclease activity in complex 1 , whereas in complex 2 , the possibility of hydrolytic cleavage also exists. Furthermore, the cytotoxicity of the ligand and complexes 1 and 2 were studied on a panel of five different human cancer cells, namely: HepG2, SK-MEL-1, HT018, HeLa, and MDA-MB 231, and compared with the standard drug, cisplatin. The results are quite promising against MDA-MB 231 (breast cancer cell line of 1 ), with an IC 50 value that is nearly the same as the standard drug. Apoptosis was induced by complex 1 on MDA-MB 231 cells predominantly as studied by flow cytometry (FACS). The adhesion and migration of cancer cells were also examined upon treatment of complexes 1 and 2 . Furthermore, the in vivo chronic toxicity profile of complexes 1 and 2 was also studied on all of the major organs of the mice, and found them to be less toxic. Thus, the results warrant further investigations of complex 1 .

  7. New approaches to optimization in aerospace conceptual design

    NASA Technical Reports Server (NTRS)

    Gage, Peter J.

    1995-01-01

    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.

  8. A Framework to Determine New System Requirements Under Design Parameter and Demand Uncertainties

    DTIC Science & Technology

    2015-04-30

    relegates quantitative complexities of decision-making to the method and designates trade-space exploration to the practitioner. We demonstrate the...quantitative complexities of decision-making to the method and designates trade-space exploration to the practitioner. We demonstrate the approach...play a critical role in determining new system requirements. Scope and Method of Approach The early stages of the design process have substantial

  9. A feasibility study of a hypersonic real-gas facility

    NASA Technical Reports Server (NTRS)

    Gully, J. H.; Driga, M. D.; Weldon, W. F.

    1987-01-01

    A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.

  10. Design of a Model Execution Framework: Repetitive Object-Oriented Simulation Environment (ROSE)

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Briggs, Jeffery L.

    2008-01-01

    The ROSE framework was designed to facilitate complex system analyses. It completely divorces the model execution process from the model itself. By doing so ROSE frees the modeler to develop a library of standard modeling processes such as Design of Experiments, optimizers, parameter studies, and sensitivity studies which can then be applied to any of their available models. The ROSE framework accomplishes this by means of a well defined API and object structure. Both the API and object structure are presented here with enough detail to implement ROSE in any object-oriented language or modeling tool.

  11. 78 FR 30357 - Self-Regulatory Organizations; BOX Options Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... proposed change is designed to create an appropriate fee structure for Complex Orders on the Exchange. The... because it is designed to allow the Exchange to better compete with other exchanges for Complex Order flow... To Create a New Fee Structure for Complex Orders on the BOX Market LLC Options Facility May 16, 2013...

  12. The Problem of Size in Robust Design

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.; Allen, Janet K.; Mistree, Farrokh; Mavris, Dimitri

    1997-01-01

    To facilitate the effective solution of multidisciplinary, multiobjective complex design problems, a departure from the traditional parametric design analysis and single objective optimization approaches is necessary in the preliminary stages of design. A necessary tradeoff becomes one of efficiency vs. accuracy as approximate models are sought to allow fast analysis and effective exploration of a preliminary design space. In this paper we apply a general robust design approach for efficient and comprehensive preliminary design to a large complex system: a high speed civil transport (HSCT) aircraft. Specifically, we investigate the HSCT wing configuration design, incorporating life cycle economic uncertainties to identify economically robust solutions. The approach is built on the foundation of statistical experimentation and modeling techniques and robust design principles, and is specialized through incorporation of the compromise Decision Support Problem for multiobjective design. For large problems however, as in the HSCT example, this robust design approach developed for efficient and comprehensive design breaks down with the problem of size - combinatorial explosion in experimentation and model building with number of variables -and both efficiency and accuracy are sacrificed. Our focus in this paper is on identifying and discussing the implications and open issues associated with the problem of size for the preliminary design of large complex systems.

  13. Implementing resilience engineering for healthcare quality improvement using the CARE model: a feasibility study protocol.

    PubMed

    Anderson, J E; Ross, A J; Back, J; Duncan, M; Snell, P; Walsh, K; Jaye, P

    2016-01-01

    Resilience engineering (RE) is an emerging perspective on safety in complex adaptive systems that emphasises how outcomes emerge from the complexity of the clinical environment. Complexity creates the need for flexible adaptation to achieve outcomes. RE focuses on understanding the nature of adaptations, learning from success and increasing adaptive capacity. Although the philosophy is clear, progress in applying the ideas to quality improvement has been slow. The aim of this study is to test the feasibility of translating RE concepts into practical methods to improve quality by designing, implementing and evaluating interventions based on RE theory. The CARE model operationalises the key concepts and their relationships to guide the empirical investigation. The settings are the Emergency Department and the Older Person's Unit in a large London teaching hospital. Phases 1 and 2 of our work, leading to the development of interventions to improve the quality of care, are described in this paper. Ethical approval has been granted for these phases. Phase 1 will use ethnographic methods, including observation of work practices and interviews with staff, to understand adaptations and outcomes. The findings will be used to collaboratively design, with clinical staff in interactive design workshops, interventions to improve the quality of care. The evaluation phase will be designed and submitted for ethical approval when the outcomes of phases 1 and 2 are known. Study outcomes will be knowledge about the feasibility of applying RE to improve quality, the development of RE theory and a validated model of resilience in clinical work which can be used to guide other applications. Tools, methods and practical guidance for practitioners will also be produced, as well as specific knowledge of the potential effectiveness of the implemented interventions in emergency and older people's care. Further studies to test the application of RE at a larger scale will be required, including studies of other healthcare settings, organisational contexts and different interventions.

  14. Theoretical Study of Oxovanadium(IV) Complexation with Formamidoximate: Implications for the Design of Uranyl-Selective Adsorbents

    DOE PAGES

    Mehio, Nada; Ivanov, Alexander S.; Ladshaw, Austin P.; ...

    2015-11-22

    Poly(acrylamidoxime) fibers are the current state of the art adsorbent for mining uranium from seawater. However, the competition between uranyl (UO 2 2+) and vanadium ions poses a challenge to mining on the industrial scale. In this work, we employ density functional theory (DFT) and coupled-cluster methods (CCSD(T)) in the restricted formalism to investigate potential binding motifs of the oxovanadium(IV) ion (VO 2+) with the formamidoximate ligand. Consistent with experimental EXAFS data, the hydrated six-coordinate complex is predicted to be preferred over the hydrated five-coordinate complex. Here, our investigation of formamidoximate-VO 2+ complexes universally identified the most stable binding motifmore » formed by chelating a tautomerically rearranged imino hydroxylamine via the imino nitrogen and hydroxylamine oxygen. The alternative binding motifs for amidoxime chelation via a non-rearranged tautomer and 2 coordination are found to be ~11 kcal/mol less stable. Ultimately, the difference in the most stable VO 2+ and UO 2 2+ binding conformation has important implications for the design of more selective UO 2 2+ ligands.« less

  15. [Influence of Restricting the Ankle Joint Complex Motions on Gait Stability of Human Body].

    PubMed

    Li, Yang; Zhang, Junxia; Su, Hailong; Wang, Xinting; Zhang, Yan

    2016-10-01

    The purpose of this study is to determine how restricting inversion-eversion and pronation-supination motions of the ankle joint complex influences the stability of human gait.The experiment was carried out on a slippery level ground walkway.Spatiotemporal gait parameter,kinematics and kinetics data as well as utilized coefficient of friction(UCOF)were compared between two conditions,i.e.with restriction of the ankle joint complex inversion-eversion and pronation-supination motions(FIXED)and without restriction(FREE).The results showed that FIXED could lead to a significant increase in velocity and stride length and an obvious decrease in double support time.Furthermore,FIXED might affect the motion angle range of knee joint and ankle joint in the sagittal plane.In FIXED condition,UCOF was significantly increased,which could lead to an increase of slip probability and a decrease of gait stability.Hence,in the design of a walker,bipedal robot or prosthetic,the structure design which is used to achieve the ankle joint complex inversion-eversion and pronation-supination motions should be implemented.

  16. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    NASA Astrophysics Data System (ADS)

    Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus; Zafeiropoulos, Savvas

    2018-03-01

    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplemented with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.

  17. Implications of complex adaptive systems theory for the design of research on health care organizations

    PubMed Central

    McDaniel, Reuben R.; Lanham, Holly Jordan; Anderson, Ruth A.

    2013-01-01

    Background Because health care organizations (HCOs) are complex adaptive systems (CASs), phenomena of interest often are dynamic and unfold in unpredictable ways, and unfolding events are often unique. Researchers of HCOs may recognize that the subject of their research is dynamic; however, their research designs may not take this into account. Researchers may also know that unfolding events are often unique, but their design may not have the capacity to obtain information from meager evidence. Purpose These two concerns led us to examine two ideas from organizational theory: (a) the ideas of K. E. Weick (1993) on organizational design as a verb and (b) the ideas of J. G. March, L. S. Sproull, and M. Tamuz (1991) on learning from samples of one or fewer. In this article, we applied these ideas to develop an enriched perspective of research design for studying CASs. Methodology/Approach We conducted a theoretical analysis of organizations as CASs, identifying relevant characteristics for research designs. We then explored two ideas from organizational theory and discussed the implications for research designs. Findings Weick's idea of “design as a verb” helps in understanding dynamic and process-oriented research design. The idea of “learning from samples of one or fewer” of March, Sproull, and Tamuz provides strategies for research design that enables learning from meager evidence. When studying HCOs, research designs are likely to be more effective when they (a) anticipate change, (b) include tension, (c) capitalize on serendipity, and (d) use an “act-then-look” mind set. Implications for practice are discussed. Practice Implications Practitioners who understand HCOs as CASs will be cautious in accepting findings from studies that treat HCOs mechanistically. They will consider the characteristics of CAS when evaluating the evidence base for practice. Practitioners can use the strategies proposed in this article to stimulate discussion with researchers seeking to conduct research in their HCO. PMID:19322050

  18. Implications of complex adaptive systems theory for the design of research on health care organizations.

    PubMed

    McDaniel, Reuben R; Lanham, Holly Jordan; Anderson, Ruth A

    2009-01-01

    Because health care organizations (HCOs) are complex adaptive systems (CASs), phenomena of interest often are dynamic and unfold in unpredictable ways, and unfolding events are often unique. Researchers of HCOs may recognize that the subject of their research is dynamic; however, their research designs may not take this into account. Researchers may also know that unfolding events are often unique, but their design may not have the capacity to obtain information from meager evidence. These two concerns led us to examine two ideas from organizational theory: (a) the ideas of K. E. Weick (1993) on organizational design as a verb and (b) the ideas of J. G. March, L. S. Sproull, and M. Tamuz (1991) on learning from samples of one or fewer. In this article, we applied these ideas to develop an enriched perspective of research design for studying CASs. We conducted a theoretical analysis of organizations as CASs, identifying relevant characteristics for research designs. We then explored two ideas from organizational theory and discussed the implications for research designs. Weick's idea of "design as a verb" helps in understanding dynamic and process-oriented research design. The idea of "learning from samples of one or fewer" of March, Sproull, and Tamuz provides strategies for research design that enables learning from meager evidence. When studying HCOs, research designs are likely to be more effective when they (a) anticipate change, (b) include tension, (c) capitalize on serendipity, and (d) use an "act-then-look" mind set. Implications for practice are discussed. Practitioners who understand HCOs as CASs will be cautious in accepting findings from studies that treat HCOs mechanistically. They will consider the characteristics of CAS when evaluating the evidence base for practice. Practitioners can use the strategies proposed in this article to stimulate discussion with researchers seeking to conduct research in their HCO.

  19. Methodological Complications of Matching Designs under Real World Constraints: Lessons from a Study of Deeper Learning

    ERIC Educational Resources Information Center

    Zeiser, Kristina; Rickles, Jordan; Garet, Michael S.

    2014-01-01

    To help researchers understand potential issues one can encounter when conducting propensity matching studies in complex settings, this paper describes methodological complications faced when studying schools using deeper learning practices to improve college and career readiness. The study uses data from high schools located in six districts…

  20. Construction and Validation of a Questionnaire to Study Future Teachers' Beliefs about Cultural Diversity

    ERIC Educational Resources Information Center

    López López, M. Carmen; Hinojosa Pareja, Eva F.

    2016-01-01

    The article presents the construction and validation process of a questionnaire designed to study student teachers' beliefs about cultural diversity. The study, beyond highlighting the complexity involved in the study of beliefs, emphasises their relevance in implementing inclusive educational processes that guarantee the right to a good education…

Top