Satanarachchi, Niranji; Mino, Takashi
2014-01-01
This paper aims to explore the prominent implications of the process of observing complex dynamics linked to sustainability in human-natural systems and to propose a framework for sustainability evaluation by introducing the concept of sustainability boundaries. Arguing that both observing and evaluating sustainability should engage awareness of complex dynamics from the outset, we try to embody this idea in the framework by two complementary methods, namely, the layer view- and dimensional view-based methods, which support the understanding of a reflexive and iterative sustainability process. The framework enables the observation of complex dynamic sustainability contexts, which we call observation metastructures, and enable us to map the contexts to sustainability boundaries.
Sustainability, Complexity and Learning: Insights from Complex Systems Approaches
ERIC Educational Resources Information Center
Espinosa, A.; Porter, T.
2011-01-01
Purpose: The purpose of this research is to explore core contributions from two different approaches to complexity management in organisations aiming to improve their sustainability,: the Viable Systems Model (VSM), and the Complex Adaptive Systems (CAS). It is proposed to perform this by summarising the main insights each approach offers to…
Sustainable System Management with Fisher Information based Objectives
Sustainable ecosystem management that integrates ecological, economic and social perspectives is a complex task where simultaneous persistence of human and natural components of the system must be ensured. Given the complexity of this task, systems theory approaches based on soun...
Defense Systems Modernization and Sustainment Initiative
2014-03-31
research programs focus on sustainable production, sustainable energy, sustainable mobility , and ecologically friendly information technology systems...for Sustainable Mobility (CSM): focused on developing viable technologies for sustainable transportation systems and the support of complex equipment...utilization of mobile devices. The objective of the evaluation was to identify features that the new implementation of LEEDS would require, such as
Echoes That Never Were: American Mobile Intercontinental Ballistic Missiles, 1956-1983
2006-05-11
research, develop, operate, maintain, and sustain complex technological systems , ICBMs were--and remain--a system blending technical matters, scientific ...maintain, and sustain complex technological systems , ICBMs were--and remain--a system blending technical matters, scientific laws, economic...technological system that blended scientific laws, economic realities, political forces, and social concerns that included environmentalism and
FISHER INFORMATION AS A METRIC FOR SUSTAINABLE SYSTEM REGIMES
The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. We propose Fisher Information as a metric for the sustainability of dynamic regimes in complex systems. The quantity now known ...
TOWARD A THEORY OF SUSTAINABLE SYSTEMS
While there is tremendous interest in sustainability, a fundamental theory of sustainability does not exist. We present our efforts at constructing such a theory using Physics, Information Theory, Economics and Ecology. We discuss the state of complex sustainable systems that i...
Operation of passive membrane systems for drinking water treatment.
Oka, P A; Khadem, N; Bérubé, P R
2017-05-15
The widespread adoption of submerged hollow fibre ultrafiltration (UF) for drinking water treatment is currently hindered by the complexity and cost of these membrane systems, especially in small/remote communities. Most of the complexity is associated with auxiliary fouling control measures, which include backwashing, air sparging and chemical cleaning. Recent studies have demonstrated that sustained operation without fouling control measures is possible, but little is known regarding the conditions under which extended operation can be sustained with minimal to no fouling control measures. The present study investigated the contribution of different auxiliary fouling control measures to the permeability that can be sustained, with the intent of minimizing the mechanical and operational complexity of submerged hollow fiber UF membrane systems while maximizing their throughput capacity. Sustained conditions could be achieved without backwashing, air sparging or chemical cleaning (i.e. passive operation), indicating that these fouling control measures can be eliminated, substantially simplifying the mechanical and operational complexity of submerged hollow fiber UF systems. The adoption of hydrostatic pressure (i.e. gravity) to provide the driving force for permeation further reduced the system complexity. Approximately 50% of the organic material in the raw water was removed during treatment. The sustained passive operation and effective removal of organic material was likely due to the microbial community that established itself on the membrane surface. The permeability that could be sustained was however only approximately 20% of that which can be maintained with fouling control measures. Retaining a small amount of air sparging (i.e. a few minutes daily) and incorporating a daily 1-h relaxation (i.e. permeate flux interruption) period prior to sparging more than doubled the permeability that could be sustained. Neither the approach used to interrupt the permeate flux nor that developed to draw air into the system for sparging using gravity add substantial mechanical or operational complexity to the system. The high throughput capacity that can be sustained by eliminating all but a couple of simple fouling control measures make passive membrane systems ideally suited to provide high quality water especially where access to financial resources, technical expertise and/or electrical power is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Flumerfelt, Shannon; Siriban-Manalang, Anna Bella; Kahlen, Franz-Josef
2012-01-01
Purpose: This paper aims to peruse theories and practices of agile and lean manufacturing systems to determine whether they employ sustainability, complexity and organizational learning. Design/methodology/approach: The critical review of the comparative operational similarities and difference of the two systems was conducted while the new views…
NREL Leads Energy Systems Integration - Continuum Magazine | NREL
performance data to manage and optimize campus energy use. Integrated Solutions for a Complex Energy World 03 Integrated Solutions for a Complex Energy World Energy systems integration optimizes the design and efficient data centers in the world. Sustainability through Dynamic Energy Management Sustainability through
Controllability of complex networks for sustainable system dynamics
Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often non-linear and non-intuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic un...
Linking disaster resilience and urban sustainability: a glocal approach for future cities.
Asprone, Domenico; Manfredi, Gaetano
2015-01-01
Resilience and sustainability will be two primary objectives of future cities. The violent consequences of extreme natural events and the environmental, social and economic burden of contemporary cities make the concepts of resilience and sustainability extremely relevant. In this paper we analyse the various definitions of resilience and sustainability applied to urban systems and propose a synthesis, based on similarities between the two concepts. According to the proposed approach, catastrophic events and the subsequent transformations occurring in urban systems represent a moment in the city life cycle to be seen in terms of the complex sustainability framework. Hence, resilience is seen as a requirement for urban system sustainability. In addition, resilience should be evaluated not only for single cities, with their physical and social systems, but also on a global scale, taking into account the complex and dynamic relationships connecting contemporary cities. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
Sustainability Learning through Gaming: An Exploratory Study
ERIC Educational Resources Information Center
Fabricatore, Carlo; Lopez, Ximena
2012-01-01
This study explored the potential of digital games as learning environments to develop mindsets capable of dealing with complexity in the domain of sustainability. Building sustainable futures requires the ability to deal with the complex dynamics that characterize the world in which we live. As central elements in this system, we must develop the…
Exploring the sustainability of industrial production and energy generation with a model system
The importance and complexity of sustainability has been well recognized and a formal study of sustainability based on system theory approaches is imperative as many of the relationships between the various components of the system could be non-linear, intertwined, and non-intuit...
SUSTAINABILITY AND COMPLEX SYSTEMS
The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. World commission on environment and development defines sustainability as ‘development that meets the needs of the present withou...
Shigayeva, Altynay; Coker, Richard J
2015-04-01
There is renewed concern over the sustainability of disease control programmes, and re-emergence of policy recommendations to integrate programmes with general health systems. However, the conceptualization of this issue has remarkably received little critical attention. Additionally, the study of programmatic sustainability presents methodological challenges. In this article, we propose a conceptual framework to support analyses of sustainability of communicable disease programmes. Through this work, we also aim to clarify a link between notions of integration and sustainability. As a part of development of the conceptual framework, we conducted a systematic literature review of peer-reviewed literature on concepts, definitions, analytical approaches and empirical studies on sustainability in health systems. Identified conceptual proposals for analysis of sustainability in health systems lack an explicit conceptualization of what a health system is. Drawing upon theoretical concepts originating in sustainability sciences and our review here, we conceptualize a communicable disease programme as a component of a health system which is viewed as a complex adaptive system. We propose five programmatic characteristics that may explain a potential for sustainability: leadership, capacity, interactions (notions of integration), flexibility/adaptability and performance. Though integration of elements of a programme with other system components is important, its role in sustainability is context specific and difficult to predict. The proposed framework might serve as a basis for further empirical evaluations in understanding complex interplay between programmes and broader health systems in the development of sustainable responses to communicable diseases. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.
FISHER INFORMATION AS A METRIC FOR SUSTAINABLE REGIMES
The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. We propose Fisher Information as a metric for the sustainability of dynamic regimes in complex systems. The quantity now known ...
Keshavarz, Nastaran; Nutbeam, Don; Rowling, Louise; Khavarpour, Freidoon
2010-05-01
Achieving system-wide implementation of health promotion programs in schools and sustaining both the program and its health related benefits have proved challenging. This paper reports on a qualitative study examining the implementation of health promoting schools programs in primary schools in Sydney, Australia. It draw upon insights from systems science to examine the relevance and usefulness of the concept of "complex adaptive systems" as a framework to better understand ways in which health promoting school interventions could be introduced and sustained. The primary data for the study were collected by semi-structured interviews with 26 school principals and teachers. Additional information was extracted from publicly available school management plans and annual reports. We examined the data from these sources to determine whether schools exhibit characteristics of complex adaptive systems. The results confirmed that schools do exhibit most, but not all of the characteristics of social complex adaptive systems, and exhibit significant differences with artificial and natural systems. Understanding schools as social complex adaptive systems may help to explain some of the challenges of introducing and sustaining change in schools. These insights may, in turn, lead us to adopt more sophisticated approaches to the diffusion of new programs in school systems that account for the diverse, complex and context specific nature of individual school systems. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Sustainability: Why the Language and Ethics of Sustainability Matter in the Geoscience Classroom
ERIC Educational Resources Information Center
Metzger, Ellen P.; Curren, Randall R.
2017-01-01
Because challenges to sustainability arise at the intersection of human and biophysical systems they are inescapably embedded in social contexts and involve multiple stakeholders with diverse and often conflicting needs and value systems. Addressing complex and solution-resistant problems such as climate change, biodiversity loss, and…
Model-based approach to study the impact of biofuels on the sustainability of an ecological system
The importance and complexity of sustainability have been well recognized and a formal study of sustainability based on system theory approaches is imperative as many of the relationships between various components of the ecosystem could be nonlinear, intertwined and non-intuitiv...
Model based approach to Study the Impact of Biofuels on the Sustainability of an Ecological System
The importance and complexity of sustainability has been well recognized and a formal study of sustainability based on system theory approaches is imperative as many of the relationships between various components of the ecosystem could be nonlinear, intertwined and non intuitive...
Understanding and Advancing Campus Sustainability Using a Systems Framework
ERIC Educational Resources Information Center
Posner, Stephen M.; Stuart, Ralph
2013-01-01
Purpose: University campuses behave as complex systems, and sustainability in higher education is best seen as an emergent quality that arises from interactions both within an institution and between the institution and the environmental and social contexts in which it operates. A framework for strategically prioritizing campus sustainability work…
TOWARD A THEORY OF SUSTAINABLE SYSTEMS
While there is tremendous interest in the topic of sustainability, a fundamental theory of sustainability does not exist. We present our efforts at constructing such a theory starting with Information Theory and ecological models. We discuss the state of complex sustainable syste...
The Future of Pork Production in the World: Towards Sustainable, Welfare-Positive Systems.
McGlone, John J
2013-05-15
Among land animals, more pork is eaten in the world than any other meat. The earth holds about one billion pigs who deliver over 100 mmt of pork to people for consumption. Systems of pork production changed from a forest-based to pasture-based to dirt lots and finally into specially-designed buildings. The world pork industry is variable and complex not just in production methods but in economics and cultural value. A systematic analysis of pork industry sustainability was performed. Sustainable production methods are considered at three levels using three examples in this paper: production system, penning system and for a production practice. A sustainability matrix was provided for each example. In a comparison of indoor vs. outdoor systems, the food safety/zoonoses concerns make current outdoor systems unsustainable. The choice of keeping pregnant sows in group pens or individual crates is complex in that the outcome of a sustainability assessment leads to the conclusion that group penning is more sustainable in the EU and certain USA states, but the individual crate is currently more sustainable in other USA states, Asia and Latin America. A comparison of conventional physical castration with immunological castration shows that the less-common immunological castration method is more sustainable (for a number of reasons). This paper provides a method to assess the sustainability of production systems and practices that take into account the best available science, human perception and culture, animal welfare, the environment, food safety, worker health and safety, and economics (including the cost of production and solving world hunger). This tool can be used in countries and regions where the table values of a sustainability matrix change based on local conditions. The sustainability matrix can be used to assess current systems and predict improved systems of the future.
Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems
Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...
Matthew P. Thompson; Bruce G. Marcot; Frank R. Thompson; Steven McNulty; Larry A. Fisher; Michael C. Runge; David Cleaves; Monica Tomosy
2013-01-01
Sustainable management of national forests and grasslands within the National Forest System (NFS) often requires managers to make tough decisions under considerable uncertainty, complexity, and potential conflict. Resource decisionmakers must weigh a variety of risks, stressors, and challenges to sustainable management, including climate change, wildland fire, invasive...
FISHER INFORMATION AS A SUSTAINABILITY METRIC
World commission on Environment and Development defines sustainability as 'development that meets the needs of the present without compromising the ability of future generations to meet their own needs'. The concept of Sustainability requires study of complex integrated systems ...
A Macromarketing View of Sustainable Development in Vietnam.
Shultz, Clifford J; Peterson, Mark
2017-12-30
The authors apply methods and perspectives from several disciplines to explore the effects of Vietnam's economic development on various ecosystems, to offer a macromarketing view of sustainable development in Vietnam. An adapted version of the Sustainable Society Index was used to assess Vietnam's sustainability, how Vietnam's measures compare to other countries, with implications for future sustainable-development. Among several findings, Vietnam earns favorable sustainability ratings in absolute terms for water resources, healthy living, energy use, greenhouse gases, genuine savings, and employment. Ominously, Vietnam and some of its nearby neighbors post poor scores for energy savings and education. Going forward, energy savings, a well-educated population, and a coordinated marketing system will be required to ensure favorable sustainability measures. Drawing on macromarketing explorations of complex and interdependent systems, key factors are considered to redress unsustainable resource exploitation and degradation. Particular attention is given to the complexities and dilemmas inherent to waterways, such as the Mekong River Basin and Delta. The authors argue for multi-win goals, systemic understanding, stakeholder inclusion, and resolutions via cooperation and constructive engagement-including projects, products, services, and institutional leadership for best practices designed and administered to enhance sustainability and citizen/societal well-being.
NASA Astrophysics Data System (ADS)
Kozlov, A.; Gutman, S.; Zaychenko, I.; Rytova, E.; Nijinskaya, P.
2015-09-01
The article presents an approach to sustainable environmental development of the Murmansk region of the Russian Federation based on the complex regional indicators as a transformation of a balance scorecard method. The peculiarities of Murmansk region connected with sustainable environmental development are described. The complex regional indicators approach allows to elaborate the general concept of complex regional development taking into consideration economic and non-economic factors with the focus on environmental aspects, accumulated environmental damage in particular. General strategic chart of sustainable environmental development of the Murmansk region worked out on the basis of complex regional indicators concept is composed. The key target indicators of sustainable ecological development of the Murmansk region are presented for the following strategic chart components: regional finance; society and market; industry and entrepreneurship; training, development and innovations. These charts are to be integrated with international environmental monitoring systems.
OPTIMAL CONTROL THEORY FOR SUSTAINABLE ENVIRONMENTAL MANAGEMENT
Sustainable management of the human and natural systems, taking into account their interactions, has become paramount. To achieve this complex multidisciplinary objective, systems theory based techniques prove useful. The proposed work is a step in that direction. Taking a food w...
STARTING SMALL IN STELLA: LEARNING HOW TO PLAN FOR SUSTAINABILITY
Concepts of sustainability are rarely clearly defined and their applications often seem abstract. Because these concepts must address systems scale, even simple strategies often seem complex, abstract, and overwhelming. The opportunity to apply a theory for sustainable developmen...
System Dynamics (SD) models are useful for holistic integration of data to evaluate indirect and cumulative effects and inform decisions. Complex SD models can provide key insights into how decisions affect the three interconnected pillars of sustainability. However, the complexi...
Transformative Sustainability: Learning from Ecological Systems and Indigenous Wisdom
ERIC Educational Resources Information Center
Burns, Heather L.
2015-01-01
Sustainability is becoming increasingly relevant in higher education, as the need to address complex cultural and ecological problems intensifies. How sustainability is taught has a profound influence on the kind of learning that takes place and the impact it has in the world. Sustainability pedagogy is offered as a tool for creating…
Recent Developments in the Application of Fisher Information to Sustainable Environmental Management
Assessing sustainability in human and natural systems is often hampered by complex dynamics, timescales, and inherent linkages among the observable properties. Although many indicators have been identified that help classify trends indicating movement toward and away from sustain...
Early Detection of Regime Shifts in Complex Systems from Fisher Information
The central goal of sustainability is the maintenance of environmental conditions, which are favorable to human existence. A critically important element then is the resilience of the dynamic regime that one wishes to sustain. Resilient systems are able to withstand perturbations...
Karwowski, Waldemar; Ahram, Tareq Z
2012-01-01
In order to leverage individual and organizational learning and to remain competitive in current turbulent markets it is important for employees, managers, planners and leaders to perform at high levels over time. Employee competence and skills are extremely important matters in view of the general shortage of talent and the mobility of employees with talent. Two factors emerged to have the greatest impact on the competitiveness of complex service systems: improving managerial and employee's knowledge attainment for skills, and improving the training and development of the workforce. This paper introduces the knowledge-based user-centered service design approach for sustainable skill and performance improvement in education, design and modeling of the next generation of complex service systems. The rest of the paper cover topics in human factors and sustainable business process modeling for the service industry, and illustrates the user-centered service system development cycle with the integration of systems engineering concepts in service systems. A roadmap for designing service systems of the future is discussed. The framework introduced in this paper is based on key user-centered design principles and systems engineering applications to support service competitiveness.
Resource Recovery-based Sustainable Water Systems - the City of Tomorrow
Urban water systems are an example of complex, dynamic human-environment coupled systems which exhibit emergent behaviors that transcends individual scientific disciplines. To address the complexities associated with municipal water issues there is a need to shift from our tradi...
Environmental, social, and economic footprints of current and past beef production systems
USDA-ARS?s Scientific Manuscript database
The beef industry has defined sustainability as meeting the growing demand for beef by balancing environmental responsibility, economic opportunity and social diligence. Accurately measuring sustainability is challenging, as the beef supply chain is one of the most complex food systems in the world....
DOT National Transportation Integrated Search
2000-10-01
A sustainable transport system must provide mobility and accessibility to all urban residents in a safe and end environmentally friendly mode of transport. This is a complex and difficult task when the needs and demands of people belonging to differe...
Sustainability as Moral Action
ERIC Educational Resources Information Center
Dunn, Merrily S.; Hart-Steffes, Jeanne S.
2012-01-01
When one considers sustainability as a moral action, there are equally complex realities at hand--climate change, resource depletion, water and land rights. One author describes this broad sense of sustainability as "the connection of specific social and environmental problems to the functioning of human and ecological systems" (Jenkins, 2011).…
The Future of Pork Production in the World: Towards Sustainable, Welfare-Positive Systems
McGlone, John J.
2013-01-01
Simple Summary More pork is eaten in the world than any other meat. Making production systems and practices more sustainable will benefit the animals, the planet and people. A system is presented by which production practices are evaluated using a sustainability matrix. The matrix shows why some practices are more common in some countries and regions and the impediments to more sustainable systems. This method can be used to assess the sustainability of production practices in the future where objective, science-based information is presented alongside ethical and economic information to make the most informed decisions. Finally, this paper points to current pork production practices that are more and less sustainable. Abstract Among land animals, more pork is eaten in the world than any other meat. The earth holds about one billion pigs who deliver over 100 mmt of pork to people for consumption. Systems of pork production changed from a forest-based to pasture-based to dirt lots and finally into specially-designed buildings. The world pork industry is variable and complex not just in production methods but in economics and cultural value. A systematic analysis of pork industry sustainability was performed. Sustainable production methods are considered at three levels using three examples in this paper: production system, penning system and for a production practice. A sustainability matrix was provided for each example. In a comparison of indoor vs. outdoor systems, the food safety/zoonoses concerns make current outdoor systems unsustainable. The choice of keeping pregnant sows in group pens or individual crates is complex in that the outcome of a sustainability assessment leads to the conclusion that group penning is more sustainable in the EU and certain USA states, but the individual crate is currently more sustainable in other USA states, Asia and Latin America. A comparison of conventional physical castration with immunological castration shows that the less-common immunological castration method is more sustainable (for a number of reasons). This paper provides a method to assess the sustainability of production systems and practices that take into account the best available science, human perception and culture, animal welfare, the environment, food safety, worker health and safety, and economics (including the cost of production and solving world hunger). This tool can be used in countries and regions where the table values of a sustainability matrix change based on local conditions. The sustainability matrix can be used to assess current systems and predict improved systems of the future. PMID:26487410
Sustainable, Reliable Mission-Systems Architecture
NASA Technical Reports Server (NTRS)
O'Neil, Graham; Orr, James K.; Watson, Steve
2005-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.
Sustainable, Reliable Mission-Systems Architecture
NASA Technical Reports Server (NTRS)
O'Neil, Graham; Orr, James K.; Watson, Steve
2007-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.
A Living Systems Model for Assessing and Promoting the Sustainability of Communities.
ERIC Educational Resources Information Center
Larrick, Steve
A living systems model of community development has been synthesized from elements of three perspectives: (1) a global movement toward more sustainable patterns of human development that is identifying indicators of community health in a wide range of categories; (2) research on the complex interactions of living systems that make life on earth…
Analytic network process model for sustainable lean and green manufacturing performance indicator
NASA Astrophysics Data System (ADS)
Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd; Mohamed, Nik Mohd Zuki Nik
2014-09-01
Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition, its three major pillars of economic, environment and society though distinct, have some overlapping among each of its elements. Even though the concept of sustainability is not new, the development of the performance indicator still needs a lot of improvement due to its multifaceted nature, which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean, green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.
Environmental, social, and economic footprints of current and past beef production systems
USDA-ARS?s Scientific Manuscript database
The beef industry has defined sustainability as raising cattle in a way that is environmentally, economically and socially responsible. Accurately measuring sustainability is challenging, as the beef supply chain is one of the most complex food systems in the world. As the first and largest research...
El Maghraby, Gamal M; Elzayat, Ehab M; Alanazi, Fars K
2012-08-01
Alternative strategies are being employed to develop liquid oral sustained release formulation. These included ion exchange resin, sustained release suspensions and in situ gelling systems. The later mainly utilizes alginate solutions that form gels upon contact with calcium which may be administered separately or included in the alginate solution as citrate complex. This complex liberates calcium in the stomach with subsequent gellation. The formed gel can break after gastric emptying leading to dose dumping. Development of modified in situ gelling system which sustain dextromethorphan release in the stomach and intestine. Solutions containing alginate with calcium chloride and sodium citrate were initially prepared to select the formulation sustaining the release in the stomach. The best formulation was combined with chitosan. All formulations were characterized with respect to flow, gelling capacity, gelling strength and drug release. Increasing the concentration of alginate increased the gelling capacity and strength and reduced the rate of drug release in gastric conditions with 2% w/v alginate being the best formulation. However, these formulations failed to sustain the release in the intestinal conditions. Incorporation of chitosan with alginate increased the gelling capacity and strength and reduced the rate of drug release compared to alginate only system. The effect was optimum in formulation containing 1.5% w/v chitosan. The sustained release pattern was maintained both in the gastric and intestinal conditions and was comparable to that obtained from the marketed product. Alginate-chitosan based in situ gelling system is promising for developing liquid oral sustained release.
AN ADVANCED SYSTEM FOR POLLUTION PREVENTION IN CHEMICAL COMPLEXES
One important accomplishment is that the system will give process engineers interactively and simultaneously use of programs for total cost analysis, life cycle assessment and sustainability metrics to provide direction for the optimal chemical complex analysis pro...
A causal loop analysis of the sustainability of integrated community case management in Rwanda.
Sarriot, Eric; Morrow, Melanie; Langston, Anne; Weiss, Jennifer; Landegger, Justine; Tsuma, Laban
2015-04-01
Expansion of community health services in Rwanda has come with the national scale up of integrated Community Case Management (iCCM) of malaria, pneumonia and diarrhea. We used a sustainability assessment framework as part of a large-scale project evaluation to identify factors affecting iCCM sustainability (2011). We then (2012) used causal-loop analysis to identify systems determinants of iCCM sustainability from a national systems perspective. This allows us to develop three high-probability future scenarios putting the achievements of community health at risk, and to recommend mitigating strategies. Our causal loop diagram highlights both balancing and reinforcing loops of cause and effect in the national iCCM system. Financial, political and technical scenarios carry high probability for threatening the sustainability through: (1) reduction in performance-based financing resources, (2) political shocks and erosion of political commitment for community health, and (3) insufficient progress in resolving district health systems--"building blocks"--performance gaps. In a complex health system, the consequences of choices may be delayed and hard to predict precisely. Causal loop analysis and scenario mapping make explicit complex cause-and-effects relationships and high probability risks, which need to be anticipated and mitigated. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Sung, Dia; You, Yeongmahn; Song, Ji Hoon
2008-01-01
The purpose of this research is to explore the possibility of viable learning organizations based on identifying viable organizational learning mechanisms. Two theoretical foundations, complex system theory and viable system theory, have been integrated to provide the rationale for building the sustainable organizational learning mechanism. The…
An Application of the Methodology for Assessment of the Sustainability of Air Transport System
NASA Technical Reports Server (NTRS)
Janic, Milan
2003-01-01
An assessment and operationalization of the concept of sustainable air transport system is recognized as an important but complex research, operational and policy task. In the scope of the academic efforts to properly address the problem, this paper aims to assess the sustainability of air transport system. It particular, the paper describes the methodology for assessment of sustainability and its potential application. The methodology consists of the indicator systems, which relate to the air transport system operational, economic, social and environmental dimension of performance. The particular indicator systems are relevant for the particular actors such users (air travellers), air transport operators, aerospace manufacturers, local communities, governmental authorities at different levels (local, national, international), international air transport associations, pressure groups and public. In the scope of application of the methodology, the specific cases are selected to estimate the particular indicators, and thus to assess the system sustainability under given conditions.
Rehan, R; Knight, M A; Haas, C T; Unger, A J A
2011-10-15
Recently enacted regulations in Canada and elsewhere require water utilities to be financially self-sustaining over the long-term. This implies full cost recovery for providing water and wastewater services to users. This study proposes a new approach to help water utilities plan to meet the requirements of the new regulations. A causal loop diagram is developed for a financially self-sustaining water utility which frames water and wastewater network management as a complex system with multiple interconnections and feedback loops. The novel System Dynamics approach is used to develop a demonstration model for water and wastewater network management. This is the first known application of System Dynamics to water and wastewater network management. The network simulated is that of a typical Canadian water utility that has under invested in maintenance. Model results show that with no proactive rehabilitation strategy the utility will need to substantially increase its user fees to achieve financial sustainability. This increase is further exacerbated when price elasticity of water demand is considered. When the utility pursues proactive rehabilitation, financial sustainability is achieved with lower user fees. Having demonstrated the significance of feedback loops for financial management of water and wastewater networks, the paper makes the case for a more complete utility model that considers the complexity of the system by incorporating all feedback loops. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
On-line Resources for Teaching Sustainability
NASA Astrophysics Data System (ADS)
Bruckner, M. Z.; Larsen, K.; Buhr, S. M.; Kirk, K. B.; Ledley, T. S.; Manduca, C. A.; Mogk, D. W.; Savina, M. E.; Tewksbury, B. J.
2012-12-01
Sustainability encompasses broad interdisciplinary topics such as climate change, agricultural food production, and water resource use that include both scientific and societal components. Today's students will need to learn how to address complex, interdisciplinary, sustainability-related challenges throughout their lives. To support faculty in teaching complex concepts in sustainability to undergraduates, the Science Education Resource Center (SERC) now provides integrated access to all resources on teaching sustainability developed by projects hosted on SERC websites. Drawing extensively from collections developed by On the Cutting Edge: Professional Development for Geoscience Faculty, InTeGrate: Interdisciplinary Teaching of Geoscience for a Sustainable Future, the Climate Literacy and Energy Awareness Network (CLEAN), as well as more than 10 smaller projects, these resources include browsable access to (1) over 120 course descriptions submitted by faculty that provide information about course goals, assessments, and syllabi used in teaching courses with a sustainability focus, (2) over 160 faculty-submitted descriptions of activities that can be used to incorporate and address sustainability concepts, and (3) more than 90 interdisciplinary essays that highlight how faculty incorporate sustainability concepts into their teaching. The Sustainability Portal additionally includes several collections of lessons focused on a central theme, such as carbon footprint exercises and materials for teaching about energy that incorporate quantitative skills. The Sustainability Portal provides access to information about incorporating sustainability issues into geoscience courses and examples of how these concepts can be taught for topics such as geology and human health, public policy and Earth science, complex systems, urban students and urban environments, energy, and climate change. A rich collection of innovative pedagogical approaches conducive to teaching about sustainability are presented in the portal, including service learning, campus-based learning, experience-based environmental projects, and teaching with an Earth systems approach. Faculty can find more information about how to get involved with sustainability projects through webinars, workshops, web page authoring, and other professional development opportunities via links to projects such as On the Cutting Edge, CLEAN, and InTeGrate. The Sustainability Portal also provides access to materials generated from previous workshops, featuring interdisciplinary visions for teaching sustainability to undergraduate students. The SERC portal for Teaching Sustainability can be found at the URL below.
Tree physiology research in a changing world.
Kaufmann, Merrill R.; Linder, Sune
1996-01-01
Changes in issues and advances in methodology have contributed to substantial progress in tree physiology research during the last several decades. Current research focuses on process interactions in complex systems and the integration of processes across multiple spatial and temporal scales. An increasingly important challenge for future research is assuring sustainability of production systems and forested ecosystems in the face of increased demands for natural resources and human disturbance of forests. Meeting this challenge requires significant shifts in research approach, including the study of limitations of productivity that may accompany achievement of system sustainability, and a focus on the biological capabilities of complex land bases altered by human activity.
Legal concepts cannot be described as the area under the curve or in terms of equilibrium equations; however, law is one of several dimensions of a complex system that must be included in an interdisciplinary study of sustainability. It is one of the initial conditions to be cons...
How Earth Educators Can Help Students Develop a Holistic Understanding of Sustainability
NASA Astrophysics Data System (ADS)
Curren, R. R.; Metzger, E. P.
2017-12-01
With their expert understanding of planetary systems, Earth educators play a pivotal role in helping students understand the scientific dimensions of solution-resistant ("wicked") challenges to sustainability that arise from complex interactions between intertwined and co-evolving natural and human systems. However, teaching the science of sustainability in isolation from consideration of human values and social dynamics leaves students with a fragmented understanding and obscures the underlying drivers of unsustainability. Geoscience instructors who wish to address sustainability in their courses may feel ill-equipped to engage students in investigation of the fundamental nature of sustainability and its social and ethical facets. This presentation will blend disciplinary perspectives from Earth system science, philosophy, psychology, and anthropology to: 1) outline a way to conceptualize sustainability that synthesizes scientific, social, and ethical perspectives and 2) provide an overview of resources and teaching strategies designed to help students connect science content to the socio-political dimensions of sustainability through activities and assignments that promote active learning, systems thinking, reflection, and collaborative problem-solving.
SIMULATED EXPERIMENTS WITH COMPLEX SUSTAINABLE SYSTEMS
The concept of sustainability is associated with the statement from the World Commission on Environment and Development: "Development that meets the needs and aspirations of the present without compromising the ability to meet those of the future." But the construction of practi...
Avoiding Decline: Fostering Resilience and Sustainability in Midsize Cities
Eighty-five percent of United States citizens live in urban areas. However, research surrounding the resilience and sustainability of complex urban systems focuses largely on coastal megacities (>1 million people). Midsize cities differ from their larger counterparts due to tight...
N. Theresa Hoagland
2006-01-01
Legal concepts cannot be described as the area under the curve or in terms of equilibrium equations; however, law is one of several dimensions of a complex system that must be included in an interdisciplinary study of sustainability. It is one of the initial conditions to be considered in projecting the systems trajectory and it is also a constraint on implementation...
Sustainable Deforestation Evaluation Model and System Dynamics Analysis
Feng, Huirong; Lim, C. W.; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi
2014-01-01
The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225
Sustainable deforestation evaluation model and system dynamics analysis.
Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi
2014-01-01
The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.
Assessing Understanding of Complex Causal Networks Using an Interactive Game
ERIC Educational Resources Information Center
Ross, Joel
2013-01-01
Assessing people's understanding of the causal relationships found in large-scale complex systems may be necessary for addressing many critical social concerns, such as environmental sustainability. Existing methods for assessing systems thinking and causal understanding frequently use the technique of cognitive causal mapping. However, the…
SIMULATED EXPERIMENTS WITH COMPLEX SUSTAINABLE SYSTEMS: ECOLOGY AND TECHNOLOGY
The concept of sustainability is associated with the statement from the World Commission on Environment and Development, 1987: "... development that meets the needs and aspirations of the present without compromising the ability to meet those of the future..." However, this s...
Sustaining working rangelands: Insights from rancher decision making
USDA-ARS?s Scientific Manuscript database
Grazed rangeland ecosystems encompass diverse global land resources, and are complex social-ecological systems from which society demands both goods (e.g., livestock and forage production) and services (e.g., abundant and high quality water). In the dialogue on rangeland conservation and sustainable...
NASA Astrophysics Data System (ADS)
Wiek, Arnim; Foley, Rider W.; Guston, David H.
2012-09-01
Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology's contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.
Learning challenges and sustainable development: A methodological perspective.
Seppänen, Laura
2017-01-01
Sustainable development requires learning, but the contents of learning are often complex and ambiguous. This requires new integrated approaches from research. It is argued that investigation of people's learning challenges in every-day work is beneficial for research on sustainable development. The aim of the paper is to describe a research method for examining learning challenges in promoting sustainable development. This method is illustrated with a case example from organic vegetable farming in Finland. The method, based on Activity Theory, combines historical analysis with qualitative analysis of need expressions in discourse data. The method linking local and subjective need expressions with general historical analysis is a promising way to overcome the gap between the individual and society, so much needed in research for sustainable development. Dialectically informed historical frameworks have practical value as tools in collaborative negotiations and participatory designs for sustainable development. The simultaneous use of systemic and subjective perspectives allows researchers to manage the complexity of practical work activities and to avoid too simplistic presumptions about sustainable development.
A NEW FRAMEWORK FOR URBAN SUSTAINABILITY ASSESSMENTS: LINKING COMPLEXITY, INFORMATION AND POLICY
Urban systems emerge as distinct entities from the complex interactions among social, economic and cultural attributes, and information, energy and material stocks and flows that operate on different temporal and spatial scales. Such complexity poses a challenge to identify the...
NEW FRAMEWORKS FOR URBAN SUSTAINABILITY ASSESSMENTS: LINKING COMPLEXITY, INFORMATION AND POLICY
Urban systems emerge as distinct entities from the complex interactions among social, economic and cultural attributes, and information, energy and material stocks and flows that operate on different temporal and spatial scales. Such complexity poses a challenge to identify the c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Virginia H; Kline, Keith L; Kaffka, Stephen R
Landscape sustainability of agricultural systems considers effects of farm activities on social, economic, and ecosystem services at local and regional scales. Sustainable agriculture entails: defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. A landscape perspective is useful because landscape ecology provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To implement agricultural sustainability, we propose adopting a systems perspective, recognizing spatial heterogeneity, addressing the influences of context, and integrating landscape-design principles. Topics that need further attention at local and regional scalesmore » include (1) protocols for quantifying material and energy flows; (2) effects of management practices; (3) incentives for enhancing social, economic, and ecosystem services; (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) consistent and holistic policies for promoting agricultural sustainability.« less
Avoiding decline: Fostering resilience and sustainability in midsize cities
Allen, Craig R.; Birge, Hannah E.; Bartelt-Hunt, Shannon; Bevans, Rebecca A.; Burnett, Jessica L.; Cosens, Barbara; Cai, Ximing; Garmestani, Ahjond S.; Linkov, Igor; Scott, Elizabeth A.; Solomon, Mark D.; Uden, Daniel R.
2016-01-01
Eighty-five percent of United States citizens live in urban areas. However, research surrounding the resilience and sustainability of complex urban systems focuses largely on coastal megacities (>1 million people). Midsize cities differ from their larger counterparts due to tight urban-rural feedbacks with their immediate natural environments that result from heavy reliance and close management of local ecosystem services. They also may be less path-dependent than larger cities due to shorter average connection length among system components, contributing to higher responsiveness among social, infrastructural, and ecological feedbacks. These distinct midsize city features call for a framework that organizes information and concepts concerning the sustainability of midsize cities specifically. We argue that an integrative approach is necessary to capture properties emergent from the complex interactions of the social, infrastructural, and ecological subsystems that comprise a city system. We suggest approaches to estimate the relative resilience of midsize cities, and include an example assessment to illustrate one such estimation approach. Resilience assessments of a midsize city can be used to examine why some cities end up on sustainable paths while others diverge to unsustainable paths, and which feedbacks may be partially responsible. They also provide insight into how city planners and decision makers can use information about the resilience of midsize cities undergoing growth or shrinkage relative to their larger and smaller counterparts, to transform them into long-term, sustainable social-ecological systems.
Philip A. Loring; F. Stuart Chapin; S. Craig Gerlach
2008-01-01
Computational thinking (CT) is a way to solve problems and understand complex systems that draws on concepts fundamental to computer science and is well suited to the challenges that face researchers of complex, linked social-ecological systems. This paper explores CT's usefulness to sustainability science through the application of the services-oriented...
Ecopedagogy: A Movement between Critical Dialogue and Complexity: Proposal for a Categories System
ERIC Educational Resources Information Center
Norat, María de los Ángeles Vilches; Herrería, Alfonso Fernández; Rodríguez, Francisco Miguel Martínez
2016-01-01
This qualitative research has been undertaken with the purpose of developing an integrated system of categories based on ecopedagogy. Founded on the critical pedagogy of Paulo Freire, this movement moves towards complex thinking and holism. Its theoretical bases are set on principles of sustainability, biosensibility, ethics of care and global…
Coastal resource complexes of South India: options for sustainable management.
Damodaran, A
2006-04-01
India's coastal resource complexes were traditionally characterized by a continuum of 'common property resources' or 'commons' that stretched from the shores to the seas. The continuum aided the existence of sustainable livelihood systems for local communities. Today, fragmented policy approaches and economic welfare schemes have caused the disintegration of community control over the continuum. As a consequence, livelihood systems of local communities have declined. The introduction of coastal management guidelines in the 1990s has exacerbated the situation. With reference to a coastal village located in the State of Kerala in South West India, the paper describes the trajectory of unsustainable change that has taken place in the coastal area resource complexes of the country. The paper argues for restoring the continuum of commons in the study area through community driven systems of natural resource management that are based on networks of nested institutions.
Complexity and network dynamics in physiological adaptation: an integrated view.
Baffy, György; Loscalzo, Joseph
2014-05-28
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.
DYNAMIC ORDER IN COMPLEX SYSTEMS FROM FISHER INFORMATION
At its core, sustainability asks whether the planet will persist into the indefinite future in a regime which is amenable to human existence in a manner that is acceptable. The issue of sustainability has naturally arisen from the observation that a growing human population is c...
Science with society in the anthropocene.
Seidl, Roman; Brand, Fridolin Simon; Stauffacher, Michael; Krütli, Pius; Le, Quang Bao; Spörri, Andy; Meylan, Grégoire; Moser, Corinne; González, Monica Berger; Scholz, Roland Werner
2013-02-01
Interdisciplinary scientific knowledge is necessary but not sufficient when it comes to addressing sustainable transformations, as science increasingly has to deal with normative and value-related issues. A systems perspective on coupled human-environmental systems (HES) helps to address the inherent complexities. Additionally, a thorough interaction between science and society (i.e., transdisciplinarity = TD) is necessary, as sustainable transitions are sometimes contested and can cause conflicts. In order to navigate complexities regarding the delicate interaction of scientific research with societal decisions these processes must proceed in a structured and functional way. We thus propose HES-based TD processes to provide a basis for reorganizing science in coming decades.
Magnuszewski, Piotr; Sendzimir, Jan; Kronenberg, Jakub
2005-01-01
The complexity of interactions in socio-ecological systems makes it very difficult to plan and implement policies successfully. Traditional environmental management and assessment techniques produce unsatisfactory results because they often ignore facets of system structure that underlie complexity: delays, feedbacks, and non-linearities. Assuming that causes are linked in a linear chain, they concentrate on technological developments (“hard path”) as the only solutions to environmental problems. Adaptive Management is recognized as a promising alternative approach directly addressing links between social and ecological systems and involving stakeholders in the analysis and decision process. This “soft path” requires special tools to facilitate collaboration between “experts” and stakeholders in analyzing complex situations and prioritizing policies and actions. We have applied conceptual modeling to increase communication, understanding and commitment in the project of seven NGOs “Sustainable Regional Development in the Odra Catchment”. The main goal was to help our NGO partners to facilitate their efforts related to developing sustainable policies and practices to respond to large-scale challenges (EU accession, global changes in climate and economy) to their natural, economic and socio-cultural heritages. Among the variety of sustainability issues explored by these NGOs, two (extensive agricultural practices and “green” local products) were examined by using Adaptive Management (AM) as a framework that would link analysis, discussion, research, actions and monitoring. Within the AM framework the project coordinators used tools of systems analysis (Mental Model Mapping) to facilitate discussions in which NGO professionals and local stakeholders could graphically diagram and study their understanding of what factors interacted and how they affect the region’s sustainability. These discussions produced larger-scale Regional Sustainability Models as well as more detailed sub-models of particular factors, processes, and feedback loops that appear critical to a sustainable future. The Regional Sustainability Model was used to identify a subset of key interacting factors (variables). For each variable, several sustainability indicators were suggested. The growing understanding and acceptance of the AM framework and systems analysis created a momentum both locally and within the region, which makes continued successful use of these indicators quite likely. In contrast to expert-driven projects that inject outside knowledge into a local context, this project established a broad basis for stakeholder-driven discussion that is articulated into goals, objectives, conceptual models, and indicators. The ability to learn and adapt in the AM framework increases the capacity to innovate and find policies and practices that enhance resilience and sustainability in a world in transition. PMID:16705818
Sustainable healthcare: how to assess and improve healthcare structures' sustainability.
Buffoli, M; Capolongo, S; Bottero, M; Cavagliato, E; Speranza, S; Volpatti, L
2013-01-01
Sustainability is a broad and debated subject, often difficult to be defined and applied into real projects, especially when dealing with a complex scenario as the one of healthcare. Many research studies and evaluation systems have handled this topic from different perspectives, but many limits and criticalities still have to be overcome to properly cope with actual needs. The Sustainable Healthcare project has been developed through three main phases: a deep study of the state of the art, unraveling pros and cons of available sustainability scoring systems; an accurate analysis of the stakeholders network and their needs; the realization of an objective evaluation framework, through scientific methods, as the ANP. The newly developed evaluation system takes into consideration all the three pillars of sustainability, analyzing social, environmental and economic sustainability through a set of criteria, specified by measurable indicators. So the system identifies both global sustainability and specific critical areas, pointing out possible strategic solutions to improve sustainability. The evaluation is achieved through technical analyses and qualitative surveys, which eventually allow to quantitatively assess sustainability, through a sound scoring method. This study proposes an innovative evaluation method to determine the sustainability of a hospital, already existing or in the design phase, within the European context. The Sustainable Healthcare system overcomes some of the current evaluation systems' limits by establishing a multidisciplinary approach and being an easy-to-use tool. This protocol is intended to be of support in the identification of the main hospital's weaknesses and in setting priorities for implementation of the solutions.
Na, Seung Yeon; Oh, Se Heang; Kim, Tae Ho; Yoon, Jin A; Lee, In Soo; Lee, Jin Ho
2014-12-10
The main aims of this study are (i) the development of an antibiotic complexed with multivalent ion, which can allow sustained release of the antibiotic without any additional matrix or difficult process and (ii) the feasibility study of the ion-complexed antibiotic as a therapeutic technique for peritonitis treatment. An ion-complexed antibiotic is prepared by simple mixing of two aqueous solutions containing an ionized (water-soluble) drug (tetracycline) and a multivalent counter ionic compound. The ion-complexed antibiotic shows a continuous release of the antibiotic up to 21 days, and thus prolonged anti-bacterial effect by gradual ionic exchange between the multivalent ions in the complex and same-charged monovalent ions in surrounding medium. From the in vivo animal study using a cecum perforated peritonitis mouse model, the ion-complexed antibiotic group shows sufficient anti-bacterial effect and thus effectively treat the peritonitis because of the extermination of the contaminated enteric bacteria in the peritoneum during wound healing of injury cecum (by the sustained release of antibiotic from the ion complex). These results suggest that the ion-complexed antibiotic system may be promising for the effective treatment of the peritonitis caused by frequent gastrointestinal defect in clinical fields. Copyright © 2014 Elsevier B.V. All rights reserved.
Capolongo, Stefano; Gola, Marco; di Noia, Michela; Nickolova, Maria; Nachiero, Dario; Rebecchi, Andrea; Settimo, Gaetano; Vittori, Gail; Buffoli, Maddalena
2016-01-01
Nowadays several rating systems exist for the evaluation of the sustainability of buildings, but often their focus is limited to environmental and efficiency aspects. Hospitals are complex constructions in which many variables affect hospital processes. Therefore, a research group has developed a tool for the evaluation of sustainability in healthcare facilities. The paper analyses social sustainability issues through a tool which evaluates users' perception from a the quality and well-being perspective. It presents a hierarchical structure composed of a criteria and indicators system which is organised through a weighing system calculated by using the Analytic Network Process. The output is the definition of a tool which evaluates how Humanisation, Comfort and Distribution criteria can affect the social sustainability of a building. Starting from its application, it is evident that the instrument enables the improvement of healthcare facilities through several design and organisational suggestions for achieving healing and sustainable architectures.
ERIC Educational Resources Information Center
Hara, Keishiro; Uwasu, Michinori; Kurimoto, Shuji; Yamanaka, Shinsuke; Umeda, Yasushi; Shimoda, Yoshiyuki
2013-01-01
Systemic understanding of potential research activities and available technology seeds at university level is an essential condition to promote interdisciplinary and vision-driven collaboration in an attempt to cope with complex sustainability and environmental problems. Nonetheless, any such practices have been hardly conducted at universities…
Decision support for sustainable forestry: enhancing the basic rational model.
H.R. Ekbia; K.M. Reynolds
2007-01-01
Decision-support systems (DSS) have been extensively used in the management of natural resources for nearly two decades. However, practical difficulties with the application of DSS in real-world situations have become increasingly apparent. Complexities of decisionmaking, encountered in the context of ecosystem management, are equally present in sustainable forestry....
From safe yield to sustainable development of water resources - The Kansas experience
Sophocleous, M.
2000-01-01
This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involvement be encouraged, so that system complexities and constraints are better understood and overly simplistic solutions avoided. (C) 2000 Elsevier Science B.V.This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involv
Modeling Sustainable Food Systems.
Allen, Thomas; Prosperi, Paolo
2016-05-01
The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.
Modeling Sustainable Food Systems
NASA Astrophysics Data System (ADS)
Allen, Thomas; Prosperi, Paolo
2016-05-01
The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.
Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework
Urban water systems are an example of complex, dynamic human-environment coupled systems, which exhibit emergent behaviors that transcends individual scientific disciplines. While previous siloed approaches to water services (i.e., water resources, drinking water, wastewater, and...
Lebel, Louis; Tri, Nguyen Hoang; Saengnoree, Amnuay; Pasong, Suparb; Buatama, Urasa; Thoa, Le Kim
2002-06-01
Shrimp aquaculture in Vietnam is in the process of being transformed into a major industry around the intensification of the production system. The experiences of other countries in the region, especially in Thailand where high input production systems dominate, suggests that now is a critical time for intervention to redirect industry into pathways that are more sustainable ecologically, socially, and economically. In Thailand, years of experience with intensified systems and a complex industrial organization has not led to sustainable solutions. The challenge here is for society to regain control and then to redirect the transformation along more efficient and benign pathways. Our analyses suggest that current pathways in both countries are unlikely to lead to a sustainable industry. A complete transformation of the way shrimp are grown, fed, processed, distributed, and regulated is needed.
Sustainability at the Edge of Chaos: Its Limits and Possibilities in Public Health
Hudson, Christopher G.; Vissing, Yvonne M.
2013-01-01
This paper critically reviews the expanding literature on applications of sustainability to healthcare policy and planning. It argues that the concept has been overgeneralized and has become a buzzword masking disparate agendas. It ignores the insights of the newest generation of systems theory on complex systems on the ubiquity of far-from-equilibrium conditions. Yet, a central meaning often ascribed to sustainability is the level continuation of healthcare programs and their institutionalization. Sustainability is only coherent in health care when it is more narrowly delimited to involve public health and treated as only one of several evaluative criteria that informs not only the continuation of programs but more often their expansion or contraction as needs dynamically change. PMID:24058914
Linking soil systems to societal value systems
NASA Astrophysics Data System (ADS)
Helming, Katharina; Daedlow, Katrin; Techen, Anja; Kaiser, David Brian
2017-04-01
Sustainable management of soils is needed to avoid soil degradation and to maintain soil functions. This requires the assessment of how human activities drive soil management, how soil management affect soil functions and soil degradation, which trade-offs occur and how they compromise sustainable development targets. In the frame of the German research programme "Soils as a sustainable resource for the bio-economy - BonaRes", we developed an enhanced approach of the DPSIR (driver-pressure-state-impact-response) cycle which helps to assess these interrelations. Because not all soil functions can be maximized simultaneously in space and time and trade-offs are inevitable, it depends on the societal value system to decide which management practices and respective soil functional performances are valued sustainably. We analysed the applicability of three valuation concepts being prominent in research about social-ecological systems, namely resource efficiency, ecosystem services, and ethics and equity. The concept of resource efficiency is based in the life-cycle thinking and is often applied at the level of the farming systems and in the context of bio-economy strategies. It covers the use of natural (water, energy, nutrients, land) and economic resources. At the landscape level, the concept of ecosystem services is prominent. Here, the contribution of soils to the provisioning, regulating and cultural services of the natural ecosystems is considered. Ethical considerations include the intrinsic values of nature as well as issues of local and global equity between different societal groups, generations, and localities. The three concepts cover different problem dimensions and complexity levels of soil management and decision making. Alone, none of them are capable to discover complex questions of sustainable soil management and development. Rather, the exact spatial and temporal framing of the sustainability problem at stake determines which combination of the value system is appropriate. Exemplified by some studies on soil management, we conclude with an outlook on criteria for selecting and combining value systems to assess the involvement of soil functions to specific Sustainable Development Goals at different spatial, temporal and decision making scales.
Rwabukwisi, Felix Cyamatare; Bawah, Ayaga A; Gimbel, Sarah; Phillips, James F; Mutale, Wilbroad; Drobac, Peter
2017-12-21
Achieving the United Nations Sustainable Development Goals in sub-Saharan Africa will require substantial improvements in the coverage and performance of primary health care delivery systems. Projects supported by the Doris Duke Charitable Foundation's (DDCF) African Health Initiative (AHI) created public-private-academic and community partnerships in five African countries to implement and evaluate district-level health system strengthening interventions. In this study, we captured common implementation experiences and lessons learned to understand core elements of successful health systems interventions. We used qualitative data from key informant interviews and annual progress reports from the five Population Health Implementation and Training (PHIT) partnership projects funded through AHI in Ghana, Mozambique, Rwanda, Tanzania, and Zambia. Four major overarching lessons were highlighted. First, variety and inclusiveness of concerned key players (public, academic and private) are necessary to address complex health system issues at all levels. Second, a learning culture that promotes evidence creation and ability to efficiently adapt were key in order to meet changing contextual needs. Third, inclusion of strong implementation science tools and strategies allowed informed and measured learning processes and efficient dissemination of best practices. Fourth, five to seven years was the minimum time frame necessary to effectively implement complex health system strengthening interventions and generate the evidence base needed to advocate for sustainable change for the PHIT partnership projects. The AHI experience has raised remaining, if not overlooked, challenges and potential solutions to address complex health systems strengthening intervention designs and implementation issues, while aiming to measurably accomplish sustainable positive change in dynamic, learning, and varied contexts.
NASA Astrophysics Data System (ADS)
Wang, Ling; Lin, Li
2004-02-01
Since 1970"s, the environmental protection movement has challenged industries to increase their investment in Environmentally Conscious Manufacturing (ECM) techniques and management tools. Social considerations for global citizens and their descendants also motivated the examination on the complex issues of sustainable development beyond the immediate economic impact. Consequently, industrial enterprises have started to understand sustainable development in considering the Triple Bottom Line (TBL): economic prosperity, environmental quality and social justice. For the management, however, a lack of systematic ECM methodologies hinders their effort in planning, evaluating, reporting and auditing of sustainability. To address this critical need, this research develops a framework of a sustainable management system by incorporating a Life Cycle Analysis (LCA) of industrial operations with the TBL mechanism. A TBL metric system with seven sets of indices for the TBL elements and their complex relations is identified for the comprehensive evaluation of a company"s sustainability performance. Utilities of the TBL indices are estimated to represent the views of various stakeholders, including the company, investors, employees and the society at large. Costs of these indices are also captured to reflect the company"s effort in meeting the utilities. An optimization model is formulated to maximize the economic, environmental and social benefits by the company"s effort in developing sustainable strategies. To promote environmental and social consciousness, the methodology can significantly facilitate management decisions by its capabilities of including "non-business" values and external costs that the company has not contemplated before.
William E. Fox; Daniel W. McCollum; John E. Mitchell; Louis E. Swanson; Urs P. Kreuter; John A. Tanaka; Gary R. Evans; H. Theodore Heintz; Robert P. Breckenridge; Paul H. Geissler
2009-01-01
Currently, there is no standard method to assess the complex systems in rangeland ecosystems. Decision makers need baselines to create a common language of current rangeland conditions and standards for continued rangeland assessment. The Sustainable Rangeland Roundtable (SRR), a group of private and public organizations and agencies, has created a forum to discuss...
Avoiding Decline: Fostering Resilience and Sustainability in ...
Eighty-five percent of United States citizens live in urban areas. However, research surrounding the resilience and sustainability of complex urban systems focuses largely on coastal megacities (>1 million people). Midsize cities differ from their larger counterparts due to tight urban-rural feedbacks with their immediate natural environments that result from heavy reliance and close management of local ecosystem services. They also may be less path-dependent than larger cities due to shorter average connection length among system components, contributing to higher responsiveness among social, infrastructural, and ecological feedbacks. These distinct midsize city features call for a framework that organizes information and concepts concerning the sustainability of midsize cities specifically. We argue that an integrative approach is necessary to capture properties emergent from the complex interactions of the social, infrastructural, and ecological subsystems that comprise a city system. We suggest approaches to estimate the relative resilience of midsize cities, and include an example assessment to illustrate one such estimation approach. Resilience assessments of a midsize city can be used to examine why some cities end up on sustainable paths while others diverge to unsustainable paths, and which feedbacks may be partially responsible. They also provide insight into how city planners and decision makers can use information about the resilience of midsize citi
Amalberti, René; Nicklin, Wendy; Braithwaite, Jeffrey
2016-06-01
Healthcare systems across the world are experiencing increased financial, organizational and social pressures attributable to a range of critical issues including the challenge of ageing populations. Health systems need to adapt, in order to sustainably provide quality care to the widest range of patients, particularly those with chronic and complex diseases, and especially those in vulnerable and low-income groups. We report on a workshop designed to tackle such issues under the auspices of ISQua, with representatives from Argentina, Australia, Canada, Columbia, Denmark, Emirates, France, Ireland, Jordan, Qatar, Malaysia, Norway, Oman, UK, South Africa and Switzerland. We discuss some of the challenges facing healthcare systems in countries ageing rapidly, to those less so, and touch on current and future reform options. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
Dynamic Business Networks: A Headache for Sustainable Systems Interoperability
NASA Astrophysics Data System (ADS)
Agostinho, Carlos; Jardim-Goncalves, Ricardo
Collaborative networked environments emerged with the spread of the internet, contributing to overcome past communication barriers, and identifying interoperability as an essential property. When achieved seamlessly, efficiency is increased in the entire product life cycle. Nowadays, most organizations try to attain interoperability by establishing peer-to-peer mappings with the different partners, or in optimized networks, by using international standard models as the core for information exchange. In current industrial practice, mappings are only defined once, and the morphisms that represent them, are hardcoded in the enterprise systems. This solution has been effective for static environments, where enterprise and product models are valid for decades. However, with an increasingly complex and dynamic global market, models change frequently to answer new customer requirements. This paper draws concepts from the complex systems science and proposes a framework for sustainable systems interoperability in dynamic networks, enabling different organizations to evolve at their own rate.
Conveying the Complex: Updating U.S. Joint Systems Analysis Doctrine with Complexity Theory
2013-12-10
screech during a public address, or sustain and amplify it during a guitar solo. Since the systems are nonlinear, understanding cause and effect... Classics , 2007), 12. 34 those frames.58 A technique to cope with the potentially confusing...Reynolds, Paul Davidson. A Primer in Theory Construction. Boston: Allyn and Bacon Classics , 2007. Riolo, Rick L. “The Effects and Evolution of Tag
The Role of Collaborations in Sustaining an Evidence-Based Intervention to Reduce Child Neglect
Green, Amy E.; Trott, Elise; Willging, Cathleen E.; Finn, Natalie K.; Ehrhart, Mark G.; Aarons, Gregory A.
2016-01-01
Child neglect is the most prevalent form of child maltreatment and represents 79.5% of open child-welfare cases. A recent study found the evidence-based intervention (EBI) SafeCare® (SC) to significantly reduce child neglect recidivism rates. To fully capitalize on the effectiveness of such EBIs, service systems must engage in successful implementation and sustainment; however, little is known regarding what factors influence EBI sustainment. Collaborations among stakeholders are suggested as a means for facilitating EBI implementation and sustainment. This study combines descriptive quantitative survey data with qualitative interview and focus group findings to examine the role of collaboration within the context of public-private partnerships in 11 child welfare systems implementing SC. Participants included administrators of government child welfare systems and community-based organizations, as well as supervisors, coaches, and home visitors of the SC program. Sites were classified as fully-, partially-, and non-sustaining based on implementation fidelity. One-way analysis of variance was used to examine differences in stakeholder reported Effective Collaboration scores across fully-sustaining, partially-sustaining, and non-sustaining sites. Qualitative transcripts were analyzed via open and focused coding to identify the commonality, diversity, and complexity of collaborations involved in implementing and sustaining SC. Fully-sustaining sites reported significantly greater levels of effective collaboration than non-sustaining sites. Key themes described by SC stakeholders included shared vision, building on existing relationships, academic support, problem solving and resource sharing, and maintaining collaborations over time. Both quantitative and qualitative results converge in highlighting the importance of effective collaboration in EBI sustainment in child welfare service systems. PMID:26712422
Fratini, C F; Elle, M; Jensen, M B; Mikkelsen, P S
2012-01-01
To achieve a successful and sustainable adaptation to climate change we need to transform the way we think about change. Much water management research has focused on technical innovation with a range of new solutions developed to achieve a 'more sustainable and integrated urban water management cycle'. But Danish municipalities and utility companies are struggling to bring such solutions into practice. 'Green infrastructure', for example, requires the consideration of a larger range of aspects related to the urban context than the traditional urban water system optimization. There is the need for standardized methods and guidelines to organize transdisciplinary processes where different types of knowledge and perspectives are taken into account. On the basis of the macro-meso-micro pattern inspired by complexity science and transition theory, we developed a conceptual framework to organize processes addressing the complexity characterizing urban water management in the context of climate change. In this paper the framework is used to organize a research process aiming at understanding and unfolding urban dynamics for sustainable transition. The final goal is to enable local authorities and utilities to create the basis for managing and catalysing the technical and organizational innovation necessary for a sustainable transition towards climate change adaptation in urban areas.
Towards greener and more sustainable batteries for electrical energy storage
NASA Astrophysics Data System (ADS)
Larcher, D.; Tarascon, J.-M.
2015-01-01
Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.
SeaFrame: Sustaining Today’s Fleet Efficiently and Effectively. Volume 5, Issue 1, 2009
2009-01-01
Maneuvering 11 Shipboard Launch and Recovery Systems 13 Integrated Logistics System 15 Special Hull Treatment Tile Manufacturing 17 Navy Shipboard Oil ...Developing advanced blade section design technology for propulsors that reduces cavitation damage and required repair cost and time. - Conducting...complex we have ever written.” Ammeen adds that steering and diving algorithms are also very complex, because hydrodynamic effects of a submarine
Sustainability and Resilience in the Urban Environment
Urban systems are formed by a diversity of actors and activities, and consist of complex interactions involving financial, information, energy, ecological, and material stocks and flows that operate on different spatial and temporal scales. The urban systems that emerge from thes...
Lu, Cheng; Lu, Yi; Chen, Jian; Zhang, Wentong; Wu, Wei
2007-05-01
Development of sustained delivery systems for herbal medicines was very difficult because of their complexity in composition. The concept of synchronized release from sustained release systems, which is characterized by release of multiple components in their original ratio that defines a herbal medicine, served as the basis for keeping the original pharmacological activity. In this study, erodible matrix systems based on glyceryl monostearate and polyethylene glycol 6000 or poloxamer 188 were prepared to perform strict control on synchronized release of the five active components of silymarin, i.e. taxifolin, silychrystin, silydianin, isosilybin and silybin. The matrix system was prepared by a melt fusion method. Synchronized release was achieved with high similarity factor f(2) values between each two of the five components. Erosion profiles of the matrix were in good correlation with release profiles of the five components, showing erosion-controlled release mechanisms. Through tuning some of the formulation variables, the system can be adjusted for synchronized and sustained release of silymarin for oral administration. In vitro hemolysis study indicated that the synchronized release samples showed a much better stabilizing effect on erythrocyte membrane.
Challenges of Implementing ESD in the Education Sector; Experiences in Norway
NASA Astrophysics Data System (ADS)
Sandås, Astrid; Benedict, Faye
This article presents and reflects on Norwegian experiences over a period of about 15 years with implementing the Norwegian national strategy for education for sustainable development (ESD) in the education system. We extract lessons about integration of ESD into education systems. After an introduction to central ideas of sustainable development and ESD, the article discusses the need for appropriate strategies and instruments. Key factors are collaboration to allow pupils and schools to actively contribute to a positive development locally and globally, interdisciplinary approaches to complex sustainability issues, and appropriate use of the ICT and other media. ESD programmes and activities should support school development and build the capacity of schools and teachers for integration of ESD.
ERIC Educational Resources Information Center
Proger, Amy R.; Bhatt, Monica P.; Cirks, Victoria; Gurke, Deb
2017-01-01
There is growing interest in the ability of improvement science--the systematic study of improvement strategies to identify promising practices for addressing issues in complex systems (Improvement Science Research Network, 2016)--to spur innovation and address complex problems. In education this methodology is often implemented through…
Assessment of national biomass in complex forests and technical capacity scenarios
Matieu Henry; Javier G. P. Gamarra; Gael Sola; Luca Birigazzi; Emily Donegan; Julian Murillo; Tommaso Chiti; Nicolas Picard; Miguel Cifuentes-Jara; S Sandeep; Laurent Saint-André
2015-01-01
Understanding forest ecosystems is paramount for their sustainable management and for the livelihoods and ecosystem services which depend on them. However, the complexity and diversity of these systems poses a challenge to interpreting data patterns. The availability and accessibility of data and tools often determine the method selected for forest assessment. Capacity...
Complexity Framework for Sustainability: An Analysis of Five Papers
ERIC Educational Resources Information Center
Putnik, Goran D.
2009-01-01
Purpose: The purpose of this paper is to present an examination of the concepts and mechanisms of complexity and learning usability and applicability for management in turbulent environments as well as their examination through the Chaordic system thinking (CST) lenses and framework. Contributing to awareness of how different mechanisms could be…
NASA Astrophysics Data System (ADS)
Ortiz, Marco; Wolff, Matthias
2004-10-01
The sustainability of different integrated management regimes for the mangrove ecosystem of the Caeté Estuary (North Brazil) were assessed using a holistic theoretical framework. As a way to demonstrate that the behaviour and trajectory of complex whole systems are not epiphenomenal to the properties of the small parts, a set of conceptual models from more reductionistic to more holistic were enunciated. These models integrate the scientific information published until present for this mangrove ecosystem. The sustainability of different management scenarios (forestry and fishery) was assessed. Since the exploitation of mangrove trees is not allowed according Brazilian laws, the forestry was only included for simulation purposes. The model simulations revealed that sustainability predictions of reductionistic models should not be extrapolated into holistic approaches. Forestry and fishery activities seem to be sustainable only if they are self-damped. The exploitation of the two mangrove species Rhizophora mangle and Avicenia germinans does not appear to be sustainable, thus a rotation harvest is recommended. A similar conclusion holds for the exploitation of invertebrate species. Our results suggest that more studies should be focused on the estimation of maximum sustainable yield based on a multispecies approach. Any reference to holistic sustainability based on reductionistic approaches may distort our understanding of the natural complex ecosystems.
Yang, Yi; Zhao, Hang; Jia, YanPeng; Guo, QingFa; Qu, Ying; Su, Jing; Lu, XiaoLing; Zhao, YongXiang; Qian, ZhiYong
2016-01-01
Local anti-oncogene delivery providing high local concentration of gene, increasing antitumor effect and decreasing systemic side effects is currently attracting interest in cancer therapy. In this paper, a novel local sustained anti-oncogene delivery system, PECE thermoresponsive hydrogel containing folate-poly (ester amine) (FA-PEA) polymer/DNA (tumor suppressor) complexes, is demonstrated. First, a tumor-targeted biodegradable folate-poly (ester amine) (FA-PEA) polymer based on low-molecular-weight polyethyleneimine (PEI) was synthesized and characterized, and the application for targeted gene delivery was investigated. The polymer had slight cytotoxicity and high transfection efficiency in vitro compared with PEI 25k, which indicated that FA-PEA was a potential vector for targeted gene delivery. Meanwhile, we successfully prepared a thermoresponsive PECE hydrogel composite containing FA-PEA/DNA complexes which could contain the genes and slowly release the genes into cells. We concluded the folate-poly (ester amine) (FA-PEA) polymer would be useful for targeted gene delivery, and the novel gene delivery composite based on biodegradable folate-poly (ester amine) polymer and thermosensitive PECE hydrogel showed potential for sustained gene release. PMID:26883682
[Health: an adaptive complex system].
Toro-Palacio, Luis Fernando; Ochoa-Jaramillo, Francisco Luis
2012-02-01
This article points out the enormous gap that exists between complex thinking of an intellectual nature currently present in our environment, and complex experimental thinking that has facilitated the scientific and technological advances that have radically changed the world. The article suggests that life, human beings, global society, and all that constitutes health be considered as adaptive complex systems. This idea, in turn, prioritizes the adoption of a different approach that seeks to expand understanding. When this rationale is recognized, the principal characteristics and emerging properties of health as an adaptive complex system are sustained, following a care and services delivery model. Finally, some pertinent questions from this perspective are put forward in terms of research, and a series of appraisals are expressed that will hopefully serve to help us understand all that we have become as individuals and as a species. The article proposes that the delivery of health care services be regarded as an adaptive complex system.
Dynamics of sustained use and abandonment of clean cooking systems: lessons from rural India
NASA Astrophysics Data System (ADS)
Chalise, Nishesh; Kumar, Praveen; Priyadarshini, Pratiti; Yadama, Gautam N.
2018-03-01
Clean cooking technologies—ranging from efficient cookstoves to clean fuels—are widely deployed to reduce household air pollution and alleviate adverse health and climate consequences. Although much progress has been made on the technical aspects, sustained and proper use of clean cooking technologies by populations with the most need has been problematic. Only by understanding how clean cooking as an intervention is embedded within complex community processes can we ensure its sustained implementation. Using a community-based system dynamics approach, we engaged two rural communities in co-creating a dynamic model to explain the processes influencing the uptake and transition to sustained use of biogas (an anaerobic methane digester), a clean fuel and cooking technology. The two communities provided contrasting cases: one abandoned biogas while the other continues to use it. We present a system dynamics simulation model, associated analyses, and experiments to understand what factors drive transition and sustained use. A central insight of the model is community processes influencing the capacity to solve technical issues. Model analysis shows that families begin to abandon the technology when it takes longer to solve problems. The momentum in the community then shifts from a determination to address issues with the cooking technology toward caution in further adhering to it. We also conducted experiments using the simulation model to understand the impact of interventions aimed at renewing the use of biogas. A combination of theoretical interventions, including repair of non-functioning biogas units and provision of embedded technical support in communities, resulted in a scenario where the community can continue using the technology even after support is retracted. Our study also demonstrates the utility of a systems approach for engaging local stakeholders in delineating complex community processes to derive significant insights into the dynamic feedback mechanisms involved in the sustained use of biogas by the poor.
Environmental Systems Management as a conceptual framework and as a set of interdisciplinary analytical approaches will be described within the context of sustainable watershed management, within devergent complex ecosystems. A specific subset of integrated tools are deployed to...
Social-ecological resilience and law
Garmestani, Ahjond S.; Allen, Craig R.
2014-01-01
Environmental law envisions ecological systems as existing in an equilibrium state, reinforcing a rigid legal framework unable to absorb rapid environmental changes and innovations in sustainability. For the past four decades, “resilience theory,” which embraces uncertainty and nonlinear dynamics in complex adaptive systems, has provided a robust, invaluable foundation for sound environmental management. Reforming American law to incorporate this knowledge is the key to sustainability. This volume features top legal and resilience scholars speaking on resilience theory and its legal applications to climate change, biodiversity, national parks, and water law.
ERIC Educational Resources Information Center
Weeks, Margaret R.; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei
2013-01-01
Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the…
ERIC Educational Resources Information Center
Rosenkränzer, Frank; Hörsch, Christian; Schuler, Stephan; Riess, Werner
2017-01-01
Systems' thinking has become increasingly relevant not only in education for sustainable development but also in everyday life. Even if teachers know the dynamics and complexity of living systems in biology and geography, they might not be able to effectively explain it to students. Teachers need an understanding of systems and their behaviour…
ERIC Educational Resources Information Center
Besong, Frida; Holland, Charlotte
2015-01-01
The concepts of sustainability and sustainability competence are controversial, complex, difficult to define and measure, and have varied meanings for different people and practices. Given the complex nature of sustainability, there is limited availability of paradigmatic frameworks to guide educators in assessing sustainability competencies. This…
Innovative Competencies of Mining engineers in Transition to the Sustainable Development
NASA Astrophysics Data System (ADS)
Krechetov, Andrey; Khoreshok, Alexey; Blumenstein, Valery
2017-11-01
The transition to the sustainable development posed new challenges to the system of mining higher education. They are determined by the acceleration of scientific and technological progress and widespread introduction of innovations, convergence of technologies from various industries. On the one hand, globalization and rapid technology development are constantly increasing quality requirements for the labor resources of the mineral and raw materials complex and constant improvement of their skills. On the other hand, the transition to the sustainable development provides the necessity for rational use of raw materials and environmental protection. This requires the improvement of staff support system for mining operations and the interaction of enterprises with universities training mining engineers, aimed at the innovative competencies development of future miners.
Towards the just and sustainable use of antibiotics.
Merrett, Gemma L Buckland; Bloom, Gerald; Wilkinson, Annie; MacGregor, Hayley
2016-01-01
The emergence and spread of antibiotic resistant pathogens poses a big challenge to policy-makers, who need to oversee the transformation of health systems that evolved to provide easy access to these drugs into ones that encourage appropriate use of antimicrobials, whilst reducing the risk of resistance. This is a particular challenge for low and middle-income countries with pluralistic health systems where antibiotics are available in a number of different markets. This review paper considers access and use of antibiotics in these countries from a complex adaptive system perspective. It highlights the main areas of intervention that could provide the key to addressing the sustainable long term use and availability of antibiotics. A focus on the synergies between interventions addressing access strategies, antibiotic quality, diagnostics for low-resource settings, measures to encourage just and sustainable decision making and help seeking optimal therapeutic and dosing strategies are key levers for the sustainable future of antibiotic use. Successful integration of such strategies will be dependent on effective governance mechanisms, effective partnerships and coalition building and accurate evaluation systems at national, regional and global levels.
NASA Astrophysics Data System (ADS)
Siahaan, N. M.; Harahap, A. S.; Nababan, E.; Siahaan, E.
2018-02-01
This study aims to initiate sustainable simple housing system based on low CO2 emissions at Griya Martubung I Housing Medan, Indonesia. Since it was built in 1995, between 2007 until 2016 approximately 89 percent of houses have been doing various home renewal such as restoration, renovation, or reconstruction. Qualitative research conducted in order to obtain insights into the behavior of complex relationship between various components of residential life support environment that relates to CO2 emissions. Each component is studied by conducting in-depth interviews, observation of the 128 residents. The study used Likert Scale to measure residents’ perception about components. The study concludes with a synthesis describing principles for a sustainable simple housing standard that recognizes the whole characteristics of components. This study offers a means for initiating the practice of sustainable simple housing developments and efforts to manage growth and preserve the environment without violating social, economics, and ecology.
Hypernetwork generation for multi-modal transportation system modeling.
DOT National Transportation Integrated Search
2013-04-01
The transportation debate has evolved in recent decades to include ideas such as sustainability and livability alongside mobility and safety. Definitional complexities aside, there is no doubt that this evolution has created a national transportation...
Ghate, Deborah
2016-01-01
The transfer of knowledge of effective practice, especially into "usual care" settings, remains challenging. This article argues that to close this gap we need to recognize the particular challenges of whole-system improvement. We need to move beyond a limited focus on individual programs and experimental research on their effectiveness. The rapidly developing field of implementation science and practice (ISP) provides a particular lens and a set of important constructs that can helpfully accelerate progress. A review of selected key constructs and distinctive features of ISP, including recognizing invisible system infrastructure, co-construction involving active collaboration between stakeholders, and attention to active implementation, supports for providers beyond education and training. Key aspects of an implementation lens likely to be most helpful in sustaining effectiveness include assisting innovators to identify and accommodate the architecture of existing systems, understand the implementation process as a series of distinct but nonlinear stages, identify implementation outcomes as prerequisites for treatment outcomes, and analyse implementation challenges using frameworks of implementation drivers. In complex adaptive systems, how services are implemented may matter more than their specific content, and how services align and adapt to local context may determine their sustained usefulness. To improve implementation-relevant research, we need better process evaluation and cannot rely on experimental methods that do not capture complex systemic contexts. Deployment of an implementation lens may perhaps help to avoid future "rigor mortis," enabling more productively flexible and integrative approaches to both program design and evaluation.
Development based on carrying capacity. A strategy for environmental protection
Carey, D.I.
1993-01-01
Environmental degradation has accelerated in recent years because economic development activities have been inconsistent with a sustainable environment. In human ecology, the concept of 'carrying capacity' implies an optimum level of development and population size based on a complex of interacting factors - physical, institutional, social, and psychological. Development studies which have explicitly recognized carrying capacity have shown that this approach can be used to promote economic activities which are consistent with a sustainable social and physical environment. The concept of carrying capacity provides a framework for integrating physical, socioeconomic, and environmental systems into planning for a sustainable environment. ?? 1993.
The right incentives enable ocean sustainability successes and provide hope for the future
Lubchenco, Jane; Cerny-Chipman, Elizabeth B.; Reimer, Jessica N.; Levin, Simon A.
2016-01-01
Healthy ocean ecosystems are needed to sustain people and livelihoods and to achieve the United Nations Sustainable Development Goals. Using the ocean sustainably requires overcoming many formidable challenges: overfishing, climate change, ocean acidification, and pollution. Despite gloomy forecasts, there is reason for hope. New tools, practices, and partnerships are beginning to transform local fisheries, biodiversity conservation, and marine spatial planning. The challenge is to bring them to a global scale. We dissect recent successes using a complex adaptive-systems (CAS) framework, which acknowledges the interconnectedness of social and ecological systems. Understanding how policies and practices change the feedbacks in CASs by altering the behavior of different system components is critical for building robust, sustainable states with favorable emergent properties. Our review reveals that altering incentives—either economic or social norms, or both—can achieve positive outcomes. For example, introduction of well-designed rights-based or secure-access fisheries and ecosystem service accounting shifts economic incentives to align conservation and economic benefits. Modifying social norms can create conditions that incentivize a company, country, or individual to fish sustainably, curb illegal fishing, or create large marine reserves as steps to enhance reputation or self-image. In each example, the feedbacks between individual actors and emergent system properties were altered, triggering a transition from a vicious to a virtuous cycle. We suggest that evaluating conservation tools by their ability to align incentives of actors with broader goals of sustainability is an underused approach that can provide a pathway toward scaling sustainability successes. In short, getting incentives right matters. PMID:27911770
The right incentives enable ocean sustainability successes and provide hope for the future.
Lubchenco, Jane; Cerny-Chipman, Elizabeth B; Reimer, Jessica N; Levin, Simon A
2016-12-20
Healthy ocean ecosystems are needed to sustain people and livelihoods and to achieve the United Nations Sustainable Development Goals. Using the ocean sustainably requires overcoming many formidable challenges: overfishing, climate change, ocean acidification, and pollution. Despite gloomy forecasts, there is reason for hope. New tools, practices, and partnerships are beginning to transform local fisheries, biodiversity conservation, and marine spatial planning. The challenge is to bring them to a global scale. We dissect recent successes using a complex adaptive-systems (CAS) framework, which acknowledges the interconnectedness of social and ecological systems. Understanding how policies and practices change the feedbacks in CASs by altering the behavior of different system components is critical for building robust, sustainable states with favorable emergent properties. Our review reveals that altering incentives-either economic or social norms, or both-can achieve positive outcomes. For example, introduction of well-designed rights-based or secure-access fisheries and ecosystem service accounting shifts economic incentives to align conservation and economic benefits. Modifying social norms can create conditions that incentivize a company, country, or individual to fish sustainably, curb illegal fishing, or create large marine reserves as steps to enhance reputation or self-image. In each example, the feedbacks between individual actors and emergent system properties were altered, triggering a transition from a vicious to a virtuous cycle. We suggest that evaluating conservation tools by their ability to align incentives of actors with broader goals of sustainability is an underused approach that can provide a pathway toward scaling sustainability successes. In short, getting incentives right matters.
Structured analysis and modeling of complex systems
NASA Technical Reports Server (NTRS)
Strome, David R.; Dalrymple, Mathieu A.
1992-01-01
The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.
Zakumumpa, Henry; Bennett, Sara; Ssengooba, Freddie
2016-10-18
Uganda implemented a national ART scale-up program at public and private health facilities between 2004 and 2009. Little is known about how and why some health facilities have sustained ART programs and why others have not sustained these interventions. The objective of the study was to identify facilitators and barriers to the long-term sustainability of ART programs at six health facilities in Uganda which received donor support to commence ART between 2004 and 2009. A case-study approach was adopted. Six health facilities were purposively selected for in-depth study from a national sample of 195 health facilities across Uganda which participated in an earlier study phase. The six health facilities were placed in three categories of sustainability; High Sustainers (2), Low Sustainers (2) and Non- Sustainers (2). Semi-structured interviews with ART Clinic managers (N = 18) were conducted. Questionnaire data were analyzed (N = 12). Document review augmented respondent data. Based on the data generated, across-case comparative analyses were performed. Data were collected between February and June 2015. Several distinguishing features were found between High Sustainers, and Low and Non-Sustainers' ART program characteristics. High Sustainers had larger ART programs with higher staffing and patient volumes, a broader 'menu' of ART services and more stable program leadership compared to the other cases. High Sustainers associated sustained ART programs with multiple funding streams, robust ART program evaluation systems and having internal and external program champions. Low and Non Sustainers reported similar barriers of shortage and attrition of ART-proficient staff, low capacity for ART program reporting, irregular and insufficient supply of ARV drugs and a lack of alignment between ART scale-up and their for-profit orientation in three of the cases. We found that ART program sustainability was embedded in a complex system involving dynamic interactions between internal (program champion, staffing strength, M &E systems, goal clarity) and external drivers (donors, ARVs supply chain, patient demand). ART program sustainability contexts were distinguished by the size of health facility and ownership-type. The study's implications for health systems strengthening in resource-limited countries are discussed.
Beyond the buildingcentric approach: A vision for an integrated evaluation of sustainable buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conte, Emilia, E-mail: conte@poliba.it; Monno, Valeria, E-mail: vmonno@poliba.it
2012-04-15
The available sustainable building evaluation systems have produced a new environmental design paradigm. However, there is an increasing need to overcome the buildingcentric approach of these systems, in order to further exploit their innovate potential for sustainable building practices. The paper takes this challenge by developing a cross-scale evaluation approach focusing on the reliability of sustainable building design solutions for the context in which the building is situated. An integrated building-urban evaluation model is proposed based on the urban matrix, which is a conceptualisation of the built environment as a social-ecological system. The model aims at evaluating the sustainability ofmore » a building considering it as an active entity contributing to the resilience of the urban matrix. Few holistic performance indicators are used for evaluating such contribution, so expressing the building reliability. The discussion on the efficacy of the model shows that it works as a heuristic tool, supporting the acquisition of a better insight into the complexity which characterises the relationships between the building and the built environment sustainability. Shading new lights on the meaning of sustainable buildings, the model can play a positive role in innovating sustainable building design practices, thus complementing current evaluation systems. - Highlights: Black-Right-Pointing-Pointer We model an integrated building-urban evaluation approach. Black-Right-Pointing-Pointer The urban matrix represents the social-ecological functioning of the urban context. Black-Right-Pointing-Pointer We introduce the concept of reliability to evaluate sustainable buildings. Black-Right-Pointing-Pointer Holistic indicators express the building reliability. Black-Right-Pointing-Pointer The evaluation model works as heuristic tool and complements other tools.« less
Understanding health system reform - a complex adaptive systems perspective.
Sturmberg, Joachim P; O'Halloran, Di M; Martin, Carmel M
2012-02-01
Everyone wants a sustainable well-functioning health system. However, this notion has different meaning to policy makers and funders compared to clinicians and patients. The former perceive public policy and economic constraints, the latter clinical or patient-centred strategies as the means to achieving a desired outcome. Theoretical development and critical analysis of a complex health system model. We introduce the concept of the health care vortex as a metaphor by which to understand the complex adaptive nature of health systems, and the degree to which their behaviour is predetermined by their 'shared values' or attractors. We contrast the likely functions and outcomes of a health system with a people-centred attractor and one with a financial attractor. This analysis suggests a shift in the system's attractor is fundamental to progress health reform thinking. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Metzger, E. P.; Curren, R. R.
2016-12-01
Effective engagement with the problems of sustainability begins with an understanding of the nature of the challenges. The entanglement of interacting human and Earth systems produces solution-resistant dilemmas that are often portrayed as wicked problems. As introduced by urban planners Rittel and Webber (1973), wicked problems are "dynamically complex, ill-structured, public problems" arising from complexity in both biophysical and socio-economic systems. The wicked problem construct is still in wide use across diverse contexts, disciplines, and sectors. Discourse about wicked problems as related to sustainability is often connected to discussion of complexity or complex systems. In preparation for life and work in an uncertain, dynamic and hyperconnected world, students need opportunities to investigate real problems that cross social, political and disciplinary divides. They need to grapple with diverse perspectives and values, and collaborate with others to devise potential solutions. Such problems are typically multi-casual and so intertangled with other problems that they cannot be resolved using the expertise and analytical tools of any single discipline, individual, or organization. We have developed a trio of illustrative case studies that focus on energy, water and food, because these resources are foundational, interacting, and causally connected in a variety of ways with climate destabilization. The three interrelated case studies progress in scale from the local and regional, to the national and international and include: 1) the 2010 Gulf of Mexico oil spill with examination of the multiple immediate and root causes of the disaster, its ecological, social, and economic impacts, and the increasing risk and declining energy return on investment associated with the relentless quest for fossil fuels; 2) development of Australia's innovative National Water Management System; and 3) changing patterns of food production and the intertwined challenge of managing transnational water resources in the rapidly growing Mekong Region of Southeast Asia. .
Is sustainability achievable? Exploring the limits of sustainability with model systems.
Shastri, Yogendra; Diwekar, Urmila; Cabezas, Heriberto; Williamson, James
2008-09-01
Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and nonintuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic understanding further includes a sense of the time scale of possible future events and the limits of what is and is not likely to be possible. With this understanding, systematic approaches can then be used to develop policy guidelines for the system. This article presents an illustration of these ideas by analyzing an integrated ecological-economic-social model, which comprises various ecological (natural) and domesticated compartments representing species along with a macroeconomic price setting model. The stable and qualitatively realistic model is used to analyze different relevant scenarios. Apart from highlighting complex relationships within the system, it identifies potentially unsustainable future developments such as increased human per capita consumption rates. Dynamic optimization is then used to develop time-dependent policy guidelines for the unsustainable scenarios using objective functions that aim to minimize fluctuations in the system's Fisher information. The results can help to identify effective policy parameters and highlight the tradeoff between natural and domesticated compartments while managing such integrated systems. The results should also qualitatively guide further investigations in the area of system level studies and policy development.
Opinion: Endogenizing culture in sustainability science research and policy
Caldas, Marcellus M.; Sanderson, Matthew R.; Mather, Martha E.; Daniels, Melinda D.; Bergtold, Jason S.; Aistrup, Joseph; Heier Stamm, Jessica L.; Haukos, David A.; Douglas-Mankin, Kyle; Sheshukov, Aleksey Y.; Lopez-Carr, David
2015-01-01
Integrating the analysis of natural and social systems to achieve sustainability has been an international scientific goal for years (1, 2). However, full integration has proven challenging, especially in regard to the role of culture (3), which is often missing from the complex sustainability equation. To enact policies and practices that can achieve sustainability, researchers and policymakers must do a better job of accounting for culture, difficult though this task may be.The concept of culture is complex, with hundreds of definitions that for years have generated disagreement among social scientists (4). Understood at the most basic level, culture constitutes shared values, beliefs, and norms through which people “see,” interpret, or give meaning to ideas, actions, and environments. Culture is often used synonymously with “worldviews” or “cosmologies” (5, 6) to explain the patterned ways of assigning meanings and interpretations among individuals within groups. Used in this way, culture has been found to have only limited empirical support as an explanation of human risk perception (7, 8) and environmentalism (9).
Sustainable Development Strategy Of Domestic Waste Infrastructure In The City Of Surakarta
NASA Astrophysics Data System (ADS)
Rezagama, Arya; Purwono; Damayanti, Verika
2018-02-01
Shifting from traditional system to large, centralised infrastructure domestic waste is widely complex challenge. Most of fhe sanitary system on household in Surakarta use on site septictank, 17% sewerage system reached and16,0% stll open defecations. Sanitation development sustained aims to develop policy and strategies waste management domestic Surakarta in the long term (20 years). The projection use quantitative method and institutional condition approach by SWOT analysis. Surakarta City get priority sanitation urban planning from Indonesian government in Presiden Joko Widodo era. The domestic waste management systems that is Surakarta divided into system on-site and system off site. Waste Water Treatment Plant (WWTP) mojosongo, WWTP pucangsawit and WWTP Semanggi will be developed to treat 30% domestic waste of Surakarta Residence. While on-site system will are served 70% residence by service programs Regular Cleaning Septictank. The toughest challenge is how to increase community participation in waste management and improve the company"s financial condition. Sanitation sustainable development is going to happen if supported by facility development also good, institutional development, the arrangement that oversees, and the public participation.
Gonzalez-Mejía, Alejandra M; Eason, Tarsha N; Cabezas, Heriberto; Suidan, Makram T
2012-09-04
Urban systems have a number of factors (i.e., economic, social, and environmental) that can potentially impact growth, change, and transition. As such, assessing and managing these systems is a complex challenge. While, tracking trends of key variables may provide some insight, identifying the critical characteristics that truly impact the dynamic behavior of these systems is difficult. As an integrated approach to evaluate real urban systems, this work contributes to the research on scientific techniques for assessing sustainability. Specifically, it proposes a practical methodology based on the estimation of dynamic order, for identifying stable and unstable periods of sustainable or unsustainable trends with Fisher Information (FI) metric. As a test case, the dynamic behavior of the City, Suburbs, and Metropolitan Statistical Area (MSA) of Cincinnati was evaluated by using 29 social and 11 economic variables to characterize each system from 1970 to 2009. Air quality variables were also selected to describe the MSA's environmental component (1980-2009). Results indicate systems dynamic started to change from about 1995 for the social variables and about 2000 for the economic and environmental characteristics.
Oral Sustained Release of a Hydrophilic Drug Using the Lauryl Sulfate Salt/Complex.
Kasashima, Yuuki; Yoshihara, Keiichi; Yasuji, Takehiko; Sako, Kazuhiro; Uchida, Shinya; Namiki, Noriyuki
2016-01-01
The objective of this study was to establish the key factor of the lauryl sulfate (LS) salt/complex for sustained release of a hydrophilic drug at various physiological pH levels. Mirabegron is a hydrophilic drug that exhibits pH-dependent solubility. Sodium lauryl sulfate (SLS) bound to mirabegron in a stoichiometric manner. The formation of the LS salt/complex significantly reduced mirabegron solubility and helped achieve sustained release of mirabegron over a wide range of pH levels. In addition to SLS, other additives containing a sulfate group formed salts/complexes with mirabegron and reduced its solubility at different pH levels. Furthermore, octyl sulfate (OS), myristyl sulfate (MS), and cetyl sulfate (CS) salts/complexes, which contain alkyl chains of different lengths, showed a lower solubility than mirabegron and promoted sustained release of mirabegron. The rank order of solubility and dissolution rate were as follows: OS salt/complex>LS salt/complex>MS salt/complex>CS salt/complex, which corresponded to the rank of alkyl chain lengths. We conclude that the presence of a sulfate group and the length of the alkyl chain are key factors of the LS salt/complex for sustained release of a hydrophilic drug at various physiological pH levels.
van de Kamp, Cornelis; Gawthrop, Peter J.; Gollee, Henrik; Loram, Ian D.
2013-01-01
Researchers have previously adopted the double stimulus paradigm to study refractoriness in human neuromotor control. Currently, refractoriness, such as the Psychological Refractory Period (PRP) has only been quantified in discrete movement conditions. Whether refractoriness and the associated serial ballistic hypothesis generalises to sustained control tasks has remained open for more than sixty years. Recently, a method of analysis has been presented that quantifies refractoriness in sustained control tasks and discriminates intermittent (serial ballistic) from continuous control. Following our recent demonstration that continuous control of an unstable second order system (i.e. balancing a ‘virtual’ inverted pendulum through a joystick interface) is unnecessary, we ask whether refractoriness of substantial duration (∼200 ms) is evident in sustained visual-manual control of external systems. We ask whether the refractory duration (i) is physiologically intrinsic, (ii) depends upon system properties like the order (0, 1st, and 2nd) or stability, (iii) depends upon target jump direction (reversal, same direction). Thirteen participants used discrete movements (zero order system) as well as more sustained control activity (1st and 2nd order systems) to track unpredictable step-sequence targets. Results show a substantial refractory duration that depends upon system order (250, 350 and 550 ms for 0, 1st and 2nd order respectively, n = 13, p<0.05), but not stability. In sustained control refractoriness was only found when the target reverses direction. In the presence of time varying actuators, systems and constraints, we propose that central refractoriness is an appropriate control mechanism for accommodating online optimization delays within the neural circuitry including the more variable processing times of higher order (complex) input-output relations. PMID:23300430
Reusing models of actors and services in smart homecare to improve sustainability.
Walderhaug, Ståle; Stav, Erlend; Mikalsen, Marius
2008-01-01
Industrial countries are faced with a growing elderly population. Homecare systems with assistive smart house technology enable elderly to live independently at home. Development of such smart home care systems is complex and expensive and there is no common reference model that can facilitate service reuse. This paper proposes reusable actor and service models based on a model-driven development process where end user organizations and domain healthcare experts from four European countries have been involved. The models, specified using UML can be reused actively as assets in the system design and development process and can reduce development costs, and improve interoperability and sustainability of systems. The models are being evaluated in the European IST project MPOWER.
Ortiz, Marco
2017-01-01
Several administrative polices have been implemented in order to reduce the negative impacts of fishing on natural ecosystems. Four eco-social models with different levels of complexity were constructed, which represent the seaweed harvest in central-northern Chile under two different regimes, Management and Exploitation Areas for Benthic Resources (MAEBRs) and Open Access Areas (OAAs). The dynamics of both regimes were analyzed using the following theoretical frameworks: (1) Loop Analysis, which allows the local stability or sustainability of the models and scenarios to be assessed; and (2) Hessian´s optimization procedure of a global fishery function (GFF) that represents each dynamics of each harvest. The results suggest that the current fishing dynamics in MAEBRs are not sustainable unless the market demand presents some type of control (i.e. taxes). Further, the results indicated that if the demand changes to a self-negative feedback (self-control) in MAEBRs, the stability is increased and, simultaneously, a relative maximum for the GFF is reached. Contrarily, the sustainability of the model/system representing the harvest (principally by cutting plants) in OAAs is not reached. The implementation of an “ecological” tax for intensive artisanal fisheries with low operational cost is proposed. The network analysis developed here is proposed as a general strategy for studying the effects of human interventions in marine coastal ecosystems under transient (short-term) dynamics. PMID:28453548
Ortiz, Marco; Levins, Richard
2017-01-01
Several administrative polices have been implemented in order to reduce the negative impacts of fishing on natural ecosystems. Four eco-social models with different levels of complexity were constructed, which represent the seaweed harvest in central-northern Chile under two different regimes, Management and Exploitation Areas for Benthic Resources (MAEBRs) and Open Access Areas (OAAs). The dynamics of both regimes were analyzed using the following theoretical frameworks: (1) Loop Analysis, which allows the local stability or sustainability of the models and scenarios to be assessed; and (2) Hessian´s optimization procedure of a global fishery function (GFF) that represents each dynamics of each harvest. The results suggest that the current fishing dynamics in MAEBRs are not sustainable unless the market demand presents some type of control (i.e. taxes). Further, the results indicated that if the demand changes to a self-negative feedback (self-control) in MAEBRs, the stability is increased and, simultaneously, a relative maximum for the GFF is reached. Contrarily, the sustainability of the model/system representing the harvest (principally by cutting plants) in OAAs is not reached. The implementation of an "ecological" tax for intensive artisanal fisheries with low operational cost is proposed. The network analysis developed here is proposed as a general strategy for studying the effects of human interventions in marine coastal ecosystems under transient (short-term) dynamics.
ERIC Educational Resources Information Center
Johnson, LeAnne D.
2017-01-01
Bringing effective practices to scale across large systems requires attending to how information and belief systems come together in decisions to adopt, implement, and sustain those practices. Statewide scaling of the Pyramid Model, a framework for positive behavior intervention and support, across different types of early childhood programs…
ERIC Educational Resources Information Center
Rosenkränzer, Frank; Kramer, Tim; Hörsch, Christian; Schuler, Stephan; Rieß, Werner
2016-01-01
The understanding of complex, dynamic and animate systems has a special standing in education for sustainable development and biology. Thus one important role of science teacher education is to promote student teachers' Content Related Knowledge (CRK) for teaching systems thinking, consisting of extensive Content Knowledge (CK) and well formed…
2011 Resilience and Law Panel Session
Resilience is the capacity of a complex system of people and nature to absorb perturbations without collapsing. It provides a conceptual framework for the integration of natural resource management with ecological responses. Achieving the goal of sustainability is complicated b...
ERIC Educational Resources Information Center
Palma, Lisiane Celia; Pedrozo, Eugênio Ávila
2015-01-01
Several papers propose analytical methods relating to the inclusion of sustainability in courses and universities. However, as sustainability is a complex subject, methodological proposals on the topic must avoid making disjointed analyses which focus exclusively on curricula or on organisational strategy, as often seen in the literature.…
Gowran, Rosemary Joan; Kennan, Avril; Marshall, Siobhán; Mulcahy, Irene; Ní Mhaille, Sile; Beasley, Sarah; Devlin, Mark
2015-02-01
Epidermolysis bullosa (EB) is a rare, genetic skin condition that is complicated, distressing, and painful and permeates every aspect of patients' lives. Support services are essential for meeting the primary needs of patients and families living with EB; however, provision is challenged by many complex issues. In collaboration with the patient organization DEBRA Ireland, this research conducted an in-depth analysis of Irish healthcare support services for EB, with a view to moving towards an improved and sustainable care pathway. A sustainable community of practice model (SCOP), as a core construct provided a simplified framework when studying this complex system. The research utilized mixed methods, comprising individual interviews, questionnaires, and a participatory action research workshop based on a soft systems approach. The study engaged patients, family members, service providers, and policy developers. Findings emphasized that the complexities of life with EB are more than 'skin deep'. The lived experience of stakeholders revealed many levels of emotion, both positive and heart-rending. Despite the positive efforts of specialists in this field, inadequacies to meet the primary needs of people with EB, such as bandages-fundamental for survival-were highlighted. Participants reported challenges relating to understanding patients' needs, access to consistent services within hospitals and the community, time constraints, and the strong emotions evoked by this severe and rare disease. The study identified several areas that can be targeted to bring about improvements in meeting primary needs. Education and research at public, policy, and practice levels need to be prioritized. It is imperative that citizens move beyond an awareness that EB exists and demonstrate a consciousness about the importance of advocating and enabling seamless and sustainable support services through collective action.
NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures
NASA Technical Reports Server (NTRS)
Grymes, Rosalind A.
2015-01-01
In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.
NASA Astrophysics Data System (ADS)
Kanta, L.; Giacomoni, M.; Shafiee, M. E.; Berglund, E.
2014-12-01
The sustainability of water resources is threatened by urbanization, as increasing demands deplete water availability, and changes to the landscape alter runoff and the flow regime of receiving water bodies. Utility managers typically manage urban water resources through the use of centralized solutions, such as large reservoirs, which may be limited in their ability balance the needs of urbanization and ecological systems. Decentralized technologies, on the other hand, may improve the health of the water resources system and deliver urban water services. For example, low impact development technologies, such as rainwater harvesting, and water-efficient technologies, such as low-flow faucets and toilets, may be adopted by households to retain rainwater and reduce demands, offsetting the need for new centralized infrastructure. Decentralized technologies may create new complexities in infrastructure and water management, as decentralization depends on community behavior and participation beyond traditional water resources planning. Messages about water shortages and water quality from peers and the water utility managers can influence the adoption of new technologies. As a result, feedbacks between consumers and water resources emerge, creating a complex system. This research develops a framework to simulate the diffusion of water-efficient innovations and the sustainability of urban water resources, by coupling models of households in a community, hydrologic models of a water resources system, and a cellular automata model of land use change. Agent-based models are developed to simulate the land use and water demand decisions of individual households, and behavioral rules are encoded to simulate communication with other agents and adoption of decentralized technologies, using a model of the diffusion of innovation. The framework is applied for an illustrative case study to simulate water resources sustainability over a long-term planning horizon.
Coexisting multiple attractors and riddled basins of a memristive system.
Wang, Guangyi; Yuan, Fang; Chen, Guanrong; Zhang, Yu
2018-01-01
In this paper, a new memristor-based chaotic system is designed, analyzed, and implemented. Multistability, multiple attractors, and complex riddled basins are observed from the system, which are investigated along with other dynamical behaviors such as equilibrium points and their stabilities, symmetrical bifurcation diagrams, and sustained chaotic states. With different sets of system parameters, the system can also generate various multi-scroll attractors. Finally, the system is realized by experimental circuits.
Reflecting on complexity of biological systems: Kant and beyond?
Van de Vijver, Gertrudis; Van Speybroeck, Linda; Vandevyvere, Windy
2003-01-01
Living organisms are currently most often seen as complex dynamical systems that develop and evolve in relation to complex environments. Reflections on the meaning of the complex dynamical nature of living systems show an overwhelming multiplicity in approaches, descriptions, definitions and methodologies. Instead of sustaining an epistemic pluralism, which often functions as a philosophical armistice in which tolerance and so-called neutrality discharge proponents of the burden to clarify the sources and conditions of agreement and disagreement, this paper aims at analysing: (i) what has been Kant's original conceptualisation of living organisms as natural purposes; (ii) how the current perspectives are to be related to Kant's viewpoint; (iii) what are the main trends in current complexity thinking. One of the basic ideas is that the attention for structure and its epistemological consequences witness to a great extent of Kant's viewpoint, and that the idea of organisational stratification today constitutes a different breeding ground within which complexity issues are raised. The various approaches of complexity in biological systems are captured in terms of two different styles, universalism and (weak and strong) constructivism, between which hybrid forms exist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianguo; Dou, Yue; Batistella, Mateus
The world has become increasingly telecoupled through distant flows of information, energy, people, organisms, goods, and matter. Recent advances suggest that telecouplings such as trade and species invasion often generate spillover systems with profound effects. To untangle spillover complexity, we make the first attempt to develop a typology of spillover systems based on six criteria: flows from and to sending and receiving systems, distances from sending and receiving systems, types of spillover effects, sizes of spillover systems, roles of agents in spillover systems, and the origin of spillover systems. Furthermore, we highlight a portfolio of qualitative and quantitative methods formore » detecting the often-overlooked spillover systems. To effectively govern spillover systems for global sustainability, we also propose an overall goal (minimize negative and maximize positive spillover effects) and three general principles (fairness, responsibility, and capability).« less
Liu, Jianguo; Dou, Yue; Batistella, Mateus; ...
2018-05-05
The world has become increasingly telecoupled through distant flows of information, energy, people, organisms, goods, and matter. Recent advances suggest that telecouplings such as trade and species invasion often generate spillover systems with profound effects. To untangle spillover complexity, we make the first attempt to develop a typology of spillover systems based on six criteria: flows from and to sending and receiving systems, distances from sending and receiving systems, types of spillover effects, sizes of spillover systems, roles of agents in spillover systems, and the origin of spillover systems. Furthermore, we highlight a portfolio of qualitative and quantitative methods formore » detecting the often-overlooked spillover systems. To effectively govern spillover systems for global sustainability, we also propose an overall goal (minimize negative and maximize positive spillover effects) and three general principles (fairness, responsibility, and capability).« less
Tools and methodologies to support more sustainable biofuel feedstock production.
Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad
2011-02-01
Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.
NASA Astrophysics Data System (ADS)
Asmone, A. S.; Chew, M. Y. L.
2018-02-01
Accurately predicting maintainability has been a challenge due to the complex nature of buildings, yet it is an important research area with a rising necessity. This paper explores the use of multicriteria decision making approach for merging maintainability and sustainability elements into building grading systems to attain long-term sustainability in the building industry. The paper conducts a systematic literature review on multicriteria decision analysis approach and builds on the existing knowledge of maintainability to achieve this. A conceptual framework is developed to bridge the gap between building operations and maintenance with green facilities management by forecasting green maintainability at the design stage.
Making technological innovation work for sustainable development.
Anadon, Laura Diaz; Chan, Gabriel; Harley, Alicia G; Matus, Kira; Moon, Suerie; Murthy, Sharmila L; Clark, William C
2016-08-30
This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset.
Making technological innovation work for sustainable development
Anadon, Laura Diaz; Harley, Alicia G.; Matus, Kira; Moon, Suerie; Murthy, Sharmila L.
2016-01-01
This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset. PMID:27519800
Fox, W.E.; McCollum, D.W.; Mitchell, J.E.; Swanson, L.E.; Kreuter, U.P.; Tanaka, J.A.; Evans, G.R.; Theodore, Heintz H.; Breckenridge, R.P.; Geissler, P.H.
2009-01-01
Currently, there is no standard method to assess the complex systems in rangeland ecosystems. Decision makers need baselines to create a common language of current rangeland conditions and standards for continued rangeland assessment. The Sustainable Rangeland Roundtable (SRR), a group of private and public organizations and agencies, has created a forum to discuss rangeland sustainability and assessment. The SRR has worked to integrate social, economic, and ecological disciplines related to rangelands and has identified a standard set of indicators that can be used to assess rangeland sustainability. As part of this process, SRR has developed a two-tiered conceptual framework from a systems perspective to study the validity of indicators and the relationships among them. The first tier categorizes rangeland characteristics into four states. The second tier defines processes affecting these states through time and space. The framework clearly shows that the processes affect and are affected by each other. ?? 2009 Taylor & Francis Group, LLC.
NASA Astrophysics Data System (ADS)
Givens, J.; Padowski, J.; Malek, K.; Guzman, C.; Boll, J.; Adam, J. C.; Witinok-Huber, R.
2017-12-01
In the face of climate change and multi-scalar governance objectives, achieving resilience of food-energy-water (FEW) systems requires interdisciplinary approaches. Through coordinated modeling and management efforts, we study "Innovations in the Food-Energy-Water Nexus (INFEWS)" through a case-study in the Columbia River Basin. Previous research on FEW system management and resilience includes some attention to social dynamics (e.g., economic, governance); however, more research is needed to better address social science perspectives. Decisions ultimately taken in this river basin would occur among stakeholders encompassing various institutional power structures including multiple U.S. states, tribal lands, and sovereign nations. The social science lens draws attention to the incompatibility between the engineering definition of resilience (i.e., return to equilibrium or a singular stable state) and the ecological and social system realities, more explicit in the ecological interpretation of resilience (i.e., the ability of a system to move into a different, possibly more resilient state). Social science perspectives include but are not limited to differing views on resilience as normative, system persistence versus transformation, and system boundary issues. To expand understanding of resilience and objectives for complex and dynamic systems, concepts related to inequality, heterogeneity, power, agency, trust, values, culture, history, conflict, and system feedbacks must be more tightly integrated into FEW research. We identify gaps in knowledge and data, and the value and complexity of incorporating social components and processes into systems models. We posit that socio-biophysical system resilience modeling would address important complex, dynamic social relationships, including non-linear dynamics of social interactions, to offer an improved understanding of sustainable management in FEW systems. Conceptual modeling that is presented in our study, represents a starting point for a continued research agenda that incorporates social dynamics into FEW system resilience and management.
Oral sustained-release suspension based on a lauryl sulfate salt/complex.
Kasashima, Yuuki; Uchida, Shinya; Yoshihara, Keiichi; Yasuji, Takehiko; Sako, Kazuhiro; Namiki, Noriyuki
2016-12-30
The objective of this study was to evaluate the feasibility of lauryl sulfate (LS) salt/complex as a novel carrier in oral sustained-release suspensions. Mirabegron, which has a pH-dependent solubility, was selected as the model drug. Sodium lauryl sulfate (SLS) was bound to mirabegron in a stoichiometric manner to form an LS salt/complex. LS salt/complex formulation significantly reduced the solubility of mirabegron and helped mirabegron achieve sustained-release over a wide range of pH conditions. Microparticles containing the LS salt/complex were prepared by spray drying with the aqueous dispersion of ethylcellulose (Aquacoat ® ECD). The diameter of the microparticles was less than 200μm, which will help avoid a gritty taste. In vitro results indicated the microparticles had slower dissolution profiles than the LS salt/complex. The dissolution rate could be controlled flexibly by changing the amount of Aquacoat ® ECD. The microparticle suspension retained the desired sustained-release property and dissolution profile after being stored for 30days at 40°C. In addition, the suspension displayed sustained-release behavior in dogs without a pronounced C max peak, which will help prevent side effects. These results suggest that microparticles containing LS salt/complex may be useful as a novel sustained-release suspension for oral delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Pinese, Coline; Lin, Junquan; Milbreta, Ulla; Li, Mingqiang; Wang, Yucai; Leong, Kam W; Chew, Sing Yian
2018-06-08
A low toxicity and efficient delivery system is needed to deliver small interfering RNAs (siRNA) in vitro and in vivo. The use of mesoporous silica nanoparticles (MSN) is becoming increasingly common due to its biocompatibility, tunable pore size and customizable properties. However, bolus delivery of siRNA/MSN complexes remains suboptimal, especially when a sustained and long-term administration is required. Here, we utilized electrospun scaffolds for sustained delivery of siRNA/MSN-PEI through surface adsorption and nanofiber encapsulation. As a proof-of-concept, we targeted collagen type I expression to modulate fibrous capsule formation. Surface adsorption of siRNA/MSN-PEI provided sustained availability of siRNA for at least 30 days in vitro. As compared to conventional bolus delivery, such scaffold-mediated transfection provided more effective gene silencing (p < 0.05). On the contrary, a longer sustained release was attained (at least 5 months) when siRNA/MSN-PEI complexes were encapsulated within the electrospun fibers. In vivo subcutaneous implantation and biodistribution analysis of these scaffolds revealed that siRNA remained localized up to ∼290 μm from the implants. Finally, a fibrous capsule reduction of ∼45.8 % was observed after 4 weeks in vivo as compared to negative scrambled siRNA treatment. Taken together, these results demonstrate the efficacy of scaffold-mediated sustained delivery of siRNA/MSN-PEI for long-term non-viral gene silencing applications. The bolus delivery of siRNA/ Mesoporous Silica Nanoparticles (MSN) complexes shows high efficiency to silence protein agonists of tumoral processes as cancer treatments. However, in tissue engineering area, scaffold mediated delivery is desired to achieve a local and sustained release of therapeutics. We showed the feasibility and the efficacy of siRNA/MSN delivered from electrospun scaffolds through surface adsorption and nanofiber encapsulation. We showed that this method enhances siRNA transfection efficiency and sustained targeted proteins silencing in vitro and in vivo. As a proof of concept, in this study, we targeted collagen type I expression to modulate fibrous capsule formation. However this platform can be applied to the release and transfection of siRNA or miRNA in cancer and tissue engineering applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Sustainability of dams-an evaluation approach
NASA Astrophysics Data System (ADS)
Petersson, E.
2003-04-01
Situated in the stream bed of a river, dams and reservoirs interrupt the natural hydrological cycle. They are very sensitive to all kinds of changes in the catchment, among others global impacts on land use, climate, settlement structures or living standards. Vice versa dams strongly affect the spatially distributed, complex system of ecology, economy and society in the catchment both up- and downstream of the reservoir. The occurrence of negative impacts due to large dams led to serious conflicts about future dams. Nevertheless, water shortages due to climatic conditions and their changes, that are faced by enormous water and energy demands due to rising living standards of a growing world population, seem to require further dam construction, even if both supply and demand management are optimised. Although environmental impact assessments are compulsory for dams financed by any of the international funding agencies, it has to be assumed that the projects lack sustainability. Starting from an inventory of today's environmental impact assessments as an integral part of a feasibility study the presentation will identify their inadequacies with regard to the sustainability of dams. To improve the sustainability of future dams and avoid the mistakes of the past, the planning procedures for dams have to be adapted. The highly complex and dynamical system of interrelated physical and non-physical processes, that involves many different groups of stakeholders, constitutes the need for a model-oriented decision support system. In line with the report of the World Commission of Dams an integrated analysis and structure of the complex interrelations between dams, ecology, economy and society will be presented. Thus the system, that a respective tool will be based on, is analysed. Furthermore an outlook will be given on the needs of the potential users of a DSS and how it has to be embedded in the overall planning process. The limits of computer-based decision-support in the very specific context of dam construction will be identified. Special focus will be on the constraints arising from the need to jointly evaluate qualitative and quantitative aspects and the methodological potential of multi-criteria evaluation in this respect.
1991 Annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less
1991 Annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less
ERIC Educational Resources Information Center
Willis, Lynne
2010-01-01
Managing change in education is a complex process, but to do so under the pressure of a punishment-based measurement system (Fullan, 2008) makes sustainable and meaningful change increasingly difficult. Systems which produce high stakes accountability measures, which bring with it sanctions that create a greater sense of distrust, demoralization…
SUSTAINING NAVAL SURFACE COMBATANT VERTICAL LAUNCH SYSTEM MUNITIONS DURING JOINT OPERATIONS
2017-04-21
permission of the author. 14. ABSTRACT Maintaining maritime dominance against near peer adversaries will tax an already complex logistics structure...This page intentionally blank i ABSTRACT Maintaining maritime dominance against near peer adversaries will tax an already complex logistics...140725-N-EW716- 002.jpg 40 California to Guam, approximately eight days would be required but this does not account for delay to conduct refueling
NASA Astrophysics Data System (ADS)
Bosikov, I. I.; Klyuev, R. V.; Revazov, V. Ch; Pilieva, D. E.
2018-03-01
The article describes research and analysis of hazardous processes occurring in the natural-industrial system and effectiveness assessment of its functioning using mathematical models. Studies of the functioning regularities of the natural and industrial system are becoming increasingly relevant in connection with the formulation of the task of modernizing production and the economy of Russia as a whole. In connection with a significant amount of poorly structured data, it is complicated by regulations for the effective functioning of production processes, social and natural complexes, under which a sustainable development of the natural-industrial system of the mining and processing complex would be ensured. Therefore, the scientific and applied problems, the solution of which allows one to formalize the hidden structural functioning patterns of the natural-industrial system and to make managerial decisions of organizational and technological nature to improve the efficiency of the system, are very relevant.
Sarriot, Eric G; Kouletio, Michelle; Jahan, Dr Shamim; Rasul, Izaz; Musha, Akm
2014-08-26
Starting in 1999, Concern Worldwide Inc. (Concern) worked with two Bangladeshi municipal health departments to support delivery of maternal and child health preventive services. A mid-term evaluation identified sustainability challenges. Concern relied on systems thinking implicitly to re-prioritize sustainability, but stakeholders also required a method, an explicit set of processes, to guide their decisions and choices during and after the project. Concern chose the Sustainability Framework method to generate creative thinking from stakeholders, create a common vision, and monitor progress. The Framework is based on participatory and iterative steps: defining (mapping) the local system and articulating a long-term vision, describing scenarios for achieving the vision, defining the elements of the model, and selecting corresponding indicators, setting and executing an assessment plan,, and repeated stakeholder engagement in analysis and decisions . Formal assessments took place up to 5 years post-project (2009). Strategic choices for the project were guided by articulating a collective vision for sustainable health, mapping the system of actors required to effect and sustain change, and defining different components of analysis. Municipal authorities oriented health teams toward equity-oriented service delivery efforts, strengthening of the functionality of Ward Health Committees, resource leveraging between municipalities and the Ministry of Health, and mitigation of contextual risks. Regular reference to a vision (and set of metrics (population health, organizational and community capacity) mitigated political factors. Key structures and processes were maintained following elections and political changes. Post-project achievements included the maintenance or improvement 5 years post-project (2009) in 9 of the 11 health indicator gains realized during the project (1999-2004). Some elements of performance and capacity weakened, but reductions in the equity gap achieved during the project were largely maintained post-project. Sustainability is dynamic and results from local systems processes, which can be strengthened through both implicit and explicit systems thinking steps applied with constancy of purpose.
Wheat landraces: A mini review
USDA-ARS?s Scientific Manuscript database
Farmers developed and utilized diverse wheat landraces to meet the complexity of a multitude of spatio-temporal, agro-ecological systems and to provide reliable sustenance and a sustainable food source to local communities. The genetic structure of wheat landraces is an evolutionary approach to surv...
Systems thinking and complexity: considerations for health promoting schools.
Rosas, Scott R
2017-04-01
The health promoting schools concept reflects a comprehensive and integrated philosophy to improving student and personnel health and well-being. Conceptualized as a configuration of interacting, interdependent parts connected through a web of relationships that form a whole greater than the sum of its parts, school health promotion initiatives often target several levels (e.g. individual, professional, procedural and policy) simultaneously. Health promoting initiatives, such as those operationalized under the whole school approach, include several interconnected components that are coordinated to improve health outcomes in complex settings. These complex systems interventions are embedded in intricate arrangements of physical, biological, ecological, social, political and organizational relationships. Systems thinking and characteristics of complex adaptive systems are introduced in this article to provide a perspective that emphasizes the patterns of inter-relationships associated with the nonlinear, dynamic and adaptive nature of complex hierarchical systems. Four systems thinking areas: knowledge, networks, models and organizing are explored as a means to further manage the complex nature of the development and sustainability of health promoting schools. Applying systems thinking and insights about complex adaptive systems can illuminate how to address challenges found in settings with both complicated (i.e. multi-level and multisite) and complex aspects (i.e. synergistic processes and emergent outcomes). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The performance of disk arrays in shared-memory database machines
NASA Technical Reports Server (NTRS)
Katz, Randy H.; Hong, Wei
1993-01-01
In this paper, we examine how disk arrays and shared memory multiprocessors lead to an effective method for constructing database machines for general-purpose complex query processing. We show that disk arrays can lead to cost-effective storage systems if they are configured from suitably small formfactor disk drives. We introduce the storage system metric data temperature as a way to evaluate how well a disk configuration can sustain its workload, and we show that disk arrays can sustain the same data temperature as a more expensive mirrored-disk configuration. We use the metric to evaluate the performance of disk arrays in XPRS, an operational shared-memory multiprocessor database system being developed at the University of California, Berkeley.
Critical Thinking as Room for Subjectification in Education for Sustainable Development
ERIC Educational Resources Information Center
Hasslöf, Helen; Malmberg, Claes
2015-01-01
Issues of sustainability are complex and often steeped with ethical and political questions without predefined or general answers. This paper deals with how secondary and upper secondary teachers discuss these complex issues, by analysing their aims for Education for Sustainable Development. With inspiration from discourse theory, their…
Envisioning Complexity: Towards a New Conceptualization of Educational Research for Sustainability
ERIC Educational Resources Information Center
Pipere, Anita
2016-01-01
This paper aims to present some conceptual insights into the research paradigm of complexity that deals with such problems like sustainability, education, and, more specifically--sustainability education. The transdisciplinary perspective and cognitive approaches of a hermeneutical cycle and semantic waves used in argumentation assist in grasping…
Gossett, Andrea; Mirza, Mansha; Barnds, Ann Kathleen; Feidt, Daisy
2009-11-01
A growing emphasis has been placed on providing equal opportunities for all people, particularly people with disabilities, to support participation. Barriers to participation are represented in part by physical space restrictions. This article explores the decision-making process during the construction of a new office building housing a disability-rights organization. The building project featured in this study was developed on the principles of universal design, maximal accessibility, and sustainability to support access and participation. A qualitative case study approach was used involving collection of data through in-depth interviews with key decision-makers; non-participant observations at design meetings; and on-site tours. Qualitative thematic analysis along with the development of a classification system was used to understand specific building elements and the relevant decision processes from which they resulted. Recording and analyzing the design process revealed several key issues including grassroots involvement of stakeholders; interaction between universal design and sustainable design; addressing diversity through flexibility and universality; and segregationist accessibility versus universal design. This case study revealed complex interactions between accessibility, universal design, and sustainability. Two visual models were proposed to understand and analyze these complexities.
NASA Astrophysics Data System (ADS)
Waddell, Steve; Cornell, Sarah; Hsueh, Joe; Ozer, Ceren; McLachlan, Milla; Birney, Anna
2015-04-01
Most action to address contemporary complex challenges, including the urgent issues of global sustainability, occurs piecemeal and without meaningful guidance from leading complex change knowledge and methods. The potential benefit of using such knowledge is greater efficacy of effort and investment. However, this knowledge and its associated tools and methods are under-utilized because understanding about them is low, fragmented between diverse knowledge traditions, and often requires shifts in mindsets and skills from expert-led to participant-based action. We have been engaged in diverse action-oriented research efforts in Large System Change for sustainability. For us, "large" systems can be characterized as large-scale systems - up to global - with many components, of many kinds (physical, biological, institutional, cultural/conceptual), operating at multiple levels, driven by multiple forces, and presenting major challenges for people involved. We see change of such systems as complex challenges, in contrast with simple or complicated problems, or chaotic situations. In other words, issues and sub-systems have unclear boundaries, interact with each other, and are often contradictory; dynamics are non-linear; issues are not "controllable", and "solutions" are "emergent" and often paradoxical. Since choices are opportunity-, power- and value-driven, these social, institutional and cultural factors need to be made explicit in any actionable theory of change. Our emerging network is sharing and building a knowledge base of experience, heuristics, and theories of change from multiple disciplines and practice domains. We will present our views on focal issues for the development of the field of large system change, which include processes of goal-setting and alignment; leverage of systemic transitions and transformation; and the role of choice in influencing critical change processes, when only some sub-systems or levels of the system behave in purposeful ways, while others are undeniably and unavoidably deterministic.
Rusoja, Evan; Haynie, Deson; Sievers, Jessica; Mustafee, Navonil; Nelson, Fred; Reynolds, Martin; Sarriot, Eric; Swanson, Robert Chad; Williams, Bob
2018-01-30
As the Sustainable Development Goals are rolled out worldwide, development leaders will be looking to the experiences of the past to improve implementation in the future. Systems thinking and complexity science (ST/CS) propose that health and the health system are composed of dynamic actors constantly evolving in response to each other and their context. While offering practical guidance for steering the next development agenda, there is no consensus as to how these important ideas are discussed in relation to health. This systematic review sought to identify and describe some of the key terms, concepts, and methods in recent ST/CS literature. Using the search terms "systems thinkin * AND health OR complexity theor* AND health OR complex adaptive system* AND health," we identified 516 relevant full texts out of 3982 titles across the search period (2002-2015). The peak number of articles were published in 2014 (83) with journals specifically focused on medicine/healthcare (265) and particularly the Journal of Evaluation in Clinical Practice (37) representing the largest number by volume. Dynamic/dynamical systems (n = 332), emergence (n = 294), complex adaptive system(s) (n = 270), and interdependent/interconnected (n = 263) were the most common terms with systems dynamic modelling (58) and agent-based modelling (43) as the most common methods. The review offered several important conclusions. First, while there was no core ST/CS "canon," certain terms appeared frequently across the reviewed texts. Second, even as these ideas are gaining traction in academic and practitioner communities, most are concentrated in a few journals. Finally, articles on ST/CS remain largely theoretical illustrating the need for further study and practical application. Given the challenge posed by the next phase of development, gaining a better understanding of ST/CS ideas and their use may lead to improvements in the implementation and practice of the Sustainable Development Goals. Key messages Systems thinking and complexity science, theories that acknowledge the dynamic, connected, and context-dependent nature of health, are highly relevant to the post-millennium development goal era yet lack consensus on their use in relation to health Although heterogeneous, terms, and concepts like emergence, dynamic/dynamical Systems, nonlinear(ity), and interdependent/interconnected as well as methods like systems dynamic modelling and agent-based modelling that comprise systems thinking and complexity science in the health literature are shared across an increasing number of publications within medical/healthcare disciplines Planners, practitioners, and theorists that can better understand these key systems thinking and complexity science concepts will be better equipped to tackle the challenges of the upcoming development goals. © 2018 John Wiley & Sons, Ltd.
Embedding Sustainability and Renewable Energy Concepts into Undergraduate Curriculum
NASA Astrophysics Data System (ADS)
Belu, R.; Cioca, L.
2017-12-01
Human society is facing an uncertain future due to the present unsustainable use of natural resources and the growing imbalance with our natural environment. Creation of a sustainable society is a complex multi-disciplinary and multi-stage project, believed to dominate our century, requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions. Sustainable development means technological progress meeting the present needs without compromising future generation ability to meet its needs and aspirations. It has four aspects: environment, technology, economy, and societal organizations. Students are often taught to deal with technological developments and economic analysis to assess the process or product viability, but are not fully familiar with sustainability and optimization of technology development benefits and the environment. Schools in many disciplines are working to include sustainability concepts into their curricula. Teaching sustainability and renewable energy has become an essential feature today higher education. Sustainable and green design is about designs recognizing the constraints of the natural resource uses and the environment. It applies to all of engineering and science areas, as all systems interact with the environment in complex and important ways. Our project goals are to provide students with multiple and comprehensive exposures to sustainability and renewable energy concepts, facilitating the development of passion and skills to integrate them into practice. The expected outcomes include an increased social responsibility; development of innovative thinking skills; understanding of sustainability issues, and increasing student interests in the engineering and science programs. The project aims to incorporate sustainability and renewable energy concepts into our undergraduate curricula, employing the existing course resources, and developing new courses and laboratory experiments. Approaches described are: 1) redesigning existing courses through development of new materials that still meet the original course objectives and 2) developing upper division elective courses, addressing specific topics related to sustainability, renewable energy and green design.
NASA Astrophysics Data System (ADS)
Kim, J.
2016-12-01
Considering high levels of uncertainty, epistemological conflicts over facts and values, and a sense of urgency, normal paradigm-driven science will be insufficient to mobilize people and nation toward sustainability. The conceptual framework to bridge the societal system dynamics with that of natural ecosystems in which humanity operates remains deficient. The key to understanding their coevolution is to understand `self-organization.' Information-theoretic approach may shed a light to provide a potential framework which enables not only to bridge human and nature but also to generate useful knowledge for understanding and sustaining the integrity of ecological-societal systems. How can information theory help understand the interface between ecological systems and social systems? How to delineate self-organizing processes and ensure them to fulfil sustainability? How to evaluate the flow of information from data through models to decision-makers? These are the core questions posed by sustainability science in which visioneering (i.e., the engineering of vision) is an essential framework. Yet, visioneering has neither quantitative measure nor information theoretic framework to work with and teach. This presentation is an attempt to accommodate the framework of self-organizing hierarchical open systems with visioneering into a common information-theoretic framework. A case study is presented with the UN/FAO's communal vision of climate-smart agriculture (CSA) which pursues a trilemma of efficiency, mitigation, and resilience. Challenges of delineating and facilitating self-organizing systems are discussed using transdisciplinary toold such as complex systems thinking, dynamic process network analysis and multi-agent systems modeling. Acknowledgments: This study was supported by the Korea Meteorological Administration Research and Development Program under Grant KMA-2012-0001-A (WISE project).
Exploring Machine Learning Techniques For Dynamic Modeling on Future Exascale Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shuaiwen; Tallent, Nathan R.; Vishnu, Abhinav
2013-09-23
Future exascale systems must be optimized for both power and performance at scale in order to achieve DOE’s goal of a sustained petaflop within 20 Megawatts by 2022 [1]. Massive parallelism of the future systems combined with complex memory hierarchies will form a barrier to efficient application and architecture design. These challenges are exacerbated with emerging complex architectures such as GPGPUs and Intel Xeon Phi as parallelism increases orders of magnitude and system power consumption can easily triple or quadruple. Therefore, we need techniques that can reduce the search space for optimization, isolate power-performance bottlenecks, identify root causes for software/hardwaremore » inefficiency, and effectively direct runtime scheduling.« less
Qian, Yu; Cui, Xiaohua; Zheng, Zhigang
2017-07-18
The investigation of self-sustained oscillations in excitable complex networks is very important in understanding various activities in brain systems, among which the exploration of the key determinants of oscillations is a challenging task. In this paper, by investigating the influence of system parameters on self-sustained oscillations in excitable Erdös-Rényi random networks (EERRNs), the minimum Winfree loop (MWL) is revealed to be the key factor in determining the emergence of collective oscillations. Specifically, the one-to-one correspondence between the optimal connection probability (OCP) and the MWL length is exposed. Moreover, many important quantities such as the lower critical connection probability (LCCP), the OCP, and the upper critical connection probability (UCCP) are determined by the MWL. Most importantly, they can be approximately predicted by the network structure analysis, which have been verified in numerical simulations. Our results will be of great importance to help us in understanding the key factors in determining persistent activities in biological systems.
Rich complex behaviour of self-assembled nanoparticles far from equilibrium
Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Özgün; Tokel, Onur; Pavlov, Ihor; Gülseren, Oguz; Ilday, F. Ömer
2017-01-01
A profoundly fundamental question at the interface between physics and biology remains open: what are the minimum requirements for emergence of complex behaviour from nonliving systems? Here, we address this question and report complex behaviour of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: the system is driven far from equilibrium by ultrafast laser pulses that create spatiotemporal temperature gradients, inducing Marangoni flow that drags particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between flow, aggregate and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behaviour, analogous to those seen in living organisms, emerges, whereby aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise only one pattern or bifurcated patterns can coexist, compete, endure or perish. PMID:28443636
Rich complex behaviour of self-assembled nanoparticles far from equilibrium
NASA Astrophysics Data System (ADS)
Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Özgün; Tokel, Onur; Pavlov, Ihor; Gülseren, Oguz; Ilday, F. Ömer
2017-04-01
A profoundly fundamental question at the interface between physics and biology remains open: what are the minimum requirements for emergence of complex behaviour from nonliving systems? Here, we address this question and report complex behaviour of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: the system is driven far from equilibrium by ultrafast laser pulses that create spatiotemporal temperature gradients, inducing Marangoni flow that drags particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between flow, aggregate and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behaviour, analogous to those seen in living organisms, emerges, whereby aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise only one pattern or bifurcated patterns can coexist, compete, endure or perish.
The Challenge of Space Infrastructure Construction
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Colombano, Silvano P.
2010-01-01
This paper reviews the range of technologies that will contribute to the construction of space infrastructure that will both enable and, in some cases, provide the motivation for space exploration. Five parts are addressed: Managing complexity, robotics based construction, materials acquisition, manufacturing, and self-sustaining systems.
Managing for resilience: early detection of regime shifts in complex systems
The goal of sustainability is to maintain a condition or regime of the Earth, which supports human existence from generation to generation. Hence, the ability to detect, characterize, and manage regime shifts, particularly catastrophic ones, is critical to maintaining human sust...
Mench, J A; Swanson, J C; Arnot, C
2016-03-01
The growing emphasis on ensuring the sustainability of animal agriculture is providing an impetus for the adoption of new approaches to structuring and conducting research. Sustainability is a complex topic involving many considerations related to the economic, social, and environmental impacts of production systems. Successfully addressing this topic requires multidisciplinary research as well as a high degree of communication with food system stakeholders to ensure that the research results contribute to informed decision making. In this paper, we provide an overview of a public-private partnership, the Coalition for Sustainable Egg Supply (CSES), which was formed to support research evaluating the sustainability of laying hen housing systems. Because of increasing public concerns about the behavioral restriction imposed on laying hens housed in conventional cages, the U.S. egg industry is faced with a need to transition to alternative systems. However, before the CSES project, there was limited information available about how this transition might affect trade-offs related to the sustainability of egg production. The goal of the CSES project was to provide this information by conducting holistic research on a commercial farm that had 3 different hen housing systems. The CSES members represented a variety of stakeholders, including food retailers and distributors, egg producers, universities, and governmental (USDA ARS) and nongovernmental organizations. The CSES was facilitated by a not-for-profit intermediary, the Center for Food Integrity, which was also responsible for communicating the research results to food system stakeholders, including via quantitative and qualitative consumer research. In this paper, we describe the structural aspects of the CSES that were responsible for the successful completion and dissemination of the research as well as the insights that were gained regarding multidisciplinary and multi-institutional collaboration, conducting commercial-scale research, fostering and maintaining stakeholder interaction, and communicating research results. Although not without limitations, this project demonstrates that public-private partnerships can be effective strategies for addressing sustainability questions related to animal agriculture and, thus, serves as a useful model for the other animal industries.
Pollution characterization of liquid waste of the factory complex Fertial (Arzew, Algeria).
Redouane, Fares; Mourad, Lounis
2016-03-01
The industrial development in Algeria has made a worrying situation for all socioeconomic stakeholders. Indeed, this economic growth is marked in recent years by the establishment of factories and industrial plants that discharge liquid waste in marine shorelines. These releases could destabilize the environmental balance in the coming years, hence the need to support the processing of all sources of pollution. Remediation of such discharges requires several steps of identifying the various pollutants to their treatments. Therefore, the authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial. The authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial.
Yuan, Changwei; Liu, Hongchao
2017-01-01
The transportation sector is a complex system. Collecting transportation activity and the associated emissions data is extremely expensive and time-consuming. Grey Relational Analysis provides a viable alternative to overcome data insufficiency and gives insights for decision makers into such a complex system. In this paper, we achieved three major goals: (i) we explored the inter-relationships among transportation development, energy consumption and CO2 emissions for 30 provincial units in China; (ii) we identified the transportation development mode for each individual province; and (iii) we revealed policy implications regarding the sustainable transportation development at the provincial level. We can classify the 30 provinces into eight development modes according to the calculated Grey Relational Grades. Results also indicated that energy consumption has the largest influence on CO2 emission changes. Lastly, sustainable transportation policies were discussed at the province level according to the level of economy, urbanization and transportation energy structure. PMID:29292779
Apodaca, Timothy R; Jackson, Kristina M; Borsari, Brian; Magill, Molly; Longabaugh, Richard; Mastroleo, Nadine R; Barnett, Nancy P
2016-02-01
To identify individual therapist behaviors which elicit client change talk or sustain talk in motivational interviewing sessions. Motivational interviewing sessions from a single-session alcohol intervention delivered to college students were audio-taped, transcribed, and coded using the Motivational Interviewing Skill Code (MISC), a therapy process coding system. Participants included 92 college students and eight therapists who provided their treatment. The MISC was used to code 17 therapist behaviors related to the use of motivational interviewing, and client language reflecting movement toward behavior change (change talk), away from behavior change (sustain talk), or unrelated to the target behavior (follow/neutral). Client change talk was significantly more likely to immediately follow individual therapist behaviors [affirm (p=.013), open question (p<.001), simple reflection (p<.001), and complex reflection (p<.001)], but significantly less likely to immediately follow others (giving information (p<.001) and closed question (p<.001)]. Sustain talk was significantly more likely to follow therapist use of open questions (p<.001), simple reflections (p<.001), and complex reflections (p<.001), and significantly less likely to occur following therapist use of therapist affirm (p=.012), giving information (p<.001), and closed questions (p<.001). Certain individual therapist behaviors within motivational interviewing can either elicit both client change talk and sustain talk or suppress both types of client language. Affirm was the only therapist behavior that both increased change talk and also reduced sustain talk. Copyright © 2015 Elsevier Inc. All rights reserved.
Application of ion exchange resin in floating drug delivery system.
Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant
2008-10-01
The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.
Armstrong, Rachel
2010-01-01
This report details a workshop held at the Bartlett School of Architecture, University College London, to initiate interdisciplinary collaborations for the practice of systems architecture, which is a new model for the generation of sustainable architecture that combines the discipline of the study of the built environment with the scientific study of complexity, or systems science, and adopts the perspective of systems theory. Systems architecture offers new perspectives on the organization of the built environment that enable architects to consider architecture as a series of interconnected networks with embedded links into natural systems. The public workshop brought together architects and scientists working with the convergence of nanotechnology, biotechnology, information technology, and cognitive science and with living technology to investigate the possibility of a new generation of smart materials that are implied by this approach.
Interregional flows of ecosystem services: Concepts, typology and four cases
Schröter, Matthias; Koellner, Thomas; Alkemade, Rob; Arnhold, Sebastian; Bagstad, Kenneth J.; Frank, Karin; Erb, Karl-Heinz; Kastner, Thomas; Kissinger, Meidad; Liu, Jianguo; López-Hoffman, Laura; Maes, Joachim; Marques, Alexandra; Martín-López, Berta; Meyer, Carsten; Schulp, Catharina J. E.; Thober, Jule; Wolff, Sarah; Bonn, Aletta
2018-01-01
Conserving and managing global natural capital requires an understanding of the complexity of flows of ecosystem services across geographic boundaries. Failing to understand and to incorporate these flows into national and international ecosystem assessments leads to incomplete and potentially skewed conclusions, impairing society’s ability to identify sustainable management and policy choices. In this paper, we synthesise existing knowledge and develop a conceptual framework for analysing interregional ecosystem service flows. We synthesise the types of such flows, the characteristics of sending and receiving socio-ecological systems, and the impacts of ecosystem service flows on interregional sustainability. Using four cases (trade of certified coffee, migration of northern pintails, flood protection in the Danube watershed, and information on giant pandas), we test the conceptual framework and show how an enhanced understanding of interregional telecouplings in socio-ecological systems can inform ecosystem service-based decision making and governance with respect to sustainability goals.
ERIC Educational Resources Information Center
Bravo-Torija, Beatriz; Jimenez-Aleixandre, Maria-Pilar
2012-01-01
Sustainable management of marine resources raises great challenges. Working with this socio-scientific issue in the classroom requires students to apply complex models about energy flow and trophic pyramids in order to understand that food chains represent transfer of energy, to construct meanings for sustainable resources management through…
Batterman, Stuart; Eisenberg, Joseph; Hardin, Rebecca; Kruk, Margaret E.; Lemos, Maria Carmen; Michalak, Anna M.; Mukherjee, Bhramar; Renne, Elisha; Stein, Howard; Watkins, Cristy; Wilson, Mark L.
2009-01-01
Objective Even when initially successful, many interventions aimed at reducing the toll of water-related infectious disease have not been sustainable over longer periods of time. Here we review historical practices in water-related infectious disease research and propose an interdisciplinary public health oriented systems approach to research and intervention design. Data sources On the basis of the literature and the authors’ experiences, we summarize contributions from key disciplines and identify common problems and trends. Practices in developing countries, where the disease burden is the most severe, are emphasized. Data extraction We define waterborne and water-associated vectorborne diseases and identify disciplinary themes and conceptual needs by drawing from ecologic, anthropologic, engineering, political/economic, and public health fields. A case study examines one of the classes of water-related infectious disease. Data synthesis The limited success in designing sustainable interventions is attributable to factors that include the complexity and interactions among the social, ecologic, engineering, political/economic, and public health domains; incomplete data; a lack of relevant indicators; and most important, an inadequate understanding of the proximal and distal factors that cause water-related infectious disease. Fundamental change is needed for research on water-related infectious diseases, and we advocate a systems approach framework using an ongoing evidence-based health outcomes focus with an extended time horizon. The examples and case study in the review show many opportunities for interdisciplinary collaborations, data fusion techniques, and other advances. Conclusions The proposed framework will facilitate research by addressing the complexity and divergent scales of problems and by engaging scientists in the disciplines needed to tackle these difficult problems. Such research can enhance the prevention and control of water-related infectious diseases in a manner that is sustainable and focused on public health outcomes. PMID:19654908
Ergonomics and sustainability: towards an embrace of complexity and emergence.
Dekker, Sidney W A; Hancock, Peter A; Wilkin, Peter
2013-01-01
Technology offers a promising route to a sustainable future, and ergonomics can serve a vital role. The argument of this article is that the lasting success of sustainability initiatives in ergonomics hinges on an examination of ergonomics' own epistemology and ethics. The epistemology of ergonomics is fundamentally empiricist and positivist. This places practical constraints on its ability to address important issues such as sustainability, emergence and complexity. The implicit ethical position of ergonomics is one of neutrality, and its positivist epistemology generally puts value-laden questions outside the parameters of what it sees as scientific practice. We argue, by contrast, that a discipline that deals with both technology and human beings cannot avoid engaging with questions of complexity and emergence and seeking innovative ways of addressing these issues. Ergonomics has largely modelled its research on a reductive science, studying parts and problems to fix. In sustainability efforts, this can lead to mere local adaptations with a negative effect on global sustainability. Ergonomics must consider quality of life globally, appreciating complexity and emergent effects of local relationships.
Johns, Timothy; Powell, Bronwen; Maundu, Patrick; Eyzaguirre, Pablo B
2013-11-01
Traditional food systems offer a key link between the social and economic resilience of smallholder farmers and pastoralists and the sustainable food and nutrition security of global populations. This paper addresses issues related to socio-cultural diversity and the continuing complex engagement of traditional and modern communities with the plants and animals that sustain them. In light of some of the unhealthful consequences of the 'nutrition transition' to globalized modern diets, the authors define and propose a process for a more successful food system transition that balances agro-biodiversity and processed commodities to support diet diversity, health and social equity alongside sustainable economic growth. We review empirical research in support of practice and policy changes in agriculture, economic development and health domains as well as cross-sectoral and community-based innovation. High-value food crops within domestic and global value chains can be an entry point for smallholders' participation as contributors and beneficiaries of development, while sustainable small farms, as purveyors of environmental and public health services, diversify global options for long-term adaptation in the face of environmental uncertainty. © 2013 Society of Chemical Industry.
Ecological accounting based on extended exergy: a sustainability perspective.
Dai, Jing; Chen, Bin; Sciubba, Enrico
2014-08-19
The excessive energy consumption, environmental pollution, and ecological destruction problems have gradually become huge obstacles for the development of societal-economic-natural complex ecosystems. Regarding the national ecological-economic system, how to make explicit the resource accounting, diagnose the resource conversion, and measure the disturbance of environmental emissions to the systems are the fundamental basis of sustainable development and coordinated management. This paper presents an extended exergy (EE) accounting including the material exergy and exergy equivalent of externalities consideration in a systematic process from production to consumption, and China in 2010 is chosen as a case study to foster an in-depth understanding of the conflict between high-speed development and the available resources. The whole society is decomposed into seven sectors (i.e., Agriculture, Extraction, Conversion, Industry, Transportation, Tertiary, and Domestic sectors) according to their distinct characteristics. An adaptive EE accounting database, which incorporates traditional energy, renewable energy, mineral element, and other natural resources as well as resource-based secondary products, is constructed on the basis of the internal flows in the system. In addition, the environmental emission accounting has been adjusted to calculate the externalities-equivalent exergy. The results show that the EE value for the year 2010 in China was 1.80 × 10(14) MJ, which is greatly increased. Furthermore, an EE-based sustainability indices system has been established to provide an epitomized exploration for evaluating the performance of flows and storages with the system from a sustainability perspective. The value of the EE-based sustainability indicator was calculated to be 0.23, much lower than the critical value of 1, implying that China is still developing in the stages of high energy consumption and a low sustainability level.
Placing ecosystem sustainability within the context of dynamic earth systems
NASA Astrophysics Data System (ADS)
Sidle, R. C.
2013-12-01
Because the concept of ecosystem sustainability and the practice of sustainable land management both have long-term foci, it is necessary to view these from the perspective of dynamic rather than static systems. In addition to the typical static system approach for assessing ecosystem sustainability, three additional perspectives are presented. These are resilient systems, systems where tipping points occur, and systems subject to episodic geophysical resetting. Ecosystem resilience accommodates both natural and anthropogenic stressors and should be considered to properly frame many ecosystem assessments. A more complex problem emerges when stressors push systems to tipping points, causing a regime shift. Both chronic anthropogenic activities (e.g., over-grazing, forest conversion, poor irrigation practices) and natural changes (e.g., climate anomalies, geochemical weathering, tectonic uplift, vegetative succession) can exhaust ecosystem resilience leading to a rapid change in state. Anthropogenic perturbations can also lower the initiation threshold and increase the magnitude and frequency of certain natural disasters, increasing the likelihood of ecosystem change. Furthermore, when major episodic geophysical events (e.g., large earthquakes, tsunami, and floods; widespread volcanic activity and landslides) exceed thresholds of ecosystem resilience they may reset the attributes of entire systems or landscapes. Large disasters can initiate a cascade of linked events, as in the 2011 Great East Japan Earthquake, where tsunami, fires, landslides, artificial fillslope collapses, radioactive releases, and associated health effects occurred. Understanding the potential for natural change (both chronic and episodic) in ecosystems is essential not only to the environmental aspect of sustainability but also to economic and social aspects. Examples are presented for: (1) ecosystems vulnerable to tipping points (Yunnan, China) and (2) ecosystems reset by earthquakes and tsunami (Papua New Guinea and eastern Japan). While these geophysical perturbations and shifts in ecosystems are individually recognized, they are not fully embraced by contemporary sustainability thinking or decision management.
USDA-ARS?s Scientific Manuscript database
The important questions about agriculture, climate, and sustainability have become increasingly complex and require a coordinated, multi-faceted approach for developing new knowledge and understanding. A multi-state, transdisciplinary project was begun in 2011 to study the potential for both mitigat...
A Typology of Partnerships for Promoting Innovation.
ERIC Educational Resources Information Center
Barnett, Bruce G.; Hall, Gene E.; Berg, Judith H.; Camarena, Margaret M.
1999-01-01
Conceptualizes a framework of types of partnerships that can develop between a school system and an external resource agency. More complex organizational structures are required as interdependency increases in the collaborative, symbiotic partnership, and spin-off models. There is no magic formula for initiating, sustaining, or terminating…
Parasites, ecosystems and sustainability: an ecological and complex systems perspective.
Horwitz, Pierre; Wilcox, Bruce A
2005-06-01
Host-parasite relationships can be conceptualised either narrowly, where the parasite is metabolically dependent on the host, or more broadly, as suggested by an ecological-evolutionary and complex systems perspective. In this view Host-parasite relationships are part of a larger set of ecological and co-evolutionary interdependencies and a complex adaptive system. These interdependencies affect not just the hosts, vectors, parasites, the immediate agents, but also those indirectly or consequentially affected by the relationship. Host-parasite relationships also can be viewed as systems embedded within larger systems represented by ecological communities and ecosystems. So defined, it can be argued that Host-parasite relationships may often benefit their hosts and contribute significantly to the structuring of ecological communities. The broader, complex adaptive system view also contributes to understanding the phenomenon of disease emergence, the ecological and evolutionary mechanisms involved, and the role of parasitology in research and management of ecosystems in light of the apparently growing problem of emerging infectious diseases in wildlife and humans. An expanded set of principles for integrated parasite management is suggested by this perspective.
Doebbeling, Bradley N; Flanagan, Mindy E
2011-12-01
U.S. healthcare requires major redesign of its delivery systems, finances, and incentives. Healthcare operations, leadership, and payors are increasingly recognizing the need for community-business-research partnerships to transform healthcare. New models of continuous learning, research, and development should help focus and sustain redesign efforts. This study summarizes suggested strategies for transformational change in healthcare and identifies needed areas for research to inform, spread, and sustain transformational change. We developed these recommendations based on a series of review papers, invited expert discussion, and a subsequent review in the context of a health system transformation research conference (The Regenstrief Biennial Research Conference). The multidisciplinary audience included health systems researchers, clinicians, informaticians, social and engineering scientists, and operational and business leaders. Conference participants and literature reviews identified key strategies for system redesign with the following themes: using the framework of complex adaptive systems; fostering organizational redesign; developing appropriate performance measures and incentives; creating continuous learning organizations; and integrating health information, technology, and communication into practice. Sustained investment in research and development in these areas is crucial. Multiple issues influence the likelihood that healthcare leaders will make transformational changes in their healthcare systems. Healthcare leaders, clinicians, researchers, journals, and academic institutions, in partnership with payors, government and multiple other stakeholders, should apply the recommendations relevant to their own setting to redesign healthcare delivery, improve cognitive support, and sustain transformation. Fostering further research investments in these areas will increase the impact of transformation on the health and healthcare of the public.
Systems Reliability Framework for Surface Water Sustainability and Risk Management
NASA Astrophysics Data System (ADS)
Myers, J. R.; Yeghiazarian, L.
2016-12-01
With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability. With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability.
Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia
2016-09-15
Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.
NASA Astrophysics Data System (ADS)
Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia
2016-09-01
Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.
Long-term Agroecosystem Research in the Northern Great Plains.
NASA Astrophysics Data System (ADS)
Schmer, M.; Sanderson, M.; Liebig, M. A.; Wienhold, B.; Awada, T.; Papiernik, S.; Osborne, S.; Kemp, W.; Okalebo, J. A.; Riedall, W.
2015-12-01
The Northern Great Plains is the bread basket of the United States, accounting for a substantial portion of U.S. agricultural production. This region faces critical challenges regarding balancing food needs, resource conservation (e.g Ogallala aquifer), environmental concerns, and rural economy development. Developing transformative, multifunctional systems will require equally imaginative and efficient tools to help farmers manage complex agroecosystems in a rapidly changing climate. The Northern Plains long-term agroecosystem research (LTAR) site at Mandan, ND and the Platte River High Plains LTAR (ARS/University of Nebraska-Lincoln) at Lincoln, NE in collaboration with USDA-ARS research units in Brookings, SD and Fargo, ND are collaborating to address the grand challenge of providing and sustaining multiple service provisions from Northern Great Plains agroecosystems. We propose to attain these goals through sustainable intensification based on the adoption of conservation agriculture principles including reduced soil disturbance, livestock integration, and greater complexity and diversity in the cropping system. Here, we summarize new concepts these locations have pioneered in dynamic cropping systems, resource use efficiency, and agricultural management technologies. As part of the LTAR network, we will conduct long-term cross-site research to design and assess new agricultural practices and systems aimed at improving our understanding of decision making processes and outcomes across an array of agricultural systems.
Ford, James H; Krahn, Dean; Oliver, Karen Anderson; Kirchner, JoAnn
2012-01-01
To explore staff perceptions about sustainability, commitment to change, participation in change process, and information received about the change project within the Veterans Administration Primary Care and Mental Health Integration (PC-MHI) initiative and to examine differences from the Veterans Health Administration Mental Health Systems Redesign (MHSR) initiative. Surveys of change team members involved in the Veterans Affairs PC-MHI and MHSR initiatives. One-way analysis of variance examined the relationship between commitment, participation and information, and sustainability. Differences in PC-MHI sustainability were explored by location and job classification. Staff sustainability perceptions were compared with MHSR results. Sustainability differed by staff discipline. Difference between MHSR and PC-MHI existed by job function and perceptions about the change benefits. Participation in the change process and information received about the change process were positively correlated with sustainability. Staff commitment to change was positively associated with staff perceptions about the benefits of change and staff attitudes toward change. Sustainability is an important part of organizational change efforts. Change complexity seems to influence perception about sustainability and impacts staff perceptions about the benefits of change. These perceptions seem to be driven by the information received and opportunities to participate in the change process. Further research is needed to understand how information and participation influence sustainability and affect employee commitment to change.
Haffeld, Just
2013-11-01
Increasing complexity is following in the wake of rampant globalization. Thus, the discussion about Sustainable Development Goals (SDGs) requires new thinking that departs from a critique of current policy tools in exploration of a complexity-friendly approach. This article argues that potential SDGs should: treat stakeholders, like states, business and civil society actors, as agents on different aggregate levels of networks; incorporate good governance processes that facilitate early involvement of relevant resources, as well as equitable participation, consultative processes, and regular policy and programme implementation reviews; anchor adoption and enforcement of such rules to democratic processes in accountable organizations; and include comprehensive systems evaluations, including procedural indicators. A global framework convention for health could be a suitable instrument for handling some of the challenges related to the governance of a complex environment. It could structure and legitimize government involvement, engage stakeholders, arrange deliberation and decision-making processes with due participation and regular policy review, and define minimum standards for health services. A monitoring scheme could ensure that agents in networks comply according to whole-systems targets, locally defined outcome indicators, and process indicators, thus resolving the paradox of government control vs. local policy space. A convention could thus exploit the energy created in the encounter between civil society, international organizations and national authorities. Copyright © 2013 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.
Martin, Graham P; Weaver, Simon; Currie, Graeme; Finn, Rachael; McDonald, Ruth
2012-01-01
The need for organizational innovation as a means of improving health-care quality and containing costs is widely recognized, but while a growing body of research has improved knowledge of implementation, very little has considered the challenges involved in sustaining change – especially organizational change led ‘bottom-up’ by frontline clinicians. This study addresses this lacuna, taking a longitudinal, qualitative case-study approach to understanding the paths to sustainability of four organizational innovations. It highlights the importance of the interaction between organizational context, nature of the innovation and strategies deployed in achieving sustainability. It discusses how positional influence of service leads, complexity of innovation, networks of support, embedding in existing systems, and proactive responses to changing circumstances can interact to sustain change. In the absence of cast-iron evidence of effectiveness, wider notions of value may be successfully invoked to sustain innovation. Sustainability requires continuing effort through time, rather than representing a final state to be achieved. Our study offers new insights into the process of sustainability of organizational change, and elucidates the complement of strategies needed to make bottom-up change last in challenging contexts replete with competing priorities. PMID:23554445
NASA Astrophysics Data System (ADS)
Jiang, Changlong; Ma, Cheng; He, Ning; Zhang, Xugang; Wang, Chongyang; Jia, Huibo
2002-12-01
In many real-time fields the sustained high-speed data recording system is required. This paper proposes a high-speed and sustained data recording system based on the complex-RAID 3+0. The system consists of Array Controller Module (ACM), String Controller Module (SCM) and Main Controller Module (MCM). ACM implemented by an FPGA chip is used to split the high-speed incoming data stream into several lower-speed streams and generate one parity code stream synchronously. It also can inversely recover the original data stream while reading. SCMs record lower-speed streams from the ACM into the SCSI disk drivers. In the SCM, the dual-page buffer technology is adopted to implement speed-matching function and satisfy the need of sustainable recording. MCM monitors the whole system, controls ACM and SCMs to realize the data stripping, reconstruction, and recovery functions. The method of how to determine the system scale is presented. At the end, two new ways Floating Parity Group (FPG) and full 2D-Parity Group (full 2D-PG) are proposed to improve the system reliability and compared with the Traditional Parity Group (TPG). This recording system can be used conveniently in many areas of data recording, storing, playback and remote backup with its high-reliability.
Assuring quality health care outcomes: lessons learned from car dealers?
Dimsdale, Joel E
2017-01-01
Health care systems want quality but struggle to find the right tools because, typically, they track quality in only one or two ways. Because of the complexity of health care, high quality will emerge only when health care systems employ multiple approaches, including, importantly, patient-reported outcome perspectives. Sustained changes are unlikely to emerge in the absence of such multipronged interventions. PMID:28123314
Zoonoses, One Health and complexity: wicked problems and constructive conflict.
Waltner-Toews, David
2017-07-19
Infectious zoonoses emerge from complex interactions among social and ecological systems. Understanding this complexity requires the accommodation of multiple, often conflicting, perspectives and narratives, rooted in different value systems and temporal-spatial scales. Therefore, to be adaptive, successful and sustainable, One Health approaches necessarily entail conflicts among observers, practitioners and scholars. Nevertheless, these integrative approaches have, both implicitly and explicitly, tended to marginalize some perspectives and prioritize others, resulting in a kind of technocratic tyranny. An important function of One Health approaches should be to facilitate and manage those conflicts, rather than to impose solutions.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
de Lauro, E.; de Martino, S.; Falanga, M.; Palo, M.
2011-12-01
We investigate the physical processes associated with volcanic tremor and explosions. A volcano is a complex system where a fluid source interacts with the solid edifice so generating seismic waves in a regime of low turbulence. Although the complex behavior escapes a simple universal description, the phases of activity generate stable (self-sustained) oscillations that can be described as a non-linear dynamical system of low dimensionality. So, the system requires to be investigated with non-linear methods able to individuate, decompose, and extract the main characteristics of the phenomenon. Independent Component Analysis (ICA), an entropy-based technique is a good candidate for this purpose. Here, we review the results of ICA applied to seismic signals acquired in some volcanic areas. We emphasize analogies and differences among the self-oscillations individuated in three cases: Stromboli (Italy), Erebus (Antarctica) and Volcán de Colima (Mexico). The waveforms of the extracted independent components are specific for each volcano, whereas the similarity can be ascribed to a very general common source mechanism involving the interaction between gas/magma flow and solid structures (the volcanic edifice). Indeed, chocking phenomena or inhomogeneities in the volcanic cavity can play the same role in generating self-oscillations as the languid and the reed do in musical instruments. The understanding of these background oscillations is relevant not only for explaining the volcanic source process and to make a forecast into the future, but sheds light on the physics of complex systems developing low turbulence.
HIV Education in the Formal Curriculum
ERIC Educational Resources Information Center
Nsubuga, Yusuf K.; Bonnet, Sandrine
2009-01-01
The AIDS epidemic presents a complex of issues that require global answers, involving entire societies. The only sustainable solution is to include all sectors of society in a multidisciplinary collaboration, within which the formal education system plays a key role in delivering a comprehensive response to the disease at the national level.…
USDA-ARS?s Scientific Manuscript database
The adaptation of insect populations to insecticidal control is a continual threat human health and sustainable agriculture practices, but many complex genomic mechanisms involved remain poorly understood. A systems approach was applied to investigate the interconnections between structural and func...
The management of municipal solid waste (MSW) in many countries throughout the world has changed significantly over the past fifty years, with a shift from uncontrolled dumping or burning to complex systems that integrate multiple processes to recover materials or energy and prov...
Learning for Resilience? Exploring Learning Opportunities in Biosphere Reserves
ERIC Educational Resources Information Center
Schultz, Lisen; Lundholm, Cecilia
2010-01-01
The interdependence of society and nature, the inherent complexity of social-ecological systems, and the global deterioration of ecosystem services provide the rationale for a growing body of literature focusing on social-ecological resilience--the capacity to cope with, adapt to and shape change--for sustainable development. Processes of…
Evaluation of factors affecting nitrous oxide emission and N transformation in a sandy loam soil
USDA-ARS?s Scientific Manuscript database
A better understanding of the complex factors affecting nitrous oxide (N2O) emission and potential mitigation practices will assist in developing strategies to improve the sustainability of agricultural production systems. Using surface soil collected from a pomegranate orchard, a series of laborato...
Hawkes, Corinna; Popkin, Barry M
2015-06-16
While the Millennium Development Goals (MDGs; 2000-2015) focused primarily on poverty reduction, hunger and infectious diseases, the proposed Sustainable Development Goals (SDGs) and targets pay more attention to nutrition and non-communicable diseases (NCDs). One of the 169 proposed targets of the SDGs is to reduce premature deaths from NCDs by one third; another is to end malnutrition in all its forms. Nutrition-related NCDs (NR-NCDs) stand at the intersection between malnutrition and NCDs. Driven in large part by remarkable transformations of food systems, they are rapidly increasing in most low and middle income countries (LMICs). The transformation to modern food systems began in the period following World War II with policies designed to meet a very different set of nutritional and food needs, and continued with globalization in the 1990s onwards. Another type of food systems transformation will be needed to shift towards a healthier and more sustainable diet--as will meeting many of the other SDGs. The process will be complex but is necessary. Communities concerned with NCDs and with malnutrition need to work more closely together to demand food systems change.
The Evolution of Cooperation in Managed Groundwater Systems: An Agent-Based Modelling Approach
NASA Astrophysics Data System (ADS)
Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.
2014-12-01
Human interactions with groundwater systems often exhibit complex features that hinder the sustainable management of the resource. This leads to costly and persistent conflicts over groundwater at the catchment scale. One possible way to address these conflicts is by gaining a better understanding of how social and groundwater dynamics coevolve using agent-based models (ABM). Such models allow exploring 'bottom-up' solutions (i.e., self-organised governance systems), where the behaviour of individual agents (e.g., farmers) results in the emergence of mutual cooperation among groundwater users. There is significant empirical evidence indicating that this kind of 'bottom-up' approach may lead to more enduring and sustainable outcomes, compared to conventional 'top-down' strategies such as centralized control and water right schemes (Ostrom 1990). New modelling tools are needed to study these concepts systematically and efficiently. Our model uses a conceptual framework to study cooperation and the emergence of social norms as initially proposed by Axelrod (1986), which we adapted to groundwater management. We developed an ABM that integrates social mechanisms and the physics of subsurface flow. The model explicitly represents feedback between groundwater conditions and social dynamics, capturing the spatial structure of these interactions and the potential effects on cooperation levels in an agricultural setting. Using this model, we investigate a series of mechanisms that may trigger norms supporting cooperative strategies, which can be sustained and become stable over time. For example, farmers in a self-monitoring community can be more efficient at achieving the objective of sustainable groundwater use than government-imposed regulation. Our coupled model thus offers a platform for testing new schemes promoting cooperation and improved resource use, which can be used as a basis for policy design. Importantly, we hope to raise awareness of agent-based modelling as a new tool for studying complex human-groundwater systems.
Hunter, David J
2015-03-12
Health systems have entered a third era embracing whole systems thinking and posing complex policy and management challenges. Understanding how such systems work and agreeing what needs to be put in place to enable them to undergo effective and sustainable change are more pressing issues than ever for policy-makers. The theory-policy-practice-gap and its four dimensions, as articulated by Chinitz and Rodwin, is acknowledged. It is suggested that insights derived from political science can both enrich our understanding of the gap and suggest what changes are needed to tackle the complex challenges facing health systems. © 2015 by Kerman University of Medical Sciences.
NASA Astrophysics Data System (ADS)
Lobanova, Anastasia; Liersch, Stefan; Tàbara, J. David; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina
2017-05-01
Conventional water management strategies, that serve solely socio-economic demands and neglect changing natural conditions of the river basins, face significant challenges in governing complex human-hydrological systems, especially in the areas with constrained water availability. In this study we assess the possibility to harmonize the inter-sectoral water allocation scheme within a highly altered human-hydrological system under reduction in water availability, triggered by projected climate change applying scenario-based approach. The Tagus River Basin headwaters, with significant disproportion in the water resources allocation between the environmental and socio-economic targets were taken as a perfect example of such system out of balance. We propose three different water allocation strategies for this region, including two conventional schemes and one imposing shift to sustainable water management and environmental restoration of the river. We combine in one integrated modelling framework the eco-hydrological process-based Soil and Water Integrated Model (SWIM), coupled with the conceptual reservoir and water allocation modules driven by the latest bias-corrected climate projections for the region and investigate possible water allocation scenarios in the region under constrained water availability in the future. Our results show that the socio-economic demands have to be re-considered and lowered under any water allocation strategy, as the climate impacts may significantly reduce water availability in the future. Further, we show that a shift to sustainable water management strategy and river restoration is possible even under reduced water availability. Finally, our results suggest that the adaptation of complex human-hydrological systems to climate change and a shift to a more sustainable water management are likely to be parts of one joint strategy to cope with climate change impacts.
Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu
2016-08-15
Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.
Sarriot, Eric G; Winch, Peter J; Ryan, Leo J; Edison, Jay; Bowie, Janice; Swedberg, Eric; Welch, Rikki
2004-01-01
Sustainability continues to be a serious concern for Primary Health Care (PHC) interventions targeting the death of millions of children in developing countries each year. Our work with over 30 Non-Governmental Organizations (NGOs) implementing USAID's Child Survival and Health Grants Program (CSHGP)-funded projects revealed the need for a study to develop a framework for sustainability assessment in these projects. We surveyed NGO informants and project managers through semi-structured interviews and questionnaires. This paper summarizes our study findings. The NGOs share key values about sustainability, but are skeptical about approaches perceived as disconnected from field reality. In their experience, sustainable achievements occur through the interaction of capable local stakeholders and communities. This depends strongly on enabling conditions, which NGO projects should advance. Sustainability assessment is multidimensional, value-based and embeds health within a larger sustainable development perspective. It reduces, but does not eliminate, the unpredictability of long-term outcomes. It should start with the consideration of the 'local systems' which need to develop a common purpose. Our ability to address the complexity inherent to sustainability thinking rests with the validity of the models used to design interventions. A participant, qualitative research approach helped us make sense of sustainability in NGO field practice.
Sustainable yield in theory and practice: bridging scientific and mainstream vernacular.
Rudestam, Kirsten; Langridge, Ruth
2014-09-01
Groundwater is a vital resource in California, and the concept of "sustainable yield" is an attempt to determine a metric that can ensure the long-term resilience of groundwater systems. However, its meaning is ambiguous and quantification is challenging. To provide insight into developing a working definition that encompasses the inherent uncertainty and complexity of the term, this paper examines how sustainable yield in groundwater is interpreted by (1) scientists, (2) the courts in groundwater adjudications, (3) state agencies, and (4) local water practitioners. Through qualitative interviews, this paper identifies problems that local water agencies in the state encounter in engaging with sustainable yield as they incorporate the term in groundwater management practices. The authors recommend that any definitions make explicit the human dimensions of, and assumptions embedded in, the use of these terms in groundwater management practices, and they point to the value of participation in this process. © 2014, National Ground Water Association.
Wang, Sheng-Jun; Hilgetag, Claus C.; Zhou, Changsong
2010-01-01
Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information processing. PMID:21852971
NASA Astrophysics Data System (ADS)
Plaza-Faverola, Andreia; Pecher, Ingo; Crutchley, Gareth; Barnes, Philip M.; Bünz, Stefan; Golding, Thomas; Klaeschen, Dirk; Papenberg, Cord; Bialas, Joerg
2014-02-01
Gas seepage from marine sediments has implications for understanding feedbacks between the global carbon reservoir, seabed ecology, and climate change. Although the relationship between hydrates, gas chimneys, and seafloor seepage is well established, the nature of fluid sources and plumbing mechanisms controlling fluid escape into the hydrate zone and up to the seafloor remain one of the least understood components of fluid migration systems. In this study, we present the analysis of new three-dimensional high-resolution seismic data acquired to investigate fluid migration systems sustaining active seafloor seepage at Omakere Ridge, on the Hikurangi subduction margin, New Zealand. The analysis reveals at high resolution, complex overprinting fault structures (i.e., protothrusts, normal faults from flexural extension, and shallow (<1 km) arrays of oblique shear structures) implicated in fluid migration within the gas hydrate stability zone in an area of 2 × 7 km. In addition to fluid migration systems sustaining seafloor seepage on both sides of a central thrust fault, the data show seismic evidence for subseafloor gas-rich fluid accumulation associated with proto-thrusts and extensional faults. In these latter systems fluid pressure dissipation through time has been favored, hindering the development of gas chimneys. We discuss the elements of the distinct fluid migration systems and the influence that a complex partitioning of stress may have on the evolution of fluid flow systems in active subduction margins.
NASA Astrophysics Data System (ADS)
McMurdie, L. A.; Houze, R.; Zagrodnik, J.; Rowe, A.; DeHart, J.; Barnes, H.
2016-12-01
Successful and sustainable coupling of human societies and natural systems requires effective governance, which depends on the existence of proper infrastructure (both hard and soft). In recent decades, much attention has been paid to what has allowed many small-scale self-organized coupled natural-human systems around the world to persist for centuries, thanks to a large part to the work by Elinor Ostrom and colleagues. In this work, we mathematically operationalize a conceptual framework that is developed based on this body of work by way of a stylized model. The model captures the interplay between replicator dynamics within the population, dynamics of natural resources, and threshold characteristics of public infrastructure. The model analysis reveals conditions for long-term sustainability and collapse of the coupled systems as well as other tradeoffs and potential pitfalls in governing these systems.
Panarchy use in environmental science for risk and resilience ...
Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in socio-technical resilience thinking and adaptive and transformative approaches to management. The environmental sciences strive for understanding, mitigating and reversing the negative impacts of global environmental change, including chemical pollution, to maintain sustainability options for the future, and therefore play an important role for informing management.
Smallholder Farms and the Potential for Sustainable Intensification
Mungai, Leah M.; Snapp, Sieglinde; Messina, Joseph P.; Chikowo, Regis; Smith, Alex; Anders, Erin; Richardson, Robert B.; Li, Guiying
2016-01-01
The sustainable intensification of African agriculture is gaining momentum with the compelling need to increase food and agricultural production. In Southern Africa, smallholder farming systems are predominately maize-based and subject to erratic climatic conditions. Farmer crop and soil management decisions are influenced by a plethora of complex factors such as market access resource availability, social relations, environment, and various messages on sustainable farming practices. Such factors pose barriers to increasing sustainable intensification in Africa. This paper characterizes smallholder farming practices in Central Malawi, at Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project sites. We present findings from a survey of 324 farmers, located within four Africa RISING sites selected in a stratified random manner to represent (1) low agricultural potential (high evapotranspiration, variable rainfall), (2) medium agricultural potential (two sites), and (3) high agricultural potential (well-distributed rainfall). Soil fertility was low overall, and certain farming practices appeared to limit the sustainability of agricultural production. Nearly half of farmers did not value legume residues as a high nutrient value resource for soil amelioration, as legume residues were removed (17.9%) or burned (21.4%). Conversely, maize residues were rarely removed (4.5%) or burned (10.4%). We found that farmers do not allocate soil amendment resources to legume fields (zero instances of mineral fertilizer or manure application to legumes compared to 88 and 22% of maize systems, respectively). Policy makers in Malawi have led initiatives to intensify agricultural systems through subsidizing farmer access to mineral fertilizer as well as maize hybrid seed, and only rarely to improved legume seed. In this survey, farmers allocate mineral fertilizer to maize systems and not legume systems. There is urgent need to invest in education on sustainable reinvestment in natural resources through complementary practices, such as maximization of biological nitrogen fixation through improved legume agronomy and better organic resource and crop residue management. Recent efforts by Malawi agricultural services to promote doubled-up legumes as a sustainable intensification technology are encouraging, but benefits will not accrue unless equal attention is given to an extension campaign on management of organic resources such as crop residues. PMID:27909444
Smallholder Farms and the Potential for Sustainable Intensification.
Mungai, Leah M; Snapp, Sieglinde; Messina, Joseph P; Chikowo, Regis; Smith, Alex; Anders, Erin; Richardson, Robert B; Li, Guiying
2016-01-01
The sustainable intensification of African agriculture is gaining momentum with the compelling need to increase food and agricultural production. In Southern Africa, smallholder farming systems are predominately maize-based and subject to erratic climatic conditions. Farmer crop and soil management decisions are influenced by a plethora of complex factors such as market access resource availability, social relations, environment, and various messages on sustainable farming practices. Such factors pose barriers to increasing sustainable intensification in Africa. This paper characterizes smallholder farming practices in Central Malawi, at Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project sites. We present findings from a survey of 324 farmers, located within four Africa RISING sites selected in a stratified random manner to represent (1) low agricultural potential (high evapotranspiration, variable rainfall), (2) medium agricultural potential (two sites), and (3) high agricultural potential (well-distributed rainfall). Soil fertility was low overall, and certain farming practices appeared to limit the sustainability of agricultural production. Nearly half of farmers did not value legume residues as a high nutrient value resource for soil amelioration, as legume residues were removed (17.9%) or burned (21.4%). Conversely, maize residues were rarely removed (4.5%) or burned (10.4%). We found that farmers do not allocate soil amendment resources to legume fields (zero instances of mineral fertilizer or manure application to legumes compared to 88 and 22% of maize systems, respectively). Policy makers in Malawi have led initiatives to intensify agricultural systems through subsidizing farmer access to mineral fertilizer as well as maize hybrid seed, and only rarely to improved legume seed. In this survey, farmers allocate mineral fertilizer to maize systems and not legume systems. There is urgent need to invest in education on sustainable reinvestment in natural resources through complementary practices, such as maximization of biological nitrogen fixation through improved legume agronomy and better organic resource and crop residue management. Recent efforts by Malawi agricultural services to promote doubled-up legumes as a sustainable intensification technology are encouraging, but benefits will not accrue unless equal attention is given to an extension campaign on management of organic resources such as crop residues.
NASA Astrophysics Data System (ADS)
Michael, H. A.; Voss, C. I.
2009-12-01
Widespread arsenic poisoning is occurring in large areas of Bangladesh and West Bengal, India due to high arsenic levels in shallow groundwater, which is the primary source of irrigation and drinking water in the region. The high-arsenic groundwater exists in aquifers of the Bengal Basin, a huge sedimentary system approximately 500km x 500km wide and greater than 15km deep in places. Deeper groundwater (>150m) is nearly universally low in arsenic and a potential source of safe drinking water, but evaluation of its sustainability requires understanding of the entire, interconnected regional aquifer system. Numerical modeling of flow and arsenic transport in the basin introduces problems of scale: challenges in representing the system in enough detail to produce meaningful simulations and answer relevant questions while maintaining enough simplicity to understand controls on processes and operating within computational constraints. A regional groundwater flow and transport model of the Bengal Basin was constructed to assess the large-scale functioning of the deep groundwater flow system, the vulnerability of deep groundwater to pumping-induced migration from above, and the effect of chemical properties of sediments (sorption) on sustainability. The primary challenges include the very large spatial scale of the system, dynamic monsoonal hydrology (small temporal scale fluctuations), complex sedimentary architecture (small spatial scale heterogeneity), and a lack of reliable hydrologic and geologic data. The approach was simple. Detailed inputs were reduced to only those that affect the functioning of the deep flow system. Available data were used to estimate upscaled parameter values. Nested small-scale simulations were performed to determine the effects of the simplifications, which include treatment of the top boundary condition and transience, effects of small-scale heterogeneity, and effects of individual pumping wells. Simulation of arsenic transport at the large scale adds another element of complexity. Minimization of numerical oscillation and mass balance errors required experimentation with solvers and discretization. In the face of relatively few data in a very large-scale model, sensitivity analyses were essential. The scale of the system limits evaluation of localized behavior, but results clearly identified the primary controls on the system and effects of various pumping scenarios and sorptive properties. It was shown that limiting deep pumping to domestic supply may result in sustainable arsenic-safe water for 90% of the arsenic-affected region over a 1000 year timescale, and that sorption of arsenic onto deep, oxidized Pleistocene sediments may increase the breakthrough time in unsustainable zones by more than an order of magnitude. Thus, both hydraulic and chemical defenses indicate the potential for sustainable, managed use of deep, safe groundwater resources in the Bengal Basin.
Energy and resource basis of an Italian coastal resort region integrated using emergy synthesis.
Vassallo, Paolo; Paoli, Chiara; Tilley, David R; Fabiano, Mauro
2009-10-01
Sustainable development of coastal zones must balance economic development that encourages human visitation from a larger population with desires that differ from the local residents with the need to maintain opportunities for the local resident society and conserve ecological capital, which may serve as the basis for residents. We present a case study in which the sustainability level of a coastal zone (Riviera del Beigua), located along the Ligurian coast of north-western Italy, was assessed through the lens of systems ecology using emergy synthesis to integrate across economic, social and environmental sub-systems. Our purposes were (1) to quantify the environmental sustainability level of this coastal zone, (2) to evaluate the role of tourism in affecting the economy, society and environment, and (3) to compare emergy synthesis to Butler's Tourism Area Life Cycle model (TALC). Results showed that 81% of the total emergy consumption in the coastal zone was derived from external sources, indicating that this tourist-heavy community was not sustainable. Tourism, as the dominant economic sub-system, consumed 42% of the total emergy budget, while local residents used the remaining 58%. The progressive stages of the TALC model were found to parallel the dynamic changes in the ratio of external emergy inputs to local emergy inputs, suggesting that emergy synthesis could be a useful tool for detecting a tourist region's TALC stage. Use of such a quantitative tool could expedite sustainability assessment to allow administrative managers to understand the complex relationship between a region's economy, environment and resident society so sound policies can be developed to improve overall sustainability.
Agroecology and the Sustainable Production of Food and ...
The silvopastoral, agricultural system of the montado in Southern Portugal is an example of the self-organization of an agroecological system adapted to the climate and soil conditions of the Mediterranean basin. This system with its consistent production of food, fiber, and ecosystem services along with its concomitant rural social organization has been sustained in the region for over 1000 years. However, the system has been gradually decreasing in extent since the 19th century and its rate of decline has accelerated since the 1980s. The causes of this decline have been traced in descending order of importance to land managment choices, spatial factors and environmental factors. In addition, past studies have shown that there is an optimum livestock support capacity for maintaining the health of the montado agroecosystem. In this study, we used the results of an emergy evaluation of a cattle farm as part of a montado agroecosystem to examine the effects of the European Union’s (EU) Common Agricultural Policy (CAP) on the viability of both cattle rearing and the long term regional sustainability of montado agroecosystems. We found that the CAP and its two pillars for providing subsidies, (1) Common Market Organization (CMO) and (2) Rural Development Policy (RDP) are complex and take into account many aspects of prices and markets for particular products, e.g., beef and veal (CMO) and sustainable rural development, e.g., silvopastoral agroecosystems (RDP). How
The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions
Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions.
NASA Astrophysics Data System (ADS)
Suomalainen, Emilia; Erkman, Suren
Space life support systems can be taken as kinds of miniature models of industrial systems found on Earth. The term "industrial" is employed here in a generic sense, referring to all human technological activities. The time scale as well as the physical scope of space life support systems is reduced compared to most terrestrial systems and so is consequently their complexity. These systems can thus be used as a kind of a "laboratory of sustainability" to examine concerns related to the environmental sustainability of industrial systems and in particular to their resource use. Two air revitalisation systems, ARES and BIORAT, were chosen as the test cases of our study. They represent respectively a physico-chemical and a biological life support system. In order to analyse the sustainability of these systems, we began by constructing a generic system representation applicable to both these systems (and to others). The metabolism of the systems was analysed by performing Material Flow Analyses—MFA is a tool frequently employed on terrestrial systems in the field of industrial ecology. Afterwards, static simulation models were developed for both ARES and BIORAT, focusing, firstly, on the oxygen balances of the systems and, secondly, on the total mass balances. It was also necessary to define sustainability indicators adapted to space life support systems in order to evaluate and to compare the performances of ARES and BIORAT. The defined indicators were partly inspired from concepts used in Material Flow Accounting and they were divided into four broad categories: 1. recycling and material use efficiency, 2. autarky and coverage time, 3. resource use and waste creation, and 4. system mass and energy consumption. The preliminary results of our analyses show that the performance of BIORAT is superior compared to ARES in terms of the defined resource use indicators. BIORAT seems especially effective in reprocessing carbon dioxide created by human metabolism. The performances of ARES and BIORAT are somewhat closer in terms of material use efficiency and resource intensity. However, the excellence of BIORAT in terms of resource use is countered by the fact that its energy consumption is greater than that of ARES by a factor of ten.
deRiel, E; Puttkammer, N; Hyppolite, N; Diallo, J; Wagner, S; Honoré, J G; Balan, J G; Celestin, N; Vallès, J S; Duval, N; Thimothé, G; Boncy, J; Coq, N R L; Barnhart, S
2018-03-01
Electronic health information systems, including electronic medical records (EMRs), have the potential to improve access to information and quality of care, among other things. Success factors and challenges for novel EMR implementations in low-resource settings have increasingly been studied, although less is known about maturing systems and sustainability. One systematic review identified seven categories of implementation success factors: ethical, financial, functionality, organizational, political, technical and training. This case study applies this framework to iSanté, Haiti's national EMR in use in more than 100 sites and housing records for more than 750 000 patients. The author group, consisting of representatives of different agencies within the Haitian Ministry of Health (MSPP), funding partner the Centers for Disease Control and Prevention (CDC) Haiti, and implementing partner the International Training and Education Center for Health (I-TECH), identify successes and lessons learned according to the seven identified categories, and propose an additional cross-cutting category, sustainability. Factors important for long-term implementation success of complex information systems are balancing investments in hardware and software infrastructure upkeep, user capacity and data quality control; designing and building a system within the context of the greater eHealth ecosystem with a plan for interoperability and data exchange; establishing system governance and strong leadership to support local system ownership and planning for system financing to ensure sustainability. Lessons learned from 10 years of implementation of the iSanté EMR system are relevant to sustainability of a full range of increasingly interrelated information systems (e.g. for laboratory, supply chain, pharmacy and human resources) in the health sector in low-resource settings. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Evaluating Innovations in Home Care for Performance Accountability.
Collister, Barbara; Gutscher, Abram; Ambrogiano, Jana
2016-01-01
Concerns about rising costs and the sustainability of our healthcare system have led to a drive for innovative solutions and accountability for performance. Integrated Home Care, Calgary Zone, Alberta Health Services went beyond traditional accountability measures to use evaluation methodology to measure the progress of complex innovations to its organization structure and service delivery model. This paper focuses on the first two phases of a three-phase evaluation. The results of the first two phases generated learning about innovation adoption and sustainability, and performance accountability at the program-level of a large publicly funded healthcare organization.
Boxes of Poison: Baroque Technique as Antidote to Simple Views of Literacy
ERIC Educational Resources Information Center
Burnett, Cathy; Merchant, Guy
2016-01-01
Rich and complex meaning making experiences, such as those associated with virtual play, sit uneasily with the view of literacy reflected in and sustained by current systems of accountability in education. This article develops a baroque perspective as a way of destabilizing the "regime of truth" associated with simple models of…
Curricular Innovation for Sustainability: The Piedmont/Ponderosa Model of Faculty Development
ERIC Educational Resources Information Center
Barlett, Peggy F.; Chase, Geoffrey W.
2012-01-01
Curricular innovation is at the center of the challenges many colleges and universities face as they seek to help students address more successfully than previous generations the complex, multi-faceted, systemic challenges of global climate change, population growth, loss of biodiversity, environmental justice, toxic wastes, and food insecurity.…
Historically the natural sciences have played a major role in informing environmental management decisions. However, review of landmark cases like Love Canal, NY and Times Beach, MO have shown that the value of natural science information in decision making can be overwhelmed by ...
2004-09-08
KENNEDY SPACE CENTER, FLA. - The second floor of the Thermal Protection System Facility sustained significant damage from Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.
DOT National Transportation Integrated Search
2011-07-01
"Recognizing that no single solution will save the day for transportation in this rapidly urbanizing and increasingly complex world, a groundswell of : transportation innovation is arising worldwide. However, these innovations are rarely linked and o...
Challenges to interdisciplinary discourse
David N. Wear
1999-01-01
Many of the world's critical problems involve huÂman interactions with nature and their long-term implications for environmental quality and the sustainability of resource/ecological systems. These problems are complex defined by the collective behaviors of people as well as by the structure and function of ecosystems suggesting that both the social and the...
Self-Organisation and Capacity Building: Sustaining the Change
ERIC Educational Resources Information Center
Bain, Alan; Walker, Allan; Chan, Anissa
2011-01-01
Purpose: The paper aims to describe the application of theoretical principles derived from a study of self-organisation and complex systems theory and their application to school-based capacity building to support planned change. Design/methodology/approach: The paper employs a case example in a Hong Kong School to illustrate the application of…
USDA-ARS?s Scientific Manuscript database
Accounting of N inputs and outputs and N retention in the soil provides N balance that measures agroecosystem performance and environmental sustainability. Because of the complexity of measurements of some N inputs and outputs, studies on N balance in long-term experiments are scanty. We examined th...
ERIC Educational Resources Information Center
Gaffney, Janet S.; Paynter, Susan Y.
A literacy intervention is designed to produce accelerated change, moving student achievement rapidly and providing for sustained performance over time. Adopting a complex intervention is a problem-solving process that requires understanding of the conceptual congruity of all aspects of the theory, intervention, and training underlying the…
NASA Astrophysics Data System (ADS)
Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas
2016-04-01
Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.
A framework for planning of sustainable water and sanitation systems in peri-urban areas.
Törnqvist, R; Norström, A; Kärrman, E; Malmqvist, P-A
2008-01-01
There are billions of people around the world that lack access to safe water supply and basic sanitation, a situation which puts the affected in severe health conditions as well as economical and social despair. Many of those lacking adequate water supply and sanitation systems can be found at the fringe of the cities in so called peri-urban areas, especially in the developing world. Planning in these areas is highly complex due to challenging environmental and physical conditions, high population density and unclear institutional boundaries. This article presents a framework aiming to support the planning process for sustainable water and sanitation systems in peri-urban areas. The suggested framework is based on different available planning approaches from a review of literature and websites of organisations and companies. It consists of a recommendation of important steps in the planning process as well as supporting tools. Further, it incorporates a set of sustainability criteria important for the peri-urban context and allows for the development of site specific systems. The framework has the aim to be flexible for different planning situations, and for suiting planners with different perspectives and amount of resources. (c) IWA Publishing 2008.
Crafting usable knowledge for sustainable development.
Clark, William C; van Kerkhoff, Lorrae; Lebel, Louis; Gallopin, Gilberto C
2016-04-26
This paper distills core lessons about how researchers (scientists, engineers, planners, etc.) interested in promoting sustainable development can increase the likelihood of producing usable knowledge. We draw the lessons from both practical experience in diverse contexts around the world and from scholarly advances in understanding the relationships between science and society. Many of these lessons will be familiar to those with experience in crafting knowledge to support action for sustainable development. However, few are included in the formal training of researchers. As a result, when scientists and engineers first venture out of the laboratory or library with the goal of linking their knowledge with action, the outcome has often been ineffectiveness and disillusionment. We therefore articulate here a core set of lessons that we believe should become part of the basic training for researchers interested in crafting usable knowledge for sustainable development. These lessons entail at least four things researchers should know, and four things they should do. The knowing lessons involve understanding the coproduction relationships through which knowledge making and decision making shape one another in social-environmental systems. We highlight the lessons that emerge from examining those coproduction relationships through the ICAP lens, viewing them from the perspectives of Innovation systems, Complex systems, Adaptive systems, and Political systems. The doing lessons involve improving the capacity of the research community to put its understanding of coproduction into practice. We highlight steps through which researchers can help build capacities for stakeholder collaboration, social learning, knowledge governance, and researcher training.
Agricultural biodiversity, social-ecological systems and sustainable diets.
Allen, Thomas; Prosperi, Paolo; Cogill, Bruce; Flichman, Guillermo
2014-11-01
The stark observation of the co-existence of undernourishment, nutrient deficiencies and overweight and obesity, the triple burden of malnutrition, is inviting us to reconsider health and nutrition as the primary goal and final endpoint of food systems. Agriculture and the food industry have made remarkable advances in the past decades. However, their development has not entirely fulfilled health and nutritional needs, and moreover, they have generated substantial collateral losses in agricultural biodiversity. Simultaneously, several regions are experiencing unprecedented weather events caused by climate change and habitat depletion, in turn putting at risk global food and nutrition security. This coincidence of food crises with increasing environmental degradation suggests an urgent need for novel analyses and new paradigms. The sustainable diets concept proposes a research and policy agenda that strives towards a sustainable use of human and natural resources for food and nutrition security, highlighting the preeminent role of consumers in defining sustainable options and the importance of biodiversity in nutrition. Food systems act as complex social-ecological systems, involving multiple interactions between human and natural components. Nutritional patterns and environment structure are interconnected in a mutual dynamic of changes. The systemic nature of these interactions calls for multidimensional approaches and integrated assessment and simulation tools to guide change. This paper proposes a review and conceptual modelling framework that articulate the synergies and tradeoffs between dietary diversity, widely recognised as key for healthy diets, and agricultural biodiversity and associated ecosystem functions, crucial resilience factors to climate and global changes.
Crafting usable knowledge for sustainable development
2016-01-01
This paper distills core lessons about how researchers (scientists, engineers, planners, etc.) interested in promoting sustainable development can increase the likelihood of producing usable knowledge. We draw the lessons from both practical experience in diverse contexts around the world and from scholarly advances in understanding the relationships between science and society. Many of these lessons will be familiar to those with experience in crafting knowledge to support action for sustainable development. However, few are included in the formal training of researchers. As a result, when scientists and engineers first venture out of the laboratory or library with the goal of linking their knowledge with action, the outcome has often been ineffectiveness and disillusionment. We therefore articulate here a core set of lessons that we believe should become part of the basic training for researchers interested in crafting usable knowledge for sustainable development. These lessons entail at least four things researchers should know, and four things they should do. The knowing lessons involve understanding the coproduction relationships through which knowledge making and decision making shape one another in social–environmental systems. We highlight the lessons that emerge from examining those coproduction relationships through the ICAP lens, viewing them from the perspectives of Innovation systems, Complex systems, Adaptive systems, and Political systems. The doing lessons involve improving the capacity of the research community to put its understanding of coproduction into practice. We highlight steps through which researchers can help build capacities for stakeholder collaboration, social learning, knowledge governance, and researcher training. PMID:27091979
Ford, James H.; Krahn, Dean; Oliver, Karen Anderson; Kirchner, JoAnn
2015-01-01
Objective To explore staff perceptions about sustainability, commitment to change, participation in change process, and information received about the change project within the Veterans Administration Primary Care and Mental Health Integration (PC-MHI) initiative and to examine differences from the Veterans Health Administration Mental Health Systems Redesign (MHSR) initiative. Data Sources Surveys of change team members involved in the Veterans Affairs PC-MHI and MHSR initiatives. Study Design One-way analysis of variance examined the relationship between commitment, participation and information, and sustainability. Differences in PC-MHI sustainability were explored by location and job classification. Staff sustainability perceptions were compared with MHSR results. Principal Findings Sustainability differed by staff discipline. Difference between MHSR and PC-MHI existed by job function and perceptions about the change benefits. Participation in the change process and information received about the change process were positively correlated with sustainability. Staff commitment to change was positively associated with staff perceptions about the benefits of change and staff attitudes toward change. Conclusions Sustainability is an important part of organizational change efforts. Change complexity seems to influence perception about sustainability and impacts staff perceptions about the benefits of change. These perceptions seem to be driven by the information received and opportunities to participate in the change process. Further research is needed to understand how information and participation influence sustainability and affect employee commitment to change. PMID:23011071
Johnston, Jessica L; Fanzo, Jessica C; Cogill, Bruce
2014-07-01
The confluence of population, economic development, and environmental pressures resulting from increased globalization and industrialization reveal an increasingly resource-constrained world in which predictions point to the need to do more with less and in a "better" way. The concept of sustainable diets presents an opportunity to successfully advance commitments to sustainable development and the elimination of poverty, food and nutrition insecurity, and poor health outcomes. This study examines the determinants of sustainable diets, offers a descriptive analysis of these areas, and presents a causal model and framework from which to build. The major determinants of sustainable diets fall into 5 categories: 1) agriculture, 2) health, 3) sociocultural, 4) environmental, and 5) socioeconomic. When factors or processes are changed in 1 determinant category, such changes affect other determinant categories and, in turn, the level of "sustainability" of a diet. The complex web of determinants of sustainable diets makes it challenging for policymakers to understand the benefits and considerations for promoting, processing, and consuming such diets. To advance this work, better measurements and indicators must be developed to assess the impact of the various determinants on the sustainability of a diet and the tradeoffs associated with any recommendations aimed at increasing the sustainability of our food system. © 2014 American Society for Nutrition.
A review of interdependence of sustainable building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Chuanjing; Ning, Yan, E-mail: cqningyan@gmail.com; Pan, Wei
2016-01-15
ABSTRACT: Despite the worldwide promotion of the sustainable building (SB) approach, its associated interdependence has seldom been explored. This knowledge gap is significant given the paradigm shift of regarding SBs as complex socio-technical systems embedded with multifaceted interdependence. The aim of this paper is to examine the interdependence of SB through a literature review. The literature review was guided by a framework comprising three dimensions of SB systems, i.e., building performance, methodology and stakeholders, on their theoretical grounds ranged from reductionism to holism. In order to articulate the integration of the three dimensions, this paper examined zero carbon building asmore » a specific case of SB. The findings contribute an innovative approach to examining the interdependence of SB, and should guide the development of strategies for managing the trade-offs in delivering SBs. - Highlights: • Performance scope of sustainable building triggers interdependence. • Material flow from cradle to cradle causes interdependence. • Interdependence occurs between the building and their context. • Interdependence exists in stakeholders' participation.« less
NASA Astrophysics Data System (ADS)
Liu, Y.; Gupta, H.; Wagener, T.; Stewart, S.; Mahmoud, M.; Hartmann, H.; Springer, E.
2007-12-01
Some of the most challenging issues facing contemporary water resources management are those typified by complex coupled human-environmental systems with poorly characterized uncertainties. In other words, major decisions regarding water resources have to be made in the face of substantial uncertainty and complexity. It has been suggested that integrated models can be used to coherently assemble information from a broad set of domains, and can therefore serve as an effective means for tackling the complexity of environmental systems. Further, well-conceived scenarios can effectively inform decision making, particularly when high complexity and poorly characterized uncertainties make the problem intractable via traditional uncertainty analysis methods. This presentation discusses the integrated modeling framework adopted by SAHRA, an NSF Science & Technology Center, to investigate stakeholder-driven water sustainability issues within the semi-arid southwestern US. The multi-disciplinary, multi-resolution modeling framework incorporates a formal scenario approach to analyze the impacts of plausible (albeit uncertain) alternative futures to support adaptive management of water resources systems. Some of the major challenges involved in, and lessons learned from, this effort will be discussed.
Advancing Sensor Technology for Aerospace Propulsion
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Mercer, Carolyn R.
2002-01-01
NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.
ERIC Educational Resources Information Center
Gore, Nick J.; Forrester-Jones, Rachel; Young, Rhea
2014-01-01
Whilst the value of supported employment for people with learning disabilities is well substantiated, the experiences of supporting individuals into work are less well documented. The Sustainable Hub of Innovative Employment for people with Complex needs aims to support people with learning disabilities and complex needs to find paid employment.…
Ferreira, Natália Noronha; Perez, Taciane Alvarenga; Pedreiro, Liliane Neves; Prezotti, Fabíola Garavello; Boni, Fernanda Isadora; Cardoso, Valéria Maria de Oliveira; Venâncio, Tiago; Gremião, Maria Palmira Daflon
2017-10-01
This work aimed to develop a calcium alginate hydrogel as a pH responsive delivery system for polymyxin B (PMX) sustained-release through the vaginal route. Two samples of sodium alginate from different suppliers were characterized. The molecular weight and M/G ratio determined were, approximately, 107 KDa and 1.93 for alginate_S and 32 KDa and 1.36 for alginate_V. Polymer rheological investigations were further performed through the preparation of hydrogels. Alginate_V was selected for subsequent incorporation of PMX due to the acquisition of pseudoplastic viscous system able to acquiring a differential structure in simulated vaginal microenvironment (pH 4.5). The PMX-loaded hydrogel (hydrogel_PMX) was engineered based on polyelectrolyte complexes (PECs) formation between alginate and PMX followed by crosslinking with calcium chloride. This system exhibited a morphology with variable pore sizes, ranging from 100 to 200 μm and adequate syringeability. The hydrogel liquid uptake ability in an acid environment was minimized by the previous PECs formation. In vitro tests evidenced the hydrogels mucoadhesiveness. PMX release was pH-dependent and the system was able to sustain the release up to 6 days. A burst release was observed at pH 7.4 and drug release was driven by an anomalous transport, as determined by the Korsmeyer-Peppas model. At pH 4.5, drug release correlated with Weibull model and drug transport was driven by Fickian diffusion. The calcium alginate hydrogels engineered by the previous formation of PECs showed to be a promising platform for sustained release of cationic drugs through vaginal administration.
Gilioli, Gianni; Caroli, Anna Maria; Tikubet, Getachew; Herren, Hans R.; Baumgärtner, Johann
2014-01-01
This paper presents a framework for the development of socio-ecological systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya), and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia). The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia) and developing a rural sustainable social-ecological system in Luke (Ethiopia). The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i) technology system implementation should be carried out through an innovation system; ii) transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a) improving the insight into the systems behaviour and (b) rationalizing decision support; iii) the different views of all stakeholders should be reconciled in a pragmatic approach to social-ecological system management. Significance for public health Recently, there is a growing interest in studying the link between human, animal and environmental health. The connection between these different dimensions is particularly important for developing countries in which people face the challenge of escaping vicious cycle of high diseases prevalence, food insecurity driven by absolute poverty and population growth, and natural capital as a poverty trap. The design and implementation of such efforts, aiming at human health improvement and poverty alleviation, should be framed into adaptive social-ecological system management perspectives. In this paper, we present few case studies dealing with human health improvement through anopheline malaria vectors control in Kenya, cattle health improvement through tsetse vectored nagana control, antitrypanosomal drug administration to cattle in Ethiopia and with the development of rural sustainable communities in Ethiopia. Some recommendations are given to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability. PMID:25170511
Gilioli, Gianni; Caroli, Anna Maria; Tikubet, Getachew; Herren, Hans R; Baumgärtner, Johann
2014-03-26
This paper presents a framework for the development of socio-ecological systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya), and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia). The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia) and developing a rural sustainable social-ecological system in Luke (Ethiopia). The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i) technology system implementation should be carried out through an innovation system; ii) transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a) improving the insight into the systems behaviour and (b) rationalizing decision support; iii) the different views of all stakeholders should be reconciled in a pragmatic approach to social-ecological system management. Significance for public healthRecently, there is a growing interest in studying the link between human, animal and environmental health. The connection between these different dimensions is particularly important for developing countries in which people face the challenge of escaping vicious cycle of high diseases prevalence, food insecurity driven by absolute poverty and population growth, and natural capital as a poverty trap. The design and implementation of such efforts, aiming at human health improvement and poverty alleviation, should be framed into adaptive social-ecological system management perspectives. In this paper, we present few case studies dealing with human health improvement through anopheline malaria vectors control in Kenya, cattle health improvement through tsetse vectored nagana control, antitrypanosomal drug administration to cattle in Ethiopia and with the development of rural sustainable communities in Ethiopia. Some recommendations are given to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability.
Brachypodium distachyon genomics for sustainable food and fuel production.
Bevan, Michael W; Garvin, David F; Vogel, John P
2010-04-01
Grass crops are the most important sources of human nutrition, and their improvement is centrally important for meeting the challenges of sustainable agriculture, for feeding the world's population and for developing renewable supplies of fuel and industrial products. We describe the complete sequence of the compact genome of Brachypodium distachyon (Brachypodium) the first pooid grass to be sequenced. We demonstrate the many favorable characteristics of Brachypodium as an experimental system and show how it can be used to navigate the large and complex genomes of closely related grasses. The functional genomics and other experimental resources that are being developed will provide a key resource for improving food and forage crops, in particular wheat, barley and forage grasses, and for establishing new grass crops for sustainable energy production. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ershadul Haque, S. K.; Sheela, A.
2017-11-01
Development of sustained release formulations of Metformin hydrochloride (Met) having low bioavailability and short half-life is one of the frontier areas of research towards achieving novel drug delivery systems. Towards the same, we have prepared interpolymer complexes (IPCs) of chitosan (CH) and two different viscosity grades of hydroxypropyl methylcellulose - HPMC (K4M and K100M) in various ratios, say, 4:6, 2:8, 1:9, respectively. The IPCs are characterized by Fourier transform infrared spectroscopy (FT-IR) and Thermo gravimetric analysis (TGA) techniques. Drug compatibility study is carried out by FT-IR and powder X-ray diffraction (XRD) techniques. The physical properties and drug content of formulated tablets are evaluated and found to be optimum. In addition, in vitro drug release kinetics is carried out at two different pH, say, 1.2 and 6.8. The release pattern from different polymeric matrices is shown in figure below: a) Chitosan, HPMC K4M and HPMC K100M b) IPCs of CH/HPMC K4M in [2:3, 1:4 and 1:9 ratios] c) IPCs of CH/HPMC K100M in [2:3, 1:4 and 1:9 ratios]. From the study, it has been observed that the drug release is sustained for a period of 12h in 1:9 ratio of CH: K100M IPC due to the formation of complex network matrix.
Soil Microbiome Is More Heterogeneous in Organic Than in Conventional Farming System
Lupatini, Manoeli; Korthals, Gerard W.; de Hollander, Mattias; Janssens, Thierry K. S.; Kuramae, Eiko E.
2017-01-01
Organic farming system and sustainable management of soil pathogens aim at reducing the use of agricultural chemicals in order to improve ecosystem health. Despite the essential role of microbial communities in agro-ecosystems, we still have limited understanding of the complex response of microbial diversity and composition to organic and conventional farming systems and to alternative methods for controlling plant pathogens. In this study we assessed the microbial community structure, diversity and richness using 16S rRNA gene next generation sequences and report that conventional and organic farming systems had major influence on soil microbial diversity and community composition while the effects of the soil health treatments (sustainable alternatives for chemical control) in both farming systems were of smaller magnitude. Organically managed system increased taxonomic and phylogenetic richness, diversity and heterogeneity of the soil microbiota when compared with conventional farming system. The composition of microbial communities, but not the diversity nor heterogeneity, were altered by soil health treatments. Soil health treatments exhibited an overrepresentation of specific microbial taxa which are known to be involved in soil suppressiveness to pathogens (plant-parasitic nematodes and soil-borne fungi). Our results provide a comprehensive survey on the response of microbial communities to different agricultural systems and to soil treatments for controlling plant pathogens and give novel insights to improve the sustainability of agro-ecosystems by means of beneficial microorganisms. PMID:28101080
Places to Intervene to Make Complex Food Systems More Healthy, Green, Fair, and Affordable
Malhi, Luvdeep; Karanfil, Özge; Merth, Tommy; Acheson, Molly; Palmer, Amanda; Finegood, Diane T.
2009-01-01
A Food Systems and Public Health conference was convened in April 2009 to consider research supporting food systems that are healthy, green, fair, and affordable. We used a complex systems framework to examine the contents of background material provided to conference participants. Application of our intervention-level framework (paradigm, goals, system structure, feedback and delays, structural elements) enabled comparison of the conference themes of healthy, green, fair, and affordable. At the level of system structure suggested actions to achieve these goals are fairly compatible, including broad public discussion and implementation of policies and programs that support sustainable food production and distribution. At the level of paradigm and goals, the challenge of making healthy and green food affordable becomes apparent as some actions may be in conflict. Systems thinking can provide insight into the challenges and opportunities to act to make the food supply more healthy, green, fair, and affordable. PMID:23173029
"And DPSIR begat DAPSI(W)R(M)!" - A unifying framework for marine environmental management.
Elliott, M; Burdon, D; Atkins, J P; Borja, A; Cormier, R; de Jonge, V N; Turner, R K
2017-05-15
The marine environment is a complex system formed by interactions between ecological structure and functioning, physico-chemical processes and socio-economic systems. An increase in competing marine uses and users requires a holistic approach to marine management which considers the environmental, economic and societal impacts of all activities. If managed sustainably, the marine environment will deliver a range of ecosystem services which lead to benefits for society. In order to understand the complexity of the system, the DPSIR (Driver-Pressure-State-Impact-Response) approach has long been a valuable problem-structuring framework used to assess the causes, consequences and responses to change in a holistic way. Despite DPSIR being used for a long time, there is still confusion over the definition of its terms and so to be appropriate for current marine management, we contend that this confusion needs to be addressed. Our viewpoint advocates that DPSIR should be extended to DAPSI(W)R(M) (pronounced dap-see-worm) in which Drivers of basic human needs require Activities which lead to Pressures. The Pressures are the mechanisms of State change on the natural system which then leads to Impacts (on human Welfare). Those then require Responses (as Measures). Furthermore, because of the complexity of any managed sea area in terms of multiple Activities, there is the need for a linked-DAPSI(W)R(M) framework, and then the connectivity between marine ecosystems and ecosystems in the catchment and further at sea, requires an interlinked, nested-DAPSI(W)R(M) framework to reflect the continuum between adjacent ecosystems. Finally, the unifying framework for integrated marine management is completed by encompassing ecosystem structure and functioning, ecosystem services and societal benefits. Hence, DAPSI(W)R(M) links the socio-ecological system of the effects of changes to the natural system on the human uses and benefits of the marine system. However, to deliver these sustainably in the light of human activities requires a Risk Assessment and Risk Management framework; the ISO-compliant Bow-Tie method is used here as an example. Finally, to secure ecosystem health and economic benefits such as Blue Growth, successful, adaptive and sustainable marine management Responses (as Measures) are delivered using the 10-tenets, a set of facets covering all management disciplines and approaches. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Multiple dimensions of transitions in complex socio-ecological systems - A case from China
NASA Astrophysics Data System (ADS)
Liu, Wei; Yang, Wu; Vina, Andres; Schröter, Dagmar; Liu, Jianguo
2013-04-01
Transitions in complex socio-ecological systems are intermediate phases between two successive and more stable periods or states and involve various societal, ecological, and biophysical changes that are often non-linear and inter-related. Understanding transitions is challenging but important for managing socio-ecological systems for achieving environmental sustainability and improving human well-being. Long-term and intensive research is warranted to disclose common patterns and mechanisms of socio-ecological transitions and to develop ideas and methods for studying and planning sustainable transitions. Based on a long-term research on human-nature relationships in Wolong Nature Reserve in China, we studied multiple concurrent social, economic, and ecological transitions during the last 15 years. As a UNESCO biosphere reserve, Wolong lies within a global biodiversity hotspot and a World Heritage site. It contains the largest populations of the world-famous endangered giant pandas and several thousand other animal and plant species. Like most nature reserves in China and many other developing countries, Wolong is also home to many local residents who undertake a variety of activities that involve interaction with ecosystem. For the majority of the 20th century, local people in Wolong lived under poverty line in a closed subsistence-based agricultural economy. Their demands on for wood (as fuel and raw materials) from the natural forests were high and resulted in severe deforestation, habitat degradation, and landslides. Since late 1990s, a series of major economic (e.g., tourism development) and environmental (e.g., payment for ecosystem services programs) policies have been implemented in the reserve as adaptive strategies to cope with poverty and ecological degradation. Within a decade, we have observed major transitions in land use (i.e., from extractive use to non-consumptive use), economic structure (i.e., from a subsistence-based agricultural economy to an open economy relying on tourism and cash crop), and energy consumption (i.e., decline in biomass fuel by three quarters and tripling in electricity use). We further analyzed their impacts on local people's well-being and discuss the possible explanatory framework for the observed socio-ecological transition as a whole. This study not only has direct implications for sustainability transition in developing countries but also increases our understanding of the complexity of human-nature interactions and their effects on the resilience of complex socio-ecological systems.
NASA Astrophysics Data System (ADS)
Vatcha, Rashna; Lee, Seok-Won; Murty, Ajeet; Tolone, William; Wang, Xiaoyu; Dou, Wenwen; Chang, Remco; Ribarsky, William; Liu, Wanqiu; Chen, Shen-en; Hauser, Edd
2009-05-01
Infrastructure management (and its associated processes) is complex to understand, perform and thus, hard to make efficient and effective informed decisions. The management involves a multi-faceted operation that requires the most robust data fusion, visualization and decision making. In order to protect and build sustainable critical assets, we present our on-going multi-disciplinary large-scale project that establishes the Integrated Remote Sensing and Visualization (IRSV) system with a focus on supporting bridge structure inspection and management. This project involves specific expertise from civil engineers, computer scientists, geographers, and real-world practitioners from industry, local and federal government agencies. IRSV is being designed to accommodate the essential needs from the following aspects: 1) Better understanding and enforcement of complex inspection process that can bridge the gap between evidence gathering and decision making through the implementation of ontological knowledge engineering system; 2) Aggregation, representation and fusion of complex multi-layered heterogeneous data (i.e. infrared imaging, aerial photos and ground-mounted LIDAR etc.) with domain application knowledge to support machine understandable recommendation system; 3) Robust visualization techniques with large-scale analytical and interactive visualizations that support users' decision making; and 4) Integration of these needs through the flexible Service-oriented Architecture (SOA) framework to compose and provide services on-demand. IRSV is expected to serve as a management and data visualization tool for construction deliverable assurance and infrastructure monitoring both periodically (annually, monthly, even daily if needed) as well as after extreme events.
Guang, Yang; Ge, Song; Han, Liu
2016-01-01
The harmonious development in society, economy and environment are crucial to regional sustained boom. However, the society, economy and environment are not respectively independent, but both mutually promotes one which, or restrict mutually complex to have the long-enduring overall process. The present study is an attempt to investigate the relationship and interaction of society, economy and environment in China based on the data from 2004 to 2013. The principal component analysis (PCA) model was employed to identify the main factors effecting the society, economy and environment subsystems, and SD (system dynamics) method used to carry out dynamic assessment for future state of sustainability from society, economy and environment perspective with future indicator values. Sustainable development in China was divided in the study into three phase from 2004 to 2013 based competitive values of these three subsystems. According to the results of PCA model, China is in third phase, and the economy growth is faster than the environment development, while the social development still maintained a steady and rapid growth, implying that the next step for sustainable development in China should focus on society development, especially the environment development.
Energy performance of areas for urban development (Arkhangelsk is given as example)
NASA Astrophysics Data System (ADS)
Popova, Olga; Glebova, Yulia
2017-01-01
The present research provides an overview and analysis of the legal framework and the technology to increase energy save and energy efficiency. The challenges of the mentioned activities implementation in urban areas are revealed in the paper. A comparison was made of the principal methods of increasing energy efficiency that is based on payback period. The basic shortcomings of the methods used are found. The way of capital reproducing assets acquisition is proposed with consideration of the rate of wear and tear and upgrading of urban residential development. The present research aims at characterizing energy sustainability of urban areas for forming the information basis that identifies capital construction projects together within the urban area. A new concept - area energy sustainability is introduced in the study to use system-structural approach to energy saving and energy efficiency. Energy sustainability of the area as an integral indicator of the static characteristics of the territory is considered as a complex involving the following terms: energy security, energy intensity and energy efficiency dynamic indicators of all the components of the power system of the area. Dimensions and parameters of energy sustainability of the area are determined. Arkhangelsk is given as example.
Finding pathways to national-scale land-sector sustainability.
Gao, Lei; Bryan, Brett A
2017-04-12
The 17 Sustainable Development Goals (SDGs) and 169 targets under Agenda 2030 of the United Nations map a coherent global sustainability ambition at a level of detail general enough to garner consensus amongst nations. However, achieving the global agenda will depend heavily on successful national-scale implementation, which requires the development of effective science-driven targets tailored to specific national contexts and supported by strong national governance. Here we assess the feasibility of achieving multiple SDG targets at the national scale for the Australian land-sector. We scaled targets to three levels of ambition and two timeframes, then quantitatively explored the option space for target achievement under 648 plausible future environmental, socio-economic, technological and policy pathways using the Land-Use Trade-Offs (LUTO) integrated land systems model. We show that target achievement is very sensitive to global efforts to abate emissions, domestic land-use policy, productivity growth rate, and land-use change adoption behaviour and capacity constraints. Weaker target-setting ambition resulted in higher achievement but poorer sustainability outcomes. Accelerating land-use dynamics after 2030 changed the targets achieved by 2050, warranting a longer-term view and greater flexibility in sustainability implementation. Simultaneous achievement of multiple targets is rare owing to the complexity of sustainability target implementation and the pervasive trade-offs in resource-constrained land systems. Given that hard choices are needed, the land-sector must first address the essential food/fibre production, biodiversity and land degradation components of sustainability via specific policy pathways. It may also contribute to emissions abatement, water and energy targets by capitalizing on co-benefits. However, achieving targets relevant to the land-sector will also require substantial contributions from other sectors such as clean energy, food systems and water resource management. Nations require globally coordinated, national-scale, comprehensive, integrated, multi-sectoral analyses to support national target-setting that prioritizes efficient and effective sustainability interventions across societies, economies and environments.
Finding pathways to national-scale land-sector sustainability
NASA Astrophysics Data System (ADS)
Gao, Lei; Bryan, Brett A.
2017-04-01
The 17 Sustainable Development Goals (SDGs) and 169 targets under Agenda 2030 of the United Nations map a coherent global sustainability ambition at a level of detail general enough to garner consensus amongst nations. However, achieving the global agenda will depend heavily on successful national-scale implementation, which requires the development of effective science-driven targets tailored to specific national contexts and supported by strong national governance. Here we assess the feasibility of achieving multiple SDG targets at the national scale for the Australian land-sector. We scaled targets to three levels of ambition and two timeframes, then quantitatively explored the option space for target achievement under 648 plausible future environmental, socio-economic, technological and policy pathways using the Land-Use Trade-Offs (LUTO) integrated land systems model. We show that target achievement is very sensitive to global efforts to abate emissions, domestic land-use policy, productivity growth rate, and land-use change adoption behaviour and capacity constraints. Weaker target-setting ambition resulted in higher achievement but poorer sustainability outcomes. Accelerating land-use dynamics after 2030 changed the targets achieved by 2050, warranting a longer-term view and greater flexibility in sustainability implementation. Simultaneous achievement of multiple targets is rare owing to the complexity of sustainability target implementation and the pervasive trade-offs in resource-constrained land systems. Given that hard choices are needed, the land-sector must first address the essential food/fibre production, biodiversity and land degradation components of sustainability via specific policy pathways. It may also contribute to emissions abatement, water and energy targets by capitalizing on co-benefits. However, achieving targets relevant to the land-sector will also require substantial contributions from other sectors such as clean energy, food systems and water resource management. Nations require globally coordinated, national-scale, comprehensive, integrated, multi-sectoral analyses to support national target-setting that prioritizes efficient and effective sustainability interventions across societies, economies and environments.
Meshkati, Najmedin; Tabibzadeh, Maryam; Farshid, Ali; Rahimi, Mansour; Alhanaee, Ghena
2016-02-01
The aim of this study is to identify the interdependencies of human and organizational subsystems of multiple complex, safety-sensitive technological systems and their interoperability in the context of sustainability and resilience of an ecosystem. Recent technological disasters with severe environmental impact are attributed to human factors and safety culture causes. One of the most populous and environmentally sensitive regions in the world, the (Persian) Gulf, is on the confluence of an exponentially growing number of two industries--nuclear power and seawater desalination plants--that is changing its land- and seascape. Building upon Rasmussen's model, a macrosystem integrative framework, based on the broader context of human factors, is developed, which can be considered in this context as a "meta-ergonomics" paradigm, for the analysis of interactions, design of interoperability, and integration of decisions of major actors whose actions can affect safety and sustainability of the focused industries during routine and nonroutine (emergency) operations. Based on the emerging realities in the Gulf region, it is concluded that without such systematic approach toward addressing the interdependencies of water and energy sources, sustainability will be only a short-lived dream and prosperity will be a disappearing mirage for millions of people in the region. This multilayered framework for the integration of people, technology, and ecosystem--which has been applied to the (Persian) Gulf--offers a viable and vital approach to the design and operation of large-scale complex systems wherever the nexus of water, energy, and food sources are concerned, such as the Black Sea. © 2016, Human Factors and Ergonomics Society.
Macroscopic description of complex adaptive networks coevolving with dynamic node states
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
Macroscopic description of complex adaptive networks coevolving with dynamic node states.
Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
ERIC Educational Resources Information Center
Owens, Cameron; Sotoudehnia, Maral; Erickson-McGee, Paige
2015-01-01
A complex and contested concept, sustainability presents a great challenge to teachers and learners. Field study is a potentially promising venue to unpack the problematics of sustainability in practice. This paper reflects on the Cascadia Sustainability Field School, offered through the University of Victoria, Canada, providing an overview of the…
Johnston, Jessica L.; Fanzo, Jessica C.; Cogill, Bruce
2014-01-01
The confluence of population, economic development, and environmental pressures resulting from increased globalization and industrialization reveal an increasingly resource-constrained world in which predictions point to the need to do more with less and in a “better” way. The concept of sustainable diets presents an opportunity to successfully advance commitments to sustainable development and the elimination of poverty, food and nutrition insecurity, and poor health outcomes. This study examines the determinants of sustainable diets, offers a descriptive analysis of these areas, and presents a causal model and framework from which to build. The major determinants of sustainable diets fall into 5 categories: 1) agriculture, 2) health, 3) sociocultural, 4) environmental, and 5) socioeconomic. When factors or processes are changed in 1 determinant category, such changes affect other determinant categories and, in turn, the level of “sustainability” of a diet. The complex web of determinants of sustainable diets makes it challenging for policymakers to understand the benefits and considerations for promoting, processing, and consuming such diets. To advance this work, better measurements and indicators must be developed to assess the impact of the various determinants on the sustainability of a diet and the tradeoffs associated with any recommendations aimed at increasing the sustainability of our food system. PMID:25022991
Skjerve, Eystein; Rich, Magda; Rich, Karl M.
2017-01-01
East Coast Fever (ECF) is the most economically important production disease among traditional beef cattle farmers in Zambia. Despite the disease control efforts by the government, donors, and farmers, ECF cases are increasing. Why does ECF oscillate over time? Can alternative approaches such as systems thinking contribute solutions to the complex ECF problem, avoid unintended consequences, and achieve sustainable results? To answer these research questions and inform the design and implementation of ECF interventions, we qualitatively investigated the influence of dynamic socio-economic, cultural, and ecological factors. We used system dynamics modelling to specify these dynamics qualitatively, and an innovative participatory framework called spatial group model building (SGMB). SGMB uses participatory geographical information system (GIS) concepts and techniques to capture the role of spatial phenomenon in the context of complex systems, allowing stakeholders to identify spatial phenomenon directly on physical maps and integrate such information in model development. Our SGMB process convened focus groups of beef value chain stakeholders in two distinct production systems. The focus groups helped to jointly construct a series of interrelated system dynamics models that described ECF in a broader systems context. Thus, a complementary objective of this study was to demonstrate the applicability of system dynamics modelling and SGMB in animal health. The SGMB process revealed policy leverage points in the beef cattle value chain that could be targeted to improve ECF control. For example, policies that develop sustainable and stable cattle markets and improve household income availability may have positive feedback effects on investment in animal health. The results obtained from a SGMB process also demonstrated that a “one-size-fits-all” approach may not be equally effective in policing ECF in different agro-ecological zones due to the complex interactions of socio-ecological context with important, and often ignored, spatial patterns. PMID:29244862
Mumba, Chisoni; Skjerve, Eystein; Rich, Magda; Rich, Karl M
2017-01-01
East Coast Fever (ECF) is the most economically important production disease among traditional beef cattle farmers in Zambia. Despite the disease control efforts by the government, donors, and farmers, ECF cases are increasing. Why does ECF oscillate over time? Can alternative approaches such as systems thinking contribute solutions to the complex ECF problem, avoid unintended consequences, and achieve sustainable results? To answer these research questions and inform the design and implementation of ECF interventions, we qualitatively investigated the influence of dynamic socio-economic, cultural, and ecological factors. We used system dynamics modelling to specify these dynamics qualitatively, and an innovative participatory framework called spatial group model building (SGMB). SGMB uses participatory geographical information system (GIS) concepts and techniques to capture the role of spatial phenomenon in the context of complex systems, allowing stakeholders to identify spatial phenomenon directly on physical maps and integrate such information in model development. Our SGMB process convened focus groups of beef value chain stakeholders in two distinct production systems. The focus groups helped to jointly construct a series of interrelated system dynamics models that described ECF in a broader systems context. Thus, a complementary objective of this study was to demonstrate the applicability of system dynamics modelling and SGMB in animal health. The SGMB process revealed policy leverage points in the beef cattle value chain that could be targeted to improve ECF control. For example, policies that develop sustainable and stable cattle markets and improve household income availability may have positive feedback effects on investment in animal health. The results obtained from a SGMB process also demonstrated that a "one-size-fits-all" approach may not be equally effective in policing ECF in different agro-ecological zones due to the complex interactions of socio-ecological context with important, and often ignored, spatial patterns.
Enhancing a Socio-technical Data Ecosystem for Societally Relevant, Sustained Arctic Observing
NASA Astrophysics Data System (ADS)
Pulsifer, P. L.
2017-12-01
In recent years, much has been learned about the state of data and related systems for the Arctic region, however work remains to be done to achieve an envisioned integrated and well-defined pan-Arctic observing and data network. The envisioned comprehensive network will enables access to high quality data, expertise and information in support of scientific understanding, stakeholder needs, and agency operations. In this paper we argue that priorities for establishing such a network are in the areas of better understanding the current system, machine-enhanced data discovery and mediation, and the human aspects of community building. The author has engaged extensively in international, Canadian and U.S.-based data coordination and system design efforts. This includes a series of meetings, workshops, systems design activities, and publications. The results of these efforts have been analyzed and a synthesis of these analyses are presented here. Analysis reveals that there are a large number of polar data resources interacting in a complex network that functions as a data ecosystem. Understanding this ecosystem is critical and required to guide design. Given the size and complexity of the network, achieving broad data discovery and access and meaningful data integration will require advanced techniques including machine learning, semantic mediation, and the use of highly connected virtual research environments. To achieve the aforementioned goal will require a community of engaged researchers, technologists, and stakeholders to establish requirements and the social and organizational context needed for effective approaches. The results imply that: i) an effective governance mechanism must be established that includes "bottom up" and "top down" control; ii) the established governance mechanism must include effective networking of actors in the system; iii) funders must adopt a long-term, sustainable infrastructure approach to systems development; iv) best practices will include service and application "chaining" to provide solutions for the diverse Arctic community. Establishing cyberinfrastructure for a sustained Arctic observing network that benefits society will require an innovative combination of emerging technologies and community-building across stakeholders.
Colón-Emeric, Cathleen; Toles, Mark; Cary, Michael P; Batchelor-Murphy, Melissa; Yap, Tracey; Song, Yuting; Hall, Rasheeda; Anderson, Amber; Burd, Andrew; Anderson, Ruth A
2016-07-16
Little is known about the sustainability of behavioral change interventions in long-term care (LTC). Following a cluster randomized trial of an intervention to improve staff communication (CONNECT), we conducted focus groups of direct care staff and managers to elicit their perceptions of factors that enhance or reduce sustainability in the LTC setting. The overall aim was to generate hypotheses about how to sustain complex interventions in LTC. In eight facilities, we conducted 15 focus groups with 83 staff who had participated in at least one intervention session. Where possible, separate groups were conducted with direct care staff and managers. An interview guide probed for staff perceptions of intervention salience and sustainability. Framework analysis of coded transcripts was used to distill insights about sustainability related to intervention features, organizational context, and external supports. Staff described important factors for intervention sustainability that are particularly challenging in LTC. Because of the tremendous diversity in staff roles and education level, interventions should balance complexity and simplicity, use a variety of delivery methods and venues (e.g., group and individual sessions, role-play/storytelling), and be inclusive of many work positions. Intervention customizability and flexibility was particularly prized in this unpredictable and resource-strapped environment. Contextual features noted to be important include addressing the frequent lack of trust between direct care staff and managers and ensuring that direct care staff directly observe manager participation and support for the program. External supports suggested to be useful for sustainability include formalization of changes into facility routines, using "train the trainer" approaches and refresher sessions. High staff turnover is common in LTC, and providing materials for new staff orientation was reported to be important for sustainability. When designing or implementing complex behavior change interventions in LTC, consideration of these particularly salient intervention features, contextual factors, and external supports identified by staff may enhance sustainability. ClinicalTrial.gov, NCT00636675.
Rational design of functional and tunable oscillating enzymatic networks
NASA Astrophysics Data System (ADS)
Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.
2015-02-01
Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.
2004-09-08
KENNEDY SPACE CENTER, FLA. - KSC workers survey the considerable damage sustained by the second floor of the Thermal Protection System Facility from Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility is used to manufacture both internal and external insulation products for the Space Shuttle orbiters.
The role of the Forest Service in aquatic invasive species research
Susan B. Adams; Kelly M. Burnett; Peter Bisson; Bret Harvey; Keith H. Nislow; Bruce E. Rieman; John Rinne
2010-01-01
Aquatic ecosystems include the most imperiled taxa in the United States, and invasive species are the second leading contributor to this imperilment. The U.S. Department of Agriculture (USDA), Forest Service is legally mandated to sustainably manage aquatic habitats and native species on National Forest System (NFS) lands. Invasive species add complexity and...
ERIC Educational Resources Information Center
Kuo, Fan-Sheng; Perng, Yeng-Horng
2016-01-01
Creating an attractive cityscape has become one of the most promising actions to improve urban functionality and increase urban competitiveness. However, the resistances from the local inhabitants are always against the urban development. Taipei City, a metropolis in Taiwan, is now composed of complex urban systems chaotically enclosed by existing…
TA 55 Reinvestment Project II Phase C Update Project Status May 23, 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giordano, Anthony P.
The TA-55 Reinvestment Project (TRP) II Phase C is a critical infrastructure project focused on improving safety and reliability of the Los Alamos National Laboratory (LANL) TA-55 Complex. The Project recapitalizes and revitalizes aging and obsolete facility and safety systems providing a sustainable nuclear facility for National Security Missions.
What's Next for NASA? Life After the Shuttle Program
NASA Technical Reports Server (NTRS)
MacLaughlin, Mary; Petro, Janet E.
2012-01-01
KSC is the world's preeminent launch complex for government and commercial space access, enabling the world to explore and work in space. KSC safely manages, develops, integrates, and sustains space systems through partnerships that enable innovative, diverse access to space and inspires the Nation's future explorers capabilities to make accessing space less costly and more routine.
Egea, Francisco J; Torrente, Roberto G; Aguilar, Alfredo
2018-01-25
In the last ten years, bioeconomy strategies and policy-related bioeconomy initiatives have been developed all over the world. Some of them are currently in the process of translation into specific actions. In most cases, the approaches followed have been top-down policy-related initiatives, triggered by the public sector originating a dynamic which can bring together different bioeconomy stakeholders i.e. industry, academia, financial operators and farmers. This article describes a bottom-up situation with unique bioeconomy-related features that deserve specific attention. Over the last 40 years, Almería, in the south east of Spain, has developed one of the most efficient agro-industrial complexes in the world, evolving from a traditional and subsistence agriculture, to becoming the major vegetable exporter in the European Union (EU). This growth set aside issues such as sustainability, long-term perspectives on water resources or agricultural waste. However, societal concerns about a circular economy, as well as policy initiatives in the EU and in Spain on bioeconomy are changing the situation towards an integrated, efficient and sustainable bioeconomy system. Currently, the production chain demands innovations related to the use of biomass as source of bioproducts and bioenergy in order to remain competitive. Some positive aspects are the relatively small size of the agro-industrial area, making transport and communications rapid and easy, and the existence of strong and dedicated academic and financial institutions. This article outlines the current efforts and initiatives to couple the existing successful agro-industrial complex with that of a fully sustainable bioeconomy model. Copyright © 2017 Elsevier B.V. All rights reserved.
A qualitative analysis of immunization programs with sustained high coverage, 2000-2005.
Kennedy, Allison; Groom, Holly; Evans, Victoria; Fasano, Nancy
2010-01-01
Despite record-high immunization coverage nationally, there is considerable variation across state and local immunization programs, which are responsible for the implementation of vaccine recommendations in their jurisdictions. The objectives of this study were to describe activities of state and local immunization programs that sustained high coverage levels across several years and to identify common themes and practical examples for sustaining childhood vaccination coverage rates that could be applied elsewhere. We conducted 95 semi-structured key informant interviews with internal staff members and external partners at the 10 immunization programs with the highest sustained childhood immunization coverage from 2000 to 2005, as measured by the National Immunization Survey. Interview transcripts were analyzed qualitatively using a general inductive approach. Common themes across the 10 programs included maintaining a strong program infrastructure, using available data to drive planning and decision making, a commitment to building and sustaining relationships, and a focus on education and communication. Given the challenges of an increasingly complex immunization system, the lessons learned from these programs may help inform others who are working to improve childhood immunization delivery and coverage in their own programs.
An urban approach to planetary boundaries.
Hoornweg, Daniel; Hosseini, Mehdi; Kennedy, Christopher; Behdadi, Azin
2016-09-01
The achievement of global sustainable development goals subject to planetary boundaries will mostly be determined by cities as they drive cultures, economies, material use, and waste generation. Locally relevant, applied and quantitative methodologies are critical to capture the complexity of urban infrastructure systems, global inter-connections, and to monitor local and global progress toward sustainability. An urban monitoring (and communications) tool is presented here illustrating that a city-based approach to sustainable development is possible. Following efforts to define and quantify safe planetary boundaries in areas such as climate change, biosphere integrity, and freshwater use, this paper modifies the methodology to propose boundaries from a city's perspective. Socio-economic boundaries, or targets, largely derived from the Sustainable Development Goals are added to bio-physical boundaries. Issues such as data availability, city priorities, and ease of implementation are considered. The framework is trialed for Toronto, Shanghai, Sao Paulo, Mumbai, and Dakar, as well as aggregated for the world's larger cities. The methodology provides an important tool for cities to play a more fulsome and active role in global sustainable development.
Site Sustainability Plan with FY2015 Performance Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Teresa A.; Lapsa, Melissa Voss; Hudey, Bryce D.
Oak Ridge National Laboratory (ORNL) is both the largest science and energy laboratory in the US Department of Energy (DOE) complex and one of the oldest national laboratories still operating at its original site. ORNL implemented an aggressive modernization program in 2000, providing modern, energy-efficient facilities that help to support the growth of important national scientific missions while faced with the unique and challenging opportunity to integrate sustainability into legacy assets. ORNL is committed to leveraging the outcomes of DOE-sponsored research programs to maximize the efficient use of energy and natural resources across a diverse campus. ORNL leadership in conjunctionmore » with the Sustainable Campus Initiative (SCI) maintains a commitment to the integration of technical innovations into new and existing facilities, systems, and processes with a comprehensive approach to achieving DOE directives and the new Executive Order 13693. Energy efficiency, greenhouse gas reductions, climate change resiliency, and other pursuits toward integrated sustainability factor in all we do. ORNL continues to pursue and deploy innovative solutions and initiatives to advance regional, national, and worldwide sustainability and continues to transform its culture and engage employees in supporting sustainability at work, at home, and in the community.« less
NASA Astrophysics Data System (ADS)
Santos, Maria J.; de Boer, Hugo; Dekker, Stefan
2017-04-01
Sustainability science has emerged as a key discipline that embraces both disciplinary depth and interdisciplinary breadth. The challenge is to design University courses that convey both properties without sacrificing either of them. Here we present the design of such course at Utrecht University (the Netherlands) for the MSC program 'Sustainable Development' and discuss the perceived learning and student evaluations. Our course (Sustainability Modelling and Indicators (SMI)) follows an introductory course on Sustainability Perspectives. SMI philosophy is that system thinking and system analysis is central to sustainability science. To convey this philosophy, we focus on four themes: the Anthropocene, Food security, Energy security and Agency and decision making. We developed four hands-on assignments with increasing complexity and make use of different software (Stella, Excel, IMAGE and Netlogo). The assignments aimed at: (1) teaching students the system components by using a pre-existing model in Stella, (2) challenge students to build their own coupled system in Excel, (3) assess outputs from the fully-coupled and dynamic model integrated assessment model IMAGE, and (4) understand emergent properties using an agent-based model in Netlogo. Based on detailed student evaluations (n = 95) we found that the mathematics presented a manageable challenge to a part of the students. The student pool identified a priori having higher experience with Excel in comparison with other software. Netlogo was the highest ranked software in the student evaluations and this was linked to its user-interface with moving agents. The Excel assignment received the highest and lowest scores, and students found it challenging, time consuming but also indicated that they learned the most from this assignment. Students graded what we considered 'easy' assignments with the highest grades. These results suggest that a systems analytical approach to sustainability science can be operationalized in diverse ways that relate to students background and making use of of-the-shelf software. The key challenge is to teach students all the concepts of systems analysis and the applied mathematics behind it. If the goal is to demonstrate process, this portfolio approach with of-the-shelf software can be very successful. This course can be complemented with programming that provides skills to modify and customize software to student needs.
Danuso, Francesco
2017-12-22
A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.
Chemical and Isotopic Tracers of Groundwater Sustainability: an Overview of New Science Directions
NASA Astrophysics Data System (ADS)
Bullen, T.
2002-12-01
Groundwater sustainability is an emerging concept that is rapidly gaining attention from both scientists and water resource managers, particularly with regard to contamination and degradation of water quality in strategic aquifers. The sustainability of a groundwater resource is a complex function of its susceptibility to factors such as intrusion of poor-quality water from diverse sources, lack of sufficient recharge and reorganization of groundwater flowpaths in response to excessive abstraction. In theory the critical limit occurs when degradation becomes irreversible, such that remediative efforts may be fruitless on a reasonable human time scale. Chemical and isotopic tracers are proving to be especially useful tools for assessment of groundwater sustainability issues such as characterization of recharge, identification of potential sources, pathways and impacts of contaminants and prediction of how hydrology will change in response to excessive abstraction. A variety of relatively cost-efficient tracers are now available with which to assess the susceptibility of groundwater reserves to contamination from both natural and anthropogenic sources, and may provide valuable monitoring and regulatory tools for water resource managers. In this overview, the results of several ongoing groundwater studies by the U.S. Geological Survey will be discussed from the perspective of implications for new science directions for groundwater sustainability research that can benefit water policy development. A fundamental concept is that chemical and isotopic tracers used individually often provide ambiguous information, and are most effective when used in a rigorous "multi-tracer" context that considers the complex linkages between the hydrology, geology and biology of groundwater systems.
Promoting community socio-ecological sustainability through technology: A case study from Chile
NASA Astrophysics Data System (ADS)
Aguayo, Claudio; Eames, Chris
2017-12-01
The importance of community learning in effecting social change towards ecological sustainability has been recognised for some time. More recently, the use of Information and Communication Technology (ICT) tools to promote socio-ecological sustainability has been shown to have potential in community education for sustainable development (ESD). The effective design and use of technology for community learning implies an understanding of a range of cross-dimensional factors including: socio-cultural characteristics and needs of the target audience; considerations of available and culturally responsive types of technology; and non-formal pedagogical ESD strategies for community empowerment. In addition, both technology itself and social communities are dynamically evolving and complex entities. This article presents a case study which evaluated the potential of ICT for promoting ecological literacy and action competence amongst community members in southern Chile. The case study addressed the ecological deterioration of a lake, which is having deep social, economic, recreational and cultural implications locally. The authors' research involved developing a theoretical framework for the design, implementation and use of ICT for community learning for sustainability. The framework was based on key ideas from ESD, ICT and community education, and was underpinned by a systems thinking approach to account for the dynamism and complexity of such settings. Activity theory provided a frame to address overarching socio-cultural elements when using technology as a mediating tool for community learning. The authors' findings suggest that the use of an ICT tool, such as a website, can enhance ecological literacy in relation to a local socio-ecological issue.
ERIC Educational Resources Information Center
Pilgeram, Ryanne
2011-01-01
Using interviews and participant observation at Pacific Northwest sustainable farming operations, this article analyzes the complex ways that class privileges and labor practices impact the social sustainability of sustainable agriculture. While the farmers in this study were highly aware of and reflexive about the class politics of sustainable…
The ethics of socio-ecohydrological catchment management: towards hydrosolidarity
NASA Astrophysics Data System (ADS)
Falkenmark, M.; Folke, Carl
This paper attempts to clarify key biophysical issues and the problems involved in the ethics of socio-ecohydrological catchment management. The issue in managing complex systems is to live with unavoidable change while securing the capacity of the ecohydrological system of the catchment to sustain vital ecological goods and services, aquatic as well as terrestrial, on which humanity depends ultimately. Catchment management oriented to sustainability has to be based on ethical principles: human rights, international conventions, sustaining crucial ecological goods and services, and protecting ecosystem resilience, all of which have water linkages. Many weaknesses have to be identified, assessed and mitigated to improve the tools by which the ethical issues can be addressed and solved:
The new ethics have to incorporate principles that, on a catchment basis, allow for proper attention to the hungry and poor, upstream and downstream, to descendants, and to sites and habitats that need to be protected.
Fundamental changes to EPA's research enterprise: the path forward.
Anastas, Paul T
2012-01-17
Environmental protection in the United States has reached a critical juncture. It has become clear that to address the complex and interrelated environmental challenges we face, we must augment our traditional approaches. The scientific community must build upon its deep understanding of risk assessment, risk management, and reductionism with tools, technologies, insights and approaches to pursue sustainability. The U.S. Environmental Protection Agency (EPA) has recognized this need for systemic change by implementing a new research paradigm called "The Path Forward." This paper outlines the principles of the Path Forward and the actions taken since 2010 to align EPA's research efforts with the goal of sustainability.
Peng, Qiang; Zhang, Zhi-Rong; Gong, Tao; Chen, Guo-Qiang; Sun, Xun
2012-02-01
The application of poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) for sustained and controlled delivery of hydrophilic insulin was made possible by preparing insulin phospholipid complex loaded biodegradable PHBHHx nanoparticles (INS-PLC-NPs). The INS-PLC-NPs produced by a solvent evaporation method showed a spherical shape with a mean particle size, zeta potential and entrapment efficiency of 186.2 nm, -38.4 mv and 89.73%, respectively. In vitro studies demonstrated that only 20% of insulin was released within 31 days with a burst release of 5.42% in the first 8 h. The hypoglycaemic effect in STZ induced diabetic rats lasted for more than 3 days after the subcutaneous injection of INS-PLC-NPs, which significantly prolonged the therapeutic effect compared with the administration of insulin solution. The pharmacological bioavailability (PA) of INS-PLC-NPs relative to insulin solution was over 350%, indicating that the bioavailability of insulin was significantly enhanced by INS-PLC-NPs. Therefore, the INS-PLC-NPs system is promising to serve as a long lasting insulin release formulation, by which the patient compliance can be enhanced significantly. This study also showed that phospholipid complex loaded biodegradable nanoparticles (PLC-NPs) have a great potential to be used as a sustained delivery system for hydrophilic proteins to be encapsulated in hydrophobic polymers. Copyright © 2011 Elsevier Ltd. All rights reserved.
Design and Analysis of Offshore Macroalgae Biorefineries.
Golberg, Alexander; Liberzon, Alexander; Vitkin, Edward; Yakhini, Zohar
2018-03-15
Displacing fossil fuels and their derivatives with renewables, and increasing sustainable food production are among the major challenges facing the world in the coming decades. A possible, sustainable direction for addressing this challenge is the production of biomass and the conversion of this biomass to the required products through a complex system coined biorefinery. Terrestrial biomass and microalgae are possible sources; however, concerns over net energy balance, potable water use, environmental hazards, and uncertainty in the processing technologies raise questions regarding their actual potential to meet the anticipated food, feed, and energy challenges in a sustainable way. Alternative sustainable sources for biorefineries are macroalgae grown and processed offshore. However, implementation of the offshore biorefineries requires detailed analysis of their technological, economic, and environmental performance. In this chapter, the basic principles of marine biorefineries design are shown. The methods to integrate thermodynamic efficiency, investment, and environmental aspects are discussed. The performance improvement by development of new cultivation methods that fit macroalgae physiology and development of new fermentation methods that address macroalgae unique chemical composition is shown.
Case Study on the Maintenance of a Construction Monitoring Using USN-Based Data Acquisition
Kim, Sangyong; Shin, Yoonseok; Kim, Gwang-Hee
2014-01-01
In recent years, there has been an increasing interest in the adoption of emerging ubiquitous sensor network (USN) technologies for instrumentation within a variety of sustainability systems. USN is emerging as a sensing paradigm that is being newly considered by the sustainability management field as an alternative to traditional tethered monitoring systems. Researchers have been discovering that USN is an exciting technology that should not be viewed simply as a substitute for traditional tethered monitoring systems. In this study, we investigate how a movement monitoring measurement system of a complex building is developed as a research environment for USN and related decision-supportive technologies. To address the apparent danger of building movement, agent-mediated communication concepts have been designed to autonomously manage large volumes of exchanged information. In this study, we additionally detail the design of the proposed system, including its principles, data processing algorithms, system architecture, and user interface specifics. Results of the test and case study demonstrate the effectiveness of the USN-based data acquisition system for real-time monitoring of movement operations. PMID:25097890
Case study on the maintenance of a construction monitoring using USN-based data acquisition.
Kim, Sangyong; Shin, Yoonseok; Kim, Gwang-Hee
2014-01-01
In recent years, there has been an increasing interest in the adoption of emerging ubiquitous sensor network (USN) technologies for instrumentation within a variety of sustainability systems. USN is emerging as a sensing paradigm that is being newly considered by the sustainability management field as an alternative to traditional tethered monitoring systems. Researchers have been discovering that USN is an exciting technology that should not be viewed simply as a substitute for traditional tethered monitoring systems. In this study, we investigate how a movement monitoring measurement system of a complex building is developed as a research environment for USN and related decision-supportive technologies. To address the apparent danger of building movement, agent-mediated communication concepts have been designed to autonomously manage large volumes of exchanged information. In this study, we additionally detail the design of the proposed system, including its principles, data processing algorithms, system architecture, and user interface specifics. Results of the test and case study demonstrate the effectiveness of the USN-based data acquisition system for real-time monitoring of movement operations.
Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics.
Bartelme, Ryan P; Oyserman, Ben O; Blom, Jesse E; Sepulveda-Villet, Osvaldo J; Newton, Ryan J
2018-01-01
As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops. In contrast, aquaponics is a water-based agricultural system, in which production relies upon internal nutrient recycling to co-cultivate plants with fish. This arrangement has management benefits compared to soil-based agriculture, as system components may be designed to directly harness microbial processes that make nutrients bioavailable to plants in downstream components. However, aquaponic systems also present unique management challenges. Microbes may compete with plants for certain micronutrients, such as iron, which makes exogenous supplementation necessary, adding production cost and process complexity, and limiting profitability and system sustainability. Research on PGPMs in aquaponic systems currently lags behind traditional agricultural systems, however, it is clear that certain parallels in nutrient use and plant-microbe interactions are retained from soil-based agricultural systems.
To manage inland fisheries is to manage at the social-ecological watershed scale.
Nguyen, Vivian M; Lynch, Abigail J; Young, Nathan; Cowx, Ian G; Beard, T Douglas; Taylor, William W; Cooke, Steven J
2016-10-01
Approaches to managing inland fisheries vary between systems and regions but are often based on large-scale marine fisheries principles and thus limited and outdated. Rarely do they adopt holistic approaches that consider the complex interplay among humans, fish, and the environment. We argue that there is an urgent need for a shift in inland fisheries management towards holistic and transdisciplinary approaches that embrace the principles of social-ecological systems at the watershed scale. The interconnectedness of inland fisheries with their associated watershed (biotic, abiotic, and humans) make them extremely complex and challenging to manage and protect. For this reason, the watershed is a logical management unit. To assist management at this scale, we propose a framework that integrates disparate concepts and management paradigms to facilitate inland fisheries management and sustainability. We contend that inland fisheries need to be managed as social-ecological watershed system (SEWS). The framework supports watershed-scale and transboundary governance to manage inland fisheries, and transdisciplinary projects and teams to ensure relevant and applicable monitoring and research. We discuss concepts of social-ecological feedback and interactions of multiple stressors and factors within/between the social-ecological systems. Moreover, we emphasize that management, monitoring, and research on inland fisheries at the watershed scale are needed to ensure long-term sustainable and resilient fisheries. Copyright © 2016. Published by Elsevier Ltd.
Moving into the 'patient-centred medical home': reforming Australian general practice.
Hayes, Paul; Lynch, Anthony; Stiffe, Jenni
2016-09-01
The Australian healthcare system is a complex network of services and providers funded and administered by federal, state and territory governments, supplemented by private health insurance and patient contributions. The broad geographical range, complexity and increasing demand within the Australian healthcare sector mean health expenditure is high. Aspects of current funding for the healthcare system have attracted criticism from medical practitioners, patients, representative organisations and independent statutory agencies. In response to the problems in primary care funding in Australia, The Royal Australian College of General Practitioners developed the Vision for general practice and a sustainable healthcare system (the Vision). The Vision presents a plan to improve healthcare delivery in Australia through greater quality, access and efficiency by reorienting how general practice services are funded based on the 'patient-centred medical home' model.
NASA Astrophysics Data System (ADS)
Dyke, James; Dearing, John; Zhang, Enlou; Rong, Wang; Zhang, Ke
2015-04-01
Schellnhuber et al (1997) first presented the concept of social-ecological syndromes as a means of mapping sustainability challenges facing modern regions to sets of sub-systems. They argued that the great diversity of global social-ecological systems could be represented as different combinations from a much smaller number of patterns of sub-systems. Here, we explore the possibility of extending this idea to an empirical and dynamical classification of system functioning, such as changes in the strength of connectivity, coupling between sub-systems and emergent phenomena. To demonstrate this approach we combine multi-decadal datasets for social, economic and biophysical changes from two contrasting regions in China. This allows us to reconstruct the evolution of system functioning in terms of regulating and provisioning ecosystem services. Climate records and political and policy time-lines provide insight about endogenous and exogenous drivers. Our findings show similar patterns in both regions of long-term trade-off between rising provisioning services and declining regulating services, but with important regional differences. In eastern China, the upward trajectory in provisioning services is strongly linked to the history of agricultural policy reforms but losses of regulating services are more an emergent phenomenon. In contrast, in southwest China, trajectories of provisioning and regulating services are both linked strongly to policy and development initiatives. In both regions, the last few years see the long term trade-off breaking down with provisioning services declining or remaining stationary while losses of regulating services continue to decline. Evidence exists in both regions that critical transitions have been crossed in some ecosystems. The strength of coupling between the socio-economic and biophysical sub-systems also remains strong and shows no sign of de-coupling in either region as required for sustainability. We discuss how our findings point the way towards the creation of a typology of syndromes that could, in principle, be applied worldwide. This approach would respect the inherent complexity and emergent properties of socio-ecological systems whilst avoiding the creation of complex models and representations that may prove to be as hard to understand as the real-world target system.
NASA Astrophysics Data System (ADS)
Kontar, Y. Y.
2017-12-01
The Arctic Council is an intergovernmental forum promoting cooperation, coordination and interaction among the Arctic States and indigenous communities on issues of sustainable development and environmental protection in the North. The work of the Council is primarily carried out by six Working Groups: Arctic Contaminants Action Program, Arctic Monitoring and Assessment Programme, Conservation of Arctic Flora and Fauna, Emergency Prevention, Preparedness and Response, Protection of the Arctic Marine Environment, and Sustainable Development Working Group. The Working Groups are composed of researchers and representatives from government agencies. Each Working Group issues numerous scientific assessments and reports on a broad field of subjects, from climate change to emergency response in the Arctic. A key goal of these publications is to contribute to policy-making in the Arctic. Complex networks of information systems and the connections between the diverse elements within the systems have been identified via network analysis. This allowed to distinguish data sources that were used in the composition of the primary publications of the Working Groups. Next step is to implement network analysis to identify and map the relationships between the Working Groups and policy makers in the Arctic.
A "Social Bitcoin" could sustain a democratic digital world
NASA Astrophysics Data System (ADS)
Kleineberg, Kaj-Kolja; Helbing, Dirk
2016-12-01
A multidimensional financial system could provide benefits for individuals, companies, and states. Instead of top-down control, which is destined to eventually fail in a hyperconnected world, a bottom-up creation of value can unleash creative potential and drive innovations. Multiple currency dimensions can represent different externalities and thus enable the design of incentives and feedback mechanisms that foster the ability of complex dynamical systems to self-organize and lead to a more resilient society and sustainable economy. Modern information and communication technologies play a crucial role in this process, as Web 2.0 and online social networks promote cooperation and collaboration on unprecedented scales. Within this contribution, we discuss how one dimension of a multidimensional currency system could represent socio-digital capital (Social Bitcoins) that can be generated in a bottom-up way by individuals who perform search and navigation tasks in a future version of the digital world. The incentive to mine Social Bitcoins could sustain digital diversity, which mitigates the risk of totalitarian control by powerful monopolies of information and can create new business opportunities needed in times where a large fraction of current jobs is estimated to disappear due to computerisation.
A Sustainable Early Warning System for Climate Change Impacts on Water Quality Management
NASA Astrophysics Data System (ADS)
Lee, T.; Tung, C.; Chung, N.
2007-12-01
In this era of rapid social and technological change leading to interesting life complexity and environmental displacement, both positive and negative effects among ecosystems call for a balance in which there are impacts by climate changes. Early warning systems for climate change impacts are necessary in order to allow society as a whole to properly and usefully assimilate the masses of new information and knowledge. Therefore, our research addresses to build up a sustainable early warning mechanism. The main goal is to mitigate the cumulative impacts on the environment of climate change and enhance adaptive capacities. An effective early warning system has been proven for protection. However, there is a problem that estimate future climate changes would be faced with high uncertainty. In general, take estimations for climate change impacts would use the data from General Circulation Models and take the analysis as the Intergovernmental Panel on Climate Change declared. We follow the course of the method for analyzing climate change impacts and attempt to accomplish the sustainable early warning system for water quality management. Climate changes impact not only on individual situation but on short-term variation and long-term gradually changes. This kind characteristic should adopt the suitable warning system for long-term formulation and short- term operation. To continue the on-going research of the long-term early warning system for climate change impacts on water quality management, the short-term early warning system is established by using local observation data for reappraising the warning issue. The combination of long-term and short-term system can provide more circumstantial details. In Taiwan, a number of studies have revealed that climate change impacts on water quality, especially in arid period, the concentration of biological oxygen demand may turn into worse. Rapid population growth would also inflict injury on its assimilative capacity to degenerate. To concern about those items, the sustainable early warning system is established and the initiative fall into the following categories: considering the implications for policies, applying adaptive strategies and informing the new climate changes. By setting up the framework of early warning system expectantly can defend stream area from impacts damaging and in sure the sustainable development.
Students' Understanding of Sustainability and Climate Change across Linked Service-Learning Courses
ERIC Educational Resources Information Center
Coleman, Kimberly; Murdoch, James; Rayback, Shelly; Seidl, Amy; Wallin, Kimberly
2017-01-01
College and university faculty are increasingly being called upon to teach about sustainability. Many of these faculty members are incorporating content related to climate change because climate change is arguably the biggest threat to global sustainability. However, the concept of sustainability is complex, interdisciplinary, and potentially…
Quantitative Measures of Sustainability in Institutions of Higher Education
ERIC Educational Resources Information Center
Klein-Banai, Cynthia
2010-01-01
The measurement of sustainability for institutions, businesses, regions, and nations is a complex undertaking. There are many disciplinary approaches but sustainability is innately interdisciplinary and the challenge is to apply these approaches in a way that can best measure progress towards sustainability. The most common methods used by…
Ma, Hongyan; Darmawan, Erica T.; Zhang, Min; Zhange, Lei; Bryers, James D.
2013-01-01
Traditional antibiotic therapy to control medical device-based infections typically fails to clear biofilm infections and may even promote the evolution of antibiotic resistant species. We report here the development of two novel antibiofilm agents; gallium (Ga) or zinc (Zn) complexed with protoporphyrin IX (PP) or mesoprotoporphyrin IX (MP) that are both highly effective in negating suspended bacterial growth and biofilm formation. These chelated gallium or zinc complexes act as iron siderophore analogs, surplanting the natural iron uptake of most bacteria. Poly (ether urethane) (PEU; Biospan®) polymer films were fabricated for the controlled sustained release of the Ga- or Zn-complexes, using an incorporated pore-forming agent, poly (ethylene glycol) (PEG). An optimum formulation containing 8% PEG (MW=1450) in the PEU polymer effectively sustained drug release for at least 3 months. All drug-loaded PEU films exhibited in vitro ≥ 90% reduction of Gram-positive (Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa) bacteria in both suspended and biofilm culture versus the negative control PEU films releasing nothing. Cytotoxicity and endotoxin evaluation demonstrated no adverse responses to the Ga- or Zn-complex releasing PEU films. Finally, in vivo studies further substantiate the anti-biofilm efficacy of the PEU films releasing Ga- or Zn- complexes. PMID:24140747
Ma, Hongyan; Darmawan, Erica T; Zhang, Min; Zhang, Lei; Bryers, James D
2013-12-28
Traditional antibiotic therapy to control medical device-based infections typically fails to clear biofilm infections and may even promote the evolution of antibiotic resistant species. We report here the development of two novel antibiofilm agents; gallium (Ga) or zinc (Zn) complexed with protoporphyrin IX (PP) or mesoprotoporphyrin IX (MP) that are both highly effective in negating suspended bacterial growth and biofilm formation. These chelated gallium or zinc complexes act as iron siderophore analogs, supplanting the natural iron uptake of most bacteria. Poly (ether urethane) (PEU; Biospan®) polymer films were fabricated for the controlled sustained release of the Ga- or Zn-complexes, using an incorporated pore-forming agent, poly(ethylene glycol) (PEG). An optimum formulation containing 8% PEG (MW=1450) in the PEU polymer effectively sustained drug release for at least 3months. All drug-loaded PEU films exhibited in vitro ≥ 90% reduction of Gram-positive (Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa) bacteria in both suspended and biofilm culture versus the negative control PEU films releasing nothing. Cytotoxicity and endotoxin evaluation demonstrated no adverse responses to the Ga- or Zn-complex releasing PEU films. Finally, in vivo studies further substantiate the anti-biofilm efficacy of the PEU films releasing Ga- or Zn- complexes. © 2013.
Communicating about bioenergy sustainability.
Dale, Virginia H; Kline, Keith L; Perla, Donna; Lucier, Al
2013-02-01
Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives in a way that allows decision makers to compare options. Scientists also need to develop approaches that contribute information about problems and opportunities relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that non-scientists can understand; and (3) the implications of methods, assumptions, and limitations should be clear. The scientists' job is to analyze information to build a better understanding of environmental, cultural, and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on "Sustainability of Bioenergy Systems: Cradle to Grave" because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the effects of bioenergy can be assessed and compared to other energy alternatives to foster sustainability.
Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N
2016-04-26
More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected by household air pollution. The challenge is not confined to developing robust technical solutions to reduce household air pollution and exposure to improve respiratory health, and prevent associated diseases. The bigger challenge is to disseminate and implement cleaner cooking technologies and fuels in the context of various social, behavioral, and economic constraints faced by poor households and communities. The Institutional Review Board of Washington University in St. Louis has exempted community based system dynamics modeling from review.
The AGING Initiative experience: a call for sustained support for team science networks.
Garg, Tullika; Anzuoni, Kathryn; Landyn, Valentina; Hajduk, Alexandra; Waring, Stephen; Hanson, Leah R; Whitson, Heather E
2018-05-18
Team science, defined as collaborative research efforts that leverage the expertise of diverse disciplines, is recognised as a critical means to address complex healthcare challenges, but the practical implementation of team science can be difficult. Our objective is to describe the barriers, solutions and lessons learned from our team science experience as applied to the complex and growing challenge of multiple chronic conditions (MCC). MCC is the presence of two or more chronic conditions that have a collective adverse effect on health status, function or quality of life, and that require complex healthcare management, decision-making or coordination. Due to the increasing impact on the United States society, MCC research has been identified as a high priority research area by multiple federal agencies. In response to this need, two national research entities, the Healthcare Systems Research Network (HCSRN) and the Claude D. Pepper Older Americans Independence Centers (OAIC), formed the Advancing Geriatrics Infrastructure and Network Growth (AGING) Initiative to build nationwide capacity for MCC team science. This article describes the structure, lessons learned and initial outcomes of the AGING Initiative. We call for funding mechanisms to sustain infrastructures that have demonstrated success in fostering team science and innovation in translating findings to policy change necessary to solve complex problems in healthcare.
Key Gaps for Enabling Plant Growth in Future Missions
NASA Technical Reports Server (NTRS)
Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony
2017-01-01
Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017.
An Architecture for Continuous Data Quality Monitoring in Medical Centers.
Endler, Gregor; Schwab, Peter K; Wahl, Andreas M; Tenschert, Johannes; Lenz, Richard
2015-01-01
In the medical domain, data quality is very important. Since requirements and data change frequently, continuous and sustainable monitoring and improvement of data quality is necessary. Working together with managers of medical centers, we developed an architecture for a data quality monitoring system. The architecture enables domain experts to adapt the system during runtime to match their specifications using a built-in rule system. It also allows arbitrarily complex analyses to be integrated into the monitoring cycle. We evaluate our architecture by matching its components to the well-known data quality methodology TDQM.
Robert Deal; Ewa Orlikowska; David D’Amore; Paul Hennon
2017-01-01
There is worldwide interest in managing forests to improve biodiversity, enhance ecosystem services and assure long-term sustainability of forest resources. An increasingly important goal of forest management is to increase stand diversity and improve wildlife and aquatic habitat. Well-planned silvicultural systems containing a mixture of broadleaf-conifer species have...
Keith Reynolds; Philip Murphy; Steven Paplanus
2017-01-01
Spatial decision support systems for forest management have steadily evolved over the past 20+ years in order to better address the complexities of contemporary forest management issues such as the sustainability and resilience of ecosystems on forested landscapes. In this paper, we describe and illustrate new features of the Ecosystem Management Decision Support (EMDS...
Regenerating Rural Social Space? Teacher Education for Rural-Regional Sustainability
ERIC Educational Resources Information Center
Reid, Jo-Anne; Green, Bill; Cooper, Maxine; Hastings, Wendy; Lock, Graeme; White, Simone
2010-01-01
The complex interconnection among issues affecting rural-regional sustainability requires an equally complex program of research to ensure the attraction and retention of high-quality teachers for rural children. The educational effects of the construction of the rural within a deficit discourse are highlighted. A concept of rural social space is…
Operationalizing sustainability in urban coastal systems: a system dynamics analysis.
Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis
2013-12-15
We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Robinson, Clare E.; Xin, Pei; Santos, Isaac R.; Charette, Matthew A.; Li, Ling; Barry, D. A.
2018-05-01
Sustainable coastal resource management requires sound understanding of interactions between coastal unconfined aquifers and the ocean as these interactions influence the flux of chemicals to the coastal ocean and the availability of fresh groundwater resources. The importance of submarine groundwater discharge in delivering chemical fluxes to the coastal ocean and the critical role of the subterranean estuary (STE) in regulating these fluxes is well recognized. STEs are complex and dynamic systems exposed to various physical, hydrological, geological, and chemical conditions that act on disparate spatial and temporal scales. This paper provides a review of the effect of factors that influence flow and salt transport in STEs, evaluates current understanding on the interactions between these influences, and synthesizes understanding of drivers of nutrient, carbon, greenhouse gas, metal and organic contaminant fluxes to the ocean. Based on this review, key research needs are identified. While the effects of density and tides are well understood, episodic and longer-period forces as well as the interactions between multiple influences remain poorly understood. Many studies continue to focus on idealized nearshore aquifer systems and future work needs to consider real world complexities such as geological heterogeneities, and non-uniform and evolving alongshore and cross-shore morphology. There is also a significant need for multidisciplinary research to unravel the interactions between physical and biogeochemical processes in STEs, as most existing studies treat these processes in isolation. Better understanding of this complex and dynamic system can improve sustainable management of coastal water resources under the influence of anthropogenic pressures and climate change.
A Case Review: Integrating Lewin’s Theory with Lean’s System Approach for Change
Wojciechowski, Elizabeth; Pearsall, Tabitha; Murphy, Patricia; French, Eileen
2016-05-31
The complexity of healthcare calls for interprofessional collaboration to improve and sustain the best outcomes for safe and high quality patient care. Historically, rehabilitation nursing has been an area that relies heavily on interprofessional relationships. Professionals from various disciplines often subscribe to different change management theories for continuous quality improvement. Through a case review, authors describe how a large, Midwestern, rehabilitation hospital used the crosswalk methodology to facilitate interprofessional collaboration and develop an intervention model for implementing and sustaining bedside shift reporting. The authors provide project background and offer a brief overview of the two common frameworks used in this project, Lewin’s Three-Step Model for Change and the Lean Systems Approach. The description of the bedside shift report project methods demonstrates that multiple disciplines are able to utilize a common framework for leading and sustaining change to support outcomes of high quality and safe care, and capitalize on the opportunities of multiple views and discipline-specific approaches. The conclusion discusses outcomes, future initiatives, and implications for nursing practice.
Lonsdale, Jemma; Nicholson, Rose; Weston, Keith; Elliott, Michael; Birchenough, Andrew; Sühring, Roxana
2018-02-01
Estuaries are amongst the most socio-economically and ecologically important environments however, due to competing and conflicting demands, management is often challenging with a complex legislative framework managed by multiple agencies. To facilitate the understanding of this legislative framework, we have developed a GISbased Estuarine Planning Support System tool. The tool integrates the requirements of the relevant legislation and provides a basis for assessing the current environmental state of an estuary as well as informing and assessing new plans to ensure a healthy estuarine state. The tool ensures that the information is easily accessible for regulators, managers, developers and the public. The tool is intended to be adaptable, but is assessed using the Humber Estuary, United Kingdom as a case study area. The successful application of the tool for complex socio-economic and environmental systems demonstrates that the tool can efficiently guide users through the complex requirements needed to support sustainable development. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Integration of systems biology with organs-on-chips to humanize therapeutic development
NASA Astrophysics Data System (ADS)
Edington, Collin D.; Cirit, Murat; Chen, Wen Li Kelly; Clark, Amanda M.; Wells, Alan; Trumper, David L.; Griffith, Linda G.
2017-02-01
"Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.
Using Reflective Journals in a Sustainable Design Studio
ERIC Educational Resources Information Center
Gulwadi, Gowri Betrabet
2009-01-01
Purpose: This paper seeks to introduce a pedagogical method used in a design studio as part of a curriculum-greening process to encourage reflection on the complexity of sustainability and sustainable design. Online reflective journals were used in two semesters of a sustainable design studio to develop students' awareness and understanding of…
Using Reflective Journals in a Sustainable Design Studio
ERIC Educational Resources Information Center
Gulwadi, Gowri Betrabet
2009-01-01
Purpose: The purpose of this paper is to introduce a pedagogical method used in a design studio as part of a curriculum-greening process to encourage reflection on the complexity of sustainability and sustainable design. Online reflective journals were used in two semesters of a sustainable design studio to develop students' awareness and…
Bioelectrochemical system platform for sustainable environmental remediation and energy generation.
Wang, Heming; Luo, Haiping; Fallgren, Paul H; Jin, Song; Ren, Zhiyong Jason
2015-01-01
The increasing awareness of the energy-environment nexus is compelling the development of technologies that reduce environmental impacts during energy production as well as energy consumption during environmental remediation. Countries spend billions in pollution cleanup projects, and new technologies with low energy and chemical consumption are needed for sustainable remediation practice. This perspective review provides a comprehensive summary on the mechanisms of the new bioelectrochemical system (BES) platform technology for efficient and low cost remediation, including petroleum hydrocarbons, chlorinated solvents, perchlorate, azo dyes, and metals, and it also discusses the potential new uses of BES approach for some emerging contaminants remediation, such as CO2 in air and nutrients and micropollutants in water. The unique feature of BES for environmental remediation is the use of electrodes as non-exhaustible electron acceptors, or even donors, for contaminant degradation, which requires minimum energy or chemicals but instead produces sustainable energy for monitoring and other onsite uses. BES provides both oxidation (anode) and reduction (cathode) reactions that integrate microbial-electro-chemical removal mechanisms, so complex contaminants with different characteristics can be removed. We believe the BES platform carries great potential for sustainable remediation and hope this perspective provides background and insights for future research and development. Copyright © 2015 Elsevier Inc. All rights reserved.
A System Dynamics Model for Integrated Decision Making ...
EPA’s Sustainable and Healthy Communities Research Program (SHC) is conducting transdisciplinary research to inform and empower decision-makers. EPA tools and approaches are being developed to enable communities to effectively weigh and integrate human health, socioeconomic, environmental, and ecological factors into their decisions to promote community sustainability. To help achieve this goal, EPA researchers have developed systems approaches to account for the linkages among resources, assets, and outcomes managed by a community. System dynamics (SD) is a member of the family of systems approaches and provides a framework for dynamic modeling that can assist with assessing and understanding complex issues across multiple dimensions. To test the utility of such tools when applied to a real-world situation, the EPA has developed a prototype SD model for community sustainability using the proposed Durham-Orange Light Rail Project (D-O LRP) as a case study.The EPA D-O LRP SD modeling team chose the proposed D-O LRP to demonstrate that an integrated modeling approach could represent the multitude of related cross-sectoral decisions that would be made and the cascading impacts that could result from a light rail transit system connecting Durham and Chapel Hill, NC. In keeping with the SHC vision described above, the proposal for the light rail is a starting point solution for the more intractable problems of population growth, unsustainable land use, environmenta
Systems Biology of Industrial Microorganisms
NASA Astrophysics Data System (ADS)
Papini, Marta; Salazar, Margarita; Nielsen, Jens
The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.
Systems biology of industrial microorganisms.
Papini, Marta; Salazar, Margarita; Nielsen, Jens
2010-01-01
The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.
2005-03-01
as Cooperative Engagement Capability (CEC). The addition of CEC makes it a hub for Battle Group Integration Testing (BGIT) that can replicate Radar and...Link performance characteristics for naval battle groups . 2 3. The closure of the Atlantic Fleet Weapons Training Facility (AFWTF), Vieques Island...different authors and groups over the past ten years. The intention is to analyze this information, combine it where appropriate, present it in one
Study of the techniques feasible for food synthesis aboard a spacecraft
NASA Technical Reports Server (NTRS)
Weiss, A. H.
1972-01-01
Synthesis of sugars by Ca(OH)2 catalyzed formaldehyde condensation (the formose reaction) has produced branched carbohydrates that do not occur in nature. The kinetics and mechanisms of the homogeneously catalyzed autocatalytic condensation were studied and analogies between homogeneous and heterogeneous rate laws have been found. Aldol condensations proceed simultaneously with Cannizzaro and crossed-Cannizzaro reactions and Lobry de Bruyn-Van Eckenstein rearrangements. The separate steps as well as the interactions of this highly complex reaction system were elucidated. The system exhibits instabilities, competitive catalytic, mass action, and equilibrium phenomena, complexing, and parallel and consecutive reactions. Specific finding that have been made on the problem will be of interest for synthesizing sugars, both for sustained space flight and for large scale food manufacture. A contribution to methodology for studying complex catalyzed reactions and to understanding control of reaction selectivity was a broad goal of the project.
Assistive Technologies and Issues Relating to Privacy, Ethics and Security
NASA Astrophysics Data System (ADS)
Martin, Suzanne; Bengtsson, Johan E.; Dröes, Rose-Marie
Emerging technologies provide the opportunity to develop innovative sustainable service models, capable of supporting adults with dementia at home. Devices range from simple stand-alone components that can generate a responsive alarm call to complex interoperable systems that even can be remotely controlled. From these complex systems the paradigm of the ubiquitous or ambient smart home has emerged, integrating technology, environmental design and traditional care provision. The service context is often complex, involving a variety of stakeholders and a range of interested agencies. Against this backdrop, as anecdotal evidence and government policies spawn further innovation it is critical that due consideration is given to the potential ethical ramifications at an individual, organisational and societal level. Well-grounded ethical thinking and proactive ethical responses to this innovation are required. Explicit policy and practice should therefore emerge which engenders confidence in existing supported living option schemes for adults with dementia and informs further innovation.
Sustainability Actions in Australia
ERIC Educational Resources Information Center
Webster, Jenni; Robinson, Leigh; Trimper, Kelvin; Salagaras, Stan
2007-01-01
This article presents Australian case studies of educational buildings with environmentally sustainable designs. This includes the new public school complex for Williamstown High School and the Peel Learning Centre designed for Murdoc University. This article also includes sustainability initiatives by private developers working in collaboration…
ERIC Educational Resources Information Center
Garcia, Maria Rosa; Junyent, Mercè; Fonolleda, Marta
2017-01-01
Purpose: This study aims to contribute to the professional competency approach in Education for Sustainability (ES) from the perspective of complexity and to the assessment of these competencies. Design/methodology/approach: A qualitative research process was used, which consisted of two main phases--a documentary analysis of the internationally…
Linking social and ecological systems to sustain coral reef fisheries.
Cinner, Joshua E; McClanahan, Timothy R; Daw, Tim M; Graham, Nicholas A J; Maina, Joseph; Wilson, Shaun K; Hughes, Terence P
2009-02-10
The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.
3D Nanoporous Anodic Alumina Structures for Sustained Drug Release
Xifré-Pérez, Elisabet; Eckstein, Chris; Ferré-Borrull, Josep
2017-01-01
The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug. The obtained results reveal optimal modeling of all 3D pore structures, differentiating two drug release stages. Thus, an initial short-term and a sustained long-term release were successfully modeled by the Higuchi and the Korsmeyer–Peppas equations, respectively. This study demonstrates the influence of pore geometries on drug release rates, and further presents a sustained long-term drug release that exceeds 60 days without an undesired initial burst. PMID:28825654
Watkin, Laura Jane; Kemp, Paul S; Williams, Ian D; Harwood, Ian A
2012-06-01
The growing importance of the environment and its management has simultaneously emphasized the benefits of hydroelectric power and its environmental costs. In a changing policy climate, giving importance to renewable energy development and environmental protection, conflict potential between stakeholders is considerable. Navigation of conflict determines the scheme constructed, making sustainable hydropower a function of human choice. To meet the needs of practitioners, greater understanding of stakeholder conflict is needed. This paper presents an approach to illustrate the challenges that face small-scale hydropower development as perceived by the stakeholders involved, and how they influence decision-making. Using Gordleton Mill, Hampshire (UK), as an illustrative case, soft systems methodology, a systems modeling approach, was adopted. Through individual interviews, a range of problems were identified and conceptually modeled. Stakeholder bias towards favoring economic appraisal over intangible social and environmental aspects was identified; costs appeared more influential than profit. Conceptual evaluation of the requirements to meet a stakeholder-approved solution suggested a complex linear systems approach, considerably different from the real-life situation. The stakeholders introduced bias to problem definition by transferring self-perceived issues onto the project owner. Application of soft systems methodology caused a shift in project goals away from further investigation towards consideration of project suitability. The challenge of sustainable hydropower is global, with a need to balance environmental, economic, and social concerns. It is clear that in this type of conflict, an individual can significantly influence outcomes; highlighting the need for more structured approaches to deal with stakeholder conflicts in sustainable hydropower development.
NASA Astrophysics Data System (ADS)
Watkin, Laura Jane; Kemp, Paul S.; Williams, Ian D.; Harwood, Ian A.
2012-06-01
The growing importance of the environment and its management has simultaneously emphasized the benefits of hydroelectric power and its environmental costs. In a changing policy climate, giving importance to renewable energy development and environmental protection, conflict potential between stakeholders is considerable. Navigation of conflict determines the scheme constructed, making sustainable hydropower a function of human choice. To meet the needs of practitioners, greater understanding of stakeholder conflict is needed. This paper presents an approach to illustrate the challenges that face small-scale hydropower development as perceived by the stakeholders involved, and how they influence decision-making. Using Gordleton Mill, Hampshire (UK), as an illustrative case, soft systems methodology, a systems modeling approach, was adopted. Through individual interviews, a range of problems were identified and conceptually modeled. Stakeholder bias towards favoring economic appraisal over intangible social and environmental aspects was identified; costs appeared more influential than profit. Conceptual evaluation of the requirements to meet a stakeholder-approved solution suggested a complex linear systems approach, considerably different from the real-life situation. The stakeholders introduced bias to problem definition by transferring self-perceived issues onto the project owner. Application of soft systems methodology caused a shift in project goals away from further investigation towards consideration of project suitability. The challenge of sustainable hydropower is global, with a need to balance environmental, economic, and social concerns. It is clear that in this type of conflict, an individual can significantly influence outcomes; highlighting the need for more structured approaches to deal with stakeholder conflicts in sustainable hydropower development.
Innovation characteristics and intention to adopt sustainable facilities management practices.
Lee, So Young; Kang, Mihyun
2013-01-01
Sustainable facilities management (SFM) is important because typical buildings consume more resources and energy than necessary, negatively impact the environment and generate lots of waste (US Department of Energy, 2003, Green Buildings). This study examined innovation characteristics that relate to facility managers' intention to adopt SFM practices. Based on the diffusion of innovations theory (Rogers 1962, 1995, Diffusion of Innovations. 4th ed. New York: The Free Press), an SFM innovation and adoption model was proposed. A survey was conducted with a convenience sample of 240 public facilities managers in 25 facilities management divisions in Seoul, Korea, and its metropolitan areas. Structural equation modelling was employed to analyse the data. The results showed that economic advantage and human comfort aspects are predictors for the intention of SFM adoption. Observability is positively relevant to the intention of SFM adoption. Complexity, however, is not a significant predictor for the intention of SFM adoption. Practical implications for sustainable products and systems and the built environment are suggested. To incorporate an innovation like sustainable practices, it is required to meet the needs of potential adopters. Innovation characteristics that influence facility managers' intention to adopt sustainable facilities management were examined. A survey was conducted. Economic advantage, human comfort and observability are predictors for the intention of adoption of sustainable practice.
Key Gaps for Enabling Plant Growth in Future Missions
NASA Technical Reports Server (NTRS)
Anderson, Molly S.; Barta, Daniel; Douglas, Grace; Fritsche, Ralph; Massa, Gioia; Wheeler, Ray; Quincy, Charles; Romeyn, Matthew; Motil, Brian; Hanford, Anthony
2017-01-01
Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented both in media and in serious concept studies. The complexity of controlled environment agriculture and of plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. The criticality of the research, and the ideal solution, will vary depending on the mission and type of system implementation being considered.
Politics of innovation in multi-level water governance systems
NASA Astrophysics Data System (ADS)
Daniell, Katherine A.; Coombes, Peter J.; White, Ian
2014-11-01
Innovations are being proposed in many countries in order to support change towards more sustainable and water secure futures. However, the extent to which they can be implemented is subject to complex politics and powerful coalitions across multi-level governance systems and scales of interest. Exactly how innovation uptake can be best facilitated or blocked in these complex systems is thus a matter of important practical and research interest in water cycle management. From intervention research studies in Australia, China and Bulgaria, this paper seeks to describe and analyse the behind-the-scenes struggles and coalition-building that occurs between water utility providers, private companies, experts, communities and all levels of government in an effort to support or block specific innovations. The research findings suggest that in order to ensure successful passage of the proposed innovations, champions for it are required from at least two administrative levels, including one with innovation implementation capacity, as part of a larger supportive coalition. Higher governance levels can play an important enabling role in facilitating the passage of certain types of innovations that may be in competition with currently entrenched systems of water management. Due to a range of natural biases, experts on certain innovations and disciplines may form part of supporting or blocking coalitions but their evaluations of worth for water system sustainability and security are likely to be subject to competing claims based on different values and expertise, so may not necessarily be of use in resolving questions of "best courses of action". This remains a political values-based decision to be negotiated through the receiving multi-level water governance system.
Sustainable urban systems: Co-design and framing for transformation.
Webb, Robert; Bai, Xuemei; Smith, Mark Stafford; Costanza, Robert; Griggs, David; Moglia, Magnus; Neuman, Michael; Newman, Peter; Newton, Peter; Norman, Barbara; Ryan, Chris; Schandl, Heinz; Steffen, Will; Tapper, Nigel; Thomson, Giles
2018-02-01
Rapid urbanisation generates risks and opportunities for sustainable development. Urban policy and decision makers are challenged by the complexity of cities as social-ecological-technical systems. Consequently there is an increasing need for collaborative knowledge development that supports a whole-of-system view, and transformational change at multiple scales. Such holistic urban approaches are rare in practice. A co-design process involving researchers, practitioners and other stakeholders, has progressed such an approach in the Australian context, aiming to also contribute to international knowledge development and sharing. This process has generated three outputs: (1) a shared framework to support more systematic knowledge development and use, (2) identification of barriers that create a gap between stated urban goals and actual practice, and (3) identification of strategic focal areas to address this gap. Developing integrated strategies at broader urban scales is seen as the most pressing need. The knowledge framework adopts a systems perspective that incorporates the many urban trade-offs and synergies revealed by a systems view. Broader implications are drawn for policy and decision makers, for researchers and for a shared forward agenda.
Perspectives and Challenges of Microbial Application for Crop Improvement
Timmusk, Salme; Behers, Lawrence; Muthoni, Julia; Muraya, Anthony; Aronsson, Anne-Charlotte
2017-01-01
Global population increases and climate change pose a challenge to worldwide crop production. There is a need to intensify agricultural production in a sustainable manner and to find solutions to combat abiotic stress, pathogens, and pests. Plants are associated with complex microbiomes, which have an ability to promote plant growth and stress tolerance, support plant nutrition, and antagonize plant pathogens. The integration of beneficial plant-microbe and microbiome interactions may represent a promising sustainable solution to improve agricultural production. The widespread commercial use of the plant beneficial microorganisms will require a number of issues addressed. Systems approach using microscale information technology for microbiome metabolic reconstruction has potential to advance the microbial reproducible application under natural conditions. PMID:28232839
Chen, Weiyu; Zuo, Huali; Li, Bei; Duan, Chengcheng; Rolfe, Barbara; Zhang, Bing; Mahony, Timothy J; Xu, Zhi Ping
2018-05-01
Nanomaterials have been widely tested as new generation vaccine adjuvants, but few evoke efficient immunoreactions. Clay nanoparticles, for example, layered double hydroxide (LDH) and hectorite (HEC) nanoparticles, have shown their potent adjuvanticity in generating effective and durable immune responses. However, the mechanism by which clay nanoadjuvants stimulate the immune system is not well understood. Here, it is demonstrated that LDH and HEC-antigen complexes form loose agglomerates in culture medium/serum. They also form nodules with loose structures in tissue after subcutaneous injection, where they act as a depot for up to 35 d. More importantly, clay nanoparticles actively and continuously recruit immune cells into the depot for up to one month, and stimulate stronger immune responses than FDA-approved adjuvants, Alum and QuilA. Sustained antigen release is also observed in clay nanoparticle depots, with 50-60% antigen released after 35 d. In contrast, Alum-antigen complexes show minimal antigen release from the depot. Importantly, LDH and HEC are more effective than QuilA and Alum in promoting memory T-cell proliferation. These findings suggest that both clay nanoadjuvants can serve as active vaccine platforms for sustained and potent immune responses. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanisms that enhance sustainability of p53 pulses.
Kim, Jae Kyoung; Jackson, Trachette L
2013-01-01
The tumor suppressor p53 protein shows various dynamic responses depending on the types and extent of cellular stresses. In particular, in response to DNA damage induced by γ-irradiation, cells generate a series of p53 pulses. Recent research has shown the importance of sustaining repeated p53 pulses for recovery from DNA damage. However, far too little attention has been paid to understanding how cells can sustain p53 pulses given the complexities of genetic heterogeneity and intrinsic noise. Here, we explore potential molecular mechanisms that enhance the sustainability of p53 pulses by developing a new mathematical model of the p53 regulatory system. This model can reproduce many experimental results that describe the dynamics of p53 pulses. By simulating the model both deterministically and stochastically, we found three potential mechanisms that improve the sustainability of p53 pulses: 1) the recently identified positive feedback loop between p53 and Rorα allows cells to sustain p53 pulses with high amplitude over a wide range of conditions, 2) intrinsic noise can often prevent the dampening of p53 pulses even after mutations, and 3) coupling of p53 pulses in neighboring cells via cytochrome-c significantly reduces the chance of failure in sustaining p53 pulses in the presence of heterogeneity among cells. Finally, in light of these results, we propose testable experiments that can reveal important mechanisms underlying p53 dynamics.
Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair
2017-03-01
Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizner, Jack Harry; Passell, Howard David; Keller, Elizabeth James Kistin
Sustainability is a critical national security issue for the U.S. and other nations. Sandia National Laboratories (SNL) is already a global leader in sustainability science and technology (SS&T) as documented in this report. This report documents the ongoing work conducted this year as part of the Sustainability Innovation Foundry (SIF). The efforts of the SIF support Sandia's national and international security missions related to sustainability and resilience revolving around energy use, water use, and materials, both on site at Sandia and externally. The SIF leverages existing Sandia research and development (R&D) in sustainability science and technology to support new solutionsmore » to complex problems. The SIF also builds on existing Sandia initiatives to support transformation of Sandia into a fully sustainable entity in terms of materials, energy, and water use. In the long term, the SIF will demonstrate the efficacy of sustainability technology developed at Sandia through prototyping and test bed approaches and will provide a common platform for support of solutions to the complex problems surrounding sustainability. Highlights from this year include the Sustainability Idea Challenge, improvements in facilities energy use, lectures and presentations from relevant experts in sustainability [Dr. Barry Hughes, University of Denver], and significant development of the Institutional Transformation (IX) modeling tools to support evaluation of proposed modifications to the SNL infrastructure to realize energy savings.« less
Bytes: Weapons of Mass Disruption
2002-04-01
advances compound the problems of protecting complex global infrastructures from attacks. How should the U.S. integrate the many disparate...deploy and sustain military forces.".16 According to the direst of information warfare theories , all computer systems are vulnerable to attack. The...Crisis Show of Force Punitive Strikes Armed Intervention Regional Conflict Regional War Global Conventional War Strategic Nuclear War IW & C2W area of
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Authmann, Christian; Dreber, Niels; Hess, Bastian; Kellner, Klaus; Morgenthal, Theunis; Nauss, Thomas; Seeger, Bernhard; Tsvuura, Zivanai; Wiegand, Kerstin
2017-04-01
Bush encroachment is a syndrome of land degradation that occurs in many savannas including those of southern Africa. The increase in density, cover or biomass of woody vegetation often has negative effects on a range of ecosystem functions and services, which are hardly reversible. However, despite its importance, neither the causes of bush encroachment, nor the consequences of different resource management strategies to combat or mitigate related shifts in savanna states are fully understood. The project "IDESSA" (An Integrative Decision Support System for Sustainable Rangeland Management in Southern African Savannas) aims to improve the understanding of the complex interplays between land use, climate patterns and vegetation dynamics and to implement an integrative monitoring and decision-support system for the sustainable management of different savanna types. For this purpose, IDESSA follows an innovative approach that integrates local knowledge, botanical surveys, remote-sensing and machine-learning based time-series of atmospheric and land-cover dynamics, spatially explicit simulation modeling and analytical database management. The integration of the heterogeneous data will be implemented in a user oriented database infrastructure and scientific workflow system. Accessible via web-based interfaces, this database and analysis system will allow scientists to manage and analyze monitoring data and scenario computations, as well as allow stakeholders (e. g. land users, policy makers) to retrieve current ecosystem information and seasonal outlooks. We present the concept of the project and show preliminary results of the realization steps towards the integrative savanna management and decision-support system.
Fessner, Wolf-Dieter
2015-12-25
Systems Biocatalysis is an emerging concept of organizing enzymes in vitro to construct complex reaction cascades for an efficient, sustainable synthesis of valuable chemical products. The strategy merges the synthetic focus of chemistry with the modular design of biological systems, which is similar to metabolic engineering of cellular production systems but can be realized at a far lower level of complexity from a true reductionist approach. Such operations are free from material erosion by competing metabolic pathways, from kinetic restrictions by physical barriers and regulating circuits, and from toxicity problems with reactive foreign substrates, which are notorious problems in whole-cell systems. A particular advantage of cell-free concepts arises from the inherent opportunity to construct novel biocatalytic reaction systems for the efficient synthesis of non-natural products ("artificial metabolisms") by using enzymes specifically chosen or engineered for non-natural substrate promiscuity. Examples illustrating the technology from our laboratory are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Min; Lu, Liqian; Wang, Xiaoyue; Lin, Houke; Zhou, Qingsong
2017-11-01
For sustain the release rate and prolong half-life of breviscapine in vivo, the breviscapine-loaded halloysite nanotubes complex was prepared. The breviscapine was encapsulated into halloysite nanotubes (HNTs) using a vacuum process. The complex were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electron microscope (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy(FT-IR). The formation of breviscapine-loaded HNTs complex was proved by the test results of SEM, DSC, TEM and IR analysise. The results confirmed that breviscapine was successfully loaded in the halloysite nanotubes. Additionally, the in vitro drug release of breviscapine from breviscapine-loaded HNTs complex was investigated, the result indicated this complex has apparent sustained-release effect.
Tannate complexes of antihistaminic drug: sustained release and taste masking approaches.
Rahman, Ziyaur; Zidan, Ahmed S; Berendt, Robert T; Khan, Mansoor A
2012-01-17
The aim of this investigation was to evaluate the complexation potential of brompheniramine maleate (BPM) and tannic acid (TA) for sustained release and taste masking effects. The complexes (1:1-1:7 TA to BPM ratio) were prepared by the solvent evaporation method using methanol, phosphate buffer pH 6.8 or 0.1N HCl as common solvents. The complexes were characterized microscopically by scanning electron microscopy (SEM), chemically by Fourier transform infrared (FTIR) and solid-state NMR (SSNMR), thermally by differential scanning calorimetry (DSC), for crystallinity by powder X-ray powder diffraction (PXRD), for organoleptic evaluation by electronic tongue (e-tongue), and for solubility in 0.1N HCl and phosphate buffer pH 6.8. The dissolution studies were carried out using the USP II method at 50 rpm in 500 ml of dissolution media (0.1N HCl or phosphate buffer pH 6.8). SEM images revealed that the morphology of complexes were completely different from the individual components, and all complexes had the same morphological characteristics, irrespective of the solvent used for their preparation, pH or ratio of BPM and TA. The FTIR spectra showed the presence of chemical interactions between the TA and BPM. DSC, PXRD and SSNMR indicated that the drug lost its crystalline nature by formation of the complex. Complexation has significantly reduced the solubility of BPM and sustained the drug release up to 24h in phosphate buffer pH 6.8 media. The bitter taste of the BPM was completely masked which was indicated by Euclidean distance values which was far from the drug but near to its placebo in the complexes in all ratios studied. The taste masked complexes can be potentially developed as suitable dosage forms for pediatric use. In summary, complexation of BPM and TA effectively sustained the dissolution and masked the bitter taste of drug for the development of suitable dosage forms for pediatric use. Published by Elsevier B.V.
Early-career experts essential for planetary sustainability
Lim, Michelle; Lynch, Abigail J.; Fernández-Llamazares, Alvaro; Balint, Lenke; Basher, Zeenatul; Chan, Ivis; Jaureguiberry, Pedro; Mohamed, A.A.A.; Mwampamba, Tuyeni H.; Palomo, Ignacio; Pliscoff, Patricio; Salimov, R.A.; Samakov, Aibek; Selomane, Odirilwe; Shrestha, Uttam B.; Sidorovich, Anna A.
2017-01-01
Early-career experts can play a fundamental role in achieving planetary sustainability by bridging generational divides and developing novel solutions to complex problems. We argue that intergenerational partnerships and interdisciplinary collaboration among early-career experts will enable emerging sustainability leaders to contribute fully to a sustainable future. We review 16 international, interdisciplinary, and sustainability-focused early-career capacity building programs. We conclude that such programs are vital to developing sustainability leaders of the future and that decision-making for sustainability is likely to be best served by strong institutional cultures that promote intergenerational learning and involvement.
Financial sustainability of academic health centers: identifying challenges and strategic responses.
Stimpson, Jim P; Li, Tao; Shiyanbola, Oyewale O; Jacobson, Janelle J
2014-06-01
Academic health centers (AHCs) play a vital role in the health care system. The training of health care personnel and delivery of health care services, especially to the most complex and financially challenged patients, has been a responsibility increasingly shouldered by AHCs over the years. Additionally, AHCs play a significant role in researching and developing new treatment protocols, including discovering and validating new health technologies. However, AHCs face unique financial challenges in fulfilling their social mission in the health care system. Reforms being implemented under the Affordable Care Act and shifting economic patterns are threatening the financial sustainability of AHCs.The authors review challenges facing AHCs, including training new health care professionals with fewer funding resources, disproportionate clinical care of complex and costly patients, charity care to uninsured and underinsured, and reduced research funding opportunities. Then, they provide a review of some potential solutions to these challenges, including new reimbursement methods, improvements in operational efficiency, price regulation, subsidization of education, improved decision making and communication, utilization of industrial management tools, and increasing internal and external cooperation. Devising solutions to the evolving problems of AHCs is crucial to improving health care delivery in the United States. Most likely, a combination of market, government, and system reforms will be needed to improve the viability of AHCs and assist them in fulfilling their social and organizational missions.
Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.
2014-01-01
ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435
Huang, Jinheng; Lin, Huaqing; Peng, Bingxin; Huang, Qianfeng; Shuai, Fangzhou; Xie, Yanxian
2018-04-30
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f 2 ) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.
A framework for guiding sustainability assessment and on-farm strategic decision making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coteur, Ine, E-mail: ine.coteur@ilvo.vlaanderen.be; Marchand, Fleur; University of Antwerp, Ecosystem Management Research Group and IMDO, Universiteitsplein 1, 2610 Wilrijk
Responding to future challenges and societal needs, various actions are taken in agriculture to evolve towards more sustainable farming practices. These actions imply strategic choices and suppose adequate sustainability assessments to identify, measure, evaluate and communicate sustainable development. However, literature is scarce on the link between strategic decision making and sustainability assessment. As questions emerge on how, what and when to measure, the objective of this paper is to construct a framework for guiding sustainability assessment and on-farm strategic decision making. Qualitative research on own experiences from the past and a recent project revealed four categories of actual needs farmers,more » advisors and experts have regarding sustainability assessment: context, flexibility, focus on farm and farmer and communication. These stakeholders' needs are then incorporated into a two-dimensional framework that marries the intrinsic complexity of sustainability assessment tools and the time frame of strategic decision making. The framework allows a farm-specific and flexible approach leading to harmonized actions towards sustainable farming. As this framework is mainly a procedural instrument to guide the use of sustainability assessment tools within strategic decision making, it fits to incorporate, even guide, future research on sustainability assessment tools themselves and on their adoption on farms. - Highlights: • How to link sustainability assessment and on-farm strategic decision making is unclear. • Two-dimensional framework incorporating stakeholders' needs regarding sustainability assessment • Linking complexity of sustainability assessment tools and the time frame of strategic decision making • Farm-specific and flexible approach to harmonize action towards sustainable farming.« less
ERIC Educational Resources Information Center
Patterson, Leslie; Baldwin, Shelia; Araujo, Juan; Shearer, Ragina; Stewart, Mary Amanda
2010-01-01
This paper argues that educators interested in sustainability should look to complexity science for guiding principles. When we view our classrooms and campuses as living, dynamic ecologies, we can, as insiders, make sense of what might otherwise seem chaotic or meaningless. This perspective enables us not only to describe and explain what is…
A Complexity Theory Approach to Sustainability: A Longitudinal Study in Two London NHS Hospitals
ERIC Educational Resources Information Center
Mitleton-Kelly, Eve
2011-01-01
Purpose: The purpose of this paper is to demonstrate that organisational sustainability is not a continuation of the status quo but, seen from a complexity theory perspective, is a continuous dynamic process of co-evolution with a changing environment. It is underpinned by learning, and it creates new structures and ways of working to adjust and…
Costanza, Robert; Graumlich, Lisa; Steffen, Will; Crumley, Carole; Dearing, John; Hibbard, Kathy; Leemans, Rik; Redman, Charles; Schimel, David
2007-11-01
Understanding the history of how humans have interacted with the rest of nature can help clarify the options for managing our increasingly interconnected global system. Simple, deterministic relationships between environmental stress and social change are inadequate. Extreme drought, for instance, triggered both social collapse and ingenious management of water through irrigation. Human responses to change, in turn, feed into climate and ecological systems, producing a complex web of multidirectional connections in time and space. Integrated records of the co-evolving human-environment system over millennia are needed to provide a basis for a deeper understanding of the present and for forecasting the future. This requires the major task of assembling and integrating regional and global historical, archaeological, and paleoenvironmental records. Humans cannot predict the future. But, if we can adequately understand the past, we can use that understanding to influence our decisions and to create a better, more sustainable and desirable future.
NASA Astrophysics Data System (ADS)
Welch, Jonathan
This case study focused on obsolescence management constraints that occur during development of sustainment-dominated systems. Obsolescence management constraints were explored in systems expected to last 20 years or more and that tend to use commercial off-the-shelf products. The field of obsolescence has received little study, but obsolescence has a large cost for military systems. Because developing complex systems takes an average of 3 to 8 years, and commercial off-the-shelf components are typically obsolete within 3 to 5 years, military systems are often deployed with obsolescence issues that are transferred to the sustainment community to determine solutions. The main problem addressed in the study was to identify the constraints that have caused 70% of military systems under development to be obsolete when they are delivered. The purpose of the study was to use a qualitative case study to identify constraints that interfered with obsolescence management occurring during the development stages of a program. The participants of this case study were managers, subordinates, and end-users who were logistics and obsolescence experts. Researchers largely agree that proactive obsolescence management is a lower cost solution for sustainment-dominated systems. Program managers must understand the constraints and understand the impact of not implementing proactive solutions early in the development program lifecycle. The conclusion of the study found several constraints that prevented the development program from early adoption of obsolescence management theories, specifically pro-active theories. There were three major themes identified: (a) management commitment, (b) lack of details in the statement of work, and (c) vendor management. Each major theme includes several subthemes. The recommendation is future researchers should explore two areas: (a) comparing the cost of managing obsolescence early in the development process versus the costs of managing later, (b) exploring the costs and value to start a centralized obsolescence group at each major defense contractor location.
Seiler, Catherine Y; Eschbacher, Jennifer; Bowser, Robert; LaBaer, Joshua
2015-12-01
Sustainability in the biobanking community has recently become an important and oft-discussed issue as biorepositories struggle to balance limited external funding and complex cost recovery models with high operating costs and the desire to provide the highest quality materials and services to the research community. A multi-faceted view of biobanking sustainability requires consideration of operational and social sustainability in addition to the historical focus exclusively on financial sustainability. Planning and implementing this three pillar model creates a well-rounded biorepository that meets the needs of all the major stakeholders: the funders, the patients/depositors, and the researcher recipients. Often the creation of a detailed business plan is the first step to develop goals and objectives that lead down a path towards sustainability. The definition of sustainability and the complexity of a sustainable business plan may differ for each biorepository. The DNASU Plasmid Repository at Arizona State University stores and distributes DNA plasmids to researchers worldwide, and the Biobank Core Facility at St. Joseph's Hospital and Barrow Neurological Institute consents patients and collects, stores, and distributes human tissue and blood samples. We will discuss these two biorepositories, their similar and different approaches to sustainability and business planning, their challenges in creating and implementing their sustainability plan, and their responses to some of these challenges. From these experiences, the biobanks share lessons learned about planning for sustainability that are applicable to all biorepositories.
Springer, Nathaniel P.; Garbach, Kelly; Guillozet, Kathleen; Haden, Van R.; Hedao, Prashant; Hollander, Allan D.; Huber, Patrick R.; Ingersoll, Christina; Langner, Megan; Lipari, Genevieve; Mohammadi, Yaser; Musker, Ruthie; Piatto, Marina; Riggle, Courtney; Schweisguth, Melissa; Sin, Emily; Snider, Sara; Vidic, Nataša; White, Aubrey; Brodt, Sonja; Quinn, James F.; Tomich, Thomas P.
2015-01-01
Understanding how to source agricultural raw materials sustainably is challenging in today’s globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly—depending largely on the stakeholder perspective—as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 “integrated” issues—24 impact issues and 36 vulnerability issues —that are composed of 318 “component” issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them. Issues in the impact framework generally have fewer gaps than those in the vulnerability framework. PMID:26065899
LivestockPlus: Forages, sustainable intensification, and food security in the tropics.
Rudel, Thomas K; Paul, Birthe; White, Douglas; Rao, I M; Van Der Hoek, Rein; Castro, Aracely; Boval, Maryline; Lerner, Amy; Schneider, Laura; Peters, Michael
2015-11-01
The increased use of grain-based feed for livestock during the last two decades has contributed, along with other factors, to a rise in grain prices that has reduced human food security. This circumstance argues for feeding more forages to livestock, particularly in the tropics where many livestock are reared on small farms. Efforts to accomplish this end, referred to as the 'LivestockPlus' approach, intensify in sustainable ways the management of grasses, shrubs, trees, and animals. By decoupling the human food and livestock feed systems, these efforts would increase the resilience of the global food system. Effective LivestockPlus approaches take one of two forms: (1) simple improvements such as new forage varieties and animal management practices that spread from farmer to farmer by word of mouth, or (2) complex sets of new practices that integrate forage production more closely into farms' other agricultural activities and agro-ecologies.
NASA Astrophysics Data System (ADS)
Yates, D. N.; Basdekas, L.; Rajagopalan, B.; Stewart, N.
2013-12-01
Municipal water utilities often develop Integrated Water Resource Plans (IWRP), with the goal of providing a reliable, sustainable water supply to customers in a cost-effective manner. Colorado Springs Utilities, a 5-service provider (potable and waste water, solid waste, natural gas and electricity) in Colorado USA, recently undertook an IWRP. where they incorporated water supply, water demand, water quality, infrastructure reliability, environmental protection, and other measures within the context of complex water rights, such as their critically important 'exchange potential'. The IWRP noted that an uncertain climate was one of the greatest sources of uncertainty to achieving a sustainable water supply to a growing community of users. We describe how historic drought, paleo-climate, and climate change projections were blended together into climate narratives that informed a suite of water resource systems models used by the utility to explore the vulnerabilities of their water systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VANGELAS, KAREN
2005-05-19
Nature's inherent ability to cleanse itself is at the heart of Monitored Natural Attenuation (MNA). The complexity comes when one attempts to measure and calculate this inherent ability, called the Natural Attenuation Capacity (NAC), and determine if it is sufficient to cleanse the system to agreed upon criteria. An approach that is simple in concept for determining whether the NAC is sufficient for MNA to work is the concept of a mass balance. Mass balance is a robust framework upon which all decisions can be made. The inflows to and outflows from the system are balanced against the NAC ofmore » the subsurface system. For MNA to be acceptable, the NAC is balanced against the contaminant loading to the subsurface system with the resulting outflow from the system being in a range that is acceptable to the regulating and decision-making parties. When the system is such that the resulting outflow is not within an acceptable range, the idea of taking actions that are sustainable and that will bring the system within the acceptable range of outflows is evaluated. These sustainable enhancements are being developed under the Enhanced Attenuation (EA) concept.« less
On modeling complex interplay in small-scale self-organized socio-hydrological systems
NASA Astrophysics Data System (ADS)
Muneepeerakul, Rachata
2017-04-01
Successful and sustainable socio-hydrological systems, as in any coupled natural human-systems, require effective governance, which depends on the existence of proper infrastructure (both hard and soft). Recent work has addressed systems in which resource users and the organization responsible for maintaining the infrastructure are separate entities. However, many socio-hydrological systems, especially in developing countries, are small and without such formal division of labor; rather, such division of labor typically arises from self-organization within the population. In this work, we modify and mathematically operationalize a conceptual framework by developing a system of differential equations that capture the strategic behavior within such a self-organized population, its interplay with infrastructure characteristics and hydrological dynamics, and feedbacks between these elements. The model yields a number of insightful conditions related to long-term sustainability and collapse of the socio-hydrological system in the form of relationships between biophysical and social factors. These relationships encapsulate nonlinear interactions of these factors. The modeling framework is grounded in a solid conceptual foundation upon which additional modifications and realism can be built for potential reconciliation between socio-hydrology with other related fields and further applications.
Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics
Bartelme, Ryan P.; Oyserman, Ben O.; Blom, Jesse E.; Sepulveda-Villet, Osvaldo J.; Newton, Ryan J.
2018-01-01
As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops. In contrast, aquaponics is a water-based agricultural system, in which production relies upon internal nutrient recycling to co-cultivate plants with fish. This arrangement has management benefits compared to soil-based agriculture, as system components may be designed to directly harness microbial processes that make nutrients bioavailable to plants in downstream components. However, aquaponic systems also present unique management challenges. Microbes may compete with plants for certain micronutrients, such as iron, which makes exogenous supplementation necessary, adding production cost and process complexity, and limiting profitability and system sustainability. Research on PGPMs in aquaponic systems currently lags behind traditional agricultural systems, however, it is clear that certain parallels in nutrient use and plant-microbe interactions are retained from soil-based agricultural systems. PMID:29403461
Adams, K.A.; Vangelas, K.M.; Looney, B.B.; Chapelle, F.; Early, T.; Gilmore, T.; Sink, C.H.
2005-01-01
Nature's inherent ability to cleanse itself is at the heart of Monitored Natural Attenuation (MNA). The complexity comes when one attempts to measure and calculate this inherent ability, called the Natural Attenuation Capacity (NAC), and determine if it is sufficient to cleanse the system to agreed upon criteria. An approach that is simple in concept for determining whether the NAC is sufficient for MNA to work is the concept of a mass balance. Mass balance is a robust framework upon which all decisions can be made. The inflows to and outflows from the system are balanced against the NAC of the subsurface system. For MNA to be acceptable, the NAC is balanced against the contaminant loading to the subsurface system with the resulting outflow from the system being in a range that is acceptable to the regulating and decision-making parties. When the system is such that the resulting outflow is not within an acceptable range, the idea of taking actions that are sustainable and that will bring the system within the acceptable range of outflows is evaluated. These sustainable enhancements are being developed under the Enhanced Attenuation (EA) concept. Copyright ASCE 2005.
Gumbo, B
2000-01-01
The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.
Lin, Qianming; Yang, Yumeng; Hu, Qian; Guo, Zhong; Liu, Tao; Xu, Jiake; Wu, Jianping; Kirk, Thomas Brett; Ma, Dong; Xue, Wei
2017-02-01
Hydrogels have attracted much attention in cancer therapy and tissue engineering due to their sustained gene delivery ability. To obtain an injectable and high-efficiency gene delivery hydrogel, methoxypolyethylene glycol (MPEG) was used to conjugate with the arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) by click reaction, and then the synthesized MPEG-PLLD-Arg interacted with α-cyclodextrin (α-CD) to form the supramolecular hydrogel by the host-guest interaction. The gelation dynamics, hydrogel strength and shear viscosity could be modulated by α-CD content in the hydrogel. MPEG-PLLD-Arg was confirmed to bind and deliver gene effectively, and its gene transfection efficiency was significantly higher than PEI-25k under its optimized condition. After gelation, MMP-9 shRNA plasmid (pMMP-9) could be encapsulated into the hydrogel matrix in situ and be released from the hydrogels sustainedly, as the release rate was dependent on α-CD content. The released MPEG-PLLD-Arg/pMMP-9 complex still showed better transfection efficiency than PEI-25k and induced sustained tumor cell apoptosis. Also, in vivo assays indicated that this pMMP-9-loaded supramolecular hydrogel could result in the sustained tumor growth inhibition meanwhile showed good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate for long-term gene therapy. To realize the sustained gene delivery for gene therapy, a supramolecular hydrogel with high-efficiency gene delivery ability was prepared through the host-guest interaction between α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron. The obtained hydrogel was injectable and biocompatible with adjustable physicochemical property. More importantly, the hydrogel showed the high-efficiency and sustained gene transfection to our used cells, better than PEI-25k. The supramolecular hydrogel resulted in the sustained tumor growth inhibition meanwhile keep good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate in long-term gene therapy and tissue engineering. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
McPherson, Charmaine; Ploeg, Jenny; Edwards, Nancy; Ciliska, Donna; Sword, Wendy
2017-02-01
The purpose of this study was to examine key processes and supportive and inhibiting factors involved in the development, evolution, and sustainability of a child health network in rural Canada. This study contributes to a relatively new research agenda aimed at understanding inter-organizational and cross-sectoral health networks. These networks encourage collaboration focusing on complex issues impacting health - issues that individual agencies cannot effectively address alone. This paper presents an overview of the study findings. An explanatory qualitative case study approach examined the Network's 13-year lifespan. Data sources were documents and Network members, including regional and 71 provincial senior managers from 11 child and youth service sectors. Data were collected through 34 individual interviews and a review of 127 documents. Interview data were analyzed using framework analysis methods; Prior's approach guided document analysis. Three themes related to network development, evolution and sustainability were identified: (a) Network relationships as system triggers, (b) Network-mediated system responsiveness, and (c) Network practice as political. Study findings have important implications for network organizational development, collaborative practice, interprofessional education, public policy, and public system responsiveness research. Findings suggest it is important to explicitly focus on relationships and multi-level socio-political contexts, such as supportive policy environments, in understanding health networks. The dynamic interplay among the Network members; central supportive and inhibiting factors; and micro-, meso-, and macro-organizational contexts was identified.
Redefining public health leadership in the sustainable development goal era.
Reddy, K Srinath; Mathur, Manu Raj; Negi, Sagri; Krishna, Bhargav
2017-06-01
Adoption of the Sustainable Development Goals (SDGs) by member states of the United Nations (UN) has set a new agenda for public health action at national and global levels. The changed context calls for a reframing of what constitutes effective leadership in public health, through a construct that reflects the interdependence of leadership at multiple levels across the health system and its partners in other sectors. This is especially important in the context of Low and Middle Income Countries (LMICs) that are facing complex demographic and epidemiological transitions. The health system needs to exercise leadership that effectively mobilises all its resources for maximising health impact, and channels trans-disciplinary learning into well-coordinated multi-sectoral action on the wider determinants of health. Leadership is essential not only at the level of inspirational individuals who can create collective vision and commitment but also at the level of supportive institutions situated in or aligned to the health system. In turn, the health system as a whole has to exercise leadership that advances public health in the framework of sustainable development. This commentary examines the desirable attributes of effective leadership at each of these levels and explores the nature of their inter-dependence. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tot, Bojana; Srđević, Bojan; Vujić, Bogdana; Russo, Mário Augusto Tavares; Vujić, Goran
2016-08-01
The problems of waste management have become increasingly complex in recent decades. The increasing amount of generated waste, adopted legislation in the field of waste management, administrative issues, economic impacts and social awareness are important drivers in achieving a sustainable waste management system. However, in practice, there are many other drivers that are often mutually in conflict. The purpose of this research is to define the precise driver and their corresponding sub-drivers, which are relevant for developing a waste management system and, on the basis of their importance, to determine which has the predominant influence on the slow development of a waste management system at the national and regional level, within the Republic of Serbia and similar countries of southeast Europe. This research presents two levels of decision making: the first is a pair-wise comparison of the drivers in relation to the goal and the second is a pair-wise comparison of the sub-drivers in relation to the driver and in relation to the goal. Results of performed analyses on the waste management drivers were integrated via the decision-making process supported by an analytic hierarchy process (AHP). The final results of this research shows that the Institutional-Administrative driver is the most important for developing a sustainable waste management system. © The Author(s) 2016.
Bates, Imelda; Taegtmeyer, Miriam; Squire, S Bertel; Ansong, Daniel; Nhlema-Simwaka, Bertha; Baba, Amuda; Theobald, Sally
2011-03-28
Despite substantial investment in health capacity building in developing countries, evaluations of capacity building effectiveness are scarce. By analysing projects in Africa that had successfully built sustainable capacity, we aimed to identify evidence that could indicate that capacity building was likely to be sustainable. Four projects were selected as case studies using pre-determined criteria, including the achievement of sustainable capacity. By mapping the capacity building activities in each case study onto a framework previously used for evaluating health research capacity in Ghana, we were able to identify activities that were common to all projects. We used these activities to derive indicators which could be used in other projects to monitor progress towards building sustainable research capacity. Indicators of sustainable capacity building increased in complexity as projects matured and included- early engagement of stakeholders; explicit plans for scale up; strategies for influencing policies; quality assessments (awareness and experiential stages)- improved resources; institutionalisation of activities; innovation (expansion stage)- funding for core activities secured; management and decision-making led by southern partners (consolidation stage).Projects became sustainable after a median of 66 months. The main challenges to achieving sustainability were high turnover of staff and stakeholders, and difficulties in embedding new activities into existing systems, securing funding and influencing policy development. Our indicators of sustainable capacity building need to be tested prospectively in a variety of projects to assess their usefulness. For each project the evidence required to show that indicators have been achieved should evolve with the project and they should be determined prospectively in collaboration with stakeholders.
Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia
2014-09-30
Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates of protection and to identify protective malaria antigens.
Urban water sustainability: an integrative framework for regional water management
NASA Astrophysics Data System (ADS)
Gonzales, P.; Ajami, N. K.
2015-11-01
Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.
NASA Astrophysics Data System (ADS)
Majerska-Pałubicka, Beata
2017-10-01
Currently, there is a tendency in architecture to search for solutions implementing the assumptions of the sustainable development paradigm. A number of them are components of architecture, which in the future will certainly affect urban planning and architecture to a much greater extent. On the one hand, an issue of great significance is the need to integrate sustainable system elements with the spatial structure of environmentally friendly architectural facilities and complexes and to determine their influence on design solutions as well as the implementation, operation and recycling, while on the other hand, it is very important to solve the problem of how to design buildings, housing estates and towns so that their impact on the environment will be acceptable, i.e. will not exceed the possibilities of natural environment regeneration and, how to cooperate in interdisciplinary design teams to reach an agreement and acceptance so as to achieve harmony between the built and natural environment, which is a basis of sustainable development. In this broad interdisciplinary context an increasing importance is being attached to design strategies, systems of evaluating designs and buildings as well as tools to support integrated activities in the field of architectural design. The above topics are the subject of research presented in this paper. The basic research aim of the paper is: to look for a current method of solving design tasks within the framework of Integrated Design Process (IDP) using modern design tools and technical possibilities, in the context of sustainable development imperative, including, the optimisation of IDP design strategies regarding the assumptions of conscious creation of sustainable built environment, adjusted to Polish conditions. As a case study used examples of Scandinavian housing settlements, sustainable in a broad context.
Willging, Cathleen E; Green, Amy E; Gunderson, Lara; Chaffin, Mark; Aarons, Gregory A
2015-02-01
Policymakers shape implementation and sustainment of evidence-based practices (EBPs), whether they are developing or responding to legislation and policies or negotiating public sector resource constraints. As part of a large mixed-method study, we conducted qualitative interviews with 24 policymakers involved in delivery of the same EBP in two U.S. states. We analyzed transcripts via open and focused coding techniques to identify the commonality, diversity, and complexity of implementation challenges; approaches to overcoming those challenges; and the importance of system-level contextual factors in ensuring successful implementation. Key findings centered on building support and leadership for EBPs; funding and contractual strategies; partnering with stakeholders; tackling challenges via proactive planning and problem solving; and the political, legal, and systemic pressures affecting EBP longevity. The policymaker perspectives offer guidance on nurturing system and organizational practice environments to achieve positive outcomes and for optimally addressing macro-level influences that bear upon the instantiation of EBPs in public sector child welfare systems. © The Author(s) 2014.
Living in Health, Harmony, and Beauty: The Diné (Navajo) Hózhó Wellness Philosophy
Koithan, Mary
2015-01-01
Hózhó is the complex wellness philosophy and belief system of the Diné (Navajo) people, comprised of principles that guide one's thoughts, actions, behaviors, and speech. The alignment of integrative nursing principles and the Hózhó Wellness Philosophy illustrates the power that integrative nursing offers as a meta-theoretical perspective that can transform our healthcare system so that it is inclusive and responsive to the needs of our varied populations. Integrative nursing offers the opportunity to re-introduce cultural wellness wisdom, such as Hózhó, as a means to improve whole-person/whole-systems wellbeing and resilience. Integrative nursing, through the acceptance and validation of indigenous health-sustaining wisdom, contributes to the delivery of effective, authentic, culturally tailored, whole-person/whole-system, patient-centered, relationship-based healthcare. Highlighting the Diné Hózhó philosophy re-introduces this philosophy to the Diné, other American Indian/Alaska Native nations, global indigenous cultures, and even nonindigenous people of the world as a means to promote and sustain global health and wellbeing. PMID:25984415
Willging, Cathleen E.; Green, Amy E.; Gunderson, Lara; Chaffin, Mark; Aarons, Gregory A.
2015-01-01
Policymakers shape implementation and sustainment of evidence-based practices (EBPs), whether they are developing or responding to legislation and policies or negotiating public sector resource constraints. As part of a large mixed-method study, we conducted qualitative interviews with 24 policymakers involved in delivery of the same EBP in two U.S. states. We analyzed transcripts via open and focused coding techniques to identify the commonality, diversity, and complexity of implementation challenges; approaches to overcoming those challenges; and the importance of system-level contextual factors in ensuring successful implementation. Key findings centered on building support and leadership for EBPs; funding and contractual strategies; partnering with stakeholders; tackling challenges via proactive planning and problem solving; and the political, legal, and systemic pressures affecting EBP longevity. The policymaker perspectives offer guidance on nurturing system and organizational practice environments to achieve positive outcomes and for optimally addressing macro-level influences that bear upon the instantiation of EBPs in public sector child welfare systems. PMID:25125232
Protected Natural Areas of Puerto Rico
William A. Gould; Maya Quinones; Mariano Solorzano; Waldemar Alcobas; Caryl Alarcon
2011-01-01
Protection of natural areas is essential to conserving biodiversity and maintaining ecosystem services. Benefits and services provided by natural areas are complex, interwoven, life-sustaining, and necessary for a healthy environment and a sustainable future (Daily et al. 1997). They include clean water and air, sustainable wildlife populations and habitats, stable...
Practice Makes Pedagogy--John Dewey and Skills-Based Sustainability Education
ERIC Educational Resources Information Center
Tarrant, Seaton Patrick; Thiele, Leslie Paul
2016-01-01
Purpose: The purpose of this paper is to ground contemporary sustainability education in John Dewey's democratic pedagogy. Specifically, the authors argue that Dewey's thought anticipates, and theoretically informs, the sustainability skill set required of contemporary citizens in a complex and changing world. Design/methodology/approach: For…
The Misuses of Sustainability: Adult Education, Citizenship and the Dead Hand of Neoliberalism
ERIC Educational Resources Information Center
Holford, John
2016-01-01
"Sustainability" has a captivating but disingenuous simplicity: its meanings are complex, and have political and policy significance. Exploring the application of the term to adult education, this paper argues that a particular discourse of "sustainability" has become a common-sense, short-circuiting critical analysis and…
An Aggregated and Dynamic Analysis of Innovations in Campus Sustainability
ERIC Educational Resources Information Center
Washington-Ottombre, Camille; Bigalke, Siiri
2018-01-01
Purpose: This paper aims to compose a systematic understanding of campus sustainability innovations and unpack the complex drivers behind the elaboration of specific innovations. More precisely, the authors ask two fundamental questions: What are the topics and modes of implementation of campus sustainability innovations? What are the external and…
Teachers' Reflections on an Education for Sustainable Development Project
ERIC Educational Resources Information Center
Villanen, Heli
2014-01-01
Sustainable development includes controversial values and complex issues such as energy consumption contra natural resources. This paper discusses a school project involving teachers from pre-schools to upper secondary schools in Sweden. The project aimed to support the teaching of energy issues and more generally sustainable development. During…
Cortes, Pablo A; Bozinovic, Francisco; Blier, Pierre U
2018-07-01
Mammalian torpor is a phenotype characterized by a controlled decline of metabolic rate, generally followed by a reduction in body temperature. During arousal from torpor, both metabolic rate and body temperature rapidly returns to resting levels. Metabolic rate reduction experienced by torpid animals is triggered by active suppression of mitochondrial respiration, which is rapidly reversed during rewarming process. In this study, we analyzed the changes in the maximal activity of key enzymes related to electron transport system (complexes I, III and IV) in six tissues of torpid, arousing and euthermic Chilean mouse-opossums (Thylamys elegans). We observed higher maximal activities of complexes I and IV during torpor in brain, heart and liver, the most metabolically active organs in mammals. On the contrary, higher enzymatic activities of complexes III were observed during torpor in kidneys and lungs. Moreover, skeletal muscle was the only tissue without significant differences among stages in all complexes evaluated, suggesting no modulation of oxidative capacities of electron transport system components in this thermogenic tissue. In overall, our data suggest that complexes I and IV activity plays a major role in initiation and maintenance of metabolic suppression during torpor in Chilean mouse-opossum, whereas improvement of oxidative capacities in complex III might be critical to sustain metabolic machinery in organs that remains metabolically active during torpor. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Fischer, Mary Margaret
2017-01-01
The significance of agriculture to future generations is unparalleled. The United Nations projects the global population to swell to 9.75 billion people by 2050, and to proliferate to 11.2 billion by 2100. The non-agricultural population has little to no understanding or comprehension of the complexities of sustaining a viable agricultural system.…
Issues of Food Chain Security and Case Studies in the Czech Army
NASA Astrophysics Data System (ADS)
Komar, Ales; Vasicka, Pavlina
Food supply system is fundamental extremely open complex. Global challenge is acknowledged and must be considered because food is important source of existence and can be used as a desirable terrorist vehicle. Raw material and food featured intentional versus accidental contamination. Manifestation of global challenges, aspiration for sustainable development and appearance of terrorism create the new paradigm for threats to food safety and defence management.
Energy-Water Nexus Knowledge Discovery Framework, Experts’ Meeting Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaduri, Budhendra L.; Simon, AJ; Allen, Melissa R.
Energy and water generation and delivery systems are inherently interconnected. With worldwide demandfor energy growing, the energy sector is experiencing increasing competition for water. With increasingpopulation and changing environmental, socioeconomic, and demographic scenarios, new technology andinvestment decisions must be made for optimized and sustainable energy-water resource management. These decisions require novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales.
2004-09-08
KENNEDY SPACE CENTER, FLA. - The work to clean up and secure the roof of the Processing Control Center which sustained damage from Hurricane Frances is under way. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility houses some of the staff and computers responsible for Launch Processing System (LPS) software development, launch team training, and LPS maintenance.
2004-09-08
KENNEDY SPACE CENTER, FLA. - KSC employees secure the roof of the Processing Control Center which sustained damage from Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39 adjacent to the Vehicle Assembly Building (background right), the facility houses some of the staff and computers responsible for Launch Processing System (LPS) software development, launch team training, and LPS maintenance.
2004-09-08
KENNEDY SPACE CENTER, FLA. - KSC employees begin the work to clean up and secure the roof of the Processing Control Center which sustained damage from Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility houses some of the staff and computers responsible for Launch Processing System (LPS) software development, launch team training, and LPS maintenance.
Heard, Brent R; Miller, Shelie A
2016-11-15
The unbroken global refrigerated supply chain, or cold chain, is rapidly expanding in developing countries. In addition to increasing the energy intensity of the food system, the expanded cold chain may facilitate changes in the global diet, food waste patterns, food production and distribution, and shopping habits. The sustainability impacts of many of these changes chain are unknown, given the complexity of interacting social, economic, and technical factors. The current literature surrounding the environmental impacts of refrigeration in the food system focuses on the direct impacts of energy use and coolant emissions, and lacks a critical evaluation of the accompanying systemic societal changes that potentially carry greater environmental impacts. This review examines the cold chain as a transformative technology, identifying key intrinsic, indirect, and external factors that will favorably, unfavorably, or ambiguously impact the environmental profile of the food system. The review identifies key interactions and feedbacks between the cold chain, food production and consumption decisions, infrastructure development, and the global environment which are largely unexamined and in need of empirical data. Viewing cold chain expansion from this broader perspective is essential to understanding the changing impacts of the food system in developing countries and may inform future sustainability planning.
NASA's Space Launch System (SLS) Program: Mars Program Utilization
NASA Technical Reports Server (NTRS)
May, Todd A.; Creech, Stephen D.
2012-01-01
NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.
Sustainability and the health care manager: part I.
Ramirez, Bernardo; Oetjen, Reid M; Malvey, Donna
2011-01-01
Given the current operating climate, organizations are coming under pressure to develop and implement sustainability programs and projects, yet few managers truly understand what is meant by sustainability and its implications for managing organizations. This article examines the concept of sustainability and provides a broader definition of the term than going "green." Using a puzzle metaphor, the authors outline and explain the different components of sustainability and provide a checklist for achieving sustainability goals. In addition, resources such as guides and tools are reviewed and offered to assist managers in gaining more insight into the challenges and complexity of sustainability.
Models of life: epigenetics, diversity and cycles.
Sneppen, Kim
2017-04-01
This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.
Models of life: epigenetics, diversity and cycles
NASA Astrophysics Data System (ADS)
Sneppen, Kim
2017-04-01
This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.
Multiscale design and life-cycle based sustainability assessment of polymer nanocomposite coatings
NASA Astrophysics Data System (ADS)
Uttarwar, Rohan G.
In recent years, nanocoatings with exceptionally improved and new performance properties have found numerous applications in the automotive, aerospace, ship-making, chemical, electronics, steel, construction, and many other industries. Especially the formulations providing multiple functionalities to cured paint films are believed to dominate the coatings market in the near future. It has shifted the focus of research towards building sustainable coating recipes which can deliver multiple functionalities through applied films. The challenge to this exciting area of research arrives from the insufficient knowledge about structure-property correlations of nanocoating materials and their design complexity. Experimental efforts have been successful in developing certain types of nanopaints exhibiting improved properties. However, multifunctional nanopaint design optimality is extremely difficult to address if not impossible solely through experiments. In addition to this, the environmental implications and societal risks associated with this growing field of nanotechnology raise several questions related to its sustainable development. This research focuses on the study of a multiscale sustainable nanocoating design which can have the application from novel function envisioning and idea refinement point of view, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications. The nanocoating design is studied using computational simulations of nano- to macro- scale models and sustainability assessment study over the life-cycle. Computational simulations aim at integrating top-down, goals/means, inductive systems engineering and bottom-up, cause and effect, deductive systems engineering approaches for material development. The in-silico paint resin system is a water-dispersible acrylic polymer with hydrophilic nanoparticles incorporated into it. The nano-scale atomistic and micro-scale coarse-grained (CG) level simulations are performed using molecular dynamics methodology to study several structural and morphological features such as effect of polymer molecular weight, polydispersity, rheology, nanoparticle volume fraction, size, shape and chemical nature on the bulk mechanical and self-cleaning properties of the coating film. At macro-scale, a paint spray system which is used for automotive coating application is studied by using CFD-based simulation methodology to generate crucial information about the effects of nanocoating technology on environmental emissions and coating film quality. The cradle-to-grave life-cycle based sustainability assessment study address all the critical issues related to economic benefits, environmental implications and societal effects of nanocoating technology through case studies of automotive coating systems. It is accomplished by identifying crucial correlations among measurable parameters at different stages and developing sustainability indicator matrices for analysis of each stage of life-cycle. The findings from the research can have great potential to draft useful conclusions in favor of future development of coating systems with novel functionalities and improved sustainability.
Sustainable IT and IT for Sustainability
NASA Astrophysics Data System (ADS)
Liu, Zhenhua
Energy and sustainability have become one of the most critical issues of our generation. While the abundant potential of renewable energy such as solar and wind provides a real opportunity for sustainability, their intermittency and uncertainty present a daunting operating challenge. This thesis aims to develop analytical models, deployable algorithms, and real systems to enable efficient integration of renewable energy into complex distributed systems with limited information. The first thrust of the thesis is to make IT systems more sustainable by facilitating the integration of renewable energy into these systems. IT represents the fastest growing sectors in energy usage and greenhouse gas pollution. Over the last decade there are dramatic improvements in the energy efficiency of IT systems, but the efficiency improvements do not necessarily lead to reduction in energy consumption because more servers are demanded. Further, little effort has been put in making IT more sustainable, and most of the improvements are from improved "engineering" rather than improved "algorithms". In contrast, my work focuses on developing algorithms with rigorous theoretical analysis that improve the sustainability of IT. In particular, this thesis seeks to exploit the flexibilities of cloud workloads both (i) in time by scheduling delay-tolerant workloads and (ii) in space by routing requests to geographically diverse data centers. These opportunities allow data centers to adaptively respond to renewable availability, varying cooling efficiency, and fluctuating energy prices, while still meeting performance requirements. The design of the enabling algorithms is however very challenging because of limited information, non-smooth objective functions and the need for distributed control. Novel distributed algorithms are developed with theoretically provable guarantees to enable the "follow the renewables" routing. Moving from theory to practice, I helped HP design and implement industry's first Net-zero Energy Data Center. The second thrust of this thesis is to use IT systems to improve the sustainability and efficiency of our energy infrastructure through data center demand response. The main challenges as we integrate more renewable sources to the existing power grid come from the fluctuation and unpredictability of renewable generation. Although energy storage and reserves can potentially solve the issues, they are very costly. One promising alternative is to make the cloud data centers demand responsive. The potential of such an approach is huge. To realize this potential, we need adaptive and distributed control of cloud data centers and new electricity market designs for distributed electricity resources. My work is progressing in both directions. In particular, I have designed online algorithms with theoretically guaranteed performance for data center operators to deal with uncertainties under popular demand response programs. Based on local control rules of customers, I have further designed new pricing schemes for demand response to align the interests of customers, utility companies, and the society to improve social welfare.
Eschbacher, Jennifer; Bowser, Robert; LaBaer, Joshua
2015-01-01
Sustainability in the biobanking community has recently become an important and oft-discussed issue as biorepositories struggle to balance limited external funding and complex cost recovery models with high operating costs and the desire to provide the highest quality materials and services to the research community. A multi-faceted view of biobanking sustainability requires consideration of operational and social sustainability in addition to the historical focus exclusively on financial sustainability. Planning and implementing this three pillar model creates a well-rounded biorepository that meets the needs of all the major stakeholders: the funders, the patients/depositors, and the researcher recipients. Often the creation of a detailed business plan is the first step to develop goals and objectives that lead down a path towards sustainability. The definition of sustainability and the complexity of a sustainable business plan may differ for each biorepository. The DNASU Plasmid Repository at Arizona State University stores and distributes DNA plasmids to researchers worldwide, and the Biobank Core Facility at St. Joseph's Hospital and Barrow Neurological Institute consents patients and collects, stores, and distributes human tissue and blood samples. We will discuss these two biorepositories, their similar and different approaches to sustainability and business planning, their challenges in creating and implementing their sustainability plan, and their responses to some of these challenges. From these experiences, the biobanks share lessons learned about planning for sustainability that are applicable to all biorepositories. PMID:26697909
Preserved complex emotion-based learning in amnesia.
Turnbull, Oliver H; Evans, Cathryn E Y
2006-01-01
An important role for emotion in decision-making has recently been highlighted by disruptions in problem solving abilities after lesion to the frontal lobes. Such complex decision-making skills appear to be based on a class of memory ability (emotion-based learning) that may be anatomically independent of hippocampally mediated episodic memory systems. There have long been reports of intact emotion-based learning in amnesia, arguably dating back to the classic report of Claparede. However, all such accounts relate to relatively simple patterns of emotional valence learning, rather than the more complex contingency patterns of emotional experience, which characterise everyday life. A patient, SL, who had a profound anterograde amnesia following posterior cerebral artery infarction, performed a measure of complex emotion-based learning (the Iowa Gambling Task) on three separate occasions. Despite his severe episodic memory impairment, he showed normal levels of performance on the Gambling Task, at levels comparable or better than controls-including learning that persisted across substantial periods of time (weeks). Thus, emotion-based learning systems appear able to encode, and sustain, more sophisticated patterns of valence learning than have previously been reported.
System learning approach to assess sustainability and ...
This paper presents a methodology that combines the power of an Artificial Neural Network and Information Theory to forecast variables describing the condition of a regional system. The novelty and strength of this approach is in the application of Fisher information, a key method in Information Theory, to preserve trends in the historical data and prevent over fitting projections. The methodology was applied to demographic, environmental, food and energy consumption, and agricultural production in the San Luis Basin regional system in Colorado, U.S.A. These variables are important for tracking conditions in human and natural systems. However, available data are often so far out of date that they limit the ability to manage these systems. Results indicate that the approaches developed provide viable tools for forecasting outcomes with the aim of assisting management toward sustainable trends. This methodology is also applicable for modeling different scenarios in other dynamic systems. Indicators are indispensable for tracking conditions in human and natural systems, however, available data is sometimes far out of date and limit the ability to gauge system status. Techniques like regression and simulation are not sufficient because system characteristics have to be modeled ensuring over simplification of complex dynamics. This work presents a methodology combining the power of an Artificial Neural Network and Information Theory to capture patterns in a real dyna
Forum: The challenge of global change
NASA Astrophysics Data System (ADS)
Roederer, Juan G.
1990-09-01
How can we sustain a public sense of the common danger of global change while remaining honest in view of the realities of scientific uncertainty? How can we nurture this sense of common danger without making statements based on half-baked ideas, statistically unreliable results, or oversimplified models? How can we strike a balance between the need to overstate a case to attract the attention of the media and the obligation to adhere strictly to the ethos of science?The task of achieving a scientific understanding of the inner workings of the terrestrial environment is one of the most difficult and ambitious endeavors of humankind. It is full of traps, temptations and deceptions for the participating scientists. We are dealing with a horrendously complex, strongly interactive, highly non-linear system. Lessons learned from disciplines such as plasma physics and solid state physics which have been dealing with complex non-linear systems for decades, are not very encouraging. The first thing one learns is that there are intrinsic, physical limits to the quantitative predictability of a complex system that have nothing to do with the particular techniques employed to model it.
Komro, Kelli A; Flay, Brian R; Biglan, Anthony; Wagenaar, Alexander C
2016-03-01
Major advances in population health will not occur unless we translate existing knowledge into effective multicomponent interventions, implement and maintain these in communities, and develop rigorous translational research and evaluation methods to ensure continual improvement and sustainability. We discuss challenges and offer approaches to evaluation that are key for translational research stages 3 to 5 to advance optimized adoption, implementation, and maintenance of effective and replicable multicomponent strategies. The major challenges we discuss concern (a) multiple contexts of evaluation/research, (b) complexity of packages of interventions, and (c) phases of evaluation/research questions. We suggest multiple alternative research designs that maintain rigor but accommodate these challenges and highlight the need for measurement systems. Longitudinal data collection and a standardized continuous measurement system are fundamental to the evaluation and refinement of complex multicomponent interventions. To be useful to T3-T5 translational research efforts in neighborhoods and communities, such a system would include assessments of the reach, implementation, effects on immediate outcomes, and effects of the comprehensive intervention package on more distal health outcomes.
People-centred health systems, a bottom-up approach: where theory meets empery.
Sturmberg, Joachim P; Njoroge, Alice
2017-04-01
Health systems are complex and constantly adapt to changing demands. These complex-adaptive characteristics are rarely considered in the current bureaucratic top-down approaches to health system reforms aimed to constrain demand and expenditure growth. The economic focus fails to address the needs of patients, providers and communities, and ultimately results in declining effectiveness and efficiency of the health care system as well as the health of the wider community. A needs-focused complex-adaptive health system can be represented by the 'healthcare vortex' model; how to build a needs-focused complex-adaptive health system is illustrated by Eastern Deanery AIDS Relief Program approaches in the poor neighbourhoods of Nairobi, Kenya. A small group of nurses and community health workers focused on the care of terminally ill HIV/AIDS patients. This work identified additional problems: tuberculosis (TB) was underdiagnosed and undertreated, a local TB-technician was trained to run a local lab, a courier services helped to reach all at need, collaboration with the Ministry of Health established local TB and HIV treatment programmes and philanthropists helped to supplement treatment with nutrition support. Maternal-to-child HIV-prevention and adolescent counselling services addressed additional needs. The 'theory of the healthcare vortex' indeed matches the 'empery of the real world experiences'. Locally developed and delivered adaptive, people-centred health systems, a bottom-up community and provider initiated approach, deliver highly effective and sustainable health care despite significant resource constraints. © 2016 John Wiley & Sons, Ltd.
A system performance throughput model applicable to advanced manned telescience systems
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1990-01-01
As automated space systems become more complex, autonomous, and opaque to the flight crew, it becomes increasingly difficult to determine whether the total system is performing as it should. Some of the complex and interrelated human performance measurement issues are addressed that are related to total system validation. An evaluative throughput model is presented which can be used to generate a human operator-related benchmark or figure of merit for a given system which involves humans at the input and output ends as well as other automated intelligent agents. The concept of sustained and accurate command/control data information transfer is introduced. The first two input parameters of the model involve nominal and off-nominal predicted events. The first of these calls for a detailed task analysis while the second is for a contingency event assessment. The last two required input parameters involving actual (measured) events, namely human performance and continuous semi-automated system performance. An expression combining these four parameters was found using digital simulations and identical, representative, random data to yield the smallest variance.
Leading Sustainability in Schools
ERIC Educational Resources Information Center
Carr, Katie
2016-01-01
What is the role of schools, and more specifically school leadership, in the transition to a sustainable future for humankind? What different forms of leadership are needed to enable this role? The challenges are huge and complex and for those of us engaged in promoting sustainability learning, it is clear that the issue has never been more…
Mapping the Journey: Visualising Collaborative Experiences for Sustainable Design Education
ERIC Educational Resources Information Center
McMahon, Muireann; Bhamra, Tracy
2017-01-01
The paradigm of design is changing. Designers now need to be equipped with the skills and knowledge that will enable them to participate in the global move towards a sustainable future. The challenges arise as Design for Sustainability deals with very complex and often contradictory issues. Collaborative learning experiences recognise that these…
ERIC Educational Resources Information Center
Leal Filho, Walter, Ed.
2011-01-01
It is widely acknowledged that sustainable development is a long-term goal, which both individuals and institutions (and countries!) need to pursue. This important theme is characterized by an intrinsic complexity, since it encompasses ecological or environmental considerations on the one hand, and economic matters, social influences and political…
ERIC Educational Resources Information Center
Mbebeb, Fomba E.
2009-01-01
Building on the premise that societal sustainability depends on mental and behavioural sustainability, this paper provides a framework within which the complex challenges of sustainable early childhood education in the majority world is discussed. The work contends that entrepreneurial mindsets priming is a viable component of early childhood…
Measuring Student Teachers' Understandings and Self-Awareness of Sustainability
ERIC Educational Resources Information Center
Birdsall, Sally
2014-01-01
Understanding sustainability is important, as people need to cope with issues associated with over-population and over-consumption. Education is seen as a key strategy to assist with the development of people's understandings of this complex concept, which could then lead to them being able to make more sustainable lifestyle decisions. In order to…
ERIC Educational Resources Information Center
Feng, Ling
2012-01-01
That the value of interdisciplinarity in sustainability education is largely taken for granted reflects widely held views about the inherent complexity and uncertainty of sustainability issues and the need for holistic responses to them. Although there is an extensive literature on interdisciplinarity, there has been relatively little…
Introduction of Sustainable Development in Engineers' Curricula: Problematic and Evaluation Methods
ERIC Educational Resources Information Center
Lourdel, N.; Gondran, N.; Laforest, V.; Brodhag, C.
2005-01-01
Purpose: Owing to its complexity, sustainable development cannot be simply integrated as a supplementary course within the engineers' curricula. The first point of this paper aims to focalise on how to reflect pedagogically. After dealing with these questions, a tool that can evaluate the student's understanding of sustainable development concepts…
ERIC Educational Resources Information Center
Hasslöf, Helen; Lundegård, Iann; Malmberg, Claes
2016-01-01
In an "age of measurement" where students' "qualification" is a hot topic on the political agenda, it is of interest to ask what the "function of qualification" might implicate in relation to a complex issue as Education for Sustainable Development (ESD) and what function environmental and sustainability issues serve…
Visual short-term memory capacity for simple and complex objects.
Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto
2010-03-01
Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not related to storage limitations of VSTM, per se. We used ERPs to track neuronal activity specifically related to retention in VSTM by measuring the sustained posterior contralateral negativity during a change detection task (which required detecting if an item was changed between a memory and a test array). The sustained posterior contralateral negativity, during the retention interval, was larger for complex objects than for simple objects, suggesting that neurons mediating VSTM needed to work harder to maintain more complex objects. This, in turn, is consistent with the view that VSTM capacity depends on complexity.
Hydroeconomic modeling of sustainable groundwater management
NASA Astrophysics Data System (ADS)
MacEwan, Duncan; Cayar, Mesut; Taghavi, Ali; Mitchell, David; Hatchett, Steve; Howitt, Richard
2017-03-01
In 2014, California passed legislation requiring the sustainable management of critically overdrafted groundwater basins, located primarily in the Central Valley agricultural region. Hydroeconomic modeling of the agricultural economy, groundwater, and surface water systems is critically important to simulate potential transition paths to sustainable management of the basins. The requirement for sustainable groundwater use by 2040 is mandated for many overdrafted groundwater basins that are decoupled from environmental and river flow effects. We argue that, for such cases, a modeling approach that integrates a biophysical response function from a hydrologic model into an economic model of groundwater use is preferable to embedding an economic response function in a complex hydrologic model as is more commonly done. Using this preferred approach, we develop a dynamic hydroeconomic model for the Kings and Tulare Lake subbasins of California and evaluate three groundwater management institutions—open access, perfect foresight, and managed pumping. We quantify the costs and benefits of sustainable groundwater management, including energy pumping savings, drought reserve values, and avoided capital costs. Our analysis finds that, for basins that are severely depleted, losses in crop net revenue are offset by the benefits of energy savings, drought reserve value, and avoided capital costs. This finding provides an empirical counterexample to the Gisser and Sanchez Effect.
Data-driven planning of distributed energy resources amidst socio-technical complexities
NASA Astrophysics Data System (ADS)
Jain, Rishee K.; Qin, Junjie; Rajagopal, Ram
2017-08-01
New distributed energy resources (DER) are rapidly replacing centralized power generation due to their environmental, economic and resiliency benefits. Previous analyses of DER systems have been limited in their ability to account for socio-technical complexities, such as intermittent supply, heterogeneous demand and balance-of-system cost dynamics. Here we develop ReMatch, an interdisciplinary modelling framework, spanning engineering, consumer behaviour and data science, and apply it to 10,000 consumers in California, USA. Our results show that deploying DER would yield nearly a 50% reduction in the levelized cost of electricity (LCOE) over the status quo even after accounting for socio-technical complexities. We abstract a detailed matching of consumers to DER infrastructure from our results and discuss how this matching can facilitate the development of smart and targeted renewable energy policies, programmes and incentives. Our findings point to the large-scale economic and technical feasibility of DER and underscore the pertinent role DER can play in achieving sustainable energy goals.
Clean Water for Remote Locations
NASA Technical Reports Server (NTRS)
2006-01-01
Marshall Space Flight Center engineers are working on creating the Regenerative Environmental Control and Life Support System, a complex system of devices intended to sustain the astronauts living on the ISS and, in the future, sustain those who are blasting off to the Moon or Mars. The devices make use of the available resources, by turning wastewater from respiration, sweat, and urine into drinkable water. One of the devices that Marshall has been working on is the Water Recovery System (WRS). Marshall has teamed with long-time NASA contractor, Hamilton Sundstrand Space Systems International, Inc., of Windsor Locks, Connecticut. Hamilton Sundstrand, the original designer of the life support devices for the space suits, developed the Water Processor Assembly (WPA). It, along with the Urine Processor Assembly (UPA) developed by Marshall, combines to make up the total system, which is about the size of two refrigerators, and will support up to a six-member crew. The system is currently undergoing final testing and verification. "The Water Processor Assembly can produce up to about 28 gallons of potable recycled water each day," said Bob Bagdigian, Marshall Regenerative Environmental Control and Life Support System project manager. After the new systems are installed, annual delivered water to the ISS should decrease by approximately 15,960 pounds, or about 1,600 gallons.
Alberto, Rodríguez Fonseca Rolando; Joao, Rodrigues; de Los Angeles, Muñoz-Fernández María; Alberto, Martínez Muñoz; Manuel Jonathan, Fragoso Vázquez; José, Correa Basurto
2017-08-30
Nanomedicine is the application of nanotechnology to medicine. This field is related to the study of nanodevices and nanomaterials applied to various medical uses, such as in improving the pharmacological properties of different molecules. Dendrimers are synthetic nanoparticles whose physicochemical properties vary according to their chemical structure. These molecules have been extensively investigated as drug nanocarriers to improve drug solubility and as sustained-release systems. New therapies such as gene therapy and the development of nanovaccines can be improved by the use of dendrimers. The biophysical and physicochemical characterization of nucleic acid/peptide-dendrimer complexes is crucial to identify their functional properties prior to biological evaluation. In that sense, it is necessary to first identify whether the peptide-dendrimer or nucleic aciddendrimer complexes can be formed and whether the complex can dissociate under the appropriate conditions at the target cells. In addition, biophysical and physicochemical characterization is required to determine how long the complexes remain stable, what proportion of peptide or nucleic acid is required to form the complex or saturate the dendrimer, and the size of the complex formed. In this review, we present the latest information on characterization systems for dendrimer-nucleic acid, dendrimer-peptide and dendrimer-drug complexes with several biotechnological and pharmacological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cho, Eunae; Jung, Seunho
2015-10-27
In this review, a comprehensive overview of advances in the supramolecular complexes of carbohydrates and poorly soluble drugs is presented. Through the complexation process, poorly soluble drugs could be efficiently delivered to their desired destinations. Carbohydrates, the most abundant biomolecules, have diverse physicochemical properties owing to their inherent three-dimensional structures, hydrogen bonding, and molecular recognition abilities. In this regard, oligosaccharides and their derivatives have been utilized for the bioavailability enhancement of hydrophobic drugs via increasing the solubility or stability. By extension, polysaccharides and their derivatives can form self-assembled architectures with poorly soluble drugs and have shown increased bioavailability in terms of the sustained or controlled drug release. These supramolecular systems using carbohydrate will be developed consistently in the field of pharmaceutical and medical application.
Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies
NASA Astrophysics Data System (ADS)
Rangin, Claude
2016-01-01
Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.
Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel; Kalle, Wouter H J
2004-03-24
This study looks at the development of a novel combination vector consisting of adenovirus conjugated to liposomes (AL complexes) bound to cation-exchanging microspheres (MAL complexes). With adenovirus having a net negative charge and the liposomes a net positive charge it was possible to modify the net charge of the AL complexes by varying the concentrations of adenovirus to liposomes. The modification of the net charge resulted in altered binding and release characteristics. Of the complexes tested, the 5:1 and 2:1 ratio AL complexes were able to be efficiently bound by the microspheres and exhibited sustained release over 24 h. The 1:1 and 1:2 AL complexes, however, bound poorly to the microspheres and were rapidly released. In addition the MAL complexes also were able to reduce the toxicity of the AL complexes, which was seen with the 10:1 ratio. The AL complexes showed considerably more toxicity alone than in combination with microspheres, highlighting a potential benefit of this vector.
In vitro meat: A future animal-free harvest.
Bhat, Zuhaib Fayaz; Kumar, Sunil; Bhat, Hina Fayaz
2017-03-04
In vitro meat production is a novel idea of producing meat without involving animals with the help of tissue engineering techniques. This biofabrication of complex living products by using various bioengineering techniques is a potential solution to reduce the ill effects of current meat production systems and can dramatically transform traditional animal-based agriculture by inventing "animal-free" meat and meat products. Nutrition-related diseases, food-borne illnesses, resource use and pollution, and use of farm animals are some serious consequences associated with conventional meat production methods. This new way of animal-free meat production may offer health and environmental advantages by reducing environmental pollution and resource use associated with current meat production systems and will also ensure sustainable production of designer, chemically safe, and disease-free meat as the conditions in an in vitro meat production system are controllable and manipulatable. Theoretically, this system is believed to be efficient enough to supply the global demand for meat; however, establishment of a sustainable in vitro meat production would face considerably greater technical challenges and a great deal of research is still needed to establish this animal-free meat culturing system on an industrial scale.
Tolaymat, Thabet; El Badawy, Amro; Sequeira, Reynold; Genaidy, Ash
2015-11-15
There is an urgent need for broad and integrated studies that address the risks of engineered nanomaterials (ENMs) along the different endpoints of the society, environment, and economy (SEE) complex adaptive system. This article presents an integrated science-based methodology to assess the potential risks of engineered nanomaterials. To achieve the study objective, two major tasks are accomplished, knowledge synthesis and algorithmic computational methodology. The knowledge synthesis task is designed to capture "what is known" and to outline the gaps in knowledge from ENMs risk perspective. The algorithmic computational methodology is geared toward the provision of decisions and an understanding of the risks of ENMs along different endpoints for the constituents of the SEE complex adaptive system. The approach presented herein allows for addressing the formidable task of assessing the implications and risks of exposure to ENMs, with the long term goal to build a decision-support system to guide key stakeholders in the SEE system towards building sustainable ENMs and nano-enabled products. Published by Elsevier B.V.
Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Eaton-Rye, Julian J; Tomo, Tatsuya; Nishihara, Hiroshi; Satoh, Kimiyuki; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I
2014-09-01
The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the presence of oxygen in the Earth's atmosphere. The WOC is a manganese-calcium (Mn₄CaO₅(H₂O)₄) cluster housed in a protein complex. In this review, we focus on water exchange chemistry of metal hydrates and discuss the mechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Eversole, K.
2016-12-01
To meet the demands of a global human population expected to exceed 9.6 billion by 2055, crop productivity in sustainable agricultural systems must improve considerably in the face of a steadily changing climate and increased biotic and abiotic stressors. Traditional agricultural sciences have relied mostly on research within individual disciplines and linear, reductionist approaches for crop improvement. While significant advancements have been made in developing and characterizing genetic and genomic resources for crops, we still have a very limited understanding of genotype by environment x management (GxExM) interactions that determine productivity, sustainability, quality, and the ability to withstand biotic and abiotic stressors. Embracing complexity and the non-linear organization and regulation of biological systems would enable a paradigm shift in breeding and crop production by allowing us to move towards a holistic, systems level approach that integrates a wide range of disciplines (e.g., geophysics, biology, agronomy, physiology, genomics, genetics, breeding, physics, pattern recognition, feedback loops, modeling, and engineering) and knowledge about crop phytobiomes (i.e., plants, their associated macro- and micro-organisms, and the geophysical environment of distinct geographical sites). By focusing on the phytobiome, we will be able to elucidate, quantify, model, predict, act, manipulate, and prevent and ultimately prescribe the cropping systems, methods, and management practices most suited for a particular farm, grassland, or forest. The recently released, multidisciplinary roadmap entitled Phytobiomes: A Roadmap for Research and Translation and the new International Alliance for Phytobiomes Research, an industry-academic consortium, will be presented.
Aquifer-yield continuum as a guide and typology for science-based groundwater management
NASA Astrophysics Data System (ADS)
Pierce, Suzanne A.; Sharp, John M.; Guillaume, Joseph H. A.; Mace, Robert E.; Eaton, David J.
2013-03-01
Groundwater availability is at the core of hydrogeology as a discipline and, simultaneously, the concept is the source of ambiguity for management and policy. Aquifer yield has undergone multiple definitions resulting in a range of scientific methods to calculate and model availability reflecting the complexity of combined scientific, management, policy, and stakeholder processes. The concept of an aquifer-yield continuum provides an approach to classify groundwater yields along a spectrum, from non-use through permissive sustained, sustainable, maximum sustained, safe, permissive mining to maximum mining yields, that builds on existing literature. Additionally, the aquifer-yield continuum provides a systems view of groundwater availability to integrate physical and social aspects in assessing management options across aquifer settings. Operational yield describes the candidate solutions for operational or technical implementation of policy, often relating to a consensus yield that incorporates human dimensions through participatory or adaptive governance processes. The concepts of operational and consensus yield address both the social and the technical nature of science-based groundwater management and governance.
Biosphere as a complex life-support system (LSS) for human civilization
NASA Astrophysics Data System (ADS)
Pechurkin, Nickolay
As a continuously growing link of the Biosphere, we should keep in mind that biotic cycles induced by flows of a solar energy are the source of Biosphere and ecosystems functioning. Our pressure on the Biosphere which is connected with biotic cycle’s alterations and damages is menacingly growing. There are innumerable examples of atmosphere, water and soil pollution. We have contaminated even Earth-Space orbits with different uncontrolled debris. Ecological Footprint (EF) is a proper quantitative measure of anthropogenic impact on the Biosphere and ecosystems functioning. The comparative dynamics of the United Nations’ Human Development Index (HDI) and Ecological Footprint (EF) is discussed in the paper. The main call of sustainable development of mankind: all humans can have opportunity to fulfill their lives without degrading the Biosphere. To support sustainability, we should make an effort to develop each nation and the mankind as a whole with a high HDI and with a low ecological footprint. It means: to have high level of HDI at low level of EF. But current tendency of economical and social development shows: the higher HDI, the bigger EF. EF of mankind is rising threateningly. Now actual pressure of the human civilization of our planet (2014) upon 60 % exceeds its potential possibilities (biological capacity, measured as the area of "global" green hectares). It means that now we require more than 1.5 planets of the Earth’s type for sustainable development. It leads to ecological incident in the scale of Biosphere. Our Biosphere is the large, multilevel, hierarchically organized system, and our civilization is only a part of it. This part is not central; it can disappear for ever, if we do not cope to be included in the Biosphere as a great complex system. An example of Krasnoyarsk region as a representative region with high level of industry and technological energy production is considered in the paper. This work was supported by the Russian Foundation for Basic Research, project number 13-06-00060.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kain, Jaan-Henrik; Soederberg, Henriette
2008-01-15
The vision of sustainable development entails new and complex planning situations, confronting local policy makers with changing political conditions, different content in decision making and planning and new working methods. Moreover, the call for sustainable development has been a major driving force towards an increasingly multi-stakeholder planning system. This situation requires competence in working in, and managing, groups of actors, including not only experts and project owners but also other categories of stakeholders. Among other qualities, such competence requires a working strategy aimed at integrating various, and sometimes incommensurable, forms of knowledge to construct a relevant and valid knowledge basemore » prior to decision making. Consequently, there lies great potential in methods that facilitate the evaluation of strategies for infrastructural development across multiple knowledge areas, so-called multi-criteria decision aids (MCDAs). In the present article, observations from six case studies are discussed, where the common denominators are infrastructural planning, multi-stakeholder participation and the use of MCDAs as interactive decision support. Three MCDAs are discussed - NAIADE, SCA and STRAD - with an emphasis on how they function in their procedural context. Accordingly, this is not an analysis of MCDA algorithms, of software programming aspects or of MCDAs as context-independent 'decision machines'-the focus is on MCDAs as actor systems, not as expert systems. The analysis is carried out across four main themes: (a) symmetrical management of different forms of knowledge; (b) management of heterogeneity, pluralism and conflict; (c) functionality and ease of use; and (d) transparency and trust. It shows that STRAD, by far, seems to be the most useful MCDA in interactive settings. NAIADE and SCA are roughly equivalent but have their strengths and weaknesses in different areas. Moreover, it was found that some MCDA issues require further attention, i.e., regarding transparency and understandability; qualitative/quantitative knowledge input; switching between different modes of weighting; software flexibility; as well as graphic and user interfaces.« less
Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingchen; Yang, Rui; Hodge, Brian S
Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to powermore » system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.« less
A national environmental monitoring system to support the Moroccan sustainable development strategy
NASA Astrophysics Data System (ADS)
Mourhir, A.; Rachidi, T.
2010-12-01
Morocco is a mountainous country, subject to both marine and Saharan influences. The increase in population has led to an increase of the gross domestic product (GDP), which accentuated by inadequate resource management, has been accompanied by the degradation of the environment. The annual cost of environmental damage has been estimated at nearly eight percent of Morocco’s GDP. Morocco is a country that has scarce natural resources, especially arable land and water. In recent years, intensive agricultural production, large-scale irrigation schemes, industrialization, and urbanization have been creating serious problems. The country has faced severe air, water and soil pollution, environmental health problems, deforestation and soil erosion. The country is very vulnerable to impacts of global climate change. Morocco’s approach to sustainable development (SD) is mainly environmental. The two main documents for Morocco’s SD strategy are the National Strategy for the Protection of the Environment and Sustainable Development (SNPEDD), 1995, and the National Plan of Action for the Environment (PANE), 1998. SNPEDD’s main objective is the integration and strengthening of environmental concerns in economic development activities. The activities for the formulation and implementation of the strategy include: a) studies on the state of the Moroccan environment; b) formulation of the PANE; c) preparation of a sensitization program on environmental issues and the implementation of a database and information system on the environment; (d) preparation of regional and local environmental monographies. The aim of the current work is to create an information system as an approach to complex sustainability analyses at the national level using GIS technologies. This information system includes the following: 1.Development of a database of SD indicators and historical data. Morocco has been involved in the working framework of the Mediterranean Commission for Sustainable Development to set up an indicator system (IDD) specific to Morocco. The National Committee for Sustainable Development Indicators was set up to create a program to test and validate the IDD. A number of indicators have been chosen and the Moroccan government’s Environment Department has made the database available through a publication and via the internet, which will be updated regularly. The database will be organized to facilitate ad hoc query and analysis. 2.Development of a GIS structure to help map plans for achieving successful management strategies that are sustainable both at the regional and national levels. 3.Visualization and analysis tools for spatial and temporal changes of environmental indicators to help manage growth and change.
“If We Build It, Will It Stay?” A Case Study of the Sustainability of Whole-System Change in London
Greenhalgh, Trisha; Macfarlane, Fraser; Barton-Sweeney, Catherine; Woodard, Fran
2012-01-01
Context The long-term sustainability of whole-system change programs is rarely studied, and when it is, it is inevitably undertaken in a shifting context, thereby raising epistemological and methodological questions. This article describes a transferable methodology that was developed to guide the evaluation of a three-year follow-up of a large health care change program in London, which took place during a period of economic turbulence and rapid policy change. Method Using a mixed-method organizational case study design, we studied three services (stroke, kidney, and sexual health) across primary and secondary care. Each had received £5 million (US$7.8 million) in modernization funding in 2004. In 2010/2011, we gathered data on the services and compared them with data from 2004 to 2008. The new data set contained quantitative statistics (access, process, and outcome metrics), qualitative interviews with staff and patients, documents, and field notes. Our data analysis was informed by two complementary models of sustainability: intervention-focused (guided by the question, What, if anything, of the original program has been sustained?) and system-dynamic (guided by the question, How and why did change unfold as it did in this complex system?). Findings Some but not all services introduced in the original transformation effort of 2004–2008 were still running; others had ceased or been altered substantially to accommodate contextual changes (e.g., in case mix, commissioning priorities, or national policies). Key cultural changes (e.g., quality improvement, patient centeredness) largely persisted, and innovative ideas and practices had spread elsewhere. To draw causal links between the original program and current activities and outcomes, it was necessary to weave a narrative thread with multiple intervening influences. In particular, against a background of continuous change in the local health system, the sustainability of the original vision and capacity for quality improvement was strongly influenced by (1) stakeholders’ conflicting and changing interpretations of the targeted health need; (2) changes in how the quality cycle was implemented and monitored; and (3) conflicts in stakeholders’ values and what each stood to gain or lose. Conclusions The sustainability of whole-system change embodies a tension between the persistence of past practice and the adaptation to a changing context. Although the intervention-focused question, What has persisted from the original program? (addressed via a conventional logic model), may be appropriate, evaluators should qualify their findings by also considering the system-dynamic question, What has changed, and why? (addressed by producing a meaningful narrative). PMID:22985280
Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm
NASA Astrophysics Data System (ADS)
Myers, J. D.; Campbell-Stone, E.; Massey, G.
2008-12-01
Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to promoting scientific literacy, L(SC)2 courses explicitly promote mastery of fundamental quantitative and qualitative skills critical to science and commonly a barrier to student success in science. Scientific content addresses the principles and disciplines necessary to tackle the multifaceted problems that must be solved in any sustainability transition and illustrates the limitations on what can be accomplished. Finally, social context adds the place-based component that is critical to sustainability science while revealing how science impacts students' everyday lives. Experience in addressing realistic, real-life problems fosters the habits of mind necessary to address these problems and instills a sense of social and political efficacy and responsibility. The L(SC)2 course paradigm employs a variety of educational tools (active problem-based learning, collaborative work, peer instruction, interdisciplinarity, and global context-based instruction) that improve lasting comprehension by creating a more effective learning environment. In this paradigm, STEM students learn that although there may be a technically or scientifically optimal solution to a problem, it must be responsive to a society's social, legal, cultural and religious parameters. Conversely, students in non-STEM fields learn that solutions to societal problems must be scientifically valid and technologically feasible. The interaction of STEM and non-STEM students in L(SC)2 courses builds bridges between the natural and social sciences that are critical for a successful sustainability transition and lacking in most traditional science courses.
Plant-Soil Feedback: Bridging Natural and Agricultural Sciences.
Mariotte, Pierre; Mehrabi, Zia; Bezemer, T Martijn; De Deyn, Gerlinde B; Kulmatiski, Andrew; Drigo, Barbara; Veen, G F Ciska; van der Heijden, Marcel G A; Kardol, Paul
2018-02-01
In agricultural and natural systems researchers have demonstrated large effects of plant-soil feedback (PSF) on plant growth. However, the concepts and approaches used in these two types of systems have developed, for the most part, independently. Here, we present a conceptual framework that integrates knowledge and approaches from these two contrasting systems. We use this integrated framework to demonstrate (i) how knowledge from complex natural systems can be used to increase agricultural resource-use efficiency and productivity and (ii) how research in agricultural systems can be used to test hypotheses and approaches developed in natural systems. Using this framework, we discuss avenues for new research toward an ecologically sustainable and climate-smart future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Long-term trends and a sustainability transition
Kates, Robert W.; Parris, Thomas M.
2003-01-01
How do long-term global trends affect a transition to sustainability? We emphasize the “multitrend” nature of 10 classes of trends, which makes them complex, contradictory, and often poorly understood. Each class includes trends that make a sustainability transition more feasible as well as trends that make it more difficult. Taken in their entirety, they serve as a checklist for the consideration of global trends that impact place-based sustainability studies. PMID:12829798
NASA Astrophysics Data System (ADS)
Gaulke, Linda S.; Weiyang, Xiao; Scanlon, Andrew; Henck, Amanda; Hinckley, Tom
2010-01-01
The administration of Jiuzhaigou National Park in Sichuan Province, China, is in the process of considering a range of upgrades to their sanitation and wastewater treatment systems. Their case history involves an ongoing series of engineering design flaws and management failures. The administration of the Park identified sustainability, environmental protection, and education goals for their sanitation and wastewater treatment system. To meet the goal of sustainability, environmental and economic concerns of the Park’s administration had to be balanced with socio-cultural needs. An advanced reconnaissance method was developed that identified reasons for previous failures, conducted stakeholder analysis and interviews, determined evaluation criteria, and introduced innovative alternatives with records of successful global implementations. This evaluation also helped the Park to better define their goals . To prevent future failures, the administration of the Park must commit to a balanced and thorough evaluation process for selection of a final alternative and institute effective long-term management and monitoring of systems. In addition, to meet goals and achieve energy efficient, cost-effective use of resources, the Park must shift their thinking from one of waste disposal to resource recovery. The method and criteria developed for this case study provides a framework to aid in the successful implementation of sanitation projects in both underdeveloped and developed areas of the world, incorporating socio-cultural values and resource recovery for a complex group of stakeholders.
Supermolecular drug challenge to overcome drug resistance in cancer cells.
Onishi, Yasuhiko; Eshita, Yuki; Ji, Rui-Cheng; Kobayashi, Takashi; Onishi, Masayasu; Mizuno, Masaaki; Yoshida, Jun; Kubota, Naoji
2018-06-04
Overcoming multidrug resistance (MDR) of cancer cells can be accomplished using drug delivery systems in large-molecular-weight ATP-binding cassette transporters before entry into phagolysosomes and by particle-cell-surface interactions. However, these hypotheses do not address the intratumoral heterogeneity in cancer. Anti-MDR must be related to alterations of drug targets, expression of detoxification, as well as altered proliferation. In this study, it is shown that the excellent efficacy and sustainability of anti-MDR is due to a stable ES complex because of the allosteric facilities of artificial enzymes when they are used as supramolecular complexes. The allosteric effect of supermolecular drugs can be explained by the induced-fit model and can provide stable feedback control systems through the loop transfer function of the Hill equation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modelling the urban water cycle as an integrated part of the city: a review.
Urich, Christian; Rauch, Wolfgang
2014-01-01
In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.
Hayes, Tanya; Murtinho, Felipe; Cárdenas Camacho, Luis Mario; Crespo, Patricio; McHugh, Sarah; Salmerón, David
2015-01-01
This paper considers the ability of payment for ecosystem services (PES) programs to operate in the context of dynamic and complex social-ecological systems. Drawing on the experiences of two different PES programs in Latin America, we examine how PES institutions fit with the tenets of adaptive decision-making for sustainable resource management. We identify how the program goals and the connection to the market influence the incentive structure, information gathering, learning and feedback processes, and the structure of decision-making rights, specifically the ability to make and modify resource-use rules. Although limited in their generalizability, findings from the two case studies suggest a tension between the contractual model of PES and adaptive decision-making in natural resource systems. PES programs are not inherently decentralized, flexible management tools, as PES contracts tend to restrict decision-making rights and offer minimal flexibility mechanisms to change resource-use practices over the duration of the contract period. Furthermore, PES design and flexibility is heavily dependent on the goals and mission of the buyer and the respective market. If PES is to facilitate sustainable resource management, greater attention is needed to assess how the institutional design of the PES contracts influence the motivation and capacity of participants and program officers alike to adaptively manage the respective resource systems.
NASA Astrophysics Data System (ADS)
Hayes, Tanya; Murtinho, Felipe; Cárdenas Camacho, Luis Mario; Crespo, Patricio; McHugh, Sarah; Salmerón, David
2015-01-01
This paper considers the ability of payment for ecosystem services (PES) programs to operate in the context of dynamic and complex social-ecological systems. Drawing on the experiences of two different PES programs in Latin America, we examine how PES institutions fit with the tenets of adaptive decision-making for sustainable resource management. We identify how the program goals and the connection to the market influence the incentive structure, information gathering, learning and feedback processes, and the structure of decision-making rights, specifically the ability to make and modify resource-use rules. Although limited in their generalizability, findings from the two case studies suggest a tension between the contractual model of PES and adaptive decision-making in natural resource systems. PES programs are not inherently decentralized, flexible management tools, as PES contracts tend to restrict decision-making rights and offer minimal flexibility mechanisms to change resource-use practices over the duration of the contract period. Furthermore, PES design and flexibility is heavily dependent on the goals and mission of the buyer and the respective market. If PES is to facilitate sustainable resource management, greater attention is needed to assess how the institutional design of the PES contracts influence the motivation and capacity of participants and program officers alike to adaptively manage the respective resource systems.
Panarchy use in environmental science for risk and resilience planning
Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Linkov, Igor
2016-01-01
Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in socio-technical resilience thinking and adaptive and transformative approaches to management.
ERIC Educational Resources Information Center
Winter, Christine; Firth, Roger
2007-01-01
Considerable activity has occurred in the recent past regarding policy-making around Education for Sustainable Development (ESD) in the school curriculum. Teaching about sustainable development involves complex and contested ethical and political issues. This case study research investigates how four student teachers taking part in a one-year…
ERIC Educational Resources Information Center
Contrafatto, Massimo
2013-01-01
In this commentary, Massimo Contrafatto explains his understanding of Gray's interpretation of accounting education for sustainability (AE4S), and contributes some personal insights to the future development of AE4S. Gray reflected on an educational engagement experiment where the complex issues surrounding sustainability were dealt with in an…
Explorations in Teaching Sustainable Design: A Studio Experience in Interior Design/Architecture
ERIC Educational Resources Information Center
Gurel, Meltem O.
2010-01-01
This article argues that a design studio can be a dynamic medium to explore the creative potential of the complexity of sustainability from its technological to social ends. The study seeks to determine the impact of an interior design/architecture studio experience that was initiated to teach diverse meanings of sustainability and to engage the…
ERIC Educational Resources Information Center
Hare, Richard Gabriel; Jo, Jihoon; Moreton, Elizabeth; Stamm, Andrew; Winter, Danielle
2011-01-01
Obtaining reliable information is essential to forming a balanced understanding of the scope and complexity of environmental sustainability, and it is essential for effective participation, decision-making, and research in sustainability-related activities. While the ACRL Standards for Information Literacy (2000) are a good guiding principle for…
ERIC Educational Resources Information Center
Salite, lga; Drelinga, Elga; Iliško, Dzintra; Olehnovica, Eridiana; Zarina, Sandra
2016-01-01
The need to focus on a transdisciplinary approach in education for sustainable development (EDS) has been reflected in research and especially action research as a possible solution, which can open a new perspective for understanding and interpretation of the complex phenomenon of sustainability as well as for developing new open continuing…
Embracing Social Sustainability in Design Education: A Reflection on a Case Study in Haiti
ERIC Educational Resources Information Center
Kjøllesdal, Anders; Asheim, Jonas; Boks, Casper
2014-01-01
Sustainable design issues are complex and multi-faceted and need integration in the education of young designers. Current research recommends a holistic view based on problem-solving and inter-disciplinary work, yet few design educators have brought these ideas to their full consequence. Sustainability education for designers is still often rooted…
“The Road to Sustainability, GDP and future generations” by Pulselli, F.M., Bastianoni, S., Marchettini, N. Tiezzi, E. was reviewed upon request by the journal’s editor. Briefly, this book presents the authors’ perspective on the complex and important topic of sustainability. Su...
NASA Astrophysics Data System (ADS)
West, Geoffrey
2013-04-01
Many of the most challenging, exciting and profound questions facing science and society, from the origins of life to global sustainability, fall under the banner of ``complex adaptive systems.'' This talk explores how scaling can be used to begin to develop physics-inspired quantitative, predictive, coarse-grained theories for understanding their structure, dynamics and organization based on underlying mathematisable principles. Remarkably, most physiological, organisational and life history phenomena in biology and socio-economic systems scale in a simple and ``universal'' fashion: metabolic rate scales approximately as the 3/4-power of mass over 27 orders of magnitude from complex molecules to the largest organisms. Time-scales (such as lifespans and growth-rates) and sizes (such as genome lengths and RNA densities) scale with exponents which are typically simple multiples of 1/4, suggesting that fundamental constraints underlie much of the generic structure and dynamics of living systems. These scaling laws follow from dynamical and geometrical properties of space-filling, fractal-like, hierarchical branching networks, presumed optimised by natural selection. This leads to a general framework that potentially captures essential features of diverse systems including vasculature, ontogenetic growth, cancer, aging and mortality, sleep, cell size, and DNA nucleotide substitution rates. Cities and companies also scale: wages, profits, patents, crime, disease, pollution, road lengths scale similarly across the globe, reflecting underlying universal social network dynamics which point to general principles of organization transcending their individuality. These have dramatic implications for global sustainability: innovation and wealth creation that fuel social systems, left unchecked, potentially sow the seeds for their inevitable collapse.
Mishra, Brahmeshwar; Mishra, Madhusmita; Yadav, Sarita Kumari
2017-01-01
Inhalation delivery of aerosolized antibacterials is preferred over conventional methods of delivery for targeting lung infection. The present study is concerned with the development and characterization of a novel, spray dried, aerosolized, chitosan polyelectrolyte complex (PEC) based microparticles containing antibacterials for the treatment of lung infections. Chitosan polyelectrolyte complex microparticles were formulated by spray drying process. Prepared spray dried chitosan PEC microparticles were studied for surface morphology, drug encapsulation efficiency, moisture content, Carr’s index, solid state interaction by XRD, aerosolization behaviour and in-vitro drug release. In-vitro cytotoxicity studies of microparticles were carried out on H1299 alveolar cell lines. Antibacterial efficacy of microparticles was assessed on the basis of determination of pharmacokinetic parameters in bronchial alveolar lavage (BAL) of rats using PK/PD analysis. The PEC microparticles were mostly spherical and exhibited high drug encapsulation efficiency. Release profiles showed an initial burst phase followed by a secondary sustained release phase. Good aerosolization behaviour as dry powder inhaler was demonstrated by microparticles with high values of recovered dose, emitted dose, and fine particle fraction. No overt cytotoxicity of microparticles was detected against H1299 alveolar cell line. More than 8 to 9 folds higher Cmax values were obtained in BAL fluid with microparticles as compared to intravenously administered antibacterial solution. The findings of the study suggest that chitosan polyelectrolyte complex based microparticles as dry powder inhaler can be an efficient antibacterial delivery system for sustained and effective management of lung infection. PMID:28496463
Energy and environmental consequences of transportation : indicators of sustainability
DOT National Transportation Integrated Search
1997-07-01
Monitoring the progress of transportation in achieving sustainability will be a complex undertaking requiring accurate and meaningful measures of all four types of indicators: Root Causes, Activity, Output, and Outcome. At present, significant areas ...
Integrating Water, Actors, and Structure to Study Socio-Hydro-Ecological Systems
NASA Astrophysics Data System (ADS)
Hale, R. L.; Armstrong, A.; Baker, M. A.; Bedingfield, S.; Betts, D.; Buahin, C. A.; Buchert, M.; Crowl, T.; Dupont, R.; Endter-Wada, J.; Flint, C.; Grant, J.; Hinners, S.; Horns, D.; Horsburgh, J. S.; Jackson-Smith, D.; Jones, A. S.; Licon, C.; Null, S. E.; Odame, A.; Pataki, D. E.; Rosenberg, D. E.; Runburg, M.; Stoker, P.; Strong, C.
2014-12-01
Urbanization, climate uncertainty, and ecosystem change represent major challenges for managing water resources. Water systems and the forces acting upon them are complex, and there is a need to understand and generically represent the most important system components and linkages. We developed a framework to facilitate understanding of water systems including potential vulnerabilities and opportunities for sustainability. Our goal was to produce an interdisciplinary framework for water resources research to address water issues across scales (e.g., city to region) and domains (e.g., water supply and quality, urban and transitioning landscapes). An interdisciplinary project (iUTAH - innovative Urban Transitions and Aridregion Hydro-sustainability) with a large (N=~100), diverse team having expertise spanning the hydrologic, biological, ecological, engineering, social, planning, and policy sciences motivated the development of this framework. The framework was developed through review of the literature, meetings with individual researchers, and workshops with participants. The Structure-Water-Actor Framework (SWAF) includes three main components: water (quality and quantity), structure (natural, built, and social), and actors (individual and organizational). Key linkages include: 1) ecological and hydrological processes, 2) ecosystem and geomorphic change, 3) planning, design, and policy, 4) perceptions, information, and experience, 5) resource access, and 6) operational water use and management. Our expansive view of structure includes natural, built, and social components, allowing us to examine a broad set of tools and levers for water managers and decision-makers to affect system sustainability and understand system outcomes. We validate the SWAF and illustrate its flexibility to generate insights for three research and management problems: green stormwater infrastructure in an arid environment, regional water supply and demand, and urban river restoration. These applications show that the framework can help identify key components and linkages across diverse water systems.
Gidwani, Bina; Vyas, Amber
2016-03-01
PLGA nanospheres are considered to be promising drug carrier in the treatment of cancer. Inclusion complex of bendamustine (BM) with epichlorohydrin beta cyclodextrin polymer was prepared by freeze-drying method. Phase solubility study revealed formation of AL type complex with stability constant (Ks = 645 M(-1)). This inclusion complex was encapsulated into PLGA nanospheres using solid-in-oil-in-water (S/O/W) technique. The particle size and zeta potential of PLGA nanospheres loaded with cyclodextrin-complexed BM were about 151.4 ± 2.53 nm and - 31.9 ± (-3.08) mV. In-vitro release study represented biphasic release pattern with 20% burst effect and sustained slow release. DSC studies indicated that inclusion complex incorporated in PLGA nanospheres was not in a crystalline state but existed in an amorphous or molecular state. The cytotoxicity experiment was studied in Z-138 cells and IC50 value was found to be 4.3 ± 0.11 µM. Cell viability studies revealed that the PLGA nanospheres loaded with complex exerts a more pronounced effect on the cancer cells as compared to the free drug. In conclusion, PLGA nanospheres loaded with inclusion complex of BM led to sustained drug delivery. The nanospheres were stable after 3 months of storage conditions with slight change in their particle size, zeta potential and entrapment efficiency.
Photosynthesis at the forefront of a sustainable life
Janssen, Paul J. D.; Lambreva, Maya D.; Plumeré, Nicolas; Bartolucci, Cecilia; Antonacci, Amina; Buonasera, Katia; Frese, Raoul N.; Scognamiglio, Viviana; Rea, Giuseppina
2014-01-01
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production. PMID:24971306
Investigating local sustainable environmental perspectives of Kenyan community members and teachers
NASA Astrophysics Data System (ADS)
Quigley, Cassie F.; Dogbey, James; Che, S. Megan; Hallo, Jeffrey
2015-09-01
Efforts to conserve and preserve the environment in developing or marginalized locales frequently involve a one-way transfer of knowledge and materials from a source in a more developed location. This situation often degenerates into a short-term donor project which risks little to no long-term impacts on local or indigenous relationships with the environment. This research study with educators in Narok, Kenya investigates the current perspectives of local key stakeholders on the environment and sustainability with the purpose of sharing these understandings among local groups to generate a locally constructed meaning of environmental conservation and sustainability. It is the researchers' aim that through locally constructed meanings of environmental hazards and conservation, the Maasai community will empower themselves to transform their relationship with their environment and begin to construct and enact sustainable alternatives to destructive environmental practices. The approach used in this study is a qualitative study of representative stakeholders' environmental perspectives called photovoice. Two major themes emerged during the data analysis: How do we co-habit? and How do we modernize? This community demonstrated a complex understandings including navigate traditional practices, made connections to a larger system, and describing positive ways in which humans influence our environment.
Sustainable intensification: a multifaceted, systemic approach to international development.
Himmelstein, Jennifer; Ares, Adrian; van Houweling, Emily
2016-12-01
Sustainable intensification (SI) is a term increasingly used to describe a type of approach applied to international agricultural projects. Despite its widespread use, there is still little understanding or knowledge of the various facets of this composite paradigm. A review of the literature has led to the formalization of three principles that convey the current characterization of SI, comprising a whole system, participatory, agroecological approach. Specific examples of potential bottlenecks to the SI approach are cited, in addition to various technologies and techniques that can be applied to overcome these obstacles. Models of similar, succcessful approaches to agricultural development are examined, along with higher level processes. Additionally, this review explores the desired end points of SI and argues for the inclusion of gender and nutrition throughout the process. To properly apply the SI approach, its various aspects need to be understood and adapted to different cultural and geographic situations. New modeling systems and examples of the effective execution of SI strategies can assist with the successful application of the SI paradigm within complex developing communities. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Project Galaxy - Sustianable Resource Supply and Environmental Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downing, Mark; Wimmer, Robert
2012-03-01
Understanding what it takes to move from a corn-based liquid fuels industry to one that is cellulosic-based requires a complex transition over time. This transition implies, among other things, a shift from annual cropping systems considered under United States Department of Agriculture (USDA) policy as commodity crops, to perennial lignocellulosic crops that are herbaceous and wood-based. Because of changes in land use as well as biomass and other crop supplies, land-based environmental amenities such as water quality, soil health and tilth, air quality, and animal and avian species populations and their diversity change also. Environmental effects are measured as magnitudesmore » (how much they are impacted), and direction of the impact (either positive or negative). By developing a series of quantitative and qualitative metrics, the larger issue of defining relative sustainability may be addressed, and this can be done at a finer detail of regional (scale) and environmental amenity-specific impacts. Although much literature exists about research relevant to specific environmental variables, there is no published, documented, nor research literature on direct application of environmental over-compliance with regards a 'biorefinery.' Our three goals were to (1) understand and quantify bioenergy sustainability and some key environmental effects in a generic set of examples; (2) explain the effort and means to define and quantify specific qualitative environmental measures, and to determine a way to understand changes in these measures over time and what their implications might be; and (3) use these outcomes to evaluate potential sites in any geographic area. This would permit assessment of candidate locations, combined with an understanding of co-production of fuels, chemicals, and electric power, to interpret sustainability measures and the relationship between environmental sustainability and economic sustainability. The process of determining environmental sustainability effects as a result of providing renewable energy is complex. We have only included in this report environmental effects as a result of producing biomass for the biorefinery, and the area represented by the footprint of the biorefinery itself. In doing this, we have defined critical environmental variables (water, soil, air, and flora and fauna) and discussed some measurable indicators used to quantify effects such as nitrate content, soil organic matter, air particulates, and avian species diversity, respectively. We also point out the need to perform specific sustainability risk assessments, and the need to continually evaluate the life cycle inventory with an accompanying life-cycle assessment. Only in this dynamic framework can environmental sustainability be determined, evaluated and assessed, and contrasted with economic sustainability goals of a firm or an industry.« less
Winickoff, David E; Mondou, Matthieu
2017-02-01
While there is ample scholarly work on regulatory science within the state, or single-sited global institutions, there is less on its operation within complex modes of global governance that are decentered, overlapping, multi-sectorial and multi-leveled. Using a co-productionist framework, this study identifies 'epistemic jurisdiction' - the power to produce or warrant technical knowledge for a given political community, topical arena or geographical territory - as a central problem for regulatory science in complex governance. We explore these dynamics in the arena of global sustainability standards for biofuels. We select three institutional fora as sites of inquiry: the European Union's Renewable Energy Directive, the Roundtable on Sustainable Biomaterials, and the International Organization for Standardization. These cases allow us to analyze how the co-production of sustainability science responds to problems of epistemic jurisdiction in the global regulatory order. First, different problems of epistemic jurisdiction beset different standard-setting bodies, and these problems shape both the content of regulatory science and the procedures designed to make it authoritative. Second, in order to produce global regulatory science, technical bodies must manage an array of conflicting imperatives - including scientific virtue, due process and the need to recruit adoptees to perpetuate the standard. At different levels of governance, standard drafters struggle to balance loyalties to country, to company or constituency and to the larger project of internationalization. Confronted with these sometimes conflicting pressures, actors across the standards system quite self-consciously maneuver to build or retain authority for their forum through a combination of scientific adjustment and political negotiation. Third, the evidentiary demands of regulatory science in global administrative spaces are deeply affected by 1) a market for standards, in which firms and states can choose the cheapest sustainability certification, and 2) the international trade regime, in which the long shadow of WTO law exerts a powerful disciplining function.
Wustenberghs, Hilde; Fevery, Davina; Lauwers, Ludwig; Marchand, Fleur; Spanoghe, Pieter
2018-03-15
Sustainable crop protection (SCP) has many facets. Farmers may therefore perceive transition to SCP as very complex. The Dual Indicator Set for Crop Protection Sustainability (DISCUSS) can handle this complexity. To provide targeted support throughout the transition to SCP, complexity capture must be synchronised with the time course of on-farm decision-making. Tool use must be tuned to farmer awareness and appropriate level of data in consecutive stages. This paper thus explores the potential functionalities of DISCUSS in relation to both complexity and time. Results from apple and potato crop protection show three potential functions: DISCUSS can be used as (1) a simulation tool for communication and decision support, (2) an assessment and monitoring tool, and (3) a discussion support tool for farmer groups. Analysis of these functionalities using a framework for guiding on-farm sustainability assessment and strategic decision-making shows how each functionality can support the consecutive steps of transition to SCP, i.e. using the right tool functionality at the right time. Copyright © 2017 Elsevier B.V. All rights reserved.
The management of cardiovascular disease in the Netherlands: analysis of different programmes
Cramm, Jane M.; Tsiachristas, Apostolos; Walters, Bethany H.; Adams, Samantha A.; Bal, Roland; Huijsman, Robbert; Rutten-Van Mölken, Maureen P.M.H.; Nieboer, Anna P.
2013-01-01
Background Disease management programmes are increasingly used to improve the efficacy and effectiveness of chronic care delivery. But, disease management programme development and implementation is a complex undertaking that requires effective decision-making. Choices made in the earliest phases of programme development are crucial, as they ultimately impact costs, outcomes and sustainability. Methods To increase our understanding of the choices that primary healthcare practices face when implementing such programmes and to stimulate successful implementation and sustainability, we compared the early implementation of eight cardiovascular disease management programmes initiated and managed by healthcare practices in various regions of the Netherlands. Using a mixed-methods design, we identified differences in and challenges to programme implementation in terms of context, patient characteristics, disease management level, healthcare utilisation costs, development costs and health-related quality of life. Results Shifting to a multidisciplinary, patient-centred care pathway approach to disease management is demanding for organisations, professionals and patients, and is especially vulnerable when sustainable change is the goal. Funding is an important barrier to sustainable implementation of cardiovascular disease management programmes, although development costs of the individual programmes varied considerably in relation to the length of the development period. The large number of professionals involved in combination with duration of programme development was the largest cost drivers. While Information and Communication Technology systems to support the new care pathways did not directly contribute to higher costs, delays in implementation indirectly did. Conclusions Developing and implementing cardiovascular disease management programmes is time-consuming and challenging. Multidisciplinary, patient-centred care demands multifaceted changes in routine care. As care pathways become more complex, they also become more expensive. Better preparedness and training can prevent unnecessary delays during the implementation period and are crucial to reducing costs. PMID:24167456
The management of cardiovascular disease in the Netherlands: analysis of different programmes.
Cramm, Jane M; Tsiachristas, Apostolos; Walters, Bethany H; Adams, Samantha A; Bal, Roland; Huijsman, Robbert; Rutten-Van Mölken, Maureen P M H; Nieboer, Anna P
2013-01-01
Disease management programmes are increasingly used to improve the efficacy and effectiveness of chronic care delivery. But, disease management programme development and implementation is a complex undertaking that requires effective decision-making. Choices made in the earliest phases of programme development are crucial, as they ultimately impact costs, outcomes and sustainability. To increase our understanding of the choices that primary healthcare practices face when implementing such programmes and to stimulate successful implementation and sustainability, we compared the early implementation of eight cardiovascular disease management programmes initiated and managed by healthcare practices in various regions of the Netherlands. Using a mixed-methods design, we identified differences in and challenges to programme implementation in terms of context, patient characteristics, disease management level, healthcare utilisation costs, development costs and health-related quality of life. Shifting to a multidisciplinary, patient-centred care pathway approach to disease management is demanding for organisations, professionals and patients, and is especially vulnerable when sustainable change is the goal. Funding is an important barrier to sustainable implementation of cardiovascular disease management programmes, although development costs of the individual programmes varied considerably in relation to the length of the development period. The large number of professionals involved in combination with duration of programme development was the largest cost drivers. While Information and Communication Technology systems to support the new care pathways did not directly contribute to higher costs, delays in implementation indirectly did. Developing and implementing cardiovascular disease management programmes is time-consuming and challenging. Multidisciplinary, patient-centred care demands multifaceted changes in routine care. As care pathways become more complex, they also become more expensive. Better preparedness and training can prevent unnecessary delays during the implementation period and are crucial to reducing costs.
NASA Technical Reports Server (NTRS)
Whitlow, Stephen; Wilkinson, Chris; Hamblin, Chris
2014-01-01
Automation has contributed substantially to the sustained improvement of aviation safety by minimizing the physical workload of the pilot and increasing operational efficiency. Nevertheless, in complex and highly automated aircraft, automation also has unintended consequences. As systems become more complex and the authority and autonomy (A&A) of the automation increases, human operators become relegated to the role of a system supervisor or administrator, a passive role not conducive to maintaining engagement and airplane state awareness (ASA). The consequence is that flight crews can often come to over rely on the automation, become less engaged in the human-machine interaction, and lose awareness of the automation mode under which the aircraft is operating. Likewise, the complexity of the system and automation modes may lead to poor understanding of the interaction between a mode of automation and a particular system configuration or phase of flight. These and other examples of mode confusion often lead to mismanaging the aircraftâ€"TM"s energy state or the aircraft deviating from the intended flight path. This report examines methods for assessing whether, and how, operational constructs properly assign authority and autonomy in a safe and coordinated manner, with particular emphasis on assuring adequate airplane state awareness by the flight crew and air traffic controllers in off-nominal and/or complex situations.
Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling
Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar
2017-01-01
Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499
Towards a sustainable world through human factors and ergonomics: it is all about values.
Lange-Morales, Karen; Thatcher, Andrew; García-Acosta, Gabriel
2014-01-01
In this paper, we analyse two approaches that attempt to address how a human factors and ergonomics (HFE) perspective can contribute to the sustainability of the human race. We outline the principles, purposes and fields of application of ergoecology and green ergonomics, and thereafter deal with their context of emergence, and the overlaps in purpose, and principles. Shared values are deduced and related to socio-technical principles for systems' design. Social responsibility and environmental/ecospheric responsibility are the leading threads of ergoecology and green ergonomics, giving rise to the values of: respect for human rights, respect for the Earth, respect for ethical decision-making, appreciation of complexity, respect for transparency and openness, and respect for diversity. We discuss the consequences of considering these values in HFE theory and practice.
Geerts, Cornelia J; Plomp, Jaap J; Koopmans, Bastijn; Loos, Maarten; van der Pijl, Elizabeth M; van der Valk, Martin A; Verhage, Matthijs; Groffen, Alexander J A
2015-07-01
Tomosyn-1 (STXBP5) is a soluble NSF attachment protein receptor complex-binding protein that inhibits vesicle fusion, but the role of tomosyn-2 (STXBP5L) in the mammalian nervous system is still unclear. Here we generated tomosyn-2 null (Tom2(KO/KO)) mice, which showed impaired motor performance. This was accompanied by synaptic changes at the neuromuscular junction, including enhanced spontaneous acetylcholine release frequency and faster depression of muscle motor endplate potentials during repetitive stimulation. The postsynaptic geometric arrangement and function of acetylcholine receptors were normal. We conclude that tomosyn-2 supports motor performance by regulation of transmitter release willingness to sustain synaptic strength during high-frequency transmission, which makes this gene a candidate for involvement in neuromuscular disorders.
NASA Astrophysics Data System (ADS)
Lemons, John
1995-03-01
Problems of sustainable development and environmental protection pose a challenge to humanity unprecedented in scope and complexity. Whether and how the problems are resolved have significant implications for human and ecological well-being. In this paper, I discuss briefly recent international recommendations to promote sustainable development and environmental protection. I then offer a perspective on the roles and prospects of the university in promoting sustainable development and environmental protection.
Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality
Sletten, Ellen M.
2010-01-01
The study of biomolecules in their native environments is a challenging task because of the vast complexity of cellular systems. Technologies developed in the last few years for the selective modification of biological species in living systems have yielded new insights into cellular processes. Key to these new techniques are bioorthogonal chemical reactions, whose components must react rapidly and selectively with each other under physiological conditions in the presence of the plethora of functionality necessary to sustain life. Herein we describe the bioorthogonal chemical reactions developed to date and how they can be used to study biomolecules. PMID:19714693
Bioorthogonal chemistry: fishing for selectivity in a sea of functionality.
Sletten, Ellen M; Bertozzi, Carolyn R
2009-01-01
The study of biomolecules in their native environments is a challenging task because of the vast complexity of cellular systems. Technologies developed in the last few years for the selective modification of biological species in living systems have yielded new insights into cellular processes. Key to these new techniques are bioorthogonal chemical reactions, whose components must react rapidly and selectively with each other under physiological conditions in the presence of the plethora of functionality necessary to sustain life. Herein we describe the bioorthogonal chemical reactions developed to date and how they can be used to study biomolecules.
SUSTAINABILITY PERSPECTIVE AND CHEMISTRY-BASED TECHNOLOGIES
Inefficient technologies create adverse and societal impacts while consuming material and energy resources. Yet technology enterprises are the strongest enabler of sustainability. Technologies that will address the complex concerns of these impacts and the consequences of the u...
Building a Genome Engineering Toolbox in Non-Model Prokaryotic Microbes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckert, Carrie A; Freed, Emily; Smolinski, Sharon
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g. sunlight, CO2, non-food biomass) to biofuels and bioproducts at sufficient titers and costs. For model microbes such as E. coli, advances in DNA reading and writing technologies are driving adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks such as photosynthesis, autotrophic growth, and cellulose degradation have very few, if any, genetic tools for metabolicmore » engineering. Therefore, it is important to begin to develop 'design rules' for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and available genetic tools to expand our ability to genetically engineer non-model systems.« less
Role of the state in solving the environmental problems of the industrial monoprofile cities
NASA Astrophysics Data System (ADS)
Musina, L. M.; Neucheva, M. U.
2018-01-01
Nowadays the problem of sustainable socio-economic development of monotowns refers to one of the priority issues of the state policy. The author analyzes monotowns state policy support in Russia with main focus on programs aimed at ecological restoration of industrial monoprofile cities. The processes of program control in monotowns within the state economic policy are analyzed. In order to evaluate the results of programs (of city-forming enterprises and monotowns level) the principles of development of criteria development system have been substantiated. The environmental situation of monotowns depends on a complex system of interaction between the city (represented by its people and municipal authorities), private capital and the state. Long-term sustainable development of monotowns requires the interests of all three parties to be in balance. This is possible to achieve by increasing the social responsibility of businesses, increasing the development of local government and urban identity and active influence of local communities on the activities of the municipal authorities.
NASA Astrophysics Data System (ADS)
Reynolds, J. F.; Herrick, J.; Huber-Sannwald, E.; Ayarza, M.
2011-12-01
The social and economic systems of humans (H) are inextricably linked with environmental (E) systems. This tight coupling is especially relevant in drylands, where ecosystem goods and services vital to sustaining the livelihoods of human populations are constantly changing over time. The Dryland Development Paradigm (DDP; Reynolds et al. 2007, Science 316, 847-851) was proposed as an integrated framework for dealing with the enormous complexity associated with coupled H-E systems. The DDP consists of five principles: (1) the structure, function and interrelationships that characterize H-E systems are always changing so both H and E factors must always be considered simultaneously; (2) a limited suite of "slow" variables are critical determinants of H-E dynamics; (3) thresholds in both H and E systems are vital: if a key slow variable crosses a threshold this can lead to a different state or condition (a switch in culture resistance to the introduction of new technology such as tractors to plow fields); (4) H-E systems are hierarchical in nature and because of the many cross-scale linkages and feedbacks, adaptation, surprises and self-organization are the norm; and (5) lastly, "solving" land degradation problems cannot be accomplished without drawing upon the firsthand experience and insights (local knowledge) of local stakeholders. For the past 7 years, ARIDnet-AMERICAS, an NSF-supported coordination research network, has applied these five principles via 11 case studies at diverse locations in Argentina, Bolivia, Chile, Columbia, Honduras, Mexico and the United States with the goal to compare and contrast the causes and processes of land degradation and their effects on the balance between the demand for, and supply of, ecosystem services. We present a summary of our initial synthesis. The causal human-environmental processes driving land degradation (e.g., overgrazing, government policies, international markets) are often similar but with differing levels of influence in different locations. Fundamental research knowledge is often limited, especially at multiple scales, and hence local stakeholder knowledge is essential for understanding the complexities of biophysical, social and economic processes and their interactions and feedbacks. Thresholds of H-E variables, while prevalent and essential components to projecting vulnerabilities and critical risks of livelihoods, they are difficult to quantify. We found the DDP to be a robust framework for developing conceptual models of potentially effective, adaptive and sustainable management policies although the extraordinary variability of H-E subsystems pose enormous research, management and policy challenges. We also present our initial attempt to quantify these complex phenomena within the framework of an integrated assessment model (ARIDnet-IAM) that focuses on bridging development science to ecosystem services and sustainability of human livelihoods in global drylands.
Building a genome engineering toolbox in nonmodel prokaryotic microbes.
Freed, Emily; Fenster, Jacob; Smolinski, Sharon L; Walker, Julie; Henard, Calvin A; Gill, Ryan; Eckert, Carrie A
2018-05-11
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO 2 , and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop "design rules" for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Pennington, D. D.; Garnica Chavira, L.; Villanueva-Rosales, N.
2017-12-01
People living in the vicinity of the middle Rio Grande from Elephant Butte Reservoir in New Mexico through Fort Quitman, Texas, including inhabitants on the Mexican side of the river, are confronted with numerous challenges that include drought, population growth, reduced surface water quality and quantity, declining aquifers, and expected future increases in temperature with more variable precipitation. The transboundary surface water is subject to complex regulation across two U.S. states and two nations (U.S. and Mexico). This presentation will summarize the modeling efforts of a USDA-funded project to characterize potential future solutions for water sustainability while managing agriculture, economic, and human impacts. It will present an online software system designed for rapid, flexible modeling of different climate, policy, and technology scenarios with stakeholders, and the underlying intelligent system that manages model selection, data and parameters, and user choices, and provides a provenance trace based on the W3C PROV standard.
Considerations for sustainable influenza vaccine production in developing countries.
Nannei, Claudia; Chadwick, Christopher; Fatima, Hiba; Goldin, Shoshanna; Grubo, Myriam; Ganim, Alexandra
2016-10-26
Through its Global Action Plan for Influenza Vaccines (GAP), the World Health Organization (WHO) in collaboration with the United States Department of Health and Human Services has produced a checklist to support policy-makers and influenza vaccine manufacturers in identifying key technological, political, financial, and logistical issues affecting the sustainability of influenza vaccine production. This checklist highlights actions in five key areas that are beneficial for establishing successful local vaccine manufacturing. These five areas comprise: (1) the policy environment and health-care systems; (2) surveillance systems and influenza evidence; (3) product development and manufacturing; (4) product approval and regulation; and (5) communication to support influenza vaccination. Incorporating the checklist into national vaccine production programmes has identified the policy gaps and next steps for countries involved in GAP's Technology Transfer Initiative. Lessons learnt from country experiences provide context and insight that complement the checklist's goal of simplifying the complexities of influenza prevention, preparedness, and vaccine manufacturing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
McMillan, Kimberly
2014-04-01
This paper aimed to explore the evolution of the concept of sustainability to facilitate further knowledge development in the discipline of nursing. The concept of 'sustainability' emerged in the 1950s as a result of the environmental movement. The concept has been adapted by the discipline of management and is increasingly discussed in the context of health care. The concept remains ambiguous in the discipline of nursing, resulting in a struggle to articulate the role of nursing in the sustainability movement. Rodgers evolutionary method of concept analysis was used. Literature was searched from 1987-2011, including English, peer reviewed texts in the databases CINAHL and ABI/INFORM global. Two book chapters and grey literature were also included. References were read and analysed according to antecedents, attributes, consequences, surrogate terms and related terms. Defining antecedents, attributes and consequences highlight the complexity and diversity of the concept. Attributes include: sustainability as a condition of change, as process, as outcome, as dependent of multiple stakeholders, and as social consciousness. 'Sustainability' is a fragile concept highly dependent on the processes and stakeholders involved in its fruition. There is a distinct difference in the level of concept clarity between the disciplines of management and nursing. The complexities associated with the concept of 'Sustainability' have led to its ambiguity. Nursing must, however, work to further clarify the concept to fully understand nursing's potential role in the sustainability movement. © 2013 John Wiley & Sons Ltd.
Teaching Sustainability as a Large Format Environmental Science Elective
NASA Astrophysics Data System (ADS)
Davies, C.; Frisch, M.; Wagner, J.
2012-12-01
A challenge in teaching sustainability is engaging students in the global scale and immediacy of environmental impacts, and degree of societal change required to address environmental challenges. Succeeding in a large format Environmental Science elective course with a many as 100 students is an even greater challenge. ENVSC 322 Environmental Sustainability is an innovative new course integrating multiple disciplines, a wide range of external expert speakers and a hands-on community engagement project. The course, in its third year, has been highly successful and impacting for the students, community and faculty involved. The determination of success is based on student and community impacts. Students covered science topics on Earth systems, ecosystem complexity and services through readings and specialist speakers. The interconnection of society and climate was approached through global and local examples with a strong environmental justice component. Experts in a wide range of professional fields were engaged to speak with students on the role and impacts of sustainability in their particular field. Some examples are: Region VII Environmental Protection Agency Environmental Justice Director engaged students in both urban and rural aspects of environmental justice; a Principle Architect and national leader in Green architecture and redevelopment spoke with students regarding the necessity and potential for green urbanism; and industry innovators presented closed-cycle and alternative energy projects. The capstone project and highlight of the course was an individual or team community engagement project on sustainability, designed and implemented by the students. Community engagement projects completed throughout the Kansas City metro area have increased each year in number, quality and impact from 35 the first year to 70 projects this past spring. Students directly engage their communities and through this experience integrate knowledge of environmental systems with how their own society uses and impacts these systems. The direct nature of "doing" a project, not its success, can and has been transformative for many students.
The work is never ending: uncovering teamwork sustainability using realistic evaluation.
Frykman, Mandus; von Thiele Schwarz, Ulrica; Muntlin Athlin, Åsa; Hasson, Henna; Mazzocato, Pamela
2017-03-20
Purpose The purpose of this paper is to uncover the mechanisms influencing the sustainability of behavior changes following the implementation of teamwork. Design/methodology/approach Realistic evaluation was combined with a framework (DCOM®) based on applied behavior analysis to study the sustainability of behavior changes two and a half years after the initial implementation of teamwork at an emergency department. The DCOM® framework was used to categorize the mechanisms of behavior change interventions (BCIs) into the four categories of direction, competence, opportunity, and motivation. Non-participant observation and interview data were used. Findings The teamwork behaviors were not sustained. A substantial fallback in managerial activities in combination with a complex context contributed to reduced direction, opportunity, and motivation. Reduced direction made staff members unclear about how and why they should work in teams. Deterioration of opportunity was evident from the lack of problem-solving resources resulting in accumulated barriers to teamwork. Motivation in terms of management support and feedback was reduced. Practical implications The implementation of complex organizational changes in complex healthcare contexts requires continuous adaption and managerial activities well beyond the initial implementation period. Originality/value By integrating the DCOM® framework with realistic evaluation, this study responds to the call for theoretically based research on behavioral mechanisms that can explain how BCIs interact with context and how this interaction influences sustainability.
Education for Sustainable Development in Higher Education: State-of-the-Art, Barriers and Challenges
ERIC Educational Resources Information Center
Fernández-Sánchez, Gonzalo; Bernaldo, María Olga; Castillejo, Ana; Manzanero, Ana María
2014-01-01
Education for Sustainable Development (ESD) is a new educational paradigm that allows Universities to lead and respond to social needs towards a more sustainable life. The ESD is a global preparedness and complex phenomena in relation to the effects of human activity on the environment, society and economy in spatial (global, regional and local)…
A neural network investigation of the crucial facets of urban sustainability.
Buscema, M; Diappi, L; Ottanà, M
1998-02-01
This paper focuses on the concept of a sustainable city and its theoretical implications for the Italian urban system. Urban sustainability is based on positive interactions among three different urban subsystems: social, economic and physical, where social well-being coexists with economic development and environmental quality. This utopian scenario does not appear in the existing cities. The aesthetic quality of natural and man-made environment is often associated with marginality and poverty, labor market variety and urban efficiency coexisting with pollution, criminality and high settlement costs. Moreover, since each city differs institutionally, historically, culturally and economically, few attempts have been implemented to build a comparative synthetic vision of the urban sustainability in different cities. The interactions among these selected systems are complex and unpredictable and present the opportunity for a new methodology of scientific investigation: the connectionistic approach. The dual aim of this study is to: investigate the underlying relationships among the three subsystems with a set of social, economic and physical attributes of the chief towns of a Province in Italy and ; verify if this underlying structure could reproduce the heterogeneity of urban realities, allowing one to distinguish groups of cities with different assets or drawbacks in their sustainability. The Data Base (DB), composed of 43 attributes for 95 cities, was processed by Self-Reflexive Neural Networks (SRNN) (Buscema, 1995). These Networks are a useful instrument of investigation and analogic questioning of the Data Base. Once the SRNN has learned the structure of the weights from the DB, by querying the network with the maximization or minimization of specific groups of attributes, it is possible to read the related properties and to rank the cities' urban profile.
Delivering enhanced testosterone replacement therapy through nanochannels.
Ferrati, Silvia; Nicolov, Eugenia; Bansal, Shyam; Zabre, Erika; Geninatti, Thomas; Ziemys, Arturas; Hudson, Lee; Ferrari, Mauro; Goodall, Randal; Khera, Mohit; Palapattu, Ganesh; Grattoni, Alessandro
2015-02-18
Primary or secondary hypogonadism results in a range of signs and symptoms that compromise quality of life and requires life-long testosterone replacement therapy. In this study, an implantable nanochannel system is investigated as an alternative delivery strategy for the long-term sustained and constant release of testosterone. In vitro release tests are performed using a dissolution set up, with testosterone and testosterone:2-hydroxypropyl-β-cyclodextrin (TES:HPCD) 1:1 and 1:2 molar ratio complexes release from the implantable nanochannel system and quantify by HPLC. 1:2 TES:HPCD complex stably achieve 10-15 times higher testosterone solubility with 25-30 times higher in vitro release. Bioactivity of delivered testosterone is verified by LNCaP/LUC cell luminescence. In vivo evaluation of testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) levels by liquid chromatography mass spectrometry (LC/MS) and multiplex assay is performed in castrated Sprague-Dawley rats over 30 d. Animals are treated with the nanochannel implants or degradable testosterone pellets. The 1:2 TES:HPCD nanochannel implant exhibits sustained and clinically relevant in vivo release kinetics and attains physiologically stable plasma levels of testosterone, LH, and FSH. In conclusion, it is demonstrated that by providing long-term steady release 1:2 TES:HPCD nanochannel implants may represent a major breakthrough for the treatment of male hypogonadism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Fazhan; Bao, Xingting; Fang, Aiping; Li, Huili; Zhou, Yang; Liu, Yongmei; Jiang, Chunling; Wu, Jinhui; Song, Xiangrong
2018-01-01
Novel ocular drug delivery systems (NODDSs) remain to be explored to overcome the anatomical and physiological barriers of the eyes. This study was to encapsulate brinzolamide (BRZ)-hydropropyl-β-cyclodextrin (HP-β-CD) inclusion complex (HP-β-CD/BRZ) into nanoliposomes and investigate its potential as one of NODDS to improve BRZ local glaucomatous therapeutic effect. HP-β-CD/BRZ was firstly prepared to enhance the solubility of poorly water-soluble BRZ. The HP-β-CD/BRZ loaded nanoliposomes (BCL) were subsequently constructed by thin-film dispersion method. After the optimization of the ratio of BRZ to HP-β-CD, the optimal BCL showed an average size of 82.29 ± 6.20 nm, ζ potential of -3.57 ± 0.46 mV and entrapment efficiency (EE) of 92.50 ± 2.10% with nearly spherical in shape. The X-ray diffraction (XRD) confirmed the formation of HP-β-CD/BRZ and BCL. The in vitro release study of BCL was evaluated using the dialysis technique, and BCL showed moderate sustained release. BCL (1 mg/mL BRZ) showed a 9.36-fold increase in the apparent permeability coefficient and had a sustained and enhanced intraocular pressure reduction efficacy when compared with the commercially available formulation (BRZ-Sus) (10 mg/mL BRZ). In conclusion, BCL might have a promising future as a NODDS for glaucoma treatment. PMID:29487529
In Situ Forming Polymeric Drug Delivery Systems
Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J. A.
2009-01-01
In situ forming polymeric formulations are drug delivery systems that are in sol form before administration in the body, but once administered, undergo gelation in situ, to form a gel. The formation of gels depends on factors like temperature modulation, pH change, presence of ions and ultra violet irradiation, from which the drug gets released in a sustained and controlled manner. Various polymers that are used for the formulation of in situ gels include gellan gum, alginic acid, xyloglucan, pectin, chitosan, poly(DL-lactic acid), poly(DL-lactide-co-glycolide) and poly-caprolactone. The choice of solvents like water, dimethylsulphoxide, N-methyl pyrrolidone, triacetin and 2-pyrrolidone for these formulations depends on the solubility of polymer used. Mainly in situ gels are administered by oral, ocular, rectal, vaginal, injectable and intraperitoneal routes. The in situ gel forming polymeric formulations offer several advantages like sustained and prolonged action in comparison to conventional drug delivery systems. The article presents a detailed review of these types of polymeric systems, their evaluation, advancements and their commercial formulations. From a manufacturing point of view, the production of such devices is less complex and thus lowers the investment and manufacturing cost. PMID:20490289
Rethinking Environmental Protection: Meeting the Challenges of a Changing World.
Burke, Thomas A; Cascio, Wayne E; Costa, Daniel L; Deener, Kacee; Fontaine, Thomas D; Fulk, Florence A; Jackson, Laura E; Munns, Wayne R; Orme-Zavaleta, Jennifer; Slimak, Michael W; Zartarian, Valerie G
2017-03-01
From climate change to hydraulic fracturing, and from drinking water safety to wildfires, environmental challenges are changing. The United States has made substantial environmental protection progress based on media-specific and single pollutant risk-based frameworks. However, today’s environmental problems are increasingly complex and new scientific approaches and tools are needed to achieve sustainable solutions to protect the environment and public health. In this article, we present examples of today’s environmental challenges and offer an integrated systems approach to address them. We provide a strategic framework and recommendations for advancing the application of science for protecting the environment and public health. We posit that addressing 21st century challenges requires transdisciplinary and systems approaches, new data sources, and stakeholder partnerships. To address these challenges, we outline a process driven by problem formulation with the following steps: a ) formulate the problem holistically, b ) gather and synthesize diverse information, c ) develop and assess options, and d ) implement sustainable solutions. This process will require new skills and education in systems science, with an emphasis on science translation. A systems-based approach can transcend media- and receptor-specific bounds, integrate diverse information, and recognize the inextricable link between ecology and human health.
Cosens, Barbara; Gunderson, Lance; Allen, Craig R.; Benson, Melinda H.
2014-01-01
Current governance of regional scale water management systems in the United States has not placed them on a path toward sustainability, as conflict and gridlock characterize the social arena and ecosystem services continue to erode. Changing climate may continue this trajectory, but it also provides a catalyst for renewal of ecosystems and a window of opportunity for change in institutions. Resilience provides a bridging concept that predicts that change in ecological and social systems is often dramatic, abrupt, and surprising. Adapting to the uncertainty of climate driven change must be done in a manner perceived as legitimate by the participants in a democratic society. Adaptation must begin with the current hierarchical and fragmented social-ecological system as a baseline from which new approaches must be applied. Achieving a level of integration between ecological concepts and governance requires a dialogue across multiple disciplines, including ecologists with expertise in ecological resilience, hydrologists and climate experts, with social scientists and legal scholars. Criteria and models that link ecological dynamics with policies in complex, multi-jurisdictional water basins with adaptive management and governance frameworks may move these social-ecological systems toward greater sustainability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elia, Valerio; Gnoni, Maria Grazia, E-mail: mariagrazia.gnoni@unisalento.it; Tornese, Fabiana
Highlights: • Pay-As-You-Throw (PAYT) schemes are becoming widespread in several countries. • Economic, organizational and technological issues have to be integrated in an efficient PAYT model design. • Efficiency refers to a PAYT system which support high citizen participation rates as well as economic sustainability. • Different steps and constraints have to be evaluated from collection services to type technologies. • An holistic approach is discussed to support PAYT systems diffusion. - Abstract: Pay-As-You-Throw (PAYT) strategies are becoming widely applied in solid waste management systems; the main purpose is to support a more sustainable – from economic, environmental and socialmore » points of view – management of waste flows. Adopting PAYT charging models increases the complexity level of the waste management service as new organizational issues have to be evaluated compared to flat charging models. In addition, innovative technological solutions could also be adopted to increase the overall efficiency of the service. Unit pricing, user identification and waste measurement represent the three most important processes to be defined in a PAYT system. The paper proposes a holistic framework to support an effective design and management process. The framework defines most critical processes and effective organizational and technological solutions for supporting waste managers as well as researchers.« less
Rethinking Environmental Protection: Meeting the Challenges of a Changing World
Burke, Thomas A.; Cascio, Wayne E.; Costa, Daniel L.; Deener, Kacee; Fontaine, Thomas D.; Fulk, Florence A.; Jackson, Laura E.; Munns, Wayne R.; Orme-Zavaleta, Jennifer; Slimak, Michael W.; Zartarian, Valerie G.
2017-01-01
Summary: From climate change to hydraulic fracturing, and from drinking water safety to wildfires, environmental challenges are changing. The United States has made substantial environmental protection progress based on media-specific and single pollutant risk-based frameworks. However, today’s environmental problems are increasingly complex and new scientific approaches and tools are needed to achieve sustainable solutions to protect the environment and public health. In this article, we present examples of today’s environmental challenges and offer an integrated systems approach to address them. We provide a strategic framework and recommendations for advancing the application of science for protecting the environment and public health. We posit that addressing 21st century challenges requires transdisciplinary and systems approaches, new data sources, and stakeholder partnerships. To address these challenges, we outline a process driven by problem formulation with the following steps: a) formulate the problem holistically, b) gather and synthesize diverse information, c) develop and assess options, and d) implement sustainable solutions. This process will require new skills and education in systems science, with an emphasis on science translation. A systems-based approach can transcend media- and receptor-specific bounds, integrate diverse information, and recognize the inextricable link between ecology and human health. PMID:28248180
The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback.
Frank, A; Carroll-Nellenback, Jonathan; Alberti, M; Kleidon, A
2018-05-01
We present a framework for studying generic behaviors possible in the interaction between a resource-harvesting technological civilization (an exo-civilization) and the planetary environment in which it evolves. Using methods from dynamical systems theory, we introduce and analyze a suite of simple equations modeling a population which consumes resources for the purpose of running a technological civilization and the feedback those resources drive on the state of the host planet. The feedbacks can drive the planet away from the initial state the civilization originated in and into domains that are detrimental to its sustainability. Our models conceptualize the problem primarily in terms of feedbacks from the resource use onto the coupled planetary systems. In addition, we also model the population growth advantages gained via the harvesting of these resources. We present three models of increasing complexity: (1) Civilization-planetary interaction with a single resource; (2) Civilization-planetary interaction with two resources each of which has a different level of planetary system feedback; (3) Civilization-planetary interaction with two resources and nonlinear planetary feedback (i.e., runaways). All three models show distinct classes of exo-civilization trajectories. We find smooth entries into long-term, "sustainable" steady states. We also find population booms followed by various levels of "die-off." Finally, we also observe rapid "collapse" trajectories for which the population approaches n = 0. Our results are part of a program for developing an "Astrobiology of the Anthropocene" in which questions of sustainability, centered on the coupled Earth-system, can be seen in their proper astronomical/planetary context. We conclude by discussing the implications of our results for both the coupled Earth system and for the consideration of exo-civilizations across cosmic history. Key Words: Anthropocene-Astrobiology-Civilization-Dynamical system theory-Exoplanets-Population dynamics. Astrobiology 18, 503-518.
Sustainability Based Decision Making
With sustainability as the “true north” for EPA research, a premium is placed on the ability to make decisions under highly complex and uncertain conditions. The primary challenge is reconciling disparate criteria toward credible and defensible decisions. Making decisions on on...
NASA Astrophysics Data System (ADS)
Poppe, Michaela; Zitek, Andreas; Salles, Paulo; Bredeweg, Bert; Muhar, Susanne
2010-05-01
The education system needs strategies to attract future scientists and practitioners. There is an alarming decline in the number of students choosing science subjects. Reasons for this include the perceived complexity and the lack of effective cognitive tools that enable learners to acquire the expertise in a way that fits its qualitative nature. The DynaLearn project utilises a "Learning by modelling" approach to deliver an individualised and engaging cognitive tool for acquiring conceptual knowledge. The modelling approach is based on qualitative reasoning, a research area within artificial intelligence, and allows for capturing and simulating qualitative systems knowledge. Educational activities within the DynaLearn software address topics at different levels of complexity, depending on the educational goals and settings. DynaLearn uses virtual characters in the learning environment as agents for engaging and motivating the students during their modelling exercise. The DynaLearn software represents an interactive learning environment in which learners are in control of their learning activities. The software is able to coach them individually based on their current progress, their knowledge needs and learning goals. Within the project 70 expert models on different environmental issues covering seven core topics (Earth Systems and Resources, The Living World, Human population, Land and Water Use, Energy Resources and Consumption, Pollution, and Global Changes) will be delivered. In the context of the core topic "Land and Water Use" the Institute of Hydrobiology and Aquatic Ecosystem Management has developed a model on Sustainable River Catchment Management. River systems with their catchments have been tremendously altered due to human pressures with serious consequences for the ecological integrity of riverine landscapes. The operation of hydropower plants, the implementation of flood protection measures, the regulation of flow and sediment regime and intensive land use in the catchments have created ecological problems. A sustainable, catchment-wide management of riverine landscapes is needed and stated by water right acts, e.g. the European Water Framework and Floods Directive. This interdisciplinary approach needs the integration of natural riverine processes, flood protection, resource management, landscape planning, and social and political aspects to achieve a sustainable development. Therefore the model shows the effects of different management strategies concerning flood protection, restoration measures and land use. The model illustrates the wide range of ecosystem services of riverine landscapes that contribute to human well-being such as water supply, hydropower generation, flood regulation, and recreational opportunities. The effects of different land use strategies in the catchment are highlighted by means of the Driver-Pressure-State-Impact-Response (DPSIR) framework. The model is used to support activities of students at the University as well as at High School within the DynaLearn Software to promote scientific culture in the secondary education system. Model fragments allow learners to re-use parts of the existing model at different levels of complexity. But learners can also construct their own conceptual system knowledge, either individually or in a collaborative setting, and using the model as a reference for comparisons of their own understanding. Of special interest for the DynaLearn project is the intended development of interdisciplinary and social skills like cooperative working, cross-linked thinking, problem solving, decision-making, and the identification of the conflicts between environment, economy, legislation, science, technology, and society. A comprehensive evaluation of the DynaLearn software is part of the project. To be effective, science education should focus on understanding scientific concepts and on application of scientific knowledge to everyday life. Conceptual knowledge of systems behaviour is crucial for society to understand and successfully interact with its environment. The transfer of environmental-scientific knowledge by means of the DynaLearn software to wide parts of the society can be regarded as an important contribution to that, and contributes to foster a life-long learning process.
Blanchet, Karl; Palmer, Jennifer; Palanchowke, Raju; Boggs, Dorothy; Jama, Ali; Girois, Susan
2014-08-26
Health systems strengthening is becoming a key component of development agendas for low-income countries worldwide. Systems thinking emphasizes the role of diverse stakeholders in designing solutions to system problems, including sustainability. The objective of this paper is to compare the definition and use of sustainability indicators developed through the Sustainability Analysis Process in two rehabilitation sectors, one in Nepal and one in Somaliland, and analyse the contextual factors (including the characteristics of system stakeholder networks) influencing the use of sustainability data. Using the Sustainability Analysis Process, participants collectively clarified the boundaries of their respective systems, defined sustainability, and identified sustainability indicators. Baseline indicator data was gathered, where possible, and then researched again 2 years later. As part of the exercise, system stakeholder networks were mapped at baseline and at the 2-year follow-up. We compared stakeholder networks and interrelationships with baseline and 2-year progress toward self-defined sustainability goals. Using in-depth interviews and observations, additional contextual factors affecting the use of sustainability data were identified. Differences in the selection of sustainability indicators selected by local stakeholders from Nepal and Somaliland reflected differences in the governance and structure of the present rehabilitation system. At 2 years, differences in the structure of social networks were more marked. In Nepal, the system stakeholder network had become more dense and decentralized. Financial support by an international organization facilitated advancement toward self-identified sustainability goals. In Somaliland, the small, centralised stakeholder network suffered a critical rupture between the system's two main information brokers due to competing priorities and withdrawal of international support to one of these. Progress toward self-defined sustainability was nil. The structure of the rehabilitation system stakeholder network characteristics in Nepal and Somaliland evolved over time and helped understand the changing nature of relationships between actors and their capacity to work as a system rather than a sum of actors. Creating consensus on a common vision of sustainability requires additional system-level interventions such as identification of and support to stakeholders who promote systems thinking above individual interests.
Sustainable diets within sustainable food systems.
Meybeck, Alexandre; Gitz, Vincent
2017-02-01
Sustainable diets and sustainable food systems are increasingly explored by diverse scientific disciplines. They are also recognised by the international community and called upon to orient action towards the eradication of hunger and malnutrition and the fulfilment of sustainable development goals. The aim of the present paper is to briefly consider some of the links between these two notions in order to facilitate the operationalisation of the concept of sustainable diet. The concept of sustainable diet was defined in 2010 combining two totally different perspectives: a nutrition perspective, focused on individuals, and a global sustainability perspective, in all its dimensions: environmental, economic and social. The nutrition perspective can be easily related to health outcomes. The global sustainability perspective is more difficult to analyse directly. We propose that it be measured as the contribution of a diet to the sustainability of food systems. Such an approach, covering the three dimensions of sustainability, enables identification of interactions and interrelations between food systems and diets. It provides opportunities to find levers of change towards sustainability. Diets are both the results and the drivers of food systems. The drivers of change for those variously involved, consumers and private individuals, are different, and can be triggered by different dimensions (heath, environment, social and cultural). Combining different dimensions and reasons for change can help facilitate the transition to sustainable diets, recognising the food system's specificities. The adoption of sustainable diets can be facilitated and enabled by food systems, and by appropriate policies and incentives.
Best, David W; Ghufran, Safeena; Day, Ed; Ray, Rajashree; Loaring, Jessica
2008-11-01
The aim of this study was to examine heroin careers among former users to assess desistance factors and explanations for sustained abstinence. The study surveyed 107 former problematic heroin users who have achieved long-term abstinence about their experiences of achieving and sustaining abstinence. The cohort was recruited opportunistically from three sources, drawing heavily on former users working in the addictions field. On average, the group had heroin careers lasting for just under 10 years, punctuated by an average of 2.6 treatment episodes and 3.1 periods of abstinence, and had been heroin abstinent for an average of 10 years at the time of completing the survey. The most commonly expressed reason for finally achieving abstinence was 'tired of the lifestyle' followed by reasons relating to psychological health. In contrast, when asked to explain how abstinence was sustained, clients quoted both social network factors (moving away from drug-using friends and support from non-using friends) and practical factors (accommodation and employment) as well as religious or spiritual factors. Treatment was not mentioned widely either in achieving or sustaining abstinence, in contrast to 12-Step, which was endorsed widely. The study supports a careers perspective for examining heroin careers and indicates that, while achieving abstinence is possible for chronic opiate users, the path to sustained abstinence is complex and often reliant upon external support systems.
Dyson, K; Kruger, E; Tennant, M
2014-06-01
Embedding research capabilities and workforce development activities with clinical service entities promotes the development of sustainable, innovative, quality-focused oral health care services. Clinical and strategic governance is an important area of consideration for rural and remote dental services, posing particular challenges for smaller service structures. Sustaining remote area dental services has some significant complexities beyond those involved in urban service models. This study describes the sustaining structure of a remote area dental service with a decade of history. In the current climate, chief among these challenges may be those associated with dental workforce shortages as these impact most heavily in the public sector, and most particularly, in remote areas. As sustained workforce solutions come from developing a future workforce, an essential element of the workforce governance framework for remote dental service provision should be the inclusion of a student participation programme. Collaborative partnership approaches with Aboriginal health services promote the development and maintenance of effective, culturally sensitive dental services within rural and remote Aboriginal communities. Having sustained care for 10 years, this collaborative model of integrated research, education and service has demonstrated its effectiveness as a service model for Aboriginal communities in Western Australia. This descriptive study finds the core values for this success have been communication, clinical leadership, mentorship within effective governance systems all linked to an integrated education and research agenda. © 2014 Australian Dental Association.
Emergent explosive synchronization in adaptive complex networks
NASA Astrophysics Data System (ADS)
Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.
2018-04-01
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
Emergence of Life-Like Properties from Dissipative Self-Assembly of Nanoparticles
NASA Astrophysics Data System (ADS)
Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Ozgun; Tokel, Onur; Pavlov, Ihor; Gulseren, Oguz; Ilday, F. Omer
A profoundly fundamental question at the interface between physics and biology remains open: What are the minimum requirements for emergence of life-like properties from non-living systems? Here, we address this question and report emergent complex behavior of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: The system is driven far from equilibrium by ultrafast laser pulses, which create spatiotemporal temperature gradients, inducing Marangoni-type flow that drags the particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between the flow, the aggregate, and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behavior, analogous to those commonly seen in living organisms, emerges, whereby the aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise of only one pattern or bifurcated patterns can co-exist, compete, survive or die.
NASA Astrophysics Data System (ADS)
Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor
2017-10-01
The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.
Emergent explosive synchronization in adaptive complex networks.
Avalos-Gaytán, Vanesa; Almendral, Juan A; Leyva, I; Battiston, F; Nicosia, V; Latora, V; Boccaletti, S
2018-04-01
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
Civic Ecology: A Postmodern Approach to Ecological Sustainability
NASA Astrophysics Data System (ADS)
Lopes, V. L.
2013-12-01
Human agency is transforming the planetary processes at unprecedented rates risking damaging essential life-support systems. Climate change, massive species extinction, land degradation, resources depletion, overpopulation, poverty and social injustice are all the result of human choices and non-sustainable ways of life. The survival of our modern economic systems depends upon insatiable consumption - a simple way of life no longer satisfies most people. Detached, instrumental rationality has created an ideal of liberalism based on individual pursuit of self-interest, leading the way into unprecedented material progress but bringing with it human alienation, social injustice, and ecological degradation. The purpose of this presentation is to introduce a community-based systems response to a growing sense that the interlocked social-ecological crisis is as much a problem of human thought and behavior as it is about identifying carrying capacities and CO2 concentrations in the atmosphere. This approach, referred to here as civic ecology, presents a new and important paradigm shift in sustainability practice that attempts to bring together and integrate ecological ideas and postmodern thinking. As such, it is as much a holistic, dynamic, and synergistic approach to ecological sustainability, as it is a philosophy of life and ethical perspective born of ecological understanding and insight. Civic ecology starts with the proposition that the key factor determining the health of the ecosphere is the behavior of human beings, and therefore many of the most important issues related to sustainability lie in the areas of human thought and culture. Thus, the quest for sustainability must include as a central concern the transformation of psychological and behavioral patterns that have become an imminent danger to planetary health. At the core of this understanding is a fundamental paradigm shift from the basic commitments of modern Western culture to its model of mechanism and fragmentary modes of existence, to a more relational (ecological) view of the world in which balance and harmony are achieved by ever-changing complexity and differentiation. Central to this view is the recognition that human communities will become increasingly more just and sustainable if their citizens understand, are committed to, and share, a set of values and ecological principles. Shared purposes and principles, however, cannot be handed down from above but must be developed from the bottom-up through community engagement and ecological citizenship.
Developing a response to family violence in primary health care: the New Zealand experience.
Gear, Claire; Koziol-McLain, Jane; Wilson, Denise; Clark, Faye
2016-08-20
Despite primary health care being recognised as an ideal setting to effectively respond to those experiencing family violence, responses are not widely integrated as part of routine health care. A lack of evidence testing models and approaches for health sector integration, alongside challenges of transferability and sustainability, means the best approach in responding to family violence is still unknown. The Primary Health Care Family Violence Responsiveness Evaluation Tool was developed as a guide to implement a formal systems-led response to family violence within New Zealand primary health care settings. Given the difficulties integrating effective, sustainable responses to family violence, we share the experience of primary health care sites that embarked on developing a response to family violence, presenting the enablers, barriers and resources required to maintain, progress and sustain family violence response development. In this qualitative descriptive study data were collected from two sources. Firstly semi-structured focus group interviews were conducted during 24-month follow-up evaluation visits of primary health care sites to capture the enablers, barriers and resources required to maintain, progress and sustain a response to family violence. Secondly the outcomes of a group activity to identify response development barriers and implementation strategies were recorded during a network meeting of primary health care professionals interested in family violence prevention and intervention; findings were triangulated across the two data sources. Four sites, representing three PHOs and four general practices participated in the focus group interviews; 35 delegates from across New Zealand attended the network meeting representing a wider perspective on family violence response development within primary health care. Enablers and barriers to developing a family violence response were identified across four themes: 'Getting started', 'Building effective relationships', 'Sourcing funding' and 'Shaping a national approach to family violence'. The strong commitment of key people dedicated to addressing family violence is essential for response sustainability and would be strengthened by prioritising family violence response as a national health target with dedicated resourcing. Further analysis of the health care system as a complex adaptive system may provide insight into effective approaches to response development and health system integration.
NASA Astrophysics Data System (ADS)
Xiao, Jie
Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and curing, is specifically discussed in this dissertation. Nevertheless, the multiscale considerations for sustainable manufacturing, the novel concept of IPP control, and the new PPDE-based optimization method are applicable to other types of manufacturing, e.g., metal coating development through electroplating. It is demonstrated that the methodological development in this dissertation can greatly facilitate experimentalists in novel material invention and new knowledge discovery. At the same time, they can provide scientific guidance and reveal various new opportunities and effective strategies for sustainable manufacturing.
Miniaturization as a key factor to the development and application of advanced metrology systems
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Dobrev, Ivo; Harrington, Ellery; Hefti, Peter; Khaleghi, Morteza
2012-10-01
Recent technological advances of miniaturization engineering are enabling the realization of components and systems with unprecedented capabilities. Such capabilities, which are significantly beneficial to scientific and engineering applications, are impacting the development and the application of optical metrology systems for investigations under complex boundary, loading, and operating conditions. In this paper, and overview of metrology systems that we are developing is presented. Systems are being developed and applied to high-speed and high-resolution measurements of shape and deformations under actual operating conditions for such applications as sustainability, health, medical diagnosis, security, and urban infrastructure. Systems take advantage of recent developments in light sources and modulators, detectors, microelectromechanical (MEMS) sensors and actuators, kinematic positioners, rapid prototyping fabrication technologies, as well as software engineering.