Sample records for complex tectonic evolution

  1. Venus tectonics - An overview of Magellan observations

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Smrekar, Suzanne E.; Bindschadler, Duane L.; Grimm, Robert E.; Kaula, William M.; Mcgill, George E.; Phillips, Roger J.; Saunders, R. S.; Schubert, Gerald; Squyres, Steven W.

    1992-01-01

    Magellan observations of the tectonic characteristics of highland regions on Venus are discussed with reference to competing theories for highland formation and evolution. Complex rigid terrain, or tessera, and the extent to which these elevated blocks of intensely deformed crust may be genetically related to highlands are then considered. Further, the tectonics of plains and lowland regions are examined, including deformation belts and coronae, and possible relations between such features and mantle dynamics. Implications of these observations for the global tectonics of Venus are discussed.

  2. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling

    DTIC Science & Technology

    2010-09-01

    crustal structures. But short periods are difficult to measure, especially in tectonically and geologically complex areas. On the other hand, gravity...East Africa Rift System Knowledge of crustal and upper mantle structure is of importance for understanding East Africa’s geodynamic evolution and for...area with less lateral heterogeneity but great tectonic complexity. To increase the effectiveness of the technique in this region, we explore gravity

  3. Venus magmatic and tectonic evolution

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Hansen, V. L.

    1993-01-01

    Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.

  4. Geohistory analysis of the Santa Maria basin, California, and its relationship to tectonic evolution of the continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.

    1991-02-01

    The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less

  5. Tectono-stratigraphy and low-grade metamorphism of Late Permian and Early Jurassic accretionary complexes within the Kurosegawa belt, Southwest Japan: Implications for mechanisms of crustal displacement within active continental margin

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kurihara, Toshiyuki; Mori, Hiroshi

    2013-04-01

    We characterize the tectono-stratigraphic architecture and low-grade metamorphism of the accretionary complex preserved in the Kurosegawa belt of the Kitagawa district in eastern Shikoku, Southwest Japan, in order to understand its internal structure, tectono-metamorphic evolution, and assessments of displacement of continental fragments within the complex. We report the first ever documented occurrence of an Early Jurassic radiolarian assemblage within the accretionary complex of the Kurosegawa belt that has been previously classified as the Late Permian accretionary complex, thus providing a revised age interpretation for these rocks. The accretionary complex is subdivided into four distinct tectono-stratigraphic units: Late Permian mélange and phyllite units, and Early Jurassic mélange and sandstone units. The stratigraphy of these four units is structurally repeated due to an E-W striking, steeply dipping regional fault. We characterized low-grade metamorphism of the accretionary complex via illite crystallinity and Raman spectroscopy of carbonaceous material. The estimated pattern of low-grade metamorphism showed pronounced variability within the complex and revealed no discernible spatial trends. The primary thermal structure in these rocks was overprinted by later tectonic events. Based on geological and thermal structure, we conclude that continental fragments within the Kurosegawa belt were structurally translated into both the Late Permian and Early Jurassic accretionary complexes, which comprise a highly deformed zone affected by strike-slip tectonics during the Early Cretaceous. Different models have been proposed to explain the initial structural evolution of the Kurosegawa belt (i.e., micro-continent collision and klippe tectonic models). Even if we presuppose either model, the available geological evidence requires a new interpretation, whereby primary geological structures are overprinted and reconfigured by later tectonic events.

  6. Triassic structural and stratigraphic evolution of the Central German North Sea sector

    NASA Astrophysics Data System (ADS)

    Wolf, Marco; Jähne-Klingberg, Fabian

    2017-04-01

    The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures along the major Upper Jurassic to Lower Cretaceous unconformity, which are related to erosion of Triassic evaporitic formations, will be shown.

  7. The Eocene-Miocene tectonic evolution of the Rif chain (Morocco): new data from the Jebha area

    NASA Astrophysics Data System (ADS)

    D'Assisi Tramparulo, Francesco; Ciarcia, Sabatino; El Ouaragli, Bilal; Vitale, Stefano; Najib Zaghloul, Mohamed

    2016-04-01

    Keywords: structural analysis, tectonics, shear bands, Miocene, Jebha Fault The Jebha area, located in the Central Rif, is a key sector to understand the orogenic evolution of the Rif chain. Here, the left lateral Jebha-Chrafate transfer fault, allowed, in the Miocene time, the westward migration of the internal thrust front. The structural analysis of the area revealed a complex tectonic history. The Eocene orogenic pulse produced the tectonic stacking of the Ghomaride thrust sheets. During the late Aquitanian and Langhian, under a dominant ENE-WSW shortening, imbrication of several Internal Dorsale Calcaire slices occurred. The following orogenic stage, characterized by a main SE tectonic transport, allowed the External Dorsale Calcaire to overthrust the Maghrebian Flysch Basin Units by means of a dominant thin-skinned tectonics. Synchronously with the buttressing following the collision of the allochthonous wedge against the External Rif domain, an out-of-sequence thrusting stage involved the Ghomaride and Dorsale Calcaire Units and a general back-thrusting deformed the entire tectonic pile. A renewal of the NE-SW shortening produced strike-slip faults and SW-verging folds and finally a radial extension affected the whole chain.

  8. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  9. Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge

    NASA Astrophysics Data System (ADS)

    Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo

    2017-10-01

    The Trinidad dome, Escambray complex, Cuba, forms part of an accretionary wedge built during intra-oceanic subduction in the Caribbean from the Late Cretaceous to Cenozoic. The structure reflects syn-subduction exhumation during thickening of the wedge, followed by extension. Field mapping, metamorphic and structural analysis constrain the tectonic evolution into five stages. Three ductile deformation events (D1, D2 and D3) are related to metamorphism in a compressional setting and formation of several nappes. D1 subduction fabrics are only preserved as relict S1 foliation and rootless isoclinal folds strongly overprinted by the main S2 foliation. The S2 foliation is parallel to sheared serpentinised lenses that define tectonic contacts, suggesting thrust stacks and underthrusting at mantle depths. Thrusting caused an inverted metamorphic structure with higher-grade on top of lower-grade nappes. Exhumation started during D2 when the units were incorporated into the growing accretionary wedge along NNE-directed thrust faults and was accompanied by substantial decompression and cooling. Folding and thrusting continued during D3 and marks the transition from ductile to brittle-ductile conditions at shallower crustal levels. The D4-5 events are related to extension and contributed to the final exhumation (likely as a core complex). D4 is associated with a regional spaced S4 cleavage, late open folds, and numerous extension veins, whereas D5 is recorded by normal and strike-slip faults affecting all nappes. The P-t path shows rapid exhumation during D2 and slower rates during D3 when the units were progressively incorporated into the accretionary prism. The domal shape formed in response to tectonic denudation assisted by normal faulting and erosion at the surface during the final stages of structural development. These results support tectonic models of SW subduction of the Proto-Caribbean crust under the Caribbean plate during the latest Cretaceous and provide insights into the tectonic evolution of accretionary wedges in an intra-arc setting.

  10. Crustal architecture and tectonic evolution of the Cauvery Suture Zone, southern India

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Yellappa, T.; Santosh, M.

    2016-11-01

    The Cauvery suture zone (CSZ) in southern India has witnessed multiple deformations associated with multiple subduction-collision history, with incorporation of the related accretionary belts sequentially into the southern continental margin of the Archaean Dharwar craton since Neoarchean to Neoproterozoic. The accreted tectonic elements include suprasubduction complexes of arc magmatic sequences, high-grade supracrustals, thrust duplexes, ophiolites, and younger intrusions that are dispersed along the suture. The intra-oceanic Neoarchean-Neoproterozoic arc assemblages are well exposed in the form of tectonic mélanges dominantly towards the eastern sector of the CSZ and are typically subjected to complex and multiple deformation events. Multi-scale analysis of structural elements with detailed geological mapping of the sub-regions and their structural cross sections, geochemical and geochronological data and integrated geophysical observations suggest that the CSZ is an important zone that preserves the imprints of multiple cycles of Precambrian plate tectonic regimes.

  11. Expanding Evolutionary Theory beyond Darwinism with Elaborating, Self-Organizing, and Fractionating Complex Evolutionary Systems

    ERIC Educational Resources Information Center

    Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.

    2010-01-01

    Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…

  12. Thermal Evolution of the Earth from a Plate Tectonics Point of View

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Le Yaouanq, S.; Husson, L.; Conrad, C. P.; Tisseau, C.

    2011-12-01

    Earth's thermal history is classically studied using scaling laws that link the surface heat loss to the temperature and viscosity of the convecting mantle. When such a parameterization is used in the global heat budget of the Earth to integrate the mantle temperature backwards in time, a runaway increase of temperature is obtained, leading to the so-called "thermal catastrophe". We propose a new approach that does not rely on convective scaling laws but instead considers the dynamics of plate tectonics, including temperature-dependent surface processes. We use a multi-agent system to simulate time-dependent plate tectonics in a 2D cylindrical geometry with evolutive plate boundaries. Plate velocities are computed using local force balance and explicit parameterizations for plate boundary processes such as trench migration, subduction initiation, continental breakup and plate suturing. The number of plates is not imposed but emerges naturally. At a given time step, heat flux is integrated from the seafloor age distribution and a global heat budget is used to compute the evolution of mantle temperature. This approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the system. For Earth-like parameters, an average cooling rate of 60-70K per billion years is obtained, which is consistent with petrological and rheological constraints. Two time scales arise in the evolution of the heat flux: a linear long-term decrease and high-amplitude short-term fluctuations due to tectonic rearrangements. We show that the viscosity of the mantle is not a key parameter in the thermal evolution of the system and that no thermal catastrophe occurs when considering tectonic processes. The cooling rate of the Earth depends mainly on its ability to replace old insulating seafloor by young thin oceanic lithosphere. Therefore, the main controlling factors are parameters such as the resistance of continental lithosphere to breakup or the critical age for subduction initiation. We infer that simple convective considerations alone cannot account for the complex nature of mantle heat loss and that tectonic processes dictate the thermal evolution of the Earth.

  13. Thermal and petrologic constraints on the lower crustal melt accumulation in the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Karakas, O.; Dufek, J.; Mangan, M.; Wright, H. M. N.

    2014-12-01

    Heat transfer in active volcanic areas is governed by complex coupling between tectonic and magmatic processes. These two processes provide unique imprints on the petrologic and thermal evolution of magma by controlling the geometry, depth, longevity, composition, and fraction of melt in the crust. The active volcanism, tectonic extension, and significantly high surface heat flow in Salton Sea Geothermal Field, CA, provides information about the dynamic heat transfer processes in its crust. The volcanism in the area is associated with tectonic extension over the last 500 ka, followed by subsidence and sedimentation at the surface level and dike emplacement in the lower crust. Although significant progress has been made describing the tectonic evolution and petrology of the erupted products of the Salton Buttes, their coupled control on the crustal heat transfer and feedback on the melt evolution remain unclear. To address these concepts, we develop a two-dimensional finite volume model and investigate the compositional and thermal evolution of the melt and crust in the Salton Sea Geothermal Field through a one-way coupled thermal model that accounts for tectonic extension, lower crustal magma emplacement, sedimentation, and subsidence. Through our simulations, we give quantitative estimates to the thermal and compositional evolution and longevity of the lower crustal melt source in the crustal section. We further compare the model results with petrologic constraints. Our thermal balance equations show that crustal melting is limited and the melt is dominated by mantle-derived material. Similarly, petrologic work on δ18O isotope ratios suggests fractional crystallization of basalt with minor crustal assimilation. In addition, we suggest scenarios for the melt fraction, composition, enthalpy release, geometry and depth of magma reservoirs, their temporal evolution, and the timescales of magmatic storage and evolution processes. These parameters provide the source conditions for the dynamics of surface volcanism and the presence of a geothermal system, which modify the thermal and mechanical structure of the crust.

  14. A Cenozoic tectonic model for Southeast Asia - microplates and basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maher, K.A.

    1995-04-01

    A computer-assisted Cenozoic tectonic model was built for Southeast Asia and used to construct 23 base maps, 2 to 6 million years apart. This close temporal spacing was necessary to constrain all the local geometric shifts in a consistent and geologically feasible fashion. More than a hundred individual blocks were required to adequately treat Cenozoic microplate processes at a basic level. The reconstructions show tectonic evolution to be characterized by long periods of gradual evolution, interrupted by brief, widespread episodes of reorganization in fundamental plate geometries and kinematics. These episodes are triggered by major collisions, or by accumulation of smallermore » changes. The model takes into account difficulties inherent in the region. The Pacific and Indo-Australian plates and their predecessors have driven westward and northward since the late Paleozoic, towards each other and the relatively stationary backstop of Asia. Southeast Asia is therefore the result of a long-lived, complex process of convergent tectonics, making it difficult to reconstruct tectonic evolution as much of the continental margin and sea floor spreading record was erased. In addition, the region has been dominated by small-scale microplate processes with short time scales and internal deformation, taking place in rapidly evolving and more ductile buffer zones between the major rigid plate systems. These plate interaction zones have taken up much of the relative motion between the major plates. Relatively ephemeral crustal blocks appear and die within the buffer zones, or accrete to and disperse from the margins of the major plate systems. However, such microplate evolution is the dominant factor in Cenozoic basin evolution. This detailed testonic model aids in comprehension and prediction of basin development, regional hydrocarbon habitat, and petroleum systems.« less

  15. Tectonic control of complex slope failures in the Ameka River Valley (Lower Gibe Area, central Ethiopia): Implications for landslide formation

    NASA Astrophysics Data System (ADS)

    Kycl, Petr; Rapprich, Vladislav; Verner, Kryštof; Novotný, Jan; Hroch, Tomáš; Mišurec, Jan; Eshetu, Habtamu; Tadesse Haile, Ezra; Alemayehu, Leta; Goslar, Tomasz

    2017-07-01

    Even though major faults represent important landslide controlling factors, the role the tectonic setting in actively spreading rifts plays in the development of large complex landslides is seldom discussed. The Ameka complex landslide area is located on the eastern scarp of the Gibe Gorge, approximately 45 km to the west of the Main Ethiopian Rift and 175 km to the southwest of Addis Ababa. Investigation of the complex landslide failures required a combination of satellite and airborne data-based geomorphology, geological field survey complemented with structural analysis, radiocarbon geochronology and vertical electric sounding. The obtained observations confirmed the multiphase evolution of the landslide area. We have documented that, apart from climatic and lithological conditions, the main triggering factor of the Ameka complex landslide is the tectonic development of this area. The E-W extension along the NNE-SSW trending Main Ethiopian Rift is associated with the formation of numerous parallel normal faults, such as the Gibe Gorge fault and the almost perpendicular scissor faults. The geometry of the slid blocks of coherent lithology have inherited the original tectonic framework, which suggests the crucial role tectonics play in the fragmentation of the compact rock-masses, and the origin and development of the Ameka complex landslide area. Similarly, the main scarps were also parallel to the principal tectonic features. The local tectonic framework is dominated by faults of the same orientation as the regional structures of the Main Ethiopian Rift. Such parallel tectonic frameworks display clear links between the extension of the Main Ethiopian Rift and the tectonic development of the landslide area. The Ameka complex landslide developed in several episodes over thousands of years. According to the radiocarbon data, the last of the larger displaced blocks (representing only 2% of the total area) most likely slid down in the seventh century AD. The main scarps, namely the high scarps in the western part, are unstable over the long term and toppling and falling-type slope movements can be expected here in the future.

  16. Neoproterozoic Evolution and Najd‒Related Transpressive Shear Deformations Along Nugrus Shear Zone, South Eastern Desert, Egypt (Implications from Field‒Structural Data and AMS‒Technique)

    NASA Astrophysics Data System (ADS)

    Hagag, W.; Moustafa, R.; Hamimi, Z.

    2018-01-01

    The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.

  17. Scientific results of the NASA-sponsored study project on Mars: Evolution of volcanism, tectonics, and volatiles

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C. (Editor); Sharpton, Virgil L. (Editor); Zimbelman, James R. (Editor)

    1990-01-01

    The objectives of the Mars: Evolution of Volcanism, Tectonics, and Volatiles (MEVTV) project are to outline the volcanic and tectonic history of Mars; to determine the influence of volatiles on Martian volcanic and tectonic processes; and to attempt to determine the compositional, thermal, and volatile history of Mars from its volcanic and tectonic evolution. Available data sets were used to test general models of the volcanic and tectonic history of Mars.

  18. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India

    NASA Astrophysics Data System (ADS)

    Nair, Nisha; Pandey, Dhananjai K.

    2018-02-01

    Interpretation of multichannel seismic reflection data along the Mumbai Offshore Basin (MOB) revealed the tectonic processes that led to the development of sedimentary basins during Cenozoic evolution. Structural interpretation along three selected MCS profiles from MOB revealed seven major sedimentary sequences (∼3.0 s TWT, thick) and the associated complex fault patterns. These stratigraphic sequences are interpreted to host detritus of syn- to post rift events during rift-drift process. The acoustic basement appeared to be faulted with interspaced intrusive bodies. The sections also depicted the presence of slumping of sediments, subsidence, marginal basins, rollover anticlines, mud diapirs etc accompanied by normal to thrust faults related to recent tectonics. Presence of upthrusts in the slope region marks the locations of local compression during collision. Forward gravity modeling constrained with results from seismic and drill results, revealed that the crustal structure beneath the MOB has undergone an extensional type tectonics intruded with intrusive bodies. Results from the seismo-gravity modeling in association with litholog data from drilled wells from the western continental margin of India (WCMI) are presented here.

  19. An Integrated Geophysical and Tectonic Study of the Structure and Evolution of the Crust in the Snake River Plain Region, Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Khatiwada, M.

    2016-12-01

    The Snake River Plain region in the Pacific Northwest of North America has been the target of a number of recent studies that have revealed further complexities in its structure and tectonic evolution. Based on surface morphology and Late Cenozoic volcanic activity, the Snake River Plain consists of an eastern and western arm (ESRP and WSRP) that are similar in many respects but also quite different in other respects. Thus, its origin, evolution, structural complexities, the role of extension and magmatism in its formation, and the tectonic drivers are still subjects of debate. Numerous seismic studies have specifically focused on the structure of the ESRP and Yellowstone area. However, crustal-scale studies of the WSRP are limited. We added new gravity data to the existing coverage in the WSRP region and undertook a regional, integrated analysis approach that included magnetic, seismic reflection and refraction profiling, receiver function results, geological and geospatial data, and interpreted well logs. Our integrated geophysical modeling focused on the structure of the WSRP. We generated two crustal models across it at locations where the most existing geophysical and geological constraints were available. We observed both differences and similarities in the structure of the WSRP and ESRP. Although, the shallow crustal structures are different, a mid-crustal mafic intrusion is a major source of the high gravity anomaly values. Within the context of recent studies in the surrounding region, the intersection of the two arms of the Snake River Plain emerges as a major element of a complex tectonic intersection that includes the High Lava Plains of eastern Oregon, the Northern Nevada Rift, a southwestern extension of the ESRP into northern Nevada, as well as, faulting and volcanism extending northwestward to connect with the Columbia River Basalts region.

  20. Sand fairway mapping as a tool for tectonic restoration in orogenic belts

    NASA Astrophysics Data System (ADS)

    Butler, Rob

    2016-04-01

    The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.

  1. Cenozoic geodynamic evolution of the Aegean

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Brun, Jean-Pierre

    2010-01-01

    The Aegean region is a concentrate of the main geodynamic processes that shaped the Mediterranean region: oceanic and continental subduction, mountain building, high-pressure and low-temperature metamorphism, backarc extension, post-orogenic collapse, metamorphic core complexes, gneiss domes are the ingredients of a complex evolution that started at the end of the Cretaceous with the closure of the Tethyan ocean along the Vardar suture zone. Using available plate kinematic, geophysical, petrological and structural data, we present a synthetic tectonic map of the whole region encompassing the Balkans, Western Turkey, the Aegean Sea, the Hellenic Arc, the Mediterranean Ridge and continental Greece and we build a lithospheric-scale N-S cross-section from Crete to the Rhodope massif. We then describe the tectonic evolution of this cross-section with a series of reconstructions from ~70 Ma to the Present. We follow on the hypothesis that a single subduction has been active throughout most of the Mesozoic and the entire Cenozoic, and we show that the geological record is compatible with this hypothesis. The reconstructions show that continental subduction (Apulian and Pelagonian continental blocks) did not induce slab break-off in this case. Using this evolution, we discuss the mechanisms leading to the exhumation of metamorphic rocks and the subsequent formation of extensional metamorphic domes in the backarc region during slab retreat. The tectonic histories of the two regions showing large-scale extension, the Rhodope and the Cyclades are then compared. The respective contributions to slab retreat, post-orogenic extension and lower crust partial melting of changes in kinematic boundary conditions and in nature of subducting material, from continental to oceanic, are discussed.

  2. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-01-01

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic [open quotes]lowstand[close quotes] systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less

  3. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-12-31

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic {open_quotes}lowstand{close_quotes} systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less

  4. A tectonic model for the Tertiary evolution of strike slip faults and rift basins in SE Asia

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2002-04-01

    Models for the Tertiary evolution of SE Asia fall into two main types: a pure escape tectonics model with no proto-South China Sea, and subduction of proto-South China Sea oceanic crust beneath Borneo. A related problem is which, if any, of the main strike-slip faults (Mae Ping, Three Pagodas and Aliao Shan-Red River (ASRR)) cross Sundaland to the NW Borneo margin to facilitate continental extrusion? Recent results investigating strike-slip faults, rift basins, and metamorphic core complexes are reviewed and a revised tectonic model for SE Asia proposed. Key points of the new model include: (1) The ASRR shear zone was mainly active in the Eocene-Oligocene in order to link with extension in the South China Sea. The ASRR was less active during the Miocene (tens of kilometres of sinistral displacement), with minor amounts of South China Sea spreading centre extension transferred to the ASRR shear zone. (2) At least three important regions of metamorphic core complex development affected Indochina from the Oligocene-Miocene (Mogok gneiss belt; Doi Inthanon and Doi Suthep; around the ASRR shear zone). Hence, Paleogene crustal thickening, buoyancy-driven crustal collapse, and lower crustal flow are important elements of the Tertiary evolution of Indochina. (3) Subduction of a proto-South China Sea oceanic crust during the Eocene-Early Miocene is necessary to explain the geological evolution of NW Borneo and must be built into any model for the region. (4) The Eocene-Oligocene collision of NE India with Burma activated extrusion tectonics along the Three Pagodas, Mae Ping, Ranong and Klong Marui faults and right lateral motion along the Sumatran subduction zone. (5) The only strike-slip fault link to the NW Borneo margin occurred along the trend of the ASRR fault system, which passes along strike into a right lateral transform system including the Baram line.

  5. Tethys and the evolution in Afghanistan: tectonics and mineral resources

    NASA Astrophysics Data System (ADS)

    Okaya, N.; Onishi, C. T.; Mooney, W. D.

    2009-12-01

    The tectonic history and mineral resources of Afghanistan are related to the closing of the Paleo-Tethys Ocean and the opening of the Neo-Tethys Ocean. As part of this process, oceanic sediments and continental fragments were accreted onto northern Afghanistan during the Mesozoic Cimmerian orogeny. Deposits in the Paleo-Tethys Ocean iare presently represented by a thick sequence of Paleozoic sedimentary rocks within the Tajik/Turan block, part of the Eurasian continent in northern Afghanistan. The accreted micro-continents of the Cimmerian orogeny include: (1) the Farah block, (2) the Helmand block and (3) the exotic Kabul block. Later, during the Cretaceous, the East Nuristan island arc and the intra-oceanic island arc of Kohistan were sutured. Major faults in Afghanistan include: (1) the Herat fault, an E-W suture zone between the Eurasia continent and the terrains of the Cimmerian orogeny; (2) the N-S Punjao suture located between the Farah and Helmand blocks; and (3) the NE-SW oriented Chaman fault, part of a transpressional plate boundary located near the border with Pakistan. Such a complex blend of geology and tectonics gives host to abundant mineral resources. We summarize the tectonic evolution of Afghanistan in a series of lithospheric cross-sections, beginning at about 400 Ma., and identify the mineral resources in the context of the regional tectonics.

  6. A New Framework For The Evolution of Terrestrial Planets: Bi-stability, Stochastic Effects, and the Non-Uniqueness of Tectonic States

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.

    2017-12-01

    Of all the Solar System bodies, the Earth is the only one for which significant observation and constraints are accessible such that they can be used to discriminate between competing models of Earth's tectonic evolution. Therefore, it is a natural tendency to use these observations to inform more general models of planetary evolution. Yet, our understating of Earth's evolution is far from complete. Geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain. In recent years, the potential of tectonic bi-stability (multiple stable, energetically allowed solutions) has been shown to be dynamically viable, both from analytical analysis and through numeric experiments in two and three dimensions. The indication is that multiple tectonic modes may operate on a single planetary body at different times within its temporal evolution. Further, there exists the potential that feedback mechanisms between the internal dynamics and surface processes (e.g., surface temperature changes driven by long term climate evolution), acting at different thermal evolution times, can cause terrestrial worlds to alternate between multiple tectonic states over giga-year timescales. Implied here is that terrestrial planets have the potential to migrate through tectonic regimes at similar `thermal evolutionary times' - points were planets have a similar bulk mantle temperature and energies -, but at very different `temporal times' - time since planetary formation. It can then be shown that identical planets at similar stages of their evolution may exhibit different tectonic regimes due to random fluctuations. A new framework of planetary evolution that moves toward probabilistic arguments based on general physical principals, as opposed to particular rheologies, and incorporates the potential of tectonic regime transitions and multiple tectonics states being viable at equivalent physical and chemical conditions, will be discussed.

  7. Whole Planet Coupling from Climate to Core: Implications for the Evolution of Rocky Planets and their Prospects for Habitability

    NASA Astrophysics Data System (ADS)

    Foley, B. J.; Driscoll, P. E.

    2015-12-01

    Many factors have conspired to make Earth a home to complex life. Earth has abundant water due to a combination of factors, including orbital distance and the climate regulating feedbacks of the long-term carbon cycle. Earth has plate tectonics, which is crucial for maintaining long-term carbon cycling and may have been an important energy source for the origin of life in seafloor hydrothermal systems. Earth also has a strong magnetic field that shields the atmosphere from the solar wind and the surface from high-energy particles. Synthesizing recent work on these topics shows that water, a temperate climate, plate tectonics, and a strong magnetic field are linked together through a series of negative feedbacks that stabilize the system over geologic timescales. Although the physical mechanism behind plate tectonics on Earth is still poorly understood, climate is thought to be important. In particular, temperate surface temperatures are likely necessary for plate tectonics because they allow for liquid water that may be capable of significantly lowering lithospheric strength, increase convective stresses in the lithosphere, and enhance the effectiveness of "damage" processes such as grainsize reduction. Likewise, plate tectonics is probably crucial for maintaining a temperate climate on Earth through its role in facilitating the long-term carbon cycle, which regulates atmospheric CO2 levels. Therefore, the coupling between plate tectonics and climate is a feedback that is likely of first order importance for the evolution of rocky planets. Finally, plate tectonics is thought to be important for driving the geodynamo. Plate tectonics efficiently cools the mantle, leading to vigorous thermo-chemical convection in the outer core and dynamo action; without plate tectonics inefficient mantle cooling beneath a stagnant lid may prevent a long-lived magnetic field. As the magnetic field shields a planet's atmosphere from the solar wind, the magnetic field may be important for preserving hydrogen, and therefore water, on the surface. Thus whole planet coupling between the magnetic field, atmosphere, mantle, and core is possible. We lay out the basic physics governing whole planet coupling, and discuss the implications this coupling has for the evolution of rocky planets and their prospects for hosting life.

  8. Tectonic evolution of the Archaean high-grade terrain of South India

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, M.

    1988-01-01

    The southern Indian shield consists of three major tectonic provinces viz., (1) Dharwar Craton, (2) Eastern Ghat Mobile Belt, and (3) Pandyan Mobile Belt. An understanding of their mutual relations is crucial for formulating crustal evolution models. The tectonic evolution of these provinces is summarized.

  9. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. (Editor)

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics.

  10. Linking the southern West Junggar terrane to the Yili Block: Insights from the oldest accretionary complexes in West Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Ren, Rong; Han, Bao-Fu; Guan, Shu-Wei; Liu, Bo; Wang, Zeng-Zhen

    2018-06-01

    West Junggar is known to tectonically correlate with East Kazakhstan; however, the tectonic link of the southern West Junggar terrane to adjacent regions still remains uncertain. Here, we examined the oldest accretionary complexes, thus constraining its tectonic evolution and link during the Early-Middle Paleozoic. They have contrasting lithologic, geochemical, and geochronological features and thus, provenances and tectonic settings. The Laba Unit was derived from the Late Ordovician-Early Devonian continental arc system (peaking at 450-420 Ma) with Precambrian substrate, which formed as early as the Early Devonian and metamorphosed during the Permian; however, the Kekeshayi Unit was accumulated in an intra-oceanic arc setting, and includes the pre-Late Silurian and Late Silurian subunits with or without Precambrian sources. Integrated with the regional data, the southern West Junggar terrane revealed a tectonic link to the northern Yili Block during the Late Silurian to Early Devonian, as suggested by the comparable Precambrian zircon age spectra between the southern West Junggar terrane and the micro-continents in the southern Kazakhstan Orocline, the proximal accumulation of the Laba Unit in the continental arc atop the Yili Block, and the sudden appearance of Precambrian zircons in the Kekeshayi Unit during the Late Silurian. This link rejects the proposals of the southern West Junggar terrane as an extension of the northern Kazakhstan Orocline and the Middle Paleozoic amalgamation of West Junggar. A new linking model is thus proposed, in which the southern West Junggar terrane first evolved individually, and then collided with the Yili Block to constitute the Kazakhstan continent during the Late Silurian. The independent and contrasting intra-oceanic and continental arcs also support the Paleozoic archipelago-type evolution of the Central Asian Orogenic Belt.

  11. Significant Centers of Tectonic Activity as Identified by Wrinkle Ridges for the Western Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.

    2000-01-01

    The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.

  12. An archean suture zone in the Tobacco Root Mountains? (1984) Evolution of Archean Continental Crust, SW Montana (1985)

    NASA Technical Reports Server (NTRS)

    Mogk, D. W.; Kain, L.

    1985-01-01

    The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.

  13. Indentation tectonics in northern Taiwan: insights from field observations and analog models

    NASA Astrophysics Data System (ADS)

    Lu, Chia-Yu; Lee, Jian-Cheng; Malavieille, Jacques

    2017-04-01

    In northern Taiwan, contraction, extension, transcurrent shearing, and block rotation are four major tectonic deformation mechanisms involved in the progressive deformation of this arcuate mountain belt. The recent evolution of the orogen is controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also by the corner shape of the plate boundary. Based on field observations, analyses, geophysical data (mostly GPS) and results of experimental models, we interpret the curved shape of northern Taiwan as a result of contractional deformation (involving imbricate thrusting and folding, backthrusting and backfolding). The subsequent horizontal and vertical extrusion, combined with increasing transcurrent & rotational deformation (bookshelf-type strike-slip faulting and block rotation) induced transcurrent/ rotational extrusion and extrusion related extensional deformation. A special type of extrusional folds characterizes that complex deformation regime. The tectonics in northern Taiwan reflects a single, regional pattern of deformation. The crescent-shaped mountain belt develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough. Three sets of analog sandbox models are presented to illustrate the development of tectonic structures and their kinematic evolution

  14. Quantitative analysis of the tectonic subsidence in the Potiguar Basin (NE Brazil)

    NASA Astrophysics Data System (ADS)

    Lopes, Juliana A. G.; de Castro, David L.; Bertotti, Giovanni

    2018-06-01

    The Potiguar Basin, located in the Brazilian Equatorial Margin, evolved from a complex rifting process implemented during the Atlantic Ocean opening in the Jurassic/Cretaceous. Different driving mechanisms were responsible for the onset of an aborted onshore rift and an offshore rift that initiated crustal rupture and the formation of a continental transform margin. Therefore, we applied the backstripping method to quantify the tectonic subsidence during the rift and post-rift phases of Potiguar Basin formation and to analyze the spatial variation of subsidence during the two successive and distinct tectonic events responsible for the basin evolution. The parameters required to apply this methodology were extracted from 2D seismic lines and exploratory well data. The tectonic subsidence curves present periods with moderate subsidence rates (up to 300 m/My), which correspond to the evolution of the onshore Potiguar Rift (∼141 to 128 Ma). From 128-118 Ma, the tectonic subsidence curves show no subsidence in the onshore Potiguar Basin, whereas subsidence occurred at high rates (over 300 m/My) in the offshore rift. The post-rift phase began ca. 118 Ma (Aptian), when the tectonic subsidence drastically slowed to less than 35 m/My, probably related to thermal relaxation. The tectonic subsidence rates in the various sectors of the Potiguar Rift, during the different rift phases, indicate that more intense faulting occurred in the southern portion of the onshore rift, along the main border faults, and in the southeastern portion of the offshore rift. During the post-rift phase, the tectonic subsidence rates increased from the onshore portion towards the offshore portion until the continental slope. The highest rates of post-rift subsidence (up to 35 m/My) are concentrated in the central region of the offshore portion and may be related to lithospheric processes related to the continental crust rupture and oceanic seafloor spreading. The variation in subsidence rates and the pattern of tectonic subsidence curves allowed us to interpret the tectonic signature recorded by the sedimentary sequences of the Potiguar Basin during its evolution. In the onshore rift area, the tectonic subsidence curves presented subsidence rates up to 300 m/My during a long-term rift phase (13 Ma), which confirmed that this portion had an extensional tectonic regime. In the offshore rift, the curves presented high subsidence rates of over 300 m/My in a shorter period (5-10 My), typical of basins formed in a transtensional tectonic regime.

  15. Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic-early Jurassic tectonics associated with the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Yixuan; Liang, Xiao; Wang, Genhou; Yuan, Guoli; Bons, Paul D.

    2018-03-01

    The Mesozoic orogeny in Central Qiangtang Metamorphic Belt, northern Tibet, provides important insights into the geological evolution of the Paleo-Tethys Ocean. However, the Triassic-early Jurassic tectonics, particularly those associated with the continental collisionstage, remains poorly constrained. Here we present results from geological mapping, structural analysis, P-T data, and Ar-Ar geochronology of the Mayer Kangri metamorphic complex. Our data reveal an E-W-trending, 2 km wide dome-like structure associated with four successive tectonic events during the Middle Triassic and Early Jurassic. Field observations indicate that amphibolite and phengite schist complexes in this complex are separated from the overlying lower greenschist mélange by normal faulting with an evident dextral shearing component. Open antiform-like S2 foliation of the footwall phengite schist truncates the approximately north-dipping structures of the overlying mélange. Microtextures and mineral chemistry of amphibole reveal three stages of growth: Geothermobarometric estimates yield temperatures and pressures of 524 °C and 0.88 GPa for pargasite cores, 386 °C and 0.34 GPa for actinolite mantles, and 404 °C and 0.76 GPa for winchite rims. Peak blueschist metamorphism in the phengite schist occurred at 0.7-1.1 GPa and 400 °C. Our Ar-Ar dating of amphibole reveals rim-ward decreasing in age bands, including 242.4-241.2 Ma, ≥202.6-196.8, and 192.9-189.8 Ma. The results provide evidence for four distinct phases of Mesozoic tectonic evolution in Central Qiangtang: (1) northward oceanic subduction beneath North Qiangtang ( 244-220 Ma); (2) syn-collisional slab-break off (223-202 Ma); (3) early collisional extension driven by buoyant extrusion flow from depth ( 202.6-197 Ma); and (4) post-collision contraction and reburial (195.6-188.7 Ma).

  16. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    USGS Publications Warehouse

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  17. Mars - A planet with a complex surface evolution

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Coradini, M.

    1975-01-01

    The surface of Mars has evolved to its present form through a complex sequence of tectonism and associated volcanism, impact processes, water erosion, mass movements, and wind action. The diversity of geological processes active in past Martian history far exceeded most predictions. By the same token, predictions of processes modifying the satellites of the outer planets may fall far short of the true range of phenomena. A summary of present though with regard to Martian surface evolution is presented to serve as a case in point of the value of imagery and topography data in making interpretations of geological histories.

  18. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Qi, X.; Zheng, M.

    2015-12-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows. Tacheng Basin, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.

  19. Tectonic Evolution of Jabal Tays Ophiolite Complex, Eastern Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    AlHumidan, Saad; Kassem, Osama; Almutairi, Majed; Al-Faifi, Hussain; Kahal, Ali

    2017-04-01

    Microstructural analysis is important for investigation of tectonic evaluation of Jable Tays area. Furthermore, the Jable Tays ophiolite complex is effected by Al Amar -Idsas fault. The nature of the Al Amar-Idsas fault is a part of the Eastern Arabian Shield, which was subjected to multiple interpretations. Through fieldwork investigation, microscopic examination, and microstructural analysis, we aim to understand the evolution and tectonic setting of the Jable Tays area. Finite-strain data displays that the Abt schist, the metavolcanics and the metagranites are highly to moderately deformed. The axial ratios in the XZ section range from 1.40 to 2.20. The long axes of the finite-strain ellipsoids trend NW- SE and W-E in the Jable Tays area while, their short axes are subvertical to subhorizontal foliations. The strain magnitude does not increase towards the tectonic contacts between the Abt schist and metavolcano-sedimentary. While majority of the obtained data indicate a dominant oblate with minor prolate strain symmetries in the Abt schist, metavolcano-sedimentary and metagranites. The strain data also indicate flattening with some constriction. We assume that the Abt schist and the metavolcano-sedimentry rocks have similar deformation behavior. The finite strain in the studied rocks accumulated during the metamorphism that effected by thrusting activity. Based on these results, we finally concluded that the contact between Abt schist and metavolcano-sedimentary rocks were formed during the progressive thrusting under brittle to semi-ductile deformation conditions by simple shear that also involved a component of vertical shortening, causing subhorizontal foliation in Jable Tays area.

  20. Evolution Process and Structural Analysis of Precambrian Jirisan Metamorphic and Sancheong Anorthosite Complexes in the Jirisan Province, Yeongnam Massif, Korea

    NASA Astrophysics Data System (ADS)

    Kang, J. H.; Lee, D. S.

    2016-12-01

    The Jirisan metamorphic complex consists mainly of schist, blastoporphyritic granite gneiss, granitic gneiss, leucocratic gneiss, biotite gneiss, banded gneiss, migmatitic gneiss and granite gneiss. The Paleoproterozoic (1.87 1.79 Ga) Sancheong anorthosite complex, which intrude it, is classified into massive-type and foliation-type Sancheong anorthosite, Fe-Ti ore body, and mafic granulite which were formed from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma. These complexes went at least through three times of ductile deformation during Early Proterozoic Late Paleozoic. The D1 deformation formed sheath or "A" type folds and its characteristic orientation was uncertain due to the intensive multi-deformation superimposed after that. The D2 deformation occurred under the EW- or WNW-directed tectonic compression, and formed a regional NS or NNE trend of isoclinal and intrafolial folds and an extensive ductile shear zone accompanied by mylonitization. The D3 deformation occurred under the NS- or NNW-directed tectonic compression environment, and formed an EW or ENE trend of open and tight folds and a partial semibrittle shear zone accompanied by mylonitization, and rearranged the NS-trend pre-D3 structural elements into (E)NE or (W)NW direction. The D2 deformation generally increases from the center toward the margin of Sancheong anorthosite complex but is more intensive in the eastern than western parts of Sancheong anorthosite complex. While the D3 deformation is inversely more intensive in the its western than eastern parts. The D2 and D3 deformations are closely related to the distribution features of Sancheong anorthosite complex. These three tectonic events are expected to give important information in understanding and reconstructing the tectonic movement after the formation of Columbia Supercontinent as well as the present NS-trend tectonic frame of the Jirisan province of the Yeongnam massif, the Korean Peninsula.

  1. Inherited structure and coupled crust-mantle lithosphere evolution: Numerical models of Central Australia

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.

    2016-05-01

    Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).

  2. The tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    NASA Technical Reports Server (NTRS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus.

  3. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  4. Tectonic histories between Alba Patera and Syria Planum, Mars

    USGS Publications Warehouse

    Anderson, R.C.; Dohm, J.M.; Haldemann, A.F.C.; Hare, T.M.; Baker, V.R.

    2004-01-01

    Syria Planum and Alba Patera are two of the most prominent features of magmatic-driven activity identified for the Tharsis region and perhaps for all of Mars. In this study, we have performed a Geographic Information System-based comparative investigation of their tectonic histories using published geologic map information and Mars Orbiter Laser Altimetry (MOLA) data. Our primary objective is to assess their evolutional histories by focusing on their extent of deformation in space and time through stratigraphic, paleotectonic, topographic, and geomorphologic analyses. Though there are similarities among the two prominent features, there are several distinct differences, including timing deformational extent, and tectonic intensity of formation. Whereas Alba Patera displays a major pulse of activity during the Late Hesperian/Early Amazonian, Syria Planum is a long-lived center that displays a more uniform distribution of simple graben densities ranging from the Noachian to the Amazonian, many of which occur at greater distances away from the primary center of activity. The histories of the two features presented here are representative of the complex, long-lived evolutional history of Tharsis. ?? 2004 Elsevier Inc. All rights reserved.

  5. Rapid biological speciation driven by tectonic evolution in New Zealand

    NASA Astrophysics Data System (ADS)

    Craw, Dave; Upton, Phaedra; Burridge, Christopher P.; Wallis, Graham P.; Waters, Jonathan M.

    2016-02-01

    Collisions between tectonic plates lead to the rise of new mountain ranges that can separate biological populations and ultimately result in new species. However, the identification of links between tectonic mountain-building and biological speciation is confounded by environmental and ecological factors. Thus, there are surprisingly few well-documented examples of direct tectonic controls on terrestrial biological speciation. Here we present examples from New Zealand, where the rapid evolution of 18 species of freshwater fishes has resulted from parallel tectonic landscape evolution. We use numerical models to reconstruct changes in the deep crustal structure and surface drainage catchments of the southern island of New Zealand over the past 25 million years. We show that the island and mountain topography evolved in six principal tectonic zones, which have distinct drainage catchments that separated fish populations. We use new and existing phylogenetic analyses of freshwater fish populations, based on over 1,000 specimens from more than 400 localities, to show that fish genomes can retain evidence of this tectonic landscape development, with a clear correlation between geologic age and extent of DNA sequence divergence. We conclude that landscape evolution has controlled on-going biological diversification over the past 25 million years.

  6. Old stories and lost pieces of the Eastern Mediterranean puzzle: a new approach to the tectonic evolution of the Western Anatolia and the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem

    2015-04-01

    During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200 km. Therefore the original NE-SW extension records on the core complexes rotated to the N-S orientation and replace 45o in reference to the core complexes in Greece, 6. During this stage, the left-lateral shear along the Burdur-Fethiye Shear Zone indicates the southern part of the counterclockwise rotation. 7. The North Anatolian Fault started to form as the result of the collision of the Arabian Microplate and the Eurasian Plate in the late Miocene. This continental transform fault propagated into the Marmara Region in the late Pliocene. Its late westward escape by cutting the Trakya-Eskişehir Fault Zone on three points generates its transportation through Trakya-Eskişehir Fault Zone splays. 8. During the Miocene, while Greece was rotating 20o clockwise and continuing to be shaped by the NW-SE normal faults, which were formed as a result of back-arc tectonic, the late westward escape of the Anatolia changed the orientation of the NEE-SWW striking oblique-extensional fault-controlled Miocene basins to NE-SW direction. The rotational E-W basins, which had developed by the North Anatolian Fault tectonics, superimposed with these Miocene basins .

  7. Tectonic map of Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Oyhantcabal, P.

    2008-05-01

    A compilation of available data about the geology of Uruguay allowed the definition of its main events and tectonic units. Based on a critical revision of different tectonic hypothesis found in the literature, a parsimonious tectonic evolution schema is presented, in the context of Western Gondwana. The tectonic map illustrates the general features of the structure and main tectonic units of Uruguay. The Precambrian shield, cropping out in the South and Southeast of the country is an Archean to Paleoprtoerozoic basement divided in three main tectonostratigraphic terrranes: the Piedra Alta (PAT) a juvenile Paleoproterozoic unit not reworked by later events; the Nico Pérez (NPT) a complex unit composed of several blocks where Archean to Mesoproterozoic events are recognised. The NPT was strongly reworked by Neoproterozoic (Brasiliano) orogeny. The Dom Feliciano Belt cropping out in eastern Uruguay is related to Western Gondwana amalgamation. Different tectonic settings are considered: pre-Brasiliano Basement inliers; supracrustal successions representing the evolution from a back- arc to a foreland basin; a magmatic arc; and post-collisional basins and related magmatism. In lower Paleozoic the Paraná foreland basin was generated as a consequence of orogenic events. The sedimentary successions in Uruguay include continental to shallow marine deposits where the influence of carboniferous to Permian glacial episode is recorded. The Mesozoic record is characterised by the influence of extension related to the break-up of Gondwana and the formation of the Atlantic Ocean: huge amounts of tholeiitic basalt were erupted (near 30.000 km3 in Uruguay), followed by cretaceous sediments in the northern area of the country while in the south-east, bimodal magmatism and sediments of the same age are associated to rift basins. The Cenozoic is characterised by tectonic quiescence. Subsidence is only observed in the western region (Chaco-Paraná Basin) and in the east (Laguna Merín Basin).

  8. Plate tectonics and planetary habitability: current status and future challenges.

    PubMed

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  9. Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model

    NASA Astrophysics Data System (ADS)

    Kooi, Henk; Beaumont, Christopher

    1996-02-01

    Linear systems analysis is used to investigate the response of a surface processes model (SPM) to tectonic forcing. The SPM calculates subcontinental scale denudational landscape evolution on geological timescales (1 to hundreds of million years) as the result of simultaneous hillslope transport, modeled by diffusion, and fluvial transport, modeled by advection and reaction. The tectonically forced SPM accommodates the large-scale behavior envisaged in classical and contemporary conceptual geomorphic models and provides a framework for their integration and unification. The following three model scales are considered: micro-, meso-, and macroscale. The concepts of dynamic equilibrium and grade are quantified at the microscale for segments of uniform gradient subject to tectonic uplift. At the larger meso- and macroscales (which represent individual interfluves and landscapes including a number of drainage basins, respectively) the system response to tectonic forcing is linear for uplift geometries that are symmetric with respect to baselevel and which impose a fully integrated drainage to baselevel. For these linear models the response time and the transfer function as a function of scale characterize the model behavior. Numerical experiments show that the styles of landscape evolution depend critically on the timescales of the tectonic processes in relation to the response time of the landscape. When tectonic timescales are much longer than the landscape response time, the resulting dynamic equilibrium landscapes correspond to those envisaged by Hack (1960). When tectonic timescales are of the same order as the landscape response time and when tectonic variations take the form of pulses (much shorter than the response time), evolving landscapes conform to the Penck type (1972) and to the Davis (1889, 1899) and King (1953, 1962) type frameworks, respectively. The behavior of the SPM highlights the importance of phase shifts or delays of the landform response and sediment yield in relation to the tectonic forcing. Finally, nonlinear behavior resulting from more general uplift geometries is discussed. A number of model experiments illustrate the importance of "fundamental form," which is an expression of the conformity of antecedent topography with the current tectonic regime. Lack of conformity leads to models that exhibit internal thresholds and a complex response.

  10. Tectonic and metallogenic model for northeast Asia

    USGS Publications Warehouse

    Parfenov, Leonid M.; Nokleberg, Warren J.; Berzin, Nikolai A.; Badarch, Gombosuren; Dril, Sergy I.; Gerel, Ochir; Goryachev, Nikolai A.; Khanchuk, Alexander I.; Kuz'min, Mikhail I.; Prokopiev, Andrei V.; Ratkin, Vladimir V.; Rodionov, Sergey M.; Scotese, Christopher R.; Shpikerman, Vladimir I.; Timofeev, Vladimir F.; Tomurtogoo, Onongin; Yan, Hongquan; Nokleberg, Warren J.

    2011-01-01

    This document describes the digital files in this report that contains a tectonic and metallogenic model for Northeast Asia. The report also contains background materials. This tectonic and metallogenic model and other materials on this report are derived from (1) an extensive USGS Professional Paper, 1765, on the metallogenesis and tectonics of Northeast Asia that is available on the Internet at http://pubs.usgs.gov/pp/1765/; and (2) the Russian Far East parts of an extensive USGS Professional Paper, 1697, on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera that is available on the Internet at http://pubs.usgs.gov/pp/pp1697/. The major purpose of the tectonic and metallogenic model is to provide, in movie format, a colorful summary of the complex geology, tectonics, and metallogenesis of the region. To accomplish this goal four steps were taken: (1) 13 time-stage diagrams, from the late Neoproterozoic (850 Ma) through the present (0 Ma), were adapted, generalized, and transformed into color static time-stage diagrams; (2) the 13 time-stage diagrams were placed in a computer morphing program to produce the model; (3) the model was examined and each diagram was successively adapted to preceding and subsequent diagrams to match the size and surface expression of major geologic units; and (4) the final version of the model was produced in successive iterations of steps 2 and 3. The tectonic and metallogenic model and associated materials in this report are derived from a project on the major mineral deposits, metallogenesis, and tectonics of the Northeast Asia and from a preceding project on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. Both projects provide critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major scientific goals and benefits of the projects are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between North America and eastern Asia.

  11. Workshop on the Tectonic Evolution of Greenstone Belts

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Workshop on the Tectonic Evolution of Greenstone Belts, which is part of the Universities Space Research Association, Lunar and Planetary Institute, of Houston, Texas, met there on Jan. 16-18, 1986. A number of plate tectonic hypotheses have been proposed to explain the origin of Archean and Phanerozoic greenstone/ophiolite terranes. These hypotheses are explored in the abstracts.

  12. Boninites: Characteristics and tectonic constraints, northeastern Appalachians

    USGS Publications Warehouse

    Kim, J.; Jacobi, R.D.

    2002-01-01

    Boninites are high Mg andesites that are thought to form in suprasubduction zone tectonic environments as primary melts from refractory mantle. Boninites provide a potential constraint on tectonic models for ancient terranes that contain boninites because the only unequivocal tectonic setting in which "modern" boninites have been recognized is a fore-arc setting. Tectonic models for "modern" boninite genesis include subduction initiation ("infant arc"), fore-arc spreading, and the forearc side of intra-arc rifting (spreading). These models can be differentiated by the relative age of the boninites and to a lesser degree, geochemistry. The distinctive geochemistry of boninites promotes their recognition in ancient terranes. As detailed in this report, several mafic terranes in the northeastern Appalachians contain boninites; these terranes were situated on both sides of Iapetus. The characteristics of these boninites can be used to constrain tectonic models of the evolution of the northeastern Appalachians. On the Laurentian side of Iapetus, "infant arc" boninites were not produced ubiquitously during the Cambrian subduction initiation, unless sampling problems or minimum age dates obscure a more widespread boninite "infant arc". The Cambrian subduction initiation on the Laurentian side was probably characterized by both "infant arc" boninitic arc construction (perhaps the >496 Ma Hawley Formation and the >488 Ma Betts Cove Ophiolite) and "normal" arc construction (Mt. Orford). This duality is consistent with the suggestion that the pre-collisional geometry of the Laurentian margin was complex. The Bay of Islands Complex and Thetford Mines ophiolite boninites are likely associated with forearc/intra-arc spreading during the protracted evolution of the Cambrian arc system. The relatively young boninites in the Bronson Hill Arc suggest that the Taconic continuous eastward subduction tectonic model is less tenable than other models. On the Gondwana side of Iapetus, the Tea Arm boninites of the Exploits Group stratigraphically rest on arc and MORB volcanics. This stratigraphy, and the relatively young age of the boninites (486 Ma), compared to assumed subduction initiation age (>513 Ma), suggest that the boninites may be more consistent with fore-arc spreading/intra-arc spreading. However, an "infant arc" model cannot be dismissed, and is commonly proposed for the nearby boninites in the Wild Bight Group. ?? 2002 Elsevier Science Ltd. All rights reserved.

  13. Tectonic evolution of the terrestrial planets.

    PubMed

    Head, J W; Solomon, S C

    1981-07-03

    The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.

  14. Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of southwest Turkey

    NASA Astrophysics Data System (ADS)

    Gürer, Ömer Feyzi; Sanğu, Ercan; Özburan, Muzaffer; Gürbüz, Alper; Sarica-Filoreau, Nuran

    2013-11-01

    Southwestern Turkey experienced a transition from crustal shortening to extension during Late Cenozoic, and evidence of this was recorded in four distinct basin types in the Muğla-Gökova Gulf region. During the Oligocene-Early Miocene, the upper slices of the southerly moving Lycian Nappes turned into north-dipping normal faults due to the acceleration of gravity. The Kale-Tavas Basin developed as a piggyback basin along the fault plane on hanging wall blocks of these normal faults. During Middle Miocene, a shift had occurred from local extension to N-S compression/transpression, during which sediments in the Eskihisar-Tınaz Basins were deposited in pull-apart regions of the Menderes Massif cover units, where nappe slices were already eroded. During the Late Miocene-Pliocene, a hiatus occurred from previous compressional/transpressional tectonism along intermountain basins and Yatağan Basin fills were deposited on Menderes Massif, Lycian Nappes, and on top of Oligo-Miocene sediments. Plio-Quaternary marked the activation of N-S extension and the development of the E-W-trending Muğla-Gökova Grabens, co-genetic equivalents of which are common throughout western Anatolia. Thus, the tectonic evolution of the western Anotolia during late Cenozoic was shifting from compressional to extensional with a relaxation period, suggesting a non-uniform evolution.

  15. Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes

    NASA Astrophysics Data System (ADS)

    Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin

    2018-03-01

    The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.

  16. Intermittent Granular Dynamics at a Seismogenic Plate Boundary.

    PubMed

    Meroz, Yasmine; Meade, Brendan J

    2017-09-29

    Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10^{-15}  s^{-1}, and released intermittently at intervals >100  yr, in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91±20  km, here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.

  17. Intermittent Granular Dynamics at a Seismogenic Plate Boundary

    NASA Astrophysics Data System (ADS)

    Meroz, Yasmine; Meade, Brendan J.

    2017-09-01

    Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10-15 s-1 , and released intermittently at intervals >100 yr , in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91 ±20 km , here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.

  18. Workshop on the Tectonic Evolution of Greenstone Belts (supplement containing abstracts of invited talks and late abstracts)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics addressed include: greenstone belt tectonics, thermal constaints, geological structure, rock components, crustal accretion model, geological evolution, synsedimentary deformation, Archean structures and geological faults.

  19. Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Courgeon, S.; Jorry, S. J.; Jouet, G.; Camoin, G.; BouDagher-Fadel, M. K.; Bachèlery, P.; Caline, B.; Boichard, R.; Révillon, S.; Thomas, Y.; Thereau, E.; Guérin, C.

    2017-06-01

    Understanding the impact of tectonic activity and volcanism on long-term (i.e. millions years) evolution of shallow-water carbonate platforms represents a major issue for both industrial and academic perspectives. The southern central Mozambique Channel is characterized by a 100 km-long volcanic ridge hosting two guyots (the Hall and Jaguar banks) and a modern atoll (Bassas da India) fringed by a large terrace. Dredge sampling, geophysical acquisitions and submarines videos carried out during recent oceanographic cruises revealed that submarine flat-top seamounts correspond to karstified and drowned shallow-water carbonate platforms largely covered by volcanic material and structured by a dense network of normal faults. Microfacies and well-constrained stratigraphic data indicate that these carbonate platforms developed in shallow-water tropical environments during Miocene times and were characterized by biological assemblages dominated by corals, larger benthic foraminifera, red and green algae. The drowning of these isolated carbonate platforms is revealed by the deposition of outer shelf sediments during the Early Pliocene and seems closely linked to (1) volcanic activity typified by the establishment of wide lava flow complexes, and (2) to extensional tectonic deformation associated with high-offset normal faults dividing the flat-top seamounts into distinctive structural blocks. Explosive volcanic activity also affected platform carbonates and was responsible for the formation of crater(s) and the deposition of tuff layers including carbonate fragments. Shallow-water carbonate sedimentation resumed during Late Neogene time with the colonization of topographic highs inherited from tectonic deformation and volcanic accretion. Latest carbonate developments ultimately led to the formation of the Bassas da India modern atoll. The geological history of isolated carbonate platforms from the southern Mozambique Channel represents a new case illustrating the major impact of tectonic and volcanic activity on the long-term evolution of shallow-water carbonate platforms.

  20. Formation and tectonic evolution of the Cretaceous Jurassic Muslim Bagh ophiolitic complex, Pakistan: Implications for the composite tectonic setting of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Mehrab; Kerr, Andrew C.; Mahmood, Khalid

    2007-10-01

    The Muslim Bagh ophiolitic complex Balochistan, Pakistan is comprised of an upper and lower nappe and represents one of a number of ophiolites in this region which mark the boundary between the Indian and Eurasian plates. These ophiolites were obducted onto the Indian continental margin around the Late Cretaceous, prior to the main collision between the Indian and Eurasian plates. The upper nappe contains mantle sequence rocks with numerous isolated gabbro plutons which we show are fed by dolerite dykes. Each pluton has a transitional dunite-rich zone at its base, and new geochemical data suggest a similar mantle source region for both the plutons and dykes. In contrast, the lower nappe consists of pillow basalts, deep-marine sediments and a mélange of ophiolitic rocks. The rocks of the upper nappe have a geochemical signature consistent with formation in an island arc environment whereas the basalts of the lower nappe contain no subduction component and are most likely to have formed at a mid-ocean ridge. The basalts and sediments of the lower nappe have been intruded by oceanic alkaline igneous rocks during the northward drift of the Indian plate. The two nappes of the Muslim Bagh ophiolitic complex are thus distinctively different in terms of their age, lithology and tectonic setting. The recognition of composite ophiolites such as this has an important bearing on the identification and interpretation of ophiolites where the plate tectonic setting is less well resolved.

  1. 3D decompaction and sequential restoration: a tool to quantify sedimentary and tectonic control on elusive Quaternary structures

    NASA Astrophysics Data System (ADS)

    D'Ambrogi, Chiara; Emanuele Maesano, Francesco

    2015-04-01

    Basin-wide detailed 3D model, deeply constrained by the interpretation of an impressive dense seismic dataset (12.000 km, provided confidentially by ENI S.p.A.) and 136 well stratigraphies, is the core of a workflow of decompaction and sequential restoration in 3D aimed to quantify the sedimentation and uplift rate in the central part of the Po Plain (northern Italy), during Quaternary. The Po basin is the common foredeep of two opposite verging chains, the Southern Alps, to the north, and the Northern Apennines, to the south, that influenced the evolution of the foreland basin from Paleogene onward. In this particular setting there are many examples of interaction of sedimentary processes and tectonics, both at regional and local scale. During the Quaternary the complex interaction of tectonic processes, sea-level fluctuations, climate changes, and sediment supply produced the filling of the basin with the progradation of the fluvio-deltaic system, from west toward east. The most important tectonic phases can be easily recognized along the basin margin marked by the deformation and tilting of river terraces and of exposed syntectonic sediments; conversely their detection is particularly difficult in the central-distal part of the basin. In such structurally complex area analysis of syntectonic deposits and growth strata are strategic to describe the basin evolution and tectonic control; in their analysis 3D decompaction and regional tilting must be taken into account to assess the residual vertical separation that can be attributed to tectonic processes only. The Pleistocene portion of a detailed 3D model, build in the framework of the EU-funded GeoMol Project, is the starting point of a sequential restoration workflow in 3D that included the unfolding and decompaction of 6, chronologically constrained, sedimentary units ranging from 1.5 to 0.45 Myr. This previously unavailable detail in the definition of the geometry of Quaternary bodies in the central part of the Po Basin provided a set of detailed pictures that show the topography and the evolution of the infilling at different point during time. As a matter of fact the resulting 3D surfaces describe the basin configuration and the changes and migration of regional depocentres controlled by thrust activity up to the Pleistocene but also allow to highlight the interference of active tectonic and sedimentation in the central portion of the Po basin, an area considered less affected by the main structures (e.g. the Emilia and Ferrara-Romagna arcs). In the analysis of this structure also the foreland tilting has been subtracted from the topography resulting after unfolding and decompaction, for the 6 time intervals; we obtained a residual signal related to the growing anticline, and the uplift rate of the structure during its Pleistocene evolution. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu

  2. Geology is the Key to Explain Igneous Activity in the Mediterranean Area

    NASA Astrophysics Data System (ADS)

    Lustrino, M.

    2014-12-01

    Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.

  3. Pre-rift sedimentation of the Lomonosov Ridge, Arctic Ocean at 84°N - A correlation to the complex geologic evolution of the conjugated Kara Sea

    NASA Astrophysics Data System (ADS)

    Sauermilch, Isabel; Weigelt, Estella; Jokat, Wilfried

    2018-07-01

    The Arctic Ocean region plays, and has played in the geological past, a key role for Earth's climate and oceanic circulation and their evolution. Studying the Lomonosov Ridge, a narrow submarine continental ridge in the central Arctic Ocean, is essential to answer fundamental questions related to the complex tectonic evolution of the Arctic basins, the glacial history, and the details of known paleoceanographic changes in the Cenozoic. In this study, we present a new seismic dataset that provides insights into the sedimentary structures along the ridge, their possible origin, age and formation. We compare the structure and stratigraphy of the deeper parts of the ridge between 83°N and 84°30‧N to its conjugate, the Severnaya Zemlya Archipelago at the Eurasia margin. We propose that some sediment sequences directly underlying the prominent HARS (High Amplitude Reflector Sequence) formed well before the ridge separated from the Barents and Kara shelves and represent a prolongation of the North Kara Terrane, most likely part of the Neoproterozoic Timanide orogen. Towards Siberia along the Lomonosov Ridge, we interpret the HARS to be underlain by Upper Proterozoic-Lower Paleozoic metasedimentary material that is correlated to metamorphic complexes exposed on Bol'shevik Island. Northward, this unit descends and gives way to a foreland sedimentary basin complex of presumed Ordovician/Devonian age, which underwent strong deformation during the Triassic/Jurassic Novaya Zemlya orogeny. The transition zone between these units might mark a conjugate continuation of the Eurasian margin's Bol'shevik-Thrust Zone. A prominent erosional unconformity is observed over these strongly deformed foreland basins of the Eurasian and Lomonosov Ridge margins, and is conceivably related to vertical tectonics during breakup or a later basin-wide erosional event.

  4. Quaternary deformation in the central Neuquén basin (35°-37°S), Argentina: evidences for active strain partitioning.

    NASA Astrophysics Data System (ADS)

    Niviere, B.; Backé, G.

    2006-12-01

    The tectonic evolution of the Central Andes is a consequence of the relative convergence between the Nazca and the South American plates. The Neuquén basin is located in the southernmost part of the Central Andes, between latitudes 32°S and 40°S. The present day geometry of the basin has been inherited from different compressive pulses, separated by times of relative tectonic quiescence since the late Cretaceous. The complex tectonic evolution of the area has often been explained by changes in the geometry of the subducted plate. The last broad scale tectonic event in the Neuquén basin is the Miocene compressive stage referred to as the Quechua phase. The tectonic evolution of the outer part of the Neuquén Basin from the late Miocene onwards is still a matter of debate. For instance, strain partitioning has been described in the inner part of the basin, which corresponds to the modern arc area close to the Chile Argentina border. The strain regime in the foreland between 35°S and 37°S is more uncertain. Extensional tectonic features have been described in different areas of the basin, leading to the formulation of a possible orogenic collapse in response to the steepening of the oceanic slab that followed a late Miocene shallow subduction. This model accounts for the occurrence of large Pleistocene to Quaternary back-arc volcanism in the Neuquén basin. However, field structural data and borehole breakout analysis strongly support on-going compression in the basin. Our study is based on the morphostructural analysis of remote sensing data (satellite and digital elevation model images) complemented by field work. Here we show that strike-slip faulting and localized extension in the outer zone of the basin is coeval with active thrusting and folding. This can be explained by strain partitioning or segmentation processes due to the oblique convergence between the Nazca and the South American plates.

  5. Tectonic evolution of the Anadyr Basin, northeastern Eurasia, and its petroleum resource potential

    NASA Astrophysics Data System (ADS)

    Antipov, M. P.; Bondarenko, G. E.; Bordovskaya, T. O.; Shipilov, E. V.

    2009-09-01

    The published data on the sedimentation conditions, structure, and tectonic evolution of the Anadyr Basin in the Mesozoic and Cenozoic are reviewed. These data are re-examined in the context of modern tectonic concepts concerning the evolution of the northwestern Circum-Pacific Belt. The re-examination allows us not only to specify the regional geology and tectonic history, but also to forecast of the petroleum resource potential of the sedimentary cover based on a new concept. The sedimentary cover formation in the Anadyr Basin is inseparably linked with the regional tectonic evolution. The considered portion of the Chukchi Peninsula developed in the Late Mesozoic at the junction of the ocean-type South Anyui Basin, the Asian continental margin, and convergent zones of various ages extending along the Asia-Pacific interface. Strike-slip faulting and pulses of extension dominated in the Cenozoic largely in connection with oroclinal bending of structural elements pertaining to northeastern Eurasia and northwestern North America against the background of accretion of terranes along the zone of convergence with the Pacific oceanic plates. Three main stages are recognized in the formation of the sedimentary cover in the Anadyr Basin. (1) The lower portion of the cover was formed in the Late Cretaceous-Early Eocene under conditions of alternating settings of passive and active continental margins. The Cenomanian-lower Eocene transitional sedimentary complex is located largely in the southern Anadyr Basin (Main River and Lagoonal troughs). (2) In the middle Eocene and Oligocene, sedimentation proceeded against the background of extension and rifting in the northern part of the paleobasin and compression in its southern part. The compression was caused by northward migration of the foredeep in front of the accretionary Koryak Orogen. The maximum thickness of the Eocene-Oligocene sedimentary complex is noted mainly in the southern part of the basin and in the Central and East Anadyr troughs. (3) The middle Miocene resumption of sedimentation was largely related to strike-slip faulting and rifting. In the Miocene to Quaternary, sedimentation was the most intense in the central and northern parts of the Anadyr Basin, as well as in local strike-slip fault-line depressions of the Central Trough. Geological and geophysical data corroborate thrusting in the southern Anadyr Basin. The amplitude of thrusting over the Main River Trough reaches a few tens of kilometers. The vertical thickness of the tectonically screened Paleogene and Neogene rocks in the southern Main River Trough exceeds 10 km. The quantitative forecast of hydrocarbon emigration from Cretaceous and Paleogene source rocks testifies to the disbalance between hydrocarbons emigrated and accumulated in traps of petroleum fields discovered in the Anadyr Basin. The southern portion of the Anadyr Basin is the most promising for the discovery of new petroleum fields in the Upper Cretaceous, Eocene, and Upper Oligocene-Miocene porous and fracture-porous reservoir rocks in subthrust structural and lithological traps.

  6. Provenance and tectonic setting of the supra-crustal succession of the Qinling Complex: Implications for the tectonic affinity of the North Qinling Belt, Central China

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Huang, Qianwen; Liu, Xijun; Krapež, Bryan; Yu, Jinhai; Bai, Zhian

    2018-06-01

    The Qinling Complex lies in the Qinling orogenic belt of Central China and holds the key to understanding the evolution of this feature. The Qinling Complex comprises a basement complex composed of amphibolite and ecologite, overlain by a supra-crustal succession that has been metamorphosed to the upper greenschist facies at approximately 516-509 Ma. The protoliths of the meta-sedimentary rocks are graywackes, which are divided into lower, middle and upper units. Detrital zircons from nine samples of the supra-crustal succession have ages ranging from 1182 to 1158 Ma for the lower unit, 957 to 955 Ma for the middle unit and 917 to 840 Ma for the upper unit. The lower unit is intruded by a ca. 960 Ma pluton. The bulk compositions of these meta-sedimentary rocks and their detrital zircon ages clearly indicate derivation from Meso- and Neo-proterozoic granites. Thus, we suggest that the sedimentary succession was derived from an arc-related tectonic setting and that none of the detritus was sourced from the southern margin of the North China Block or from the northern and western margins of the South China Block. We conclude that the North Qinling Belt was an independent micro-continental block during the Meso- to Neo-proterozoic.

  7. MEVTV study: Early tectonic evolution of Mars: Crustal dichotomy to Valles Marineris

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.; Schultz, Richard A.

    1990-01-01

    Several fundamental problems were addressed in the early impact, tectonic, and volcanic evolution of the martian lithosphere: (1) origin and evolution of the fundamental crustal dichotomy, including development of the highland/lowland transition zone; (2) growth and evolution of the Valles Marineris; and (3) nature and role of major resurfacing events in early martian history. The results in these areas are briefly summarized.

  8. Geochemical characteristics of charnockite and high grade gneisses from Southern Peninsular Shield and their significance in crustal evolution

    NASA Technical Reports Server (NTRS)

    Sugavanam, E. B.; Vidyadharan, K. T.

    1988-01-01

    Presented here are the results of detailed investigations encompassing externsive structural mapping in the charnockite-high grade gneiss terrain of North Arcot district and the type area in Pallavaram in Tamil Nadu supported by petrography, mineral chemistry, major, minor and REE distribution patterns in various lithounits. This has helped in understanding the evolutionary history of the southern peninsular shield. A possible tectonic model is also suggested. The results of these studies are compared with similar rock types from parts of Andhra Pradesh, Kerala, Sri Lanka, Lapland and Nigeria which has brought about a well defined correlation in geochemical characteristics. The area investigated has an interbanded sequence of thick pile of charnockite and a supracrustal succession of shelf type sediments, layered igneous complex, basic and ultrabasic rocks involved in a complex structural, tectonic, igneous and metamorphic events.

  9. Dynamic computer model for the metallogenesis and tectonics of the Circum-North Pacific

    USGS Publications Warehouse

    Scotese, Christopher R.; Nokleberg, Warren J.; Monger, James W.H.; Norton, Ian O.; Parfenov, Leonid M.; Khanchuk, Alexander I.; Bundtzen, Thomas K.; Dawson, Kenneth M.; Eremin, Roman A.; Frolov, Yuri F.; Fujita, Kazuya; Goryachev, Nikolai A.; Pozdeev, Anany I.; Ratkin, Vladimir V.; Rodinov, Sergey M.; Rozenblum, Ilya S.; Scholl, David W.; Shpikerman, Vladimir I.; Sidorov, Anatoly A.; Stone, David B.

    2001-01-01

    The digital files on this report consist of a dynamic computer model of the metallogenesis and tectonics of the Circum-North Pacific, and background articles, figures, and maps. The tectonic part of the dynamic computer model is derived from a major analysis of the tectonic evolution of the Circum-North Pacific which is also contained in directory tectevol. The dynamic computer model and associated materials on this CD-ROM are part of a project on the major mineral deposits, metallogenesis, and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. The project provides critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major scientific goals and benefits of the project are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first, extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between North America and Eastern Asia.

  10. The Habitability of a Stagnant-Lid Earth

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Godolt, M.; Stracke, B.; Ruedas, T.; Grenfell, L.; Höning, D.; Nikolaou, A.; Plesa, A. C.; Breuer, D.; Spohn, T.

    2017-12-01

    Plate tectonics is a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2O and CO2, and resulting climate of an Earth-like planet lacking plate tectonics. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2O and CO2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2O and CO2. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2, can vary in a non-monotonic way depending on the extent of the outgassed H2O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability.

  11. Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record

    NASA Astrophysics Data System (ADS)

    Bouaziz, Samir; Barrier, Eric; Soussi, Mohamed; Turki, Mohamed M.; Zouari, Hédi

    2002-11-01

    A reconstruction of the tectonic evolution of the northern African margin in Tunisia since the Late Permian combining paleostress, tectonic stratigraphic and sedimentary approaches allows the characterization of several major periods corresponding to consistent stress patterns. The extension lasting from the Late Permian to the Middle Triassic is contemporaneous of the rifting related to the break up of Pangea. During Liassic times, regional extensional tectonics originated the dislocation of the initial continental platform. In northern Tunisia, the evolution of the Liassic NE-SW rifting led during Dogger times to the North African passive continental margin, whereas in southern Tunisia, a N-S extension, associated with E-W trending subsiding basins, lasted from the Jurassic until the Early Cretaceous. After an Upper Aptian-Early Albian transpressional event, NE-SW to ENE-WSW trending extensions prevailed during Late Cretaceous in relationship with the general tectonic evolution of the northeastern African plate. The inversions started in the Late Maastrichtian-Paleocene in northern Tunisia, probably as a consequence of the Africa-Eurasia convergence. Two major NW-SE trending compressions occurred in the Late Eocene and in the Middle-Late Miocene alternating with extensional periods in the Eocene, Oligocene, Early-Middle Miocene and Pliocene. The latter compressional event led to the complete inversion of the basins of the northwestern African plate, originating the Maghrebide chain. Such a study, supported by a high density of paleostress data and including complementary structural and stratigraphic approaches, provides a reliable way of determining the regional tectonic evolution.

  12. Long term landscape evolution within central Apennines (Italy): Marsica and Peligna region morphotectonics and surface processes

    NASA Astrophysics Data System (ADS)

    Miccadei, E.; Piacentini, T.; Berti, C.

    2010-12-01

    The relief features of the Apennines have been developed in a complex geomorphological and geological setting from Neogene to Quaternary. Growth of topography has been driven by active tectonics (thrust-related crustal shortening and high-angle normal faulting related to crustal extension), regional rock uplift, and surface processes, starting from Late Miocene(?) - Early Pliocene. At present a high-relief landscape is dominated by morphostructures including high-standing, resistant Mesozoic and early Tertiary carbonates ridges (i.e. thrust ridges, faulted homocline ridges) and intervening, erodible Tertiary siliciclastics valleys (i.e. fault line valleys) and Quaternary continental deposits filled basins (i.e. tectonic valleys, tectonic basins). This study tries to identify paleo-uplands that may be linked to paleo-base levels and aims at the reconstruction of ancient landscapes since the incipient phases of morphogenesis. It analyzes the role of tectonics and morphogenic processes in the long term temporal scale landscape evolution (i.e. Mio?-Pliocene to Quaternary). It is focused on the marsicano-peligna region, located along the main drainage divide between Adriatic side and Tyrrhenian side of Central Apennines, one of the highest average elevation area of the whole chain. The work incorporates GIS-based geomorphologic field mapping of morphostructures and Quaternary continental deposits, and plano-altimetric analysis and morphometry (DEM-, map-based) of the drainage network (i.e. patterns, hypsometry, knick points, Ks). Field mapping give clues on the definition of paleo-landscapes related to different paleo-morpho-climatic environments (i.e. karst, glacial, slope, fluvial). Geomorphological evidence of tectonics and their cross-cutting relationships with morphostructures, continental deposits and faults, provide clues on the deciphering of the reciprocal relationship of antecedence of the paleo-landscapes and on the timing of morphotectonics. Morphotectonic features are related to Neogene thrusts, reactivated or displaced by complex kinematic strike slip and followed by extensional tectonic features (present surface evidence given by fault line scarps, fault line valleys, fault scarps, fault slopes, wind gaps, etc.). Geomorphic evidence of faults is provided also by morphometry of the drainage network: highest long slope of the main streams (knick points and Ks) are located where the streams cut across or run along recent faults. Correlation of tectonic elements, paleosurfaces, Quaternary continental deposits, by means of morphotectonic cross sections, lead to the identification, in the marsicano-peligna region, of areas in which morphotectonics acted in the same period, becoming younger moving from the West to the East. In conclusion, recognition of different morphotectonic features, identification of different paleo-landscapes, and reconstruction of their migration history, contribute to define the main phases of syn and post orogenic, Apennine chain landscape evolution: it results from the link of alternating morphotectonics and surface processes, due to migrating fault activity, rock uplift processes and alternating karst, glacial, slope, fluvial processes.

  13. Landscapes of human evolution: models and methods of tectonic geomorphology and the reconstruction of hominin landscapes.

    PubMed

    Bailey, Geoffrey N; Reynolds, Sally C; King, Geoffrey C P

    2011-03-01

    This paper examines the relationship between complex and tectonically active landscapes and patterns of human evolution. We show how active tectonics can produce dynamic landscapes with geomorphological and topographic features that may be critical to long-term patterns of hominin land use, but which are not typically addressed in landscape reconstructions based on existing geological and paleoenvironmental principles. We describe methods of representing topography at a range of scales using measures of roughness based on digital elevation data, and combine the resulting maps with satellite imagery and ground observations to reconstruct features of the wider landscape as they existed at the time of hominin occupation and activity. We apply these methods to sites in South Africa, where relatively stable topography facilitates reconstruction. We demonstrate the presence of previously unrecognized tectonic effects and their implications for the interpretation of hominin habitats and land use. In parts of the East African Rift, reconstruction is more difficult because of dramatic changes since the time of hominin occupation, while fossils are often found in places where activity has now almost ceased. However, we show that original, dynamic landscape features can be assessed by analogy with parts of the Rift that are currently active and indicate how this approach can complement other sources of information to add new insights and pose new questions for future investigation of hominin land use and habitats. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. NASA MEVTV Program Working Group Meeting: Volcanism on Mars

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The purpose of this working group meeting is to focus predominantly on volcanism on Mars, prior to considering the more complex issues of interactions between volcanism and tectonism or between volcanism and global or regional volatile evolution. It is also hoped that the topical areas of research identified will aid the planetary geology community in understanding volcanism on Mars and its relationship to other physical processes.

  15. The Role of Deformation Energetics in Long-Term Tectonic Modeling

    NASA Astrophysics Data System (ADS)

    Ahamed, S.; Choi, E.

    2017-12-01

    The deformation-related energy budget is usually considered in the simplest form or even entirely omitted from the energy balance equation. We derive a full energy balance equation that accounts not only for heat energy but also for mechanical (elastic, plastic and viscous) work. The derived equation is implemented in DES3D, an unstructured finite element solver for long-term tectonic deformation. We verify the implementation by comparing numerical solutions to the corresponding semi-analytic solutions in three benchmarks extended from the classical oedometer test. We also investigate the long-term effects of deformation energetics on the evolution of large offset normal faults. We find that the models considering the full energy balance equation tend to produce more secondary faults and an elongated core complex. Our results for the normal fault system confirm that persistent inelastic deformation has a significant impact on the long-term evolution of faults, motivating further exploration of the role of the full energy balance equation in other geodynamic systems.

  16. Tectonic map of Indonesia: A progress report

    USGS Publications Warehouse

    Hamilton, Warren Bell

    1970-01-01

    Orogeny, volcanism, and seismicity are now intensely active in Indonesia. Many Dutch tectonists--Brouwer, Umbgrove, van Bemifielen, Smit4Sibinga, Vening Meinesz, Westerveld, and others--recognized that this complex cluster of islands represents an early stage in the evolution of orogenic belts. Not until Indonesia is understood can we comprehend the Alps. This report summarizes some aspects of work to date on the Tectonic Map of Indonesia. The preparation of this map is a joint project of the Geological Survey of Indonesia and the United States Geological Survey, sponsored by the Government of Indonesia and the United States Agency for International Development. The Tectonic Map of Indonesia will be published at a scale of 1:5,000,000. Adjacent regions in other countries will be included to provide a broader context. The map limits presently envisaged are the parallels of 12° N. and 15° S., and the meridians of 91° and 148° E. Tectonic features will be shown in many colors and patterns. Bathymetry is being newly compiled, and will be shown with contours and shades of blue. Figure 1 shows the islands of Indonesia.

  17. Kinematic Evolution of the North-Tehran Fault (NTF), Alborz Mountains, Iran

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Ballato, P.; Strecker, M. R.; Shahpasandzadeh, M.; Friedrich, A.; Tabatabaei, S. H.

    2007-12-01

    The ENE-to NW-striking NTF is an active frontal thrust that delimits the Alborz Mountain range to the south with an up to 2000 m topographic break with respect to the adjacent Tehran plain. Eocene rocks of the Alborz range are thrusted over Neogene and Quaternary sediments of the alluvial Tehran embayment. The fault consists of right- stepping segments and merges to the east with the active Mosha-Fasham strike-slip fault (MFF). The complex tectonic history, involving changes in the direction of SHmax, has resulted in a composite tectonic landscape with inherited topographic and fault-kinematic fingerprints along the NTF. We therefore used a combination of fault-kinematic measurements and geomorphic observations to unravel the temporal tectonic evolution of this fault. Presently, the NTF is virtually inactive, although the tectonically overprinted landforms reflect tectonic activity on longer time scales during the Quaternary. Being located adjacent north of the Tehran megacity, there is thus considerable interest to decipher its youngest tectonic evolution and to better understand the relation with other fault systems. Our fault kinematic study has revealed an early dextral kinematic history for the NTF. Dextral strike-slip and oblique reverse faulting took place during NW-oriented shortening. The overall fault-geometry of the NTF suggests that it has evolved in relation to dextral transpression along the MFF. This early kinematic regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the fault segments. Fault linkage between the semi-independent ENE-striking NTF-segments and NW-striking thrusts (Emamzadeh Davud Fault [EDF], Purkan Vardij Thrust [PVT], NTF-prolongation) point towards an evolution into a nascent transpressional duplex. In this scenario the NTF segments constitute lateral ramps and the NW-striking faults act as frontal ramps. Topographic residuals, as an expression of high-uplift zones, indicate that the central segment of the NTF, incorporating the EDF was most effective in accommodating oblique convergence during this time. However, subtle knickpoints in the longitudinal river profiles crossing the PVT may indicate a relatively recent transfer of deformation onto this block. The youngest manifestations of deformation along the NTF, however, are left-lateral and normal faulting. This youngest phase of activity is documented by numerous striated and rotated conglomeratic clasts, meter-scale fault gouge zones with shear-sense indicators of oblique normal faulting, and multiple colluvial wedges with drag phenomena. Rupture traces and filled extensional cracks reaching the surface also document the seismogenic nature of these features. Since recent left-lateral transtension is also known from neighboring faults, e.g., the eastern MFF, our observations suggest that this youngest phase of tectonic activity of the NTF is a regional phenomenon, rather than the result of locally-determined geometries.

  18. The Middle Pleistocene evolution of the Molise intermontane basins: revision of the chrono-stratigraphic framework and new results inferred from a deep core of the Isernia - Le Piane basin

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Patrizio Ciro Aucelli, Pietro; Cesarano, Massimo; Rosskopf, Carmen Maria

    2014-05-01

    The Molise sector of the Apennine chain includes several Quaternary intermontane basins of tectonic origin (Venafro, Isernia-Le Piane, Carpino, Sessano, Boiano and Sepino basins). Since the Middle Pleistocene, the palaeoenvironmental evolution of these basins has been strongly conditioned by extensional tectonics, dominated by fault systems with a general NW-SE trend. This tectonics has produced important vertical displacements which are testified by the elevated thickness of basin fillings and the presence of several generations of palaeosurfaces, gentle erosion glacis and hanging valleys, the latter being generally located along the borders of the basins. Our research has focused, in the last years, on clarifying the infilling nature and the Quaternary evolution of the Boiano and Sessano basins and, more recently, of the Venafro and Isernia basins, the latter being investigated also by a new deep drilling. The present paper aims at presenting the results of the detailed, integrated analysis of the palaeoenvironmental and geomorphological evolution of these basins, that allowed for constraining the chronology of the basin infillings and for clarifying the significance and age of the ancient gentle surfaces, now hanging up to hundreds of meters above the basins floors. Furthermore, the main palaeoenvironmental changes and the tectonic phases are highlighted. The dating of several tephra layers interbedded within the investigated fluvial-marshy and lacustrine-palustrine successions, allowed to correlate different basin successions, and to refer the main sedimentary facies and some of the palaeosurface generations to the Middle Pleistocene. The obtained results confirm that the Middle Pleistocene evolution of the Molise Apennine was controlled by a polyphasic extensional tectonics, with periods of relative landscape stability alternating with periods of major landscape fragmentation, due to the variable interplay of tectonic and climate. They allow, furthermore, to better decipher the Middle Pleistocene tectonic evolution providing new data on the number of phases and their differences in length, intensity and related accommodation rates.

  19. The Boundary of Tectonic Units of the South China Continent in the Meso-Neoproterozoic - Early Paleozoic: Insights from Integrated Geophysical Study

    NASA Astrophysics Data System (ADS)

    Guo, L.; Gao, R.; Meng, X.; Zhang, J.; Wang, H.; Liu, Y.

    2013-12-01

    The South China continent (SCC), located in the transition zone of the Eurasia, India and Pacific plates, formed in the Meso-Neoproterozoic by collision of the Yangtze block and the Cathaysia block. However, the boundaries of the two blocks before the late Paleozoic (from Meso-Neoproterozoic to early Paleozoic) remain debated in the literature due to strong and complex tectonic and magmatic activities since then. The south of Jiangnan archicontinent is covered mostly by the thick strata since the late Paleozoic, the surface of which is widely covered by the vegetation. And the regional tectonic deformation is extremely complicated with few basal outcrops. For decades, a variety of geophysical detections have been performed in the SCC for understanding the deep structure and tectonic evolution, including deep seismic sounding (DSS) profiles, magnetotelluric sounding (MT) profiles, gravity and magnetic surveys and a small amount of deep seismic reflection profiles. However, due to the limitations of resolution and accuracy of the observed geophysical data in the past, especially short of the deep seismic reflection profiles to reveal fine lithosphere structure, different scientists presented various views on the division of tectonic units in the SCC. In quite recent years, the SinoProbe-02 project launched a long profile of geophysical detections across the two blocks in the SCC, including deep seismic reflection, DSS, MT, and broadband seismic observation, the resolution and accuracy of which had been improved greatly. These newly data will benefit better understanding the deep structure and tectonic evolution of the SCC. Here, we assembled high-resolution Bouguer gravity anomalies and aeromagnetic anomalies data in the SCC. The magnetic data were reduced to the pole by used a varying magnetic inclinations algorithm. We then performed anomaly separation and multi-scales lineation structure analysis on the gravity and RTP magnetic data, and then did 3D fusion analysis on them. Seismic reflection profiles focus on fine lithosphere structure vertically along the profile, while gravity and magnetic methods are beneficial to reveal regional tectonic features laterally. The integrate study of seismic, gravity and magnetic data will play the advantages of various methods and constraint and confirm each other. Hence, we did the interpretation of gravity and magnetic data with constraints of the newly seismic reflection profile. Based on the above studies, we traced the boundaries of tectonic units in the SCC from Meso-Neoproterozoic to early Paleozoic, and formed a certain understanding of the tectonic evolution in the SCC before the late Paleozoic. Acknowledgment: We acknowledge the financial support of the SinoProbe-02-01 and SinoProbe-01-05 projects, and the Fundamental Research Funds for the Central Universities.

  20. Andean subduction orogeny: feedbacks between tectonics, relief evolution and global climate

    NASA Astrophysics Data System (ADS)

    Lacassin, Robin; Armijo, Rolando; Coudurier-Curveur, Aurélie; Carrizo, Daniel

    2016-04-01

    The Andean subduction margin, largest tectonic relief on the Earth (13 km vertically from the trench to the Altiplano) has a stepped morphology, which results of the evolution over the past 50 Myr of two parallel flat-ramp thrust systems, at the - previously unidentified - West Andean Thrust (WAT), and at the subduction interface. The evolution of those thrusts appears concomitant with increasing aridity in the Atacama Desert, which keeps a large-scale record of interplaying tectonics and Cenozoic climate change. The coastal morphology is dominated by the Atacama Bench, a giant uplifted terrace at 1-2km asl. Geomorphic and climatic data, numerical experiments of drainage formation are consistent with the development of a flat Atacama morphology close to sea level, interrupted at ≤10 Ma by tectonic uplift prevailing to the present. This suggests recent trench-ward relief growth by incorporation of the coastal Atacama Bench to the Andes reliefs. Thrust splay structures and other complexities above the subduction interface may explain this relief growth, as well as the distribution of asperities under the oceanward forearc, and the down-dip segmentation of coupling and seismicity on the megathrust. Combining those results with geological knowledge at the scale of the whole Central Andes, we show that the Andean orogeny results from protracted processes of bivergent crustal shortening in a wide region squeezed between the rigid Marginal Block and the S America Plate. The overall growth curve of Andean orogeny over the past 50 Myr appears synchronous with the onset of the "ramp-shaped" temperature decrease since the Early Eocene climatic optimum. Andean growth and global cooling may have operated under the same forcing mechanism at plate-scale, involving viscous flow in the mantle. But Andean growth appears modulated by climatic feedbacks causative of stepwise reductions of erosive power over the Andean margin. The first of such events is coeval with Late Eocene cooling and promoted the eastward propagation of deformation towards the continent interior. The second one, coeval with Late Miocene cooling, is associated with the establishment of hyper-aridity in the Atacama Desert, and is responsible of a tectonic "freezing" which promoted since the triggering of subduction of the Brazilian craton, the Andean bivergent growth, and rapid uplift throughout the Andes-Altiplano. Armijo R., Lacassin R., Coudurier-Curveur A., Carrizo D., Coupled tectonic evolution of Andean orogeny and global climate, Earth Science Reviews, 143, 1-35, doi:10.1016/j.earscirev.2015.01.005, 2015.

  1. Analogue modelling on the interaction between shallow magma intrusion and a strike-slip fault: Application on the Middle Triassic Monzoni Intrusive Complex (Dolomites, Italy)

    NASA Astrophysics Data System (ADS)

    Michail, Maria; Coltorti, Massimo; Gianolla, Piero; Riva, Alberto; Rosenau, Matthias; Bonadiman, Costanza; Galland, Olivier; Guldstrand, Frank; Thordén Haug, Øystein; Rudolf, Michael; Schmiedel, Tobias

    2017-04-01

    The southwestern part of the Dolomites in Northern Italy has undergone a short-lived Ladinian (Middle Triassic) tectono-magmatic event, forming a series of significant magmatic features. These intrusive bodies deformed and metamorphosed the Permo-Triassic carbonate sedimentary framework. In this study we focus on the tectono-magmatic evolution of the shallow shoshonitic Monzoni Intrusive Complex of this Ladinian event (ca 237 Ma), covering an area of 20 km^2. This NW-SE elongated intrusive structure (5 km length) shows an orogenic magmatic affinity which is in contrast to the tectonic regime at the time of intrusion. Strain analysis shows anorogenic transtensional displacement in accordance with the ENE-WSW extensional pattern in the central Dolomites during the Ladinian. Field interpretations led to a detailed description of the regional stratigraphic sequence and the structural features of the study area. However, the geodynamic context of this magmatism and the influence of the inherited strike-slip fault on the intrusion, are still in question. To better understand the specific natural prototype and the general mechanisms of magma emplacement in tectonically active areas, we performed analogue experiments defined by, but not limited to, first order field observations. We have conducted a systematic series of experiments in different tectonic regimes (static conditions, strike-slip, transtension). We varied the ratio of viscous to brittle stresses between magma and country rock, by injecting Newtonian fluids both of high and low viscosity (i.e. silicone oil/vegetable oil) into granular materials of varying cohesion (sand, silica flour, glass beads). The evolving surface and side view of the experiments were monitored by photogrammetric techniques for strain analyses and topographic evolution. In our case, the combination of the results from field and analogue experiments brings new insights regarding the tectonic regime, the geometry of the intrusive body, and the deformational pattern of the evolving system.

  2. Erosion-tectonics feedbacks in shaping the landscape: An example from the Mekele Outlier (Tigray, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Dramis, Francesco; Faccenna, Claudio; Abebe, Bekele

    2017-05-01

    An outlier consists of an area of younger rocks surrounded by older ones. Its formation is mainly related to the erosion of surrounding rocks which causes the interruption of the original continuity of the rocks. Because of its origin, an outlier is an important witness of the paleogeography of a region and, therefore, essential to understand its topographic and geological evolution. The Mekele Outlier (N Ethiopia) is characterized by poorly incised Mesozoic marine sediments and dolerites (∼2000 m in elevation), surrounded by strongly eroded Precambrian and Paleozoic rocks and Tertiary volcanic deposits in a context of a mantle supported topography. In the past, studies about the Mekele outlier focused mainly in the mere description of the stratigraphic and tectonic settings without taking into account the feedback between surface and deep processes in shaping such peculiar feature. In this study we present the geological and geomorphometric analyses of the Mekele Outlier taking into account the general topographic features (slope map, swath profiles, local relief), the river network and the principal tectonic lineaments of the outlier. The results trace the evolution of the study area as related not only to the mere erosion of the surrounding rocks but to a complex interaction between surface and deep processes where the lithology played a crucial role.

  3. Tectonic analysis and paleo-stress determination of the upper lava section at ODP/IODP site 1256 (East Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Fontana, Emanuele

    2015-09-01

    Research on the deep sea is of great importance for a better understanding of the mechanism of magma emplacement and the tectonic evolution of oceanic crust. However, details of the internal structure in the upper levels of the oceanic crust are much less complete than that of the more fully studied sub-aerial areas. For the first time, this study proposes a dynamic analysis using the inversion method on core data derived from the drilled basement of the present-day intact oceanic crust at ODP/IODP Site 1256 in the Cocos plate. The research is based on an innovative core reorientation process and combines different stress hypothesis approaches for the analysis of heterogeneous failure-slip data via exploitation of two distinct techniques. From the analysis of the failure-slip data, both techniques produce 5 distinct subsystem datasets. All calculated subsystems are mechanically and geometrically admissible. Interpretation of the results allows the researchers to note a complex local and regional tectonic evolution deriving from the interplay of (1) the ridge push and rotation of both the East Pacific Rise and the Cocos-Nazca Spreading Center, (2) the effect of the slab pull of the Middle America Trench, (3) the influence of lava emplacement mechanisms, and (4) intra-plate deformation.

  4. Neogene Tiporco Volcanic Complex, San Luis, Argentina: An explosive event in a regional transpressive - local transtensive setting in the pampean flat slab

    NASA Astrophysics Data System (ADS)

    Ibañes, Oscar Damián; Sruoga, Patricia; Japas, María Silvia; Urbina, y. Nilda Esther

    2017-07-01

    The Neogene Tiporco Volcanic Complex (TVC) is located in the Sierras Pampeanas of San Luis, Argentina, at the southeast of the Pampean flat-slab segment. Based on the comprehensive study of lithofacies and structures, the reconstruction of the volcanic architecture has been carried out. The TVC has been modeled in three subsequent stages: 1) initial updoming, 2) ignimbritic eruptive activity and 3) lava dome emplacement. Interplay of magma injection and transtensional tectonic deformation has been invoked to reproduce TVC evolution.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallmeyer, R.D.; Gee, D.G.; Beckholmen, M.

    In central portions of the Scandinavian Caledonides, greenschist facies volcanosedimentary successions within the Koeli Nappe Complex have been thrust several hundred kilometers eastward onto the Baltoscandian platform. These were derived from eugeoclinal terranes situated outboard (west) of the Baltica continent during the early Paleozoic. The Koeli Nappe Complex is tectonically underlain by higher grade units within the Seve Nappe Complex. These are composed of amphibolite and granulite facies rocks and locally contain eclogites. The Seve Nappes tectonically separate Koeli units from structurally lower allochthons derived from more inboard environments along the Baltoscandian miogeocline. Previous mineral isotopic age-determinations from Seve andmore » Koeli units have been in the 430 to 390 Ma range and have been interpreted to presumably date cooling following Scandian (Middle Silurian to Early Devonian) metamorphism. However, incremental-release /sup 40/Ar//sup 39/Ar dates recorded by minerals within some of the Koeli and Seve Nappes exposed in Jaemtland, Sweden (Taennforsen and Are districts) provide evidence of earlier tectonothermal activity. Hornblendes from the Seve and Koeli Nappe Complexes display variably discordant age spectra as a result of low-temperature, experimental evolution of loosely bound extraneous argon components. However, in most analyses plateau ages of 510 to 475 Ma (Koeli) and 465 to 455 Ma (Seve) are defined. In contrast, muscovite and biotite from all tectonic units record Scandian cooling ages between 245 and 410 Ma. The older events recorded by hornblende within these Seve and Koeli units are evidence of early Caledonian tectonothermal activity and subsequent diachronous cooling during the Early-Middle Ordovician.« less

  6. Polyphase tectono-magmatic and fluid history related to mantle exhumation in an ultra-distal rift domain: example of the fossil Platta domain, SE Switzerland

    NASA Astrophysics Data System (ADS)

    Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic; Lescanne, Marc

    2017-04-01

    Despite the fact that many studies have investigated mantle exhumation at magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid and thermal evolution of these ultra-distal domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex, however, the processes controlling the morpho-tectonic and magmatic evolution of these domains remain unknown. The aim of this study is to describe the 3D top basement morphology of an exhumed mantle domain, exposed over 200 km2 in the fossil Platta domain in SE Switzerland, and to define the timing and processes controlling its evolution. The examined Platta nappe corresponds to a remnant of the former ultra-distal Adriatic margin of the Alpine Tethys. The rift-structures are relatively well preserved due to the weak Alpine tectonic and metamorphic overprint during the emplacement in the Alpine nappe stack. Detailed mapping of parts of the Platta nappe enabled us to document the top basement architecture of an exhumed mantle domain and to investigate its link to later, rift/oceanic structures, magmatic additions and fluids. Our observations show a polyphase and/or complex: 1) deformation history associated with mantle exhumation along low-angle exhumation faults overprinted by later high-angle normal faults, 2) top basement morphology capped by magmato-sedimentary rocks, 3) tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and 4) fluid history including serpentinization, calcification, hydrothermal vent, rodingitization and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide important information on the temporal and spatial evolution of the tectonic, magmatic and fluid systems controlling the formation of ultra-distal magma-poor rifted margins as well as the processes controlling lithospheric breakup. In this context, our field observations can help to better understand the tectono-magmatic processes associated to these, not yet drilled domains that may form in young, narrow rifted margins (e.g. Red Sea, Gulf of Aden) or may represent the Ocean-Continent Transition in more mature, magma-poor Atlantic type systems.

  7. On the Evolution of Terrestrial Planets: Implications of Evolutionary Paths and Evolving Lid-States

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.

    2015-12-01

    Growing geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain [e.g., 1, 2, and references therein]. Accordingly, information from current observations and processes have the potential of sampling portions of the Earth that has both formed under and been modified by differing tectonic regimes. Here we use coupled 3D mantle convection and planetary tectonics simulations to explore evolutionary paths and planetary tectonic regimes. Early in the geologic lifetime of a terrestrial planet, high mantle temperatures favour stagnant-lids. As radiogenics decay, an initial stagnant-lid may yield into a high temperature mobile-lid state. The transition from an initial stagnant-lid is a function of yield strength, in addition to both internal and surface temperatures. Each lid-state has specific diagnostics and implications for internal parameters, and consequently planetary evolution. The implication within this framework is that a system with a different thermal evolution has the potential to migrate through tectonic regimes at the same 'thermal time' (e.g. temperature), but very different 'temporal times'. This indicate that multiple modes of convection and surface tectonics can potentially operate on a single planetary body at different times in its evolution, as consequence of changing internal parameters, surface temperatures, and differing thermal histories. We will discuss the implications of terrestrial worlds that can alternate, and be offset between multiple tectonic states over giga-year timescales. [1] O'Neill et. al. (2013b) Geol. Soc. London; [2] Weller et al. (2015) EPSL

  8. Tectonic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1992-01-01

    The Final Technical Report on tectonic evolution of Mars is presented. Two papers and an abstract are included. Topics addressed include: scientific rationale and requirements for a global seismic network on Mars, permanent uplift in magmatic systems with application to the Tharsis Region of Mars, and the geophysical signal of the Martian global dichotomy.

  9. The relationship between crustal tectonics and internal evolution in the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1977-01-01

    The relationship between crustal tectonics and thermal evolution is discussed in terms of the moon and Mercury. Finite strain theory and depth and temperature-dependent thermal expansion are used to evaluate previous conclusions about early lunar history. Factors bringing about core differentiation in the first 0.6 b.y. of Mercurian evolution are described. The influence of concentrating radioactive heat sources located in Mercury's crust on the predicted contraction is outlined. The predicted planetary volume change is explored with regard to quantitative limits on the extent of Mercurian core solidification. Lunar and Mercurian thermal stresses involved in thermal evolution are reviewed, noting the history of surface volcanism. It is concluded that surface faulting and volcanism are closely associated with the thermal evolution of the whole planetary volume. As the planet cools or is heated, several types of tectonic and volcanic effects may be produced by thermal stress occurring in the lithosphere.

  10. The tectonometamorphic evolution of the Apuseni Mountains (Romania): Geodynamic constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens

    NASA Astrophysics Data System (ADS)

    Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard

    2015-04-01

    New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites) and the Neotethys subduction during Late Cretaceous times.

  11. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Topics discussed include: (1) Martian global tectonics; (2) the origin and evolution of a circular and an irregular lunar mare; (3) stratigraphy of Oceanus Procellarum basalts: sources and styles of emplacement; (4) the tectonic evolution of the Oceanus Procellarum Basin; (5) charting the Southern Seas: the evolution of the Lunar Mare Australe; (6) the stratigraphy of Mare Imbrium; and (7) Storms and rains: a comparison of the Lunar Mare Imbrium and Oceanus Procellarum.

  12. Tectonic Evolution of Bell Regio, Venus: Regional Stress, Lithospheric Flexure, and Edifice Stresses

    NASA Astrophysics Data System (ADS)

    Rogers, P. G.; Zuber, M. T.

    1996-03-01

    Analyses of the tectonic features associated with large volcanoes provide important insight into the relationship between volcanic and tectonic processes and the stress state of a planet's crust over time, and provide constraints on the local and regional geologic evolution. This investigation focuses on the tectonism and volcanism of Bell Regio, a major highland uplift n Venus. The stress environments and resulting tectonic features associated with the major volcanic edifices in this region are examined using Magellan ynthetic aperture radar (SAR) images and altimeter measurements of topography. The major volcanoes of Bell Regio, Tepev Mons and the "Eastern Volcanic Center" (EVC), exhibit tectonic characteristics that are unique relative to other volcanic edifices on Venus. The most prominent distinctions are the lack of large rift zones within the overall highland uplift and the presence of radial tectonic and concentric fractures associated with the major edifices. This study examines the regional stress field in Bell Regio through analysis of structural features believed to be a consequence of lithospheric flexure due to volcanic loading and tectonic features that likely resulted from edifice stresses associated with magma chamber inflation.

  13. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele

    2015-12-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from E-W in the Patagonian Andes to N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled the Late Cretaceous to Cenozoic evolution of the Magallanes fold-and-thrust belt, yielding the observed deformation pattern.

  14. Exhumation and topographic evolution of the Namche Barwa Syntaxis, eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Yang, Rong; Herman, Frédéric; Fellin, Maria Giuditta; Maden, Colin

    2018-01-01

    The Namche Barwa Syntaxis, as one of the most tectonically active regions, remains an appropriate place to explore the relationship between tectonics, surface processes, and landscape evolution. Two leading models have been proposed for the formation and evolution of this syntaxis, including the tectonic aneurysm model and the syntaxis expansion model. Here we use a multi-disciplinary approach based on low-temperature thermochronometry, numerical modeling, river profile and topographic analyses to investigate the interactions between tectonics, erosion, and landscape evolution and to test these models. Our results emphasize the presence of young cooling ages (i.e., < 1 Ma) along the Parlung River, to the north of the syntaxis. Using numerical modeling we argue that a recent increase in exhumation rate is required to expose these young ages. Our river analysis reveals spatial variations in channel steepness, which we interpret to reflect the rock uplift pattern. By establishing the relationship between erosion rates and topographic features, we find that erosion rates are poorly to weakly correlated with topographic features, suggesting that the landscape is still evolving. Altogether, these results seem better explained by a mechanism that involves a northward expansion of the syntaxis, which causes high rock uplift rates to the north of the syntaxis and a transient state of topography adjusting to an evolving tectonic setting.

  15. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  16. Brazil-Africa geological links

    NASA Astrophysics Data System (ADS)

    Torquato, Joaquim Raul; Cordani, Umberto G.

    1981-04-01

    In this work, the main evidence and conclusions regarding geological links between Brazil and Africa are summarized, with emphasis on the geochronological aspects. Taking into account the geographical position, as well as the similarities in the geochronological pattern, the following main provinces of the two continents are correlated: The Imataca and Falawatra complexes in the Guayana Shield and the Liberian Province of West Africa. The Paraguay-Araguaia and the Rockelide Fold Belts. The Sa˜o Luiz and the West African cratonic areas. The Caririan Fold Belt of northeastern Brazil and the Pan-Africa Belt of Nigeria and Cameroon. The JequiéComplex of Bahia, the Ntem Complex of Cameroon and similar rocks of Gabon and Angola. The Ribeira Fold Belt in Brazil and the West Congo and Damara Belts in West and South Africa. In addition, other geological links are considered, such as some of the major linear fault zones which can be traced across the margins of South America and Africa, in the pre-drift reconstructions. Correlations are also made of the tectonic and stratigraphic evolution of the Paranáand Karroo syneclises, and the Brazilian and African marginal basins around the South Atlantic, during their initial stages. Finally, several similarities in the tectonic evolution of South America and Africa, during and after the onset of drifting, are shown to be compatible with a recent origin for the South Atlantic floor, as required by sea-floor spreading and continental drift between South America and Africa.

  17. From an active continental plate margin to continental collision: New constraints from the petrological, structural and geochronological record of the (ultra) high-P metamorphic Rhodope domain (N-Greece)

    NASA Astrophysics Data System (ADS)

    Mposkos, E.; Krohe, A.; Wawrzenitz, N.; Romer, R. L.

    2012-04-01

    The Rhodope domain occupies a key area along the suture between the European and the Apulian/Adriatic plate (Schmid et al., 2008), which collided in the early Tertiary (closure of the Vardar/Axios ocean, cf. Mposkos & Krohe, 2006). An integrated study of the geochronological, tectonic and petrological data of the Rhodope domain provides the unique opportunity resolving a 160 my lasting metamorphic evolution (Jurassic to Miocene) of an active plate margin to a high degree. The Greek Rhodope consists of several composite metamorphic complexes bounded by the Nestos thrust and several normal detachment systems. The PT- and structural records of the complexes constrain metamorphic, magmatic and tectonic processes, associated with subduction along a convergent plate margin including UHP metamorphism, MP to HP metamorphism associated with continental collision, and core complex formation linked to Aegean back arc extension. We focus on the Sidironero Complex that shows a polymetamorphic history. This is documented by SHRIMP and LA-ICP-MS U-Pb zircon ages of ca. 150 Ma from garnet-kyanite gneisses that are interpreted to record the HP/UHP metamorphism (Liati, 2005; Krenn et al., 2010). SHRIMP zircon ages of ca. 51 Ma from an amphibolitized eclogite is interpreted by Liati (2005) to record a second Eocene HP metamorphic event. We present new data from an integrated petrological, geochronological and tectonic study. Granulite facies and upper amphibolite facies metamorphic conditions are recorded by the mineral assemblage Grt-Ky-Bt-Pl-Kfs-Qtz-Rt and Grt-Ky-Bt-Ms-Pl-Qtz-Rt, respectively, in deformed migmatitic metapelites. Deformation occurred under granulite facies conditions. Monazites from the matrix, that formed during the granulite facies deformation, lack core/rim structures and are only locally patchy zoned. Monazite chemical compositions are related to varying reaction partners. Single grains and fractions of few grains yield ID-TIMS U-Pb ages that plot along the concordia between 64 to 60 Ma. One date of 55 Ma might represent Pb-loss during later fluid-induced dissolution-reprecipitation. We discuss the following questions: What is the history of the high-P metamorphic rocks in the Sidironero Complex? Were high-P rocks that have been already exhumed again dragged into the subduction channel? Which rocks from the upper plate are affected by high-P metamorphism evincing that subduction erosion is an important mechanism? We reconsider the significance of the P-T-t evolution in the light of the tectonic processes that took place along the depth extension of a convergent plate interface and during subsequent continental collision along the European/Apulian Suture zone. Krenn et al., 2010. Tectonics 29, TC4001. Liati, A., 2005. Contribution to Mineralogy and Petrology 150, 608-630. Mposkos, E. & Krohe, A. 2006. Canadian Journal of Earth Sciences 43, 1755-1776. Schmid S.M., et al. 2008. Swiss Journal of Geoscience 101, 139-183.

  18. The tectonic evolution of western Central Iran seen through detrital white mica

    NASA Astrophysics Data System (ADS)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann

    2015-05-01

    A first order survey of 40Ar/39Ar dating of detrital white mica from Jurassic to Pliocene sandstones has been carried out in order to reveal the tectonic evolution of blocks in Central Iran. The Central Iran block was believed to represent a stable Precambrian block. Our results indicate that: (1) Only a very small proportion of Precambrian but abundant Paleozoic and Mesozoic detrital white mica indicate the Phanerozoic, mostly Mesozoic age of metamorphic crust exposed in Central Iran. The oldest but scarce detrital white mica grains have ages ranging from 524 to 826 Ma heralding a Late Precambrian and Cambrian crystalline basement or cannibalism from older clastic successions. (2) Jurassic and Cretaceous sandstones from the west and east of the Chapedony fault yield different age spectra, with a dominance of Variscan ages (ca. 308-385 Ma) in the Biabanak unit west of the Chapedony fault compared to coeval sandstones from the block east of the Chapedony fault, where Variscan ages are subordinate and Cimmerian ages predominate. The micas from the Biabanak unit are most likely derived from the Variscan accretionary complex exposed in the Anarak-Jandaq areas further northwest. This result underlines the importance of a major block boundary identified as the Chapedony fault, which is in extension of a fault previously proposed. (3) Two stages of Cimmerian events are visible in our data set from Cretaceous and Paleogene sandstones, a cluster around 170 Ma and at ca. 205 Ma. These clusters suggest a two-stage Cimmerian evolution of the largely amphibolite-grade metamorphic Posht-e-Badam and Boneh Shurow complexes. (4) The youngest micas in Paleogene conglomerates have an age of ca. 100 Ma and are most likely derived from the base of the Posht-e-Badam complex. No record of the uplifted Eocene Chapedony metamorphic core complex has been found in Eocene and Pliocene clastic rocks.

  19. Why is understanding when Plate Tectonics began important for understanding Earth?

    NASA Astrophysics Data System (ADS)

    Korenaga, J.

    2015-12-01

    Almost all kinds of geological activities on Earth depend critically on the operation of plate tectonics, but did plate tectonics initiate right after the solidification of a putative magma ocean, or did it start much later, e.g., sometime during the Archean? This problem of the initiation of plate tectonics in the Earth history presents us a unique combination of observational and theoretical challenges. Finding geological evidence for the onset of plate tectonics is difficult because plate tectonics is a dynamic process that continuously destroys a remnant of the past. We therefore need to rely on more secondary traces, the interpretation of which often involves theoretical considerations. At the same time, it is still hard to predict, on a firm theoretical ground, when plate tectonics should have prevailed, because there is no consensus on why plate tectonics currently takes place on Earth. Knowing when plate tectonics began is one thing, and understanding why it did so is another. The initiation of plate tectonics is one of the last frontiers in earth science, which encourages a concerted effort from both geologists and geophysicists to identify key geological evidence and distinguish between competing theories of early Earth evolution. Such an endeavor is essential to arrive at a self-contained theory for the evolution of terrestrial planets.

  20. A review of the tectonic evolution of the Northern Pacific and adjacent Cordilleran Orogen

    NASA Astrophysics Data System (ADS)

    Jakob, Johannes; Gaina, Carmen; Johnston, Stephen T.

    2014-05-01

    Numerous plate kinematic models for the North Pacific realm have been developed since the advent of plate tectonics in the early seventies (e.g Atwater (1970), Mammerickx and Sharman (1988)). Although published kinematic models are consistent with the broad scale features of the North Pacific, the link between plate motions and the evolution of the North American Cordillera remains poorly understood. Part of the problem lies in conflicting interpretations of geological versus paleomagnetic data sets, with the result being a lack of consensus regarding: the paleolocation of key geological units; the paleogeography of terrane formation and amalgamation; the motion, boundaries and even existence of oceanic plates; and the character (e.g. trend of subduction) and position of plate boundaries within the northern Pacific basin. Remnants of the Farallon and Kula plates, and some short-lived microplates, demonstrate the complicated tectonic evolution of the oceanic realm west of the North American margin (e.g. Rea and Dixon (1983); McCrory and Wilson (2013); Shephard et al. (2013)). The creation and destruction of major tectonic plates and microplates has presumably left a record in the Cordilleran orogen of western North America. However, working backward from the geological relationships to plate reconstructions remains difficult. Here we investigate the relationship between the plate motions of the Pacific Ocean and the terrane movements in the North American Cordillera by revising the marine magnetic and gravity anomalies of the northern Pacific. In particular, we reevaluate plate boundaries at times of major changes in plate geometry of the Pacific, Kula, Chinook and Farallon plates from C34n onward. Our focus is also on the plate geometries of the Resurrection, Eshamy and Siletz-Crescent plates during the time between anomaly C26 and C12, and the links between plate interactions and on-shore tectonic events recorded in the geological record of Vancouver Island, including the accretion of the Pacific Rim and Crescent terranes to Wrangellia between C25 and C18. References: Atwater, T. (1970). Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81, 3513-3536. McCrory, P. a., & Wilson, D. S. (2013). A kinematic model for the formation of the Siletz-Crescent forearc terrane by capture of coherent fragments of the Farallon and Resurrection plates. Tectonics, 32, 1-19. doi:10.1002/tect.20045 Rea, D. K., & Dixon, J. M. (1983). Late Cretaceous and Paleogene tectonic evolution of the North Pacific Ocean. Earth and Planetary Science Letters, 65, 145-166. Shephard, G. E., Müller, R. D., & Seton, M. (2013). The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Science Reviews, 124, 148-183. doi:10.1016/j.earscirev.2013.05.012 Mammerickx, J., & Sharman, G. F. (1988). Tectonic evolution of the North Pacific during the Cretaceous quiet period. Journal of Geophysical Research, 93(B4), 3009-3024. doi:10.1029/JB093iB04p03009

  1. Geology, age, and tectonic setting of the Cretaceous Sliderock Mountain Volcano, Montana

    USGS Publications Warehouse

    Du Bray, E.A.; Harlan, Stephen S.

    1998-01-01

    The Sliderock Mountain stratovolcano, part of the Upper Cretaceous continental magmatic arc in southwestern Montana, consists of volcaniclastic strata and basaltic andesite lava flows. An intrusive complex represents the volcano's solidified magma chamber. Compositional diversity within components of the volcano appears to reflect evolution via about 50 percent fractional crystallization involving clinopyroxene and plagioclase. 40Ar/39Ar indicate that the volcano was active about 78?1 Ma.

  2. Claritas rise, Mars: Pre-Tharsis magmatism?

    USGS Publications Warehouse

    Dohm, J.M.; Anderson, R.C.; Williams, J.-P.; Ruiz, J.; McGuire, P.C.; Buczkowski, D.L.; Wang, R.; Scharenbroich, L.; Hare, T.M.; Connerney, J.E.P.; Baker, V.R.; Wheelock, S.J.; Ferris, J.C.; Miyamoto, H.

    2009-01-01

    Claritas rise is a prominent ancient (Noachian) center of tectonism identified through investigation of comprehensive paleotectonic information of the western hemisphere of Mars. This center is interpreted to be the result of magmatic-driven activity, including uplift and associated tectonism, as well as possible hydrothermal activity. Coupled with its ancient stratigraphy, high density of impact craters, and complex structure, a possible magnetic signature may indicate that it formed during an ancient period of Mars' evolution, such as when the dynamo was in operation. As Tharsis lacks magnetic signatures, Claritas rise may pre-date the development of Tharsis or mark incipient development, since some of the crustal materials underlying Tharsis and older parts of the magmatic complex, respectively, could have been highly resurfaced, destroying any remanent magnetism. Here, we detail the significant characteristics of the Claritas rise, and present a case for why it should be targeted by the Mars Odyssey, Mars Reconnaissance Orbiter, and Mars Express spacecrafts, as well as be considered as a prime target for future tier-scalable robotic reconnaissance. ?? 2009 Elsevier B.V.

  3. Paleomagnetic and Tectonic studies in Uruguay: a brief synthesis of the last decade

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.

    2013-05-01

    The paleomagnetic studies in Uruguay have been applied as a complementary tool to geological studies. Paleomagnetic data can be very useful for geodynamic reconstructions, fundamentally for determine the latitudinal tectonic transport, rotations of crustal blocks. This technique has been applied to Paleoproterozoic, Neoproterozoic and Paleozoic units. The geology of the Uruguayan territory is divided into four tectonic units of Uruguay that include a) the Piedra Alta tectonostratigraphic terrane (PATT) and b) Nico Pérez tectonostratigraphic terrane (NPTT), separated by the Sarandí del Yí high-strain zone. Both terranes are well exposed in the Río de La Plata craton (RPC) and have paleoproterozoic ages, the last was reworked in Neoproterozoic times (metacraton). The most thoroughly investigated Neoproterozoic sections are located in the eastern and southeastern regions of Uruguay. The c) Dom Feliciano Belt shows a tectonic evolution from back-arc to foreland basin characterized by fold-and-thrust, thick-skinned belts developed during the Brasiliano/Pan-African orogenic cycle. And finally d) The high metamorphic grade Punta del Este terrane where its most notable feature is their African affinity. There is a significant shortage of geochemical and geochronological data for the existing geological complexity.

  4. Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China

    NASA Astrophysics Data System (ADS)

    Ge, Mao-hui; Zhang, Jin-jiang; Liu, Kai; Ling, Yi-yun; Wang, Meng; Wang, Jia-min

    2016-09-01

    The Paleozoic to early Mesozoic tectonic framework and evolution of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this paper, geochemical, geochronological and isotopic analyses were carried out on the blueschist in the Heilongjiang Complex to address these issues. The Heilongjiang Complex defines the suture belt between the Jiamusi block and the Songliao block in NE China, and the blueschist is a major composition for this complex, coexisting with mafic-ultramafic rocks, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the major and trace element compositions present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive εNd (t) values of + 3.7 to + 9.0, and relative enrichment in Nb (vs. Th) and Ta (vs. U) show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle with insignificant crustal contamination. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 ± 3 Ma, interpreted as its protolithic age. The youngest ages of 200 Ma of the detrital zircons in the associated mica schist from Mudanjiang area place constraints on the timing of metamorphism for the blueschist. These indicate that a big ocean existed between the Jiamusi and Songliao blocks at least since the early Permian, and the blueschist formed since the late Triassic to late Jurassic by the subduction of this ocean. Such an ocean during the Permian - Jurassic is difficult to be interpreted by the tectonic evolution of the Paleo-Asian Ocean.

  5. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming

    2018-03-01

    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of juvenile crust during an intra-plate extensional setting, respectively. The corresponding crustal growth in the southern CAOB is dominated by early Paleozoic lateral accretion of arc complexes and late Paleozoic vertical addition of juvenile material from the mantle.

  6. Tectonic reversal of the western Doruneh Fault System: Implications for Central Asian tectonics

    NASA Astrophysics Data System (ADS)

    Javadi, Hamid Reza; Esterabi Ashtiani, Marzieh; Guest, Bernard; Yassaghi, Ali; Ghassemi, Mohammad Reza; Shahpasandzadeh, Majid; Naeimi, Amir

    2015-10-01

    The left-lateral Doruneh Fault System (DFS) bounds the north margin of the Central Iranian microplate and has played an important role in the structural evolution of the Turkish-Iranian plateau. The western termination of the DFS is a sinistral synthetic branch fault array that shows clear kinematic evidence of having undergone recent slip sense inversion from a dextral array to a sinistral array in the latest Neogene or earliest Quaternary. Similarly, kinematic evidence from the Anarak Metamorphic complex suggests that this complex initially developed at a transpressive left-stepping termination of the DFS and that it was inverted in the latest Neogene to a transtensional fault termination. The recognition that the DFS and other faults in NE Iran were inverted from dextral to sinistral strike slip in the latest Neogene and the likely connection between the DFS and the Herat Fault of Afghanistan suggests that prior to the latest Miocene, all of the north Iranian and northern Afghan ranges were part of a distributed dextral fault network that extended from the west Himalayan syntaxes to the western Alborz. Also, the recognition that regional slip sense inversion occurred across northern and northeastern Iran after the latest Miocene invalidates tectonic models that extrapolate Pleistocene to recent fault slip kinematics and rates back beyond this time.

  7. Consistent Top-to-the-foreland Directed Deformation from Floor to Roof in the Seve Nappe Complex (SNC), Jämtland, Sweden

    NASA Astrophysics Data System (ADS)

    Bender, H.; Ring, U.; Almqvist, B. S. G.; Glodny, J.; Grasemann, B.; Stephens, M. B.

    2016-12-01

    The recent COSC-1 drilling programme (Lorenz et al., 2015), discovery of microdiamonds (Majka et al., 2014) and discussion of extrusion-wedge tectonics (Grimmer et al., 2015) outline the importance of the Seve Nappe Complex (SNC) and its key role during the Caledonian orogeny. The kinematic evolution of the SNC is crucial for better understanding the entire mountain belt. Thorough structural mapping of the SNC and adjacent units was conducted in western and northern Jämtland, central Sweden. Complementary microstructural investigations strengthen the field observations and show consistent top-to-the-SE directed movement through all studied tectonic units. Amphibolite-facies deformation can be inferred from fabrics in the SNC, which are overprinted by greenschist-facies structures showing the same kinematics throughout the studied section of the nappe stack. These data indicate persistence of the same foreland-directed kinematics over a wide range of pressure-temperature conditions in space and time. Currently proposed models for exhuming high-grade metamorphic rocks in collisional orogens fail to explain these observations and highlight the need for discussing new tectonic concepts for the Scandinavian Caledonides. References: Grimmer et al., 2015, Geology 43 (4); Lorenz et al., 2015, Scientific Drilling 19; Majka et al. 2014, Geology 42 (12).

  8. Paleo- and Neoproterozoic magmatic and tectonometamorphic evolution of the Isla Cristalina de Rivera (Nico Pérez Terrane, Uruguay)

    NASA Astrophysics Data System (ADS)

    Oyhantçabal, Pedro; Wagner-Eimer, Martin; Wemmer, Klaus; Schulz, Bernhard; Frei, Robert; Siegesmund, Siegfried

    2012-10-01

    The Isla Cristalina de Rivera crystalline complex in northeastern Uruguay underwent a multistage magmatic and metamorphic evolution. Based on SHRIMP U-Pb zircon, Th-U-Pb monazite (CHIME-EPMA method) and K-Ar age data from key units several events can be recognized: (1) multistage magmatism at 2,171-2,114 Ma, recorded on zircon of the granulitic orthogneisses and their 2,093-2,077 Ma overgrowths; (2) a distinct amphibolite facies metamorphism at ~1,980 Ma, recorded by monazite; (3) greenschist facies reworking and shearing at ca. 606 Ma (monazite and K-Ar on muscovite) along the Rivera Shear Zone, and finally (4) intrusion of the post-tectonic Sobresaliente and Las Flores granites at around 585 Ma. Lithological similarities, geographic proximity and coeval magmatic and metamorphic events indicate a similar tectonometamorphic evolution for the Isla Cristalina de Rivera, the Valentines Block in Uruguay and the Santa María Chico Granulitic Complex in southern Brazil, since at least 2.1 Ga.

  9. A new plate tectonic concept for the eastern-most Mediterranean

    NASA Astrophysics Data System (ADS)

    Huebscher, C.; McGrandle, A.; Scaife, G.; Spoors, R.; Stieglitz, T.

    2012-04-01

    Owing to the seismogenic faults bordering the Levant-Sinai realm and the discovery of giant gas reservoirs in the marine Levant Basin the scientific interest in this tectonically complex setting increased in recent years. Here we provide a new model for the Levant Basin architecture and adjacent plate boundaries emphasizing the importance of industrial seismic data for frontier research in earth science. PSDM seismics, residual gravity and depth to basement maps give a clear line of evidence that the Levant Basin, formerly considered as a single tectonic entity, is divided into two different domains. Highly stretched continental crust in the southern domain is separated from deeper and presumably Tethyan oceanic crust in the north. A transform continuing from southwest Cyprus to the Carmel Fault in northern Israel is considered as the boundary. If this interpretation holds, the Carmel-Cyprus Transform represents a yet unknown continent-ocean boundary in the eastern Mediterranean, thus adding new constrains for the Mediterranean plate tectonic puzzle. The Eratosthenes Seamount, considered as the spearhead of incipient continental collision in the eastern Mediterranean, is interpreted as a carbonate platform that developed above a volcanic basement. NW-SE trending strike-slip faults are abundant in the entire Levant region. Since this trend also shapes the topography of the Levant hinterland including Quaternary deposits their recent tectonic activity is quite likely. Thus, our study supports previous studies which attributed the evolution of submarine canyons and Holocene triggering of mass failures not only to salt tectonics or depositional processes, but also to active plate-tectonics.

  10. Kinematic evolution of the southwestern Arabian continental margin: implications for the origin of the Red Sea

    NASA Astrophysics Data System (ADS)

    Voggenreiter, W.; Hötzl, H.

    The tectonic and magnetic evolution of the Jizan coastal plain (Tihama Asir) in southwest Arabia was dominated by SW-NE lithospheric extension related to the development of the Red Sea Rift. A well-exposed, isotopically-dated succession of magmatic rocks (Jizan Group volcanics, Tihama Asir Magmatic Complex) allows a kinematic analysis for this part of the Arabian Red Sea margin. A mafic dyke swarm and several generations of roughly NW-trending normal faults characterized the continental rift stage from Oligocene to early Miocene time. Major uplift of the Arabian graben shoulder probably began about 14 Ma ago. By this time, extension and magmatism ceased in the Jizan area and were followed by an approximately 10 Ma interval of tectonic and magmatic quiescence. A second phase of extension began in the Pliocene and facilitated a vast outpouring of alkaliolivine basalts on the coastal plain. The geometry of faulting in the Jizan area supports a Wernicke-type simple-shear mechanism of continental rifting for the southern Arabian continental margin of the Red Sea.

  11. Cenozoic landforms and post-orogenic landscape evolution of the Balkanide orogen: Evidence for alternatives to the tectonic denudation narrative in southern Bulgaria

    NASA Astrophysics Data System (ADS)

    Gunnell, Y.; Calvet, M.; Meyer, B.; Pinna-Jamme, R.; Bour, I.; Gautheron, C.; Carter, A.; Dimitrov, D.

    2017-01-01

    Continental denudation is the mass transfer of rock from source areas to sedimentary depocentres, and is typically the result of Earth surface processes. However, a process known as tectonic denudation is also understood to expose deep-seated rocks in short periods of geological time by displacing large masses of continental crust along shallow-angle faults, and without requiring major contributions from surface erosion. Some parts of the world, such as the Basin and Range in the USA or the Aegean province in Europe, have been showcased for their Cenozoic tectonic denudation features, commonly described as metamorphic core-complexes or as supradetachment faults. Based on 22 new apatite fission-track (AFT) and 21 helium (AHe) cooling ages among rock samples collected widely from plateau summits and their adjacent valley floors, and elaborating on inconsistencies between the regional stratigraphic, topographic and denudational records, this study frames a revised perspective on the prevailing tectonic denudation narrative for southern Bulgaria. We conclude that conspicuous landforms in this region, such as erosion surfaces on basement-cored mountain ranges, are not primarily the result of Paleogene to Neogene core-complex formation. They result instead from "ordinary" erosion-driven, subaerial denudation. Rock cooling, each time suggesting at least 2 km of crustal denudation, has exposed shallow Paleogene granitic plutons and documents a 3-stage wave of erosional denudation which progressed from north to south during the Middle Eocene, Oligocene, Early to Middle Miocene, and Late Miocene. Denudation initially prevailed during the Paleogene under a syn-orogenic compressional regime involving piggyback extensional basins (Phase 1), but subsequently migrated southward in response to post-orogenic upper-plate extension driven by trench rollback of the Hellenic subduction slab (Phase 2). Rare insight given by the denudation pattern indicates that trench rollback progressed at a mean velocity of 3 to 4 km/Ma. The Neogene horst-and-graben mosaic that defines the modern landscape (Phase 3) has completely overprinted the earlier fabrics of Phases 1 and 2, and has been the prime focus of tectonic geomorphologists working in the region. The new narrative proposed here for linking the geodynamic evolution of SE Europe with surface landform assemblages raises issues in favour of better documenting the regional sedimentary record of existing Paleogene basins, which constitute a poorly documented missing link to the thermochronological evidence presented here.

  12. Sandbox rheometry: Co-evolution of stress and strain in Riedel- and Critical Wedge-experiments

    NASA Astrophysics Data System (ADS)

    Ritter, Malte C.; Santimano, Tasca; Rosenau, Matthias; Leever, Karen; Oncken, Onno

    2018-01-01

    Analogue sandbox experiments have been used for a long time to understand tectonic processes, because they facilitate detailed measurements of deformation at a spatio-temporal resolution unachievable from natural data. Despite this long history, force measurements to further characterise the mechanical evolution in analogue sandbox experiments have only emerged recently. Combined continuous measurements of forces and deformation in such experiments, an approach here referred to as "sandbox rheometry", are a new tool that may help to better understand work budgets and force balances for tectonic systems and to derive constitutive laws for regional scale deformation. In this article we present an experimental device that facilitates precise measurements of boundary forces and surface deformation at high temporal and spatial resolution. We demonstrate its capabilities in two classical experiments: one of strike-slip deformation (the Riedel set-up) and one of compressional accretionary deformation (the Critical Wedge set-up). In these we are able to directly observe a correlation between strain weakening and strain localisation that had previously only been inferred, namely the coincidence of the maximum localisation rate with the onset of weakening. Additionally, we observe in the compressional experiment a hysteresis of localisation with respect to the mechanical evolution that reflects the internal structural complexity of an accretionary wedge.

  13. Northeastern Brazilian margin: Regional tectonic evolution based on integrated analysis of seismic reflection and potential field data and modelling

    NASA Astrophysics Data System (ADS)

    Blaich, Olav A.; Tsikalas, Filippos; Faleide, Jan Inge

    2008-10-01

    Integration of regional seismic reflection and potential field data along the northeastern Brazilian margin, complemented by crustal-scale gravity modelling, is used to reveal and illustrate onshore-offshore crustal structure correlation, the character of the continent-ocean boundary, and the relationship of crustal structure to regional variation of potential field anomalies. The study reveals distinct along-margin structural and magmatic changes that are spatially related to a number of conjugate Brazil-West Africa transfer systems, governing the margin segmentation and evolution. Several conceptual tectonic models are invoked to explain the structural evolution of the different margin segments in a conjugate margin context. Furthermore, the constructed transects, the observed and modelled Moho relief, and the potential field anomalies indicate that the Recôncavo, Tucano and Jatobá rift system may reflect a polyphase deformation rifting-mode associated with a complex time-dependent thermal structure of the lithosphere. The constructed transects and available seismic reflection profiles, indicate that the northern part of the study area lacks major breakup-related magmatic activity, suggesting a rifted non-volcanic margin affinity. In contrast, the southern part of the study area is characterized by abrupt crustal thinning and evidence for breakup magmatic activity, suggesting that this region evolved, partially, with a rifted volcanic margin affinity and character.

  14. Regional tectonic analysis of Venus equatorial highlands and comparison with Earth-based Magellan radar images

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Wetherill, George

    1993-01-01

    Research on regional tectonic analysis of Venus equatorial highlands and comparison with earth-based and Magellan radar images is presented. Over the past two years, the tectonic analysis of Venus performed centered on global properties of the planet, in order to understand fundamental aspects of the dynamics of the mantle and lithosphere of Venus. These include studies pertaining to the original constitutive and thermal character of the planet, as well as the evolution of Venus through time, and the present day tectonics. Parameterized convection models of the Earth and Venus were developed. The parameterized convection code was reformulated to model Venus with an initially hydrous mantle to determine how the cold-trap could affect the evolution of the planet.

  15. Analysis of the geological structure and tectonic evolution of Xingning-Jinghai sag in deep water area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong

    2015-04-01

    Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In the east, affected by the later volcanic activities, Xingning-Jinghai sag deformed complicatedly and developed a series of landward dipping faults, showing the compound graben structure. Combined with the fault activity quantitative calculation, basin subsidence history and other advanced technology, the basin tectonic evolution has been divided into rift stage and post-rift stage. Considering the extension development evolution of Xingning-Jinghai sag and the extension and thinning of lithosphere under the background of spreading of the South China Sea, we argue that the northern margin of the South China lithosphere experienced an intense stretching and thinning stage. At this period, the subsidence of the Xingning-Jinghai sag was controlled by the detachment faults, indicating a rifting stage. With the development of the detachment faults, the thickness of crust was extremely thinned. After the spreading of the South China Sea the whole sag entered into the depression period which was characterized by thermal subsidence.

  16. Progressive magmatism and evolution of the Variscan suture in southern Iberia

    NASA Astrophysics Data System (ADS)

    Braid, James A.; Murphy, J. Brendan; Quesada, Cecilio; Gladney, Evan R.; Dupuis, Nicolle

    2018-04-01

    Magmatic activity is an integral component of orogenic processes, from arc magmatism during convergence to post-collisional crustal melting. Southern Iberia exposes a Late Paleozoic suture zone within Pangea and where a crustal fragment of Laurussia (South Portuguese Zone) is juxtaposed with parautochthonous Gondwana (Ossa Morena Zone). Fault-bounded oceanic metasedimentary rocks, mélanges and ophiolite complexes characterize the suture zone and are intruded by plutonic rocks and mafic dykes. The generation and emplacement of these intrusive rocks and their relationship to development of the suture zone and the orogen are undetermined. Field evidence combined with U/Pb (zircon) geochronology reveals three main phases of plutonism, a pre-collisional unfoliated gabbroic phase emplaced at ca 354 Ma, crosscut by a syn-tectonic ca 345 Ma foliated granodiorite phase followed by a ca 335 Ma granitic phase. Geochemical analyses (major, trace, rare earth elements) indicate that the gabbro exhibits a calc-alkaline arc signature whereas the granodiorite and granite are typical of post-collisional slab break-off. Taken together, these data demonstrate a protracted development of the orogen and support a complex late stage evolution broadly similar to the tectonics of the modern eastern Mediterranean. In this scenario, the highly oblique closure of a small tract of oceanic lithosphere postdates the main collision event resulting in escape of parautochthonous and allochthonous terranes toward the re-entrant.

  17. Implications of sediment redistribution on modeled sea-level changes over millennial timescales

    NASA Astrophysics Data System (ADS)

    Ferrier, Ken

    2016-04-01

    Sea level is a critical link in feedbacks among topography, tectonics, and climate. Over millennial timescales, changes in sea level reshape river networks, regulate organic carbon burial, influence sediment deposition, and set moving boundary conditions for landscape evolution. Sea-level changes influence tectonics by regulating rates and patterns of erosion and deposition, which perturb the surface loads that drive geodynamic processes at depth. These interactions are complex because sea-level changes are influenced by the geomorphic processes that they themselves modify, since sediment redistribution deforms the gravitational and crustal elevation fields that define sea level. A recent advance in understanding the coupling between sea level, tectonics, and topography was the incorporation of sediment redistribution into a gravitationally self-consistent sea-level model, which permits the computation of sea-level responses to erosion and deposition (Dalca et al., 2013, Geophysical Journal International). Here I use this model to quantify changes in sea level resulting from the erosion of some of the most rapidly eroding sites on Earth and the deposition of sediment offshore. These model results show that the sea-level fingerprints of sediment redistribution are strongly variable in space, and that they can represent a significant component of the total sea level change since the last interglacial. This work provides a basis for understanding a fundamental driver of landscape evolution at some of Earth's most geomorphically dynamic sites, and thus aids investigation of the couplings among tectonics, climate, and topography. References Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.

  18. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere

    NASA Astrophysics Data System (ADS)

    Burov, E.; Guillou-Frottier, L.

    2005-05-01

    Current debates on the existence of mantle plumes largely originate from interpretations of supposed signatures of plume-induced surface topography that are compared with predictions of geodynamic models of plume-lithosphere interactions. These models often inaccurately predict surface evolution: in general, they assume a fixed upper surface and consider the lithosphere as a single viscous layer. In nature, the surface evolution is affected by the elastic-brittle-ductile deformation, by a free upper surface and by the layered structure of the lithosphere. We make a step towards reconciling mantle- and tectonic-scale studies by introducing a tectonically realistic continental plate model in large-scale plume-lithosphere interaction. This model includes (i) a natural free surface boundary condition, (ii) an explicit elastic-viscous(ductile)-plastic(brittle) rheology and (iii) a stratified structure of continental lithosphere. The numerical experiments demonstrate a number of important differences from predictions of conventional models. In particular, this relates to plate bending, mechanical decoupling of crustal and mantle layers and tension-compression instabilities, which produce transient topographic signatures such as uplift and subsidence at large (>500 km) and small scale (300-400, 200-300 and 50-100 km). The mantle plumes do not necessarily produce detectable large-scale topographic highs but often generate only alternating small-scale surface features that could otherwise be attributed to regional tectonics. A single large-wavelength deformation, predicted by conventional models, develops only for a very cold and thick lithosphere. Distinct topographic wavelengths or temporarily spaced events observed in the East African rift system, as well as over French Massif Central, can be explained by a single plume impinging at the base of the continental lithosphere, without evoking complex asthenospheric upwelling.

  19. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.

  20. Understanding the Tectonic Features in the South China Sea By Analyzing Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Guo, L.; Meng, X.; Shi, L.; Yao, C.

    2011-12-01

    The South China Sea (SCS) is surrounded by the Eurasia, Pacific and India-Australia plates. It formed during Late Oligocene-Early Miocene, and is one of the largest marginal seas in the Western Pacific. The collision of Indian subcontinent and Eurasian plate in the northwest, back-arc spreading in the centre and subduction beneath the Philippine plate along Manila trench in the east and along Palawan trough in the south had produced the complex tectonic features in the SCS that we can see today. In the past few decades, a variety of geophysical methods were conducted to study geological tectonics and evolution of the SCS. Here, we analyzed the magnetic data of this area using new data enhancement techniques to understand the regional tectonic features. We assembled the magnetic anomalies data with a resolution of two arc-minute from the World Digital Magnetic Anomaly Map, and then gridded the data on a regular grid. Then we used the method of reduction to the pole at low latitude with varying magnetic inclinations to stably reduce the magnetic anomalies. Then we used the preferential continuation method based on Wiener filtering and Green's equivalence principle to separate the reduced-to-pole (RTP) magnetic anomalies, and subsequently analyze the regional and residual anomalies. We also calculated the directional horizontal derivatives and the tilt-angle derivative of the data to derive clearer geological structures with more details. Then we calculated the depth of the magnetic basement surface in the area by 3D interface inversion. From the results of the preliminary processing, we analyzed the main faults, geological structures, magma distribution and tectonic features in the SCS. In the future, the integrated interpretation of the RTP magnetic anomalies, Bouguer gravity anomalies and other geophysical methods will be performed for better understanding the deep structure , the tectonic features and evolution of the South China Sea. Acknowledgment: We acknowledge the financial support of the SinoProbe project (201011039), the Fundamental Research Funds for the Central Universities (2010ZY26, 2011PY0184), and the National Natural Science Foundation of China (40904033, 41074095).

  1. Breaking Ground on the Moon and Mars: Reconstructing Lunar Tectonic Evolution and Martian Central Pit Crater Formation

    NASA Astrophysics Data System (ADS)

    Williams, Nathan Robert

    Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon's surface in unprecedented detail and show many previously unidentified tectonic landforms, forcing a re-assessment of our views of lunar tectonism. I mapped lobate scarps, wrinkle ridges, and graben across Mare Frigoris -- selected as a type area due to its excellent imaging conditions, abundance of tectonic landforms, and range of inferred structural controls. The distribution, morphology, and crosscutting relationships of these newly identified populations of tectonic landforms imply a more complex and longer-lasting history of deformation that continues to today. I also performed additional numerical modeling of lobate scarp structures that indicates the upper kilometer of the lunar surface has experienced 3.5-18.6 MPa of differential stress in the recent past, likely due to global compression from radial thermal contraction. Central pit craters on Mars are another instance of intriguing structures that probe subsurface physical properties. These kilometer-scale pits are nested in the centers of many impact craters on Mars as well as on icy satellites. They are inferred to form in the presence of a water-ice rich substrate; however, the process(es) responsible for their formation is still debated. Previous models invoke origins by either explosive excavation of potentially water-bearing crustal material, or by subsurface drainage of meltwater and/or collapse. I assessed radial trends in grain size around central pits using thermal inertias calculated from Thermal Emission Imaging System (THEMIS) thermal infrared images. Average grain size decreases with radial distance from pit rims -- consistent with pit-derived ejecta but not expected for collapse models. I present a melt-contact model that might enable a delayed explosion, in which a central uplift brings ice-bearing substrate into contact with impact melt to generate steam explosions and excavate central pits during the impact modification stage.

  2. Overview of geology and tectonic evolution of the Baikal-Tuva area.

    PubMed

    Gladkochub, Dmitry; Donskaya, Tatiana

    2009-01-01

    This chapter provides the results of geological investigations of the main tectonic units of the Baikal-Tuva region (southwestern part of Siberia) during the last decades: the ancient Siberian craton and adjacent areas of the Central Asian Orogenic belt. In the framework of these main units we describe small-scale blocks (terranes) with focus on details of their inner structure and evolution through time. As well as describing the geology and tectonics of the area studied, we give an overview of underwater sediments, neotectonics, and some phenomena of history and development of the Baikal, Khubsugul, Chargytai, and Tore-Chol Lakes basins of the Baikal-Tuva region. It is suggested that these lakes' evolution was controlled by neotectonic processes, modern seismic activity, and global climate changes.

  3. Paleomagnetic and Geochronologic Data from Central Asia: Inferences for Early Paleozoic Tectonic Evolution and Timing of Worldwide Glacial Events

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Meert, J. G.; Levashova, N.; Grice, W. C.; Gibsher, A.; Rybanin, A.

    2007-12-01

    The Neoproterozoic to early Paleozoic Ural-Mongol belt that runs through Central Asia is crucial for determining the enigmatic amalgamation of microcontinents that make up the Eurasian subcontinent. Two unique models have been proposed for the evolution of Ural-Mongol belt. One involves a complex assemblage of cratonic blocks that have collided and rifted apart during diachronous opening and closing of Neoproterozoic to Devonian aged ocean basins. The opposing model of Sengor and Natal"in proposes a long-standing volcanic arc system that connected Central Asian blocks with the Baltica continent. The Aktau-Mointy and Dzabkhan microcontinents in Kazakhstan and Central Mongolia make up the central section of the Ural-Mongol belt, and both contain glacial sequences characteristic of the hypothesized snowball earth event. These worldwide glaciations are currently under considerable debate, and paleomagnetic data from these microcontients are a useful contribution to the snowball controversy. We have sampled volcanic and sedimentary sequences in Central Mongolia, Kazakhstan and Kyrgyzstan for paleomagnetic and geochronologic study. U-Pb data, 13C curves and abundant fossil records place age constraints on sequences that contain glacial deposits of the hypothesized snowball earth events. Carbonates in the Zavkhan Basin in Mongolia are likely remagnetized, but fossil evidence within the sequence suggests a readjusted age control on two glacial events that were previously labeled as Sturtian and Marinoan. U-Pb ages from both Kazakhstan and Mongolian volcanic sequences imply a similar evolution history of the areas as part of the Ural-Mongol fold belt, and these ages paired with paleomagnetic and 13C records have important tectonic implications. We will present these data in order to place better constraints on the Precambrian to early Paleozoic tectonic evolution of Central Asia and the timing of glacial events recorded in the area.

  4. Tectonic and metamorphic discontinuities in the Greater Himalayan Sequence in Central Himalaya: in-sequence shearing by accretion from the Indian plate

    NASA Astrophysics Data System (ADS)

    Carosi, Rodolfo

    2016-04-01

    The Greater Himalayan Sequence (GHS) is the main metamorphic unit of the Himalayas, stretching for over 2400 km, bounded to the South by the Main Central Thrust (MCT) and to the North by the South Tibetan Detachment (STD) whose contemporanous activity controlled its exhumation between 23 and 17 Ma (Godin et al., 2006). Several shear zones and/or faults have been recognized within the GHS, usually regarded as out of sequence thrusts. Recent investigations, using a multitechnique approach, allowed to recognize a tectonic and metamorphic discontinuity, localized in the mid GHS, with a top-to-the SW sense of shear (Higher Himalayan Discontinuity: HHD) (Carosi et al., 2010; Montomoli et al., 2013). U-(Th)-Pb in situ monazite ages provide temporal constraint of the acitivity of the HHD from ~ 27-25 Ma to 18-17 Ma. Data on the P and T evolution testify that this shear zone affected the tectono-metamorphic evolution of the belt and different P and T conditions have been recorded in the hanging-wall and footwall of the HHD. The HHD is a regional tectonic feature running for more than 700 km, dividing the GHS in two different portions (Iaccarino et al., 2015; Montomoli et al., 2015). The occurrence of even more structurally higher contractional shear zone in the GHS (above the HHD): the Kalopani shear zone (Kali Gandaki valley, Central Nepal), active from ~ 41 to 30 Ma (U-Th-Pb on monazite) points out to a more complex deformation pattern in the GHS characterized by in sequence shearing. The actual proposed models of exhumation of the GHS, based exclusively on the MCT and STD activities, are not able to explain the occurrence of the HHD and other in-sequence shear zones. Any model of the tectonic and metamorphic evolution of the GHS should account for the occurrence of the tectonic and metamorphic discontinuities within the GHS and its consequences on the metamorphic paths and on the assembly of Himalayan belt. References Godin L., Grujic D., Law, R. D. & Searle, M. P. 2006. Geol. Soc. London Sp. Publ., 268, 1-23. Carosi R., Montomoli C., Rubatto D. & Visonà D. 2010. Tectonics, 29, TC4029. Iaccarino S., Montomoli C., Carosi R., Massonne H-J., Langone A., Visonà D. 2015. Lithos, 231, 103-121. Montomoli C., Iaccarino S., Carosi R., Langone A. & Visonà D. 2013. Tectonophysics 608, 1349-1370, doi:10.1016/j.tecto.2013.06.006. Montomoli C., Carosi R., Iaccarino S. 2015. Geol. Soc. London Sp. Publ., 412, 25-41.

  5. Post-orogenic evolution of mountain ranges and associated foreland basins: Initial investigation of the central Pyrenees

    NASA Astrophysics Data System (ADS)

    Bernard, Thomas; Sinclair, Hugh; Ford, Mary; Naylor, Mark

    2017-04-01

    Mountain topography, including surrounding foreland basins, results from the long-term competition between tectonic and surface processes linked to climate. Numerous studies on young active mountain ranges such as the Southern Alps, New Zealand and Taiwan, have investigated the interaction between tectonics, climate and erosion on the topographic landscape. However most of the mountain ranges in the world are in various stages of post-orogenic decay, such as the European Alps, Urals, Caledonides, Appalachians and Pyrenees. The landscape evolution of these decaying mountains, which involve relatively inactive tectonics, should appear simple with progressive and relatively uniform erosion resulting in a general lowering of both elevation and topographic relief. However, in a number of examples, post-orogenic systems suggest a complex dynamism and interactions with their associated foreland basins in term of spatio-temporal variations in erosion and sedimentary flux. The complexity and transition to post-orogenesis is a function of multiple processes. Underpinning the transition to a post-orogenic state is the competition between erosion and crustal thickening; the balance of these processes determines the timing and magnitude of isostatic rebound and hence subsidence versus uplift of the foreland basin. It is expected that any change in the parameters controlling the balance of erosion versus crustal thickening will impact the topographic evolution and sediment flux from the mountain range and foreland basin to the surrounding continental margin. This study will focus on the causes and origins of the processes that define post-orogenesis. This will involve analyses of low-temperature thermochronological and topographic data, geodynamical modelling and sedimentological analyses (grainsize distribution). The Pyrenees and its associated northern retro-foreland basin, the Aquitaine basin, will form the natural laboratory for the project as it is one of the best documented mountain range/foreland basin systems in the world. Initial results of a review of the low-temperature thermochronological data using inverse modelling, illustrates the asymmetric exhumation of the mountain range, and the diachronous timing of decelerated exhumation linked to the transition to post-orogenesis. This study is part of the Orogen project, an academic-industrial collaboration (CNRS-BRGM-TOTAL).

  6. Optimal Planet Properties For Plate Tectonics Through Time And Space

    NASA Astrophysics Data System (ADS)

    Stamenkovic, Vlada; Seager, Sara

    2014-11-01

    Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up and regulation of gases relevant for life. This allows for the first time to discuss the tectonic mode of a rocky planet from a practical astrophysical perspective.

  7. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  8. The mafic-ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Venkatasivappa, V.; Koizumi, T.; Chetty, T. R. K.; Santosh, M.; Tsunogae, T.

    2014-12-01

    Several Precambrian mafic-ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic-Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.

  9. Oblique reactivation of lithosphere-scale lineaments controls rift physiography - the upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.

    2018-04-01

    Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of the lineament is reactivated in a range of tectonic styles, including both sinistral and dextral strike-slip motions, with the geometry and kinematics of these faults often inconsistent with what may otherwise be inferred from regional tectonics alone. Understanding these different styles of reactivation not only allows us to better understand the influence of sub-crustal lithospheric structure on rifting but also offers insights into the prevailing stress field during regional tectonic events.

  10. Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Bergner, A. G. N.; Strecker, M. R.; Trauth, M. H.; Deino, A.; Gasse, F.; Blisniuk, P.; Dühnforth, M.

    2009-12-01

    The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modern climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14C and 40Ar/ 39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.

  11. Tectonic context of the penetrative fracture system origin in the Early Paleozoic shale complex (Baltic Basin, Poland/Sweden).

    NASA Astrophysics Data System (ADS)

    Jarosiński, Marek; Gluszynski, Andrzej; Bobek, Kinga; Dyrka, Ireneusz

    2017-04-01

    Characterization of natural fracture and fault pattern play significant role for reservoir stimulation design and evaluation of its results. Having structural observations limited to immediate borehole surrounding it is a common need to build up a fracture model of reservoir in a range of stimulation reservoir volume or even beyond. To do this we need both a 3D seismic model and a consistent concept of the regional tectonic evolution. We present the result of integrated tectonic study in several deep boreholes target the Lower Paleozoic shale complex of Baltic Basin (BB), combined with analysis of 3D seismic survey and outcrop screening in Scania (Swedish part of the BB). During deposition of shale complex in the Ordovician and Silurian the research area was located 200-300 km away from the continental margin of Baltica involved in the Caledonian collision with the Eastern Avalonia. This distance allowed the shale complex to avoid significant tectonic deformation. Regional seismic cross section reveals the general pattern of the BB infill characteristic for the foreland basin underwent post-collisional isostatic rebound. Due to stress changes in collisional context the shale complex was cross-cut by steep, mostly inverse faults trending NW-SE and NE-SW. The fault zones oriented NW-SE are associated with an array of en echelon faults characteristic for strike-slip displacement. In our interpretation, these faults of Silurian (Wenlock) age create pattern of the regional pop-up structure, which is simultaneously involved in the plate flexure extension. Seismic attributes (e.g. curvature or ant tracking) highlight lineaments which mostly mimic the faults orientation. However, attributes show also some artefacts that come from regular array of seismic sources and receivers, which mimic the orthogonal joint system. Structural observations on borehole core lead us to conclusion that regular, orthogonal fracture system developed after maximum burial of the complex, triggered by mechanism of natural hydraulic fracturing due to hydrocarbon generation. These fractures create veins filled with calcite that growth was controlled by mechanical layering and the TOC content of the shale complex. The main joint fracture pattern is stable across at least 300 hundred kilometers, from the Polish to Swedish portion of Baltic Basin. Therefore a major tectonic event is expected to govern its origin. The Late Carboniferous thin-skinned compression exerted at the edge of the East European Craton, is preferred tectonic fracture triggering factor. This age of jointing is confirmed by the strike of principal joint set characteristic for Variscan compression. In addition, principal joint system is sensitive (=younger) to a presence of the Caledonian-age faults in Pomerania but insensitive (=older) to the Mesozoic faults in Scania. Above genetic considerations should be taken into account while building the self-consistent discrete fracture network of faults and fractures for the purpose of shale reservoir stimulation.

  12. Global evaluation of erosion rates in relation to tectonics

    NASA Astrophysics Data System (ADS)

    Hecht, Hagar; Oguchi, Takashi

    2017-12-01

    Understanding the mechanisms and controlling factors of erosion rates is essential in order to sufficiently comprehend bigger processes such as landscape evolution. For decades, scientists have been researching erosion rates where one of the main objectives was to find the controlling factors. A variety of parameters have been suggested ranging from climate-related, basin morphometry and the tectonic setting of an area. This study focuses on the latter. We use previously published erosion rate data obtained mainly using 10Be and sediment yield and sediment yield data published by the United States Geological Survey. We correlate these data to tectonic-related factors, i.e., distance to tectonic plate boundary, peak ground acceleration ( PGA), and fault distribution. We also examine the relationship between erosion rate and mean basin slope and find significant correlations of erosion rates with distance to tectonic plate boundary, PGA, and slope. The data are binned into high, medium, and low values of each of these parameters and grouped in all combinations. We find that groups with a combination of high PGA (> 0.2.86 g) and long distance (> 1118.69 km) or low PGA (< 0.68 g) and short distance (< 94.34 km) are almost inexistent suggesting a strong coupling between PGA and distance to tectonic plate boundary. Groups with low erosion rates include long distance and/or low PGA, and groups with high erosion rates include neither of these. These observations indicate that tectonics plays a major role in determining erosion rates, which is partly ascribable to steeper slopes produced by active crustal movements. However, our results show no apparent correlation of slope with erosion rates, pointing to problems with using mean basin-wide slope as a slope indicator because it does not represent the complex slope distribution within a basin.

  13. Plate tectonics, damage and inheritance.

    PubMed

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  14. Recent advances on the tectonic and magmatic evolution of the Greater Tibetan Plateau: A special issue in honor of Prof. Guitang Pan

    NASA Astrophysics Data System (ADS)

    Zhu, Di-Cheng; Chung, Sun-Lin; Niu, Yaoling

    2016-02-01

    The Greater Tibetan Plateau, also known in China as the Qinghai-Tibet Plateau or the Qingzang Plateau, is a tectonic amalgamation of numbers of continental collision events from the northwest in the early Paleozoic to the southwest in the Cenozoic (cf. Dewey et al., 1988; Pan et al., 2012; Yin and Harrison, 2000). These collision events resulted in orogenic belts that record the prolonged albeit complex histories of opening and closing of Tethyan ocean basins and associated tectonic and magmatic responses (cf. Chung et al., 2005; Pan et al., 2012; Song et al., 2014; Yin and Harrison, 2000; Zhu et al., 2013, 2015). Although many aspects related to these events have been recently synthesized with elegance by Pan et al. (2012) and Zhu et al. (2013) using data and observations made available since 2000, many scientific questions, such as the duration of oceanic basins, the collisional and accretionary processes of different terranes, the processes responsible for crustal growth, and the mechanisms for economic mineralization, remain underdeveloped and require further investigations with additional data.

  15. Proceedings of the MEVTV Workshop on The Evolution of Magma Bodies on Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. (Editor); Holloway, J. (Editor)

    1990-01-01

    The workshop focused on many of the diverse approaches related to the evolution of magma bodies on Mars that have been pursued during the course of the Mars Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Approximately 35 scientists from the Mars volcanology, petrology, geochemistry, and modeling communities attended. Segments of the meeting concentrated of laboratory analyses and investigations of SNC meteorites, the interpretation of Viking Orbiter and Lander datasets, and the interpretation of computer codes that model volcanic and tectonic processes on Mars. Abstracts of these reports are presented.

  16. Drainage basin and topographic analysis of a tropical landscape: Insights into surface and tectonic processes in northern Borneo

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad

    2016-07-01

    We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.

  17. Tectonosedimentary framework of Upper Cretaceous -Neogene series in the Gulf of Tunis inferred from subsurface data: implications for petroleum exploration

    NASA Astrophysics Data System (ADS)

    Dhraief, Wissem; Dhahri, Ferid; Chalwati, Imen; Boukadi, Noureddine

    2017-04-01

    The objective and the main contribution of this issue are dedicated to using subsurface data to delineate a basin beneath the Gulf of Tunis and its neighbouring areas, and to investigate the potential of this area in terms of hydrocarbon resources. Available well data provided information about the subsurface geology beneath the Gulf of Tunis. 2D seismic data allowed delineation of the basin shape, strata geometries, and some potential promising subsurface structures in terms of hydrocarbon accumulation. Together with lithostratigraphic data obtained from drilled wells, seismic data permitted the construction of isochron and isobath maps of Upper Cretaceous-Neogene strata. Structural and lithostratigraphic interpretations indicate that the area is tectonically complex, and they highlight the tectonic control of strata deposition during the Cretaceous and Neogene. Tectonic activity related to the geodynamic evolution of the northern African margin appears to have been responsible for several thickness and facies variations, and to have played a significant role in the establishment and evolution of petroleum systems in northeastern Tunisia. As for petroleum systems in the basin, the Cretaceous series of the Bahloul, Mouelha and Fahdene formations are acknowledged to be the main source rocks. In addition, potential reservoirs (Fractured Abiod and Bou Dabbous carbonated formations) sealed by shaly and marly formations (Haria and Souar formations respectively) show favourable geometries of trap structures (anticlines, tilted blocks, unconformities, etc.) which make this area adequate for hydrocarbon accumulations.

  18. Mantle convection: concensus and queries (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Ricard, Y.

    2012-04-01

    Thermal convection driven by surface cooling and internal heat production is the cause of endogenic activity of all planets, expressed as tectonic activity and volcanism for solid planets. The sluggish convection of the silicated mantle also controls the activity of the metallic core and the possibility of an active dynamo. A glimpse of the internal structure of Earth's mantle is provided by seismic tomography. However, both the limited resolution of seismic methods and the complexity of the relations between seismic velocities and the thermo-mechanical parameters (mostly temperature and density), leave to the geodynamicist a large degree of interpretation. At first order, a very simple model of mantle heterogeneities, only built from the paleogeographic positions of Cenozoic and Mesozoic slabs, explains the pattern and amplitude of Earth's plate motions and gravity field, while being in agreement with long wavelength tomography. This indicates that the mantle dynamics is mostly controlled by thermal anomalies and by the dynamics of the top boundary layer, the lithosphere. However, the presence of various complexities due to variations in elemental composition and to phase transitions is required by seismology, mineralogy and geochemistry. I will review how these complexities affect the dynamics of the transition zone and of the deep mantle and discuss the hypothesis on their origins, either primordial or as a consequence of plate tectonics. The rheologies that are used in global geodynamic models for the mantle and the lithosphere remain very simplistic. Some aspects of plate tectonics (e.g., the very existence of plates, their evolution, the dynamics of one-sided subductions...) are now reproduced by numerical simulations. However the rheologies implemented and their complexities remain only remotely related to that of solid minerals as observed in laboratories. The connections between the quantities measured at microscopic scale (e.g., mineralogy, grainsize, mechanisms of creeping, anisotropy, preferential shape orientations, water content...), their macroscopic averages, and the retroaction between them, are still unclear. The understanding of these relations would explain why Earth has plate tectonics while the other planets of the solar system, including her sister planet Venus, do not. As plate tectonics can be advocated to be a major ingredient for life to developp, we can speculate that a better understanding of the interaction between rheology and geodynamics would help us to estimate on what extrasolar planets including super earths, life might be expected.

  19. Thermal evolution and exhumation of deep-level batholithic exposures, southernmost Sierra Nevada, California

    USGS Publications Warehouse

    Saleeby, J.; Farley, K.A.; Kistler, R.W.; Fleck, R.J.

    2007-01-01

    The Tehachapi complex lies at the southern end of the Sierra Nevada batholith adjacent to the Neogene-Quaternary Garlock fault. The complex is composed principally of high-pressure (8-10 kbar) Cretaceous batholithic rocks, and it represents the deepest exposed levels of a continuous oblique crustal section through the southern Sierra Nevada batholith. Over the southern ???100 km of this section, structural/petrologic continuity and geochronological data indicate that ???35 km of felsic to intermediate-composition crust was generated by copious arc magmatism primarily between 105 and 99 Ma. In the Tehachapi complex, these batholithic rocks intrude and are bounded to the west by similar-composition gneissic-textured high-pressure batholithic rocks emplaced at ca. 115-110 Ma. This lower crustal complex is bounded below by a regional thrust system, which in Late Cretaceous time tectonically eroded the underlying mantle lithosphere, and in series displaced and underplated the Rand Schist subduction assemblage by low-angle slip from the outboard Franciscan trench. Geophysical and mantle xenolith studies indicate that the remnants of this shallow subduction thrust descend northward through the crust and into the mantle, leaving the mantle lithosphere intact beneath the greater Sierra Nevada batholith. This north-dipping regional structure records an inflection in the Farallon plate, which was segmented into a shallow subduc-tion trajectory to the south and a normal steeper trajectory to the north. We combine new and published data from a broad spectrum of thermochronom-eters that together form a coherent data array constraining the thermal evolution of the complex. Integration of these data with published thermobarometric and petro-genetic data also constrains the tectonically driven decompression and exhumation history of the complex. The timing of arc magmatic construction of the complex, as denoted above, is resolved by a large body of U/Pb zircon ages. High-confidence thermochronometric data track a single retrogressing path commencing from widely established solidus conditions at ca. 100 Ma, and traversing through time-temperature space as follows: (1) Sm/Nd garnet ???770-680 ??C at ca. 102-95 Ma, (2) U/Pb titanite ???750-600 ??C at ca. 102-95 Ma, (3) Ar/Ar hornblende ???570-490 ??C at ca. 94-91 Ma, (4) Rb/Sr biotite ???390-260 ??C at ca. 90-86 Ma, (5) Ar/Ar biotite ???320-240 ??C at ca. 88-85 Ma, and (6) (U-Th)/He zircon ???230-170 ??C at ca. 88-83 Ma. Additional stratigraphic constraints place the complex at surface conditions in Paleocene-early Eocene time (ca. 66-55 Ma). Integration of these results with thermobarometric and structural data, including published data on the underlying Rand Schist, reveals a profound tectonic event whereby rapid cooling and exhumation at rates potentially as high as 100s ??C/m.y. and >5 mm/yr initiated at ca. 98 Ma and peaked between 96 and 94 Ma. Between 93 and 85 Ma, cooling rates remained high, but decelerated with or without significant exhumation. Subsequent cooling and exhumation rates are poorly constrained but were much slower and ultimately resulted in Paleocene-Eocene surface exposure. Initial rapid exhumation and cooling are hypothesized to have been driven by abrupt flattening in the corresponding segment of the Farallon plate and the resulting tectonic erosion of the underlying mantle lithosphere. Protolith as well as meta-morphic pressure-temperature and age constraints on the Rand Schist indicate its rapid low-angle subduction between 93 and 88 Ma. Comparison of the Rand Schist and Tehachapi complex pressure-temperature-time paths in conjunction with structural relations strongly suggest that the schist ascended the equivalent of ???4 kbar relative to the Tehachapi complex by low-angle normal displacement along the Rand fault between 88 and 80 Ma to attain its current underplated structural position. Such extensional tectonism is hypothesized to have been driven by slab rollback

  20. Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution

    NASA Astrophysics Data System (ADS)

    Foley, Bradford J.; Driscoll, Peter E.

    2016-05-01

    Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.

  1. A laboratory experiment simulating the dynamics of topographic relief: methodology and results

    NASA Astrophysics Data System (ADS)

    Crave, A.; Lague, D.; Davy, P.; Bonnet, S.; Laguionie, P.

    2002-12-01

    Theoretical analysis and numerical models of landscape evolution have advanced several scenarios for the long-term evolution of terrestrial topography. These scenarios require quantitative evaluation. Analyses of topography, sediment fluxes, and the physical mechanisms of erosion and sediment transport can provide some constraints on the range of plausible models. But in natural systems the boundary conditions (tectonic uplift, climate, base level) are often not well constrained and the spatial heterogeneity of substrate, climate, vegetation, and prevalent processes commonly confounds attempts at extrapolation of observations to longer timescales. In the laboratory, boundary conditions are known and heterogeneity and complexity can be controlled. An experimental approach can thus provide valuable constraints on the dynamics of geomorphic systems, provided that (1) the elementary processes are well calibrated and (2) the topography and sediment fluxes are sufficiently well documented. We have built an experimental setup of decimeter scale that is designed to develop a complete drainage network by the growth and propagation of erosion instabilities in response to tectonic and climatic perturbations. Uplift and precipitation rates can be changed over an order of magnitude. Telemetric lasers and 3D stereo-photography allow the precise quantification of the topographic evolution of the experimental surface. In order to calibrate the principal processes of erosion and transport we have used three approaches: (1) theoretical derivation of erosion laws deduced from the geometrical properties of experimental surfaces at steady-state under different rates of tectonic uplift; (2) comparison of the experimental transient dynamics with a numerical simulation model to test the validity of the predicted erosion laws; and (3) detailed analysis of particle detachment and transport in a millimeter sheet flow on a two-meter long flume under precisely controlled water discharge, slope and flow width. The analogy with real geomorphic systems is limited by the imperfect downscaling in both time and space of the experiments. However, these simple experiments have allowed us to probe (1) the importance of a threshold for particle mobilization to the relationship between steady-state elevation and uplift rate, (2) the role of initial drainage network organization in the transient dynamics of tectonically perturbed systems and (3) the sediment flux dynamics of climatically perturbed systems.

  2. Morphometric and magmatic evolution at the Boset-Bericha Volcanic Complex in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Siegburg, Melanie; Gernon, Thomas; Bull, Jonathan; Keir, Derek; Taylor, Rex; Nixon, Casey; Abebe, Bekele; Ayele, Atalay

    2017-04-01

    Tectono-magmatic interactions are an intrinsic feature of continental rifting and break up in the Main Ethiopian Rift (MER). The Boset-Bericha volcanic complex (BBVC) is one of the largest stratovolcanoes in the MER (with a total area of ˜870 km2), with volcanism largely occurring over the last ˜2 Myr. Despite the fact that 4 million people live within 100 km of the volcano, little is known about its eruptive history and how the volcanic system interacts with rift valley tectonics. Here, we present a detailed relative eruption chronology combined with morphometric analyses of different elements of the volcanic complex and petrological analyses to constrain morphometric and magmatic evolution at the BBVC. Additionally, tectonic activity has been characterised around the BBVC, all based on field observations and mapping using high-resolution digital elevation data. The BBVC consists of the Gudda Volcano and the younger Bericha Volcano, two silicic eruption centres located along the NNE-SSW trending rift axis. The fault population predominantly comprises distributed extensional faults parallel to the rift axis, as well as localised discrete faults with displacements of up to 50 m in the rift centre, and up to 200 m in the NE-SW trending border fault system. Multiple cones, craters and fissure systems are also oriented parallel to the rift axis, i.e. perpendicular to the minimum compressive stress. The eruption history of BBVC can be differentiated into 5 main eruption stages, subdivided into at least 12 eruptive phases with a total of 128 mappable lava flows. Crosscutting relationships of lava flows provide a relative chronology of the eruptive history of the BBVC, starting with pre-BBVC rift floor basalts, pre-caldera and caldera activity, three post-caldera phases at the Gudda Volcano and two phases forming the Bericha Volcano. At least four fissure eruption phases occurred along the rift axis temporally in between the main eruptive phases. Morphometric analyses indicate a total corrected volume of eruptive material at the BBVC of ˜36 km3. The magmatic and morphometric evolution of the BBVC is spatially and temporally complex, showing a bimodal distribution of effusive basalts towards explosive peralkaline trachytic and rhyolitic lavas for the Gudda and Bericha Volcano, respectively, with rare intermediate lavas from fissure eruptions. Preliminary geochemical data suggest that fractional crystallisation may have played an important role in driving magmatic evolution the BBVC. This study emphasises the important role of tectono-magmatic interactions in the evolution of a continental rift system.

  3. Role of tectonic inheritance in the instauration of Tunisian Atlassic fold-and-thrust belt: Case of Bouhedma - Boudouaou structures

    NASA Astrophysics Data System (ADS)

    Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad

    2016-07-01

    Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.

  4. Geological setting of the southern termination of Western Alps

    NASA Astrophysics Data System (ADS)

    d'Atri, Anna; Piana, Fabrizio; Barale, Luca; Bertok, Carlo; Martire, Luca

    2016-09-01

    A revision of the stratigraphic and tectonic setting of the southern termination of the Western Alps, at the junction of the Maritime Alps with the westernmost Ligurian Alps, is proposed. In response to the Alpine kinematic evolution, a number of tectonic units formed on the deformed palaeo-European continental margin and were arranged in a NW-SE striking anastomosed pattern along the north-eastern boundary of the Argentera Massif. Because these tectonic units often cut across the palaeogeographic subdivision of the Alpine literature and show only partial affinity with their distinctive stratigraphic features, new attributions are proposed. The Subbriançonnais domain is here intended as a "deformation zone", and its tectonic units have been attributed to Dauphinois and Provençal domains; furthermore, the Eocene Alpine Foreland Basin succession has been interpreted, based on the affinity of its lithologic characters and age, as a single feature resting above all the successions of the different Mesozoic domains. The Cretaceous tectono-sedimentary evolution of the studied domains was characterized by intense tectonic controls on sedimentation inducing lateral variations of stratigraphic features and major hydrothermal phenomena. Since the early Oligocene, transpressional tectonics induced a NE-SW shortening, together with significant left-lateral movements followed by (late Oligocene-middle Miocene) right-lateral movements along E-W to SE-NW striking shear zones. This induced the juxtaposition and/or stacking of Briançonnais, Dauphinois and Ligurian tectonic units characterized by different metamorphic histories, from anchizonal to lower greenschist facies. This evolution resulted in the arrangement of the tectonostratigraphic units in a wide "transfer zone" accommodating the Oligocene WNW-ward movement of portions of the palaeo-European margin placed at the south-western termination of Western Alps and the Miocene dextral shearing along SE striking faults that bound the Argentera Massif on its NE side.

  5. Problems of the active tectonics of the Eastern Black Sea

    NASA Astrophysics Data System (ADS)

    Javakhishvili, Z.; Godoladze, T.; Dreger, D. S.; Mikava, D.; Tvaliashvili, A.

    2016-12-01

    The Black Sea Basin is the part of the Arabian Eurasian Collision zone and important unit for understanding the tectonic process of the region. This complex basin comprises two deep basins, separated by the mid-Black Sea Ridge. The basement of the Black Sea includes areas with oceanic and continental crust. It was formed as a "back-arc" basin over the subduction zone during the closing of the Tethys Ocean. In the past decades the Black Sea has been the subject of intense geological and geophysical studies. Several papers were published about the geological history, tectonics, basement relief and crustal and upper mantle structure of the basin. New tectonic schemes were suggested (e. g. Nikishin et al 2014, Shillington et al. 2008, Starostenko et al. 2004 etc.). Nevertheless, seismicity of the Black Sea is poorly studied due to the lack of seismic network in the coastal area. It is considered, that the eastern basin currently lies in a compressional setting associated with the uplift of the Caucasus and structural development of the Caucasus was closely related to the evolution of the Eastern Black Sea Basin. Analyses of recent sequence of earthquakes in 2012 can provide useful information to understand complex tectonic structure of the Eastern Black Sea region. Right after the earthquake of 2012/12/23, National Seismic monitoring center of Georgia deployed additional 4 stations in the coastal area of the country, close to the epicenter area, to monitor aftershock sequence. Seismic activity in the epicentral area is continuing until now. We have relocated approximately 1200 aftershocks to delineate fault scarf using data from Georgian, Turkish and Russian datacenters. Waveforms of the major events and the aftershocks were inverted for the fault plane solutions of the events. For the inversion were used green's functions, computed using new 1D velocity model of the region. Strike-slip mechanism of the major events of the earthquake sequence indicates extensional features in the Eastern Black Sea Region as well.

  6. Multi-Scale and Object-Oriented Analysis for Mountain Terrain Segmentation and Geomorphological Assessment

    NASA Astrophysics Data System (ADS)

    Marston, B. K.; Bishop, M. P.; Shroder, J. F.

    2009-12-01

    Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.

  7. Morphological Analysis of Apo Volcanic Complex in Southern Mindanao, Philippines: implications on volcano-tectonic evolution of different volcanic units

    NASA Astrophysics Data System (ADS)

    Herrero, T. M. L.; van Wyk de Vries, B.; Lagmay, A. M. A.; Eco, R. C.

    2015-12-01

    The Apo Volcanic Complex (AVC) is one of the largest volcanic centers in the Philippines, located in the southern island of Mindanao. It is composed of four edifices and several smaller cones. The youngest volcanic unit, the Apo Dome, is the highest elevation in the Philippines. This unit is classified as potentially active, whereas other units, Talomo, Sibulan and Kitubod, are inactive. The study gives insight to the construction and deformation history of the volcanic units and imparts foresight to subsequent events that can affect populated areas. A morphological analysis integrating high-resolution digital terrain models and public domain satellite data and images was done to recognize and discriminate volcanic units and characterize volcano-tectonic features and processes. Morphological domains were defined based on surface textures, slope variation, degrees and controls of erosion, and lineament density and direction. This establishes the relative ages and extent of volcanic units as well as the volcano-tectonic evolution of the complex. Six edifice building events were recognized, two of which form the elevated base of Apo dome. The geodynamic setting of the region is imprinted in the volcanic units as five morphostructural lineaments. They reveal the changes in maximum regional stress through time such as the N-S extension found across the whole volcanic complex displaying the current stress regime. This has implications on the locality and propagation of geothermal activity, magma ascent, and edifice collapses. One main result of the compounded effects of inherited structures and current stress regime is the Sandawa Collapse Zone. This is a large valley formed by several collapses where NE-SW fractures propagate and the increasing lateral spreading by debuttressing continue to eat away the highest peak. The AVC is surrounded by the major metropolitan area of Davao City to the east and the cities of Kidapawan and Digos to the west and south, respectively. In addition, within 3 km of Apo Dome is a geothermal power plant. With the obvious socio-economic significance of the area, it is imperative to understand these deformations that allow structures to propagate, resulting to instability of the edifice and possibly volcanic unrest, and ultimately for the assessment of hazards and risks to the immediate sectors.

  8. Tectonic escape in the evolution of the continental crust

    NASA Technical Reports Server (NTRS)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  9. Multi-Agent Simulations of Earth's Dynamics: Towards a Virtual Laboratory for Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Tisseau, C.; LeYaouanq, S.; Parenthoen, M.; Tisseau, J.

    2012-12-01

    MACMA (Multi-Agent Convective MAntle) is a new tool developed at Laboratoire Domaines Océaniques (UMR CNRS 6538) and CERV-LabSTICC (Centre Européen de Réalité Virtuelle, UMR CNRS 6285) to simulate evolutive plates tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). In this approach, ridges, subduction zones, continents and convective cells are agents, whose behavior is controlled by analytical and phenomenological laws. These agents are autonomous entities which collect information from their environment and interact with each other. The dynamics of the system is mainly based on a force balance on each plate, that accounts for slab pull, ridge push, bending dissipation and viscous convective drag. Insulating continents are accounted for. Tectonic processes such as trench migration, plate suturing or continental breakup are controlled by explicit parameterizations. A heat balance is used to compute Earth's thermal evolution as a function of seafloor age distribution. We thereby obtain an evolutive system where the geometry and the number of tectonic plates are not imposed but emerge naturally from its dynamical history. Our approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the Earth. MACMA can thus be seen as a 'plate tectonics virtual laboratory'. We can test not only the effect of input parameters, such as mantle initial temperature and viscosity, initial plate tectonics configuration, number and geometry of continents etc., but also study the effect of the analytical and empirical rules that we are using to describe the system. These rules can be changed at any time, and MACMA is an evolutive tool that can easily integrate new behavioral laws. Even poorly understood processes, that cannot be accounted for with differential equations, can be studied with this virtual laboratory. For Earth-like input parameters, MACMA yields plate velocities and heat flux that are in good agreement with observations. The long-term thermal evolution of the Earth obtained with our model shows a slow monotonous decrease of mantle mean temperature, with a cooling rate of around 50-100 K per billion years, which is in good agreement with petrological and geochemical constraints. Heat flux and plate velocities show a more irregular evolution, because tectonic events, such as a continental breakup, give rise to abrupt changes in Earth's surface dynamics and heat loss. Therefore MACMA is a powerful tool to study in a systematic way the effect of local events (subduction initiation, continental breakup, ridge vanishing) on plate reorganizations and global surface dynamics.

  10. Regional-Scale Salt Tectonics Modelling: Bench-Scale Validation and Extension to Field-Scale

    NASA Astrophysics Data System (ADS)

    Crook, A. J. L.; Yu, J. G.; Thornton, D. A.

    2010-05-01

    The role of salt in the evolution of the West African continental margin, and in particular its impact on hydrocarbon migration and trap formation, is an important research topic. It has attracted many researchers who have based their research on bench-scale experiments, numerical models and seismic observations. This research has shown that the evolution is very complex. For example, regional analogue bench-scale models of the Angolan margin (Fort et al., 2004) indicate a complex system with an upslope extensional domain with sealed tilted blocks, growth fault and rollover systems and extensional diapers, and a downslope contractional domain with squeezed diapirs, polyharmonic folds and thrust faults, and late-stage folding and thrusting. Numerical models have the potential to provide additional insight into the evolution of these salt driven passive margins. The longer-term aim is to calibrate regional-scale evolution models, and then to evaluate the effect of the depositional history on the current day geomechanical and hydrogeologic state in potential target hydrocarbon reservoir formations adjacent to individual salt bodies. To achieve this goal the burial and deformational history of the sediment must be modelled from initial deposition to the current-day state, while also accounting for the reaction and transport processes occurring in the margin. Accurate forward modeling is, however complex, and necessitates advanced procedures for the prediction of fault formation and evolution, representation of the extreme deformations in the salt, and for coupling the geomechanical, fluid flow and temperature fields. The evolution of the sediment due to a combination of mechanical compaction, chemical compaction and creep relaxation must also be represented. In this paper ongoing research on a computational approach for forward modelling complex structural evolution, with particular reference to passive margins driven by salt tectonics is presented. The approach is an extension of a previously published approach (Crook et al., 2006a, 2006b) that focused on predictive modelling of structure evolution in 2-D sandbox experiments, and in particular two extensional sand box experiments that exhibit complex fault development including a series of superimposed crestal collapse graben systems (McClay, 1990) . The formulation adopts a finite strain Lagrangian method, complemented by advanced localization prediction algorithms and robust and efficient automated adaptive meshing techniques. The sediment is represented by an elasto-viscoplastic constitutive model based on extended critical state concepts, which enables representation of the combined effect of mechanical and chemical compaction. This is achieved by directly coupling the evolution of the material state boundary surface with both the mechanically and chemically driven porosity change. Using these procedures the evolution of the geological structures arises naturally from the imposed boundary conditions without the requirement of seeding using initial imperfections. Simulations are presented for regional bench-scale models based on the analogue experiments presented by Fort et al. (2004), together with additional insights provided by the numerical models. It is shown that the behaviour observed in both the extensional and compressional zones of these analogue models arises naturally in the finite element simulations. Extension of these models to the field-scale is then discussed and several simulations are presented to highlight important issues related to practical field-scale numerical modelling.

  11. Geologic evolution of the Kastel trough and its implications on the Adiyaman oil fields, SE Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coskun, Bu.

    1990-05-01

    Oil field developments of the Adiyaman area one of the main oil producing zones in southeast Turkey, have been highly influenced by geologic evolution of the Kastel trough which is situated in front of the suture zone between the Arabian and Anatolian plates. The Upper Cretaceous movements created many paleostructural trends in the Kastel trough where important dolomitic and porous reservoirs exist. The most important tectonic event, which appeared during the Upper Cretaceous movements, is the accumulation of the Kocali-Karadut ophiolitic complex, advancing from the north to the south in the Kastel trough, where heavy materials caused formation of amore » structural model favoring generation and migration and entrapment of oil in the reservoir rocks. Due to the presence of the Kocali-Karadut complex in the Kastel trough the following zones have been distinguished. (1) North Uplift Area. Situated under the allochthonous units, many thrust and reverse faults characterize this zone. The presence of paleohighs, where primary dolomites develop, allows the appearance of some oil fields in the region. This is the main future exploration zone in southeast Turkey. (2) Accumulation Area. Advancing from the north to the south, the allochthonous Kocali-Karadut complex filled the Kastel trough creating a deep graben whose flanks present generally normal faults. (3) Structural Belt. Important paleohighs constitute an exploration trend in this zone where dolomitic and porous carbonates contain actual oil fields. (4) South Accumulation Area. Distant from the Arabian-Anatolian suture zone, regional tectonics and sedimentology show this zone remained deeply buried during geologic time; good source rocks were deposited during the Cretaceous. (5) South Uplift Area. This area corresponds to the northern flank of the huge regional Mardin high in southeast Turkey where new oil fields have been discovered.« less

  12. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Holm, Robert J.; Spandler, Carl; Richards, Simon W.

    2013-09-01

    Understanding the evolution of the mid-Cenozoic Melanesian arc is critical for our knowledge of the regional tectonic development of the Australian-Pacific plate margin, yet there have been no recent studies to constrain the nature and timing of magmatic activity in this arc segment. In particular, there are currently no robust absolute age constraints at the plate margin related to either the initiation or cessation of subduction and arc magmatism. We present the first combined U-Pb zircon geochronology and geochemical investigation into the evolution of the Melanesian arc utilizing a comprehensive sample suite from the Simuku Igneous Complex of West New Britain, Papua New Guinea. Development of the embryonic island arc from at least 40 Ma and progressive arc growth was punctuated by distant collision of the Ontong Java Plateau and subduction cessation from 26 Ma. This change in subduction dynamics is represented in the Melanesian arc magmatic record by emplacement of the Simuku Porphyry Complex between 24 and 20 Ma. Petrological and geochemical affinities highlight genetic differences between 'normal' arc volcanics and adakite-like signatures of Cu-Mo mineralized porphyritic intrusives. The contemporaneous emplacement of both 'normal' arc volcanics and adakite-like porphyry intrusives may provide avenues for future research into the origin of diverse styles of arc volcanism. Not only is this one of few studies into the geology of the Melanesian arc, it is also among the first to address the distant tectono-magmatic effects of major arc/forearc collision events and subduction cessation on magmatic arcs, and also offers insight into the tectonic context of porphyry formation in island arc settings.

  13. Stretching of Hot Lithosphe: A Significant Mode of Crustal Stretching in Southeast Asia

    NASA Astrophysics Data System (ADS)

    de Montserrat Navarro, A.; Morgan, J. P.; Hall, R.; White, L. T.

    2017-12-01

    SE Asia roughly covers roughly 15% of the Earth's surface and represents one of the most tectonically active regions in the world, yet its tectonic evolution remains relatively poorly studied and constrained in comparison with other regions. Recent episodes of extension have been associated with sedimentary basin growth and phases of crustal melting, uplift and extremely rapid exhumation of young (<7Ma) metamorphic core complexes. This is recorded by seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provides some control on the rates of processes. We use two-dimensional numerical models to investigate the evolution of the distinctive extensional basins in SE Asia. Our models suggest that, at the onset of stretching, the lithosphere was considerably hotter than in more typically studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). High Moho temperatures are key in shaping the architecture of the stretched lithosphere: A) hot and week lower crust fails to transmit the stress and brittle deformation, thus resulting in a strong decoupling between crust and lithospheric mantle; B) the mode of deformation is dominated by the ductile flow and boudinage of lower crust, yielding the exhumation of one-to-several partially molten lower crustal bodies, including metamorphic core complexes; C) continental break-up is often inhibited by the ductile behaviour of the crust, and it is only achieved after considerable cooling of the lithosphere. To better constrain the extension rates in which these basins formed, we compare P-T and cooling paths of lower crustal material in a suite of models with newly available data from the Palu and Malino metamorphic core complexes in Sulawesi, Indonesia.

  14. The Valencia trough and the origin of the western Mediterranean basins

    NASA Astrophysics Data System (ADS)

    Vegas, R.

    1992-03-01

    Evolutionary models for the Valencia trough must be necessarily related to the Neogene-Present geodynamics of the western Mediterranean basins. All these basins occupy new space created in the wake of the westward translation of the Alboran block and the counter-clockwise rotation of the Corso-Sardinian block. This escape-tectonics, microplate dispersal, model can account for the co-existence and progressive migration of compressional and extensional strain fields within the Africa-Europe broad zone of convergence. In this escape-tectonics model, the Valencia trough has resulted in a complex evolution which includes: (1) latest Oligocene-Early Miocene rifting along the Catalan-Valencian margin due to the opening of the Gulf of Lions; (2) almost simultaneous, Early Miocene, transpressive thrusting in the Balearic margin related to the initiation of displacement of the Alboran block; and (3) Late Miocene generalized extension as a consequence of the opening of the South Balearic basin.

  15. Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China

    NASA Astrophysics Data System (ADS)

    Du, Qiuding; Wang, Zhengjiang; Wang, Jian; Deng, Qi; Yang, Fei

    2016-03-01

    Meso- to Neoproterozoic magmatic events are widespread in the Yangtze Block. The geochronology and tectonic significance of the Shennongjia Group in the Yangtze Block are still highly controversial. An integrated geochronology and geochemistry approach provides new insights into the geochronological framework, tectonic setting, magmatic events, and basin evolution of the northern Yangtze Block. Our new precise sensitive high-resolution ion microprobe U-Pb data indicate a deposition age of 1180 ± 15 Ma for the Shicaohe Formation subalkaline basaltic tuff that is geochemically similar to modern intracontinental rift volcanic rocks. The integration of available geochemical data together with our new U-Pb ages indicates the Shicaohe Formation subalkaline basaltic tuff formed ca. 1180 in a continental rift-related setting on a passive continental margin. The Shennongjia Group is topped by the Zhengjiaya Formation volcanic sequence, indicating arc-related igneous events at 1103 Ma. The transition of the late Mesoproterozoic tectonic regime from intracontinental extension to convergence occurred between ca. 1180 and 1103 Ma in the northern Yangtze Block. Tectonic evolution in the Neoproterozoic led to accretion along the northern margin of the Yangtze Block. These results provide geochronological evidence, which is of utmost importance for reconfiguration of the chronostratigraphic framework and for promoting research on Mesoproterozoic strata in China, thereby increasing understanding of magmatic events and basin evolutionary history in the northern Yangtze Block.

  16. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  17. Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan

    NASA Technical Reports Server (NTRS)

    Skiner, J. A., Jr.; Rogers, A. D.; Seelos, K. D.

    2009-01-01

    The highland-lowland boundary (HLB) of Mars is interpreted to be a complex tectonic and erosional transition that may hold evidence for past geologic processes and environments. The HLB-abutting margin of the Libya Montes and the interbasin plains of northern Tyrrhena Terra display an exceptional view of the earliest to middle history of Mars that has yet to be fully characterized. This region contains some of the oldest exposed materials on the Martian surface as well as aqueous mineral signatures that may be potential chemical artifacts of early highland formational processes. However, a full understanding of the regions geologic and stratigraphic evolution is remarkably lacking. Some outstanding questions regarding the geologic evolution of Libya Montes and northern Tyrrhena Terra in-clude: Does combining geomorphology and composition advance our understanding of the region s evolution? Can highland materials be subdivided into stratigraphically discrete rock and sediment sequences? What do major physiographic transitions imply about the balanced tectonism, climate change, and erosion? Where is the erosional origin and what is the post-depositional history of channel and plains units? When and in what types of environments did aqueous mineral signatures arise? This abstract introduces the geologic setting, science rationale, and first year work plan of a recently-funded 4-year geologic mapping proposal (project year = calendar year). The objective is to delineate the geologic evolution of Libya Montes and northern Tyrrhena Terra at 1:1M scale using both classical geomorphological and compositional mapping techniques. The funded quadrangles are MTMs 00282, -05282, -10282, 00277, -05277, and -10277.

  18. Evolution of fore-arc and back-arc sedimentary basins with focus on the Japan subduction system and its analogues

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tatsuya; Matenco, Liviu; Nader, Fadi Henri

    2017-07-01

    The International Lithosphere Program (ILP) seeks to elucidate the nature, dynamics, origin and evolution of the lithosphere through international, multidisciplinary geoscience research projects and coordinating committees (Cloetingh and Negendank, 2010). The focus of the Task Force VI Sedimentary Basins activities is to foster collaborations between academia, research institutes and industry in all domains relevant for the understanding of sedimentary basins, from regional to nano-scale, from the deep earth to near surface processes (e.g., Roure et al., 2010, 2013). In this activity, it is important to develop and validate novel concepts of sedimentary basin evolution and topography building by incorporating geological/geophysical datasets and methodologies applied to worldwide natural laboratories (Cloetingh et al., 2011; Cloetingh and Willett, 2013; Matenco and Andriessen, 2013). The Task Force aims to understand and predict the processes that control the formation and evolution of the coupled orogens and sedimentary basins system through integration of field studies, analytical techniques and numerical/analogue modelling. At the same time, the Task Force aims to promote research in the domain of sedimentary basins evolution and quantitative tectonics for the study of mountain building and the subsequent extensional collapse, and their quantitative implications for vertical motions on different temporal and spatial scales (Gibson et al., 2015; Matenco et al., 2016; Roure, 2008; Seranne et al., 2015). The implications of tectonics on basin fluids (fluid-flow and rock-fluid interactions) are important to understand and predict geo-resources (e.g., Nader, 2016). Important is to initiate innovative research lines in linking the evolution of sedimentary systems by integrating cross-disciplinary expertise with a focus on integrated sedimentary basins and orogenic evolution. The key is to strengthen the synergy between academic research and applied industry in large (inter)national interdisciplinary research networks able to tackle complex problems at integrated system level.

  19. Analytically based forward and inverse models of fluvial landscape evolution during temporally continuous climatic and tectonic variations

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Petit, Carole

    2017-04-01

    Fluvial channels respond to changing tectonic and climatic conditions by adjusting their patterns of erosion and relief. It is therefore expected that by examining these patterns, we can infer the tectonic and climatic conditions that shaped the channels. However, the potential interference between climatic and tectonic signals complicates this inference. Within the framework of the stream power model that describes incision rate of mountainous bedrock rivers, climate variability has two effects: it influences the erosive power of the river, causing local slope change, and it changes the fluvial response time that controls the rate at which tectonically and climatically induced slope breaks are communicated upstream. Because of this dual role, the fluvial response time during continuous climate change has so far been elusive, which hinders our understanding of environmental signal propagation and preservation in the fluvial topography. An analytic solution of the stream power model during general tectonic and climatic histories gives rise to a new definition of the fluvial response time. The analytic solution offers accurate predictions for landscape evolution that are hard to achieve with classical numerical schemes and thus can be used to validate and evaluate the accuracy of numerical landscape evolution models. The analytic solution together with the new definition of the fluvial response time allow inferring either the tectonic history or the climatic history from river long profiles by using simple linear inversion schemes. Analytic study of landscape evolution during periodic climate change reveals that high frequency (10-100 kyr) climatic oscillations with respect to the response time, such as Milankovitch cycles, are not expected to leave significant fingerprints in the upstream reaches of fluvial channels. Linear inversion schemes are applied to the Tinee river tributaries in the southern French Alps, where tributary long profiles are used to recover the incision rate history of the Tinee main trunk. Inversion results show periodic, high incision rate pulses, which are correlated with interglacial episodes. Similar incision rate histories are recovered for the past 100 kyr when assuming constant climatic conditions or periodic climatic oscillations, in agreement with theoretical predictions.

  20. Tectonic Evolution of the Jurassic Pacific Plate

    NASA Astrophysics Data System (ADS)

    Nakanishi, M.; Ishihara, T.

    2015-12-01

    We present the tectonic evolution of the Jurassic Pacific plate based on magnetic anomly lineations and abyssal hills. The Pacific plate is the largest oceanic plate on Earth. It was born as a microplate aroud the Izanagi-Farallon-Phoenix triple junction about 192 Ma, Early Jurassic [Nakanishi et al., 1992]. The size of the Pacific plate at 190 Ma was nearly half that of the present Easter or Juan Fernandez microplates in the East Pacific Rise [Martinez et at, 1991; Larson et al., 1992]. The plate boundary surrounding the Pacific plate from Early Jurassic to Early Cretaceous involved the four triple junctions among Pacific, Izanagi, Farallon, and Phoenix plates. The major tectonic events as the formation of oceanic plateaus and microplates during the period occurred in the vicinity of the triple junctions [e.g., Nakanishi and Winterer, 1998; Nakanishi et al., 1999], implying that the study of the triple junctions is indispensable for understanding the tectonic evolution of the Pacific plate. Previous studies indicate instability of the configuration of the triple junctions from Late Jurassic to Early Cretaceous (155-125 Ma). On the other hand, the age of the birth of the Pacific plate was determined assuming that all triple junctions had kept their configurations for about 30 m.y. [Nakanishi et al., 1992] because of insufficient information of the tectonic history of the Pacific plate before Late Jurassic.Increase in the bathymetric and geomagnetic data over the past two decades enables us to reveal the tectonic evolution of the Pacific-Izanagi-Farallon triple junction before Late Jurassic. Our detailed identication of magnetic anomaly lineations exposes magnetic bights before anomaly M25. We found the curved abyssal hills originated near the triple junction, which trend is parallel to magnetic anomaly lineations. These results imply that the configuration of the Pacific-Izanagi-Farallon triple junction had been RRR before Late Jurassic.

  1. Red River barrier and Pleistocene climatic fluctuations shaped the genetic structure of Microhyla fissipes complex (Anura: Microhylidae) in southern China and Indochina

    PubMed Central

    Yuan, Zhi-Yong; Suwannapoom, Chatmongkon; Yan, Fang; Poyarkov, Nikolay A.; Nguyen, Sang Ngoc; Chen, Hong-man; Chomdej, Siriwadee; Murphy, Robert W.

    2016-01-01

    South China and Indochina host striking species diversity and endemism. Complex tectonic and climatic evolutions appear to be the main drivers of the biogeographic patterns. In this study, based on the geologic history of this region, we test 2 hypotheses using the evolutionary history of Microhyla fissipes species complex. Using DNA sequence data from both mitochondrial and nuclear genes, we first test the hypothesis that the Red River is a barrier to gene flow and dispersal. Second, we test the hypothesis that Pleistocene climatic cycling affected the genetic structure and population history of these frogs. We detect 2 major genetic splits that associate with the Red River. Time estimation suggests that late Miocene tectonic movement associated with the Red River drove their diversification. Species distribution modeling (SDM) resolves significant ecological differences between sides of the Red River. Thus, ecological divergence also probably promoted and maintained the diversification. Genogeography, historical demography, and SDM associate patterns in southern China with climate changes of the last glacial maximum (LGM), but not Indochina. Differences in geography and climate between the 2 areas best explain the discovery. Responses to the Pleistocene glacial–interglacial cycling vary among species and regions. PMID:29491943

  2. Red River barrier and Pleistocene climatic fluctuations shaped the genetic structure of Microhyla fissipes complex (Anura: Microhylidae) in southern China and Indochina.

    PubMed

    Yuan, Zhi-Yong; Suwannapoom, Chatmongkon; Yan, Fang; Poyarkov, Nikolay A; Nguyen, Sang Ngoc; Chen, Hong-Man; Chomdej, Siriwadee; Murphy, Robert W; Che, Jing

    2016-12-01

    South China and Indochina host striking species diversity and endemism. Complex tectonic and climatic evolutions appear to be the main drivers of the biogeographic patterns. In this study, based on the geologic history of this region, we test 2 hypotheses using the evolutionary history of Microhyla fissipes species complex. Using DNA sequence data from both mitochondrial and nuclear genes, we first test the hypothesis that the Red River is a barrier to gene flow and dispersal. Second, we test the hypothesis that Pleistocene climatic cycling affected the genetic structure and population history of these frogs. We detect 2 major genetic splits that associate with the Red River. Time estimation suggests that late Miocene tectonic movement associated with the Red River drove their diversification. Species distribution modeling (SDM) resolves significant ecological differences between sides of the Red River. Thus, ecological divergence also probably promoted and maintained the diversification. Genogeography, historical demography, and SDM associate patterns in southern China with climate changes of the last glacial maximum (LGM), but not Indochina. Differences in geography and climate between the 2 areas best explain the discovery. Responses to the Pleistocene glacial-interglacial cycling vary among species and regions.

  3. Post-Palaeozoic evolution of weathered landsurfaces in Uganda by tectonically controlled deep weathering and stripping

    NASA Astrophysics Data System (ADS)

    Taylor, R. G.; Howard, K. W. F.

    1998-11-01

    A model for the evolution of weathered landsurfaces in Uganda is developed using available geotectonic, climatic, sedimentological and chronological data. The model demonstrates the pivotal role of tectonic uplift in inducing cycles of stripping, and tectonic quiescence for cycles of deep weathering. It is able to account for the development of key landforms, such as inselbergs and duricrust-capped plateaux, which previous hypotheses of landscape evolution that are based on climatic or eustatic controls are unable to explain. Development of the Ugandan landscape is traced back to the Permian. Following late Palaeozoic glaciation, a trend towards warmer and more humid climates through the Mesozoic enabled deep weathering of the Jurassic/mid-Cretaceous surface in Uganda during a period of prolonged tectonic quiescence. Uplift associated with the opening South Atlantic Ocean terminated this cycle and instigated a cycle of stripping between the mid-Cretaceous and early Miocene. Deep weathering on the succeeding Miocene to recent (African) surface has occurred from Miocene to present but has been interrupted in the areas adjacent to the western rift where development of a new drainage base level has prompted cycles of stripping in the Miocene and Pleistocene.

  4. Geomorphic Evolution and Slip rate Measurements of the Noushki Segment , Chaman Fault Zone, Pakistan

    NASA Astrophysics Data System (ADS)

    Abubakar, Y.; Khan, S. D.; Owen, L. A.; Khan, A.

    2012-12-01

    The Nushki segment of the Chaman fault system is unique in its nature as it records both the imprints of oblique convergence along the western Indian Plate boundary as well as the deformation along the Makran subduction zone. The left-lateral Chaman transform zone has evolved from a subduction zone along the Arabian-Eurasian collision complex to a strike-slip fault system since the collision of the Indian Plate with the Eurasia. The geodetically and geologically constrained displacement rates along the Chaman fault varies from about 18 mm/yr to about 35 mm/yr respectively throughout its total length of ~ 860 km. Two major hypothesis has been proposed by workers for these variations; i) Variations in rates of elastic strain accumulation along the plate boundary and, ii) strain partitioning along the plate boundary. Morphotectonic analysis is a very useful tool in investigations of spatial variations in tectonic activities both regionally and locally. This work uses morphotectonic analysis to investigate the degree of variations in active tectonic deformation, which can be directly related to elastic strain accumulation and other kinematics in the western boundary of the plate margin. Geomorphic mapping was carried out using remotely sensed data. ASTER and RADAR data were used in establishing Quaternary stratigraphy and measurement of geomorphic indices such as stream length gradient index, valley floor width to height ratio and, river/stream longitudinal profile within the study area. High resolution satellite images (e.g., IKONOS imagery) and 30m ASTER DEMs were employed to measure displacement recorded by landforms along individual strands of the fault. Results from geomorphic analysis shows three distinct levels of tectonic deformation. Areas showing high levels of tectonic deformation are characterized by displaced fan surfaces, deflected streams and beheaded streams. Terrestrial Cosmogenic nuclide surface exposure dating of the displaced landforms is being carried out to calculate slip-rates. Slip-rates estimation along this segment of this plate boundary will help in understanding of tectonic evolution of this plate boundary and seismic activity in the region.

  5. Workshop on Techtonic Evolution of Greenstone Belts

    NASA Technical Reports Server (NTRS)

    Dewit, M. J. (Editor); Ashwal, Lewis D. (Editor)

    1986-01-01

    Topics addressed include: greenstone belt externalities; boundaries; rock terranes; synthesis and destiny; tectonic evolution; rock components and structure; sedimentology; stratigraphy; volcanism; metamorphism; and geophysics.

  6. The contraction/expansion history of Charon with implications for its planetary-scale tectonic belt

    NASA Astrophysics Data System (ADS)

    Malamud, Uri; Perets, Hagai B.; Schubert, Gerald

    2017-06-01

    The New Horizons mission to the Kuiper belt has recently revealed intriguing features on the surface of Charon, including a network of chasmata, cutting across or around a series of high topography features, conjoining to form a belt. It is proposed that this tectonic belt is a consequence of contraction/expansion episodes in the moon's evolution associated particularly with compaction, differentiation and geochemical reactions of the interior. The proposed scenario involves no need for solidification of a vast subsurface ocean and/or a warm initial state. This scenario is based on a new, detailed thermo-physical evolution model of Charon that includes multiple processes. According to the model, Charon experiences two contraction/expansion episodes in its history that may provide the proper environment for the formation of the tectonic belt. This outcome remains qualitatively the same, for several different initial conditions and parameter variations. The precise orientation of Charon's tectonic belt, and the cryovolcanic features observed south of the tectonic belt may have involved a planetary-scale impact, that occurred only after the belt had already formed.

  7. DELP Symposium: Tectonics of eastern Asia and western Pacific Continental Margin

    NASA Astrophysics Data System (ADS)

    Eastern Asia and the western Pacific make up a broad region of active plate tectonic interaction. The area is a natural laboratory for studying the processes involved in the origin and evolution of volcanic island arcs, marginal basins, accretionary prisims, oceanic trenches, accreted terranes, ophiolite emplacement, and intracontinental deformation. Many of our working concepts of plate tectonics and intraplate deformation were developed in this region, even though details of the geology and geophysics there must be considered of a reconnaissance nature.During the past few years researchers have accumulated a vast amount of new and detailed information and have developed a better understanding of the processes that have shaped the tectonic elements in this region. To bring together scientists from many disciplines and to present the wide range of new data and ideas that offer a broader perspective on the interrelations of geological, geochemical, geophysical and geodetic studies, the symposium Tectonics of Eastern Asia and Western Pacific Continental Margin was held December 13-16, 1988, at the Tokyo Institute of Technology in Japan, under the auspicies of DELP (Dynamics and Evolution of the Lithosphere Project).

  8. The tectonic evolution of the Madrean Archipelago and its impact on the geoecology of the Sky Islands

    Treesearch

    David Coblentz

    2005-01-01

    While the unique geographic location of the Sky Islands is well recognized as a primary factor for the elevated biodiversity of the region, its unique tectonic history is often overlooked. The mixing of tectonic environments is an important supplement to the mixing of flora and faunal regimes in contributing to the biodiversity of the Madrean Archipelago. The Sky...

  9. Crustal structure and evolution of the NW Zagros Mountains (Iran): Insights from numerical modeling of the interplay between surface and tectonic processes

    NASA Astrophysics Data System (ADS)

    Saura, Eduard; Garcia-Castellanos, Daniel; Casciello, Emilio; Vergés, Jaume

    2014-05-01

    Protracted Arabia-Eurasia convergence resulted in the closure of the >2000 km wide Neo-Tethys Ocean from early Late Cretaceous to Recent. This process was controlled by the structure of the NE margin of the Arabian plate, the NE-dipping oceanic subduction beneath Eurasia, the obduction of oceanic lithosphere and the collision of small continental and volcanic arc domains of the SW margin of Eurasia. The evolution of the Zagros Amiran and Mesopotamian foreland basins is studied in this work along a ~700 km long transect in NW Zagros constrained by field, seismic and published data. We use the well-defined geometries and ages of the Amiran and Mesopotamian foreland basins to estimate the elastic thickness of the lithosphere and model the evolution of the deformation to quantitatively link the topographic, tectonic and sedimentary evolution of the system. Modelling results show two major stages of emplacement. The obduction (pre-collision) stage involves the thin thrust sheets of the Kermanshah complex together with the Bisotun basement. The collision stage corresponds to the emplacement of the basement duplex and associated crustal thickening, coeval to the out of sequence emplacement of Gaveh Rud and Imbricated Zone in the hinterland. The geodynamic model is consistent with the history of the foreland basins, with the regional isostasy model, and with a simple scenario for the surface process efficiency. The emplacement of Bisotun basement during obduction tectonically loaded and flexed the Arabian plate triggering deposition in the Amiran foreland basin. The basement units emplaced during the last 10 My, flexed the Arabian plate below the Mesopotamian basin. During this stage, material eroded from the Simply Folded belt and the Imbricated zone was not enough to fill the Mesopotamian basin, which, according to our numerical model results, required a maximum additional sediment supply of 80 m/Myr. This additional supply had to be provided by an axial drainage system, which can be correlated by the income of paleo-Tigris and paleo-Eufrates rivers transporting sediments from north-westernmost areas.

  10. Geochemistry of siliciclastic rocks in the Peninsular, Chugach, and Prince William terranes: Implications for the tectonic evolution of south central Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, S.A.; Casey, J.F.; Bradley, D.

    1992-01-01

    According to some interpretations, south-central Alaska consists of a series of unrelated terranes juxtaposed by dominantly strike-slip motions some time after formation. Alternatively, these so-called terranes may be related components of a seaward-facing arc, forearc, and accretionary prism. To shed new light on the tectonic history of this area, 150 samples of siliciclastic rocks were analyzed for major, trace, and rare earth elements (REE). Shales were sampled from the Upper Cretaceous Matanuska and Paleogene Chickaloon Fms. of the Peninsular Terrane (forearc basin); argillaceous melange matrix from the Mesozoic McHugh Complex and slate from turbidites of the Upper Cretaceous Valdez Groupmore » of the Chugach Terrane (landward part of accretionary prism); and slate from turbidites of the Paleogene Orea Group of the Prince William Terrane (seaward part of accretionary prism). One tectonic model that may fit these geochemical data requires an early linkage between the Peninsular and Chugach-Prince William composite terranes. The geochemical signatures suggest that the McHugh Complex was derived from a mafic volcanic source and may represent an early accretionary stage of sediments derived from an oceanic arc. The progressive continental enrichment of the Valdez and Orca Groups may reflect later accretionary processes during and/or after the collision of the Talkectna arc with the North American continent. The similar increasingly continental source documented in the geochemistry of the forearc basin shales of the Matanuska and Chickaloon Fms. may suggest: that the presently defined Peninsular, Chugach, and Prince William terranes collectively represent one continuously evolving, seaward facing arc, forearc, and accretionary prism complex.« less

  11. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    NASA Astrophysics Data System (ADS)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  12. The Tectonics and Evolution of Venus

    NASA Technical Reports Server (NTRS)

    Kaula, William M.

    1997-01-01

    This shift corresponded to a focusing of research on Venus. Some work included comparison with other planets. Venus research is being continued. The research can be summarized under five headings: (1) Planet formation; (2) Thermal and Compositional Evolution; (3) Tectonic structures and processes; (4) Determination and interpretation of gravity; and (5) Analyses of Ishtar Terra. Thirty-four publications were produced. References to publications supporting the summary are by year and letter: e.g., (1990 c,d) for the emphasis on the terminal phases in formation studies.

  13. P-wave velocity anisotropy related to sealed fractures reactivation tracing the structural diagenesis in carbonates

    NASA Astrophysics Data System (ADS)

    Matonti, C.; Guglielmi, Y.; Viseur, S.; Garambois, S.; Marié, L.

    2017-05-01

    Fracture properties are important in carbonate reservoir characterization, as they are responsible for a large part of the fluid transfer properties at all scales. It is especially true in tight rocks where the matrix transfer properties only slightly contribute to the fluid flow. Open fractures are known to strongly affect seismic velocities, amplitudes and anisotropy. Here, we explore the impact of fracture evolution on the geophysical signature and directional Vp anisotropy of fractured carbonates through diagenesis. For that purpose, we studied a meter-scale, parallelepiped quarry block of limestone using a detailed structural and diagenetic characterization, and numerous Vp measurements. The block is affected by two en-échelon fracture clusters, both being formed in opening mode (mode 1) and cemented, but only one being reactivated in shear. We compared the diagenetic evolution of the fractures, which are almost all 100% filled with successive calcite cements, with the P-wave velocities measured across this meter-scale block of carbonate, which recorded the tectonic and diagenetic changes of a South Provence sedimentary basin. We found that a directional Vp anisotropy magnitude as high as 8-16% correlates with the reactivated fractures' cluster dip angle, which is explained by the complex filling sequence and softer material present inside the fractures that have been reactivated during the basin's tectonic inversion. We show that although a late karstification phase preferentially affected these reactivated fractures, it only amplified the pre-existing anisotropy due to tectonic shear. We conclude that Vp anisotropy measurements may help to identify the fracture sealing/opening processes associated with polyphased tectonic history, the anisotropy being independent of the current stress-state. This case shows that velocity anisotropies induced by fractures resulted here from a cause that is different from how these features have often been interpreted: selective reactivation of sealed fractures clusters rather than direction of currently open ones.

  14. The Thermal Evolution of the Southeast Baffin Island Continental Margin: An Integrated Apatite Fission Track and Apatite (U-Th)/He Study

    NASA Astrophysics Data System (ADS)

    Jess, S.; Stephenson, R.; Brown, R. W.

    2017-12-01

    The elevated continental margins of the North Atlantic continue to be a focus of considerable geological and geomorphological debate, as the timing of major tectonic events and the age of topographic relief remain controversial. The West Greenland margin, on the eastern flank of Baffin Bay, is believed by some authors to have experienced tectonic rejuvenation and uplift during the Neogene. However, the opposing flank, Baffin Island, is considered to have experienced a protracted erosional regime with little tectonic activity since the Cretaceous. This work examines the thermal evolution of the Cumberland Peninsula, SE Baffin Island, using published apatite fission track (AFT) data with the addition of 103 apatite (U-Th)/He (AHe) ages. This expansion of available thermochronological data introduces a higher resolution of thermal modelling, whilst the application of the newly developed `Broken Crystals' technique provides a greater number of thermal constraints for an area dominated by AHe age dispersion. Results of joint thermal modelling of the AFT and AHe data exhibit two significant periods of cooling across the Cumberland Peninsula: Devonian/Carboniferous to the Triassic and Late Cretaceous to present. The earliest phase of cooling is interpreted as the result of major fluvial systems present throughout the Paleozoic that flowed across the Canadian Shield to basins in the north and south. The later stage of cooling is believed to result from rift controlled fluvial systems that flowed into Baffin Bay during the Mesozoic and Cenozoic during the early stages and culmination of rifting along the Labrador-Baffin margins. Glaciation in the Late Cenozoic has likely overprinted these later river systems creating a complex fjordal distribution that has shaped the modern elevated topography. This work demonstrates how surface processes, and not tectonism, can explain the formation of elevated continental margins and that recent methodological developments in the field of low temperature thermochronology are improving our understanding of onshore passive margin development.

  15. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    USGS Publications Warehouse

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  16. Strain localization in models and nature: bridging the gaps.

    NASA Astrophysics Data System (ADS)

    Burov, E.; Francois, T.; Leguille, J.

    2012-04-01

    Mechanisms of strain localization and their role in tectonic evolution are still largely debated. Indeed, the laboratory data on strain localization processes are not abundant, they do not cover the entire range of possible mechanisms and have to be extrapolated, sometimes with greatest uncertainties, to geological scales while the observations of localization processes at outcrop scale are scarce, not always representative, and usually are difficult to quantify. Numerical thermo-mechanical models allow us to investigate the relative importance of some of the localization processes whether they are hypothesized or observed at laboratory or outcrop scale. The numerical models can test different observationally or analytically derived laws in terms of their applicability to natural scales and tectonic processes. The models are limited, however, in their capacity of reproduction of physical mechanisms, and necessary simplify the softening laws leading to "numerical" localization. Numerical strain localization is also limited by grid resolution and the ability of specific numerical codes to handle large strains and the complexity of the associated physical phenomena. Hence, multiple iterations between observations and models are needed to elucidate the causes of strain localization in nature. We here investigate the relative impact of different weakening laws on localization of deformation using large-strain thermo-mechanical models. We test using several "generic" rifting and collision settings, the implications of structural softening, tectonic heritage, shear heating, friction angle and cohesion softening, ductile softening (mimicking grain-size reduction) as well as of a number of other mechanisms such as fluid-assisted phase changes. The results suggest that different mechanisms of strain localization may interfere in nature, yet it most cases it is not evident to establish quantifiable links between the laboratory data and the best-fitting parameters of the effective softening laws that allow to reproduce large scale tectonic evolution. For example, one of most effective and widely used mechanisms of "numerical" strain localization is friction angle softening. Yet, namely this law appears to be most difficult to justify from physical and observational grounds.

  17. Tectonic evolution of the South Fiji Basin: UNCLOS helps tackle regional tectonics

    NASA Astrophysics Data System (ADS)

    Herzer, R.; Roest, W.; Barker, D.; Mortimer, N.; Mauffret, A.; Lafoy, Y.

    2005-12-01

    Marine surveys to study the evolution of remnant arcs and backarc basins north of New Zealand have been complemented by UNCLOS surveys by three countries - France, New Zealand and Australia - with potential extended continental shelf claims in the region. The UNCLOS factor allowed 9 cruises to focus on the region in the past 9 years, collecting approximately 30,000 km of seismic reflection (5,000 deep crustal), 263,700 sq km of swath bathymetry, and 70 dredge samples. Feedback through sharing or publishing data and joint participation allowed efficient planning and deployment of academic and UNCLOS cruises. Two models for South Fiji (SFB) and Norfolk (NB) basin evolution arise from current studies: at the level of the Three Kings Ridge - NB - southern SFB both involve Pacific trench roll-back and southward propagating spreading, but one also uses two subduction systems and arc-continent collision. Linked spreading of the NB and SFB is invoked in both models, but the veracity and geodynamics of the link are not investigated. A growing body of petrological and radiometric evidence and the tectonics of the New Zealand continental margin point to tandem Early Miocene spreading of the SFB and NB despite published magnetic interpretations that would confine SFB spreading to the Oligocene. The Franco-NZ NOUCAPLAC-1 cruise, the last cruise relevant to UNCLOS in this region, included a scientific objective to investigate the SFB-NB link in the critical area bounded by the Loyalty Ridge (LR), the Cook Fracture Zone (CFZ), the Bounty spreading centre (BSC) and the Julia Lineament (JL) with swath mapping, magnetics and seismic reflection. Initial results show a complex bathymetry where a possible link between the BSC and the CFZ involves ridge propagation, overlapping spreading centres, rift blocks and overprinting volcanoes. The link to the JL was not adequately tested due to sparse coverage. Closer to the LR, a thick, faulted sedimentary basin was found.

  18. Unraveling tectonics and climate forcing in the late-Neogene exhumation history of South Alaska

    NASA Astrophysics Data System (ADS)

    Valla, Pierre; Champagnac, Jean-Daniel; Shuster, David; Herman, Frédéric; Giuditta Fellin, Maria

    2015-04-01

    The southern Alaska range presents an ideal setting to study the complex interactions between tectonics, climate and surface processes in landscape evolution. It exhibits active tectonics with the ongoing subduction/collision between Pacific and North America, and major active seismogenic reverse and strike-slip faults. The alpine landscape, rugged topography and the important ice-coverage at present reveal a strong glacial imprint associated with high erosion and sediment transport rates. Therefore, the relative importance of climatically-driven glacial erosion and tectonics for the observed late-exhumation history appears to be quite complex to decipher. Here, we first perform a formal inversion of an extensive bedrock thermochronological dataset from the literature to quantify the large-scale 20-Myr exhumation history over the entire southern Alaska. We show that almost half of the variability within the thermochronological record can be explained by modern annual precipitations spatial distribution, the residuals clearly evidencing localized exhumation along major tectonic structures of the frontal fold and thrust belt. Our results confirm high exhumation rates in the St Elias "syntaxis" and frontal zones for the last 0-2 Myr, where major ice fields and high precipitation rates likely sustained high exhumation rates; however the impact of late Cenozoic glaciations is difficult to constrain because of the low resolution on the exhumation history older than ~2 Myr. On the contrary, our inversion outcomes highlight that north of the Bagley Icefield the long-term exhumation has remained quite slow and continuous over the last ~20 Myr, with no late-stage signal of exhumation change since the onset of glaciations despite a clear glacial imprint on the landscape. We thus focus on the Granite Range (Wrangell-St Elias National Park, Alaska), an area presenting a strong glacial imprint but minor tectonic activity with only localized brittle deformation. We sampled four elevation profiles over an East-West transect for low-temperature thermochrometry. Apatite (U-Th-Sm)/He dating provides ages between ~10 and 30 Ma, in agreement with published data, and shows apparent low long-term exhumation rates (~0.1 km/Myr). 4He/3He thermochronometry on a subset of samples reveals a more complex exhumation history, with a significant increase in exhumation since ~6-4 Ma that we relate to the early onset of glaciations and associated glacial erosion processes. Our results, in agreement with offshore sediment records, thus confirm an early glacial activity and associated erosion response in Alaska, well before the onset of Pliocene-Pleistocene Northern Hemisphere glaciations.

  19. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Leeman, William P.

    1989-01-01

    The relationships between Cretaceous to Neogene magmatism and the tectonic setting of southwestern and central Idaho are evaluated. An overview of the tectonics and geology of the northwestern U.S. is presented. Major element, trace element, and Sr, Pb, and Nd isotopic data for the region are used to place constraints on magma source characteristics, the manner in which the magmatic sources evolved through time, and the nature of interactions among mantle and crustal domains in response to changing tectonic environment.

  20. New Insights into Tectonics of the Saint Elias, Alaska, Region Based on Local Seismicity and Tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.

    2013-12-01

    Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.

  1. Tectonic Evolution of the Çayirhan Neogene Basin (Ankara), Central Turkey

    NASA Astrophysics Data System (ADS)

    Behzad, Bezhan; Koral, Hayrettin; İşb&idot; l, Duygu; Karaaǧa; ç, Serdal

    2016-04-01

    Çayırhan (Ankara) is located at crossroads of the Western Anatolian extensional region, analogous to the Basin and Range Province, and suture zone of the Neotethys-Ocean, which is locus of the North Anatolian Transform since the Late Miocene. To the north of Çayırhan (Ankara), a Neogene sedimentary basin comprises Lower-Middle Miocene and Upper Miocene age formations, characterized by swamp, fluvial and lacustrine settings respectively. This sequence is folded and transected by neotectonic faults. The Sekli thrust fault is older than the Lower-Middle Miocene age formations. The Davutoǧlan fault is younger than the Lower-Middle Miocene formations and is contemporaneous to the Upper Miocene formation. The Çatalkaya fault is younger than the Upper Miocene formation. The sedimentary and tectonic features provide information on mode, timing and evolution of this Neogene age sedimentary basin in Central Turkey. It is concluded that the region underwent a period of uplift and erosion under the influence of contractional tectonics prior to the Early-Middle Miocene, before becoming a semi-closed basin under influence of transtensional tectonics during the Early-Middle Miocene and under influence of predominantly extensional tectonics during the post-Late Miocene times. Keywords: Tectonics, Extension, Transtension, Stratigraphy, Neotectonic features.

  2. Meso-Cenozoic tectonic evolution of the SE Brazilian continental margin: Petrographic, kinematic and dynamic analysis of the onshore Araruama Lagoon Fault System

    NASA Astrophysics Data System (ADS)

    Souza, Pricilla Camões Martins de; Schmitt, Renata da Silva; Stanton, Natasha

    2017-09-01

    The Ararauama Lagoon Fault System composes one of the most prominent set of lineaments of the SE Brazilian continental margin. It is located onshore in a key tectonic domain, where the basement inheritance rule is not followed. This fault system is characterized by ENE-WSW silicified tectonic breccias and cataclasites showing evidences of recurrent tectonic reactivations. Based on field work, microtectonic, kinematic and dynamic analysis, we reconstructed the paleostresses in the region and propose a sequence of three brittle deformational phases accountable for these reactivations: 1) NE-SW dextral transcurrence; 2) NNW-SSE dextral oblique extension that evolved to NNW-SSE "pure" extension; 3) ENE-WSW dextral oblique extension. These phases are reasonably correlated with the tectonic events responsible for the onset and evolution of the SE onshore rift basins, between the Neocretaceous and Holocene. However, based on petrographic studies and supported by regional geological correlations, we assume that the origin of this fault system is older, related to the Early Cretaceous South Atlantic rifting. This study provides significant information about one of the main structural trends of the SE Brazilian continental margin and the tectonic events that controlled its segmentation, since the Gondwana rifting, and compartmentalization of its onshore sedimentary deposits during the Cenozoic.

  3. 3-D crustal structure beneath the southern Korean Peninsula from local earthquakes

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Park, J. H.; Park, Y.; Hao, T.; Kang, S. Y.; Kim, H. J.

    2017-12-01

    Located at the eastern margin of the Eurasian continent, the geology and tectonic evolution of the Korean Peninsula are closely related to the rest of the Asian continent. Although the widespread deformation of eastern Asia and its relation to the geology and tectonics of the Korean Peninsula have been extensively studied, the answers to many fundamental questions about the peninsula's history remain inconclusive. The three-dimensional subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a three-dimensional velocity model of the upper crust beneath the southern Korean Peninsula using 19,935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks maintained by Korea Meteorological Administration and Korea Institute of Geosciences and Mineral Resources. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North China and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  4. Paleogeographic evolution of the western Maghreb (Berberids) during the Jurassic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmi, S.

    1988-08-01

    Several basins of the western Maghreb (northwest Africa) have been studied, taking into account their sedimentological and structural evolutions. Special attention is given to paleontological data (biostratigraphy, paleobiology, paleobiogeography). The paleogeographic pattern was the result of the differentiation in four stable blocks (Moroccan Meseta, Oran High Plains, Constantine block, Tunisian north-south ridge) which were developed between the Sahara craton and median strike-slips of the Tethys. This area, called the Berberids, was split by basins and furrows evolving during the Jurassic. Large, shallow, heterochronous initial carbonate platforms (Early Jurassic) were broken by local tectonic movements (tilting and rifting). A mature progradationmore » resulted from a rupture in the balance between carbonate production and subsidence. The result was the growth of more-or-less extended carbonate platforms along the basins margins during the Aalenian and Bajocia. From the late Bajocian, a large deltaic system prograded from the southwest and the west. Terrigenous input and large-scale tectonics provoked the filling of many basins. The southern and western areas became continental. In the north, carbonate series prograded on deltaic formations. A large, shallow platform developed on the southern rim of the Alpine Tethys. The tectonics of the basement on the southern rim of the Alpine Tethys. The tectonics of the basement became less important and sea level changes controlled the sedimentologic evolution. Bio- and chronostratigraphic correlations allow us to chart the main tectonic and eustatic events which occurred in the western Maghreb during the Jurassic.« less

  5. Consequences of Chixculub Impact for the Tectonic and Geodynamic Evolution of the Gulf of Mexico North Carribean Region

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Crespy, A.; Martinez-Reyes, J.

    2013-05-01

    The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic complexes, but also the relatively recent motion along the Cayman Fault zone (Miocene instead of Eocene). These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group TOTAL S.A., Paris.

  6. Age constraints on the evolution of the Quetico belt, Superior Province, Ontario

    NASA Technical Reports Server (NTRS)

    Percival, J. A.; Sullivan, R. W.

    1986-01-01

    Much attention has been focused on the nature of Archean tectonic processes and the extent to which they were different from modern rigid-plate tectonics. The Archean Superior Province has linear metavolcanic and metasediment-dominated subprovinces of similar scale to cenozoic island arc-trench systems of the western Pacific, suggesting an origin by accreting arcs. Models of the evolution of metavolcanic belts in parts of the Superior Province suggest an arc setting but the tectonic environment and evolution of the intervening metasedimentary belts are poorly understood. In addition to explaining the setting giving rise to a linear sedimentary basin, models must account for subsequent shortening and high-temperature, low-pressure metamorphism. Correlation of rock units and events in adjacent metavolcanic and metasedimentary belts is a first step toward understanding large-scale crustal interactions. To this end, zircon geochronology has been applied to metavolcanic belts of the western Superior Province; new age data for the Quetico metasedimentary belt is reported, permitting correlation with the adjacent Wabigoon and Wawa metavolcanic subprovinces.

  7. The brittle stage of the exhumation of a metamorphic core complex: Naxos, Cyclades, Greece and some general rules

    NASA Astrophysics Data System (ADS)

    Neubauer, F.; Cao, S.

    2012-04-01

    Structures of hangingwall units of major detachment systems in extensional settings leading to metamorphic core complexes are equally important to the generally well-studied footwall rocks. Here, we describe hanging-wall structures of the North-Cycladic Detachment System on Naxos Island of the Aegean Sea and found that they well monitor the structural evolution of hanging blocks complementary to the footwall structures, vertical fluid flow as well as late-stage inversion of the whole extensional system. On Naxos, Upper Oligocene-Miocene and Pliocene sedimentary successions are deposited on the hangingwall unit, which is largely an ophiolite. The Upper Oligocene-Miocene and Pliocene sedimentary successions are separated by a hiatus arguing for a two-step evolution. Whereas the first step, Miocene, indicate moderate subsidence and relief, and only denudation of the hangingwall unit, the Pliocene conglomerates indicate a sharply increasing relief and an over-steepened topography. Hydrothermal systems developed in hangingwall rock succession (e.g. Miocene at Steladia) play an important role and resulted in large-scale silica precipitation and associated alteration similar as these found in subvolcanic epithermal systems. This constrains a close link between footwall granodiorite intrusion and near-surface processes. The Pliocene coarse boulder conglomerate with its abundant first appearance of granite/granodiorite, and subsequent marble-rich debris on distant places like Palatia indicate a sudden erosion and high-gradient relief leading to erosion of the mantle of the migmatite dome during Pliocene. On Naxos, we recognize, therefore, a three-stage tectonic evolution in the hangingwall unit: (i) moderate subsidence of an Upper Oligocene-Miocene basin, in part below sea level; (2) a second stage with deposition of Pliocene coarse conglomerates, and (iii) post-Pliocene faulting affecting the conglomerates. During the second stage, surface exposure of the metamorphic core complex was reached resulting in catastrophic alluvial fans. Structural data from the Upper Oligocene-Miocene rocks indicate that NNE-SSW extension still prevailed up to the Miocene/Pliocene boundary. Together with structural data from Pliocene conglomerates, we can distinguish between three major events: The first stage is characterized by mostly NNE-dipping and subordinate SSW-dipping normal faults indicating together ca. NNE-SSW extension. A second palaeostress tensor group (B) mainly comprises ca. NW-trending dextral and WSW-trending sinistral strike-slip faults indicating together ca. E-W strike-slip compression and monitor, therefore, inversion and compression perpendicular to the previous extension direction. The third palaeostress tensor group (C) is characterized by dominating mostly NE-trending subvertical sinistral strike-slip faults and steep NNW-trending dextral strike-slip faults constituting together ca. N-S strike-slip compression. In a few cases, S- to SW-dipping reverse faults also occur. On a general level, our study allows for the following major conclusions: (1) Structures of hangingwall units of major detachments above metamorphic core complexes are equally important compared to the generally well-studied footwall rocks. They allow date several tectonic events not necessarily found in footwall rocks. (2) On Naxos, we can distinguish between three major tectonic events, which are in accordance with large-scale tectonic processes in the Aegean Sea: (a) ca. NNE-SSW extension; (b) ca. E-W strike-slip compression and monitor therefore inversion and compression perpendicular to the previous extension direction, and (c) N-S strike-slip compression.

  8. Extending Whole-earth Tectonics To The Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  9. The Main Shear Zone in Sør Rondane, East Antarctica: Implications for the late-Pan-African tectonic evolution of Dronning Maud Land

    NASA Astrophysics Data System (ADS)

    Ruppel, Antonia S.; Läufer, Andreas; Jacobs, Joachim; Elburg, Marlina; Krohne, Nicole; Damaske, Detlef; Lisker, Frank

    2015-06-01

    Structural investigations in western Sør Rondane, eastern Dronning Maud Land (DML), provide new insights into the tectonic evolution of East Antarctica. One of the main structural features is the approximately 120 km long and several hundred meters wide WSW-ENE trending Main Shear Zone (MSZ). It is characterized by dextral high-strain ductile deformation under peak amphibolite-facies conditions. Crosscutting relationships with dated magmatic rocks bracket the activity of the MSZ between late Ediacaran to Cambrian times (circa 560 to 530 Ma). The MSZ separates Pan-African greenschist- to granulite-facies metamorphic rocks with "East African" affinities in the north from a Rayner-age early Neoproterozoic gabbro-tonalite-trondhjemite-granodiorite complex with "Indo-Antarctic" affinities in the south. It is interpreted to represent an important lithotectonic strike-slip boundary at a position close to the eastern margin of the East African-Antarctic Orogen (EAAO), which is assumed to be located farther south in the ice-covered region. Together with the possibly coeval left-lateral South Orvin Shear Zone in central DML, the MSZ may be related to NE directed lateral escape of the EAAO, whereas the Heimefront Shear Zone and South Kirwanveggen Shear Zone of western DML are part of the south directed branch of this bilateral system.

  10. Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar

    USGS Publications Warehouse

    Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.

    2011-01-01

    Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.

  11. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Yun-Chuan; Xu, Ji-Feng; Chen, Jian-Lin; Wang, Bao-Di; Kang, Zhi-Qiang; Huang, Feng

    2018-02-01

    The formation of the Shiquanhe-Yunzhug-Namu Tso ophiolite mélange zone (SNMZ) within the Lhasa Terrane, Tibetan Plateau, is key to understanding the Mesozoic tectonic evolution of this terrane, which remains controversial. We show that the Yunzhug ophiolite in the central segment of the SNMZ formed at 150 Ma, based on U-Pb dating of zircons from a gabbroic sample in a well-developed sheeted dike complex. Geochemically, these mafic rocks are dominated by E-MORB-type compositions, along with minor amounts of rocks with P-MORB-type compositions. The samples also exhibit high εNd(t) values and lack negative Nb and Ta anomalies. Data for all the samples plot within the MORB array on a Th/Yb-Nb/Yb diagram. Therefore, these mafic rocks most likely formed in either a slow spreading oceanic setting or an embryonic ocean, and not in a back-arc basin as has been previously assumed. Taking into account the regional geology, we propose that the Yunzhug ophiolite is part of a distinct ophiolitic belt and represents material formed in an embryonic ocean within the Lhasa Terrane, which provides new insights into the Jurassic tectonic evolution of the Lhasa Terrane.

  12. Tectonic History of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1993-01-01

    The topics covered include the following: patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus; aspects of modeling the tectonics of large volcanoes on the terrestrial planets; state of stress, faulting, and eruption characteristics of large volcanoes on Mars; origin and thermal evolution of Mars; geoid-to-topography ratios on Venus; a tectonic resurfacing model for Venus; the resurfacing controversy for Venus; and the deformation belts of Lavinia Planitia.

  13. Beneath the scaly clay and clay breccia of Karangsambung area

    NASA Astrophysics Data System (ADS)

    Arisbaya, Ilham; Handayani, Lina

    2018-02-01

    Karangsambung area, Central Java-Indonesia, records tectonic evolution of the western part of Sundaland margin. The area is thought to have undergone a long tectonic evolution from palaeosubduction, collision with the continental fragments of Gondwana, to the formation of the recent subduction zone. An interesting phenomenon in this area is the presence of the Late Cretaceous ophiolitic blocks with an east northeast (ENE) trending-direction surrounded by the east trend of Eocene - Oligocene sedimentary melange formation. There was also an ENE trending Dakah volcanic rocks unit found in this area, with approximately equivalent age with the sedimentary mélange formation. There are two main interpretations regarding this volcanic unit, as an olistostrome and as an insitu shallow subduction magmatic product. Detailed mechanism of the emplacement of the Late Cretaceous ophiolite and the genesis of the volcanic rocks unit and their implications to the regional tectonic model is still open for discussion. Geophysical research in this key area may help to reveal the geometry, relationship among rocks units, and tectonic evolution. Unfortunately, geophysical studies in this area are still lacking. Previous geophysical work in Karangsambung still leaves uncertainty, especially in depth control and spatial resolution issue. Here we describe the results of previous works in Karangsambung as basic knowledge for the upcoming geophysical study.

  14. Origin of marls from the Polish Outer Carpathians: lithological and sedimentological aspects

    NASA Astrophysics Data System (ADS)

    Górniak, Katarzyna

    2012-10-01

    Outcrops of marls, occurring within the sandstone-shaly flysch deposits of the Polish part of Outer Carpathians, considered to be locus typicus of these rocks, were described, measured and sampled. Lithologic features of marls, representing 15 complexes of different age and occurring in 15 complexes of various tectonic units, are presented (Fig. 1, 2). The present studies were concerning Jurassic marls from the Silesian Unit (Goleszów Marls), Upper Cretaceous marls from the Skole and Sub-Silesian Units (Siliceous-Fucoid and Węgierka Marls and Węglowka, Frydek, Jasienica and Zegocina Marls respectively), and Eocene-Oligocene marls from the Magura, Fore-Magura and Skole Units (Łącko, Zembrzyce, Budzów, Leluchów and Niwa, as well as Grybów and Sub-Cergowa and Dynów Marls respectively). The former opinions on lithology, age, formal subdivision, sedimentation conditions and genesis of these rocks are discussed (Table 1, 2; Fig. 1). Detailed description of the above mentioned marl-bearing complexes are presented and for each of them the typical lithological features are determined (Tables 3 - 20). The results of profiling are presented against the background of geological studies of the Carpathian marls. The results of lithologic studies are compared to form a classification scheme and are used as the basis of distinguishing genetic types of marls. Moreover, the interpretation of the conditions of sedimentation of these rocks is presented. According to the present author’s studies, in the outcrops of marls considered to be locus typicus of the above mentioned rocks, there are both monolithic and polylithic complexes exposed. The polylithic complexes contain apart from marls intercalations of arenaceous-shaly flysch (Table 19). Event sedimentation of marly facies, appearing at different times and in various parts of the Carpathian basin is the result of periodically repeating conditions favouring the sedimentation of marls. Carpathian marls seem to be lithologically diversified. This is a natural for these rocks, uniting in variable proportions the features of limestones, clays, siliceous and clastic rocks. Depending on the proportions of these components, they display the features of the dominant one. The lithologies of Carpathian marls do not depend on their age and position in the sedimentation basin. Nevertheless, apart from visible differentiation of marls they show many common lithologic features: fine grain size, in general corresponding to silty-clayey fraction, variable but usually considerable thickness of beds of nonarenaceous variety of marls (0.5 - 1000 cm) and small thickness of arenaceous one (2 - 62 cm). In the majority of marly complexes, the arenaceous variety, starved ripplemarks, thin sandstone beds and sandy lamines occur in bottom parts of marly beds. The majority of marls display variably developed lamination and the occurrence of burrows (Table 19). Taking into account the Ghibaudo’s (1992) classification it was estimated that the marls in question can be assigned to three finest grained lithofacies: M (mud beds), MT (mud-silty couplets) and MS (mud-sand couplets) as well as to the MyG facies (muddy gravel). These lithofacies appear in marly complexes in various proportions (Table 20). Internal structures of beds are evidence of settling grains from suspension (depositional interval e2), interrupted with different intensity by deposition from traction (depositional intervals b, d and e1), and reworking of sediments by weak bottom currents (depositional intervals c and c0). The occurrence of similar lithologic features in marls of different age that come from different tectonic units is evidence of the repeating of similar sedimentation conditions, favouring the development of marly facies, at different times and in different parts of sedimentation basin of the Outer Carpathians. According to the present author’s analysis, there is a distinct relationship between the appearance of marls and tectonic evolution of the Outer Carpathian basin. Marls initiate sedimentation, indicate reconstruction stages and are closing the deposition in the Outer Carpathian basin (Fig. 1). Marls appear in the Polish part of Outer Carpathians in Upper Jurassic, initiating sedimentation in the northern Tethyan domain. Subsequently, they occur within Upper Cretaceous sandy-shaly flysch, indicating the reconstitution stage of Outer Carpathian basin and from Eocene to Oligocene are completing the deposition in successively closing basins (Fig. 1). The appearance of marls indicates the stages of tectonic evolution of the Outer Carpathians. The opening and reconstitution of a basin is accompanied by appearance of marls distinguished as preorogenic (Goleszów, Siliceous-Fucoid, Węgierka. Frydek and Żegocina Marls), their closing - synorogenic marls (Lącko, Budzów, Zembrzyce, Leluchów, Niwa, Grybów, Sub-Cergowa and Dynów Marls). Marls represent sediments redeposited from shelves to deeper parts of basins in the form of muds (M, MT and MS facies) and as olistostromes and olistoliths (MyG facies) (Tables 19, 20). Marls redeposited in the form of olistoliths appear in the stage of opening of the Outer Carpathian basin on the boundary of the Jurassic/Cretaceous period (Goleszow Marls) and in the stage of its Upper Cretaceous reconstitution (Baculite and Zegocina? Marls). In the complexes containing redeposited marls in the form of muds, submarine slumps occur (Table 19). These features indicate tectonic disquiet accompanying deposition of marls. Among the marls studied, dark coloured rocks appear (black, bluish-gray, greenish-gray) and olive and light- coloured (creamy, beige), as well as variegated and red (Table 19). The differentiation of colours indicates sedimentation of Carpathian marls both in oxygenated environments and those that are oxygen-depleted. The analysis of evolution of the Carpathian basins indicates that they were starved basins during sedimentation of marls. Limited supply of clastic material in such basins suggests the discussion on the source of the clay minerals - one of essential components of marls. The occurrence of pyroclastic strata in sediments of the same age (Fig. 1) suggests their origin to be related to volcanic material. The data of other authors, and the detailed profiling by the present author of outcrops that are considered to be locus typicus of marls and the appearance of which indicates a distinct correlation to tectonics of the Outer Carpathians, allowed to the present author to systematize and broaden the geological knowledge concerning the evolution of the marly facies in the northern part of the Tethyan Ocean. The conditions of sedimentation of marls deduced from the analysis of evolution of sedimentation basin of the Outer Carpathians and from lithologic data can be summarized as follows: - marls appear episodically in the Outer-Carpathian basin (mono- and polylithic complexes) and determine the stages of its tectonic evolution; they initiate the stages of opening and indicate the reconstitution of basins (preorogenic marls) and closing sedimentation cycle (synorogenic marls); - marls were deposited under conditions of tectonic disquiet (the presence of MyG facies), accompanied by volcanic activity (occurrence if pyroclastic rocks within chronostratigraphic equivalents of the marls studied); - marly deposits were formed both under oxidizing and oxygen-depleted conditions, i.e. when the availability of oxygen in the bottom sediments was limited (variable colouration); - marls represent the deposits of debris flows (MyG facies) redeposited from shelves in lithified form into zones that are situated close to the basin margins (olistoliths) and as resuspensed shelf muds accumulating within basinal sediments in the seafloor depressions (trap sediments) by suspension settling mechanism and periodically reworked by currents (M, MT, and MS facies).

  15. The origin and nature of thermal evolution during Granite emplacement and differentiation and its influence on upper crustal dynamics.

    NASA Astrophysics Data System (ADS)

    Buchwaldt, R.; Toulkeridis, T.; Todt, W.

    2014-12-01

    Structural geological, geochemical and geochronological data were compiled with the purpose to exercise models for the construction of upper crustal batholith. Models for pulsed intrusion of small magma batches over long timescales versus transfer of larger magma bodies on a shorter time scales are able to predict a different thermal, metamorphic, and rheological state of the crust. For this purpose we have applied the chronostratigraphic framework for magma differentiation on three granite complexes namely the St. Francois Mountain granite pluton (Precambrian), the Galway granite (Cambrian), and the Sithonia Plutonic Complex (Eocene). These plutons have similar sizes and range in composition from quartz diorites through granodiorites and granites to alkali granites, indicating multiple intrusive episodes. Thermobarometric calculations imply an upper crustal emplacement. Geochemical, isotopic and petrological data indicate a variety of pulses from each pluton allowing to be related through their liquid line of decent, which is supported by fractional crystallization of predominantly plagioclase, K-feldspar, biotite, hornblende and some minor accessory mineral phases, magma mingling and mixing as well as crustal contamination. To obtain the temporal relationship we carried out high-precision CA-TIMS zircon geochronology on selected samples along the liquid line of decent. The obtained data indicate a wide range of rates: such as different pulses evolved on timescales of about only 10-30ka, although, the construction time of the different complexes ranges from millions of years with prolonged tectonically inactive phases to relatively short lived time ranges of about ~300 ka. For a better understanding how these new data were used and evaluated in order to reconstruct constraints on the dynamics of the magmatic plumbing system, we integrated the short-lived, elevated heat production, due to latent heat of crystallization, into a 2D numerical model of the thermal evolution of segments of continental crust. Our model indicates that during the stage of enhanced fractional crystallization, the crustal viscosity decreases by several orders of magnitude, playing hereby a fundamental role in the thermal, magmatic, and tectonic evolution of the studied areas and most probably in similar regions too.

  16. Interpreting intraplate tectonics for seismic hazard: a UK historical perspective

    NASA Astrophysics Data System (ADS)

    Musson, R. M. W.

    2012-04-01

    It is notoriously difficult to construct seismic source models for probabilistic seismic hazard assessment in intraplate areas on the basis of geological information, and many practitioners have given up the task in favour of purely seismicity-based models. This risks losing potentially valuable information in regions where the earthquake catalogue is short compared to the seismic cycle. It is interesting to survey how attitudes to this issue have evolved over the past 30 years. This paper takes the UK as an example, and traces the evolution of seismic source models through generations of hazard studies. It is found that in the UK, while the earliest studies did not consider regional tectonics in any way, there has been a gradual evolution towards more tectonically based models. Experience in other countries, of course, may differ.

  17. Forced folding and complex overburden deformation associated with magmatic intrusion in the Vøring Basin, offshore Norway

    NASA Astrophysics Data System (ADS)

    Omosanya, Kamaldeen Olakunle; Johansen, Ståle E.; Eruteya, Ovie Emmanuel; Waldmann, Nicolas

    2017-06-01

    In this study, three-dimensional seismic reflection and borehole data from the Vøring Basin, offshore Norway have been used to characterize a supra-sill related forced fold to understand its evolution and relevance in the context of regional tectonics. Magmatic sills were recognised to be positive high-amplitude anomalies with similar polarity to the seabed reflection. The seismic dataset reveals two groups of sills in the study area comprising interconnected sills beneath the regional forced fold, and those intruded into the overburden. Magmatic sills forming the interconnected sill complex are emplaced at a depth of about 5.5 s TWTT below the modern seafloor. Aspect ratio (length/width), A for the sills ranges from 1.63-6.90. The regional forced fold is interpreted based on its bathymetric and seismic-stratigraphic expression on horizon H7, which is part of the Palaeocene to Eocene Tang Formation. Amplitude of the accommodation fold is about 780 km2. Hydrothermal vent complexes and fluid-flow conduits in the study area develop above the sill edges and on the flanks of the interconnected sill complex extending from the lower part of the Tang Formation to the uppermost section of the Brygge Formation evidencing vertically focussed fluid flow in the study area. The overlying overburden is in turn deformed and structurally compartmentalized through forced folding and Late Cenozoic tectonics. We demonstrate that accommodation folding is formed in response to the emplacement of several interconnected sills during the opening of the Norwegian-Greenland Seas. Sill emplacement in the study area causes uplift of the Cretaceous to Palaeocene depocentre prior to further restructuration during Cenozoic tectonic inversion. Magmatic intrusions documented in this study have wider implications for understanding supra-sill deformations along volcanic margins with well-developed emplaced sills at depth and likewise hydrocarbon prospectivity in the study area.

  18. Geospeedometry in the inverted metamorphic gradient of the Nestos Thrust Zone in central Rhodope (Northern Greece)

    NASA Astrophysics Data System (ADS)

    Cioldi, Stefania; Moulas, Evangelos; Burg, Jean-Pierre

    2015-04-01

    Thrust tectonics and inverted metamorphic gradients are major consequences of large and likely fast movements of crustal segments in compressional environments. The purpose of this study is to investigate the tectonic setting and the timescale of inverted metamorphic zonations related to crustal-scale thrusting. The aim is to contribute understanding the link between mechanical and thermal evolution of major thrust zones and to clarify the nature and the origin of orogenic heat. The Rhodope metamorphic complex (Northern Greece) is interpreted as a part of the Alpine-Himalaya orogenic belt and represents a collisional system with an association of both large-scale thrusting and pervasive exhumation tectonics. The Nestos Shear Zone overprints the suture boundary with a NNE-dipping pile of schists displaying inverted isograds. The inverted metamorphic zones start from chlorite-muscovite grade at the bottom and reach kyanite-sillimanite grades with migmatites in the upper structural levels. In order to reconstruct the thermo-tectonic evolution of inverted metamorphic zonation, reliable geochronological data are essential. 40Ar/39Ar geochronology with step-heating technique on white mica from micaschists provided a temporal resolution with the potential to characterize shearing. 40Ar/39Ar dating across the Nestos Shear Zone yields Late Eocene-Early Oligocene (40-30 Ma) cooling (~400-350° C) ages, which correspond to local thermo-deformation episodes linked to late and post-orogenic intrusions. U-Pb Sensitive High Resolution Ion Microprobe (SHRIMP) zircon geochronology on leucosomes from migmatitic orthogneisses were considered to estimate the age of peak metamorphic conditions, contemporaneous with anatexis. U-Pb ages of zircon rims specify regional partial melting during the Early Cretaceous (160-120 Ma). This is in disagreement with previous assertions, which argued that the formation of leucosomes in this region is Late Eocene (42-35 Ma) and implied multiple subductions and multiple metamorphic cycles during orogeny. Garnet geospeedometry considers the kinetic response of minerals and allowed estimating the absolute time-dependent thermal evolution by diffusive element profiles in garnet. Inverse-fitting numerical model considering Fractionation and Diffusion in GarnEt (FRIDGE) calculates garnet composition profiles by introducing P-T-t paths and bulk-rock composition of a specific sample. Preliminary results of Fe-Mg - Ca - Mn garnet fractionation-diffusion modelling indicate very short timescale (between 2 and 5 Ma) for peak metamorphic conditions in the Rhodope collisional system.

  19. Hypsometry and relief analysis of the southern termination of the Calabrian arc, NE-Sicily (southern Italy)

    NASA Astrophysics Data System (ADS)

    Pavano, F.; Catalano, S.; Romagnoli, G.; Tortorici, G.

    2018-03-01

    Tectonic forcing causes the relief-building of mountain chains and enforces the surficial processes in a persistent dismantling of rock volumes, continuously modelling Earth's surface. Actually, we observe transient landscapes that have temporarily recorded tectonic forcing as a codified signal. The Late Quaternary tectonic evolution of northeastern Sicily, located along the Nubia-Eurasia plate boundary at the southern termination of the Calabrian arc, has been dominated by intense Plio-Pleistocene dynamics that severely modified the Late Miocene landscape. The present work aims to investigate geomorphically northeastern Sicily, essentially focusing on the hypsometric and relief analyses of the region in order to define how the topography responds to the post-Pliocene tectonic deformation. We apply different relief morphometric indices (Hypsometric Integral, Topographic Relief and Topographic Dissection) measured for each differently sized moving window, and we use different swath topographic profiles as well. Our analysis evidences differential morphological responses between distinct morphotectonic domains of the studied area, led by the combination of earlier morphological background and Late Quaternary tectonic deformation stages of the region. In addition, in the context of a constant and uniform tectonic uplift, the results define the general space- and time-relating pathways of the landscape geomorphic metrics. This enables us to bring out the controls of the vertical scale of landscape on hypsometry, exploring their mutual relationships. Finally, we reconstruct the Late Quaternary morphotectonic evolution of the region, defining the role played by the main tectonic alignments on the present geomorphic setting.

  20. The revised tectonic history of Tharsis

    NASA Astrophysics Data System (ADS)

    Bouley, Sylvain; Baratoux, David; Paulien, Nicolas; Missenard, Yves; Saint-Bézar, Bertrand

    2018-04-01

    Constraining the timing of the emplacement of the volcano-tectonic province of Tharsis is critical to understanding the evolution of mantle, surface environment and climate of Mars. The growth of Tharsis had exerted stresses on the lithosphere, which were responsible for tectonic deformation, previously mapped as radial or concentric faults. Insights into the emplacement history of Tharsis may be gained from an analysis of the characteristics and ages of these tectonic features. The number, total length, linear density of extensional or compressional faults in the Tharsis region and deformation rates are reported for each of the following 6 stages: Early and Middle Noachian (stage 1); Late Noachian (stage 2); Early Hesperian (stage 3); Late Hesperian (stage 4), Early Amazonian (stage 5) and Middle Amazonian to Late Amazonian (stage 6). 8571 Tharsis-related tectonic features (radial or concentric to the center of Tharsis) were assigned to one of these periods of time based on their relationship with stratigraphic units defined in the most recent geological map. Intense faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. However, we report a peak in both compressive and extensive rates of deformation during the Early Hesperian whereas the quantitative indicators for compressional and extensional tectonics vary within less than one order of magnitude from the Late Noachian to the Late Hesperian. These observations indicate a protracted growth of Tharsis during the first quarter of Mars evolution and declining from 3 Gyrs ago.

  1. Relationship between deep structure and oil-gas in the eastern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Yu, Changqing; Qu, Chen; Han, Jianguang

    2017-04-01

    The Tarim Basin is a large composite superimposed basin which developed in the Presinian continental basement. It is an important area for oil and gas replacement in China. In the eastern part of Tarim Basin, the exploration and research degree is very low and less system, especially in the study of tectonic evolution and physical property change. Basing on the study of geophysics, drilling and regional geological data in this area, analysis of comprehensive geophysical, geological and geophysical analysis comparison are lunched by new methods and new technology of geophysical exploration. Fault, tectonic evolution and change of deep character in the eastern Tarim Basin are analyzed in system. Through in-depth study and understanding of the deep structure and physical changes of the eastern region, we obtain the fault characteristics in the study area and the deep structure and physical change maps to better guide the oil and gas exploration in this area. The east area is located in the eastern Tarim Basin, west from the Garr Man depression, Well Kunan 1 - Well Gucheng 4 line to the East, north to Kuruketage uplift group near Qunke 1 wells, south to Cherchen fault zone, east to Lop Nor depression, an area of about 9 * 104 square kilometres, Including the East of Garr Man sag, Yingjisu depression, Kongquehe slope, Tadong low uplift and the Lop Nor uplift, five two grade tectonic units. The east area of Tarim is belonging to Tarim plate. It changes with the evolution of the Tarim plate. The Tarim plate is closely related to the collision between the Yining - the Junggar plate, the Siberia plate and the southern Qiangtang - the central Kunlun plate. Therefore, it creates a complex tectonic pattern in the eastern Tarim basin. Earth electromagnetic, gravity, deep seismic and other geophysical data are processed by a new generation of geophysical information theory and method, including multi-scale inversion of potential field inversion (Hou and Yang, 2011), 3D magnetotelluric data (Yang et al., 2012) and micro seismic wave field information recognition technology in the eastern Tarim Basin. Combining the information of the deep faults, tectonic evolution characteristics of the study area and the physical changes from geological data, we analyze the relationship between the change of the physical structure and the oil and gas, and predict the favorable oil and gas area and the exploration target area by information extraction, processing and interpretation analysis based on integrated geophysical technology. References 1. Hou, Z. Z., W. C. Yang, 2011, multi scale gravity field inversion and density structure in Tarim Basin: Chinese science, 41, 29-39. 2. Yang W. C., J. L. Wang, H. Z. Zhong, 2012, The main port of the Tarim Basin Analysis of magnetic field and magnetic source structure: Chinese Journal of Geophysics, 55, 1278-1287.

  2. Offshore Tectonics of the St. Elias Mountains: Insights from Ocean Drilling and Seismic Stratigraphy on the Yakutat Shelf

    NASA Astrophysics Data System (ADS)

    Worthington, L. L.; Gulick, S. P. S.; Montelli, A.; Jaeger, J. M.; Zellers, S.; Walczak, M. H.; Mix, A. C.

    2015-12-01

    Ongoing collision of the Yakutat (YAK) microplate with North America (NA) in southern Alaska has driven orogenesis of the St. Elias Mountains and the advance of the offshore deformation front to the southeast. The offshore St. Elias fold-thrust belt records the complex interaction between collisional tectonics and glacial climate variability, providing insight for models of orogenesis and the evolution of glacial depocenters. Glacial erosion and deposition have provided sediment that constructed the upper continental shelf, much of which has been reincorporated into the orogenic wedge through offshore faulting and folding. We integrate core and downhole logging data from IODP Expedition 341 (Sites U1420 and U1421) drilled on the Yakutat shelf and slope with high-resolution and regional seismic profiles to investigate the coupled structural and stratigraphic evolution of the St. Elias margin. Site U1420 lies on the Yakutat shelf within the Bering Trough, a shelf-crossing trough that is within primary depocenter for Bering Glacier sediments. Two faults underlie the glacial packages and have been rendered inactive as the depositional environment has evolved, while faulting elsewhere on the shelf has initiated. Site U1421 lies on the current continental slope, within the backlimb of an active thrust that forms part of the modern YAK-NA deformation front. At each of these sites, we recovered glacigenic diamict (at depths up to ~1015 m at Site U1420), much of which is younger than 0.3 Ma. Age models within the trough indicated that initiation of active deformation away from the Bering Trough depocenter likely occurred since 0.3 Ma, suggesting that possible tectonic reorganization due to mass redistribution by glacial processes can occur at time scales on the order of 100kyr-1Myr.

  3. Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations

    PubMed Central

    2015-01-01

    How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the development of steady-state topography at the continental scale unlikely. PMID:26244662

  4. Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations.

    PubMed

    Garcia-Castellanos, Daniel; Jiménez-Munt, Ivone

    2015-01-01

    How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the development of steady-state topography at the continental scale unlikely.

  5. The development and evolution of landform based on neotectonic movement: The Sancha river catchment in the southwestern China

    NASA Astrophysics Data System (ADS)

    Zhong, Lingmin; Xu, Mo; Yang, Yanna; Wang, Xingbing

    2018-02-01

    Neotectonics has changed the coupled process of endogenic and exogenic geological dynamics, which mold the modern landform. Geomorphologic analysis is essential for identifying and understanding the tectonic activity and indicates the responsive mechanism of the landform to tectonic activity. At first, this research reconstructed the twisted Shanpen period planation surface, computed the valley floor width-to-height ratio of Sancha river and extracted the cross sections marking the river terraces to analyze the characteristics of the neotectonics. And then, the relation between neotectonic movement and landform development was analyzed by dividing the landform types. At last, the spatial variation of landform evolution was analyzed by extracting the Hypsometric Integral of sub-catchments. The Sancha river catchment's neotectonic movement presents the tilt-lift of earth's crust from NW to SE, which is characterized by the posthumous activity of Yanshan tectonic deformation. The spatial distribution of river terraces indicates that Sancha river catchment has experienced at least four intermittent uplifts and the fault blocks at both the sides of Liuzhi-Zhijin basement fault have differentially uplifted since the late Pleistocene. As the resurgence of Liuzhi-Zhijin basement fault, the Sancha river catchment was broken into two relative independent landform units. The spatial variations of the landform types near the Sancha river and the sub-catchments' landform evolution are characterized by periodic replacement. The styles of geological structure have controlled the development of landform far away from the Sancha River and influenced the landform evolution. The posthumous activities of the secondary structure have resulted in the spatial variation of sub-catchments' landform evolution, which presents periodic replacement with local exceptions. The present study suggests that spatial variations of the development and evolution of modern landform of Sancha River catchment owe their genesis to the interplay between the hydrodynamic force and tectonic activity in the neotectonic period. Likewise, the application of geomorphic indicators also provides a new way to assess the regional crustal stability.

  6. Geomorphology of the Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria

    2013-08-01

    The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.

  7. The South Scandinavian crust: Structural complexities from seismic reflection and refraction profiling

    NASA Astrophysics Data System (ADS)

    Kinck, J. J.; Husebye, E. S.; Lund, C.-E.

    1991-04-01

    Pioneering work on mapping the Scandinavian crust commenced in the early 1960s and since then numerous profiling surveys have been undertaken, particularly as part of the on-going EUGENO-S project. However, the most significant contribution to mapping crustal structural details came from the M.V. Mobil Search cruises in the Skagerrak and off the West coast of Norway (16 s TWT reflection profiling). All past and present crustal profiling results have been integrated to produce detailed maps of Moho depths and crustal thicknesses for South Scandinavia. The thinnest crust is found in the North Sea and Skagerrak (approximately 20 km), while East-central Sweden features very thick crust (approximately 50 km). Other interesting features are the apparent correlation between crustal thinning and sedimentation/subsidence, magmatic activity, earthquake occurrences and the tectonic age of the crust. Moho depths and the crustal thicknesses clearly reflect the tectonic evolution and the present structural features of the region investigated.

  8. A Tale of Two Orogens: Comparing Crustal Processes in the Proterozoic Trans-Hudson and Grenville Orogens, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Bastow, I. D.; Gilligan, A.; Petrescu, L.

    2016-12-01

    The Precambrian core of North America is an assemblage of Archean cratons and Proterozoic orogenic belts, preserving over 3 billion years of Earth history. Here we focus on two of the largest collisional orogens, using recent and ongoing seismological studies to probe their present-day structure and tectonic history. The 1.8 Ga collision between the Western Churchill and Superior cratons, along with microcontinental and island arc terranes, formed the Trans-Hudson Orogen (THO), a collisional belt similar in scale and shape to the present-day Himalaya-Karakoram-Tibet Orogen (HKTO). In the Mesoproterozoic, a series of collisions reworked the SE margin of the Superior craton and added new material over a period of several hundred Ma, culminating in the Grenvillian orogeny and the assembly of the supercontinent Rodinia. The Grenville Orogen is thought to have been a large, hot, long-lived plateau which subsequently underwent orogenic collapse. While similar in spatial scale, the Trans-Hudson and Grenville Orogens have significantly different tectonic histories, notably in terms of longevity and tectonic evolution. Comparison of these collisional belts with each other, and with the HTKO, provide valuable insights into plate-tectonic history. Recently a number of broadband seismograph installations have allowed a detailed study of present-day crustal structure beneath the THO and the Grenville. Receiver-function and surface wave studies provide information on crustal thickness variations, bulk crustal composition and crustal heterogeneity. The crust beneath the orogens is generally thicker, more mafic and more heterogeneous than that beneath neighbouring Archean and Phanerozoic domains, with significant along-strike variability and Moho complexity. We review and interpret the new crustal structure information in the context of the tectonic processes affecting the two contrasting orogens.

  9. The evolution of volcanism, tectonics, and volatiles on Mars - An overview of recent progress

    NASA Technical Reports Server (NTRS)

    Zimbelman, James R.; Solomon, Sean C.; Sharpton, Virgil L.

    1991-01-01

    Significant results of the 'Mars: Evolution of Volcanism, Tectonics, and Volatiles' (MEVTV) project are presented. The data for the project are based on geological mapping from the Viking images, petrologic and chemical analyses of SNC meteorites, and both mapping and temporal grouping of major fault systems. The origin of the planet's crustal dichotomy is examined in detail, the kinematics and formation of wrinkle ridges are discussed, and some new theories are set forth. Because the SNC meteorites vary petrologically and isotopically, the sources of the parental Martian magma are heterogeneous. Transcurrent faulting coupled with the extensional strains that form Valles Marineris suggest early horizontal movement of lithospheric blocks. A theory which connects the formation of the crustal dichotomy to the Tharsis region associates the horizontal motions with plate tectonics that generated a new lithosphere.

  10. The Neogene tectonic evolution and climatic change of the Tianshui Basin, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Peng, T.; Li, J.; Song, C.; Zhao, Z.; Zhang, J.; Wang, X.; Hui, Z.

    2013-12-01

    The Tianshui Basin, located at the conjunction of NE Tibetan Plateau and Chinese Loess Plateau, has received intensive attention recently. Fine-grained Miocene sediment was identified as loess in its north part and this pushes the onset of Asian aridification into 22 Ma. However, our sedimentological, biomarker, pollen, diatom and mammalian fossils evidence propose that these sediments were suggested to be mudflat/distal fan and floodplain deposit instead of eolian deposit. So detailed tectonic background and climate reconstruction may illustrate the controversy and shed light on the tectonic, climate and ecology interactions. Here we report our integrated studies on the tectonic evolution, climate change and paleoecology reconstruction in the Tianshui basin. Based on the magnetostratigraphy and fossil mammal ages, sedimentological and detrital fission-track thermochronologic (DFT) analysis reveals four episodic tectonic uplift events occurred at ~20 Ma, ~14 Ma, ~9.2-7.4 Ma and ~3.6 Ma along the basin and its adjacent mountains. The timing of these activities at Western Qinling have been documented at many segments of the Tibetan Plateau, so most likely they were the remote response to the ongoing India-Asia collision. Pollen, mammalian fossils and biomarker data permit us to illustrate the paleoenvironment in the Tianshui Basin. During the period of ~17-10 Ma, the climate was generally warm-humid revealed by the broad-leaved forest and low Average Chain Length (ACL) values, when the Paltybelodon and Gomphotherium were roaming near an extensive aquatic setting. In addition, the observed Middle Miocene Climatic Optimum and Middle Miocene Climatic Transition events may be a terrestrial response to global climate changes. During the interval of ~10-6 Ma, the climate was relatively arid characterized by the rapid development of steppe and appearance of the Hipparion fauna, consistent with the biomarker proxy. Although the NE Tibetan Plateau experienced a phase of active uplift around ~8 Ma, we mainly ascribe this arid interval to global change known as the C4 grass expansion, because the subsequent early Pliocene turned back to humid-warm climate again. Since ~4 Ma, it became obviously drier than the previous two arid intervals via the biomarker perspective. This dramatic dry trend may be related to the Tibetan Plateau uplift and/or global cooling, highlighting the importance and complexity of tectonic-climate interaction. Acknowledgements: This work was co-supported by the "Strategic Priority Research Program" of the CAS (XDB03020402), the (973) National Basic Research Program of China (2013CB956400) and the National Natural Science Foundation of China (41021091, 41101012).

  11. Tectonic evolution of the Troodos Ophiolite within the Tethyan Framework

    NASA Astrophysics Data System (ADS)

    Dilek, Yildirim; Thy, Peter; Moores, Eldridge M.; Ramsden, Todd W.

    1990-08-01

    A new tectonic model reconciles conflicting structural and geochemical evidence for the origin of the Troodos ophiolite, a well-preserved remnant of Neotethyan oceanic crust. Grabens and normal faults within the sheeted dike complex and the extrusive sequence of the Troodos ophiolite resemble those of oceanic spreading centers. Diverse intrusive and tectonic contact relationships between the sheeted dike complex and the underlying plutonic sequence indicate multiple and episodic intrusion of magma and along- and across-strike variation in volcanic and tectonic activity during development of oceanic crust. Coupled with the existence of the Arakapas transform fault to the south, these structural and intrusive relationships suggest origin at an intersection between a spreading center and a transform fault. The arclike chemistry of sheeted dikes and related extrusive rocks and the inferred highly depleted and hydrous nature of the mantle source of the late stage intrusive and extrusive rocks argue, however, for generation of part of the ophiolite within a subduction zone environment. Regional reconstructions suggest that the Mesozoic Neotethys may have evolved as a marginal basin both to the Afro-Arabian continent and the Paleotethyan ocean over an active or recently active south dipping subduction zone. The Troodos ophiolite and other eastern Mediterranean ophiolites, whose magma compositions were affected by the subducted Paleotethyan slab, may have formed along east-west trending spreading centers separated by north-south trending transform faults within this marginal basin. A rapid change in relative plate motion in late Cretaceous time between Eurasia and Afro-Arabia created a regional compressive regime that may have resulted in plate boundary reorganizations within the Neotethyan realm and in initiation of north dipping subduction zone(s) beneath the Troodos and other ophiolites in the region. The apparent forearc setting of the Troodos ophiolite is a consequence of this intraoceanic displacement after its formation and thus is unrelated to its generation.

  12. Alpine extensional detachment tectonics in the Grande Kabylie metamorphic core complex of the Maghrebides (northern Algeria)

    NASA Astrophysics Data System (ADS)

    Saadallah, A.; Caby, R.

    1996-12-01

    The Maghrebides are part of the peri-Mediterranean Alpine orogen. They expose in their inner zone inliers of high-grade crystalline rocks surrounded by Oligo-Miocene and younger Miocene cover. Detailed mapping coupled with structural and petrological investigations in the Grande Kabylie massif, and the reinterpretation of the available geochronological data, allow us to refute the traditional concept of rigid behaviour of this massif during Alpine events. We show that the dome geometry, the kinematic and metamorphic evolutions and the age pattern are typical of metamorphic core complexes exhumed by extension. A major low-angle detachment fault defined by mylonites and by younger cataclasites has been traced in the massif. The upper unit encompasses pre-Permian phyllites with Variscan {40Ar }/{39Ar } cooling ages, capped by unconformable Mesozoic to Tertiary cover of the Calcareous Range, both mainly affected by extensive Tertiary brittle deformation and normal faulting. The lower unit exposes in two half-domes a continuous tectonic pile, 6-8 km thick, of amphibolite facies rocks and orthogneisses affected by syndashmetamorphic ductile deformation, devoid of retrogression. The regular increase of paleotemperature downward and the {40Ar }/{39Ar } plateau ages around 80 Ma suggest that the high-temperature foliation and associated WNW-directed shear under a high geothermal gradient relate to extensional tectonics developed during Mesozoic lithospheric thinning of the Variscan south European margin. To the north, the Sidi Alli Bou Nab massif exposes another crustal section affected throughout by WNW-directed extensional shear during {HP }/{HT } syndashmetamorphic thinning and with overall {40Ar }/{39Ar } plateau ages of 25 Ma. The Eocene oblique collisional event responsible for crustal thickening was totally overprinted by this new extensional regime, synchronous with the beginning of the opening of the Western Mediterranean oceanic basin. This was also coeval with south-directed thrusting of foreland nappes to the south. Post-Miocene tectonic events cause significant overprinting.

  13. Southernmost Andes and South Georgia Island, North Scotia Ridge: Zircon U-Pb and muscovite {40Ar }/{39Ar } age constraints on tectonic evolution of Southwestern Gondwanaland

    NASA Astrophysics Data System (ADS)

    Mukasa, Samuel B.; Dalziel, Ian W. D.

    1996-11-01

    Zircon U-Pb and muscovite {40Ar }/{39Ar } isotopic ages have been determined on rocks from the southernmost Andes and South Georgia Island, North Scotia Ridge, to provide absolute time constraints on the kinematic evolution of southwestern Gondwanaland, until now known mainly from stratigraphic relations. The U-Pb systematics of four zircon fractions from one sample show that proto-marginal basin magmatism in the northern Scotia arc, creating the peraluminous Darwin granite suite and submarine rhyolite sequences of the Tobifera Formation, had begun by the Middle Jurassic (164.1 ± 1.7 Ma). Seven zircon fractions from two other Darwin granites are discordant with non-linear patterns, suggesting a complex history of inheritances and Pb loss. Reference lines drawn through these points on concordia diagrams give upper intercept ages of ca. 1500 Ma, interpreted as a minimum age for the inherited zircon component. This component is believed to have been derived from sedimentary rocks in the Gondwanaland margin accretionary wedge that forms the basement of the region, or else directly from the cratonic "back stop" of that wedge. Ophiolitic remnants of the Rocas Verdes marginal basin preserved in the Larsen Harbour complex on South Georgia yield the first clear evidence that Gondwanaland fragmentation had resulted in the formation of oceanic crust in the Weddell Sea region by the Late Jurassic (150 ± 1 Ma). The geographic pattern in the observed age range of 8 to 13 million years in these ophiolitic materials, while not definitive, is in keeping with propagation of the marginal basin floor northwestward from South Georgia Island to the Sarmiento Complex in southern Chile. Rocks of the Beagle granite suite, emplaced post-tectonically within the uplifted marginal basin floor, have complex zircon U-Pb systematics with gross discordances dominated by inheritances in some samples and Pb loss in others. Of eleven samples processed, only two had sufficient amounts of zircon for multiple fractions, and only one yielded colinear points. These points lie close to the lower concordia intercept for which the age is 68.9 ± 1.0 Ma, but their upper intercept is not well known. Inasmuch as this age is similar to the {40Ar }/{39Ar } age of secondary muscovite growing in extensional fractures of pulled-apart feldspar phenocrysts in a Beagle suite granitic pluton (plateau age is 68.1 ± 0.4 Ma), we interpret the two dates as good time constraints for cooling following a period of extensional deformation probably related to the tectonic denudation of the highgrade metamorphic complex of Cordillera Darwin in Tierra del Fuego.

  14. Cryptic Diversity of African Tigerfish (Genus Hydrocynus) Reveals Palaeogeographic Signatures of Linked Neogene Geotectonic Events

    PubMed Central

    Goodier, Sarah A. M.; Cotterill, Fenton P. D.; O'Ryan, Colleen; Skelton, Paul H.; de Wit, Maarten J.

    2011-01-01

    The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic events modified Africa's Neogene drainage. Haplotypes shared amongst extant Hydrocynus populations across northern Africa testify to recent dispersals that were facilitated by late Neogene connections across the Nilo-Sahelian drainage. These events in tigerfish evolution concur broadly with available geological evidence and reveal prominent control by the African Rift System, evident in the formative events archived in phylogeographic records of tigerfish. PMID:22194910

  15. Panta Rhei - the changing face of rocks (Stephan Mueller Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Passchier, Cees W.

    2017-04-01

    The Earth's lithosphere changes shape continuously by plate tectonics and other processes but, unfortunately, we cannot directly access the deeper parts of our planet to study this evolution and the active deformation processes involved. Indirect, geophysical observations allow us to reconstruct processes on a larger scale, but the details on a smaller scale must be studied from samples of metamorphic rocks that have travelled to the surface by complex paths, being modified along the way. Structural analysis of metamorphic rocks has helped to unravel deformation mechanisms and the associated geometric, mineralogical and geochemical changes, but even so there remains a lot to be learned: For example, we know little about the formation of porphyroblasts and their relation with the surrounding fabric, or of porphyroclasts, mineral fish, foliations, lineations, flanking structures, strain fringes and other vorticity gauges; likewise, on a larger scale, the development of gneiss domes, and complex ductile shear zones is poorly understood. This may seem a problem for specialists only, but it actually concerns all large-scale tectonic studies, since the geometry of deformation structures is the "tool-box" of tectonic reconstructions. Recent tectonic processes and large-scale changes in the arrangement of lithospheric fragments are relatively well understood, because we can rely on direct observations of current processes. However, the further we go back in time, down to the Archean, the more we rely on incomplete data obtained from metamorphic rocks that have been preserved. In many cases, deformation geometries in rocks are the single witnesses available of ancient tectonic processes and history, and their correct interpretation is therefore of crucial importance. Without a reliable structural geology toolbox, it is not possible to correctly interpret early, especially Precambrian tectonic processes. This will be demonstrated with examples from Namibia and Australia. Clearly, our understanding of the way in which rocks flow and of the evolution of their final deformation geometries must be improved. One problem is that in tectonics, as in other studies, research is increasingly and briefly directed towards a few highly specialised isolated phenomena that are in the focus of attention, ignoring the huge gaps in our knowledge that separate these. This situation can be improved by the application of new and multidisciplinary research methods, by the identification of "natural experiments", and by more integrated, systematic studies of the connection between structures that at first glance may seem unrelated. These techniques, however, will mostly tell us what happens on the crystal-to-metre scale, while they reveal little on the scale of orogenic belts and continents. For the latter, we need field observations, although there are currently multiple developments that conspire against the progress of field-based studies. Field studies are time consuming in an age where results must be published rapidly, and are hampered by inclement weather and instable local political situations. In addition there is a lack of field-adapted information collection and long-term storage tools. Fortunately, this can now be improved dramatically with the application of drones, photogrammetry and field-adapted mapping software, which in combination can build and store a permanent database of deformation structures, to use in present and future studies. Hopefully, this combination of improved collection and processing of field-based data and a systematic improvement of our understanding of the development of deformation geometries will enhance our fundamental knowledge of flow in rocks. Then, finally, will we begin to understand how everything moves - panta rhei!

  16. Comment on "Intermittent plate tectonics?".

    PubMed

    Korenaga, Jun

    2008-06-06

    Silver and Behn (Reports, 4 January 2008, p. 85) proposed that intermittent plate tectonics may resolve a long-standing paradox in Earth's thermal evolution. However, their analysis misses one important term, which subsequently brings their main conclusion into question. In addition, the Phanerozoic eustasy record indicates that the claimed effect of intermittency is probably weak.

  17. Hot spot abundance, ridge subduction and the evolution of greenstone belts

    NASA Technical Reports Server (NTRS)

    Abbott, D.; Hoffman, S.

    1986-01-01

    A number of plate tectonic hypotheses have been proposed to explain the origin of Archaean and Phanerozoic greenstone/ophiolite terranes. In these models, ophiolites or greenstone belts represent the remnants of one or more of the following: island arcs, rifted continental margins, oceanic crustal sections, and hot spot volcanic products. If plate tectonics has been active since the creation of the Earth, it is logical to suppose that the same types of tectonic processes which form present day ophiolites also formed Archaean greenstone belts. However, the relative importance of the various tectonic processes may well have been different and are discussed.

  18. Geomorphology and Tectonics at the Intersection of Silurian and Death Valleys, Southern California - 2005 Guidebook Pacific Cell Friends of the Pleistocene

    USGS Publications Warehouse

    Miller, David M.; Valin, Zenon C.

    2007-01-01

    This publication describes results from new regional and detailed surficial geologic mapping, combined with geomorphologic, geochronologic, and tectonic studies, in Silurian Valley and Death Valley, California. The studies address a long-standing problem, the tectonic and geomorphic evolution of the intersection between three regional tectonic provinces: the eastern California shear zone, the Basin and Range region of southern Nevada and adjacent California, and the eastern Mojave Desert region. The chapters represent work presented on the 2005 Friends of the Pleistocene field trip and meeting as well as the field trip road log.

  19. On volcanism and thermal tectonics on one-plate planets

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1978-01-01

    For planets with a single global lithospheric shell or 'plate', the thermal evolution of the interior affects the surface geologic history through volumetric expansion and the resultant thermal stress. Interior warming of such planets gives rise to extensional tectonics and a lithospheric stress system conductive to widespread volcanism. Interior cooling leads to compressional tectonics and lithospheric stresses that act to shut off surface volcanism. On the basis of observed surface tectonics, it is concluded that the age of peak planetary volume, the degree of early heating, and the age of youngest major volcanism on the one-plate terrestrial planets likely decrease in the order Mercury, Moon, Mars.

  20. Tectonic Storytelling with Open Source and Digital Object Identifiers - a case study about Plate Tectonics and the Geopark Bergstraße-Odenwald

    NASA Astrophysics Data System (ADS)

    Löwe, Peter; Barmuta, Jan; Klump, Jens; Neumann, Janna; Plank, Margret

    2014-05-01

    The communication of advances in research to the common public for both education and decision making is an important aspect of scientific work. An even more crucial task is to gain recognition within the scientific community, which is judged by impact factor and citation counts. Recently, the latter concepts have been extended from textual publications to include data and software publications. This paper presents a case study for science communication and data citation. For this, tectonic models, Free and Open Source Software (FOSS), best practices for data citation and a multimedia online-portal for scientific content are combined. This approach creates mutual benefits for the stakeholders: Target audiences receive information on the latest research results, while the use of Digital Object Identifiers (DOI) increases the recognition and citation of underlying scientific data. This creates favourable conditions for every researcher as DOI names ensure citeability and long term availability of scientific research. In the developed application, the FOSS tool for tectonic modelling GPlates is used to visualise and manipulate plate-tectonic reconstructions and associated data through geological time. These capabilities are augmented by the Science on a Halfsphere project (SoaH) with a robust and intuitive visualisation hardware environment. The tectonic models used for science communication are provided by the AGH University of Science and Technology. They focus on the Silurian to Early Carboniferous evolution of Central Europe (Bohemian Massif) and were interpreted for the area of the Geopark Bergstraße Odenwald based on the GPlates/SoaH hardware- and software stack. As scientific story-telling is volatile by nature, recordings are a natural means of preservation for further use, reference and analysis. For this, the upcoming portal for audiovisual media of the German National Library of Science and Technology TIB is expected to become a critical service infrastructure. It allows complex search queries, including metadata such as DOI and media fragment identifiers (MFI), thereby linking data citation and science communication.

  1. Searching for Hysteresis in Models of Mantle Convection with Grain-Damage

    NASA Astrophysics Data System (ADS)

    Lamichhane, R.; Foley, B. J.

    2017-12-01

    The mode of surface tectonics on terrestrial planets is determined by whether mantle convective forces are capable of forming weak zones of localized deformation in the lithosphere, which act as plate boundaries. If plate boundaries can form then a plate tectonic mode develops, and if not convection will be in the stagnant lid regime. Episodic subduction or sluggish lid convection are also possible in between the nominal plate tectonic and stagnant lid regimes. Plate boundary formation is largely a function of the state of the mantle, e.g. mantle temperature or surface temperature, and how these conditions influence both mantle convection and the mantle rheology's propensity for forming weak, localized plate boundaries. However, a planet's tectonic mode also influences whether plate boundaries can form, as the driving forces for plate boundary formation (e.g. stress and viscous dissipation) are different in a plate tectonic versus stagnant lid regime. As a result, tectonic mode can display hysteresis, where convection under otherwise identical conditions can reach different final states as a result of the initial regime of convection. Previous work has explored this effect in pseudoplastic models, finding that it is more difficult to initiate plate tectonics starting from a stagnant lid state than it is to sustain plate tectonics when already in a mobile lid regime, because convective stresses in the lithosphere are lower in a stagnant lid regime than in a plate tectonic regime. However, whether and to what extent such hysteresis is displayed when alternative rheological models for lithospheric shear localization are used is unknown. In particular, grainsize reduction is commonly hypothesized to be a primary cause of shear localization and plate boundary formation. We use new models of mantle convection with grain-size evolution to determine how the initial mode of surface tectonics influences the final convective regime reached when convection reaches statistical steady-state. Scaling analysis is performed to quantify how subduction initiation from a stagnant lid differs from sustaining subduction in a mobile lid. The implications of our results for the evolution of the mode of surface tectonics on terrestrial planets will also be discussed.

  2. TTLEM: Open access tool for building numerically accurate landscape evolution models in MATLAB

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Schwanghart, Wolfgang; Govers, Gerard

    2017-04-01

    Despite a growing interest in LEMs, accuracy assessment of the numerical methods they are based on has received little attention. Here, we present TTLEM which is an open access landscape evolution package designed to develop and test your own scenarios and hypothesises. TTLEM uses a higher order flux-limiting finite-volume method to simulate river incision and tectonic displacement. We show that this scheme significantly influences the evolution of simulated landscapes and the spatial and temporal variability of erosion rates. Moreover, it allows the simulation of lateral tectonic displacement on a fixed grid. Through the use of a simple GUI the software produces visible output of evolving landscapes through model run time. In this contribution, we illustrate numerical landscape evolution through a set of movies spanning different spatial and temporal scales. We focus on the erosional domain and use both spatially constant and variable input values for uplift, lateral tectonic shortening, erodibility and precipitation. Moreover, we illustrate the relevance of a stochastic approach for realistic hillslope response modelling. TTLEM is a fully open source software package, written in MATLAB and based on the TopoToolbox platform (topotoolbox.wordpress.com). Installation instructions can be found on this website and the therefore designed GitHub repository.

  3. Stratal stacking patterns and tectono-sedimentary evolution of hyperextended magma-poor rifted margins

    NASA Astrophysics Data System (ADS)

    Ribes, C.; Gillard, M.; Epin, M. E.; Ghienne, J. F.; Manatschal, G.; Karner, G. D.; Johnson, C. A.

    2016-12-01

    Research on the formation and evolution of deep-water rifted margins has undergone a major paradigm shift in recent years. An increasing number of studies of present-day and fossil rifted margins allow us to identify and characterize the structural architecture of the most distal parts of rifted margins, the so-called hyperextended, magma-poor rifted margins. However, at present, little is known about the depositional environments, sedimentary facies, stacking patterns, subsidence and thermal history within these domains. In this context, characterizing the stratal stacking patterns and understanding their spatial and temporal evolution is a new challenge. The major difficulty comes from the fact that the observed stratigraphic geometries and facies relationships are a result of the complex interplay between sediment supply and available accommodation, which is controlled by not only the regional generation of accommodation, but also by local tectono-magmatic processes. These parameters are poorly constrained or even sufficiently known in these tectonic settings. Indeed, the complex structural evolution of hyperextended magma-poor rifted margins, including the development of poly-phase in-sequence and out of sequence extensional detachment faults and associated mantle exhumation and magmatic activity, can generate complex accommodation patterns over a highly structured top basement. The presentation summarizes early results concerning the controlling parameters on ultra-deep water stratigraphic stacking patterns and to provide a conceptual framework. This observation-driven approach combines fieldwork from fossil Alpine Tethys margins exposed in the Alps and the analysis of seismic reflection data from present-day deep water rifted margins such as the Australian-Antarctic, East India and Iberia-Newfoundland margins.

  4. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  5. Geometry and kinematics of Majiatan Fold-and-thrust Belt, Western Ordos Basin: implication for Tectonic Evolution of North-South Tectonic Belt

    NASA Astrophysics Data System (ADS)

    He, D.

    2017-12-01

    The Helan-Chuandian North-South Tectonic Belt crossed the central Chinese mainland. It is a boundary of geological, geophysical, and geographic system of Chinese continent tectonics from shallow to deep, and a key zone for tectonic and geomorphologic inversion during Mesozoic to Cenozoic. It is superimposed by the southeastward and northeastward propagation of Qinghai-Tibet Plateau in late Cenozoic. It is thus the critical division for West and East China since Mesozoic. The Majiatan fold-and-thrust belt (MFTB), locating at the central part of HCNSTB and the western margin of Ordos Basin, is formed by the tectonic evolution of the Helan-Liupanshan Mountains. Based on the newly-acquired high-resolution seismic profiles, deep boreholes, and surface geology, the paper discusses the geometry, kinematics, and geodynamic evolution of MFTB. With the Upper Carboniferous coal measures and the pre-Sinian ductile zone as the detachments, MFTB is a multi-level detached thrust system. The thrusting was mainly during latest Jurassic to Late Cretaceous, breaking-forward in the foreland, and resulting in a shortening rate of 25-29%. By structural restoration, this area underwent extension in Middle Proterozoic to Paleozoic, which can be divided into three phases of rifting such as Middle to Late Proterozoic, Cambiran to Ordovician, and Caboniferous to early Permian. It underwent compression since Late Triassic, including such periods as Latest Triassic, Late Jurassic to early Cretaceous, Late Cretaceous to early Paleogene, and Pliocene to Quaternary, with the largest shortening around Late Jurassic to early Cretaceous period (i.e. the mid-Yanshanian movement by the local name). However, trans-extension since Eocene around the Ordos Basin got rise to the formation the Yingchuan, Hetao, and Weihe grabens. It is concluded that MFTB is the leading edge of the intra-continental Helan orogenic belt, and formed by multi-phase breaking-forward thrusting during Late Jurassic to Cretaceous. During Cenozoic, MFTB is moderately modified by the northeastward compression due to the NE propagation of Qinghai-Tibet Plateau, and distinctly superimposed by the Yingchuan half-graben. North-South Tectonic Belt underwent a full cycle from extension during Middle Proterozoic to Paleozoic to compression since late Triassic.

  6. Usbnd Pb detrital zircon ages from some Neoproterozoic successions of Uruguay: Provenance, stratigraphy and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Pecoits, Ernesto; Aubet, Natalie R.; Heaman, Larry M.; Philippot, Pascal; Rosière, Carlos A.; Veroslavsky, Gerardo; Konhauser, Kurt O.

    2016-11-01

    The Neoproterozoic volcano-sedimentary successions of Uruguay have been the subject of several sedimentologic, chrono-stratigraphic and tectonic interpretation studies. Recent studies have shown, however, that the stratigraphy, age and tectonic evolution of these units remain uncertain. Here we use new Usbnd Pb detrital zircon ages, combined with previously published geochronologic and stratigraphic data in order to provide more precise temporal constraints on their depositional age and to establish a more solid framework for the stratigraphic and tectonic evolution of these units. The sequence of events begins with a period of tectonic quiescence and deposition of extensive mixed siliciclastic-carbonate sedimentary successions. This is followed by the development of small fault-bounded siliciclastic and volcaniclastic basins and the emplacement of voluminous granites associated with episodic terrane accretion. According to our model, the Arroyo del Soldado Group and the Piedras de Afilar Formation were deposited sometime between ∼1000 and 650 Ma, and represent passive continental margin deposits of the Nico Pérez and Piedra Alta terranes, respectively. In contrast, the Ediacaran San Carlos (<552 ± 3 Ma) and Barriga Negra (<581 ± 6 Ma) formations, and the Maldonado Group (<580-566 Ma) were deposited in tectonically active basins developed on the Nico Pérez and Cuchilla Dionisio terranes, and the herein defined Edén Terrane. The Edén and the Nico Pérez terranes likely accreted at ∼650-620 Ma (Edén Accretionary Event), followed by their accretion to the Piedra Alta Terrane at ∼620-600 Ma (Piedra Alta Accretionary Event), and culminating with the accretion of the Cuchilla Dionisio Terrane at ∼600-560 Ma (Cuchilla Dionisio Accretionary Event). Although existing models consider all the Ediacaran granites as a result of a single orogenic event, recently published age constraints point to the existence of at least two distinct stages of granite generation, which are spatially and temporally associated with the Edén and Cuchilla Dionisio accretionary events.

  7. Identification of new NE-trending deep-seated faults and tectonic pattern updating in northern Tunisia (Mogodos-Bizerte region), insights from field and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Essid, El Mabrouk; Kadri, Ali; Inoubli, Mohamed Hedi; Zargouni, Fouad

    2016-07-01

    The northern Tunisia is occupied by the Tellian domain constituent the eastern end of the Maghrebides, Alpine fold-thrust belt. Study area includes partially the Tellian domain (Mogodos belt) and its foreland (Bizerte region). Most of this region outcrops consist of Numidian thrust sheet flysch attributed to the lower Oligocene-Burdigalian. In the study area, the major fault systems are still subject of discussion. The Numidian nappe structure, the distribution of basalt and Triassic outcrops within and at the front of this Tellian domain deserve more explanation. In this work we intend to update the structural scheme and the tectonic evolution of the northern Tunisia, taking into account salt tectonics and magmatism. The updated tectonic evolution will be integrated in the geodynamic framework of the Central Mediterranean. For this purpose, we have analyzed morphologic, seismic and structural data. The compilation of the results has allowed the identification of new regional NE-trending faults dipping towards the NW: the Bled el Aouana-Bizerte, the Sejnane-Ras Enjla and the Oued el Harka faults. They correspond to the reactivation of deep-seated normal faults splaying on the Triassic evaporites. This fault system constitutes the main component of the northern Tunisia structural scheme and has influenced its tectonic evolution marked by the main following stages. The Tellian thrust-sheets were immobilized at the uppermost Langhian. During the major Tortonian NW-trending compressive phase, these faults were reactivated with reverse kinematics and controlled the distribution of the post-nappes Neogene continental deposits. At the early Pleistocene, a compressive NNW-trending event has reactivated again these faults with sinistral-reverse movements and deformed the post-nappes Neogene series. Late Quaternary to Actual, the tectonic regime continues to be compressive with a NNW-trending maximum horizontal stress.

  8. Mineral parageneses, regional architecture, and tectonic evolution of Franciscan metagraywackes, Cape Mendocino-Garberville-Covelo 30' x 60' quadrangles, northwest California

    USGS Publications Warehouse

    Ernst, W.G.; McLaughlin, Robert J.

    2012-01-01

    The Franciscan Complex is a classic subduction-zone assemblage. In northwest California, it comprises a stack of west vergent thrust sheets: westernmost Eastern Belt outliers; Central Belt mélange; Coastal Belt Yager terrane; Coastal Belt Coastal terrane; Coastal Belt King Range/False Cape terranes. We collected samples and determined P-T conditions of recrystallization for 88 medium-fine-grained metasandstones to assess their subduction-exhumation histories and assembly of the host allochthons. Feebly recrystallized Yager, Coastal, and King Range strata retain clear detrital features. Scattered neoblastic prehnite occurs in several Coastal terrane metasandstones; traces of possible pumpellyite are present in three Yager metaclastic rocks. Pumpellyite ± lawsonite ± aragonite-bearing Central Belt metasandstones are moderately deformed and reconstituted. Intensely contorted, thoroughly recrystallized Eastern Belt affinity quartzose metagraywackes contain lawsonite + jadeitic pyroxene ± aragonite ± glaucophane. We microprobed neoblastic phases in 23 rocks, documenting mineral parageneses that constrain the tectonic accretion and metamorphic P-T evolution of these sheets. Quasi-stable mineral assemblages typify Eastern Belt metasandstones, but mm-sized domains in the Central and Coastal belt rocks failed to achieve chemical equilibrium. Eastern Belt slabs rose from subduction depths approaching 25–30 km, whereas structurally lower Central Belt mélanges returned from ∼15–18 km. Coastal Belt assemblages suggest burial depths less than 5–8 km. Eastern and Central belt allochthons sequentially decoupled from the downgoing oceanic lithosphere and ascended into the accretionary margin; K-feldspar-rich Coastal Belt rocks were stranded along the continental edge without undergoing appreciable subduction, probably during Paleogene unroofing of the older, deeply subducted units of the Franciscan Complex in east-vergent crustal wedges.

  9. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  10. A new subdivision of the central Sesia Zone (Aosta Valley, Italy)

    NASA Astrophysics Data System (ADS)

    Giuntoli, Francesco; Engi, Martin; Manzotti, Paola; Ballèvre, Michel

    2015-04-01

    The Sesia Zone in the Western Alps is a continental terrane probably derived from the NW-Adriatic margin and polydeformed at HP conditions during Alpine convergence. Subdivisions of the Sesia Zone classically have been based on the dominant lithotypes: Eclogitic Micaschist Complex, Seconda Zona Diorito-Kinzigitica, and Gneiss Minuti Complex. However, recent work (Regis et al., 2014) on what was considered a single internal unit has revealed that it comprises two or more tectonic slices that experienced substantially different PTDt-evolutions. Therefore, detailed regional petrographic and structural mapping (1:3k to 1:10k) was undertaken and combined with extensive sampling for petrochronological analysis. Results allow us to propose a first tectonic scheme for the Sesia Zone between the Aosta Valley and Val d'Ayas. A set of field criteria was developed and applied, aiming to recognize and delimit the first order tectonic units in this complex structural and metamorphic context. The approach rests on three criteria used in the field: (1) Discontinuously visible metasedimentary trails (mostly carbonates) considered to be monocyclic (Permo-Mesozoic protoliths); (2) mappable high-strain zones; and (3) visible differences in the metamorphic imprint. None of these key features used are sufficient by themselves, but in combination they allow us to propose a new map that delimits main units. We propose an Internal Complex with three eclogitic sheets, each 0.5-3 km thick. Dominant lithotypes include micaschists associated with mafic rocks and minor orthogneiss. The main foliation is of HP, dipping moderately NW. Each of these sheets is bounded by (most likely monometamorphic) sediments, <10-50 m thick. HP-relics (of eclogite facies) are widespread, but a greenschist facies overprint locally is strong close to the tectonic contact to neighbouring sheets. An Intermediate Complex lies NW of the Internal Complex and comprises two thinner, wedge-shaped units termed slices. These are composed of siliceous dolomite marbles, meta-granites and -diorites with few mafic boudins. The main foliation dips SE and is of greenschist facies, but omphacite, glaucophane, and garnet occur as relics. Towards the SW, the width of the Intermediate Complex is reduced from 0.5 km to a few meters. In the External Complex several discontinuous lenses occur; these comprise 2DK-lithotypes and are aligned with greenschist facies shear zones mapped within Gneiss Minuti. By combining these features, three main sheets were delimited in the External Complex, with the main foliation being of greenschist facies and dipping moderately SE. Petrological work and in situ U-Th-Pb dating of accessory phases is underway in several of these subunits of the Sesia Zone to constrain their PTDt-history and thus their Alpine assembly. REFERENCE Regis, D., Rubatto, D., Darling, J., Cenki-Tok, B., Zucali, M., Engi, M., 2014. Multiple metamorphic stages within an eclogite-facies terrane (Sesia Zone, Western Alps) revealed by Th-U-Pb petrochronology. J.Petrol. 55, 1429-1456.

  11. How did Earth not End up like Venus?

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Lenardic, A.; Weller, M. B.

    2017-12-01

    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  12. Latest Pannonian and Quaternary evolution at the transition between Eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data

    NASA Astrophysics Data System (ADS)

    Zámolyi, A.; Salcher, B.; Draganits, E.; Exner, U.; Wagreich, M.; Gier, S.; Fiebig, M.; Lomax, J.; Surányi, G.; Diel, M.; Zámolyi, F.

    2017-07-01

    The transition zone between Eastern Alps and Pannonian Basin is a key area for the investigation of the interplay between regional uplift, local tectonic subsidence and depositional environment. Our study area, the western margin of the Little Hungarian Plain, is characterized by gentle hills, plateaus and depressions, of which several are filled by lakes—including one of Austria's largest and shallowest lakes, Lake Neusiedl. Geological investigation is hampered by the scarcity of outcrops, and thus direct observation of sedimentological or structural features is difficult. Despite a long research history in the area, a consistent landscape evolution model considering all relevant constraints is lacking so far. In this study, we apply multidisciplinary methods to decipher the complex tectonic and fluvial depositional evolution of the region. Local data from shallow-lake drilling and seismic investigation are combined with regional data from industrial seismics and core data to gain new insights into the latest Pannonian (Late Miocene) and Quaternary evolution. Shallow-lake seismic data show the erosionally truncated Pannonian sediments dipping and thickening toward southeast, toward the modern depocenter of the Little Hungarian Plain. Overlying Quaternary fluvial sediments show a very similar thickening trend except for the area on the plateau north of the lake indicating ongoing subsidence in major parts of the basin. Drill cores from locations along the lake seismic lines were analyzed concerning their age, mineralogy and heavy minerals and compared with outcrop samples from the surrounding plains and the plateau to derive indications on sediment provenance. A key observation is the apparent lack of a significant gravel layer on top of the tilted Pannonian sediments beneath Lake Neusiedl. Small-scale faults can be observed in the lake seismic sections along with key sedimentary features. Significant differences of the current elevation of the top Pannonian between the surrounding plains and the plateau indicate post-Pannonian normal faulting, which is a key process in shaping the present-day morphology of the region. Luminescence ages of samples from the Quaternary fluvial gravels on top of the Pannonian sediments are a significantly higher (>300 ka) compared to the gravels in the plain (102 ± 11 and 76 ± 8 ka), suggesting ongoing tectonic subsidence.

  13. Tectonic escape of the Caribbean plate since the Paleocene: a consequence of the Chicxulub meteor impact?

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Martinez-Reyes, J.; Crespy, A.; Zitter, T. A. C.

    2012-04-01

    The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic complexes, but also the relatively recent motion along the Cayman Fault zone (Miocene instead of Eocene). These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group, TOTAL S.A., Paris.

  14. Field Geology for Environment Awareness

    NASA Astrophysics Data System (ADS)

    Andrez, Marilia

    2017-04-01

    The objective of this project is to show the scientific and educational potential of natural environment of Lisbon region through increase of excitement for plate tectonics subjects to high school students. It is expected the students be able to understand the main concepts of the plate tectonics, stratigraphy, paleontology and paleoenvironmental interpretations, explain in the field nearby Lisbon. The richness of Guincho beach geodiversity and "Sintra Syenite Complex" valuate the geological patrimony. Combining these entities and educational purposes will raise awareness to sustainable attitudes favoring the preservation of natural patrimony by the students. The subjects approached in the project are based on the inspection of several outcrops related to the evolution of the Iberian Plate at early Mesozoic period, at several places of geological interest. The landscape of Guincho is dominated by Mesozoic formations that show good conditions paleoenvironmental and geodynamic interpretations associated to the opening of the North Atlantic. Moreover it reveals the environment linked to the magmatic intrusion of the "Sintra Alcaline Complex" at the end of Cretaceous. It is believed the contact with field is crucial to the awareness of young people to subjects that are not daily matters, however important when presented in the light of an urgent society problem such as environment preservation, at all levels by all people.

  15. Palaeohydrological evolution of the late Cenozoic saline lake in the Qaidam Basin, NE Tibetan Plateau: Tectonic vs. climatic control

    NASA Astrophysics Data System (ADS)

    Guo, Pei; Liu, Chiyang; Huang, Lei; Yu, Mengli; Wang, Peng; Zhang, Guoqing

    2018-06-01

    As the largest Cenozoic terrestrial intermountain basin on the Tibetan Plateau, the Qaidam Basin is an ideal setting to understand the coupled controls of tectonics and climate on hydrological evolution. In this study, we used 47,846 data of carbonate and chloride contents from 146 boreholes to reconstruct the Neogene-Quaternary basin-wide hydrological evolution of the Qaidam Basin. Our results show that during the early Miocene (22-15 Ma), the palaeolake in the Qaidam Basin was mainly situated in the southwestern part of the basin, and its water was mostly brackish. From then on, this palaeolake progressively migrated southeastward, and its salinity increased from late Miocene saline water to Quaternary brines. This generally increasing trend of the water palaeosalinity during the late Cenozoic corresponded with regional and global climate changes at that time, suggesting the dominance of climatic control. However, the paces of the salinity increase from sediments in front of the three basin-bounding ranges were not the same, indicating that extra tectonic controls occurred. Sediments in front of the Eastern Kunlun Shan to the southwest and the Altyn Shan to the northwest showed an abrupt, dramatic increase in salinity at 15 Ma and 8 Ma, respectively; sediments in front of the Qilian Shan to the northeast showed steady increase without prominent, abrupt changes, indicating the occurrence of asynchronous tectonic controls from the basin-bounding ranges. The late Miocene depocentre migration was synchronous with the hydrological changes in front of the Altyn Shan, while the more significant migration during the Quaternary was consistent with the pulsing, intense extrabasinal and intrabasinal tectonic movements along the Tibetan Plateau.

  16. Post-rift Tectonic History of the Songliao Basin, NE China: Cooling Events and Post-rift Unconformities Driven by Orogenic Pulses From Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Song, Ying; Stepashko, Andrei; Liu, Keyu; He, Qingkun; Shen, Chuanbo; Shi, Bingjie; Ren, Jianye

    2018-03-01

    The classic lithosphere-stretching model predicts that the post-rift evolution of extensional basin should be exclusively controlled by decaying thermal subsidence. However, the stratigraphy of the Songliao Basin in northeastern China shows that the post-rift evolution was punctuated by multiple episodes of uplift and exhumation events, commonly attributed to the response to regional tectonic events, including the far-field compression from plate margins. Three prominent tectonostratigraphic post-rift unconformities are recognized in the Late Cretaceous strata of the basin: T11, T03, and T02. The subsequent Cenozoic history is less constrained due to the incomplete record of younger deposits. In this paper, we utilize detrital apatite fission track (AFT) thermochronology to unravel the enigmatic timing and origin of post-rift unconformities. Relating the AFT results to the unconformities and other geological data, we conclude that in the post-rift stage, the basin experienced a multiepisodic tectonic evolution with four distinct cooling and exhumation events. The thermal history and age pattern document the timing of the unconformities in the Cretaceous succession: the T11 unconformity at 88-86 Ma, the T03 unconformity at 79-75 Ma, and the T02 unconformity at 65-50 Ma. A previously unrecognized Oligocene unconformity is also defined by a 32-24 Ma cooling event. Tectonically, all the cooling episodes were regional, controlled by plate boundary stresses. We propose that Pacific dynamics influenced the wider part of eastern Asia during the Late Cretaceous until Cenozoic, whereas the far-field effects of the Neo-Tethys subduction and collision processes became another tectonic driver in the later Cenozoic.

  17. Neotectonic control on drainage systems: GIS-based geomorphometric and morphotectonic assessment for Crete, Greece

    NASA Astrophysics Data System (ADS)

    Argyriou, Athanasios V.; Teeuw, Richard M.; Soupios, Pantelis; Sarris, Apostolos

    2017-11-01

    Geomorphic indices can be used to examine the geomorphological and tectonic processes responsible for the development of the drainage basins. Such indices can be dependent on tectonics, erosional processes and other factors that control the morphology of the landforms. The inter-relationships between geomorphic indices can determine the influence of regional tectonic activity in the shape development of drainage basins. A Multi-Criteria Decision Analysis (MCDA) procedure has been used to perform an integrated cluster analysis that highlights information associated with the dominant regional tectonic activity. Factor Analysis (FA) and Analytical Hierarchy Process (AHP) were considered within that procedure, producing a representation of the distributed regional tectonic activity of the drainage basins studied. The study area is western Crete, located in the outer fore-arc of the Hellenic subduction zone, one of the world's most tectonically active regions. The results indicate that in the landscape evolution of the study area (especially the western basins) tectonic controls dominate over lithological controls.

  18. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, Xiaozhi; He, Dengfa; Qi, Xuefeng

    2016-04-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows, and oil and gas fields have also been discovered in the Zaysan Basin in adjacent Kazakhstan and in adjacent Junggar, Tuha and Santanghu Basins. Drilling data, geochemical analysis of outcrop data, and the disection of ancient Bulongguoer oil reservoir at the south margin of the Hefeng Basin show there developed two sets of good transitional source rocks, the lower Hujierste Formation in the Middle Devonian (D2h1) and the Hebukehe Formation in the Upper Devonian and Lower Carboniferous (D3-C1h) in this area, which, 10 to 300 m thick, mainly distribute in the shoal water zone along Tacheng-Ertai Late Paleozoic island arc belt. Reservoirs were mainly formed in the Jurassic and then adjusted in two periods, one from the end of the Jurassic to middle Cretaceous and the other in early Paleogene. Those early oil reservoirs might be destroyed in areas such as Bulongguoer with poor preservation conditions, but in an area with good geologic and preserving conditions, oil and gas might accumulate again to form new reservoirs. Therefore, a potential Middle Devonian-Lower Carboniferous petroleum system may exist in Tacheng-Ertai island arc belt, which may become a new domain for exploration, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.

  19. In situ stress conditions at IODP Site C0002 reflecting the tectonic evolution of the sedimentary system near the seaward edge of the Kumano basin, offshore from SW Japan

    NASA Astrophysics Data System (ADS)

    Song, Insun; Chang, Chandong

    2017-05-01

    This paper presents a complete set of in situ stress calculations for depths of 200-1400 meters below seafloor at Integrated Ocean Drilling Program (IODP) Site C0002, near the seaward margin of the Kumano fore-arc basin, offshore from southwest Japan. The vertical stress component was obtained by integrating bulk density calculations from moisture and density logging data, and the two horizontal components were stochastically optimized by minimizing misfits between a probabilistic model and measured breakout widths for every 30 m vertical segment of the wellbore. Our stochastic optimization process reveals that the in situ stress regime is decoupled across an unconformity between an accretionary complex and the overlying Kumano fore-arc basin. The stress condition above the unconformity is close to the critical condition for normal faulting, while below the unconformity the geologic system is stable in a normal to strike-slip fault stress regime. The critical state of stress demonstrates that the tectonic evolution of the sedimentary system has been achieved mainly by the regionally continuous action of a major out-of-sequence thrust fault during sedimentation in the fore-arc basin. The stable stress condition in the accretionary prism is interpreted to have resulted from mechanical decoupling by the accommodation of large displacement along the megasplay fault.

  20. Tectonic and Magmatic Controls on Extension and Crustalaccretion in Backarc Basins, Insights from the Lau Basin and Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Sleeper, Jonathan D.

    This dissertation examines magmatic and tectonic processes in backarc basins, and how they are modulated by plate- and mantle-driven mechanisms. Backarc basins initiate by tectonic rifting near the arc volcanic front and transition to magmatic seafloor spreading. As at mid-ocean ridges (MORs), spreading can be focused in narrow plate boundary zones, but we also describe a diffuse spreading mode particular to backarc basins. At typical MORs away from hot spots and other melting anomalies, spreading rate is the primary control on the rate of mantle upwelling and decompression melting. At backarc spreading centers, water derived from the subducting slab creates an additional mantle-driven source of melt and buoyant upwelling. Furthermore, because basins open primarily in response to trench rollback, which is inherently a non-rigid process, backarc extensional systems often have to respond to a constantly evolving stress regime, generating complex tectonics and unusual plate boundaries not typically found at MORs. The interplay between these plate- and mantle-driven processes gives rise to the variety of tectonic and volcanic morphologies peculiar to backarc basins. Chapter 2 is focused on the Fonualei Rift and Spreading Center in the Lau Basin. The southern portion of the axis is spreading at ultraslow (<20 mm/yr) opening rates in close proximity to the arc volcanic front and axial morphology abruptly changes from a volcanic ridge to spaced volcanic cones resembling arc volcanoes. Spreading rate and arc proximity appear to control transitions between two-dimensional and three-dimensional mantle upwelling and volcanism. In the second study (Chapter 3), I develop a new model for the rollback-driven kinematic and tectonic evolution of the Lau Basin, where microplate tectonics creates rapidly changing plate boundary configurations. The third study (Chapter 4) focuses on the southern Mariana Trough and the transitions between arc rifting, seafloor spreading, and a new mode of "diffuse spreading," where new crust is accreted in broad zones rather than along a narrow spreading axis, apparently controlled by a balance between slab water addition and its extraction due to melting and crustal accretion.

  1. Sedimentation and tectonics of the Sylhet trough, Bangladesh

    USGS Publications Warehouse

    Johnson, S.Y.; Nur Alam, A.M.

    1991-01-01

    The Sylhet trough, a sub-basin of the Bengal Basin in northeastern Bangladesh, contains a thick fill (12 to 16 km) of late Mesozoic and Cenozoic strata that record its tectonic evolution. Stratigraphic, sedimentologic, and petrographic data collected from outcrops, cores, well logs, and seismic lines are used to reconstruct the history of this trough. -from Authors

  2. Geological Evolution of the Ganiki Planitia Quadrangle (V14) on Venus

    NASA Technical Reports Server (NTRS)

    Grosfils, E. B.; Drury, D. E.; Hurwitz, D. M.; Kastl, B.; Long, s. M.; Richards, J. W.; Venechuk, E. M.

    2005-01-01

    The Ganiki Planitia quadrangle (25-50degN, 180-210degE) is located north of Atla Regio, south of Vinmara Planitia, and southeast of Atalanta Planitia. The region contains a diverse array of volcanic-, tectonic- and impact-derived features, and the objectives for the ongoing mapping effort are fivefold: 1) explore the formation and evolution of radiating dike swarms within the region, 2) use the diverse array of volcanic deposits to further test the neutral buoyancy hypothesis proposed to explain the origin of reservoir-derived features, 3&4) unravel the volcanic and tectonic evolution in this area, and 5) explore the implications of 1-4 for resurfacing mechanisms. Here we summarize our onging analysis of the material unit stratigraphy in the quadrangle, data central to meeting the aforementioned objectives successfully.

  3. Mars Geological Province Designations for the Interpretation of GRS Data

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Kerry, K.; Baker, V. R.; Boynton, W.; Maruyama, Shige; Anderson, R. C.

    2005-01-01

    Introduction: An overarching geologic theory, GEOMARS, coherently explains many otherwise anomalous aspects of the geological history of Mars. Premises for a theory of martian geologic evolution include: (1) Mars is a water-rich terrestrial planet, (2) terrestrial planets should evolve through progressive stages of dynamical history (accretion, differentiation, tectonism) and mantle convection (magma ocean, plate tectonism, stagnant lid), and (3) the early history of Earth affords an analogue to the evolution of Mars. The theory describes the following major stages of evolution for Mars (from oldest to youngest): Stage 1 - shortly after accretion, Mars differentiates to a liquid metallic core, a mantle boundary (MBL) of high-pressure silicate mineral phases, upper mantle, magma ocean, thin komatiic crust, and convecting steam atmosphere; Stage 2- Mars cools to condense its steam atmosphere and transform its mode of mantle convection to plate tectonism; subduction of waterrich oceanic crust initiates arc volcanism and transfers water, carbonates and sulfates to the mantle; Stage 3 - the core dynamo initiates, and the associated magnetosphere leads to conditions conducive to the development of near-surface life and photosynthetic production of oxygen; Stage 4 - accretion of thickened, continental crust and subduction of hydrated oceanic crust to the mantle boundary layer and lower mantle of Mars occurs; Stage 5 - the core dynamo stops during Noachian heavy bombardment while plate tectonism continues; Stage 6 - initiation of the Tharsis superplume (approx. between 4.0 and 3.8Ga) occurs, and Stage 7 - the superlume phase (stagnant-lid regime) of martian planetary evolution with episodic phases of volcanism and water outflows continues into the present. The GEOMARS Theory is testable through a multidisciplinary approach, including utilizing GRS-based information. Based on a synthesis of published geologic, paleohydrologic, topographic, geophysical, spectral, and elemental information, we have defined geologic provinces that represent significant windows into the geological evolution of Mars, unfolding the GEOMARS Theory and forming the basis for interpreting GRS data.

  4. The tectonic evolution of the southeastern Terceira Rift/São Miguel region (Azores)

    NASA Astrophysics Data System (ADS)

    Weiß, B. J.; Hübscher, C.; Lüdmann, T.

    2015-07-01

    The eastern Azores Archipelago with São Miguel being the dominant subaerial structure is located at the intersection of an oceanic rift (Terceira Rift) with a major transform fault (Gloria Fault) representing the westernmost part of the Nubian-Eurasian plate boundary. The evolution of islands, bathymetric highs and basin margins involves strong volcanism, but the controlling geodynamic and tectonic processes are currently under debate. In order to study this evolution, multibeam bathymetry and marine seismic reflection data were collected to image faults and stratigraphy. The basins of the southeastern Terceira Rift are rift valleys whose southwestern and northeastern margins are defined by few major normal faults and several minor normal faults, respectively. Since São Miguel in between the rift valleys shows an unusual W-E orientation, it is supposed to be located on a leaky transform. South of the island and separated by a N120° trending graben system, the Monacco Bank represents a N160° oriented flat topped volcanic ridge dominated by tilted fault blocks. Up to six seismic units are interpreted for each basin. Although volcanic ridges hamper a direct linking of depositional strata between the rift and adjacent basins, the individual seismic stratigraphic units have distinct characteristics. Using these units to provide a consistent relative chrono-stratigraphic scheme for the entire study area, we suggest that the evolution of the southeastern Terceira Rift occurred in two stages. Considering age constrains from previous studies, we conclude that N140° structures developed orthogonal to the SW-NE direction of plate-tectonic extension before ~ 10 Ma. The N160° trending volcanic ridges and faults developed later as the plate tectonic spreading direction changed to WSW-ENE. Hence, the evolution of the southeastern Terceira Rift domain is predominantly controlled by plate kinematics and lithospheric stress forming a kind of a re-organized rift system.

  5. Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon

    NASA Astrophysics Data System (ADS)

    Harper, Gregory D.; Wright, James E.

    1984-12-01

    The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.

  6. Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting

    USGS Publications Warehouse

    Fuis, G.S.; Moore, Thomas E.; Plafker, G.; Brocher, T.M.; Fisher, M.A.; Mooney, W.D.; Nokleberg, W.J.; Page, R.A.; Beaudoin, B.C.; Christensen, N.I.; Levander, A.R.; Lutter, W.J.; Saltus, R.W.; Ruppert, N.A.

    2008-01-01

    We investigate the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980s and early 1990s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted as remnants of the extinct Kula (or Resurrection) plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by large-scale duplex structures that overlie a tectonic wedge of North Slope crust and mantle. There, the Moho has been depressed to nearly 50 km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula (or Resurrection) plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two regions include flat-slab subduction and an orogenic-float model. In the Neogene, the tectonics of the accreting Yakutat terrane have differed across a newly interpreted tear in the subducting Pacific oceanic lithosphere. East of the tear, Pacific oceanic lithosphere subducts steeply and alone beneath the Wrangell volcanoes, because the overlying Yakutat terrane has been left behind as underplated rocks beneath the rising St. Elias Range, in the coastal region. West of the tear, the Yakutat terrane and Pacific oceanic lithosphere subduct together at a gentle angle, and this thickened package inhibits volcanism. ?? 2008 The Geological Society of America.

  7. Plio-pleistocene volcano-tectonic evolution of la Reforma Caldera, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Demant, Alain; Ortlieb, Luc

    1981-01-01

    La Reforma volcanic complex, in east-central Baja California, shows a characteristic caldera structure, 10 km in diameter. The first eruptive stage, during the Pliocene, was manifested by ash and pumice falls and by subaqueous pumitic flows. In a second stage basic flows were deposited in a near-shore environment (subaerial and pillow lavas). During the early Pleistocene a large ignimbritic eruption, producing mainly pantelleritic tuffs, immediately predated the formation of the caldera itself. Afterwards, along marginal fractures of the caldera, some rhyolitic domes and flows partially covered the thick ignimbritic sheet. A block of Miocene substratum, in the center of the caldera, has been uplifted, nearly 1 km, by "resurgent doming". Small outcrops of diorite might constitute the top of coarse-grained crystallized magmatic bodies, and thus support the "resurgent doming" interpretation. A few basaltic cones were finally built on the flanks of the caldera complex; the latter are not related to the caldera history but to the extension tectonics of the Gulf of California which are also responsible for the Tortuga Island and the Holocene Tres Virgenes tholeiitic cones. South of la Reforma are found the highest (+300 m) Pleistocene marine deposits of the Gulf coast of Baja California. The uplift of this area is due in part to the positive epeirogenic movements of the whole peninsular crustal block, and also to the late doming of the caldera. On the coastal (eastern) flank of La Reforma complex up to seven stepped wave-cut terraces have been preserved, the highest reaching more than +150 m and the lowest ones +25 m. Lateral correlations of the marine terraces along the whole Gulf of California suggest that this volcano-tectonic uplift, that is still active, is of the order of 240 mm/10 3 y. The set of terraces is interpreted to be Middle (700-125 × 10 3y) to Upper (125-80 × 10 3y) Pleistocene, and is tentatively correlated with the paleoclimatic chronology of deep-sea cores.

  8. Extensional tectonics on continents and the transport of heat and matter

    NASA Technical Reports Server (NTRS)

    Neugebauer, H. J.

    1985-01-01

    Intracontinental zones of extensional tectonic style are commonly of finite width and length. Associated sedimentary troughs are fault-controlled. The evolution of those structures is accompanied by volcanic activity of variable intensity. The characteristic surface structures are usually underlaid by a lower crust of the transitional type while deeper subcustal areas show delayed travel times of seismic waves especially at young tectonic provinces. A correspondence between deep-seated processes and zones of continental extension appears obvious. A sequential order of mechanisms and their importance are discussed in the light of modern data compilations and quantitative kinematic and dynamic approaches. The Cenozoic exensional tectonics related with the Rhine River are discussed.

  9. Ductile strain rate recorded in the Symvolon syn-extensional plutonic body (Rhodope core complex, Greece)

    NASA Astrophysics Data System (ADS)

    Cirrincione, Rosolino; Fazio, Eugenio; Ortolano, Gaetano; Fiannacca, Patrizia; Kern, Hartmut; Mengel, Kurt; Pezzino, Antonino; Punturo, Rosalda

    2016-04-01

    The present contribution deals with quantitative microstructural analysis, which was performed on granodiorites of the syn-tectonic Symvolon pluton (Punturo et al., 2014) at the south-western boundary of the Rhodope Core Complex (Greece). Our purpose is the quantification of ductile strain rate achieved across the pluton, by considering its cooling gradient from the centre to the periphery, using the combination of a paleopiezometer (Shimizu, 2008) and a quartz flow law (Hirth et al., 2001). Obtained results, associated with a detailed cooling history (Dinter et al., 1995), allowed us to reconstruct the joined cooling and strain gradient evolution of the pluton from its emplacement during early Miocene (ca. 700°C at 22 Ma) to its following cooling stage (ca. 500-300°C at 15 Ma). Shearing temperature values were constrained by means of a thermodynamic approach based on the recognition of syn-shear assemblages at incremental strain; to this aim, statistical handling of mineral chemistry X-Ray maps was carried out on microdomains detected at the tails of porphyroclasts. Results indicate that the strain/cooling gradients evolve "arm in arm" across the pluton, as also testified by the progressive development of mylonitic fabric over the magmatic microstructures approaching the host rock. References • Dinter, D. A., Macfarlane, A., Hames, W., Isachsen, C., Bowring, S., and Royden, L. (1995). U-Pb and 40Ar/39Ar geochronology of the Symvolon granodiorite: Implications for the thermal and structural evolution of the Rhodope metamorphic core complex, northeastern Greece. Tectonics, 14 (4), 886-908. • Shimizu, I. (2008). Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms. Journal of Structural Geology, 30 (7), 899-917. • Hirth, G., Teyssier, C., and Dunlap, J. W. (2001). An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90 (1), 77-87. • Punturo, R., Cirrincione, R., Fazio, E., Fiannacca, P., Kern, H., Mengel, K., Ortolano G., and Pezzino, A. (2014). Microstructural, compositional and petrophysical properties of mylonitic granodiorites from an extensional shear zone (Rhodope Core complex, Greece). Geological Magazine, 151 (6), 1051-1071.

  10. Tectonic evolution of Western Ishtar Terra, Venus

    NASA Astrophysics Data System (ADS)

    Marinangeli, Lucia

    1997-03-01

    A detailed geological mapping based on Magellan data has been done in Western Ishtar Terra from 300-330 deg W to 65-75 deg N. The area studied comprises three main phisiografic provinces, Atropos Tessera, Akna Montes and North-Western Lakshmi Planum. The purposes of this study are (1) to recognize the tectonism of this area and investigate its type, direction, intensity, distribution and age relationships, (2) to define the link between the formation of the Akna mountain belt and the tectonic deformation in adjacent Tessera and Lakshmi Planum.

  11. Palaeomagnetic constraints on the evolution of the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N)

    NASA Astrophysics Data System (ADS)

    Morris, A.; Pressling, N.; Gee, J. S.

    2012-04-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. One of the most extensively studied oceanic core complexes is Atlantis Massif, located at 30°N at the intersection of the Atlantis Transform Fault and the Mid Atlantic Ridge (MAR). The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305 (Hole U1309D). This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. Correlation of structures observed on oriented borehole (FMS) images and those recorded on unoriented core pieces allows reorientation of R1 remanences. The mean remanence direction in true geographic coordinates constrains the tectonic rotation experienced by the Atlantis Massif footwall, indicating a 46°±6° counterclockwise around a MAR-parallel horizontal axis trending 011°±6°. The detachment fault therefore initiated at a steep dip of >50° and then rotated flexurally to its present day low angle geometry (consistent with a 'rolling-hinge' model for detachment evolution). In a number of intervals, the gabbros exhibit a complex remanence structure with the presence of additional intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. The crystallization age of the section (1.2 Ma; derived from Pb/U zircon dating) suggests that the R1 component was acquired during geomagnetic polarity chron C1r.2r, N1 during chron C1r.1n (Jaramillo) and R2 during chron C1r.1r. By considering the maximum time intervals available for acquisition of the N1 and R2 components and correcting laboratory unblocking temperatures accordingly, the data provide additional constraints on the thermal evolution of the Atlantis Massif footwall.

  12. Palaeomagnetic constraints on the evolution of the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N)

    NASA Astrophysics Data System (ADS)

    Morris, A.; Pressling, N.; Gee, J. S.

    2011-12-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. One of the most extensively studied oceanic core complexes is Atlantis Massif, located at 30°N at the intersection of the Atlantis Transform Fault and the Mid Atlantic Ridge (MAR). The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305 (Hole U1309D). This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. Correlation of structures observed on oriented borehole (FMS) images and those recorded on unoriented core pieces allows reorientation of R1 remanences. The mean remanence direction in true geographic coordinates constrains the tectonic rotation experienced by the Atlantis Massif footwall, indicating a 46°±6° counterclockwise around a MAR-parallel horizontal axis trending 011°±6°. The detachment fault therefore initiated at a steep dip of >50° and then rotated flexurally to its present day low angle geometry (consistent with a 'rolling-hinge' model for detachment evolution). In a number of intervals, the gabbros exhibit a complex remanence structure with the presence of additional intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. The crystallization age of the section (1.2 Ma; derived from Pb/U zircon dating) suggests that the R1 component was acquired during geomagnetic polarity chron C1r.2r, N1 during chron C1r.1n (Jaramillo) and R2 during chron C1r.1r. By considering the maximum time intervals available for acquisition of the N1 and R2 components and correcting laboratory unblocking temperatures accordingly, the data provide additional constraints on the thermal evolution of the Atlantis Massif footwall.

  13. Permeability changes induced by microfissure closure and opening in tectonized materials. Effect on slope pore pressure regime.

    NASA Astrophysics Data System (ADS)

    De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca

    2015-04-01

    Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.

  14. U-Pb dating and isotopic signature of the alkaline ring complexes of Bou Naga (Mauritania): its bearing on late proterozoic plate tectonics around the West African craton

    NASA Astrophysics Data System (ADS)

    Blanc, A.; Bernard-Griffiths, J.; Caby, R.; Caruba, C.; Caruba, R.; Dars, R.; Fourcade, S.; Peucat, J. J.

    1992-04-01

    In the West African fold belt of Mauritania, high-grade metamorphic series, similar to those of Amsaga (Reguibat shield-West African Craton), are exposed in a window. At Bou Naga-Mauritania (19° N, 13° 15' W) in the South of this window, an alkaline ring complex has intruded the metamorphic country rocks. This complex consists of two geological formations: the Eastern formation is mainly composed of red rhyolite sills, whereas the Western formation is made up of several kinds of alkaline rocks both saturated and under-saturated which cross cut the earlier saturated units. Three U-Pb zircon age measurements have been made on the alkaline complex, and one on an orthogneiss from the metamorphic country rocks. The syenite and the alkaline granite of the Western block are 676 ± 8 and 687 ± 5 Ma old. The orthogneiss is Archaean with an age of 2709 ± 136 Ma, but the lower intercept of discordia on concordia, shows an age of 756 ± 25 Ma linked with the genesis of the alkaline complex. A major crustal contribution is recorded by Nd and O isotopes in the SiO 2-saturated rocks. These results provide evidence for the correlation of the metamorphic country rocks with the Reguibat Archaean basement and for an early Pan-African continental rifting phase in this area before the tectonometamorphic events in the Mauritanide belt. Furthermore, with regards with previous geodynamic works of the West African Craton, our results leads us to suggest a significant diachronism between late Proterozoic crustal evolution to the West and to the East of the West African Craton. This is a further evidence for modern-type plate tectonics at this time.

  15. Geological evolution of the Pietersburg greenstonebelt, South Africa and associated gold mineralization

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Dewit, M. J.

    1986-01-01

    The polyphase history of gold mineralization seen in the Pietersburg greenstone belt is integrated with the geochemical and tectonic evolution of greenstone belts as a whole. The four distinct regional geological settings of gold mineralization are described.

  16. Development of the Philippine Mobile Belt in northern Luzon from Eocene to Pliocene

    NASA Astrophysics Data System (ADS)

    Suzuki, Shigeyuki; Peña, Rolando E.; Tam, Tomas A.; Yumul, Graciano P.; Dimalanta, Carla B.; Usui, Mayumi; Ishida, Keisuke

    2017-07-01

    The origin of the Philippine Archipelago is characterized by the combination of the oceanic Philippine Mobile Belt (PMB) and the Palawan Continental Block (PCB). This paper is focused on the geologic evolution of the PMB in northern Luzon from Eocene to Pliocene. The study areas (northern Luzon) are situated in the central part of the PMB which is occupied by its typical components made up of a pre-Paleocene ophiolitic complex, Eocene successions, Eocene to Oligocene igneous complex and late Oligocene to Pliocene successions. Facies analysis of the middle Eocene and late Oligocene to early Pliocene successions was carried out to understand the depositional environment of their basins. Modal sandstone compositions, which reflect the basement geology of the source area, were analyzed. Major element geochemistry of sediments was considered to reconstruct the tectonic settings. The following brief history of the PMB is deduced. During the middle Eocene, the PMB was covered by mafic volcanic rocks and was a primitive island arc. In late Eocene to late Oligocene time, the intermediate igneous complex was added to the mafic PMB crust. By late Oligocene to early Miocene time, the PMB had evolved into a volcanic island arc setting. Contributions from alkalic rocks are detected from the rock fragments in the sandstones and chemical composition of the Zigzag Formation. During the middle Miocene to Pliocene, the tectonic setting of the PMB remained as a mafic volcanic island arc.

  17. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  18. Topographic evolution of orogens: The long term perspective

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Hergarten, Stefan; Prasicek, Günther

    2017-04-01

    The landscape of mountain ranges reflects the competition of tectonics and climate, that build up and destroy topography, respectively. While there is a broad consensus on the acting processes, there is a vital debate whether the topography of individual orogens reflects stages of growth, steady-state or decay. This debate is fuelled by the million-year time scales hampering direct observations on landscape evolution in mountain ranges, the superposition of various process patterns and the complex interactions among different processes. In this presentation we focus on orogen-scale landscape evolution based on time-dependent numerical models and explore model time series to constrain the development of mountain range topography during an orogenic cycle. The erosional long term response of rivers and hillslopes to uplift can be mathematically formalised by the stream power and mass diffusion equations, respectively, which enables us to describe the time-dependent evolution of topography in orogens. Based on a simple one-dimensional model consisting of two rivers separated by a watershed we explain the influence of uplift rate and rock erodibility on steady-state channel profiles and show the time-dependent development of the channel - drainage divide system. The effect of dynamic drainage network reorganization adds additional complexity and its effect on topography is explored on the basis of two-dimensional models. Further complexity is introduced by coupling a mechanical model (thin viscous sheet approach) describing continental collision, crustal thickening and topography formation with a stream power-based landscape evolution model. Model time series show the impact of crustal deformation on drainage networks and consequently on the evolution of mountain range topography (Robl et al., in review). All model outcomes, from simple one-dimensional to coupled two dimensional models are presented as movies featuring a high spatial and temporal resolution. Robl, J., S. Hergarten, and G. Prasicek (in review), The topographic state of mountain ranges, Earth Science Reviews.

  19. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    USGS Publications Warehouse

    Bland, Michael T.; McKinnon, William B.

    2018-01-01

    Ganymede’s bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25–50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede’s surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  20. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; McKinnon, William B.

    2018-05-01

    Ganymede's bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25-50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede's surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  1. Microplate and shear zone models for oceanic spreading center reorganizations

    NASA Technical Reports Server (NTRS)

    Engeln, Joseph F.; Stein, Seth; Werner, John; Gordon, Richard

    1988-01-01

    The kinematics of rift propagation and the resulting goemetries of various tectonic elements for two plates is reviewed with no overlap zone. The formation and evolution of overlap regions using schematic models is discussed. The models are scaled in space and time to approximate the Easter plate, but are simplified to emphasize key elements. The tectonic evolution of overlap regions which act as rigid microplates and shear zones is discussed, and the use of relative motion and structural data to discriminate between the two types of models is investigated. The effect of propagation rate and rise time on the size, shape, and deformation of the overlap region is demonstrated.

  2. Structure and tectonic evolution of the NE segment of the Polish-Ukrainian Carpathians during the Late Cenozoic: subsurface cross-sections and palinspastic models

    NASA Astrophysics Data System (ADS)

    Kuśmierek, Jan; Baran, Urszula

    2016-08-01

    The discrepant arrangement of the Carpathian nappes and syntectonic deposits of the Carpathian Foredeep reveals the oroclinal migration of the subduction direction of the platform margin during the Late Cenozoic. Formation of the nappes was induced by their detachment from disintegrated segments of the European Platform; the segments were shortened as a result of their vertical rotation in zones of compressional sutures. It finds expression in local occurrence of the backward vergence of folding against the generally forward vergence toward the Carpathian Foredeep. The precompressional configuration of sedimentation areas of particular nappes was reconstructed with application of the palinspastic method, on the basis of the hitherto undervalued model which emphasizes the influence of the subduction and differentiated morphology of the platform basement on the tectonic evolution of the fold and thrust belt. Superposition of the palaeogeographic representations and the present geometry of the orogen allows understanding of the impact of the magnitudes of tectonic displacements on the differentiation of the geological structure in the NE segment of the Carpathians. The differentiation has inspired different views of Polish and Ukrainian geologists on structural classification and evolution of the frontal thrusts.

  3. Global-scale tectonic patterns on Pluto

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.; Keane, J. T.; Kamata, S.

    2016-12-01

    The New Horizons spacecraft revealed a global-scale tectonic pattern on the surface of Pluto which is presumably related to its formation and early evolution. Changes in the rotational and tidal potentials, expansion, and loading can generate stresses capable of producing global-scale tectonic patterns. The current alignment of Sputnik Planum with the tidal axis suggests a reorientation of Pluto relative to the rotation and tidal axes, or true polar wander. This reorientation can be driven by mass loading associated with Sputnik Planum. We developed a general theoretical formalism for the calculation of tectonic patterns due to a variety of process including true polar wander, loading, and expansion. The formalism is general enough to be applicable to non-axisymmetric loads. We illustrate that the observed global-scale tectonic pattern can be explained by stresses generated by true polar wander, Sputnik Planum loading, and expansion.

  4. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications

    NASA Astrophysics Data System (ADS)

    Bagheri, Sasan; Stampfli, Gérard M.

    2008-04-01

    The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian-Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician-Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block. The "Variscan accretionary complex" is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/ 39Ar ages are obtained as 333-320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian-Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/ 39Ar radiometric ages of 163-156 Ma. The "Variscan" accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280-230 Ma 40Ar/ 39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U-Pb age for the trondhjemite-rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block. The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian-Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak. One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak-Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak-Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.

  5. The internal structure of eclogite-facies ophiolite complexes: Implications from the Austroalpine outliers within the Zermatt-Saas Zone, Western Alps

    NASA Astrophysics Data System (ADS)

    Weber, Sebastian; Martinez, Raul

    2016-04-01

    The Western Alpine Penninic domain is a classical accretionary prism that formed after the closure of the Penninic oceans in the Paleogene. Continental and oceanic nappes were telescoped into the Western Alpine stack associated with continent-continent collision. Within the Western Alpine geologic framework, the ophiolite nappes of the Zermatt-Saas Zone and the Tsate Unit are the remnants of the southern branch of the Piemonte-Liguria ocean basin. In addition, a series of continental basement slices reported as lower Austroalpine outliers have preserved an eclogitic high-pressure imprint, and are tectonically sandwiched between these oceanic nappes. Since the outliers occur at an unusual intra-ophiolitic setting and show a polymetamorphic character, this group of continental slices is of special importance for understanding the tectono-metamorphic evolution of Western Alps. Recently, more geochronological data from the Austroalpine outliers have become available that make it possible to establish a more complete picture of their complex geological history. The Lu-Hf garnet-whole rock ages for prograde growth of garnet fall into the time interval of 52 to 62 Ma (Weber et al., 2015, Fassmer et al. 2015), but are consistently higher than the Lu-Hf garnet-whole rock ages from several other locations throughout the Zermatt-Saas zone that range from 52 to 38 Ma (Skora et al., 2015). This discrepancy suggests that the Austroalpine outliers may have been subducted earlier than the ophiolites of the Zermatt-Saas Zone and therefore have been tectonically emplaced into their present intra-ophiolite position. This points to the possibility that the Zermatt-Saas Zone consists of tectonic subunits, which reached their respective pressure peaks over a prolonged time period, approximately 10-20 Ma. The pressure-temperature estimates from several members of the Austroalpine outliers indicate a complex distribution of metamorphic peak conditions, without ultrahigh-pressure indications. By contrast, the peak conditions derived from the ophiolites of the Zermatt-Saas Zone are uniform, and close to or inside the coesite stability field. These results further underline that the oceanic lithosphere, which experienced its geodynamic evolution as a relatively coherent unit, may contain slices of continental rocks, which in turn show differences in the metamorphic evolution compared to the surrounding ophiolites. Faßmer, K., Obermüller, G., Nagel, T.J., Kirst, F., Froitzheim, N., Sandmann, S., Miladinova, I., Fonseca, R.O.C., Münker, C. (2015): Coherent vs. non-coherent subduction of ophiolite complexes - new insights from the Zermatt-Saas Zone in the Western Alps. GeoBerlin 2015, Berlin, Germany. Skora, S., Mahlen, N. J., Johnson, C. M., Baumgartner, L. P., Lapen, T. J., Beard, B. L., Szilvagyi, E. T., 2015. Evidence for protracted prograde metamorphism followed by rapid exhumation of the Zermatt-Saas Fee ophiolite. Journal of Metamorphic Geology, 33, 711-734. Weber, S., Sandmann, S., Fonseca, R. O. C., Froitzheim, N., Mu¨ nker, C., Bucher, K., 2015. Dating the beginning of Piemonte-Liguria Ocean subduction: Lu-Hf garnet chronometry of eclogites from the Theodul Glacier Unit (Zermatt-Saas Zone, Switzerland). Swiss Journal of Geosciences, 108, 183-199.

  6. Comment on: "Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone, Central Kumaun Himalaya", by Kothyari et al. 2017, Geomorphology (285), 272-286

    NASA Astrophysics Data System (ADS)

    Rana, Naresh; Sharma, Shubhra

    2018-01-01

    The recent paper by Kothyari et al. (2017) suggests that the North Almora Thrust (NAT) and a few subsidiary faults in the central Lesser Himalaya were active during the late Quaternary and Holocene. Considering that in the Indian Summer Monsoon (ISM) dominated and tectonically active central Himalaya, the landscape owes their genesis to a coupling between the tectonics and climate. The present study would have been a good contribution toward improving our understanding on this important topic. Unfortunately, the inferences drawn by the authors are based on inadequate/vague field observations, supported by misquoted references, which reflects their poor understanding of the geomorphic processes. For example, authors implicate tectonics in the landform evolution without providing an argument to negate the role of climate (ISM). In view of this, the above contribution does not add anything substantial in improving our existing knowledge of climate-tectonic interaction in landform evolution. On the contrary, if the above publication is not questioned for its scientific merit, it may create enormous confusion and proliferation of wrong scientific data and inferences.

  7. Puzzling features of western Mediterranean tectonics explained by slab dragging

    NASA Astrophysics Data System (ADS)

    Spakman, Wim; Chertova, Maria V.; van den Berg, Arie.; van Hinsbergen, Douwe J. J.

    2018-03-01

    The recent tectonic evolution of the western Mediterranean region is enigmatic. The causes for the closure of the Moroccan marine gateway prior to the Messinian salinity crisis, for the ongoing shortening of the Moroccan Rif and for the origin of the seismogenic Trans-Alboran shear zone and eastern Betics extension are unclear. These puzzling tectonic features cannot be fully explained by subduction of the east-dipping Gibraltar slab in the context of the regional relative plate motion frame. Here we use a combination of geological and geodetic data, as well as three-dimensional numerical modelling of subduction, to show that these unusual tectonic features could be the consequence of slab dragging—the north to north-eastward dragging of the Gibraltar slab by the absolute motion of the African Plate. Comparison of our model results to patterns of deformation in the western Mediterranean constrained by geological and geodetic data confirm that slab dragging provides a plausible mechanism for the observed deformation. Our results imply that the impact of absolute plate motion on subduction is identifiable from crustal observations. Identifying such signatures elsewhere may improve the mantle reference frame and provide insights on subduction evolution and associated crustal deformation.

  8. Lithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland

    NASA Astrophysics Data System (ADS)

    Yanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A.

    2017-11-01

    Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.

  9. The role of the memory inherited by the system from the Cretaceous-Tertiary evolution of convergent margins into the build-up of the Source area (Apuseni Mountains, Romania).

    NASA Astrophysics Data System (ADS)

    Reiser, Martin; Fügenschuh, Bernhard; Schuster, Ralf

    2010-05-01

    The Apuseni mountains in Romania take a central position in the Alpine Carpathian Dinaride system and separate the Pannonian basin in the west from the Transsylvanian basin in the east. The Cretaceous age nappe stack involves from bottom to top Tisza- (Bihor and Codru) and Dacia-derived units (Biharia, according to Schmid et al., 2008) overlain by the South Apuseni and Transylvanian ophiolite belt. This study tries to provide new and additional information on the structural and metamorphic evolution of these units from the Jurassic obduction to neotectonic activity. This also comprises information on their interaction with the neighbouring basins. The objective is to show the impact of large scale (plate) tectonics (f.i. in terms of its thermal configuration and strengths profile) and the impact of early-formed tectonic features for the further evolution, specifically the formation of the surrounding basins together with its feedback with topography. This approach includes investigation of kinematics along first order contacts during distinct events together with the thermotectonic characterization of the involved units. While the early "high-grade" evolution will be geochronologically addressed by Sm/Nd, Rb/Sr and Ar/Ar dating, fission track analysis on zircon and apatite will be used to constrain the low-temperature part of the story. Already available data by Sanders (1998), Schuller (2004), Merten (in preparation) and Kounov (in preparation) together with new own data will be used to provide a 4D model for the late-stage thermal evolution of the Apuseni mountains. Thermal modelling will be compared and integrated with numerical modelling of the landscape evolution. The hereby generated data and information on erosion and exhumation will be further used in associated partner projects of the Source to Sink research network which addresses the evolution of the Danube system from the hinterland to the Black Sea. References: Sanders, C. A. E. (1998), Tectonics and erosion - Competitive forces in a compressive orogen: A fission track study of the Romanian Carpathians, PhD-thesis, Vrije Universiteit, Amsterdam, pp. 204. Schuller, V. (2004), Evolution and geodynamic significance of the Upper Cretaceous Gosau basin in the Apuseni Mountains (Romania), PhD Thesis, Tubinger Geowiss. Arb. Reihe A70, 112 pp. Schmid, S. M., D. Bernoulli, B. Fügenschuh, L. Matenco, S. Schaefer, R. Schuster, M. Tischler and K. Ustaszewski (2008), The Alps-Carpathians-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss Journal of Geosciences, 2008.

  10. Tectonic Plates of China

    DTIC Science & Technology

    1977-04-01

    C. Sun and Ta-iang Teng Contractor: University of Southern California Principal Investigator: Professor Ta-liang Teng (213) 746-6124 Contract Number...83 i" I. INTRODUCTION Over the vast Chinese mainland, one of the most interesting and dynamic regions of the world, complex tectonics, coupled with...west Pacific and the Alpine- Himalaya tectonic belts, the multitude of Chinese tectonic com- plexities is evident from its enormous topographic relief

  11. The Boring Billion, a slingshot for Complex Life on Earth.

    PubMed

    Mukherjee, Indrani; Large, Ross R; Corkrey, Ross; Danyushevsky, Leonid V

    2018-03-13

    The period 1800 to 800 Ma ("Boring Billion") is believed to mark a delay in the evolution of complex life, primarily due to low levels of oxygen in the atmosphere. Earlier studies highlight the remarkably flat C, Cr isotopes and low trace element trends during the so-called stasis, caused by prolonged nutrient, climatic, atmospheric and tectonic stability. In contrast, we suggest a first-order variability of bio-essential trace element availability in the oceans by combining systematic sampling of the Proterozoic rock record with sensitive geochemical analyses of marine pyrite by LA-ICP-MS technique. We also recall that several critical biological evolutionary events, such as the appearance of eukaryotes, origin of multicellularity & sexual reproduction, and the first major diversification of eukaryotes (crown group) occurred during this period. Therefore, it appears possible that the period of low nutrient trace elements (1800-1400 Ma) caused evolutionary pressures which became an essential trigger for promoting biological innovations in the eukaryotic domain. Later periods of stress-free conditions, with relatively high nutrient trace element concentration, facilitated diversification. We propose that the "Boring Billion" was a period of sequential stepwise evolution and diversification of complex eukaryotes, triggering evolutionary pathways that made possible the later rise of micro-metazoans and their macroscopic counterparts.

  12. A New Generation of Large Seismic Refraction Experiments in Central Europe (1997-2003)

    NASA Astrophysics Data System (ADS)

    Guterch, A.; Grad, M.; Spicak, A.; Brueckl, E.; Hegedus, E.; Keller, G. R.; Thybo, H.

    2003-12-01

    Beginning in 1997, Central Europe has been covered by an unprecedented network of seismic refraction experiments. These experiments (POLONAISE'97, CELEBRATION 2000, ALP 2002, SUDETES 2003) have only been possible due a massive international cooperative effort. The total length of all profiles is about 19,000 km, and over 300 explosive sources were employed. The result is a network of seismic refraction profiles that extends along the Trans-European Suture Zone region of Poland and the Bohemian massif, Pannonian basin, trough the Carpathians and Alps to the Adriatic Sea and the Dinarides. As reflected in structures within these areas, Central Europe has experienced a complex tectonic history that includes the Caledonian, Variscan, and Alpine orogenies. The related TESZ region is a broad zone of deformation that extends across Europe from British Isles to the Black Sea region that formed as Europe was assembled from a complex collage of terranes during the late Palaeozoic. For example, the Bohemian massif is mostly located in the Czech Republic and is a large, complex terrane whose origin can be traced to northern Gondwana (Africa). These terranes were accreted along the margin of Baltica that was formed during the break-up of Rodinia. The tectonic evolution of this region shares many attributes with the Appalachian/Ouachita origin and is certainly of global important to studies in terrane tectonics and continental evolution. In southern Poland, several structural blocks are located adjacent to Baltica and were probably transported laterally along it similar to the Cenozoic movement of terranes along the western margin of North America. The younger Carpathian arc and Pannonian back-arc basin were also targeted by these experiments. Thickness of the crust in the area of investigations changes from 22-25 km in the Pannonian basin to about 55 km in the Trans-European Suture Zone in SE Poland. Together, these experiments are providing an unprecedented 3-D image of the evolution and assembly of a continent. Experiment Working Group Members: K. Aric, S. Azevedo, I. Asudeh, M. Behm, A.A. Belinsky, T. Bodoky, R. Brinkmann, M. Broz, E. Brueckl, W. Chwatal, R. Clowes, W. Czuba, T. Fancsik, B. Forkmann, M. Fort, E. Gaczynski, H. Gebrande, H. Geissler, A. Gosar, M. Grad, H. Grassi, R. Greschke, A. Guterch, Z. Hajnal, S. Harder,E. Hegedus, A. Hemmann, S. Hock, V. Hoeck, P. Hrubcova, T. Janik, G. Jentzsch, P. Joergensen, G. Kaip, G.R. Keller, F. Kohlbeck, K. Komminaho, M. Korn, O. Korousova, S.L. Kostiuchenko, D. Kracke, C.-E. Lund, U. Luosto, M. Majdazski, M. Malinowski, K.C. Miller, A.F. Morozov, G. Motuza, V. Nasedkin, E.-M. Rumpfhuber, Ch. Schmid, A. Schulze, K. Schuster, O. Selvi, C. Snelson, A. Spicak, P. Sroda, F. Sumanovac, E. Tacasc, H. Thybo, T. Tiira, C. Tomek, J. Vozar, F. Weber, M. Wilde-Pierko, J. Yliniemi, A. Zelazniewicz

  13. Quaternary Tectonic Tilting Governed by Rupture Segments Controls Surface Morphology and Drainage Evolution along the South-Central Coast of Chile

    NASA Astrophysics Data System (ADS)

    Echtler, H. P.; Bookhagen, B.; Melnick, D.; Strecker, M.

    2004-12-01

    The Chilean coast represents one of the most active convergent margins in the Pacific rim, where major earthquakes (M>8) have repeatedly ruptured the surface, involving vertical offsets of several meters. Deformation along this coast takes place in large-scale, semi-independent seismotectonic segments with partially overlapping transient boundaries. They are possibly related to reactivated inherited crustal anisotropies; internal seismogenic deformation may be accommodated by structures that have developed during accretionary wedge evolution. Seismotectonic segmentation and the identification of large-scale rupture zones, however, are based on limited seismologic und geodetic observations over short timespans. In order to better define the long-term behavior and deformation rates of these segments and to survey the tectonic impact on the landscape on various temporal and spatial scales, we investigated the south-central coast of Chile (37-38S). There, two highly active, competing seismotectonic compartments influence the coastal and fluvial morphology. A rigorous analysis of the geomorphic features is a key for an assessment of the tectonic evolution during the Quaternary and beyond. We studied the N-S oriented Santa María Island (SMI), 20 km off the coast and only ~70km off the trench, in the transition between the two major Valdivia (46-37S) and Concepción (38-35S) rupture segments. The SMI has been tectonically deformed throughout the Quaternary and comprises two tilt domains with two topographic highs in the north and south that are being tilted eastward. The low-lying and flat eastern part of the island is characterized by a set of emergent Holocene strandlines related to coseismic uplift. We measured detailed surface morphology of these strandlines and E-W traversing ephemeral stream channels with a laser-total station and used these data to calibrate and validate high-resolution, digital imagery. In addition, crucial geomorphic markers were dated by the radiocarbon and optical stimulation methods to better constrain deformation rates. In response to the ongoing deformation, formerly W flowing streams constituting small drainages (< 0.25km2) were inverted and formed closed basins. In contrast, larger streams were reversed or were able to maintain their channels, but formed distinct knickpoints along their longitudinal profiles. In order to reconstruct the Holocene tectonic tilting axis, we connected drainage boundaries of reversed channels and deformation-related knickpoints along more mature rivers. Interestingly, topography clearly indicates that the direction of Pleistocene tectonic tilting was different than that of recent conditions. The Holocene inversion of stream flow associated with continuous uplift may be related to the progressive migration of the tectonic tilting axis in the course of active folding (Melnick et al., this session). The classification of knickpoints and the overall tectonic development also the mainland coast on the Arauco peninsula, during the Quaternary clearly document the surface signature of tectonic segmentation and its spatial evolution through time. The migration of the tilting axes is discussed in relation with active basal accretion and active shortening in the South-Central Chilean forearc.

  14. Petroleum geology of Azov-Black Sea region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukin, A.; Trofimenko, G.

    1995-08-01

    The main features of tectonics, stratigraphy, paleogeography, lithology, hydrogeology, geothermics and hydrocarbon-bearingness of Azov-Black Sea Region are characterized on the basis of present-day data. Among the most prospective petroliferous complexes one ought to mention: Paleozoic (S - D - C{sub 1}) of Near-Dobrudga foredeep, Triassic - Jurassic of the Black Sea (shelf and continental slope); Lower Cretaceous of the various parts of the Region; Upper Cretaceous of the Black Sea shelf; Paleocene-Eocene of Azov Sea. In addition certain prospects are connected with Precambrian and Paleozoic basements within conjunction zone between Eastern-Europe platform and Scythian plate. Geodynamic evolution of the Regionmore » is considered with determination of tension and compression stages and characteristic of the main regularities of diapirs, mud volcanos, swells, horsts and grabens distribution. There determined the most interesting types of hydrocarbon traps connected with various tectonic forms, river and deltaic channels, bars, conturites, carbonate reefs, etc. Paleogeothermic and paleogeodynamic reconstructions allow to determine the main phases of oil and gas accumulation. The most prospective oil-gas-bearing zones and areas are mapped.« less

  15. Parallel Extension Tectonics (PET): Early Cretaceous tectonic extension of the Eastern Eurasian continent

    NASA Astrophysics Data System (ADS)

    Liu, Junlai; Ji, Mo; Ni, Jinlong; Guan, Huimei; Shen, Liang

    2017-04-01

    The present study reports progress of our recent studies on the extensional structures in eastern North China craton and contiguous areas. We focus on characterizing and timing the formation/exhumation of the extensional structures, the Liaonan metamorphic core complex (mcc) and the Dayingzi basin from the Liaodong peninsula, the Queshan mcc, the Wulian mcc and the Zhucheng basin from the Jiaodong peninsula, and the Dashan magmatic dome within the Sulu orogenic belt. Magmatic rocks (either volcanic or plutonic) are ubiquitous in association with the tectonic extension (both syn- and post-kinematic). Evidence for crustal-mantle magma mixing are popular in many syn-kinematic intrusions. Geochemical analysis reveals that basaltic, andesitic to rhyolitic magmas were generated during the tectonic extension. Sr-Nd isotopes of the syn-kinematic magmatic rocks suggest that they were dominantly originated from ancient or juvenile crust partly with mantle signatures. Post-kinematic mafic intrusions with ages from ca. 121 Ma to Cenozoic, however, are of characteristic oceanic island basalts (OIB)-like trace element distribution patterns and relatively depleted radiogenic Sr-Nd isotope compositions. Integrated studies on the extensional structures, geochemical signatures of syn-kinematic magmatic rocks (mostly of granitic) and the tectono-magmatic relationships suggest that extension of the crust and the mantle lithosphere triggered the magmatisms from both the crust and the mantle. The Early Cretaceous tectono-magmatic evolution of the eastern Eurasian continent is governed by the PET in which the tectonic processes is subdivided into two stages, i.e. an early stage of tectonic extension, and a late stage of collapse of the extended lithosphere and transformation of lithospheric mantle. During the early stage, tectonic extension of the lithosphere led to detachment faulting in both the crust and mantle, resulted in the loss of some of the subcontinental roots, gave rise to the exhumation of the mccs, and triggered plutonic emplacement and volcanic eruptions of hybrid magmas. During the late stage, the nature of mantle lithosphere in North China was changed from the ancient SCLM to the juvenile SCLM. Extensional structures in eastern Eurasian continent provide a general architecture of the extensional tectonics of a rifted continent. Progressive extension resulted a sudden collaps of the crust (lithosphere) at ca. 130 to 120 Ma, associated with exhumation of mcc's and giant syn-kinematic magmatism, and post-kinematic magmatism. Parallel extension of both the crust and the mantle resulted in detachment faulting and magmatism, and also contributed to inhomogeneous thinning of the NCC lithosphere. Paleo-Pacific plate subduction and roll-back of the subducting oceanic plate contributed to the PET tectonic processes.

  16. Current deformation in the Tibetan Plateau: a stress gauge in the large-scale India-Asia collision tectonics

    NASA Astrophysics Data System (ADS)

    Capitanio, F. A.

    2017-12-01

    The quantification of the exact tectonic forces budget on Earth has remained thus far elusive. Geodetic velocities provide relevant constraints on the current dynamics of the coupling between collision and continental tectonics, however in the Tibetan plateau these support contrasting, non-unique models. Here, we compare numerical models of coupled India-Asia plate convergence, collision and continent interiors tectonics to the geodetically-constrained motions in the Tibetan Plateau to provide a quantitative assessment of the driving forces of plate tectonics in the area. The models develop a range of long-term evolutions remarkably similar to the Asian tectonics in the Cenozoic, reproducing the current large-scale motions pattern under a range of conditions. Balancing the convergent margin forces, following subduction, and the far-field forcing along the trail of the subducting continent, the geodetic rates in the Tibetan Plateau can be matched. The comparisons support the discussion on the likely processes at work, allowing inferences on the drivers of plateau formation and its role on the plate margin-interiors tectonics. More in general, the outcomes highlight the unique role of the Tibetan Plateau as a pressure gauge for the tectonic forces on Earth.

  17. Drainage development and incision rates in an Upper Pleistocene Basalt-Limestone Boundary Channel: The Sa'ar Stream, Golan Heights, Israel

    NASA Astrophysics Data System (ADS)

    Shtober-Zisu, N.; Inbar, M.; Mor, D.; Jicha, B. R.; Singer, B. S.

    2018-02-01

    Long-term fluvial incision processes and corresponding geomorphic evolution are difficult to quantify, especially in complex systems affected by lithological and tectonic factors. Volcanic landscapes offer the most appropriate environment for the study of landscape evolution, as there is a clear starting time of formation and the lithology is homogenous. In the present study we aim to: (1) analyse the interplay of construction and incision processes throughout eruptive activity; (2) study fluvial erosion processes; (3) analyse sedimentary and volcanic lithological responses to channel erosion; and (4) calculate the incision rates in young basaltic bedrock. We have integrated existing and new 40Ar/39Ar ages of lava flows with estimates of channel geometry and tectonic activity, and considered process geomorphology concepts, to fully understand evolution of a bedrock channel incised at the boundary between basalts and sedimentary rocks with coeval active volcanic processes forcing drainage evolution. Our findings indicate that the Sa'ar basin evolution is controlled by: (1) rock strength of the mixed lithology; (2) alternating cycles of volcanic activity followed by erosion and incision; and (3) the Plio-Pleistocene uplift of Mt. Hermon. The carbonate slopes composing the southern flank of Mt. Hermon are moderate (18-26%) while the basalt slopes deriving from the Golan Heights are much steeper (26-51%). The highly erodible sedimentary rocks at Mt. Hermon's piedmont accelerated river incision, shaping a 650 m wide by 100 m deep canyon. Inside the canyon, the steep channel slope (8.6%) enables downstream movement of large boulders, including autochthonous mega-blocks (D90 size > 2.5 m); 24 knickpoints were identified using DS plots, developed within a knick zone over a distance of 6 km. The brittle and porous structure of the rubbly and blocky interflow layers (clinkers), interbedded between two massive basalt flows, enhances erosion and accelerates scouring of the plunge-pool bottom and walls. Three volcanic phases shaped the Sa'ar basin: (1) The 3.25 Ma Cover Basalt flowed over large areas of the Levant and reached up to the northern Golan; (2) Dalwe Basalt was emplaced between 1.2 Ma and 750 ka, from vents including Mt. Qatzaa and Mt. Odem, and extended to Mt. Hermon covering sedimentary cuestas; (3) Ein Zivan Basalt (including the Sa'ar Lava Flow - the youngest basalt flow known in Israel) erupted before 110-120 ka and quickly accumulated at least three distinct flows into the deeply incised Paleo-Sa'ar canyon, refilling the canyon to a height of 50 m. Rates of incision are consistent with other rivers draining the Golan Heights. The total incision rate of the Sa'ar channel during the last 760 ka is at least 19.7 cm/ka. Over the past 100 ka, the incision rate was 22-30 cm/ka and the back-erosion of the Sa'ar highest knickpoint occurred at 68 cm/ka. Our findings reflect the latest evolution history of a special, mixed lithology channel, developed at the border of a large basaltic province, in an active tectonic environment. The results suggest that fluvial adjustment of basalt-limestone rivers is determined first by the interplay of construction and incision processes throughout alternating cycles of volcanic activity and quiescence. The lithology is an extremely important factor determining the type and rate of erosion. While the tectonic factor might determine the basin relief and slope, the lithological factor accelerates erosion and river incision.

  18. What can hafnium isotope ratios arrays tell us about orogenic processes? An insight into geodynamic processes operating in the Alpine/Mediterranean region

    NASA Astrophysics Data System (ADS)

    Henderson, B.; Murphy, J.; Collins, W. J.; Hand, M. P.

    2013-12-01

    Over the last decade, technological advances in laser-ablation sampling techniques have resulted in an increase in the number of combined U-Pb-Hf zircon isotope studies used to investigate crustal evolution on a local, regional and global scale. Hafnium isotope arrays over large time scales (>500 myr) have been interpreted to track evolving plate tectonic configurations, and the geological outputs associated with changing plate boundaries. We use the Alpine-Mediterranean region as an example of how hafnium isotope arrays record the geodynamic processes associated with the complex geological evolution of a region. The geology of Alpine-Mediterranean region preserves a complex, semi-continuous tectonic history that extends from the Neoproterozoic to the present day. Major components of the Variscan and Alpine orogens are microcontinental ribbons derived from the northern Gondwanan margin, which were transferred to the Eurasian plate during the opening and closing of the Rheic and Paleo-Tethys Oceans. Convergence of the Eurasian and African plates commenced in the Mid-Late Cretaceous, following the destruction of the Alpine-Tethys Ocean during the terminal breakup of Pangea. In general, convergence occurred slowly and is characterised by northward accretion of Gondwanan fragments, interspersed with subduction of African lithosphere and intermittent roll-back events. A consequence of this geodynamic scenario was periods of granite-dominated magmatism in an arc-backarc setting. New Hf isotope data from the peri-Gondwanan terranes (Iberia, Meguma and Avalonia) and a compilation of existing Phanerozoic data from the Alpine-Mediterranean region, indicate ~500 myr (Cambrian-Recent) of reworking of peri-Gondwanan crust. The eHf array follows a typical crustal evolution pattern (Lu/Hf=0.015) and is considered to reflect reworking of juvenile peri-Gondwanan (Neoproterozoic) crust variably mixed with an older (~1.8-2.0 Ga) source component, probably Eburnian crust from the West Africa Craton. The Phanerozoic Hf isotopic data from Variscan and Alpine Europe suggest that slow translation of continental fragments from one continent to another produces a characteristic, long-term crustal reworking eHf array, which strongly contrasts with the Hf array defined by Phanerozoic circum-Pacific orogens.

  19. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  20. Implications for the tectonic transition zone of active orogeny in Hoping drainage basin, by landscape evolution at the multi-temporal timescale

    NASA Astrophysics Data System (ADS)

    Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.

    2015-12-01

    In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength and increase the hillslope erosion during heavy rainfall. By studying the erosion rate of Hoping River watershed we can understand more about surface processes in dynamic landscape, and more over, to establish a comprehensive understanding about the evolution of the ongoing Taiwan arc-continental collision process.

  1. Deformations and Structural Evolution of Mesozoic Complexes in Western Chukotka

    NASA Astrophysics Data System (ADS)

    Golionko, B. G.; Vatrushkina, E. V.; Verzhbitskii, V. E.; Sokolov, S. D.; Tuchkova, M. I.

    2018-01-01

    Detailed structural investigations have been carried out in the Pevek district to specify tectonic evolution of the Chukotka mesozoids. The earliest south-verging folds F1 formed in Triassic rocks at the first deformation stage DI. These structures are overlapped by the northern-verging folds F2 and overthrusts pertain to the second deformation stage DII. Folding structures F1 and F2 were deformed by shear folds F3, completing stage DII. The DI and DII structures are complicated by roughly NS-trending normal faults marking deformation stage DIII. It has been established that DI is related to the onset of opening of the Amerasian Basin in the Early Jurassic, or, alternatively, to the later accretion of the Kulpolnei ensimatic arc toward the Chukotka microcontinent. DII marks the collision of Siberia and the Chukotka microcontinent in the Late Neocomian. Normal faulting under the roughly E-W-trending extension during DIII is likely related to rift opening of the Podvodnikov and Makarov-Toll basins in the deep Amerasian Basin. Formation of the Okhotsk-Chukotka volcanoplutonic belt completed the structural evolution of the studied region.

  2. First Paleomagnetic Map of the Easternmost Mediterranean Derived from Combined Geophysical-Geological Analysis

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev; Katz, Youri

    2014-05-01

    he easternmost Mediterranean is a tectonically complex region evolving in the long term and located in the midst of the progressive Afro-Eurasian collision (e.g., Ben-Avraham, 1978; Khain, 1984). Both rift-oceanic systems and terrane belts are known to have been formed in this collision zone (Stampfli et al., 2013). Despite years of investigation, the geological-geophysical structure of the easternmost Mediterranean is not completely known. The formation of its modern complex structure is associated with the evolution of the Neotethys Ocean and its margins (e.g., Ben-Avraham and Ginzburg, 1990; Robertson et al., 1991; Ben-Avraham et al., 2002). The easternmost Mediterranean was formed during the initial phase of the Neotethys in the Early and Late Permian (Golonka and Ford, 2000; Stampfli et al., 2013). At present this block of the ocean crust situated in the northern part of the Sinai plate (Ben-Avraham, 1978; Eppelbaum et al., 2012, 2014) is object of our investigation. The easternmost Mediterranean region has attracted increasing attention in connection with the recent discoveries of significant hydrocarbon deposits in this region (e.g., Montadert et al., 2010; Schenk et al., 2010; Eppelbaum et al., 2012). For example, Schenk et al. (2010) consider that more than 4 trillion m3 of recoverable gas is available in the Levant Basin (which located in the central part of the easternmost Mediterranean). Currently seismic prospecting is the main tool used in hydrocarbon deposit discovery. However, even sophisticated seismic data analysis (e.g., Hall et al., 2005; Roberts and Peace, 2007; Gardosh et al., 2010; Marlow et al., 2011; Lazar et al., 2012), fails to identify the full complex structural-tectonic mosaic of this region, and more importantly, is unable to clarify its baffling complex tectonic evolution. This highlights the need for combined analysis of geophysical data associated with the paleomagnetic and paleobiogeographic conditions that can yield deep paleotectonic criteria for oil and gas discovery in this region. Extensive geological-geophysical investigations have been carried out in this region, and a significant number of deep boreholes have been drilled. However integrated estimation of the deep structure of the hydrocarbon host deposits and their space-time evolution in terms of the modern geodynamics (first of all, plate tectonics: Ben-Avraham and Ginzburg, 1990; Robertson, 1998; Ben-Avraham et al., 2002, 2006; Jimenez-Munt et al., 2003; Le Pichon and Kreemer, 2010), are comparatively recent (Eppelbaum and Katz, 2011, 2012a; Eppelbaum et al., 2012, 2014). We elucidate this geodynamic relationship by examining the structural floors within the following tectonic-geophysical zones: (1) regions of development of continental crust of the Nubian, Arabian and Sinai plates, (2) remaining oceanic crust of the eastern Mediterranean, and (3) the thinned continental crust of the terrane belt. A series of new gravity and magnetic maps developed by employing satellite and airborne data (as well their transformations) accompanied by tectonic schemes were constructed (Eppelbaum and Katz, 2011; Eppelbaum et al., 2012a, 2012b, 2014). These new maps are crucial to a better understanding of the dynamics of hydrocarbon basin formation within the continental and shelf depressions, as well as the deep depressions of the easternmost Mediterranean where gas deposits in zones of oceanic crust evolution have only recently (April 2013) begun to be exploited. Careful attention should be paid to the blocks of oceanic (basaltic) crust with reverse magnetization that were discovered (Ben-Avraham et al., 2002; Eppelbaum, 2006). This issue was very briefly (Eppelbaum and Katz, 2012a) explained as paleomagnetic Kiama zone of inverse polarity and demands separate consideration. An integrated magnetic-gravity-seismic analysis conducted along three interpretation profiles unambiguously indicates the presence of blocks of the Earth's crust with reverse magnetization (Ben-Avraham et al., 2002). The results of 3D magnetic field modeling (advanced GSFC program was applied) along three profiles, enabled to detect a boundary between continental and oceanic crust. A reconstruction of the position of a reverse magnetized block of Earth crust enabled to obtain a magnetization zone with a S - N orientation and width reaching 70 km and length - about 200 km. Such a large, thick (about 10 km) zone of inverse magnetization must correspond to the significant and prolonged effect of inverse polarity in the Earth's magnetic field history. We suggest that this is the Kiama zone of inverse polarity that was first detected in the Late Carboniferous and Permian in Australia (Irving, 1966). Subsequent investigations (e.g., Khramov et al., 1974) have shown that the Kiama hyperzone underlies and is covered by zones of alternating polarity; i.e., Donetzk and Illawarra, respectively. According to zircon chronology the Kiama hyperzone extends over a period of 312-265 Ma (Khramov and Iosifidi, 2012), and according to K-Ar, 40Ar/39Ar and various historical planetology methods this period extends of 293-242 Ma (Lapkin and Katz, 1990). Delineation and mapping of the Kiama reverse paleomagnetic zone on the basis of 3D combined modeling of magnetic and gravity fields creates a necessity for attraction of wide spectrum of other geophysical-geological data for substantiation of space-tectonic position of this zone. Practically this is a first real evidence of delineation such an ancient oceanic crust of the Late Paleozoic. On the basis of investigation of Mediterranean ophiolites of the Alpine belt, the most ancient crust of the eastern Mediterranean corresponds to Late Triassic - Jurassic (Robertson et al., 1991). According to the latest paleogeodynamic reconstructions (Stampfli et al., 2013), the Alpine belt is a complex structure and includes structures associated with Neotethys and Paleotethys oceans and with more ancient oceans. It is considered that the northern part of the Neotethys has been developed as active zone of the arc island tectonics, and southern part is bounded with Gondwana, belonged to the passive tectonic conjunction. Usually forming of the initial rift of the Neotethys Ocean in the east was presented as a common basin formed in the Early Permian, and in the west - as a collection of small rift basins which began to form after breakdown of the Hercynian fold belt. However, the easternmost Mediterranean does not correspond to any of these schemes. Earlier was considered that the oceanic crust was formed here as a result of movement to north a continental Tauride-Anatolian block. However, these constructions did not take into account earlier published paleomagnetic data (Robertson et al., 1991; Scotese, 1991). The modern paleogeodynamic reconstructions testify to position of the Tauride-Anatolian block in other place - in the northern side of the Paleotethys (Stampfli et al., 2013). The performed integrated geological-geophysical analysis (Katz and Eppelbaum, 1999; Eppelbaum, 2006; Eppelbaum and Katz, 2011, 2012a, 2012b; Eppelbaum et al., 2012, 2014)

  3. New tectonic data constrain the mechanisms of breakup along the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bot, Anna; Geoffroy, Laurent; Authemayou, Christine; Graindorge, David

    2014-05-01

    The Gulf of California is resulting from an oblique-rift system due to the separation of the Pacific and the North American plates in the ~N110E to ~N125E trend. The age, nature and orientation of strain which ended with continental break-up and incipient oceanization at ~3.6 Ma, is largely misunderstood. It is generally proposed that early stages of extension began at around 12 Ma with strain partitioning into two components: a pure ENE directed extension in the Gulf Extensional Province (which includes Sonora and the eastern Baja California Peninsula in Mexico) and a dextral strike-slip displacement west of the Baja California Peninsula along the San Benito and Tosco-Abreojos faults. This evolution would have lasted ~5-6 Ma when a new transtensional strain regime took place. This regime, with extension trending ~N110E +/-10° , led to the final break-up and the subsequent individualization of a transform-fault system and subordoned short oceanic ridges. This two-steps interpretation has recently been challenged by authors suggesting a continuous transtensional extension from 12Ma in the trend of the PAC-NAM plates Kinematic. We question both of those models in term of timing and mode of accommodation basing ourselves on field investigations in Baja California Sur (Mexico). The volcano-sedimentary formations of the Comondù group dated 25 to 20 Ma exhibit clear examples of syn-sedimentary and syn-magmatic extensive deformations. This extension, oriented N65° E+/-15° , is proposed to initiate during the Magdalena Plate subduction. It would be related to the GOC initialization. In addition to this finding, we present tectonic and dating evidences of complex detachment-faulting tectonics varying in trend and kinematics with time and space for the development to the south of Baja California Sur. The extension associated with the early detachment-fault system trended ~N110E. From ~17 Ma to, probably, ~7-8 Ma, this extension controlled the early development of the San Jose del Cabo and the coeval footwall exhumation of large Cretaceous basement blocks (such as the Sierra Laguna). This detachment tectonics is overprinted by a more recent detachment-type tectonic evolution, localized alongshore the GOC, with coeval development of Pliocene basins. At this stage, extension was trending N75E +/-10° , i.e. close to GOC-normal. We discuss the geodynamical interpretation of all those new results in terms of forces driving the obliquity of rifts.

  4. The dehydration, rehydration and tectonic setting of greenstone belts in a portion of the northern Kaapvaal Craton, South Africa

    NASA Technical Reports Server (NTRS)

    Vanreenen, D. D.; Barton, J. M., Jr.; Roering, C.; Vanschalkwyk, J. C.; Smit, C. A.; Debeer, J. D.; Stettler, E. H.

    1986-01-01

    High-grade gneiss terranes and low-grade granite-greenstone terranes are well known in several Archaean domains. The geological relationship between these different crustal regions, however, is still controversial. One school of thought favors fundamental genetic differences between high-grade and low-grade terranes while others argue for a depth-controlled crustal evolution. The detailed examination of well-exposed Archaean terranes at different metamorphic grades, therefore, is not only an important source of information about the crustal levels exposed, but also is critical to the understanding of the possible tectonic and metamorphic evolution of greenstone belts with time. Three South African greenstone belts are compared.

  5. The Crustal Magnetization Mapping in the Ocean Basin of the South China Sea and its Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Guo, L.; Meng, X.

    2015-12-01

    The South China Sea (SCS), surrounded by the Eurasia, Pacific and India-Australia plates, was formed by the interaction of the three plates and the Cenozoic seafloor spreading. Magnetic data is the crucial data for understanding tectonic evolution and seafloor spreading model in the SCS. Magnetization intensity is related closely to rock type and tectonics. Through magnetization mapping, the distribution of apparent magnetization in the subsurface will be obtained, benefiting in lithologic classification and geological mapping. Due to strong remanence presented in the oceanic crust, magma and seamounts in the SCS, the magnetization directions are complex and heterogeneous, quite different from the modern geomagnetic field directions. However, the routine techniques for magnetization mapping are based on negligence of remanence. The normalized source strength (NSS), one quantity transformed from the magnetic anomalies, is insensitive to remanence and responds well to the true locations of magnetic sources. The magnetization mapping based on the NSS will effectively reduce effects of remanence, benefitting in better geological interpretation. Here, we assembled high-resolution total magnetic intensity (TMI) data around the ocean basin of the SCS, and then transformed them into the NSS. Then we did magnetization mapping based on the NSS to obtain the crustal magnetization distribution in the studied area. The results show that the magnetization distribution inside of each subbasin is relatively homogeneous, but that of eastern subbasin is mostly strong with amplitude of 0.2A/m~4.2A/m, while that of southwestern subbasin is weak with amplitude of 0.2A/m~1.1A/m. It implies that magnetic structure and tectonic features in the crust are discriminative between both subbasins, and the tectonic boundary between both subbasins is roughly ranges from the northeastern edge of the Zhongsha Islands running in the southeast direction to the northeastern edge of the Reed Bank.

  6. How tectonics controlled post-collisional magmatism within the Dinarides: Inferences based on study of tectono-magmatic events in the Kopaonik Mts. (Southern Serbia)

    NASA Astrophysics Data System (ADS)

    Mladenović, Ana; Trivić, Branislav; Cvetković, Vladica

    2015-04-01

    In this study, we report evidence about coupling between tectonic and magmatic processes in a complex orogenic system. The study focuses on the Kopaonik Mts. situated between the Dinarides and the Carpatho-Balkanides (Southern Serbia), and a perfect area for investigating tectono-magmatic evolution. We combine a new data set on tectonic paleostress tensors with the existing information on Cenozoic magmatic rocks in the wider Kopaonik Mts. area. The paleostress study revealed the presence of four brittle deformational phases. The established link between fault mechanism and igneous processes suggests that two large tectono-magmatic events occurred in this area. The Late Eocene-Early Miocene tectono-magmatic event was generally characterized by transpressional tectonics that provided conditions for formation of basaltic underplating and subsequent lower crustal melting and generation of I-type magmas. Due to predominant compression in the first half of this event, these magmas could not reach the upper crustal levels. Later on, limited extensional pulses that occurred before the end of this event opened pathways for newly formed mantle melts to reach shallower crustal levels and mix with the evolving I-type magmas. The second event is Middle-Late Miocene in age. It was first associated with clear extensional conditions that caused advancing of basaltic melts to mid-crustal levels. This, in turn, induced the elevation of geotherms, melting of shallow crust and S-type granite formation. This event terminated with transpression that produced small volumes of basaltic melts and finally closed the igneous scene in this part of the Balkan Peninsula. Although we agree that the growth of igneous bodies is usually internally controlled and can be independent from the ambient structural pattern, we have strong reasons to believe that the integration of regional scale observations of fault kinematics with crucial petrogenetic information can be used for establishing spatial-temporal relationships between brittle tectonics and magmatism.

  7. Coral reef evolution on rapidly subsiding margins

    USGS Publications Warehouse

    Webster, J.M.; Braga, J.C.; Clague, D.A.; Gallup, C.; Hein, J.R.; Potts, D.C.; Renema, W.; Riding, R.; Riker-Coleman, K.; Silver, E.; Wallace, L.M.

    2009-01-01

    A series of well-developed submerged coral reefs are preserved in the Huon Gulf (Papua New Guinea) and around Hawaii. Despite different tectonics settings, both regions have experienced rapid subsidence (2-6??m/ka) over the last 500??ka. Rapid subsidence, combined with eustatic sea-level changes, is responsible for repeated drowning and backstepping of coral reefs over this period. Because we can place quantitative constraints on these systems (i.e., reef drowning age, eustatic sea-level changes, subsidence rates, accretion rates, basement substrates, and paleobathymetry), these areas represent unique natural laboratories for exploring the roles of tectonics, reef accretion, and eustatic sea-level changes in controlling the evolution of individual reefs, as well as backstepping of the entire system. A review of new and existing bathymetric, radiometric, sedimentary facies and numerical modeling data indicate that these reefs have had long, complex growth histories and that they are highly sensitive, recording drowning not only during major deglaciations, but also during high-frequency, small-amplitude interstadial and deglacial meltwater pulse events. Analysis of five generalized sedimentary facies shows that reef drowning is characterized by a distinct biological and sedimentary sequence. Observational and numerical modeling data indicate that on precessional (20??ka) and sub-orbital timescales, the rate and amplitude of eustatic sea-level changes are critical in controlling initiation, growth, drowning or sub-aerial exposure, subsequent re-initiation, and final drowning. However, over longer timescales (> 100-500??ka) continued tectonic subsidence and basement substrate morphology influence broad scale reef morphology and backstepping geometries. Drilling of these reefs will yield greatly expanded stratigraphic sections compared with similar reefs on slowly subsiding, stable and uplifting margins, and thus they represent a unique archive of sea-level and climate changes, as well as a record of the response of coral reefs to these changes over the last six glacial cycles. ?? 2008 Elsevier B.V. All rights reserved.

  8. Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean

    NASA Astrophysics Data System (ADS)

    Likhanov, Igor I.; Régnier, Jean-Luc; Santosh, M.

    2018-04-01

    The tectonic evolution of the Siberian Cratonic margins offers important clues for global paleogeographic reconstructions, particularly with regard to the complex geological history of Central Asia. The Yenisey Ridge fold-and-thrust belt at the western margin of the Siberian Craton forms part of the Central Asian Orogenic Belt (CAOB) and is a key to understand the Precambrian tectonic evolution of the Siberian Craton and crustal growth in the CAOB, the world's largest Phanerozoic accretionary orogenic belt. Here we report for the first time, the occurrence of glaucophane schist relics in tectonites within the Yenisey shear zone which provides insights on Chilean-type convergent boundary. We present results from isotope geochronology (SHRIMP zircon analysis and mica 40Ar/39Ar dating), coupled with P-T calculations derived from conventional geothermobarometry and pseudosections in the system NCKFMASH that suggest two superimposed metamorphic events. During the first stage, glaucophane schists formed at around 640-620 Ma at P-T conditions of 8-10 kbar and 400-450 °C. In the second stage, the rocks experienced dynamic metamorphism (c. 600 Ma) at 11-15 kbar/550-640 °C. The differences in P-T parameters between weakly deformed rocks and intensely deformed tectonites and P-T paths suggest distinct tectonic processes. Geochemical features of the mafic tectonites suggest N-MORB and E-MORB affinity, and the zircon U-Pb ages suggest formation of the protoliths at 701.6 ± 8.4. The sequence of spreading, subduction and shear deformation identified in our study correlate with the early stages of development of the Paleo-Asian Ocean at the western margin of the Siberian Craton and supports the spatial proximity of Siberia and Laurentia at 700-600 Ma, as proposed for the Late Neoproterozoic paleogeographic reconstructions and as robustly constrained from large igneous province (LIP) record.

  9. Provenance analysis of the Late Paleozoic sedimentary rocks in the Xilinhot Terrane, NE China, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Han, Jie; Zhou, Jian-Bo; Wilde, Simon A.; Song, Min-Chun

    2017-08-01

    The Xilinhot Terrane is located in the eastern segment of the Central Asian Orogenic Belt in NE China, and is a key to a hotly debated issue on the Paleozoic tectonic evolution of this giant progenic belt. To constrain the tectonic evolution of the Xilinhot Terrane in the Late Paleozoic, we undertook zircon U-Pb dating and geochemical analyses of the Zhesi and Benbatu formations in the Suolun and Xi Ujimqin areas in the Xilinhot Terrane. Samples of the Benbatu Formation yield detrital zircon U-Pb ages ranging from 2659 Ma to 316 Ma, with four age populations at: 2659-1826 Ma, 1719-963 Ma, 590-402 Ma, and 396-316 Ma, whereas samples from the Zhesi Formation yield detrital zircon U-Pb ages ranging from 1967 Ma to 250 Ma, with four age populations at: 1967-1278 Ma, 971-693 Ma, 561-403 Ma, and 399-250 Ma. The age groups of both the Benbatu and Zhesi formations in the Xilinhot Terrane are similar to those in other parts of the Central Asian Orogenic Belt (CAOB). This evidence indicates that the Xilinhot Terrane is a microcontinent, and not an accretionary complex as previously thought. Furthermore, the youngest zircon grains in the Benbatu and Zhesi formations yield weighted mean 206Pb/238U ages of 322 ± 12 Ma (MSDW = 0.12, n = 4) and 257 ± 2.8 Ma (MSDW = 1.6, n = 8), respectively. Combined with fossil data, our new data suggest that the Benbatu and Zhesi formations in the Xilinhot Terrane were possibly deposited at ∼322 Ma and ∼257 Ma, respectively. Based on the provenance of the Carboniferous-Permian sandstones came from the blocks of NE China, we speculate that the Xilinhot Terrane is the western part of the Songliao block.

  10. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    NASA Astrophysics Data System (ADS)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  11. Continental geodynamics and mineral exploration - the Western Australian perspective

    NASA Astrophysics Data System (ADS)

    Gessner, Klaus; Murdie, Ruth; Yuan, Huaiyu; Brisbout, Lucy; Sippl, Christian; Tyler, Ian; Kirkland, Chris; Wingate, Michael; Johnson, Simon; Spaggiari, Catherine; Smithies, Hugh; Lu, Yongjun; Gonzalez, Chris; Jessell, Mark; Holden, Eun-Jung; Gorczyk, Weronika; Occhipinti, Sandra

    2017-04-01

    The exploration for mineral resources and their extraction has been a fundamental human activity since the dawn of civilisation: Geology is everywhere - ore deposits are rare. Most deposits were found at or near Earth's surface, often by chance or serendipity. To meet the challenge of future demand, successful exploration requires the use of advanced technology and scientific methods to identify targets at depth. Whereas the use and development of high-tech exploration, extraction and processing methods is of great significance, understanding how, when and where dynamic Earth systems become ore-forming systems is a difficult scientific challenge. Ore deposits often form by a complex interplay of coupled physical processes with evolving geological structure. The mineral systems approach states that understanding the geodynamic and tectonic context of crustal scale hydrothermal fluid flow and magmatism can help constrain the spatial extent of heat and mass transport and therefore improve targeting success in mineral exploration. Tasked with promoting the geological assets of one of the World's largest and most resource-rich jurisdictions, the Geological Survey of Western Australia is breaking new ground by systematically collecting and integrating geophysical, geological and geochemical data with the objective to reveal critical ties between lithospheric evolution and mineral deposits. We present examples where this approach has led to fundamental reinterpretations of Archean and Proterozoic geodynamics and the nature of tectonic domains and their boundaries, including cases where geodynamic modelling has played an important role in testing hypotheses of crustal evolution.

  12. Submarine landslides on the north continental slope of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Wang, Dawei; Wu, Shiguo; Völker, David; Zeng, Hongliu; Cai, Guanqiang; Li, Qingping

    2018-02-01

    Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea (SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and over-pressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.

  13. Venus as a laboratory for studying planetary surface, interior, and atmospheric evolution

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Hensley, S.; Helbert, J.

    2013-12-01

    As Earth's twin, Venus offers a laboratory for understanding what makes our home planet unique in our solar system. The Decadal Survey points to the role of Venus in answering questions such as the supply of water and its role in atmospheric evolution, its availability to support life, and the role of geology and dynamics in controlling volatiles and climate. On Earth, the mechanism of plate tectonics drives the deformation and volcanism that allows volatiles to escape from the interior to the atmosphere and be recycled into the interior. Magellan revealed that Venus lacks plate tectonics. The number and distribution of impact craters lead to the idea Venus resurfaced very rapidly, and inspired numerous models of lithospheric foundering and episodic plate tectonics. However we have no evidence that Venus ever experienced a plate tectonic regime. How is surface deformation affected if no volatiles are recycled into the interior? Although Venus is considered a ';stagnant' lid planet (lacking plate motion) today, we have evidence for recent volcanism. The VIRTIS instrument on Venus Express mapped the southern hemisphere at 1.02 microns, revealing areas likely to be unweathered, recent volcanic flows. Additionally, numerous studies have shown that the crater population is consistent with ongoing, regional resurfacing. How does deformation and volcanism occur in the absence of plates? At what rate is the planet resurfacing and thus outgassing? Does lithospheric recycling occur with plate tectonics? In the 25 years since Magellan, the design of Synthetic Aperture Radar has advanced tremendously, allowing order of magnitude improvements in altimetry and imaging. With these advanced tools, we can explore Venus' past and current tectonic states. Tesserae are highly deformed plateaus, thought to be possible remnants of Venus' earlier tectonic state. How did they form? Are they low in silica, like Earth's continents, indicating the presence of abundant water? Does the plains volcanism cover an earlier tectonic surface, or perhaps cover ancient impact basins? Was there an abrupt transition in tectonic style, perhaps due to degassing of the crust or a more gradual shift? What is the nature of Venus' modern tectonics? Is the lithosphere still deforming? Is there recent or active volcanism? Is volcanism confined to hotspots, areas above mantle plumes? Has plains volcanism ceased? What are the implications for volatile history? These questions can be addressed via a combination of high resolution altimetry, imaging, and surface emissivity mapping.

  14. Mesozoic units in SE Rhodope (Bulgaria): new structural and petrologic data and geodynamic implications for the Early Jurassic to Mid-Cretaceous evolution of the Vardar ocean basin

    NASA Astrophysics Data System (ADS)

    Bonev, N.; Stampfli, G.

    2003-04-01

    In the southeastern Rhodope, both in southern Bulgaria and northern Greece, Mesozoic low-grade to non-metamorphic units, together with similar units in the eastern Vardar zone, were designated as the Circum-Rhodope Belt (CRB) that fringes the Rhodope high-grade metamorphic complex. In the Bulgarian southeastern Rhodope, Mesozoic units show a complicated tectono-stratigraphy underlaid by amphibolite-facies basement units. The basement sequence includes a lower orthogneiss unit with eclogite and meta-ophiolite lenses overlain by an upper marble-schist unit, presumably along a SSW-directed detachment fault as indicated by shear sense indicators. The Mesozoic sequence starts with greenschist units at the base, overlaying the basement along the tectonic contact. Mineral assemblages such as actinolite-chlorite-white mica ± garnet in schists and phyllites indicate medium greenschist facies metamorphism. Kinematic indicators in the same unit demonstrate a top-to-the NNW and NNE shear deformation coeval with metamorphism, subparallel to NW-SE to NE-SW trending mineral elongation lineation and axis of NW vergent small-scale folds. The greenschist unit is overlain by tectonic or depositional contact of melange-like unit that consists of diabases with Lower Jurassic radiolarian chert interlayers, Upper Permian siliciclastics and Middle-Upper Triassic limestones found as blocks in olistostromic member, embedded in Jurassic-Lower Cretaceous turbiditic matrix. The uppermost sedimentary-volcanogenic unit is represented by andesito-basalt lavas and gabbro-diorites, interbedded with terrigeneous-marl and tufaceous sediments that yield Upper Cretaceous (Campanian) fossils, related to the Late Cretaceous back-arc magmatic activity to the north in Sredna Gora zone. Petrologic and geochemical data indicates sub-alkaline and tholeiitic character of the greenschists and ophiolitic basaltic lavas, and the latter are classified as low-K and very low-Ti basalts with some boninitic affinity. Immobile trace element discrimination of both rock types constrains the volcanic (oceanic)-arc origin. They generally show low total REE concentrations (LREE>HREE) with enrichment of LIL elements relative to the HFS elements, and also very low Nb and relatively high Ce content consistent with an island-arc tectonic setting. We consider that the Meliata-Maliac ocean northern passive margin could be the source provenance for the Upper Permian clastics and Middle-Upper Triassic limestone blocks within the olistostromic melange-like unit, whereas turbidites and magmatic blocks may originate in an island arc-accretionary complex that relates to the southward subduction of the Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. These new structural and petrologic data allow to precise the tectonic setting of the Mesozoic units and their geodynamic context in the frame of the Early Jurassic to Late Cretaceous evolution of the Vardar ocean.

  15. Structural analysis and Miocene-to-Present tectonic evolution of a lithospheric-scale, transcurrent lineament: The Sciacca Fault (Sicilian Channel, Central Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Fedorik, Jakub; Toscani, Giovanni; Lodolo, Emanuele; Civile, Dario; Bonini, Lorenzo; Seno, Silvio

    2018-01-01

    Seismo-stratigraphic and structural analysis of a large number of multichannel seismic reflection profiles acquired in the northern part of the Sicilian Channel allowed a 3-D reconstruction of a regional NS-trending transfer zone which displays a transcurrent tectonic regime, and that is of broad relevance for its seismotectonic and geodynamic implications. It is constituted of two major transcurrent faults delimiting a 30-km-wide, mostly undeformed basin. The western fault (Capo Granitola) does not show clear evidence of present-day tectonic activity, and toward the south it is connected with the volcanic area of the Graham Bank. The eastern fault (Sciacca) is structurally more complex, showing active deformation at the sea-floor, particularly evident along the Nerita Bank. The Sciacca Fault is constituted of a master and splay faults compatible with a right-lateral kinematics. Sciacca Fault is superimposed on an inherited weakness zone (a Mesozoic carbonate ramp), which borders to the east a 2.5-km-thick Plio-Quaternary basin, and that was reactivated during the Pliocene. A set of scaled claybox analogue models was carried out in order to better understand the tectonic processes that led to the structural setting displayed by seismic data. Tectonic structures and uplift/subsidence patterns generated by the models are compatible with the 3-D model obtained from seismic reflection profiles. The best fit between the tectonic setting deriving from the interpretation of seismic profiles and the analogue models was obtained considering a right-lateral movement for the Sciacca Fault. Nevertheless, the stress field in the study area derived from GPS measurements does not support the present-day modelled right-lateral kinematics along the Sciacca Fault. Moreover, seismic events along this fault show focal mechanisms with a left-lateral component. We ascribe the slip change along the Sciacca Fault, from a right-lateral transcurrent regime to the present-day left-lateral kinematics to a change of principal horizontal stress direction starting from Late Pliocene.

  16. The influence of tectonic inheritance on crustal extension style following failed subduction of continental crust: applications to metamorphic core complexes in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.

    2017-12-01

    The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.

  17. Caribbean tectonics and relative plate motions

    NASA Technical Reports Server (NTRS)

    Burke, K.; Dewey, J. F.; Cooper, C.; Mann, P.; Pindell, J. L.

    1984-01-01

    During the last century, three different ways of interpreting the tectonic evolution of the Gulf of Mexico and the Caribbean have been proposed, taking into account the Bailey Willis School of a permanent pre-Jurassic deep sea basin, the Edward Suess School of a subsided continental terrain, and the Alfred Wegener School of continental separation. The present investigation is concerned with an outline of an interpretation which follows that of Pindell and Dewey (1982). An attempt is made to point out ways in which the advanced hypotheses can be tested. The fit of Africa, North America, and South America is considered along with aspects of relative motion between North and South America since the early Jurasic. Attention is given to a framework for reconstructing Caribbean plate evolution, the evolution of the Caribbean, the plate boundary zones of the northern and southern Caribbean, and the active deformation of the Caribbean plate.

  18. Volcanism on Io: Insights from Global Geologic Mapping

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.

    2009-01-01

    We are preparing a new global geo-logic map of Jupiter s volcanic moon, Io. Here we report the type of data that are now available from our global mapping efforts, and how these data can be used to investigate questions regarding the volcano-tectonic evolution of Io. We are using the new map to investigate several specific questions about the geologic evolution of Io that previously could not be well addressed, including (for example) a comparison of the areas vs. the heights of Ionian mountains to assess their stability and evolution (Fig. 1). The area-height relationships of Io s visible mountains show the low abundance and low relief of volcanic mountains (tholi) relative to tectonic mountains, consistent with formation from low-viscosity lavas less likely to build steep edifices. Mottled mountains are generally less high than lineated mountains, consistent with a degradational formation.

  19. Impact of slab pull and incipient mantle delamination on active tectonics and crustal thickening in the Betic-Alboran-Rif system

    NASA Astrophysics Data System (ADS)

    Mazzotti, Stephane; Baratin, Laura-May; Chéry, Jean; Vernant, Philippe; Gueydan, Frédéric; Tahayt, Abdelilah; Mourabit, Taoufik

    2017-04-01

    In Western Mediterranean, the Betic-Alboran-Rif orocline accommodates the WNW-ESE convergence between the Nubia and Eurasia plates. Recent geodetic data show that present-day tectonics in northern Morocco and southernmost Spain are not compatible with this simple two-plate-convergence model: GPS observations indicate significant (2-4 mm/a) deviations from the expected plate motion, and gravity data define two major negative Bouguer anomalies beneath the Betic and south of the Rif, interpreted as a thickened crust in a state of non-isostatic equilibrium. These anomalous geodetic patterns are likely related to the recent impact of the sub-vertical Alboran slab on crustal tectonics. Using 2-D finite-element models, we study the first-order behavior of a lithosphere affected by a downward normal traction, representing the pull of a high-density body in the upper mantle (slab pull or mantle delamination). We show that a specific range of lower crust and upper mantle viscosities allow a strong coupling between the mantle and the base of the brittle crust, thus enabling (1) the efficient conversion of vertical movement (resulting from the downward traction) to horizontal movement and (2) shortening and thickening on the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to the Alboran slab pull, can explain the present-day abnormal tectonics and non-isostatic equilibrium in northern Morocco. Similar processes may be at play in the whole Betic-Alboran-Rif region, although the fast temporal evolution of the slab - upper plate interactions needs to be taken into account to better understand this complex system.

  20. Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador-south Colombia oceanic margin

    NASA Astrophysics Data System (ADS)

    Collot, J.-Y.; Agudelo, W.; Ribodetti, A.; Marcaillou, B.

    2008-12-01

    Splay faults within accretionary complexes are commonly associated with the updip limit of the seismogenic zone. Prestack depth migration of a multichannel seismic line across the north Ecuador-south Colombia oceanic margin images a crustal splay fault that correlates with the seaward limit of the rupture zone of the 1958 (Mw 7.7) tsunamogenic subduction earthquake. The splay fault separates 5-6.6 km/s velocity, inner wedge basement rocks, which belong to the accreted Gorgona oceanic terrane, from 4 to 5 km/s velocity outer wedge rocks. The outer wedge is dominated by basal tectonic erosion. Despite a 3-km-thick trench fill, subduction of 2-km-high seamount prevented tectonic accretion and promotes basal tectonic erosion. The low-velocity and poorly reflective subduction channel that underlies the outer wedge is associated with the aseismic, décollement thrust. Subduction channel fluids are expected to migrate upward along splay faults and alter outer wedge rocks. Conversely, duplexes are interpreted to form from and above subducting sediment, at ˜14- to 15-km depths between the overlapping seismogenic part of the splay fault and the underlying aseismic décollement. Coeval basal erosion of the outer wedge and underplating beneath the apex of inner wedge control the margin mass budget, which comes out negative. Intraoceanic basement fossil listric normal faults and a rift zone inverted in a flower structure reflect the evolution of the Gorgona terrane from Cretaceous extension to likely Eocene oblique compression. The splay faults could have resulted from tectonic inversion of listric normal faults, thus showing how inherited structures may promote fluid flow across margin basement and control seismogenesis.

  1. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands

    USGS Publications Warehouse

    Bradley, D.C.; Leach, D.L.

    2003-01-01

    Most of the world's Mississippi Valley-type (MVT) zinc-lead deposits occur in orogenic forelands. We examine tectonic aspects of foreland evolution as part of a broader study of why some forelands are rich in MVT deposits, whereas others are barren. The type of orogenic foreland (collisional versus Andean-type versus inversion-type) is not a first-order control, because each has MVT deposits (e.g., Northern Arkansas, Pine Point, and Cevennes, respectively). In some MVT districts (e.g., Tri-State and Central Tennessee), mineralization took place atop an orogenic forebulge, a low-amplitude (a few hundred meters), long-wavelength (100-200 km) swell formed by vertical loading of the foreland plate. In the foreland of the active Banda Arc collision zone, a discontinuous forebulge reveals some of the physiographic and geologic complexities of the forebulge environment, and the importance of sea level in determining whether or not a forebulge will emerge and thus be subject to erosion. In addition to those on extant forebulges, some MVT deposits occur immediately below unconformities that originated at a forebulge, only to be subsequently carried toward the orogen by the plate-tectonic conveyor (e.g., Daniel's Harbour and East Tennessee). Likewise, some deposits are located along syn-collisional, flexure-induced normal and strike-slip faults in collisional forelands (e.g., Northern Arkansas, Daniel's Harbour, and Tri-State districts). These findings reveal the importance of lithospheric flexure, and suggest a conceptual tectonic model that accounts for an important subset of MVT deposits-those in the forelands of collisional orogens. The MVT deposits occur both in flat-lying and in thrust-faulted strata; in the latter group, mineralization postdated thrusting in some instances (e.g., Picos de Europa) but may have predated thrusting in other cases (e.g., East Tennessee).

  2. Anatomy of a metamorphic core complex: seismic refraction/wide-angle reflection profiling in southeastern California and western Arizona

    USGS Publications Warehouse

    McCarthy, J.; Larkin, S.P.; Fuis, G.S.; Simpson, R.W.; Howard, K.A.

    1991-01-01

    The metamorphic core complex belt in southeastern California and western Arizona is a NW-SE trending zone of unusually large Tertiary extension and uplift. Midcrustal rocks exposed in this belt raise questions about the crustal thickness, crustal structure, and the tectonic evolution of the region. Three seismic refraction/wide-angle reflection profiles were collected to address these issues. The results presented here, which focus on the Whipple and Buckskin-Rawhide mountains, yield a consistent three-dimensiional image of this part of the metamorphic core complex belt. The final model consists of a thin veneer (<2 km) of upper plate and fractured lower plate rocks (1.5-5.5 km s-1) overlying a fairly homogeneous basement (~6.0 km s-1) and a localized high-velocity (6.4 km s -1) body situated beneath the western Whipple Mountains. A prominent midcrustal reflection is identified beneath the Whipple and Buckskin Rawhide mountains between 10 and 20km depth. -from Authors

  3. Subduction Orogeny and the Late Cenozoic Evolution of the Mediterranean Arcs

    NASA Astrophysics Data System (ADS)

    Royden, Leigh; Faccenna, Claudio

    2018-05-01

    The Late Cenozoic tectonic evolution of the Mediterranean region, which is sandwiched between the converging African and European continents, is dominated by the process of subduction orogeny. Subduction orogeny occurs where localized subduction, driven by negative slab buoyancy, is more rapid than the convergence rate of the bounding plates; it is commonly developed in zones of early or incomplete continental collision. Subduction orogens can be distinguished from collisional orogens on the basis of driving mechanism, tectonic setting, and geologic expression. Three distinct Late Cenozoic subduction orogens can be identified in the Mediterranean region, making up the Western Mediterranean (Apennine, external Betic, Maghebride, Rif), Central Mediterranean (Carpathian), and Eastern Mediterranean (southern Dinaride, external Hellenide, external Tauride) Arcs. The Late Cenozoic evolution of these orogens, described in this article, is best understood in light of the processes that govern subduction orogeny and depends strongly on the buoyancy of the locally subducting lithosphere; it is thus strongly related to paleogeography. Because the slow (4–10 mm/yr) convergence rate between Africa and Eurasia has preserved the early collisional environment, and associated tectonism, for tens of millions of years, the Mediterranean region provides an excellent opportunity to elucidate the dynamic and kinematic processes of subduction orogeny and to better understand how these processes operate in other orogenic systems.

  4. High-pressure granulites in the Fuping Complex of the central North China Craton: Metamorphic P-T-t evolution and tectonic implications

    NASA Astrophysics Data System (ADS)

    Qian, Jiahui; Yin, Changqing; Zhang, Jian; Ma, Li; Wang, Luojuan

    2018-04-01

    Mafic granulites in the Fuping Complex occur as lenses or boudins within high-grade TTG (Trondhjemite-Tonalite-Granodiorite) gneisses. Petrographic observations reveal four generations of mineral assemblage in the granulites: an inclusion assemblage of hornblende + plagioclase + ilmenite + quartz within garnet core; an inferred peak assemblage composed of garnet ± hornblende + plagioclase + clinopyroxene + rutile/ilmenite + quartz; a decompression assemblage characterized by symplectites of clinopyroxene ± orthopyroxene + plagioclase, coronae of plagioclase ± clinopyroxene ± hornblende around embayed garnet porphyroblasts or a two-pyroxene association; and a late amphibolite-facies retrogressive assemblage. Two representative samples were used for pseudosection modeling in NCFMASHTO model system to determine their metamorphic evolution. The results show that these granulites experienced a high-pressure stage of metamorphism with peak P-T conditions of 12-13 kbar and 760-800 °C (Pmax) and a post-peak history under P-T conditions of ∼9.0 kbar and 805-835 °C (Tmax), indicating a nearly isothermal decompression process (ITD) with a slight heating. Metamorphic evolution from the Pmax to the Tmax is predicted to be dominated by garnet breakdown through continuous metamorphic reactions of garnet + quartz ± diopside = hornblende + plagioclase + liquid and garnet + quartz + hornblende = plagioclase + diopside + liquid + orthopyroxene. Further metamorphic evolution after the Tmax is dominated by cooling, suggesting that high-pressure (HP) granulites may also exist in the Fuping Complex. Metamorphic zircons in the Fuping HP mafic granulites have left inclined REE patterns, Ti contents of 1.68-6.88 ppm and crystallization temperatures of 602-712 °C. SIMS zircon U-Pb dating on these zircons yields 207Pb/206Pb ages of 1891 ± 14 Ma and 1849 ± 6 Ma, interpreted to represent the cooling stage of metamorphism. The P-T-t evolution of the Fuping HP mafic granulites records well the protracted Paleoproterozoic orogenic event occurred in the central North China Craton.

  5. Topography, surface properties, and tectonic evolution. [of Venus and comparison with earth

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.; Warner, J. L.; Malin, M. C.; Arvidson, R. E.; Eliason, E.; Nozette, S.; Reasenberg, R. D.

    1983-01-01

    Differences in atmospheric composition, atmospheric and lithospheric temperature, and perhaps mantle composition, suggest that the rock cycle on Venus is not similar to the earth's. While radar data are not consistent with a thick, widespread and porous regolith like that of the moon, wind-transported regolith could be cemented into sedimentary rock that would be indistinguishable from other rocks in radar returns. The elevation spectrum of Venus is strongly unimodal, in contrast to the earth. Most topographic features of Venus remain enigmatic. Two types of tectonic model are proposed: a lithosphere too thick or buoyant to participate in convective flow, and a lithosphere which, in participating in convective flow, implies the existence of plate tectonics. Features consistent with earth-like plate tectonics have not been recognized.

  6. Magnetic anomalies in East Antarctica: a window on major tectonic provinces and their boundaries

    USGS Publications Warehouse

    Golynsky, A.V.

    2007-01-01

    An analysis of aeromagnetic data compiled within the Antarctic Digital Magnetic Anomaly Project (ADMAP) yields significant new insight into major tectonic provinces of East Antarctica. Several previously unknown crustal blocks are imaged in the deep interior of the continent, which are interpreted as cratonic nuclei. These cratons are fringed by a large and continuous orogenic belt between Coats Land and Princess Elizabeth Land, with possible branches in the deeper interior of East Antarctica. Most of the crustal provinces and boundaries identified in this study are only in part exposed. More detailed analyses of these crustal provinces and their tectonic boundaries would require systematic acquisition of additional high-resolution magnetic data, because at present the ADMAP database is largely inadequate to address many remaining questions regarding Antarctica’s tectonic evolution.

  7. Petrologic, tectonic, and metallogenic evolution of the southern segment of the ancestral Cascades magmatic arc, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Cousens, Brian L.

    2013-01-01

    Although rocks in the two arc segments have similar metal abundances, they are metallogenically distinct. Small porphyry copper deposits are characteristic of the northern segment whereas significant epithermal precious metal deposits are most commonly associated with the southern segment. These metallogenic differences are also fundamentally linked to the tectonic settings and crustal regimes within which these two arc segments evolved.

  8. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.

    PubMed

    Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M

    2017-05-12

    The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.

  9. The Lord Howe Rise continental ribbon: a fragment of eastern Gondwana that reveals the drivers of continental rifting and plate tectonics

    NASA Astrophysics Data System (ADS)

    Saito, S.; Hackney, R. I.; Bryan, S. E.; Kimura, J. I.; Müller, D.; Arculus, R. J.; Mortimer, N. N.; Collot, J.; Tamura, Y.; Yamada, Y.

    2016-12-01

    Plate tectonics and resulting changes in crustal architecture profoundly influence global climate, oceanic circulation, and the origin, distribution and sustainability of life. Ribbons of continental crust rifted from continental margins are one product of plate tectonics that can influence the Earth system. Yet we have been unable to fully resolve the tectonic setting and evolution of huge, thinned, submerged, and relatively inaccessible continental ribbons like the Lord Howe Rise (LHR), which formed during Cretaceous fragmentation of eastern Gondwana. Thinned continental ribbons like the LHR are not easily explained or predicted by plate-tectonic theory. However, because Cretaceous rift basins on the LHR preserve the stratigraphy of an un-accreted and intact continental ribbon, they can help to determine whether plate motion is self-organised—passively driven by the pull of negatively-buoyant subducting slabs—or actively driven by convective flow in the mantle. In a self-organising scenario, the LHR formed in response to ocean-ward retreat of the long-lived eastern Gondwana subduction zone and linked upper-plate extension. In the mantle-driven scenario, the LHR resulted from rifting near the eastern edge of Gondwana that was triggered by processes linked to emplacement of a silicic Large Igneous Province. These scenarios can be distinguished using the ribbon's extensional history and the composition and tectonic affinity of igneous rocks within rift basins. However, current knowledge of LHR rift basins is based on widely-distributed marine and satellite geophysical data, limited dredge samples, and sparse shallow drilling (<600 m below-seafloor). This limits our ability to understand the evolution of extended continental ribbons, but a recent deep crustal seismic survey across the LHR and a proposed IODP deep stratigraphic well through a LHR rift basin provide new opportunities to explore the drivers behind rifting, continental ribboning and plate tectonics.

  10. Making the case for the Picuris orogeny: Evidence for a 1500 to 1400 Ma orogenic event in the southwestern United States

    USGS Publications Warehouse

    Daniel, Christopher G.; Jones, James V.; Andronicos, Christopher L.; Gray, Mary Beth; Abbott, Lon D.; Hancock, Gregory S.

    2013-01-01

    The early Mesoproterozoic (ca. 1400 Ma) is an enigmatic time in the tectonic evolution of southern Laurentia. Circa 1400 Ma granites within Laurentia and multiple other continents have distinctive geochemistry consistent with crustal extension or mantle upwelling. In the southwestern United States, these granites are commonly foliated and are often spatially associated with km-scale ductile shear zones. Deformation is attributed to intracontinental tectonism driven by active convergence along the distal southern margin of Laurentia. The recent discovery of deformed and metamorphosed, ca. 1450 Ma sedimentary rocks in northern New Mexico has strengthened the case for regional deformation and orogenesis. However, important questions remain about the tectonic significance of these events and how to reconcile tectonic models with granite petrology at the regional to global scale. This trip focuses on the protolith age of Proterozoic metasedimentary rocks and the kinematics, timing, and tectonic significance of deformation, magmatism, and metamorphism for the Mesoproterozoic across different crustal levels in the southern Rocky Mountains to highlight the ongoing questions and controversies regarding the Mesoproterozoic tectonic setting of Laurentia.This field trip will examine some of the diverse and most recently discovered evidence for ca. 1400 Ma orogenesis in the southern Rocky Mountains. We hope this trip will promote new interest and discussion about the Mesoproterozoic tectonic evolution of Laurentia. We will visit multiple outcrops in the Wet Mountains of southern Colorado and the Picuris Mountains of northern New Mexico. Stops in the Wet Mountains are arranged from north to south to examine contrasting styles of ca. 1400 Ma deformation with increasing paleodepth across the tilted Proterozoic crustal section. In the Picuris Mountains, we focus on detrital zircon geochronology and revisions to the lithostratigraphy of Paleoproterozoic and recently documented Mesoproterozoic metasedimentary rocks, the nature of regional metamorphism, and the style of deformation, ca. 1450–1400 Ma.

  11. Understanding the Miocene-Pliocene - The Mediterranean Point of View

    NASA Astrophysics Data System (ADS)

    Simon, D.; Marzocchi, A.; Lunt, D. J.; Flecker, R.; Hilgen, F. J.; Meijer, P. T.

    2015-12-01

    During the Miocene-Pliocene the Mediterranean region experienced major changes in paleogeography. Today, its only connection to the global ocean is the Strait of Gibraltar. This restricted nature causes the Mediterranean basin to react more sensitive to climatic and tectonic related phenomena than the global ocean: Not just eustatic sea-level and regional river run-off, but also gateway tectonics and connectivity between sub-basins are leaving an enhanced fingerprint in its geological record. To understand its evolution, it is crucial to understand how these different effects are coupled. The Miocene-Pliocene sedimentary record of the Mediterranean alternates in composition and colour. Around the Miocene-Pliocene Boundary the most extreme changes occur in the Mediterranean Sea: About 6% of the salt in the global ocean got deposited in the Mediterranean Region, forming an approximately 2km thick salt layer, which is still present today. This extreme event is named the Messinian Salinity Crisis (MSC, 5.97-5.33Ma). Before (and also after) the MSC, the sedimentary record demonstrates "marl dominated" alternations with variations in organic content (e.g. higher organic content = sapropel). During the MSC these change to mainly "evaporite (e.g. gypsum or halite) dominated" alternations, but also to brackish Black Sea-type of deposits towards the end of the crisis. Due to its relative short geological time span, the period before, during and after the MSC is ideal to study these extreme changes in sedimentation. We are investigating these couplings and evolutions in a box/budget model. With such a model we can study the responses to basin water exchange dynamics under the effect of different regional and global climatic and tectonic forcings, to predict the evolution of basin properties (e.g. salinity). By doing so we can isolate certain climatic and tectonic effects, to better understand their individual contribution, their interaction, but also the consequences due to their coupling. Keywords: Mediterranean Sea, Climate, Coupling, Evolution, Messinian Salinity Crisis, Modeling, Strait of Gibraltar, GCM

  12. A multidisciplinary study on the crustal architecture and tectonic evolution of the Biligiri Rangan Block, southern India: Implications for Neoarchean plate tectonics

    NASA Astrophysics Data System (ADS)

    Raveendran Thankamoni, Ratheesh Kumar

    2017-04-01

    Southern India is comprised of a collage of crustal blocks ranging in age from Archean to Neoproterozoic. Previous studies considered the Archean high-grade granulite terrain to the north of the Southern Granuilte Terrain (SGT) of southern India as the part of the Dharwar Craton and hence subdivided this craton into western, central and eastern provinces. This contribution presents my detailed examinations on the least studied Central Dharwar Province, comprising the Biligiri Rangan (BR) - Male Mahadeshwara (MM) Hills domain composed predominantly of charnockites. One of my recent study (Ratheesh-Kumar et al., 2016) for the first time provided necessary evidence for Neoarchean subduction-accretion-collision tectonic evolution of this domain as a separate crustal block which has been named as Biligiri Rangan Block (BRB) by using a multidisciplinary approach involving field investigation, petrography, mineral chemistry, thermodynamic modeling of metamorphic P-T evolution, and LA-ICPMS U-Pb and Lu-Hf analyses of zircons on representative rocks together with regional-scale crustal thickness model derived using isostatic gravimetric geophysical method. The important findings of this study are: (1) The BRB preserves the vestiges of a Mesoarchean primitive continental crust as indicated by the age (ca. 3207) and positive ɛHf value (+2.7) of quartzofeldspathic gneiss occurred in the central part of the block (2) The charnockites and associated mafic granulites and granites provide ages between ca. 2650 Ma and ca. 2498 Ma with large negative ɛHf values are suggestive of Neoarchean charnockitization and crustal remelting (3) New geochemical data of charnockites and mafic granulites from BRB are consistent with arc magmatic rocks generated through oceanic plate subduction (4) Delineation of a suture zone along the Kollegal structural lineament bounding the BRB and the Western Dharwar Craton surmised from the occurrences of quartzite-iron formation intercalations and also mafic-ultramafic lenses along this lineament with their evolution through a clockwise prograde and retrograde metamorphism in a subduction zone setting at a high-pressure of 18-19 kbar and temperature of ˜840°C (5) Spatial variation of crustal thickness data reveal high crustal thickness in the Biligiri Rangan and the Nilgiri Blocks, and are attributed to a more competently thickened crust resulted by the subduction and collision processes. Based on these results, this study proposes a new tectonic model for the evolution of the BRB that envisages eastward subduction of the Western Dharwar oceanic crust beneath the BRB along the Kollegal suture zone resulted in the arc magmatism during the Neoarchean. The relevance of this study relies on the fact that the proposed evolutionary model revises the existing debates on the tectonic framework and evolution of the Archean terranes of southern India.

  13. Fracture patterns of the drainage basin of Wadi Dahab in relation to tectonic-landscape evolution of the Gulf of Aqaba - Dead Sea transform fault

    NASA Astrophysics Data System (ADS)

    Shalaby, Ahmed

    2017-10-01

    Crustal rifting of the Arabian-Nubian Shield and formation of the Afro-Arabian rifts since the Miocene resulted in uplifting and subsequent terrain evolution of Sinai landscapes; including drainage systems and fault scarps. Geomorphic evolution of these landscapes in relation to tectonic evolution of the Afro-Arabian rifts is the prime target of this study. The fracture patterns and landscape evolution of the Wadi Dahab drainage basin (WDDB), in which its landscape is modeled by the tectonic evolution of the Gulf of Aqaba-Dead Sea transform fault, are investigated as a case study of landscape modifications of tectonically-controlled drainage systems. The early developed drainage system of the WDDB was achieved when the Sinai terrain subaerially emerged in post Eocene and initiation of the Afro-Arabian rifts in the Oligo-Miocene. Conjugate shear fractures, parallel to trends of the Afro-Arabian rifts, are synthesized with tensional fracture arrays to adapt some of inland basins, which represent the early destination of the Sinai drainage systems as paleolakes trapping alluvial sediments. Once the Gulf of Aqaba rift basin attains its deeps through sinistral movements on the Gulf of Aqaba-Dead Sea transform fault in the Pleistocene and the consequent rise of the Southern Sinai mountainous peaks, relief potential energy is significantly maintained through time so that it forced the Pleistocene runoffs to flow via drainage systems externally into the Gulf of Aqaba. Hence the older alluvial sediments are (1) carved within the paleolakes by a new generation of drainage systems; followed up through an erosional surface by sandy- to silty-based younger alluvium; and (2) brought on footslopes of fault scarps reviving the early developed scarps and inselbergs. These features argue for crustal uplifting of Sinai landscapes syn-rifting of the Gulf of Aqaba rift basin. Oblique orientation of the Red Sea-Gulf of Suez rift relative to the WNW-trending Precambrian Najd faults; and extrusion of volcanic rocks in directions parallel to the rift boundaries geometrically suggest rifting on tensional fractures that mutually bridge the Najd fault-related shear fractures. These aspects might envisage reactivation of the preexisting Precambrian fracture patterns in the Arabian-Nubian shield by the Oligo-Miocene to Pleistocene rift-controlled stress field.

  14. Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation

    NASA Astrophysics Data System (ADS)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann; Faghih, Ali; Kusky, Timothy

    2012-09-01

    To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represents part of a deformation zone between the Arabian and Eurasian plates, and can be interpreted to result from the Central Iran intracontinental deformation acting as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveal that the metamorphic and igneous rocks suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. Comparison of deformation features in the mylonites and other structural features within the footwall unit leads to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching during Middle to Late Eocene extensional tectonics. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex was deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture.

  15. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  16. Concept for a research project in early crustal genesis

    NASA Technical Reports Server (NTRS)

    Phillips, R. J. (Compiler); Ashwal, L. (Compiler)

    1983-01-01

    Planetary volatiles, physical and chemical planetary evolution, surface processes, planetary formation, metallogenesis, crustal features and their development, tectonics, and paleobiology are discussed.

  17. Intraplate extensional tectonics of the eastern Basin-Range Inferencess on structural style from seismic reflection data, regional tectonics, and thermal-mechanical models of brittle-ductile deformation

    NASA Technical Reports Server (NTRS)

    Smith, R. B.; Bruhn, R. L.

    1984-01-01

    Using 1500 km of industry-released seismic reflection data, surface geology, velocity models from refraction data, and earthquake data, the large extensional structures in the crust of the eastern Basin-Range and its transition into the Middle Rocky Mountains and Colorado Plateau have been studied. It is suggested that the close spatial correlation between normal faults and thrust fault segmentation along the Wasatch Front reflects major east-trending structural and lithological boundaries inherited from tectonic processes associated with the evolution of the cordilleran miogeocline, which began in the Precambrian.

  18. Planetary Evolution, Habitability and Life

    NASA Astrophysics Data System (ADS)

    Tilman, Spohn; Breuer, Doris; de Vera, Jean-Pierre; Jaumann, Ralf; Kuehrt, Ekkehard; Möhlmann, Diedrich; Rauer, Heike; Richter, Lutz

    A Helmholtz Alliance has been established to study the interactions between life and the evo-lution of planets. The approach goes beyond current studies in Earth-System Sciences by including the entire planet from the atmosphere to the deep interior, going beyond Earth to include other Earth-like planets such as Mars and Venus and satellites in the solar system where ecosystems may exist underneath thick ice shells,considering other solar systems. The approach includes studies of the importance of plate tectonics and other tectonic regimes such as single plate tectonics for the development and for sustaining life and asks the question: If life can adapt to a planet, can a planet adapt to life? Can life be seen as a geological process and if so, can life shape the conditions on a planet such that life can flourish? The vision goes beyond the solar system by including the challenges that life would face in other solar systems. The Alliance uses theoretical modelling of feedback cycles and coupled planetary atmosphere and interior processes. These models are based on the results of remote sensing of planetary surfaces and atmospheres, laboratory studies on (meteorite) samples from other planets and on studies of life under extreme conditions. The Alliance uses its unique capabilities in remote sensing and in-situ exploration to prepare for empirical studies of the parameters affecting habitability. The Alliance aims to establish a network infrastructure in Germany to enable the most ad-vanced research in planetary evolution studies by including life as a planetary process. Finding extraterrestrial life is a task of fundamental importance to mankind, and its fulfilment will be philosophically profound. Evaluating the interactions between planetary evolution and life will help to put the evolution of our home planet (even anthropogenic effects) into perspective.

  19. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma

    NASA Astrophysics Data System (ADS)

    Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.

    2017-12-01

    The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing the history of plate motion and subduction and tracing the geological and deformation records in continents play a significant role in revealing the effects of complex plate motions and the interactions of plate boundary forces on plate-mantle coupling and plate motion-intracontinental deformation coupling.

  20. Comparative analysis of geodynamic activity of the Caucasian and Eastern Mediterranean segments of the Alpine-Himalayan convergence zone

    NASA Astrophysics Data System (ADS)

    Chelidze, Tamaz; Eppelbaum, Lev

    2013-04-01

    The Alpine-Himalayan convergence zone (AHCZ) underwent recent transverse shortening under the effect of collisional compression. The process was accompanied by rotation of separate microplates. The Caucasian and Eastern Mediterranean regions are segments of the of the AHCZ and are characterized by intensive endogenous and exogenous geodynamic processes, which manifest themselves in occurrence of powerful (with magnitude of 8-9) earthquakes accompanied by development of secondary catastrophic processes. Large landslides, rock falls, avalanches, mud flows, etc. cause human deaths and great material losses. The development of the aforesaid endogenous processes is set forth by peculiarities of the deep structure of the region and an impact of deep geological processes. The Caucasus is divided into several main tectonic terranes: platform (sub-platform, quasi-platform) and fold-thrust units. Existing data enable to perform a division of the Caucasian region into two large-scale geological provinces: southern Tethyan and northern Tethyan located to the south of and to the north of the Lesser Caucasian ophiolite suture, respectively. The recent investigations show that the assessments of the seismic hazard in these regions are not quite correct - for example in the West Caucasus the seismic hazard can be significantly underestimated, which affects the corresponding risk assessments. Integrated analysis of gravity, magnetic, seismic and thermal data enables to refine the assessment of the seismic hazard of the region, taking into account real rates of the geodynamic movements. Important role play the last rheological constructions. According to Reilinger et al. (2006) tectonic scheme, the West flanking of the Arabian Plate manifests strike-slip motion, when the East Caucasian block is converging and shortening. The Eastern Mediterranean is a tectonically complex region located in the midst of the progressive Afro-Eurasian collision. The recent increasing geotectonic activity in this region highlights the need for combined analysis of seismo-neotectonic signatures. For this purpose, this article presents the key features of the tectonic zonation of the Eastern Mediterranean. Map of derivatives of the gravity field retracked from the Geosat satellite and novel map of the Moho discontinuity illustrate the most important tectonic features of the region. The Post-Jurassic map of the deformation of surface leveling reflects the modern tectonic stage of Eastern Mediterranean evolution. The developed tectono-geophysical zonation map integrates the potential geophysical field analysis and seismic section utilization, as well as tectonic-structural, paleogeographical and facial analyses. Tectonically the map agrees with the earlier model of continental accretion (Ben-Avraham and Ginzburg, 1990). Overlaying the seismicity map of the Eastern Mediterranean tectonic region (for the period between 1900 and 2012) on the tectonic zonation chart reveals the key features of the seismo-neotectonic pattern of the Eastern Mediterranean. The results have important implications for tectonic-seismological analysis in this region (Eppelbaum and Katz, 2012). A difference in the geotectonic patterns makes interesting comparison of geodynamic activity and seismic hazard of the Caucasian and Eastern Mediterranean segments of the AHCZ.

  1. Analogue modelling of strike-slip fault propagation across a rheological/morphological crustal anisotropy: implications for the morphotectonic evolution of the Gloria Fault - Tore Madeira Rise area in NE Atlantic.

    NASA Astrophysics Data System (ADS)

    Tomás, Ricardo; Rosas, Filipe M.; Duarte, João C.; Terrinha, Pedro; Kullberg, Maria C.; Almeida, Jaime; Barata, Frederico; Carvalho, Bruno; Almeida, Pedro

    2015-04-01

    The Gloria Fault (GF) marks the E-W dextral transcurrent plate boundary between Eurasia and Africa in NE Atlantic, displaying complying high magnitude (historical and instrumental) seismic activity (e.g. M=7.1 in 1939 and M=8.4 in 1941, Bufforn et al., 1988), and cutting across a NNE-SSW 1000 km long bathymetric ridge: the so called Tore-Madeira Rise - TMR (rising in average 3km above the abyssal plain). The precise origin and tectono-magmatic evolution of the TMR is still not fully understood, although reported wide-angle refraction data points to a rheological configuration comprising an isostatically compensated thickened oceanic crust, possibly formed during a period of high accretion in the Mid-Atlantic Ridge (Pierce and Barton, 1991). Widespread evidence for volcanic activity has also been recognized, spanning from late Cretaceous to Present (Geldmacher et al. 2006, Merle et al. 2009), noticeably with the most recent volcanism (~500 Ky) occurring as tectonically aligned volcanic plugs, distributed along the E-W tectonic trend of the GF-related structures. To better understand the complex interference at play in this key area between the tectonic structures (essentially determined by the Gloria Fault system), the present and past magmatic activity and the resulting seafloor morphology, a series of dynamically scaled analogue modelling experiments have been conceived and carried out. The main focus of this experimental work was to decipher the potential influence of a rheological vs. morphological anisotropy (accounting for the TMR) on the lateral propagation of a major right-lateral strike-slip fault (representing the GF). The preliminary comparison of the obtained experimental results with the natural morphotectonic pattern in the study area reveals, not only a strong tectonic control of the ongoing volcanism, manifested by the observed preferred directions of aligned volcanic plugs, but also a so far unsuspected deflection/distributed pattern of several faults, and other GF-related structures, here interpreted as resulting from the specific rheological constrains (e.g. crustal soft anomalies) underlying the distributed volcanic activity throughout the TMR. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013.

  2. Kinematic reconstruction of the Caribbean region since the Early Jurassic

    NASA Astrophysics Data System (ADS)

    Bochman, Lydian; van Hinsbergen, Douwe; Torsvik, Trond; Spakman, Wim; Pindell, James

    2014-05-01

    The Caribbean region results from a complex tectonic history governed by the interplay of the North American, South American and (Paleo-)Pacific plates, between which the Caribbean plate evolved since the early Cretaceous. During its entire tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, which hampers a quantitative integration into the global circuit of plate motions. In addition, reconstructions of the region have so far not resulted in a first order kinematic description of the main tectonic units in terms of Euler poles and finite rotation angles. Here, we present an updated, quantitatively described kinematic reconstruction of the Caribbean region back to 200 Ma integrated into the global plate circuit, and implemented with GPlates free software. Our analysis of Caribbean tectonic evolution incorporates an extensive literature review. To constrain the Caribbean plate motion between the American continents, we use a novel approach that takes structural geological observations rather than marine magnetic anomalies as prime input, and uses regionally extensive metamorphic and magmatic phenomena such as the Great Arc of the Caribbean, the Caribbean Large Igneous Province (CLIP) and the Caribbean high-pressure belt as correlation markers. The resulting model restores the Caribbean plate back along the Cayman Trough and major strike-slip faults in Guatemala, offshore Nicaragua, offshore Belize and along the Northern Andes towards its position of origin, west of the North and South American continents in early Cretaceous time. We provide the paleomagnetic reference frame for the Caribbean region by rotating the Global Apparent Polar Wander Path into coordinates of the Caribbean plate interior, Cuba, and the Chortis Block. We conclude that a plate kinematic scenario for a Panthalassa/Pacific origin of Caribbean lithosphere leads to a much simpler explanation than a Proto-Caribbean/Atlantic origin. Placing our reconstruction in the most recent mantle reference frames shows that the CLIP erupted 2000-3000 km east of the modern Galápagos hotspot, and may not have been derived from the corresponding mantle plume. Finally, our reconstruction suggests that most if not all modern subduction zones surrounding the Caribbean plate initiated at transform faults, two of these (along the southern Mexican and NW South American margins) evolved diachronously as a result of migrating trench-trench-transform triple junctions.

  3. Fundamentals studies in geodynamics

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1980-01-01

    Research in geodynamics, seismology, and planetary quakes is presented. Terradynamics and plate tectonics are described using dynamic models. The early evolution of the Earth's mantle is also discussed.

  4. Tertiary stress field evolution in Sistan (Eastern Iran)

    NASA Astrophysics Data System (ADS)

    Michael, Jentzer; Marc, Fournier; Philippe, Agard; Jafar, Omrani

    2016-04-01

    The Sistan orogenic belt in eastern Iran, near the boundary with Afghanistan, results from the closure of a branch of the Neo-Thethys: the Sistan Ocean. It was divided by Tirrul et al. (1983) in five main units: the Lut (1) and Afghan (2) continental blocks where basement is exposed; the Neh (3) and Ratuk (4) complexes which display ophiolitic rocks weakly and highly (HP-BT) metamorphosed, respectively, and the Sefidabeh basin lying over these complexes and interpreted as a fore-arc basin. Sistan is bordered by the Makran and Zagros (formed by the closure of the Neo-Tethys) to the south and by the Kopet Dagh (formed by the closure of Paleo-Tethys) to the North. The aim of this study is to fill the gap between preliminary studies about the overall structure of the Sistan Suture Zone and recent investigations of active tectonics in the region (e.g., Walker et al., 2004 and 2006 a and b). Questions herein addressed are: (1) how are stresses transfered throughout Iran from the Zagros to the Sistan belts? (2) Did the Zagros, Makran and Sistan belts evolve independently through time, or were they mechanically coupled? In order to answer these questions, we have determined paleostress evolution in the Sistan, using a direct inversion method for 42 microtectonic sites in almost all lithologies of the Neh complex and the Sefidabeh basin. We find three successive directions of compression: (1) 87°N for the oldest deformation stage dated of the Late Miocene, (2) 59°N for the intermediate stage probably dated of the Early Pliocene, and (3) 26°N for the youngest stage dated of the Plio-Quaternary. A counterclockwise rotation of about 60° of the main stress (σ1) in less than 10 Ma is therefore documented in Sistan. These same three stages of deformation were also documented by several microtectonic studies in Iran, especially in Makran and Zagros. The direction of the youngest compression is very homogeneous indicating that the mountain belts and continental blocks of Iran are presently mechanically coupled and shortened in the Arabia Eurasia collision zone. The counterclockwise rotation of compression, from Miocene to Present, documented everywhere in Iran is probably related to the rotation of the Arabia-Eurasia direction of convergence. However, the amount of rotation is higher in Central Iran than in South Iran, suggesting a progressive mechanical coupling from Miocene to Present. Tirrul, R., Bell, I.R., Griffis, R.J., Camp, V.E., 1983. The Sistan suture zone of eastern Iran. Geol. Soc. America Bull., 94, 134-150. Walker, R., Jackson, J., 2004. Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics 23, doi:10.1029/2003TC001529 Walker, R.T., 2006 a. A remote sensing study of active folding and faulting in southern Kerman province, S.E. Iran. J. Struct. Geol. 28, 654-668. doi:10.1016/j.jsg.2005.12.014 Walker, R.T., Khatib, M.M., 2006 b. Active faulting in the Birjand region of NE Iran. Tectonics 25, doi:10.1029/2005TC001871

  5. The Cauaburi magmatic arc: Litho-stratigraphic review and evolution of the Imeri Domain, Rio Negro Province, Amazonian Craton

    NASA Astrophysics Data System (ADS)

    Carneiro, Marcia C. R.; Nascimento, Rielva S. C.; Almeida, Marcelo E.; Salazar, Carlos A.; Trindade, Ivaldo Rodrigues da; Rodrigues, Vanisse de Oliveira; Passos, Marcel S.

    2017-08-01

    A lithostratigraphic review of the Cauaburi Complex was carried out by means of field, tectono-metamorphic and geochemical data, which were the basis for the sub-division of the Cauaburi Complex orthogneisses into the Santa Izabel do Rio Negro, Cumati and São Jorge facies. These rocks crop out between São Gabriel da Cachoeira and Santa Izabel do Rio Negro, Amazonas, Brazil. The gneisses of the Santa Izabel do Rio Negro and Cumati facies are metaluminous and of calc-alkaline affinity; in turn, the rocks of the São Jorge facies are peraluminous and of alkaline affinity. They vary from (amphibole)-biotite granodiorites/monzogranites (Cumati and Santa Izabel do Rio Negro facies) to spessartite-bearing biotite monzogranites (São Jorge facies). The Cauaburi Complex geochemical signature is compatible with that of granites generated in collisional settings (magmatic arc?) and its evolution is related to three distinct tectono-metamorphic events: D1, causing foliation S1, which developed during the Cauaburi Complex syn-tectonic emplacement in the Cauaburi Orogeny; D2/M2, causing foliation S2, which was generated under amphibolite facies conditions (717.9 °C and 5.84 kbars), and the emplacement of I- and S-type granite during the Içana Orogen, and low-temperature D3, associated with the K'Mudku Event, which caused foliation S3 and reworking via transcurrent shear zones under greenschist facies conditions.

  6. Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies

    NASA Astrophysics Data System (ADS)

    Rangin, Claude

    2016-01-01

    Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.

  7. P-T evolution of metasedimentary rocks of the Santa Filomena Complex, Riacho do Pontal Orogen, Borborema Province (NE Brazil): Geothermobarometry and metamorphic modelling

    NASA Astrophysics Data System (ADS)

    Santos, Felipe H.; Amaral, Wagner S.; Luvizotto, George L.; Martins de Sousa, Daniel F.

    2018-03-01

    We present in this paper petrologic data and discuss the pressure-temperature (P-T) metamorphic history of the neoproterozoic metasedimentary rocks of the Santa Filomena Complex, Riacho do Pontal Orogen, which is inserted in the southern portion of the Borborema Province (Northeast Brazil). Therefore, the data provide constraints on metamorphic evolution during Neoproterozoic Brasiliano Orogeny in Northeast Brazil. The rocks studied are aluminous schists and paragneisses. Silver-gray and red pelitic schists are intensely deformed, biotite-muscovite rich, contain centimeter-sized garnet, staurolite and kyanite porphyroblasts, and subordinately plagioclase and quartz. Paragneisses are from light gray to dark gray colored, medium to coarse-grained and display a well-spaced foliated matrix of biotite, and kyanite and garnet porphyroblasts. Locally, the schists and paragneisses are migmatized. Pressure-temperature modelling based on thermobarometric calculations indicate that metamorphism reached 643 °C with pressures estimated in 12 kbar. Pre-peak and post-peak metamorphic conditions are constrained by mineralogical and textural relationships: garnet inclusion-rich and inclusion-free (possible of higher T) are documented and the inclusion-rich core probably indicates a Sn-1 foliation that was transposed by Sn. The pre-peak stage most probably occurred close to 500 °C and 8 kbar, in upper greenschist to lower amphibolite facies metamorphism along kyanite stability field. We also propose that post-peak stage was associated with isothermal decompression along a possible path of tectonic exhumation in conditions of 600 °C and 7 kbar. To further evaluate the equilibrium condition, pressure-temperature pseudosections were calculated for the metasedimentary rocks. Thus, the estimated metamorphic peak took place in the upper amphibolite facies. A suggested clockwise pressure-temperature path is compatible with the regional tectonic setting of continent-continent collision which occurred in the Late Neoproterozoic of Borborema Province, during the Brasiliano Orogeny.

  8. The Cenozoic fold-and-thrust belt of Eastern Sardinia: Evidences from the integration of field data with numerically balanced geological cross section

    NASA Astrophysics Data System (ADS)

    Arragoni, S.; Maggi, M.; Cianfarra, P.; Salvini, F.

    2016-06-01

    Newly collected structural data in Eastern Sardinia (Italy) integrated with numerical techniques led to the reconstruction of a 2-D admissible and balanced model revealing the presence of a widespread Cenozoic fold-and-thrust belt. The model was achieved with the FORC software, obtaining a 3-D (2-D + time) numerical reconstruction of the continuous evolution of the structure through time. The Mesozoic carbonate units of Eastern Sardinia and their basement present a fold-and-thrust tectonic setting, with a westward direction of tectonic transport (referred to the present-day coordinates). The tectonic style of the upper levels is thin skinned, with flat sectors prevailing over ramps and younger-on-older thrusts. Three regional tectonic units are present, bounded by two regional thrusts. Strike-slip faults overprint the fold-and-thrust belt and developed during the Sardinia-Corsica Block rotation along the strike of the preexisting fault ramps, not affecting the numerical section balancing. This fold-and-thrust belt represents the southward prosecution of the Alpine Corsica collisional chain and the missing link between the Alpine Chain and the Calabria-Peloritani Block. Relative ages relate its evolution to the meso-Alpine event (Eocene-Oligocene times), prior to the opening of the Tyrrhenian Sea (Tortonian). Results fill a gap of information about the geodynamic evolution of the European margin in Central Mediterranean, between Corsica and the Calabria-Peloritani Block, and imply the presence of remnants of this double-verging belt, missing in the Southern Tyrrhenian basin, within the Southern Apennine chain. The used methodology proved effective for constraining balanced cross sections also for areas lacking exposures of the large-scale structures, as the case of Eastern Sardinia.

  9. Cinematic modeling of local morphostructures evolution

    NASA Astrophysics Data System (ADS)

    Bronguleev, Vadim

    2013-04-01

    With the use of a simple 3-dimensional cinematic model of slope development some characteristic features of morphostructure evolution were shown. We assume that the velocity of slope degradation along normal vector to a surface is determined by three morphological parameters: slope angle, its profile curvature and its plan curvature. This leads to the equation of parabolic type: where h=h(x,y,t) is the altitude of slope surface, Kpr(x,y,t)is the profile curvature of the slope, Kpl(x,y,t) is the plan curvature, f(x,y,t) is the velocity of tectonic deformation (or base level movement), A, B, and C are the coefficients which may depend on coordinates and time. The first term in the right part of the equation describes parallel slope retreat, typical to arid environment, the second term describes slope vertical grading due to viscous flow, typical to humid conditions, and the third term is responsible for slope plan grading due to such processes as desquamation, frost weathering, etc. This simple model describes a wide range of local morphostructures evolution: stepped slopes and piedmont benchlands, lithogenic forms - terraces and passages, flattened summits and rounded hills. Using different types of the function f (block rise, swell, tilt), we obtained interesting reformations of initial tectonic landforms during the concurrent action of denudation processes. The result of such action differs from that of the successive action of tectonic movements and denudation. The relation of rates of the endogenous and exogenous processes strongly affects the formation of local morphostructures. Preservation of initial features of slope such as steps or bends as well as their formation due to tectonics or lithology is possible if coefficients B and Care small in comparison toA.

  10. A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics

    NASA Astrophysics Data System (ADS)

    Bocher, M.; Coltice, N.; Fournier, A.; Tackley, P. J.

    2016-01-01

    With the progress of mantle convection modelling over the last decade, it now becomes possible to solve for the dynamics of the interior flow and the surface tectonics to first order. We show here that tectonic data (like surface kinematics and seafloor age distribution) and mantle convection models with plate-like behaviour can in principle be combined to reconstruct mantle convection. We present a sequential data assimilation method, based on suboptimal schemes derived from the Kalman filter, where surface velocities and seafloor age maps are not used as boundary conditions for the flow, but as data to assimilate. Two stages (a forecast followed by an analysis) are repeated sequentially to take into account data observed at different times. Whenever observations are available, an analysis infers the most probable state of the mantle at this time, considering a prior guess (supplied by the forecast) and the new observations at hand, using the classical best linear unbiased estimate. Between two observation times, the evolution of the mantle is governed by the forward model of mantle convection. This method is applied to synthetic 2-D spherical annulus mantle cases to evaluate its efficiency. We compare the reference evolutions to the estimations obtained by data assimilation. Two parameters control the behaviour of the scheme: the time between two analyses, and the amplitude of noise in the synthetic observations. Our technique proves to be efficient in retrieving temperature field evolutions provided the time between two analyses is ≲10 Myr. If the amplitude of the a priori error on the observations is large (30 per cent), our method provides a better estimate of surface tectonics than the observations, taking advantage of the information within the physics of convection.

  11. Constraining the fault slip rate using morphology of normal fault footwalls: insights from analog and numerical models (Invited)

    NASA Astrophysics Data System (ADS)

    Strak, V.; Dominguez, S.; Petit, C.; Meyer, B.; Loget, N.

    2013-12-01

    Relief evolution in active tectonic areas is controlled by the interactions between tectonics and surface processes (erosion, transport and sedimentation). These interactions lead to the formation of geomorphologic markers that remain stable during the equilibrium reached in the long-term between tectonics and erosion. In regions experiencing active extension, drainage basins and faceted spurs (triangular facets) are such long-lived morphologic markers and they can help in quantifying the competing effects between tectonics, erosion and sedimentation. We performed analog and numerical models simulating the morphologic evolution of a mountain range bounded by a normal fault. In each approach we imposed identical initial conditions. We carried out several models by varying the fault slip rate (V) and keeping a constant rainfall rate allowing us to study the effect of V on morphology. Both approaches highlight the main control of V on the topographic evolution of the footwall. The experimental approach shows that V controls erosion rates (incision rate, erosion rate of slopes and regressive erosion rate) and possibly the height of triangular facets. This approach indicates likewise that the parameter K of the stream power law depends on V even for non-equilibrium topography. The numerical approach corroborates the control of V on erosion rates and facet height. It also shows a correlation between the shape of drainage basins and V (slope-area relationship) and it suggests the same for the parameters of the stream power law. Therefore both approaches suggest the possibility of using the height of triangular facets and the slope-area relationship to infer the fault slip rate of normal faults situated in a given climatic context.

  12. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial deposition within the Middle Aterno River Valley. These fluvial deposits are deeply embedded into the lacustrine sequence, thus suggesting the happening of a hydrographic connection among the originally separated tectonic depressions. This was probably due to the headward erosion by streams draining the Sulmona depression that progressively captured the hydrological networks of the Subequana basin, the Middle Aterno Valley, the L'Aquila and Paganica-Castelnuovo-San Demetrio basins to the North. Stream piracy was probably helped by an increase of the regional uplift rate, occurred between the Lower and the Middle Pleistocene. To reconstruct the paleo-landscape that characterised the early stages of these basins formation we sampled the remnants of the Quaternary erosinal/depositional surfaces and reconstructed the ancient topographic surfaces using the Topo to Raster tool of ArcGIS 10.0 package. Finally we have cross-checked the geological and geomorphological data with the model of the Middle Aterno River paleo-drainage basin obtained through the GIS based method. References Falcucci E., Scardia G., Nomade S., Gori S., Giaccio B., Guillou H., Fredi P. (2012). Geomorphological and Quaternary tectonic evolution of the Subequana basin and the Middle Aterno Valley (central Apennines).16th Joint Geomorphological Meeting Morphoevolution of Tectonically Active Belts Rome, July 1-5, 2012

  13. Petrogenesis of two Triassic A-type intrusions in the interior of South China and their implications for tectonic transition

    NASA Astrophysics Data System (ADS)

    Sun, Li-Qiang; Ling, Hong-Fei; Shen, Wei-Zhou; Wang, Kai-Xing; Huang, Guo-Long

    2017-07-01

    The evolution of the tectonic regime that was responsible for the Indosinian granitoids in the South China Block (SCB) is still controversial. Investigations on A-type granites can provide important information regarding this tectonic evolution. A detailed study that utilizes whole-rock elemental, Sr-Nd isotopic, in situ zircon U-Pb and Lu-Hf isotopic geochemistry is conducted on the Miantuwo biotite granite in northern Guangdong Province and the Pingtian biotite monzogranite in southern Jiangxi Province, South China. The new data indicate that both the Miantuwo and Pingtian granites were emplaced at 233 ± 2 Ma and show metaluminous to slightly peraluminous A-type granite affinity. The two granites are characterized by high amounts of rare earth elements (total REEs = 247 ppm-557 ppm and 251 ppm-342 ppm) and high field strength elements (Zr + Nb + Ce + Y = 325 ppm-605 ppm and 343 ppm-496 ppm) and high Ga/Al ratios (10,000 × Ga/Al = 2.50-2.98 and 2.62-2.70). Calculations from a zircon saturation thermometer and apatite saturation thermometer indicate that the magmatic temperatures were 800 °C-980 °C for both granites. Both the Miantuwo and Pingtian granites show relatively high initial 87Sr/86Sr ratios (0.7151-0.7185 and 0.7170-0.7189), low εNd(t) values (- 9.8 to - 8.6 and - 9.7 to - 9.1) and low to moderate zircon εHf(t) values (- 10.4 to - 6.6 and - 9.5 to - 4.6). Based on these data, we suggest that these two A-type granites were derived from the partial melting of existing mafic to intermediate rocks in the lower crust in response to the underplating and/or intraplating of mantle-derived magma. Our study on the Miantuwo and Pingtian granites, alongside previous studies on other Triassic A-type granites in South China, indicates an extensional tectonic environment during the Late Triassic in the interior of the Cathaysia Block. Alongside existing geological observations and the tectonic evolution in the SCB, we suggest that the interior of the SCB was dominated by a compressional tectonic environment during the Late Permian-Middle Triassic in response to the collisions between the SCB and ambient blocks, and then a tectonic transition from this compressional environment to a post-collisional extension environment began at approximately 233 Ma.

  14. Inferring tectonic activity using drainage network and RT model: an example from the western Himalayas, India

    NASA Astrophysics Data System (ADS)

    Sahoo, Ramendra; Jain, Vikrant

    2017-04-01

    Morphology of the landscape and derived features are regarded to be an important tool for inferring about tectonic activity in an area, since surface exposures of these subsurface processes may not be available or may get eroded away over time. This has led to an extensive research in application of the non-planar morphological attributes like river long profile and hypsometry for tectonic studies, whereas drainage network as a proxy for tectonic activity has not been explored greatly. Though, significant work has been done on drainage network pattern which started in a qualitative manner and over the years, has evolved to incorporate more quantitative aspects, like studying the evolution of a network under the influence of external and internal controls. Random Topology (RT) model is one of these concepts, which elucidates the connection between evolution of a drainage network pattern and the entropy of the drainage system and it states that in absence of any geological controls, a natural population of channel networks will be topologically random. We have used the entropy maximization principle to provide a theoretical structure for the RT model. Furthermore, analysis was carried out on the drainage network structures around Jwalamukhi thrust in the Kangra reentrant in western Himalayas, India, to investigate the tectonic activity in the region. Around one thousand networks were extracted from the foot-wall (fw) and hanging-wall (hw) region of the thrust sheet and later categorized based on their magnitudes. We have adopted the goodness of fit test for comparing the network patterns in fw and hw drainage with those derived using the RT model. The null hypothesis for the test was, the drainage networks in the fw are statistically more similar than those on the hw, to the network patterns derived using the RT model for any given magnitude. The test results are favorable to our null hypothesis for networks with smaller magnitudes (< 9), whereas for larger magnitudes, both hw and fw networks were found to be statistically not similar to the model network patterns. Calculation of pattern frequency for each magnitude and subsequent hypothesis testing were carried out using Matlab (v R2015a). Our results will help to define drainage network pattern as one of the geomorphic proxy to identify tectonically active area. This study also serve as a supplementary proof of the neo-tectonic control on the morphology of landscape and its derivatives around the Jwalamukhi thrust. Additionally, it will help to verify the theory of probabilistic evolution of drainage networks.

  15. Three-Dimensional Structural and Hydrologic Evolution of Sant Corneli Anticline, a Fault-Cored Fold in the Central Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Shackleton, J. R.; Cooke, M. L.

    2005-12-01

    The Sant Corneli Anticline is a well-exposed example of a fault-cored fold whose hydrologic evolution and structural development are directly linked. The E-W striking anticline is ~ 5 km wide with abrupt westerly plunge, and formed in response to thrusting associated with the upper Cretaceous to Miocene collision of Iberia with Europe. The fold's core of fractured carbonates contains a variety of west dipping normal faults with meter to decameter scale displacement and abundant calcite fill. This carbonate unit is capped by a marl unit with low angle, calcite filled normal faults. The marl unit is overlain by clastic syn-tectonic strata whose sedimentary architecture records limb rotation during the evolution of the fold. The syn-tectonic strata contain a variety of joint sets that record the stresses before, during, and possibly after fold growth. Faulting in the marl and calcite-filled joints in the syn-tectonic strata suggest that normal faults within the carbonate core of the fold eventually breached the overlying marl unit. This breach may have connected the joints of the syn-tectonic strata to the underlying carbonate reservoir and eliminated previous compartmentalization of fluids. Furthermore, breaching of the marl units probably enhanced joint formation in the overlying syn-tectonic strata. Future geochemical studies of calcite compositions in the three units will address this hypothesis. Preliminary mapping of joint sets in the syn-tectonic strata reveal a multistage history of jointing. Early bed-perpendicular joints healed by calcite strike NE-SW, parallel to normal faults in the underlying carbonates, and may be related to an early regional extensional event. Younger healed bed-perpendicular joints cross cut the NE-SW striking set, and are closer to N-S in strike: these joints are interpreted to represent the initial stages of folding. Decameter scale, bed perpendicular, unfilled fractures that are sub-parallel to strike probably represent small joints and faults that formed in response to outer arc extension during folding. Many filled, late stage joints strike sub-parallel to, and increase in frequency near, normal faults and transverse structures observed in the carbonate fold core. This suggests that faulting in the underlying carbonates and marls significantly affected the joint patterns in the syn-tectonic strata. Preliminary three-dimensional finite element restorations using Dynel have allowed us to test our hypotheses and constrain the timing of jointing and marl breach.

  16. Miocene to Recent geological evolution of the Lazufre segment in the Andean volcanic arc

    NASA Astrophysics Data System (ADS)

    Naranjo, J. A.; Villa, V.; Ramírez, C.; Pérez de Arce, C.

    2014-12-01

    The volcano-tectonic setting in which the InSAR-detected Lazufre deformation is developing is particularly relevant in the evolution of this Andean volcanic arc segment (25-26°S). Through regional mapping techniques, a comprehensive field control in addition to geochronological sampling, various volcanic units comprising stratovolcanoes, volcanic complexes, ignimbrites and caldera structures are distinguished. The Lazufre intumescence is located above the overlying block of the NE trending Middle Miocene, Pedernales-Arizaro overthrust. This area comprises an Upper Miocene (8-4 Ma) basal unit of andesitic-dacitic volcanoes and lava fields, upon which nine volcanic complexes of similar composition, including Caletones de Cori Ignimbrite and Escorial Volcano, Lastarria, Cordón del Azufre and Bayo volcanic complexes, were emplaced in several pulses between 3.5 Ma and Holocene times. Coalescing Lazufre structure, immediately to the SE, we have discovered the Miocene (9.8 Ma) Los Colorados caldera. This caldera is 30 km in diameter and sourced the homonymous dacitic ignimbrite of about 500 km3. The caldera scarp was formed in Paleozoic rocks, Miocene dacitic-rhyolitic ignimbrites and ~16 and 10 Ma volcanoes. A 6.9-6.8 Ma andesitic-dacitic volcano ridge formed by Abra Grande, Río Grande and Aguas Calientes stratovolcanoes, from NE to SW, is nested on the caldera floor. Lavas of early stages of Cordón del Azufre and Bayo complexes were shed into the NW part of the caldera. The coalescing structure formed by the Lazufre intumescence and Los Colorados caldera is conjugate at about 30° to the Pedernales-Arizaro overthrust, and has a NW-SE orientation, parallel to the Archibarca lineament. A SE to NW migration of volcanism is observed along this structure at least since the Middle Miocene. We proposed that, since Miocene, tectonic spaces with no surficial fault displacements and conjugated to the main compressive structures within the upper crust, have been created as a result of tensional stresses. Subsequently, the so increased lithostatic gradient could play a major role in the vertical traction of magma rising, favoring crustal assimilation processes. The available geochronological data indicate that the deformation that preceded the Los Colorados caldera occurred in a maximum period between 13 and 10 Ma.

  17. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    NASA Astrophysics Data System (ADS)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault, possibly inherited from compressional tectonics. These earthquakes raise serious concerns on our understanding of fault segmentation and seismicity evolution during sequences of normal faulting earthquakes. Finally, the retrieved rupture history has important implications on seismic hazard assessment and on the maximum expected magnitude in a given tectonic area.

  18. Tectonic affinities of the accreted basalts in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Yang, Huai-Jen; Liu, Yung-Hsin; Huang, Kuo-Fang; Takazawa, Eiichi

    2018-06-01

    Tectonic affinities of accreted basalts provide constraints on mass transport in convergent boundaries, improving our understandings on the evolution of regional geology. In this study, nineteen accreted basalts from the southernmost tip of Taiwan Island, which is on the convergent boundary between the Eurasian and Philippine Sea Plates, were analyzed for element concentrations as well as Sr, Nd, Hf, and Pb isotope ratios to investigate their tectonic affinities. All the samples contain > 3% LOI, reflecting post-magmatic alteration. LOI and Nb variation diagrams together with comparisons to oceanic basalt compositions indicated that the concentrations of most major elements and Rb, Sr, and Ba were modified by post-magmatic processes to varying extents, while P2O5, REE and HFSE remained immobile. Although some samples show Pb loss, most samples have Pb concentrations not affected by post-magmatic processes. Isotope ratios of Pb, Nd and Hf, generally reflect the mantle source characteristics. The εNd-εHf relationship and trace element abundance ratios indicated that the LREE-depleted samples were mostly scraped off the subducting South China Sea floor, reflecting the volumetric dominance of N-MORB on ocean floors. The overriding Philippine Sea Plate contributed both N-MORB and E-MORB to the accretionary prism. The tectonic affinities of the LREE-enriched samples, however, could not be unambiguously determined for the large geochemical variability of OIB from both subducting and overlying slabs. Based on our results, it is proposed that the tectonic affinity of the basalts in an accretionary prism can indicate the subduction polarity of the associated convergent boundary, providing a constraint for regional geology evolution.

  19. The importance of structural softening for the evolution and architecture of passive margins

    PubMed Central

    Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.

    2016-01-01

    Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057

  20. Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north-eastern Tunisia

    NASA Astrophysics Data System (ADS)

    Melki, Fetheddine; Zouaghi, Taher; Harrab, Salah; Sainz, Antonio Casas; Bédir, Mourad; Zargouni, Fouad

    2011-07-01

    The Neogene sedimentary basins (Serravallian to Quaternary) of the Tellian tectonic foreland in north-eastern Tunisia formed within the overall NE-SW sinistral strike-slip tectonic framework of the Ras El Korane-Thibar and El Alia-Teboursouk fault systems. From stratigraphic logs, structural cross sections and interpretation of 2D seismic lines and boreholes, the pre-Neogene basement can be interpreted to be structured according to Eocene (NW-SE) compressional and Oligocene extensional phases. This basement comprises structural highs (anticlines and horsts) and subsiding areas (synclines, half-grabens and grabens) formed during the Neogene. The subsiding areas are delineated by faults striking N030E, N-S and N140E, defining (i) narrow, strongly subsiding synclines, (ii) lozenge-shaped basins and (iii) trapezoidal basins. The architecture of their fill results from the sedimentary balance between tectonics and eustatism. Halokinesis and clay diapirism (driven by Triassic and Neogene evaporites and clays) also played an important role in basin evolution, contributing to the formation of domes and diapirs along active faults.

  1. Structural style and tectonic evolution of the easternmost Gulf of Aden conjugate margins (Socotra - Southern Oman)

    NASA Astrophysics Data System (ADS)

    Nonn, Chloe; Leroy, Sylvie; Castilla, Raymi; de Clarens, Philippe; Lescanne, Marc

    2016-04-01

    Observations from distal rifted margins in present day magma-poor rifted margins led to the discovery of hyperextended crust and exhumed sub-continental mantle. This finding allowed to better figure out how thinning process are accommodate by tectonic structures, forming various crustal domains, as the deformation localized towards the future area of breakup. However, some of the current challenges are about clarifying how factors as oblique kinematic, pre-existing structures and volcanism can control the 3D geometry and crustal architecture of the passive margins? A key to better understand the rifting evolution in its entirety is to study conjugate margins. The gulf of Aden is a young oceanic basin (with a global trend about N75°E) oblique to the divergence (about 30°N), separating Arabia from Somalia of less than 800 km. Thanks to its immerged margins and its thin post-rift sediment cover, the gulf of Aden basin is a natural laboratory to investigate conjugate margins and strain localisation throughout the rift history. In this contribution, we focus our interest on offshore Socotra Island (Yemen) and its conjugate in Southeastern Oman. This area extends from Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fault zones (EGAFZ). In the easternmost part of the gulf of Aden, we provide new insights into crustal deformation and emplacement of the new oceanic crust thanks to bathymetric, magnetic, gravimetric data and single-, multi-channel, high speed seismic reflection data collected during Encens-Sheba (2000), Encens (2006) and the more recent Marges-Aden (2012) cruises respectively. The results obtained after compilation of these data, previous geological (field works) and geophysical (receiver functions, Pn-tomography, magnetic anomalies, heat flow) studies on the focused area, allowed us to provide new structural mapping and stratigraphic correlation between onshore and offshore parts of Socotra and Oman margins. We precisely defined and map crustal domains, syn-tectonic structures and oblique accommodation zones to highlighted asymmetrical margins, characterized by strong lateral variability of crustal domains along and across strike. From external to internal domains of the margins and in between SHFZ and EGAFZ (first-order segment), this study details sharp necking domain and complex transition from hyperextended to oceanic crust characterized by: (i) hyperextended crust affected by volcanic extrusions; (ii) detachment faulting in the distal part of the margins allowing exhumation; (iii) volcanic constructions in the exhumation domain; (iv) a complex proto-oceanic crust. We highlight a significant second-order segmentation characterized by six N20°E trending transfer zones, limiting seven 25 - 60 km length segments and affecting necking domain as well as the ocean-continent transition. Based on interpretative cross-sections and detailed stratigraphic analysis, we discuss the complex temporal and spatial evolution of conjugate margins: (i) the margins segmentation and the relationship with structural inheritance (ii) the set-up of a long-offset detachment fault and the nature of the exhumed basement (iv) the origin and timing of magmatic events and the onset of proto-oceanic crust.

  2. The tectonic evolution of the Irtysh tectonic belt: New zircon U-Pb ages of arc-related and collisional granitoids in the Kalaxiangar tectonic belt, NW China

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Klemd, Reiner; Gao, Jun; Xiang, Peng; Xu, Xing-Wang; You, Jun; Wang, Xin-Shui; Wu, Chu; Li, Hao; Ke, Qiang

    2017-02-01

    Precise geochronological constraints of the Irtysh tectonic belt situated between the Saur Island Arc and the Altay Terrane are crucial to a better understanding of the tectonic evolution of the Central Asian Orogenic Belt (CAOB). Recently, we discovered repeatedly deformed arc-related and collisional granitoids in the Kalaxiangar tectonic belt (KTB), which is located in the eastern part of the Irtysh tectonic belt. In this study, we report new whole-rock geochemical, zircon U-Pb and Hf isotopic data of the arc-related and collisional granitoids. Our data reveal that 1) arc-related granodioritic porphyries formed at ca. 382-374 Ma. Recrystallized zircon grains from a (ultra-)mylonitic granodiorite of the Laoshankou zone in the southern KTB display a U-Pb age of ca. 360 Ma; 2) syn-collisional granodioritic porphyries, which distribute along faults and parallel to the cleavage, were emplaced at ca. 367-356 Ma, with εHf(t) values varying from + 7.8 to + 14.2 and Hf model ages from 873 to 459 Ma; 3) a post-collisional A-type granodioritic porphyry, which crosscuts the NW-NNW trending schistosity of the metasedimentary country rocks at a low angle, has an age of ca. 324-320 Ma, while the εHf(t) values range from + 7.6 to + 14.4 with Hf model ages from 850 to 416 Ma; 4) post-collisional strike-slip A-type granite dykes, exposed along strike-slip faults, gave ages between 287 and 279 Ma, whereas the εHf(t) values range from + 4.9 to + 12.7 and the Hf model ages from 995 to 500 Ma; and 5) A-type biotite granite dykes, which intruded along conjugate tension joints, have ages of 274-271 Ma, and εHf(t) values from + 1.5 to + 13.2 with Hf model ages from 1196 to 454 Ma. Consequently, we propose that the collision between the Saur Island Arc and the Altay Terrane occurred in the Early Carboniferous (ca. 367-356 Ma) and the subsequent post-collisional tectonic process continued to the Late Carboniferous (ca. 324-320 Ma). It is further suggested that the Irtysh tectonic belt underwent large-scale strike-slip deformation during the mid-Permian between 287 and 279 Ma. The termination of the Irtysh tectonic belt orogeny is thought to have also occurred during the mid-Permian between 274 and 271 Ma.

  3. Review of past and present geotectonic concepts of eastern indonesia

    NASA Astrophysics Data System (ADS)

    Katili, John A.

    By the turn of the last century Dutch geoscientists already were comparing the Indonesian island arcs to the complicated structures of the European Alps and recognized that the Indonesian Archipelago possessed a dual character, both as the intersection of two of the largest and youngest mountain systems, and as an intercontinental zone between the Asiatic and Australian continents. About half a century ago they discovered in Indonesia the largest negative gravity anomalies at sea, and established that the depth of earthquake epicenters increases landward from the trenches. Despite the limited marine technology then, they discerned that the Indonesian island arcs represent a mountain belt in statu nascendi, exhibiting a systematic relationship of active tectonic and magmatic features to the deep submarine trenches. The geological and geophysical findings at sea by the first Snellius Expedition were integrated with the theories born out of the results of geological mapping on land. This is why the tectonic theories proposed by Dutch and other European geologists before the second World War were superior to those proposed by others. Though most of these theories can no longer be accepted without modification or refinement, they constitute part of the basis of the new global tectonics. Since the advent of the plate-tectonic concept, active subduction zones, transform faults and spreading centers have been recognized in Indonesia with reasonable confidence, by their physiographic, geologic and geophysical characteristics. In contrast to this, in much of the interior of the Eurasian continent the structural complexity of similar rock assemblages which have been folded, thrust and crumpled together by nearby subduction and collision is far more difficult to unravel. Consequently, the sort of geologic events deduced from the Indonesian Archipelago are of a type that should be recorded in older tectonic belts around the globe. The modern tectonic setting of the whole equatorial Indo-Pacific region, for example, has recently been compared to the terrane map of the North American Cordillera. The position of eastern Indonesia within the plate-tectonic framework is the key to resolving contradictory views on the tectonics of the Banda Sea. For example, did the Indonesian orogeny take place at the Gondwana margin or the Asian margin, are Timor and Seram a tectonic melange and thus part of the Tertiary Indonesian island arcs, or are these two islands a part of the passive Australian margin? Oceanic magnetic stripes from the Sulu, Celebes and Banda Seas all trend NE-SW. These new data suggest that the Sulu, Celebes and probably the Banda Sea represent areas of trapped Indian Ocean crust. Deep sea drilling in the Banda Sea can resolve much controversy. The Banda Sea occupies a critical position in the complex convergent zone between Australia, Southeast Asia and the Philippine Sea Plate. The determination of the stratigraphy and basement ages of the Banda Sea will constrain evolutionary models which have been proposed. Another unsolved question of key importance in our understanding of the evolution of Sulawesi and the Moluccas is the function and timing of events of the Birdhead 'bacon slicer', or the tectonic shaving in Irian Jaya. Once this mechanism is understood, the development and timing of the various structural features of Sulawesi, Halmahera and the Banda Arc will be classified. Opinions still differ regarding the 'birthplace' of the micro-continents in the Banda Sea. Some regard them as a result of Jurassic rifting of Gondwana in northwestern Australia while others consider them displaced westward from northern Irian Jaya along the Sorong transform fault. Several authors suggested that the eastern parts of Sulawesi, Buru and Seram represent micro-continents which originated from Irian Jaya, while others considered East Sulawesi and north Sulawesi remnants of ophiolite belts or fragments of island arcs that originate from the Pacific Ocean. Contrary to those who positioned Sulawesi close to Kalimantan in Miocene time or who separated the eastern and western arms of Sulawesi and placed them around continental Australia during its drift northwards, I maintain the view that in Miocene time Sulawesi emerged as a double island arc east of Kalimantan. For the Halmahera arc-trench system a similar origin during a younger phase of crustal movement could be advocated. The shape of the two eastern arms of Sulawesi and Halmahera can be compared with an 'arrowhead' pointing westward, with two larger slightly arcuate western arms as a 'wave front' proceeding from it. Thus Sulawesi and Halmahera were once north-south trending island arcs convex towards the Pacific with westward-dipping subduction zones. After collision with the irian Jaya plate, a reversal of polarity occurred as demonstrated by the trenches which developed northwest of Sulawesi and west of Halmahera. This controversy cannot be solved without determining the absolute ages of the eastern Sulawesi subduction complex. Marine research should also focus on the Sorong transform fault system between Sulawesi and Irian Jaya to elucidate its role in the westward displacement of the Sula-Banggai - Buton continental fragments. The nature, structure and history of the ridges in the Central Banda Sea, and their relationship to the oceanic crust of the adjacent North and South Banda Basin, should be investigated in more detail. Seram, Buru and Ambon require detailed studies to determine whether the arc-trench system predominates or whether micro-continent tectonics played the more significant role in their evolution. In the geological future, eastern Indonesia will be squashed between Australia and Asia, and the region will resemble the complex terrains now observed in the Alps and the Hercynian regions, a conclusion already drawn by the Dutch pioneers several decades ago.

  4. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study area lasted until recently. Those young tectonic activities are too young to be explained by mascon loading hypothesis. Tectonism induced by global cooling or orbital evolution are possible origins for the young horizontal compression. However, they cannot explain the recent extension. Our study area is located in PKT region where the heat-producing elements are more abundant than surrounding areas. Therefore, regional cooling would be a reasonable explanation for the young extensional tectonics. References Ono, T., A. Kumamoto, H. Nakagawa, Y. Yamaguchi, S. Oshigami, A. Yamaji, T. Kobayashi, Y. Kasahara, and H. Oya, 2009, Science, 323, 909--912. Solomon, S.C. and Head, J.W., 1980, Rev. Geophys., 18, 107--141. Trask, N.J., 1971, Geological Survey Research, U.S. Geol. Surv. Prof. Pap. 750-D, D138--D144. Watters, T.R., M.S. Robinson, M.E. Banks, T. Tran, and B.W. Denevi, 2012, Nature Geosci., 5, 181--185.

  5. The Aegean/Cycladic and the Basin and Range Extensional Provinces - A Tectonic and Geochronologic Perspective

    NASA Astrophysics Data System (ADS)

    Stockli, D. F.

    2017-12-01

    The Aegean/Cycladic region (AC) and the Basin and Range Province (B&R) are two of the most famous Cenozoic extensional provinces and have greatly influenced our thinking about syn-convergent back-arc extension, core complex formation, syn-extensional magmatism, and kinematic transitions. They share numerous tectonic and structural similarities, such as a syn-convergent setting, previous contractional deformation, and core complex formation, but fundamental geological ambiguities remain, mainly centering around timing. The B&R affected a previously contractional belt (Sevier) and voluminous continental magmatic arc that created a pre-extensional orogenic highland. Extension was long-lived and complex, driven by both gravitational collapse and temporally distinct kinematic boundary condition changes. The B&R was also affected by massive, largely pre-extensional regional magmatic flare-ups that modified both the thermal and crustal composition. As the B&R occupies an elevated interior plateau, syn-extensional basin deposits are exclusively continental in character. In contrast, the AC is a classic marine back-arc extensional province that affected an active subduction margin with numerous accreted oceanic and continental ribbons, exhuming an early Cenozoic HP-LT subduction complex. Exhumation of the HP-LT complex, however, was accommodated both by vertical extrusion and crustal extension. Late Cenozoic extensional faulting was contemporaneous with S-ward sweeping arc magmatism and affected by little to no kinematic changes. As both the AC and B&R experienced contractional deformation during K-Cz subduction and J-K shortening, respectively, it is critical to differentiate between contractional and extensional structures and fabrics. The lack of temporal constraints hampers the reconstructions of pre-extensional structural anatomies and extensional strain magnitudes or even the attribution of structures to specific geodynamic settings. Novel methodologies in petrochronology, detrital geochronology, and high- and low-T thermochronometry allow us to elucidate pre-extensional crustal geometries, differentiate contractional from extensional fabrics, and understand the thermal and rheological evolution of these extensional provinces in a more holistic fashion.

  6. Summary terrane, mineral deposit, and metallogenic belt maps of the Russian Far East, Alaska, and the Canadian Cordillera

    USGS Publications Warehouse

    Nokleberg, Warren J.; West, Timothy D.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Bundtzen, Thomas K.; Parfenov, Leonid M.; Monger, James W.; Ratkin, Vladimir V.; Baranov, Boris V.; Byalobzhesky, Stanislauv G.; Diggles, Michael F.; Eremin, Roman A.; Fujita, Kazuya; Gordey, Steven P.; Gorodinskiy, Mary E.; Goryachev, Nikolai A.; Feeney, Tracey D.; Frolov, Yuri F.; Grantz, Arthur; Khanchuk, Alexander I.; Koch, Richard D.; Natal'in, Boris A.; Natapov, Lev M.; Norton, Ian O.; Patton, William W.; Plafker, George; Pozdeev, Anany I.; Rozenblum, Ilya S.; Scholl, David W.; Sokolov, Sergei D.; Sosunov, Gleb M.; Stone, David B.; Tabor, Rowland W.; Tsukanov, Nickolai V.; Vallier, Tracy L.

    1998-01-01

    This report is part of a project on the major mineral deposits, metallogenesis, and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. The project is to provide critical information for collaborators and customers on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for the Russian Far East, Alaska, and the Canadian Cordillera.

  7. Genèse des séquences sédimentaires du Crétacé supérieur des Aurès (Algérie). Rôle de l'eustatisme, de la tectonique, de la subsidence: une mise au pointSedimentary sequences in the Upper Cretaceous of Aures Mountains (Algerie). Eustatsy, tectonics and subsidence: a development.

    NASA Astrophysics Data System (ADS)

    Herkat, Missoum; Delfaud, Jean

    2000-06-01

    The Upper Cretaceous of Aurès has been studied using a sedimentological approach to characterize the sequential organisation and deposits distribution in the basin. The sequential chain which was observed has been correlated to eustatic cycles defined on a global scale. Palaeogeographic reconstruction shows a basin with its south margin corresponding to a proximal platform domain with essentially carbonate deposits and toward the northeast, marly sedimentation of pelagic nature. The influence of NW-SE to WNW-ESE accidents on sedimentation control has been found preponderant. Therefore a system of tilted blocks toward the south characterizes a large part of the basin. The subsidence evolution through Upper Cretaceous is marked by a recovery of a tectonic distension during some phases (Late Albian and Lower Turonian) and an essentially thermic subsidence during the other periods. Finally some precocious tectonic phases appeared as early as the Santonian-Campanian transition. The evolution of the basin was thus controlled by the drift of the African plate during the expansion of the Atlantic ocean and also the tectonic influence which began to appear in north Alpine domain.

  8. Electrical and well log study of the Plio-Quaternary deposits of the southern part of the Rharb Basin, northern Morocco

    NASA Astrophysics Data System (ADS)

    El Bouhaddioui, Mohamed; Mridekh, Abdelaziz; Kili, Malika; El Mansouri, Bouabid; El Gasmi, El Houssine; Magrane, Bouchaib

    2016-11-01

    The Rharb Basin is located in the NW of Morocco. It is the onshore extension of a lager offshore basin between Kenitra and Moulay Bousselham. The Rharb plain (properly called) extends over an area of 4200 Km2 between two very different structural entities: the unstable Rif domain in the NE and the East and the ''relatively stable'' Meseta domain in the south. The distribution of Pliocene-Quaternary deposits under this plain is complex and was controlled by both tectonics and climatic factors. The main objective of the present work is to define the spatiotemporal evolution of these deposits in the onshore part of the basin and to make a comparison with a sequence analysis defined, for equivalent deposits in the offshore basin, by a previous work. The proposed model allows thus to characterize the geometry of these deposits in the extension of continental shelf under the present day onshore basin, and to explain there is genesis in terms of interactions between eustatic sea level fluctuations, tectonics and sedimentary rates at the mouths of paleo-rivers that had drained the Rharb plain during Pliocene to Quaternary Times.

  9. Anisotropic Rayleigh-wave Phase-velocity Maps in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Legendre, C. P.; Huang, W.; Huang, B.

    2013-12-01

    Northern Vietnam is the location of both the Song Ma Complex, the suture between the Indochina and South China Blocks, and the southern end of the giant Red River Shear Zone. Lithospheric structure provides important clues to the evolutions of the tectonic boundary zone and the interaction between the Indochina and South China Blocks. During 2006-2008, an array of 24 broadband stations were deployed in northern Vietnam in a collaborative project between the Institute of Geophysics of the Vietnam Academy of Science and Technology and the Institute of Earth Sciences of Academic Sinica in Taiwan. In this study, we use Rayleigh waveforms recorded at those stations from globally distributed earthquakes to construct the regional isotropic and azimuthally anisotropic phase velocity maps. Rayleigh-wave dispersion curves in the period range of 10-200 sec are obtained manually by the two-station method using vertical-component broadband waveforms. The dispersion curves along the densely distributed crossing paths are inverted via the LSQR algorithm for the isotropic and azimuthally anisotropic phase-velocity maps at a number of periods. Results will be compared with previous studies in this region based on body-wave traveltimes, SKS splitting observations and receiver functions, and with the tectonic features observed in the region.

  10. The Maritsa strike-slip shear zone between Kostenets and Krichim towns, South Bulgaria — Structural, petrographic and isotope geochronology study

    NASA Astrophysics Data System (ADS)

    Naydenov, Kalin; Peytcheva, Irena; von Quadt, Albrecht; Sarov, Stoyan; Kolcheva, Krastina; Dimov, Dimo

    2013-06-01

    The present study describes the characteristics of the Maritsa Shear Zone (MSZ), a major tectonic element in the Balkanides in South Central Bulgaria. Metamorphic rocks of four lithotectonic units — Madan, Chepinska, Asenitsa and Thrace units crop out in the study area. Strike-slip ductile deformation in MSZ affects the Thrace Lithotectonic Unit (TLU) for up to 15 km. The stratigraphy of this unit is divided in two: Parvenets succession and variegated succession. U-Pb zircon dating reveals Late Jurassic protolith age for metagranitoids and metagabbros of the variegated succession. For its metasedimentary part Triassic to Upper Jurassic age is suggested based on the strontium isotope signature of the marbles. The Parvenets succession affiliates to the Variscan metamorphic basement of Europe. The metamorphic evolution of the zone is subdivided into synmetamorphic strike-slip deformations and annealing stages. The ductile shearing occurred in greenschist to lower amphibolite facies between 130 Ma (discordant U-Pb ages) and 82-78 Ma (late-syntectonic granites). This stage is connected with the oblique collision of the Rhodope Late Jurassic arc with the European platform. With the docking of the arc and the triggering of the strike-slip movements, MSZ represents an orogen-scale border between the Rhodope south-vergent thrust complex and the north-vergent deformations in the Srednogorie and Sakar-Strandzha zones. During the Late Cretaceous MSZ is the contact between the Srednogorie magmatic arc (part of the Apuseni-Banat-Timok-Srednogorie Belt) and the Rhodopean metamorphic core complexes. NW-SE dextral faulting characterized the brittle tectonics along the zone. Strike-slip faults of the southern border of the TLU are transferred into reverse faults, along which the TLU overthrusted Oligocene sediments. MSZ is an orogen-scale transpressional shear zone and an important border in the structure of the Balkanides. This multidisciplinary research emphasizes its role as a major tectonic element by presenting new structural, petrographic and isotope geochronology data.

  11. Topographic signatures and a general transport law for deep-seated landslides in a landscape evolution model

    NASA Astrophysics Data System (ADS)

    Booth, Adam M.; Roering, Josh J.; Rempel, Alan W.

    2013-06-01

    A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, tectonics, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here we propose a transport law for deep-seated landslides in weathered bedrock and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand, and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of the horizontal landslide flux to the vertical tectonic flux, that characterizes three distinct landscape types. One is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates exceeding the long-term uplift rate. Another is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is greatest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, low angle hillslopes despite high uplift rates. The stochastic landsliding regime captures the frequent observation that deep-seated landslides produce large sediment fluxes from small areal extents while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and is useful for interpreting climate-driven changes in landslide behavior.

  12. Philippine microplate tectonics and hydrocarbon exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, J.J. Jr.

    1986-07-01

    Hydrocarbon traps in the Philippine Islands developed during a long, complex history of microplate tectonics. Carbonate and clastic stratigraphic traps formed during Mesozoic and early Cenozoic rifting and drifting. Hydrocarbons, generated in deep rift basins, migrated to the traps during drifting. Later Cenozoic compressional tectonic activity and concomitant faulting enhanced some traps and destroyed others. Seismic data offshore from Palawan Island reveal the early trap histories. Later trap histories can be interpreted from seismic, outcrop, and remote-sensing data. Understanding the microplate tectonic history of the Philippines is the key to interpreting trap histories.

  13. Asymmetric three-dimensional topography over mantle plumes.

    PubMed

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  14. Géodynamique et évolution thermique de la matière organique: exemple du bassin de Qasbat-Tadla, Maroc centralBasin geodynamics and thermal evolution of organic material: example from the Qasbat-Tadla Basin, central Morocco

    NASA Astrophysics Data System (ADS)

    Er-Raïoui, H.; Bouabdelli, M.; Bélayouni, H.; Chellai, H.

    2001-05-01

    Seismic data analysis of the Qasbat-Tadla Basin allows the deciphering of the main tectonic and sedimentary events that characterised the Hercynian orogen and its role in the basin's structural development. The global tectono-sedimentary framework involves structural evolution of an orogenic foreland basin and was the source of rising geotherms in an epizonal metamorphic environment. The complementary effects of these parameters has led to different source rock maturity levels, ranging from oil producing to graphite domains. Different maturity levels result from three distinct structural domains within the basin, each of which exhibit characteristic geodynamic features (tectonic contraints, rate of subsidence, etc.).

  15. Le Silurien de la région d'Oulad Abbou (Meseta occidentale, Maroc) : une sédimentation péritidale sous contrôle tectonique

    NASA Astrophysics Data System (ADS)

    Attou, Ahmed; Hamoumi, Naima

    2004-07-01

    In the Oulad Abbou syncline, western coastal Meseta, the Silurian deposits exhibit siliciclastic or mixed siliciclastic/carbonate tidal facies that recorded alkaline basalt flows and syn-sedimentary deformations. These facies are staked into peritidal shallowing upward sequences reflecting the evolution from an infratidal to a supratidal environment. These sequences recorded low-amplitude and high-frequency sea-level variations. The built-up of these rhythmic sequences is related to distensive tectonic that allowed the development of isolated platform from extensive siliciclastic influx. This tectonic event is well recorded in the palaeogeographic evolution of the northern Gondwana platform during the Lower Palaeozoic time. To cite this article: A. Attou, N. Hamoumi, C. R. Geoscience 336 (2004).

  16. On the tectonic evolution of the Tyrrhenian basin: new data from detrital zircons sampled in the Sardinia-Corsica Block and in the Calabria-Peloritain Arc

    NASA Astrophysics Data System (ADS)

    Pavanetto, Pamela; Funedda, Antonio; Matteini, Massimo; Loi, Alfredo

    2013-04-01

    Geodynamic models and palinspastic reconstructions of pery-Thyrrenian terranes in the Western Mediterranean area are still extremely complex and speculative (Stampfly & Borel 2002, Trombetta et al., 2004; Alvarez & Shimabukuro, 2009; Carminati et al., 2012).A contribute can be done by considering the relationships between Sardinia-Corsica Block (SCB) and Calabria-Peloritain Arc (CPA). They shared a similar Variscan evolution and were the western part of the Briançonnais plate until the opening of the Algero-Provençal Basin during Burdigalian and then were separated in Late Tertiary during the spreading of South-Tyrrhenian Basin. During this period the CPA moved southeastward, with respect to the SCB, driven by a progressive roll-back of the subducted slab. However, is still ambiguous if the CPA was a single terrane during the Middle and Late Tertiary (Amodio Morelli et alii, 1976) or formed by the amalgamation of two or more continental "terranes" that collided during the Tertiary (Bonardi et al., 1980; Scandone, 1982; Alvarez & Shimabukuro, 2009). The data about the paleo-tectonic linkages, the terranes derivations, and the tectonic setting of the SCB and CPA as peri-Tyrrhenian blocks during Tertiary are still poor. Some evidence of their early evolution could be found in coeval Tertiary deposits cropping out both in the SCB and CPA. These deposits represent the early stage of the estensional event developed in the Tyrrhenian region during late Oligocene-Lower Miocene in a broader regional context dominated by the opening of Atlantic Ocean and the resulting convergence of Europe and Apulia microplate (Oggiano et al., 2009). To improve the knowledge on this topic, combined U-Pb and Lu-Hf analyses on zircons from Tertiary detrital sediments from Sardinia, Corsica, and both North and South Calabria have been performed using a Thermo-Fisher Neptune MC-ICP-MS coupled with a Nd:YAG UP213 New Wave laser ablation system, at the Laboratory of Geochronology of the University of Brasilia. In this way the source areas of these terranes can be compared. The sampled formations are: in Eastern Sardinia, the Cuccuru 'e Flores Conglomerate (CFC); in the Eastern Corsica, the Solaro Flysch (SF); in the Southern Calabria (Aspromonte sub-region), the Stilo Capo d'Orlando Fm. (SCOF) and in the Northern Calabria (Sila subregion), the Paludi Fm. (PF). The data about Northern CPA (NCPA) and SCB show similar zircons population inputs suggesting an analogous source areas. Zircons from the Southern CPA (SCPA) show different input spectra. In SCPA lack at all the Grenvillian ages (0.9-1.8 Ga) and an important crustal signature. These data suggest a different position during the tectonic evolution of the Gondwana margin of SCPA respect of NCPA and SCB. Following these data is it possible to infer the SCPA a North Africa derivation, well fitting with the Gondwanan European Variscan terranes, characterized by the lacking of mesoproterozoic age (KOBER et alii, 2004).

  17. ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenardic, A.; Crowley, J. W., E-mail: ajns@rice.edu, E-mail: jwgcrowley@gmail.com

    2012-08-20

    A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees,more » for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ({sup s}uper-Earths{sup )}. The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.« less

  18. Tectono-sedimentary constraints to the Oligocene-to-Miocene evolution of the Peloritani thrust belt (NE Sicily)

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Nigro, F.

    1999-12-01

    The Peloritani thrust belt belongs to the southern sector of the Calabrian Arc and is formed by a set of south-verging tectonic units, including crystalline basement and sedimentary cover (from the top: Aspromonte U.; Mela U.; Mandanici U.; Fondachelli U.; Longi-Taormina U.), piled up starting from Late Oligocene. At least two main terrigenous clastic formations lie with complicated relationships on top of the previous units: the Frazzanò Fm (Oligocene) and the Stilo-Capo d'Orlando Fm (Late Oligocene?-Early Miocene), as syn-to-post-tectonic deposits. These clastic deposits have different characteristics, in space and time, representing or flysch-like sequences involved in several thrust events (Frazzanò Fm) or molassic-like sequences (Stilo-Capo d'Orlando Fm), which unconformably overlie the tectonic units. In the present paper we describe a kinematic model of the progressive foreland migration of the Peloritani thrust belt, starting from Oligocene, carrying piggy-back basins and incorporating foredeep deposits, recognised in the Frazzanò-Stilo-Capo d'Orlando terrigenous successions. In general, the facies and structural observations on the overall Oligo-Miocene clastic sequences, outcropping in the Western Peloritani Mts, indicate: (a) the distal character of the Frazzanò Fm; (b) a complex group of terrigenous facies of the Stilo-Capo d'Orlando Fm, with lateral-to-vertical organisation, characterised by a distal-to-proximal-to-distal facies trend; (c) facies analogies of the basal portions of the Stilo-Capo d'Orlando Fm with the Frazzanò Fm; (d) the involvement of the Frazzanò Fm in lowermost and more external thrusting, and of the basal (Late Oligocene?) distal Stilo-Capo d'Orlando facies in the higher and inner thrusting during the early stages of deformation; (e) the involvement of the proximal Stilo-Capo d'Orlando facies in the tectonic edifice during the Early Miocene deformation; (f) the generally unconformable stratigraphical contacts of the higher proximal-to-distal (Early Miocene) Stilo-Capo d'Orlando facies on the constructing mobile belt; and (g) the presence of various thrust-faults, distinguished in a sequential order. The collected data allow us to hypothesise that the Oligo-Miocene tectono-sedimentary history was characterised by a foredeep with a deforming internal flank, probably lying in onlap on the constructing tectonic edifice (Frazzanò-lower Stilo-Capo d'Orlando Fms), and then deformed and covered by a piggy-back like sequence (middle-upper Stilo-Capo d'Orlando Fm), which was subsequently also deformed. The tectono-sedimentary evolution of the Peloritani belt has been probably developed through a progressive migration towards the foreland of a foredeep-compressional front couple and the chain body. The thrust stack progressively incorporates terrigenous foredeep deposits and in turn carried piggy-back basins.

  19. PyGPlates - a GPlates Python library for data analysis through space and deep geological time

    NASA Astrophysics Data System (ADS)

    Williams, Simon; Cannon, John; Qin, Xiaodong; Müller, Dietmar

    2017-04-01

    A fundamental consideration for studying the Earth through deep time is that the configurations of the continents, tectonic plates, and plate boundaries are continuously changing. Within a diverse range of fields including geodynamics, paleoclimate, and paleobiology, the importance of considering geodata in their reconstructed context across previous cycles of supercontinent aggregation, dispersal and ocean basin evolution is widely recognised. Open-source software tools such as GPlates provide paleo-geographic information systems for geoscientists to combine a wide variety of geodata and examine them within tectonic reconstructions through time. The availability of such powerful tools also brings new challenges - we want to learn something about the key associations between reconstructed plate motions and the geological record, but the high-dimensional parameter space is difficult for a human being to visually comprehend and quantify these associations. To achieve true spatio-temporal data-mining, new tools are needed. Here, we present a further development of the GPlates ecosystem - a Python-based tool for geotectonic analysis. In contrast to existing GPlates tools that are built around a graphical user interface (GUI) and interactive visualisation, pyGPlates offers a programming interface for the automation of quantitative plate tectonic analysis or arbitrary complexity. The vast array of open-source Python-based tools for data-mining, statistics and machine learning can now be linked to pyGPlates, allowing spatial data to be seamlessly analysed in space and geological "deep time", and with the ability to spread large computations across multiple processors. The presentation will illustrate a range of example applications, both simple and advanced. Basic examples include data querying, filtering, and reconstruction, and file-format conversions. For the innovative study of plate kinematics, pyGPlates has been used to explore the relationships between absolute plate motions, subduction zone kinematics, and mid-ocean ridge migration and orientation through deep time; to investigate the systematics of continental rift velocity evolution during Pangea breakup; and to make connections between kinematics of the Andean subduction zone and ore deposit formation. To support the numerical modelling community, pyGPlates facilitates the connection between tectonic surface boundary conditions contained within plate tectonic reconstructions (plate boundary configurations and plate velocities) and simulations such as thermo-mechanical models of lithospheric deformation and mantle convection. To support the development of web-based applications that can serve the wider geoscience community, we will demonstrate how pyGPlates can be combined with other open-source tools to serve alternative reconstructions together with a diverse array of reconstructed data sets in a self-consistent framework over the internet. PyGPlates is available to the public via the GPlates web site and contains comprehensive documentation covering installation on Windows/Mac/Linux platforms, sample code, tutorials and a detailed reference of pyGPlates functions and classes.

  20. Relating stress models of magma emplacement to volcano-tectonic earthquakes

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D.; Neuberg, J.

    2007-12-01

    Among the various types of seismic signals linked to volcanic processes, volcano-tectonic earthquakes are probably the earliest precursors of volcanic eruptions. Understanding their relationship with magma emplacement can provide insight into the mechanisms of magma transport at depth and assist in the ultimate goal of forecasting eruptions. Volcano-tectonic events have been observed to occur on faults that experience increases in Coulomb stress changes as the result of magma intrusions. To simulate stress changes associated with magmatic injections, we test different models of volcanic sources in an elastic half-space. For each source model, we look at several aspects that influence the stress conditions of the magmatic system such as the regional tectonic setting, the effect of varying the elastic parameters of the media, the evolution of the magma with time, as well as the volume and rheology of the ascending magma.

  1. Recent tectonic activity on Pluto driven by phase changes in the ice shell

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.

    2016-07-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  2. Tectonic evaluation of the Nubian shield of Northeastern Sudan using thematic mapper imagery

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Bechtel is nearing completion of a one-year program that uses digitally enhanced LANDSAT Thematic Mapper (TM) data to compile the first comprehensive regional tectonic map of the Proterozoic Nubian Shield exposed in the northern Red Sea Hills of northeastern Sudan. The status of significant objectives of this study are given. Pertinent published and unpublished geologic literature and maps of the northern Red Sea Hills to establish the geologic framework of the region were reviewed. Thematic mapper imagery for optimal base-map enhancements was processed. Photo mosaics of enhanced images to serve as base maps for compilation of geologic information were completed. Interpretation of TM imagery to define and delineate structural and lithogologic provinces was completed. Geologic information (petrologic, and radiometric data) was compiled from the literature review onto base-map overlays. Evaluation of the tectonic evolution of the Nubian Shield based on the image interpretation and the compiled tectonic maps is continuing.

  3. The Cadiz margin study off Spain: An introduction

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.

    1999-01-01

    The Cadiz continental margin of the northeastern Gulf of Cadiz off Spain was selected for a multidisciplinary project because of the interplay of complex tectonic history between the Iberian and African plates, sediment supply from multiple sources, and unique Mediterranean Gateway inflow and outflow currents. The nature of this complex margin, particularly during the last 5 million years, was investigated with emphasis on tectonic history, stratigraphic sequences, marine circulation, contourite depositional facies, geotechnical properties, geologic hazards, and human influences such as dispersal of river contaminants. This study provides an integrated view of the tectonic, sediment supply and oceanographic factors that control depositional processes and growth patterns of the Cadiz and similar modem and ancient continental margins.

  4. Geomorphology, active tectonics, and landscape evolution in the Mid-Atlantic region: Chapter

    USGS Publications Warehouse

    Pazzaglia, Frank J.; Carter, Mark W.; Berti, Claudio; Counts, Ronald C.; Hancock, Gregory S.; Harbor, David; Harrison, Richard W.; Heller, Matthew J.; Mahan, Shannon; Malenda, Helen; McKeon, Ryan; Nelson, Michelle S.; Prince, Phillip; Rittenour, Tammy M.; Spotilla, James; Whittecar, G. Richard

    2015-01-01

    In 2014, the geomorphology community marked the 125th birthday of one of its most influential papers, “The Rivers and Valleys of Pennsylvania” by William Morris Davis. Inspired by Davis’s work, the Appalachian landscape rapidly became fertile ground for the development and testing of several grand landscape evolution paradigms, culminating with John Hack’s dynamic equilibrium in 1960. As part of the 2015 GSA Annual Meeting, the Geomorphology, Active Tectonics, and Landscape Evolution field trip offers an excellent venue for exploring Appalachian geomorphology through the lens of the Appalachian landscape, leveraging exciting research by a new generation of process-oriented geomorphologists and geologic field mapping. Important geomorphologic scholarship has recently used the Appalachian landscape as the testing ground for ideas on long- and short-term erosion, dynamic topography, glacial-isostatic adjustments, active tectonics in an intraplate setting, river incision, periglacial processes, and soil-saprolite formation. This field trip explores a geologic and geomorphic transect of the mid-Atlantic margin, starting in the Blue Ridge of Virginia and proceeding to the east across the Piedmont to the Coastal Plain. The emphasis here will not only be on the geomorphology, but also the underlying geology that establishes the template and foundation upon which surface processes have etched out the familiar Appalachian landscape. The first day focuses on new and published work that highlights Cenozoic sedimentary deposits, soils, paleosols, and geomorphic markers (terraces and knickpoints) that are being used to reconstruct a late Cenozoic history of erosion, deposition, climate change, and active tectonics. The second day is similarly devoted to new and published work documenting the fluvial geomorphic response to active tectonics in the Central Virginia seismic zone (CVSZ), site of the 2011 M 5.8 Mineral earthquake and the integrated record of Appalachian erosion preserved on the Coastal Plain. The trip concludes on Day 3, joining the Kirk Bryan Field Trip at Great Falls, Virginia/ Maryland, to explore and discuss the dramatic processes of base-level fall, fluvial incision, and knickpoint retreat.

  5. Large Sanjiang basin groups outside of the Songliao Basin Meso-Senozoic Tectonic-sediment evolution and hydrocarbon accumulation

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Wu, X.

    2015-12-01

    The basis geological problem is still the bottleneck of the exploration work of the lager Sanjiang basin groups. In general terms, the problems are including the prototype basins and basin forming mechanism of two aspects. In this paper, using the field geological survey and investigation, logging data analysis, seismic data interpretation technical means large Sanjiang basin groups and basin forming mechanism of the prototype are discussed. Main draw the following conclusions: 1. Sanjiang region group-level formation can be completely contrasted. 2. Tension faults, compressive faults, shear structure composition and structure combination of four kinds of compound fracture are mainly developed In the study area. The direction of their distribution can be divided into SN, EW, NNE, NEE, NNW, NWW to other groups of fracture. 3. Large Sanjiang basin has the SN and the EW two main directions of tectonic evolution. Cenozoic basins in Sanjiang region in group formation located the two tectonic domains of ancient Paleo-Asian Ocean and the Pacific Interchange. 4. Large Sanjiang basin has experienced in the late Mesozoic tectonic evolution of two-stage and nine times. The first stage, developmental stage basement, they are ① Since the Mesozoic era and before the Jurassic; ② Early Jurassic period; The second stage, cap stage of development, they are ③ Late Jurassic depression developmental stages of compression; ④ Early Cretaceous rifting stage; ⑤ depression in mid-Early Cretaceous period; ⑥ tensile Early Cretaceous rifting stage; ⑦ inversion of Late Cretaceous tectonic compression stage; ⑧ Paleogene - Neogene; ⑨ After recently Ji Baoquan Sedimentary Ridge. 5. Large Sanjiang basin group is actually a residual basin structure, and Can be divided into left - superimposed (Founder, Tangyuan depression, Hulin Basin), residual - inherited type (Sanjiang basin), residual - reformed (Jixi, Boli, Hegang basin). there are two developed depression and the mechanism of rifting. 6. Sanjiang Basin Suibin Depression, Tangyuan depression, Jixi Cretaceous Tangyuan and Fangzheng rift is the key for further exploration. Yishu graben is a large core of Sanjiang region to find oil, and Paleogene basin is the focus of the external layer system exploration.

  6. Influence of heat-piping on the initiation and evolution of plate tectonics

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Baumeister, P. A.

    2017-12-01

    The onset of plate tectonics on Earth is believed to be caused by local weakening of the lithosphere. If the convective stress locally exceeds a critical value, a plate-breaking event may occur and initiate plate tectonics. Heat-piping is a heat transport process in which a large amount of melt produced at depth migrates either to the surface (extrusive volcanism) or the base of the crust and lithosphere (intrusive volcanism) due to positive buoyancy and over-pressure in the melting region. As a result of melt being extruded and compacted at the surface or within the crust and lithosphere, cold, near surface material is advected downwards. This mechanism, which effectively cools the mantle, has been proposed to dominate the early phases of the Earth's evolution preventing the onset of plate tectonics by leveling the slope of the lithosphere (e.g. Moore & Webb, 2013, Kankanamge & Moore, 2016). This in turn prevents the formation of lithospheric undulations that are necessary to locally build up sufficient stress to initiate a plate-breaking event. In this work we explore the effects of both extrusive and intrusive heat-piping on the critical yield stress needed to start a plate-breaking event and maintain a regime of surface mobilization over long timescales. We use a two-dimensional cylindrical model of compressible thermal convection. The melt generated at depth is extracted instantaneously according to a defined ratio between extrusive and intrusive volcanism. Extrusive melt is deposited at the surface, whereas intrusive melt is assumed to migrate to a depth dependent on the pressure distribution in the column above the melt region. Considering heat piping tends to increase the episodicity in the mobilization of the surface due to the additional local cooling caused by melt extraction but does not affect significantly the critical yield stress necessary to induce lid failure. Our models indicate that the evolution of plate mobility is a stochastic process, strongly dependent on the choice of the initial conditions. Heat-piping does not seem to be a controlling factor for the onset of plate tectonics.

  7. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.

  8. Quantifying the thermal evolution of early passive margins formation and its consequences on the structure of passive margins

    NASA Astrophysics Data System (ADS)

    Bousquet, Romain; Nalpas, Thierry

    2017-04-01

    Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie, 1978), as a kind of dogma, is used to understanding and modeling the formation and evolution of sedimentary basins. The study of the thermal evolution, coupled with other tectonic models, and its consequences have never been studied in detail, although the differences may be significant. And it is clear that the petrological changes associated with changes in temperature conditions, influence changes reliefs. Constrained by the new field data of north Pyrenean basins on thermal evolution of pre-rift and syn-rift sediments, we explore the petrological changes associated to different thermal evolution and the consequences on the subsidence of the basins. We will also present numerical models quantifying mineralogical and physical changes inside the whole lithosphere during rifting processes. In the light of these models, we discuss the consequences of different thermal evolution on the subsidence processes as well as on gravimetry and seismic velocities signature of passive margins. We are able to distinguish two types of margins according to their thermal evolution: - An Alpine-type basin in which the temperature rise is 50 to 100 Ma older than the tectonic extension, leading to the "cold" opening of the ocean. - A Pyrenean type basin in which temperature changes are synchronous with basin formation, leading to a crustal boudignage and to the formation of a "anomalous" geophysical layer at the OCT

  9. The Bossoroca Complex, São Gabriel Terrane, Dom Feliciano Belt, southernmost Brazil: Usbnd Pb geochronology and tectonic implications for the neoproterozoic São Gabriel Arc

    NASA Astrophysics Data System (ADS)

    Gubert, Mauricio Lemos; Philipp, Ruy Paulo; Stipp Basei, Miguel Angelo

    2016-10-01

    Usbnd Pb LA-ICPMS geochronological analyses were carried out on zircon grains from metavolcanic rocks of the Bossoroca Complex and for one ash tuff of the Acampamento Velho Formation of the Camaquã Basin, in order to understand the evolution of the Neoproterozoic São Gabriel magmatic arc. A total of 42 analyses of igneous zircon grains were performed in three samples. The results yielded Usbnd Pb ages of 767.2 ± 2.9 Ma for the metavolcanic agglomerate (BOS-02); 765 ± 10 Ma for the metacrystal tuff (BOS-03) and 565.8 ± 4.8 Ma for the ash tuff (BOS-04). The Orogenic Cycle in Brazil is characterized by a set of orogenic belts consisting of petrotectonic associations juxtaposed by two collisional events that occurred at the end of the Neoproterozoic. In southern Brazil this orogeny formed the Dom Feliciano Belt, a unit composed of associations of rocks developed during two major orogenic events called São Gabriel (900-680 Ma) and Dom Feliciano (650-540 Ma). The main São Gabriel associations are tectonically juxtaposed as elongated strips according to the N20-30°E direction, bounded by ductile shear zones. The Bossoroca Complex comprises predominantly metavolcano-sedimentary rocks, characterized by medium-K calc-alkaline association generated in a cordillera-type magmatic arc. The volcanism occurred in sub-aerial environment, developing deposits generated by flow, resurgence and fall, sporadically interrupted by subaqueous epiclastic deposits, suggesting an arc related basin. The São Gabriel Terrane contains the petrotectonic units that represent the closure of the Charrua Ocean associated to the subduction period of the Brasiliano Orogenic Cycle in the Sul-rio-grandense Shield.

  10. The western submerged sector of the Ischia volcanic island (Tyrrhenian Sea, Italy): new insights into its volcano-tectonic evolution

    NASA Astrophysics Data System (ADS)

    Passaro, Salvatore; de Alteriis, Giovanni; Milano, Girolamo; Fedi, Maurizio; Florio, Giovanni

    2010-05-01

    The Island of Ischia is a volcanic complex located in the northern boundary of the Gulf of Naples (south-eastern Tyrrhenian Sea, Italy). The island represents only the 30% of a larger, E-W trending, volcanic ridge and likely controlled by a regional tectonic lineament. Despite the many geo-volcanological and geophysical investigations conducted on the island since long time, still little is the knowledge of its offshore. Several marine surveys have been carried out over the past 10 years from IAMC - CNR research institute (Naples, Italy) mostly in the frame of INGV and GNV projects, funded by Italy Civil Protection Department. Such surveys have largely improved the knowledge of the entire volcanic complex. Multibeam bathymetry surveys has revealed several, previously unexpected, morphological and morphostructural features. Moreover some structural patterns and volcano alignments offshore show similarities with those occurring at a regional scale in the Campania region and, locally, between the island of Procida and Phlegrean Fields. Here we report the joint interpretation of geophysical data focused on the western underwater sector of the island. Interpretation was chiefly based on processing/inversion of magnetic data in turn constrained by bathymetry and seismic reflection profiles. Magnetic data, acquired by the IAMC during two different cruises in 2000 and 2002 onboard of the Urania R/V oceanographic vessel, put in evidence that the western seafloor of Ischia is characterized by the presence of a strong residual magnetic anomaly field of complex behaviour, somewhere correlated to local bathymetry. These two last methods allowed to define and distinguish between undersea and subsurface magnetic (i.e. magmatic) basement. Interpretation was also constrained by seismological data.

  11. Petrology, thermobarometry and geochronology of Yelapa Complex: Implications in the tectonic history of the basement of Puerto Vallarta Batholith, Mexico

    NASA Astrophysics Data System (ADS)

    Gutiérrez Aguilar, F.; Schaaf, P. E. G.; Hernandez-Trevino, T.; Solis-Pichardo, G.; Vite-Sánchez, O.

    2017-12-01

    The Yelapa Complex (YC) is localizated in the north, central and western of Cabo Corrientes in Jalisco, México. Is constituted by metasedimentary, metaigneous and migmatites which are intruded by deformed plutons. The YC are part of the Puerto Vallarta Batholith a body of 9000 km2 exposed at the mid-western part of the Mexican Pacific margin. The para-gneis of YC in the region of Chimo, present a mineral assemblage of Sil + Bt + Pl ± Grt ± Fsp ± Ilm. The orto-gneis in the región of Cabo Corrientes are constituted by Pl + Amp ± Qz ± Ap ± Zrn. Phase equilibria modelling of two paragneis yield peak conditions of 7-8 kbar and 650-700ºC. The patterns of REE of the studied rocks suggest: 1) Enrichment of LREE and flat patterns in HREE with respect to chondrite and; 2) Negative Eu anomaly in all samples analyzed suggesting plagioclase fractionation. On the other hand, the study of individual zircons using LA-ICP-MS from 3 para-gneis and 1 orto-gneis yield following information: 1) A máximum depositional age of 223 Ma, which also show abundant zircón populations with ages between 241-273 Ma for para-gneis and 2) The protolith age crystallization of 127 Ma for orto-gneis. The results along with new Sr-Nd isotopic data from whole rock and Rb-Sr in micas, suggest a tectonic evolution for the Yelapa Complex as a transition from a passive continental margin regime ( 223-273 Ma) to a continental arc setting ( 127). Thus, regional metamorphism and multiple magmatic episodes were associated to the convergence of the Farallon and North America plates during the Middle Jurassic to the Late Cretaceous.

  12. An evaporite-bearing accretionary complex in the northern front of the Betic-Rif orogen

    NASA Astrophysics Data System (ADS)

    Pérez-Valera, Fernando; Sánchez-Gómez, Mario; Pérez-López, Alberto; Pérez-Valera, Luis Alfonso

    2017-06-01

    The Guadalquivir Accretionary Complex forms a largely oblique prism at the northern edge of the Betic-Rif orogen, where Miocene sediments plus allochthonous evaporite-bearing units were accreted during the displacement of the Alborán Domain toward the west. Traditional interpretations end the tectonic structuring of the Betic Cordillera at the present topographic front, beyond which gravitational and/or diapiric processes would predominate. However, this study shows pervasive tectonic deformation in the outer prism with coherent oblique shortening kinematics, which is achieved through an alternation of roughly N-S arcuate thrust systems connected by E-W transfer fault zones. These structures accord well with the geophysical models that propose westward rollback subduction. The main stage of tectonic activity occurred in the early-middle Miocene, but deformation lasted until the Quaternary with the same kinematics. Evaporite rocks played a leading role in the deformation as evidenced by the suite of ductile structures in gypsum distributed throughout the area. S- and L- gypsum tectonites, scaly clay fabrics, and brittle fabrics coexist and consistently indicate westward motion (top to 290°), with subordinate N-S contraction almost perpendicular to the transfer zones. This work reveals ductile tectonic fabrics in gypsum as a valuable tool to elucidate the structure and deformational history of complex tectonic mélanges involving evaporites above the décollement level of accretionary wedges.

  13. Tectonic evolution of the outer Izu-Bonin-Mariana fore arc system: initial results from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.

    2015-12-01

    During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  14. Cenozoic Tectonic Evolution of Northeast China and Surrounding Areas Reproduced by Slab Subduction Models

    NASA Astrophysics Data System (ADS)

    Yang, T.; Moresi, L. N.; Zhao, D.; Sandiford, D.

    2017-12-01

    Northeast China lies at the continental margin of the western Pacific subduction zone where the Pacific Plate subducts beneath the Eurasia Plate along the Kuril-Japan trench during the Cenozoic, after the consumption of the Izanagi Plate. The Izanagi Plate and the Izanagi-Pacific mid-ocean ridge recycled to the mantle beneath Eurasia before the early Cenozoic. Plate reconstructions suggest that (1) age of the incoming Pacific Plate at the trench increases with time; (2) convergence rate between the Pacific and Eurasia Plates increased rapidly from the late Eocene to the early Miocene. Northeast China and surrounding areas suffered widespread extension and magmatism during the Cenozoic, culminating in the opening of the Japan Sea and the rifting of the Baikal Rift Zone. The Japan Sea opened during the early Miocene and kept spreading until the late Miocene, since when compression tectonics gradually prevailed. The Baikal Rift Zone underwent slow extension in the Cenozoic but its extension rate has increased rapidly since the late Miocene. We investigate the Cenozoic tectonic evolution of Northeast China and surrounding areas with geodynamic models. Our study suggests that the rapid aging of the incoming Pacific Plate at the subduction zone leads to the increase of plate convergence and trench motion rates, and explains the observed sequence of regional tectonic events. Our geodynamic model, which reproduces the Cenozoic regional tectonic events, predicts slab morphology and stress state consistent with seismic observations, including over 1000 km of slab stagnant in the transition zone, and the along-dip principal compressional stress direction. Our model requires a value of the 660 km phase transition Clapeyron slope of -2.5 MPa/K to reproduce the stagnant slab and tectonic events in the study region. This suggests that the Pacific slab is hydrated in the transition zone, explaining geochemical characteristics of some regional Cenozoic igneous rocks which were suggested to originate from a hydrous mantle transition zone.

  15. Continental Evolution Involving Subduction Underplating and Synchronous Foreland Thrusting: Evidence from the Trans-Alaska Crustal Transect

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Moore, T. E.; Plafker, G.; Brocher, T. M.; Fisher, M. A.; Mooney, W. D.; Nokleberg, W. J.; Page, R. A.; Beaudoin, B. C.; Christensen, N. I.; Levander, A.; Lutter, W. J.; Saltus, R. W.; Ruppert, N. A.

    2010-12-01

    We investigated the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980’s and early 1990’s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted to be remnants of the extinct Kula (or Resurrection) Plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by north-vergent, crustal-scale duplexes that overlie a ramp on autochthonous North Slope crust. There, Moho has been depressed to nearly 50-km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula- (or Resurrection-) Plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two widely separated regions include “flat-slab” subduction and an “orogenic-float” model. In the Neogene, the collision of the Yakutat terrane (YAK), in southern Alaska, correlates with renewed compression in northeast Alaska and northwest Canada, in a fashion somewhat similar to the tectonics in the Paleogene. The Yakutat terrane, riding atop the subducting Pacific oceanic lithosphere (POL), spans a newly interpreted tear in the POL. East of the tear, POL is interpreted to subduct steeply and alone beneath the Wrangell arc volcanoes because the overlying YAK has been left behind as tectonically underplated rocks beneath the rising St. Elias Range in the coastal region. West of the tear, the YAK and POL are interpreted to subduct together at a gentle angle (a few degrees from 0 to 400 km from the trench), and this thickened package inhibits arc volcanism.

  16. The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints

    NASA Astrophysics Data System (ADS)

    Carbonell, Ramon; Levander, Alan; Kind, Rainer

    2013-12-01

    The seismic signature of the Moho from which geologic and tectonic evolution hypotheses are derived is to a large degree a result of the seismic methodology which has been used to obtain the image. Seismic data of different types, passive source (earthquake) broad-band recordings, and controlled source seismic refraction, densely recorded wide-angle deep seismic reflection, and normal incidence reflection (using VibroseisTM, explosives, or airguns), have contributed to the description of the Moho as a relatively complex transition zone. Of critical importance for the quality and resolution of the seismic image are the acquisition parameters, used in the imaging experiments. A variety of signatures have been obtained for the Moho at different scales generally dependent upon bandwidth of the seismic source. This variety prevents the development of a single universally applicable interpretation. In this way source frequency content, and source and sensor spacing determine the vertical and lateral resolution of the images, respectively. In most cases the different seismic probes provide complementary data that gives a fuller picture of the physical structure of the Moho, and its relationship to a petrologic crust-mantle transition. In regional seismic studies carried out using passive source recordings the Moho is a relatively well defined structure with marked lateral continuity. The characteristics of this boundary change depending on the geology and tectonic evolution of the targeted area. Refraction and wide-angle studies suggest the Moho to be often a relatively sharp velocity contrast, whereas the Moho in coincident high quality seismic reflection images is often seen as the abrupt downward decrease in seismic reflectivity. The origin of the Moho and its relation to the crust-mantle boundary is probably better constrained by careful analysis of its internal details, which can be complex and geographically varied. Unlike the oceanic Moho which is formed in a relatively simple, well understood process, the continental Moho can be subject to an extensive variety of tectonic processes, making overarching conclusions about the continental Moho difficult. Speaking very broadly: 1) In orogenic belts still undergoing compression and active continental volcanic arcs, the Moho evolves with the mountain belt, 2) In collapsed Phanerozoic orogenic belts the Moho under the collapse structure was formed during the collapse, often by a combination of processes. 3) In regions having experienced widespread basaltic volcanism, the Moho can result from underplated basalt and basaltic residuum. In Precambrian terranes the Moho may be as ancient as the formation of the crust, in others Precambrian tectonic and magmatic processes have reset it. We note that seismic reflection data in Phanerosoic orogens as well as from Precambrian cratonic terranes often show thrust type structures extending as deep as the Moho, and suggest that even where crust and mantle xenoliths provide similar age of formation dates, the crust may be semi-allochothonous.

  17. Pyrenean hyper-extension : breaking, thinning, or stretching of the crust ? A view from the central north-Pyrenean zone

    NASA Astrophysics Data System (ADS)

    de Saint Blanquat, Michel; Bajolet, Flora; Boulvais, Philippe; Boutin, Alexandre; Clerc, Camille; Delacour, Adélie; Deschamp, Fabien; Ford, Mary; Fourcade, Serge; Gouache, Corentin; Grool, Arjan; Labaume, Pierre; Lagabrielle, Yves; Lahfid, Abdeltif; Lemirre, Baptiste; Monié, Patrick; de Parseval, Philippe; Poujol, Marc

    2017-04-01

    The geology of the North Pyrenean Zone in the central Pyrenees allows for the observation in the field of the entire section of the Pyrenean rift, from the mantle to the crust and the Mesozoic cover (pre, syn and post rift). The good knowledge we have of the pre-Alpine history of the Pyrenees allows us to properly constrain the Alpine geological evolution of the pre-Triassic rocks which record both Variscan and Alpine orogenic cycles. The mantle outcrop as kilometric to centimetric fragments of peridotite dispersed within a carbonate metamorphic breccia. The study of peridotite serpentinisation shows several events of low-temperature serpentinisation, in contact with seawater. In some locallities, we can observe a mixture of fragments of variously serpentinized peridotites. This suggests a tectonic context where fragments of peridotites from different structural levels were sampled more or less synchronously. The granulitic basement is characterized by a Variscan syndeformational HT event (300-280 Ma). So far we have not found any trace of a Cretaceous HT event (> 500°C). On the other hand, the basement is affected by a regional metasomatism that began during the Jurassic and became more spatially focused with time until it was restricted to the Pyrenean rift during the Aptien, Albian and Cenomanian. The talc-chlorite metasomatism (120-95 Ma) shows an evolution from a static toward a syn-deformation hydrothermal event, under a more or less normal geothermal gradient. Extensional deformation is recorded by the reworking of several inherited low-angle Variscan tectonic contacts, but also by dispersed high-angle extensional shear zones formed under greenshist conditions. The metamorphic Mesozoic cover of the basement massifs, which constitute the so-called Internal Metamorphic Zone, is an allochtonous unit made of lenses of Mesozoic rocks enclosed into the breccia, which locally contains peridotite and basement clasts. The Mesozoic metamorphic carbonates show a first phase of syn-metamorphic (450-600°C, P < 2 kb) ductile deformation, and subsequent phases of folding and fracturing. The datation of neoformed minerals give a 108-85 Ma time span for the metamorphism. We interpret this breccia as an abandonment breccia which marks the emergence of the main detachment. The basal contact of the Mesozoic cover has a complex 3D geometry traced by Triassic evaporites. It corresponds to a major pre- and synorogenic polyphased tectonic contact. All these data show a geometrically complex hyper-extended rift where the crust was not stretched under a high geothermal gradient but thinned by the tectonic extraction of relatively thin lenses and perhaps cut by high angle low-grade shear zones. The 3D geometry, as well as the strain records and the breccia lithologies strongly suggest a non-cylindricity for the exhumation process, probably within a transtentional system.

  18. The asymmetric evolution of the Colombian Eastern Cordillera. Tectonic inheritance or climatic forcing? New evidence from thermochronology and sedimentology

    NASA Astrophysics Data System (ADS)

    Ramirez-Arias, Juan Carlos; Mora, Andrés; Rubiano, Jorge; Duddy, Ian; Parra, Mauricio; Moreno, Nestor; Stockli, Daniel; Casallas, Wilson

    2012-11-01

    New thermochronological data, facies, paleocurrents and provenance allow us to refine the chronology of deformation in the central segment of the Colombian Eastern Cordillera. Based on a new extensive AFT dataset, we document the spatial evolution of active deformation, from the axial zone of the Eastern Cordillera at about 50 Ma in to active growth of the frontal thin skinned structures in Late Miocene time. Paleocurrents allow us to push backwards into the Middle to Early Late-Miocene the emergence of the easternmost frontal thrust; whereas careful assessment of exposure gates tied to AFT data enable to refine the unroofing history for Eocene to Miocene times. Based on that, we produced a kinematically restored cross section with higher resolution than previous assessments. Using these datasets, we compare the evolution of the central segment of the Eastern Cordillera in this region with the evolution of adjacent areas in the context of climatic forcing of orogenic evolution. We find that in this region and, in the Eastern Cordillera in general, tectonic inheritance and transpression exert an initial dominant control on the initial orogen asymmetry, which is later enhanced due to an orographically-focused erosion. We therefore suggest that it is not climate alone the factor controlling orogenic asymmetry in the Eastern Cordillera of Colombia.

  19. Evolving Continents

    NASA Astrophysics Data System (ADS)

    Hamilton, Warren

    Brian Windley succeeds very well indeed at the formidable task he sets for himself in this greatly revised second edition of a book that first appeared in 1977. He synthesizes primarily the tectonic and petrologic evolution of the continents and secondarily their economic geologic, stratigraphic, and biologic history. The book is organized in well-balanced time sequence and topical chapters, followed by a fine overview. The author describes examples, generalizes from them, and seeks understanding of variations with time and with depth of the process acting on continents within a plate tectonic framework.

  20. Palaeomagnetic constraints on the evolution of the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N)

    NASA Astrophysics Data System (ADS)

    Morris, Antony; Pressling, Nicola; Gee, Jeffrey; John, Barbara; MacLeod, Christopher

    2010-05-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. For example, recent analyses suggest that detachment faults may underlie more than 50% of the Mid Atlantic Ridge (MAR) and may take up most of the overall plate divergence at times when magma supply to the ridge system is reduced. The most extensively studied oceanic core complex is Atlantis Massif, located at 30°N on the MAR. This forms an inside-corner bathymetric high at the intersection of the Atlantis Transform Fault and the MAR. The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305. This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. The core (Hole U1309D) reflects the interplay between magmatism and deformation prior to, during, and subsequent to a period of footwall displacement and denudation associated with slip on the detachment fault. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. In a number of intervals, however, the gabbros exhibit a complex remanence structure with the presence of intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are more consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. Differences in the width of blocking temperature spectra between samples appear to control the number of components present; samples with narrow and high temperature spectra record only R1 components, whereas those with broader blocking temperature spectra record multicomponent (R1-N1 and R1-N1-R2) remanences. The common occurrence of detachment faults in slow and ultra-slow spreading oceanic crust suggests they accommodate a significant component of plate divergence. However, the sub-surface geometry of oceanic detachment faults remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We resolve this debate using paleomagnetic remanences as a marker for tectonic rotation of the Atlantis Massif footwall. Previous ODP/IODP palaeomagnetic studies have been restricted to analysis of magnetic inclination data, since hard-rock core pieces are azimuthally unoriented and free to rotate in the core barrel. For the first time we have overcome this limitation by independently reorienting core pieces to a true geographic reference frame by correlating structures in individual pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of paleomagnetic data and subsequent tectonic interpretation without the need for a priori assumptions on the azimuth of the rotation axis. Results indicate a 46°±6° counterclockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011°±6°. This provides unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby faults initiate at higher dips and rotate to their present day low angle geometries.

  1. Coastal tectonics on the eastern margin of the Pacific Rim: Late Quaternary sea-level history and uplift rates, Channel Islands National Park, California, USA

    USGS Publications Warehouse

    Muhs, Daniel R.; Simmons, Kathleen R.; Schumann, R. Randall; Groves, Lindsey T.; DeVogel, Stephen B.; Minor, Scott A.; Laurel, Deanna

    2014-01-01

    The Pacific Rim is a region where tectonic processes play a significant role in coastal landscape evolution. Coastal California, on the eastern margin of the Pacific Rm, is very active tectonically and geomorphic expressions of this include uplifted marine terraces. There have been, however, conflicting estimates of the rate of late Quaternary uplift of marine terraces in coastal California, particularly for the orthern Channel Islands. In the present study, the terraces on San Miguel Island and Santa Rosa Island were mapped and new age estimates were generated using uranium-series dating of fossil corals and amino acid geochronology of fossil mollusks. Results indicate that the 2nd terrace on both islands is ~120 ka and the 1st terrace on Santa Rosa Island is ~80 ka. These ages correspond to two global high-sea stands of the Last Interglacial complex, marine isotope stages (MIS) 5.5 and 51, respectively. The age estimates indicate that San Miguel Island and Santa Rosa Island have been tectonically uplifted at rates of 0.12e0.20 m/ka in the late Quaternary, similar to uplift rates inferred from previous studies on neighboring San Cruz Island. The newly estimated uplift rates for the northern Channel Islands are, however, an order of magnitude lower than a recent study that generated uplift rates from an offshore terrace dating to the Last Glacial period. The differences between the estimated uplift rates in the present study and the offshore study are explained by the magnitude of glacial isostatic adjustment (GIA) effects that were not known at the time of the earlier study. Set in the larger context of northeastern Pacific Rim tectonics, Channel Islands uplift rates are higher than those coastal localities on the margin of the East Pacific Rise spreading center, but slightly lower than those of most localities adjacent to the Cascadia subduction zone. The uplift rates reported here for the northern Channel Islands are similar to those reported for most other localities where strike-slip tectonics are dominant, but lower than localities where restraining bends (such as the Big Bend of the San Andreas Fault) result in crustal shortening.

  2. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    NASA Astrophysics Data System (ADS)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example) probably has small height and relative weak incision over later beginning of uplift.

  3. Leucogranites in Lhozag, southern Tibet: Implications for the tectonic evolution of the eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Huang, Chunmei; Zhao, Zhidan; Li, Guangming; Zhu, Di-Cheng; Liu, Dong; Shi, Qingshang

    2017-12-01

    Petrogenesis of the Himalayan leucogranite is strongly influenced by conditions which are associated with the tectonic evolution of Himalayan orogen. In this article, we present petrological, geochronological and geochemical results of the Lhozag leucogranites that crop out alongside the South Tibetan Detachment System (STDS) in the east of Himalaya. Zircon U-Pb dating revealed three episodes of leucogranitic magmatism in Lhozag at 17.8 ± 0.1 Ma, 15.1 ± 0.1 Ma, and 12.0 ± 0.1 Ma, respectively. The Lhozag leucogranites show relatively low εNd(t), low zircon εHf(t) and high initial 87Sr/86Sr ratios, which are similar to the High Himalayan Crystalline Series (HHCS), indicating that they were derived from the HHCS. The characteristics of relatively high Na2O and Rb contents, high Rb/Sr ratios and low CaO, MgO, TFe2O3, TiO2, and Sr contents indicate that both the ca. 18 Ma Lhozag tourmaline leucogranites and the ca. 15 Ma Lhozag two-mica granites were derived from fluid-absent muscovite-dehydration melting of metasediments. The opposite geochemistry characteristics of the ca. 12 Ma Khula Kangri two-mica granites imply that these granites are derived from fluid-present melting of metasediments. Four Khula Kangri two-mica granite samples with relatively lower TiO2, TFe2O3, MgO, and CaO contents, higher Rb concentrations and Rb/Sr ratios could be evolved from the Khula Kangri two-mica granites with relatively lower Rb/Sr ratios. The melting behaviors of the Lhozag leucogranites varied from fluid-absent melting to fluid-present melting, implying that there were P-T-XH2O variations in the deep crust. The tectonic evolution would give rise to variation of P-T-XH2O variation, and subsequent transformation of melting behavior. Our new results display the transformation of melting behavior of the Lhozag leucogranites, which implies the tectonic evolution from earlier N-S extension to later E-W extension in the eastern Himalaya at ca. 12 Ma.

  4. Tectonic predictions with mantle convection models

    NASA Astrophysics Data System (ADS)

    Coltice, Nicolas; Shephard, Grace E.

    2018-04-01

    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough for an accurate prediction of instantaneous flow, but not for a prediction after 10 My of evolution. Therefore, inverse methods (sequential or data assimilation methods) using short-term fully dynamic evolution that predict surface kinematics are promising tools for a better understanding of the state of the Earth's mantle.

  5. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

    NASA Astrophysics Data System (ADS)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario

    2018-03-01

    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results, the Agost Basin can be considered a key case of the interference between salt tectonics and the evolution of strike-slip fault zones. The reconstructed model has been compared with several scaled sandbox analogical models and with some natural pull-apart basins.

  6. Deciphering the influence of the thermal processes on the early passive margins formation

    NASA Astrophysics Data System (ADS)

    Bousquet, Romain; Nalpas, Thierry; Ballard, Jean-François; Ringenbach, Jean-Claude; Chelalou, Roman; Clerc, Camille

    2015-04-01

    Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie , 1978), as a dogma, is used to understanding and modeling the formation and evolution of sedimentary basins . This model is based on the assumption that the extension is only by pure shear and it is instantaneous. Under this approach, the sedimentary deposits occur in two stages. i) A short step , 1 to 10 Ma , controlled by tectonics. ii) A longer step , at least 50 Ma as a result of the thermal evolution of the lithosphere.
However, most stratigraphic data indicate that less thermal model can account for documented vertical movements. The study of the thermal evolution , coupled with other tectonic models , and its consequences have never been studied in detail , although the differences may be significant and it is clear that the petrological changes associated with changes in temperature conditions , influence changes reliefs.
In addition, it seems that the relationship between basin formation and thermal evolution is not always the same:
- Sometimes the temperature rise above 50 to 100 Ma tectonic extension. In the Alps, a significant rise in geothermal gradient Permo -Triassic followed by a "cold" extension , leading to the opening of the Ligurian- Piedmont ocean, from the Middle Jurassic .
- Other examples show that temperature changes are synchronous with basin formation . For example, extensive ponds Cretaceous North Pyrenean clearly indicate that the "cooking" of contemporary sediment deposit. In the light of new models, we discuss the consequences of the formation of LP-granulites during rifting on deformation and the subsidence processes.

  7. Paleozoic intrusive rocks from the Dunhuang tectonic belt, NW China: Constraints on the tectonic evolution of the southernmost Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Sun, Yong; Diwu, Chunrong; Zhu, Tao; Ao, Wenhao; Zhang, Hong; Yan, Jianghao

    2017-05-01

    The Dunhuang tectonic belt (DTB) is of great importance for understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt (CAOB). In this study, the temporal-spatial distribution, petrogenesis and tectonic setting of the Paleozoic representative intrusive rocks from the DTB were systematically investigated to discuss crustal evolution history and tectonic regime of the DTB during Paleozoic. Our results reveal that the Paleozoic magmatism within the DTB can be broadly divided into two distinct episodes of early Paleozoic and late Paleozoic. The early Paleozoic intrusive rocks, represented by a suite metaluminous-slight peraluminous and medium- to high-K calc-alkaline I-type granitoids crystallized at Silurian (ca. 430-410 Ma), are predominantly distributed along the northern part of the DTB. They were probably produced with mineral assemblage of eclogite or garnet + amphibole + rutile in the residue, and were derived from magma mixing source of depleted mantle materials with various proportions of Archean-Mesoproterozoic continental crust. The late Paleozoic intrusive rocks can be further subdivided into two stages of late Devonian stage (ca. 370-360 Ma) and middle Carboniferous stage (ca. 335-315 Ma). The former stage is predominated by metaluminous to slight peraluminous and low-K tholeiite to high-K calc-alkaline I-type granitic rocks distributed in the central part of the DTB. They were also generated with mineral assemblage of amphibolite- to eclogite-facies in the residue, and originated from magma source of depleted mantle materials mixed with different degrees of old continental crust. The later stage is represented by adakite and alkali-rich granite exposed in the southern part of the DTB. The alkali-rich granites studied in this paper were possibly produced with mineral assemblage of granulite-facies in the residue and were generated by partial melting of thickened lower continental crust. Zircon Hf isotopes and field distribution of those Paleozoic intrusive rocks reveal that both the Silurian and the late Devonian magmatic activities predominantly represent crustal growth processes in the DTB, accompanied by different degrees of reworking of pre-existing continental crust. However, the middle Carboniferous (ca. 335-315 Ma) magmatic activity reflects a crustal reworking process. The Silurian and late Devonian intrusive rocks were most likely formed in the arc-related subduction zones, whereas, the middle Carboniferous intrusive rocks were possibly formed in a transitional tectonic setting from compression to extension, representing the final stage of Paleozoic orogeny in the DTB. These Paleozoic magmatic rocks further suggest that the DTB has reactivated from a stable block to an orogen and undergone two episodes (the early Paleozoic and the late Paleozoic) of orogeny during Paleozoic. It represents a Paleozoic accretionary orogen of the southernmost margin of the CAOB between the Tarim Craton and North China Craton, and tectonically extends northward to the Beishan orogen and westward to the eastern South Tianshan Belt.

  8. First Results from a Forward, 3-Dimensional Regional Model of a Transpressional San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2001-12-01

    We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity catalogs, stress orientation, surface strain, triggering, etc.), which may allow inferences on the stress state of fault systems.

  9. Subduction hinge migration: The backwards component of plate tectonics

    NASA Astrophysics Data System (ADS)

    Stegman, D.; Freeman, J.; Schellart, W.; Moresi, L.; May, D.

    2005-12-01

    There are approximately 50 distinct segments of subduction zones in the world, of which 40% have oceanic lithosphere subducting under oceanic lithosphere. All of these ocean-ocean systems are currently experiencing hinge-rollback, with the exception of 2 (Mariana and Kermadec). In hinge-rollback, the surface trace of the suduction zone (trench) is moving in the opposite direction as the plate is moving (i.e. backwards). Coincidentally, the fastest moving plate boundary in the world is actually the Tonga trench at an estimated 17 cm/yr (backwards). Although this quite important process was recognized soon after the birth of plate tectonic theory (Elsasser, 1971), it has received only a limited amount of attention (Garfunkel, 1986; Kincaid and Olson, 1987) until recently. Laboratory models have shown that having a three dimensional experiment is essential in order to build a correct understanding of subduction. We have developed a numerical model with the neccessary 3-D geometry capable of investigating some fundamental questions of plate tectonics: How does hinge-rollback feedback into surface tectonics and mantle flow? What can we learn about the forces that drive plate tectonics by studying hinge-rollback? We will present a quantatitive analysis of the effect of the lateral width of subduction zones, the key aspect to understanding the nature of hinge-rollback. Additionally, particular emphasis has been put on gaining intuition through the use of movies (a 3-D rendering of the numerical models), illustrating the time evolution of slab interactions with the lower mantle as seen in such fields as velocity magnitude, strain rate, viscosity, as well as the toroidal and poloidal components of induced flow. This investigation is well-suited to developing direct comparisons with geological and geophysical observations such as geodetically determined hinge retreat rates, geochemical and petrological observations of arc volcanics and back-arc ridge basalts, timing and distribution of metamorphic core complexes in backarc basins under extension, paleostress observables such surface movements and block rotations, observations of seismic anistropy determined by shear wave splitting, and the emerging studies of regional tomographic models of seismic anistropy.

  10. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or associated with a continental terrane.This two volcano-sedimentary domains were finally juxtaposed due to the collision with an allochthonous oceanic arc that collide with the Continental margin in the Late Cretaceous marking the initiation of the Andean Orogeny.

  11. The Origin of The Piz Terri-Lunschania zone (Central Alps, Switzerland)

    NASA Astrophysics Data System (ADS)

    Galster, Federico; Stockli, Daniel

    2017-04-01

    The Piz Terri-Lunschania zone (PTLZ) represents a band of metasedimentary rocks embedded in a crucial knot at the NE border of the Lepontine dome, at the intersection of the Gotthard, Lucomagno, Simano, Adula and Grava nappes. Its origin and its position in the tectonostratigraphy of the Central Alps are still not completely understood. A better understanding of this sedimentary zone and its tectonic position could shed lights on the Helvetic-Penninic connection and facilitate the disentanglement of the Lepontine dome tectonics. In this study we combine structural and stratigraphic observations with detrital zircon (DZ) and detrital rutile (DR) U-Pb geochronology as well as mineral trace element data from Permian, Triassic and Jurassic sandstones. We compare these data with those from adjacent tectonic units and coeval strata in other portions of the Alpine chain. Maximal depositional ages, abrupt changes in provenances and stratigraphic correlations based on new DZ and DR U-Pb and trace element data allow for a better understanding of the sedimentary evolution of the Terri basin and its palaeogeographic position along the northern margin of the Alpine Tethys. In particular the DZ U-Pb signatures, with its abundant 260-280 Ma zircons and the scarcity of 290-350 Ma zircons, corroborates an Ultra-Adula origin of the PTLZ as proposed by Galster et al (2010; 2012) based on stratigraphic arguments and reinforces the notion of a Briançonnais influence on the stratigraphic record of this complex zone, a fact that has important tectonic and Palaeogeographic implications. Galster F, Cavargna-Sani M, Epard J-L, Masson H (2012) New stratigraphic data from the Lower Penninic between the Adula nappe and the Gotthard massif and consequences for the tectonics and the paleogeography of the Central Alps. Tectonophysics 579:37-55. doi: 10.1016/j.tecto.2012.05.029 Galster F, Epard J-L, Masson H (2010) The Soja and Luzzone-Terri nappes: Discovery of a Briançonnais element below the front of the Adula nappe (NE Ticino, Central Alps). Bulletin de la Société Vaudoise des Sciences naturelles 92:61-75.

  12. Controls on mid-ocean ridge segmentation and transform fault formation from laboratory experiments using fluids of complex rheology.

    NASA Astrophysics Data System (ADS)

    Sibrant, A.; Mittelstaedt, E. L.; Davaille, A.

    2017-12-01

    Mid-ocean ridges are tectonically segmented at scales of 10s to 100s of kilometers by several types of offsets including transform faults (TF), overlapping spreading centers (OSC), and slow-spreading non-transform offsets (NTO). Differences in segmentation along axis have been attributed to changes in numerous processes including magma supply from the upwelling mantle, viscous flow in the asthenosphere, ridge migration, and plate spreading direction. The wide variety of proposed mechanisms demonstrate that the origin of tectonic offsets and their relationship to segment-scale magmatic processes remain actively debated; each of the above processes, however, invoke combinations of tectonic and magmatic processes to explain changes in segmentation. To address the role of tectonic deformation and magmatic accretion on the development of ridge offsets, we present a series of analogue experiments using colloidal silica dispersions as an Earth analogue. Saline water solutions placed in contact with these fluids, cause formation of a skin through salt diffusion, whose rheology evolves from purely viscous to elastic and brittle with increasing salinity. Experiments are performed in a Plexiglas tank with two Plexiglas plates suspended above the base of the tank. The tank is filled with the colloidal fluid to just above the suspended plates, a thin layer of saline water is spread across the surface, and spreading initiated by moving the suspended Plexiglas plates apart at a fixed rate. Results show formation of OSCs, NTOs, and TFs. For parameters corresponding to the Earth, TF offsets are < 5 mm and form at all spreading velocities, corresponding to transform offsets of < 100 km on Earth. Measured TF offset size and ridge segment lengths exhibit a Poisson-type distribution with no apparent dependence on spreading rate. Observations of TF offset size on Earth show a similar distribution for TFs <100 km long and supports the hypothesis that TFform spontaneously through a mechanical instability of the axis. Here, we present an analysis of the magmatic and tectonic controls on axis instability leading to the formation of TFs, OSCs, and NTOs, and their implications for the evolution of mid-ocean ridges.

  13. Kinematic evolution of Internal Getic nappes (Serbian Carpathians, eastern Serbia)

    NASA Astrophysics Data System (ADS)

    Krstekanic, Nemanja; Stojadinovic, Uros; Toljic, Marinko; Matenco, Liviu

    2017-04-01

    The tectonic evolution of the Carpatho - Balkanides Mountains is less understood in the critical segment of the Serbian Carpathians due to lack of available kinematic data. We have performed a field kinematic analysis combined with existing information from previous local and regional studies by focusing on the internal part of this orogenic segment, where the three highest most units of the nappe stack are exposed and separated by large offsets thrusts, i.e. the Supragetic, Upper Getic and Lower Getic. These units expose their metamorphic basement and Permo-Mesozoic cover penetrated by syn- and post-kinematic plutons and overlain or otherwise in structural contact with the Neogene fill of intramontane basins and the one of the Morava river corridor located in the prolongation of the much larger Pannonian basin. The kinematic analysis demonstrates seven superposed tectonic events of variable magnitudes and effects. Available superposition criteria and the correlation with the regional evolution demonstrate that four events are major tectonic episodes, while three others have a more limited influence or are local effects of strain partitioning and rotations. The first deformation event observed is the late Early Cretaceous cataclastic to brittle thrusting and shearing associated with the emplacement of the Supragetic nappe over the Getic unit. The observed paleostress NW-SE to SW-NE compressional directions were affected by the subsequent Cenozoic oroclinal bending of the Carpathians nappe stack. The first event was followed by Late Cretaceous E-W compression associated with significant strike-slip and transpression, the paleostress orientation being affected by the same subsequent rotations. The Paleogene - Early Miocene activation of the Cerna - Jiu and Timok faults system that cumulates an observed offset of 100 km is associated with large strikes-slip deformation with presently observed NNE-SSW oriented compressional directions in the study area. The formation of the Pannonian Basin and its prolongation in the Morava river corridor was associated at first with Early-Middle Miocene orogen-perpendicular extension, which was followed by orogen-parallel extension and strike-slip that started in the late Middle Miocene and lasted possibly until Pliocene times. This was followed by the Pliocene-Quaternary reactivation and thrusting of the Upper Getic thrust and strike slip with NNE-SSW to NNW-SSE oriented compression. All these deformations demonstrate a complex poly-phase history characterized at first by Cretaceous nappe stacking and transpressional deformations. This nappe stacking was followed by Cenozoic oroclinal bending associated with large-offset strike slip faults during the translation and rotation associated with the gradual closure of the Carpathians embayment, which interacted in the Serbian Carpathians with the back-arc extension of the Pannonian basin. This was followed by the regional inversion of the larger Pannonian Basin often reactivating inherited major structures or nappe contacts. This complex interplay was associated with significant strain partitioning that resulted in local rotations and changes of the paleostress directions.

  14. Satellite Detection of the Convection Generated Stresses in Earth

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Kolenkiewicz, Ronald; Li, Jin-Ling; Chen, Jiz-Hong

    2003-01-01

    We review research developments on satellite detection of the convection generated stresses in the Earth for seismic hazard assessment and Earth resource survey. Particular emphasis is laid upon recent progress and results of stress calculations from which the origin and evolution of the tectonic features on Earth's surface can be scientifically addressed. An important aspect of the recent research development in tectonic stresses relative to earthquakes is the implications for earthquake forecasting and prediction. We have demonstrated that earthquakes occur on the ring of fire around the Pacific in response to the tectonic stresses induced by mantle convection. We propose a systematic global assessment of the seismic hazard based on variations of tectonic stresses in the Earth as observed by satellites. This space geodynamic approach for assessing the seismic hazard is unique in that it can pinpoint the triggering stresses for large earthquakes without ambiguities of geological structures, fault geometries, and other tectonic properties. Also, it is distinct from the probabilistic seismic hazard assessment models in the literature, which are based only on extrapolations of available earthquake data.

  15. Post-Paleogene (post-Middle Eocene-pre-Miocene) Geodynamic evolution of the Upper Cretaceous-Paleogene Basins in Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Rojay, Bora

    2017-04-01

    Central Anatolia is one of the key areas on the evolution of Cretaceous-Paleogene Tethys where stratigraphy of the region is well studied. However not well linked with tectonics. The so-called "Ankara Mélange" belt (AOM) and the basins on top are important elements in the understanding of the İzmir-Ankara-Erzincan suture belt (İAES) evolution in Anatolia (Turkey) and in the evolution of Tethys in minor Asia (Turkey). Some of the basins are directly situated on top of the tectonic slices of the accretionary prism (IAES). However, some are not tectonically well explained as in the case of Haymana basin. The southern continental fragments (eg. Kütahya-Bolkardaǧ and Kırşehir blocks from Gondwana) are approaching to northern continents (Pontides of Lauriasia) where basins like Haymana, Alçı, Kırıkkale and Orhaniye extensional basins are evolved in between the closing margins of two continents. Haymana basin is an extensional basin developed under contractional regime on top of both northward subducting oceanic fragments and an approaching fragments of southern continents. Paleogene (end of Eocene) is the time where the Seas were retreated to S-SE Anatolia leaving a continental setting in Anatolia during Oligocene-Miocene. The slip data gathered from the faults cross-cutting the Paleogene Units and the fabric from Cretaceous mélanges depicts a NNW-SSE to NNE-SSW compressional stress regime operated during post-Eocene-pre-Miocene period. Lately the slip surfaces were overprinted by post-Pliocene normal faulting. Key words: fault slip data, Paleogene, NNW-SSE compression, Anatolia.

  16. Tectonic significance of Kibaran structures in Central and Eastern Africa

    NASA Astrophysics Data System (ADS)

    Rumvegeri, B. T.

    Tectonical movements of the Kibaran belt (1400-950 Ma) can be subdivided into two major deformation events, corresponding to tight, upright or recumbent folds, thrust faults, nappes and stretching lineation with a general plunging southwards. At the regional scale, the stretching lineation, associated with thrust faults and nappes is interpreted as an indication of a northwards moving direction. The shear zone with mafic-ultramafic rocks across Burundi, MW-Tanzania, SW-Uganda and NE-Zaïre is the suture zone of the Kibaran belt. Kibaran metamorphism is plurifacial and has four epizodes. The second, syn-D2, is the most important and constitutes the climax; it reached the granulite facies. The succession of tectonic, metamorphic and magmatic features suggests geotectonic evolution by subduction-collision.

  17. Investigation of lunar crustal structure and isostasy

    NASA Technical Reports Server (NTRS)

    Thurber, Clifford H.

    1987-01-01

    The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. The present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.

  18. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record

    USGS Publications Warehouse

    Weems, R.E.; Lewis, W.C.

    2002-01-01

    Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.

  19. The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.; O'Neill, C.

    2015-06-01

    We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.

  20. What can a numerical landscape evolution model tell us about the evolution of a real landscape? Two examples of modeling a real landscape without recreating it

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Whipple, K. X.; Willenbring, J.; Crosby, B. T.; Brocard, G. Y.

    2013-12-01

    Numerical landscape evolution models (LEMs) offer us the unique opportunity to watch a landscape evolve under any set of environmental forcings that we can quantify. The possibilities for using LEMs are infinite, but complications arise when trying to model a real landscape. Specifically, numerical models cannot recreate every aspect of a real landscape because exact initial conditions are unknown, there will always be gaps in the known tectonic and climatic history, and the geomorphic transport laws that govern redistribution of mass due to surface processes will always be a simplified representation of the actual process. Yet, even with these constraints, numerical models remain the only tool that offers us the potential to explore a limitless range of evolutionary scenarios, allowing us to, at the very least, identify possible drivers responsible for the morphology of the current landscape, and just as importantly, rule out others. Here we highlight two examples in which we use a numerical model to explore the signature of different forcings on landscape morphology and erosion patterns. In the first landscape, the Northern Bolivian Andes, the relative imprint of rock uplift and precipitation patterns on landscape morphology is widely contested. We use the CHILD LEM to systematically vary climate and tectonics and quantify their fingerprints on channel profiles across a steep mountain front. We find that rock uplift and precipitation patterns in this landscape and others can be teased out by examining channel profiles of variably sized catchments that drain different parts of the topography. In the second landscape, the South Fork Eel River (SFER), northern California, USA, the tectonic history is relatively well known; a wave of rock uplift swept through the watershed from headwaters to outlet, perturbing the landscape and sending a wave of bedrock incision upstream. Nine millennial-scale erosion rates from along the mainstem of the river illustrate a pattern of downstream increasing erosion rate. Similarly, the proportion of the landscape that has adjusted to the tectonic perturbation increases from upstream to downstream. We use the CHILD LEM to explore whether the relationship between erosion rates and proportion of adjusted landscape is unique to the tectonic history of the SFER and if this relationship can be used as a fingerprint to identify the nature of tectonic perturbations in other locations. In both study sites, we do not try to recreate the exact morphology of the real landscape. Rather, we identify patterns in erosion rates and the morphology of the numerical landscape that can be used to interpret the tectonic history, climatic history, or both in these and other real landscapes.

  1. Testing Lithospheric versus Deep-Mantle Dynamics on Post-100 Ma Evolution of Western U.S. using Landscape Evolution Modeling

    NASA Astrophysics Data System (ADS)

    Chang, C.; Liu, L.

    2017-12-01

    Driving mechanisms of the topographic evolution of central-western North America from the Cretaceous Western Interior Seaway (WIS) to its present-day high elevation remain ellusive. Quantifying the effects of lithospheric deformation versus deep-mantle induced topography on the landscape evolution of the region is a key to better constraining the history of North American tectonics and mantle dynamics. One way to tackle this problem is through running landscape evolution simulation coupled with uplift histories characteristic to these tectonic processes. We then use available surface observations, e.g., sedimentation records, land erosion, and drainage evolution, to infer the likely lithospheric and mantle processes that formed the WIS, the subsequent Laramide orogeny, and the present-day high topography of central-western North America. In practice, we use BadLands to simulate the evolution of surface process. To validate a given uplift history, we quantitatively compare model predictions with onshore and offshore stratigraphy data from the literature. Furthermore, critical forcings of landscape evolution, such as climate, lithology and sea level, will also be examined to better attest the effects of different uplift scenarios. Preliminary results demonstrate that only with geographically migratory subsidence, as predicted by an inverse mantle convection model, can we re-produce large scale tilted strata and shifting sediment deposition observed in the WIS basins. Ongoing work will also look into styles of Cenozoic uplift events that ended the WIS and produced the landscape features today. Eventually, we hope to place new constraints on the evolution and properties of lithospheric and deep-mantle dynamics of North American and to locate the best-fit scenario of its coresponding surface evolution since 100 Ma.

  2. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a relatively strong tectonic reactivation took place along the Late Palaeozoic Bogda rift belt accompanied by relatively large-scale magmatism. The distinct basement structure between the eastern and western Bogda rift could be the structure basis of difference uplift in the Bogda area during the Mesozoic Era. The Early to Middle Jurassic episodic uplift of Eastern Bogda Mountains perhaps was related to the post-collisional convergence of the Qiangtang Block from late Badaowan to early Sangonghe, the closure of the western Mongol-Okhotsk Ocean at the Early-Middle Jurassic boundary and the tectonic accretion at the south Asian margin of Pamir Block during late Middle Jurassic times.

  3. Tectonics and volcanism on Mars: a compared remote sensing analysis with earthly geostructures

    NASA Astrophysics Data System (ADS)

    Baggio, Paolo; Ancona, M. A.; Callegari, I.; Pinori, S.; Vercellone, S.

    1999-12-01

    The recent knowledge on Mars' lithosphere evolution does not find yet sufficient analogies with the Earth's tectonic models. The Viking image analysis seems to be even now frequently, rather fragmentary, and do not permits to express any coherent relationships among the different detected phenomena. Therefore, today it is impossible to support any reliable kinematic hypothesis. The Remote-Sensing interpretation is addressed to a Viking image mosaic of the known Tharsis Montes region and particularly focused on the Arsia Mons volcano. Several previously unknown lineaments, not directly linked to volcano-tectonics, were detected. Their mutual relationships recall transcurrent kinematics that could be related to similar geostructural models known in the Earth plate tectonic dynamics. Several concordant relationships between the Arsia Mons volcano and the brittle extensive tectonic features of earthly Etnean district (Sicily, South Italy), interpreted on Landsat TM images, were pointed out. These analogies coupled with the recently confirmed strato- volcano topology of Tharsis Montes (Head and Wilson), the layout distribution of the effusive centers (Arsia, Pavonis and Ascraeus Montes), the new tectonic lineaments and the morphological features, suggest the hypothesis of a plate tectonic volcanic region. The frame could be an example in agreement with the most recent interpretation of Mars (Sleep). A buried circular body, previously incorrectly interpreted as a great landslide event from the western slope of Arsia Mons volcano, seems really to be a more ancient volcanic structure (Arsia Mons Senilis), which location is in evident relation with the interpreted new transcurrent tectonic system.

  4. Late Paleozoic tectonic evolution of the Central Asian Orogenic Belt: Constraints from multiple arc-basin systems in Altai-Junggar area, NW China

    NASA Astrophysics Data System (ADS)

    Li, D.

    2015-12-01

    In this study, we report results from integrated geological, geophysical and geochemical investigations on the Wulungu Depression of the Junggar Basin to understand the Late Paleozoic continental growth of the Junggar area and its amalgamation history with the Altai terrane, within the broad tectonic evolution of the Altai-Junggar area. Based on seismic and borehole data, the Wulungu Depression can be divided into two NW-trending tectonic units by southward thrust faults. The Suosuoquan Sag is composed of gray basaltic andesite, andesite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava gushes and marine sediments from a proximal juvenile provenance, compared to the andesite in the Hongyan High. The SIMS Zircon U-Pb ages for andesites from Late Paleozoic strata indicate that these volcanics in Suosuoquan Sag and Hongyan High erupted at 376.3Ma and 313.4Ma, respectively. Most of the intermediate-mafic volcanic rocks exhibit calc-alkaline affinity, low initial 87Sr/86Sr and positive ɛNd(t) and ɛHf(t) values. Furthermore, these rocks have high Th/Yb and low Ce/Pb and La/Yb ratios as well as variable Ba/Th and Ba/La ratios. These features imply that the rocks were derived from partial melting of a mantle wedge metasomatized by subduction-related components in an island arc setting. The basin filling pattern and the distribution of island arc-type volcanics and their zircon Hf model ages with the eruptive time suggest that the Wulungu Depression represents an island arc-basin system with the development of a Carboniferous retro-arc basin. The gravity and magnetic anomaly data suggest that Altai-Junggar area incorporates three arc-basin belts from north to south: the Karamaili-Luliang-Darbut, Yemaquan-Wulungu, and Dulate-Fuhai-Saur. The recognition of the Wulungu arc-basin system demonstrates that the northern Junggar area is built by amalgamation of multiple Paleozoic linear arcs and accretionary complexes and has important implications for continental crustal growth in Altai-Junggar in particular, and the world's largest Phanerozoic accretionary orogen-the CAOB-in general.

  5. From crustal thinning to mantle exhumation: what the Pyrenean breccia formations tell us.

    NASA Astrophysics Data System (ADS)

    Clerc, C.; Chauvet, A.; Lagabrielle, Y.; Reynaud, J.-Y.; Boulvais, P.; Bousquet, R.; Lahfid, A.; Vauchez, A.; Mahé, S.

    2012-04-01

    Several formations with various breccia types occur in Mesozoic basins disseminated along the North Pyrenean fault, on the northern flank of the French Pyrenees. Due to their location along the Iberia-Europa plate boundary, the North Pyrenean breccia formations represent complex archives documenting the tectonic and sedimentary evolution of the Pyrenean realm during the Aptian-Albian period. In particular, the North Pyrenean breccia formations have recorded the main stages of crustal thinning, continental break-up and mantle exhumation, which occurred along the North Pyrenean Zone (NPZ). We will review the main sedimentary, structural, metamorphic and geochemical characters of these breccias, based on new field investigations conducted in both the Western and Eastern Pyrenées (Agly, Aulus, Moncaup-St Béas and Urdach localities). Based on our new founding, we re-intrepret the significance of the breccia formations in the light of the most recent models developed for the pre-orogenic evolution of the Pyrenees. In several places and mostly close to the contact between Paleozoic basement and Mesozoic cover, we systematically recognized the following three types of breccias: i) Semi-ductile syn-metamorphic breccias resulting from the boudinage of silicic or dolomitic beddings in ductily deformed marbles. ii) Cataclastic breccias disturbing the neighbouring host rocks and displaying a relatively monogenetic character. These tectonic breccias result from the disruption of the Mesozoic metamorphic platform under cooling conditions. They are dominated by cataclastic levels mainly located in the Triassic and Liassic weaker levels, iii) Polymictic sedimentary breccias, which composition is dominated by clasts of Mesozoic metasediments. Locally, close to subcontinental mantle bodies, the sedimentary breccias include numerous clasts of ultramafic and/or crustal basement rocks. Such breccias are the witness of the disruption of the sedimentary cover of the North Pyrenean Zone massifs followed by clastic sedimentation in a context of hyper-extended crust and mantle exhumation. Improving the knowledge of the formation of the different types of breccia exposed all along the Northern Pyrenees brings important hints to decipher the tectonic history responsible for the formation of the metamorphic basins and the exhumation (and reworking) of deep crustal and mantle rocks in the NPZ.

  6. Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12-14°S)

    NASA Astrophysics Data System (ADS)

    Li, Bing; Shi, Xuefa; Wang, Jixin; Yan, Quanshu; Liu, Chenguang; DY125-21 (Leg 3) Science Party; DY125-22 (Legs 2-5) Science Party; DY125-26 (Leg 3) Science Party

    2018-05-01

    Systematic hydrothermal exploration and multi-beam bathymetry mapping have been conducted along a 220-km-long section of the Southern Mid-Atlantic Ridge (SMAR) from 12°S (Bode Verde Fracture Zone) to 14°S (Cardno Fracture Zone), and previously reported deposits (Tao et al., 2011) are now being thoroughly investigated. Here, we present the characterization of three possible hydrothermal fields, a complete bathymetry data set of the ridge segment, gravity data, and the petrologic characteristics of collected rock samples. The magmatism characteristics, evolution of the ridge segment, and the local geological controls of the possible hydrothermal fields are then discussed. The studied segment can be divided into two segments by a Non-Transform Discontinuity (NTD). Our morphotectonic analysis shows significant along-axis heterogeneity in the surveyed segments: three distinctive cross-axis grabens were identified in the northern segment, and two were identified in the southern segment. Moreover, based on the gravity data (a relatively low spherical Bouguer anomaly) and petrologic data (low Mg# values and relatively low FeO and relatively high Al2O3 and CaO contents compared to nearby seafloor samples), a volcanic feature, the ZouYu seamount, on this segment is considered to be associated with strong magmatic activity, and the magmatic activity of the inside corner at the southern end of the segment has increased and decreased. The three possible hydrothermal fields occur in different local geological settings: a shallow magmatic seamount (ZouYu), an NTD (TaiJi), and an inside-corner high (CaiFan). These potential hydrothermal fields are significantly different from other fields in similar tectonic settings in terms of local geologic controls and products. The ZouYu field is primarily related to a newly formed cone, resulting in the production of sulfides, and differs from other fields on shallow magmatic seamounts. The TaiJi field is largely controlled by the tectonic evolution of the NTD and is based on mafic rocks. The inside corner containing the CaiFan field is a magmatic seamount rather than an Ocean Core Complex, making it strikingly different from other inside corner-related fields.

  7. Some fundamental questions about the evolution of the Sea of Japan back-arc

    NASA Astrophysics Data System (ADS)

    Van Horne, A.; Sato, H.; Ishiyama, T.

    2016-12-01

    The Japanese island arc separated from Asia through the rifting of an active continental margin, and the opening of the Sea of Japan back-arc, in the middle Miocene. Due to its complex tectonic setting, the Sea of Japan back-arc was affected by multiple external events contemporary with its opening, including a plate reorganization, the opening of at least two other nearby back-arcs (Shikoku Basin and Okhotsk Sea/Kuril Basin), and two separate arc-arc collisions, involving encroachment upon Japan of the Izu-Bonin and Kuril arcs. Recent tectonic inversion has exposed entire sequences of back-arc structure on land, which remain virtually intact because of the short duration of inversion. Japan experiences a high level of seismic activity due to its position on the overriding plate of an active subduction margin. Continuous geophysical monitoring via a dense nationwide seismic/geodetic network, and a program of controlled-source refraction/wide-angle reflection profiling, directed towards earthquake hazard mitigation, have made it the repository of a rich geophysical data set through which to understand the processes that have shaped back-arc development. Timing, structural evolution, and patterns of magmatic activity during back-arc opening in the Sea of Japan were established by earlier investigations, but fundamental questions regarding back-arc development remain outstanding. These include (1) timing of the arrival of the Philippine Sea plate in southwest Japan, (2) the nature of the plate boundary prior to its arrival, (3) the pre-rift location of the Japanese island arc when it was attached to Asia, (4) the mechanism of back-arc opening (pull-apart or trench retreat), (5) the speed of opening, (6) simultaneous or sequential development of the multi-rift system, (7) the origin of the anomalously thick Yamato Basin ocean crust, and (8) the pattern of concentrated deformation in the failed-rift system of the eastern Sea of Japan since tectonic inversion. Resolving uncertainties like those posed here will be necessary for a more complete understanding of the nature of and processes involved in back-arc development in the Sea of Japan.

  8. Amalgamation of East Eurasia Since Late Paleozoic: Constraints from the Apparent Polar Wander Paths of the Major China Blocks

    NASA Astrophysics Data System (ADS)

    Wu, L.; Kravchinsky, V. A.; Potter, D. K.

    2014-12-01

    It has been a longstanding challenge in the last few decades to quantitatively reconstruct the paleogeographic evolution of East Eurasia because of its great tectonic complexities. As the core region, the major China cratons including North China Block, South China Block and Tarim Block hold the key clues for the understanding of the amalgamation history, tectonic activities and biological affinity among the component blocks and terranes in East Eurasia. Compared with the major Gondwana and Laurentia plates, however, the apparent polar wander paths of China are not well constrained due to the outdated paleomagnetic database and relatively loose pole selection process. With the recruitment of the new high-fidelity poles published in the last decade, the rejection of the low quality data and the strict implementation of Voo's grading scheme, we build an updated paleomagnetic database for the three blocks from which three types of apparent polar wander paths (APWP) are computed. Version 1 running mean paths are constructed during the pole selection and compared with those from the previous publications. Version 2 running mean and spline paths with different sliding time windows are computed from the thoroughly examined poles to find the optimal paths with the steady trend, reasonable speed for the polar drift and plate rotation. The spline paths are recommended for the plate reconstructions, however, considering the poor data coverage during certain periods. Our new China APWPs, together with the latest European reference path, the geological, geochronological and biological evidence from the studied Asian plates allow us to reevaluate the paleogeographic and tectonic history of East Eurasia.

  9. Are the paleoclimatic reconstructions based on mammals biased by the local landscape?

    NASA Astrophysics Data System (ADS)

    Garcia-Alix, Antonio

    2017-04-01

    The paleoclimatic reconstructions deduced from mammal associations might have been biased by the complex local effect of the landscape. This effect is especially important in tectonically active regions where important landscape changes occurred in short-time periods. In this abstract, I present a coupled paleoenvironmental approach 1) using the ecological requirement of the faunal associations, and 2) using isotopic analyses in both sediments and small mammal teeth in order to discern between climate and landscape effects. Southern Iberian Peninsula was a tectonically active area during the late Miocene and Pliocene, and the environmental and humidity data deduced from the faunal associations agree with the sedimentary evolution of the basin. However, these humidity trends are usually opposite to the humidity reconstruction deduced from the carbon isotopic data in rodent teeth and from the isotopic composition of the sediments (C and O), which are scarcely influenced by the landscape. So, changes in the landscape, probably boosted by tectonics, gave rise to the development of endorheic and/or exorheic systems in the areas and conditioned the extension of these systems, affecting taxa with high dependence on humidity. Similar outcomes have been observed in early-middle Miocene records from north Spain. In those cases, the response of small mammal associations to abrupt climate changes might have been also buffered by the landscape. On the other hand, records where there was no important landscape changes, such as those from an early- middle Miocene coastal area of eastern Spain, do not show that disagreement in the humidity and environmental reconstructions following both methods.

  10. Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro

    2017-10-01

    In this study we focus on reconstructing the post-rift subsidence evolution of the Colorado Basin, offshore Argentina. We make use of detailed structural information about its present-day configuration of the sedimentary infill and the crystalline crust. This information is used as input in a backward modelling approach which relies on the assumption of local isostasy to reconstruct the amount of subsidence as induced by the sedimentary load through different time stages. We also attempt a quantification of the thermal effects on the subsidence as induced by the rifting, here included by following the uniform stretching model of lithosphere thinning and exponentially cooling through time. Based on the available information about the present-day geological state of the system, our modelling results indicate a rather continuous post-rift subsidence for the Colorado Basin, and give no significant evidence of any noticeable uplift phase. In a second stage, we compare the post-rift evolution of the Colorado Basin with the subsidence evolution as constrained for its conjugate SW African passive margin, the Orange Basin. Despite these two basins formed almost coevally and therefore in a similar large scale geodynamic context, their post-rift subsidence histories differ. Based on this result, we discuss causative tectonic processes likely to provide an explanation to the observed differences. We therefore conclude that it is most probable that additional tectonic components, other than the ridge-push from the spreading of the South Atlantic Ocean, are required to explain the observed differences in the subsidence of the two basins along the conjugate passive margins. Such additional tectonic components might be related to a dynamic mantle component in the form of either plume activity (Africa) or a subducting slab and the presence of an ongoing compressional stress system as revealed for different areas in South America.

  11. Early cretaceous rift sediments of the Gabon-Congo margin: lithology and organic matter; tectonic and paleogeothermal evolution

    NASA Astrophysics Data System (ADS)

    Robert, P.; Yapaudjian, L.

    The active troughs of the western Gabon-Congo margin which are part of the South Atlantic rift contain a Neocomian to barremian-aged fluvial-lacustrine series. The lithological sequence of interbedded clastic and pelitic formations constitutes a well-defined cycle. This cycle is divided into: a fluvial or piedmont stage, a lacustrine turbidite-stage corresponding to the distension paroxysm of the basin, and finally, a lacustrine deltaic stage of infilling and tectonic quiescence. The organic matter included in the shale layers is abundant and originates mainly from lacustrine Botryococcus algae and their alteration and secretion products. The geothermal history of the basin, demonstrated by the evolution of the organic matter indicates a strong hyperthermy located in the active, more subsiding part of the basin, and contemporaneous with sedimentation.

  12. Influence of soil development on the geomorphic evolution of landscapes: An example from the Transverse Ranges of California

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; McFadden, L. D.; Matti, J.; Powell, R.

    2002-03-01

    Soil development can significantly influence the topographic evolution of a tectonically deforming mountain piedmont. Faults and folds associated with the North Frontal thrust system deform piedmont sediments of variable compositions along the north flank of the San Bernardino Mountains. The topographic expressions of folds with similar structural characteristics diverge appreciably, primarily as a function of differences in sediment composition and associated soil development. Soils with petrocalcic horizons in limestone- rich deposits are resistant to erosion, and anticlinal folds form prominent ridges. Folds forming in granite-derived deposits with argillic soil horizons are eroded and/or buried and are therefore topographically less pronounced. We propose that these landform contrasts can be explained by differences in soil-controlled hydrologic and erosion characteristics of deposits without calling upon changes in tectonic style along the mountain front.

  13. Global water cycle and the coevolution of the Earth's interior and surface environment.

    PubMed

    Korenaga, Jun; Planavsky, Noah J; Evans, David A D

    2017-05-28

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×10 14  g yr -1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  14. Global water cycle and the coevolution of the Earth’s interior and surface environment

    PubMed Central

    Planavsky, Noah J.; Evans, David A. D.

    2017-01-01

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416728

  15. Uplifted ophiolitic rocks on Isla Gordon, southernmost Chile: implications for the closure history of the Rocas Verdes marginal basin and the tectonic evolution of the Beagle Channel region

    NASA Astrophysics Data System (ADS)

    Cunningham, W. D.

    1994-04-01

    A succession of mafic rocks that includes gabbro, sheeted dikes and deformed pillow basalts has been mapped in detail on Isla Gordon, southernmost Chile and is identified as an upper ophiolitic complex representing the uplifted floor of the Late Jurassic-Early Cretaceous Rocas Verdes marginal basin. The complex was uplifted, deformed, and regionally metamorphosed prior to the intrusion of an undeformed 90 Ma granodiorite that cuts the complex. The complex appears para-autochthonous, is gently tilted to the northeast and is internally sheared by near-vertical foliation zones. No evidence for obduction was observed although the base of the complex is not exposed. The ophiolitic rocks have been regionally metamorphosed to mid-upper greenschist levels. Isla Gordon is bounded by the northwest and southwest arms of the Beagle Channel, two important structural boundaries in the southernmost Andes that are interpreted to have accommodated north-side-up and left-lateral displacements. Directly north of Isla Gordon is the Cordillera Darwin metamorphic complex that exposes the highest grade metamorphic rocks in the Andes south of Peru. On the north coast of Isla Gordon a volcaniclastic turbidite sequence that is interpreted to have been deposited above the mafic floor is metamorphosed to lower greenschist levels in strong metamorphic contrast to amphibolite-grade othogneisses exposed in Cordillera Darwin only 2 km away across the northwest arm of the Beagle Channel. The profound metamorphic break across the northwest arm of the Beagle Channel and the regional northeast tilt of the ophiolitic complex are consistent with the previously proposed hypothesis that Isla Gordon represents the upper plate to an extensional fault that accommodated tectonic unroofing of Cordillera Darwin. However, limited structural evidence for extension was identified in this study to support the model and further work is needed to determine the relative importance of contractional, extensional and strike-slip displacements during the closure of the Rocas Verdes marginal basin and uplift of Cordillera Darwin. The Isla Gordon ophiolitic complex is correlative with other regional occurrences of ophiolitic rocks including the previously studied Tortuga, Sarmiento and Larsen Harbour complexes. The existence of the Isla Gordon ophiolitic complex helps link the known occurrences of the marginal basin floor into a semi-continuous belt that sheds light on the original continuity of the basin.

  16. Late Tharsis tectonic activity and implications for Early Mars

    NASA Astrophysics Data System (ADS)

    Bouley, S.; Baratoux, D.; Paulien, N.; Missenard, Y.; Saint-Bezar, B.

    2017-12-01

    Constraining the timing of Tharsis volcanism is critical to understanding the planet's evolution including its climate, surface environment and mantle dynamics. The tectonic history of the Tharsis bulge was previously documented from the distribution and ages of related tectonic features [1]. Here we revisit the ages of 7493 Tharsis-related tectonic features based on their relationship with stratigraphic units defined in the new geological map [2]. Conversely to previous tectonic mapping [1], which suggested that Tharsis growth was nearly achieved during the Noachian, we find a protracted growth of Tharsis during the Hesperian. Faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. Accumulated tectonic deformation was maximum in the Early Hesperian for compressional strain (Solis, Lunae and Ascuris Planum) and extended over time from Noachian to Amazonian for extensional strain (Noctis Labyrinthus and Fossae, Sinai Planum and Tractus, Ulysses and Fortuna fossae, Alba Patera). This new scenario is consistent with a protracted growth of Tharsis dome during the Hesperian and with the timing a large Tharsis-driven true polar wander post-dating the incision of Late Noachian/Hesperian valley networks[3]. References:[1] Anderson et al. JGR-Planets 106, E9, 20,563-20,585 (2001).[2] Tanaka, K.L. et al. Geologic map of Mars (2014). [3] Bouley et al. Nature doi:10.1038 (2016)

  17. Multi-Model approach to reconstruct the Mediterranean Freshwater Evolution

    NASA Astrophysics Data System (ADS)

    Simon, Dirk; Marzocchi, Alice; Flecker, Rachel; Lunt, Dan; Hilgen, Frits; Meijer, Paul

    2016-04-01

    Today the Mediterranean Sea is isolated from the global ocean by the Strait of Gibraltar. This restricted nature causes the Mediterranean basin to react more sensitively to climatic and tectonic related phenomena than the global ocean. Not just eustatic sea-level and regional river run-off, but also gateway tectonics and connectivity between sub-basins are leaving an enhanced fingerprint in its geological record. To understand its evolution, it is crucial to understand how these different effects are coupled. The Miocene-Pliocene sedimentary record of the Mediterranean shows alternations in composition and colour and has been astronomically tuned. Around the Miocene-Pliocene Boundary the most extreme changes occur in the Mediterranean Sea. About 6% of the salt in the global ocean deposited in the Mediterranean Region, forming an approximately 2 km thick salt layer, which is still present today. This extreme event is named the Messinian Salinity Crisis (MSC, 5.97-5.33 Ma). The gateway and climate evolution is not well constrained for this time, which makes it difficult to distinguish which of the above mentioned drivers might have triggered the MSC. We, therefore, decided to tackle this problem via a multi-model approach: (1) We calculate the Mediterranean freshwater evolution via 30 atmosphere-ocean-vegetation simulations (using HadCM3L), to which we fitted to a function, using a regression model. This allows us to directly relate the orbital curves to evaporation, precipitation and run off. The resulting freshwater evolution can be directly correlated to other sedimentary and proxy records in the late Miocene. (2) By feeding the new freshwater evolution curve into a box/budget model we can predict the salinity and strontium evolution of the Mediterranean for a certain Atlantic-Mediterranean gateway. (3) By comparing these results to the known salinity thresholds of gypsum and halite saturation of sea water, but also to the late Miocene Mediterranean strontium record, we can infer how the connectivity between global ocean and the Mediterranean must have changed through time in order to cause the MSC. (4) Such a connectivity evolution will give us the basis to understand the interplay between eustatic sea-level and regional tectonic changes in the Gibraltar region. Here we present the detailed method, the results and the applications of this multi-model approach.

  18. Cenozoic forearc tectonics in northeastern Japan: Relationships between outer forearc subsidence and plate boundary kinematics

    NASA Astrophysics Data System (ADS)

    Regalla, Christine

    Here we investigate the relationships between outer forearc subsidence, the timing and kinematics of upper plate deformation and plate convergence rate in Northeast Japan to evaluate the role of plate boundary dynamics in driving forearc subsidence. The Northeastern Japan margin is one of the first non-accretionary subduction zones where regional forearc subsidence was argued to reflect tectonic erosion of large volumes of upper crustal rocks. However, we propose that a significant component of forearc subsidence could be the result of dynamic changes in plate boundary geometry. We provide new constraints on the timing and kinematics of deformation along inner forearc faults, new analyses of the evolution of outer forearc tectonic subsidence, and updated calculations of plate convergence rate. These data collectively reveal a temporal correlation between the onset of regional forearc subsidence, the initiation of upper plate extension, and an acceleration in local plate convergence rate. A similar analysis of the kinematic evolution of the Tonga, Izu-Bonin, and Mariana subduction zones indicates that the temporal correlations observed in Japan are also characteristic of these three non-accretionary margins. Comparison of these data with published geodynamic models suggests that forearc subsidence is the result of temporal variability in slab geometry due to changes in slab buoyancy and plate convergence rate. These observations suggest that a significant component of forearc subsidence at these four margins is not the product of tectonic erosion, but instead reflects changes in plate boundary dynamics driven by variable plate kinematics.

  19. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution.

    PubMed

    Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A

    2007-09-04

    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.

  20. Facies Analysis of the Tandoǧdu Travertines, Van, Eastern Anatolia, Turkey: implications for the active tectonic deformation behind the formation and evolution of the travertines

    NASA Astrophysics Data System (ADS)

    Yesilova, Cetin; Yesilova, Pelin; Aclan, Mustafa; Gülyüz, Nilay

    2017-04-01

    In this study, stratigraphic and sedimentologic characteristics of Tandoǧdu travertines exposing at the 13 km southwest of Başkale, Van were examined. In this respect, we shed light on their formation conditions and depositional environment by determining their morphological characteristics and analyzing their facies distribution. In addition, kinematic studies were conducted by collecting structural data from the structures hosting the travertines. Tandoǧdu travertines having bed type and ridge type travertines have 5 distinct lithofacies based on the studies conducted. These are: (1) crystalline crust facies, (2) coated bubble facies, (3) paper-thin raft type facies, (4) lithoclast - breccia facies and (5) paleosoil facies. According to the examination of their morphologies and lithofacies; lithofacies were developed depending on the temperature of fluids forming the travertines. Distal from the source field of the hydrothermal fluids, paper-thin raft type facies were developed in shallow pools. Proximal to the source field of the hydrothermal fluids, crystalline crust facies and coated bubble facies were deposited. Existence of breccia facies indicates the effects of active tectonism during the formation of travertines. Hot hydrothermal pools on the ridge type travertines prove the still active tectonic activities. On-going studies aim to date growth of the travertines by U-Th dating method which will also shed some light on the tectonic scenario behind the evolution of the travertines.

  1. Biogeographical Consequences of Cenozoic Tectonic Events within East Asian Margins: A Case Study of Hynobius Biogeography

    PubMed Central

    Li, Jun; Fu, Cuizhang; Lei, Guangchun

    2011-01-01

    Few studies have explored the role of Cenozoic tectonic evolution in shaping patterns and processes of extant animal distributions within East Asian margins. We select Hynobius salamanders (Amphibia: Hynobiidae) as a model to examine biogeographical consequences of Cenozoic tectonic events within East Asian margins. First, we use GenBank molecular data to reconstruct phylogenetic interrelationships of Hynobius by Bayesian and maximum likelihood analyses. Second, we estimate the divergence time using the Bayesian relaxed clock approach and infer dispersal/vicariance histories under the ‘dispersal–extinction–cladogenesis’ model. Finally, we test whether evolutionary history and biogeographical processes of Hynobius should coincide with the predictions of two major hypotheses (the ‘vicariance’/‘out of southwestern Japan’ hypothesis). The resulting phylogeny confirmed Hynobius as a monophyletic group, which could be divided into nine major clades associated with six geographical areas. Our results show that: (1) the most recent common ancestor of Hynobius was distributed in southwestern Japan and Hokkaido Island, (2) a sister taxon relationship between Hynobius retardatus and all remaining species was the results of a vicariance event between Hokkaido Island and southwestern Japan in the Middle Eocene, (3) ancestral Hynobius in southwestern Japan dispersed into the Taiwan Island, central China, ‘Korean Peninsula and northeastern China’ as well as northeastern Honshu during the Late Eocene–Late Miocene. Our findings suggest that Cenozoic tectonic evolution plays an important role in shaping disjunctive distributions of extant Hynobius within East Asian margins. PMID:21738684

  2. Time variability in Cenozoic reconstructions of mantle heat flow: Plate tectonic cycles and implications for Earth's thermal evolution

    PubMed Central

    Loyd, S. J.; Becker, T. W.; Conrad, C. P.; Lithgow-Bertelloni, C.; Corsetti, F. A.

    2007-01-01

    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by ∼0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past. PMID:17720806

  3. Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin

    NASA Astrophysics Data System (ADS)

    Nogueira, Carlos R.; Marques, Fernando O.

    2017-04-01

    Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western segment border fault should be a pure thrust; (5) uplift along the northern and central segments may point out to the presence of a salt diapir at depth, aiding vertical movement and local uplift of the structure; (6) geometry of seismic units of the neighboring basins is consistent with halokinesis related to the antiform growth during the Jurassic; (7) sedimentary filling of the neighbouring basins shows relationship to antiform development and growth into a structural high before the Late Miocene Alpine event. These data suggest that: (1) pre-existing basement faults and their reactivation played important role on the development of Montejunto complex tectonic structure; (2) important vertical movements occurred as the result of regional and local (diapir) tectonics; (3) subsidence in neighbouring basins may have promoted maturation, and possible targets with strong potential for hydrocarbon trapping and accumulation may have also developed; (4) diapir tectonics initiated before the Cretaceous; (5) given the topography, and the geometry and inferred kinematics of all segments, it seems that the Montejunto structure formed in a restraining bend controlled by inherited late-Variscan basement faults.

  4. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  5. The 3-D structure of the Somma-Vesuvius volcanic complex (Italy) inferred from new and historic gravimetric data.

    PubMed

    Linde, Niklas; Ricci, Tullio; Baron, Ludovic; Shakas, Alexis; Berrino, Giovanna

    2017-08-16

    Existing 3-D density models of the Somma-Vesuvius volcanic complex (SVVC), Italy, largely disagree. Despite the scientific and socioeconomic importance of Vesuvius, there is no reliable 3-D density model of the SVVC. A considerable uncertainty prevails concerning the presence (or absence) of a dense body underlying the Vesuvius crater (1944 eruption) that is implied from extensive seismic investigations. We have acquired relative gravity measurements at 297 stations, including measurements in difficult-to-access areas (e.g., the first-ever measurements in the crater). In agreement with seismic investigations, the simultaneous inversion of these and historic data resolves a high-density body that extends from the surface of the Vesuvius crater down to depths that exceed 2 km. A 1.5-km radius horseshoe-shaped dense feature (open in the southwestern sector) enforces the existing model of groundwater circulation within the SVVC. Based on its volcano-tectonic evolution, we interpret volcanic structures that have never been imaged before.

  6. Basin deconstruction-construction: Seeking thermal-tectonic consistency through the integration of geochemical thermal indicators and seismic fault mechanical stratigraphy ​- Example from Faras Field, North Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Pigott, John D.; Abouelresh, Mohamed O.

    2016-02-01

    To construct a model of a sedimentary basin's thermal tectonic history is first to deconstruct it: taking apart its geological elements, searching for its initial conditions, and then to reassemble the elements in the temporal order that the basin is assumed to have evolved. Two inherent difficulties implicit to the analysis are that most organic thermal indicators are cumulative, irreversible and a function of both temperature and time and the non-uniqueness of crustal strain histories which complicates tectonic interpretations. If the initial conditions (e.g. starting maturity of the reactants and initial crustal temperature) can be specified and the boundary conditions incrementally designated from changes in the lithospheric heat engine owing to stratigraphic structural constraints, then the number of pathways for the temporal evolution of a basin is greatly reduced. For this investigation, model input uncertainties are reduced through seeking a solution that iteratively integrates the geologically constrained tectonic subsidence, geochemically constrained thermal indicators, and geophysically constrained fault mechanical stratigraphy. The Faras oilfield in the Abu Gharadig Basin, North Western Desert, Egypt, provides an investigative example of such a basin's deconstructive procedure. Multiple episodes of crustal extension and shortening are apparent in the tectonic subsidence analyses which are constrained from the fault mechanical stratigraphy interpreted from reflection seismic profiles. The model was iterated with different thermal boundary conditions until outputs best fit the geochemical observations. In so doing, the thermal iterations demonstrate that general relationship that basin heat flow increases decrease vertical model maturity gradients, increases in surface temperatures shift vertical maturity gradients linearly to higher values, increases in sediment conductivities lower vertical maturities with depth, and the addition of ;ghost; layers (those layers removed) prior to the erosional event increase maturities beneath, and conversely. These integrated constraints upon the basin evolution model indicate that the principal source rocks, Khatatba and the lowest part of the Alam El Bueib formations, entered the oil window at approximately 95 Ma and the gas window at approximately 25 Ma. The upper part of the Alam El Bueib Formation is within the oil window at the present day. Establishing initial and boundary value conditions for a basin's thermal evolution when geovalidated by the integration of seismic fault mechanical stratigraphy, tectonic subsidence analysis, and organic geochemical maturity indicators provides a powerful tool for optimizing petroleum exploration in both mature and frontier basins.

  7. Late Quaternary landscape evolution, climate, and neotectonism along the eastern margin of the Puna Plateau: Pucará Valley, NW Argentina

    NASA Astrophysics Data System (ADS)

    McCarthy, J. A.; Schoenbohm, L. M.; Bierman, P. R.; Rood, D. H.

    2013-12-01

    The eastern margin of the Puna Plateau has been the focus of many studies seeking to link climatically-moderated surface processes and tectonism through dynamic feedbacks. However, evaluating any theories regarding climatic-tectonic feedbacks requires the determination of tectonic, climatic, and geomorphic chronologies across a wide region, from plateau to wedge-top to foreland. In this study, we contribute to that effort by examining Quaternary landscape evolution of a single intermontane basin of spatially uniform climate, adjacent to the plateau margin. The semi-arid Pucará Valley contains eight abandoned and incised geomorphic surfaces, most of which are deformed by active structures. These geomorphic surfaces - thin alluvial fans and strath terraces - dominate the landscape and record multiple pulses of incision in the late Quaternary. We find no evidence for significant depositional intervals and valley incision continues currently. Substantial accumulations of pedogenic carbonate and pedogenic gypsum within abandoned surfaces indicate that arid or semi-arid conditions are long lived in this valley. Conversely, relict periglacial morphology in adjacent ranges supports cooler temperatures in the past. River incision is enhanced across active structures, but preliminary observations suggest that the magnitude of deformation cannot fully explain the magnitude of incision. As a result, we argue that extrabasinal base-level lowering is the primary driver of incision in the Pucará Valley, but Quaternary deformation is significant enough to spatially influence erosion. Cooler climatic intervals may influence the sedimentology of alluvial and fluvial deposits, but we find no evidence for significant climatic changes that could change rates or styles of landscape evolution over this time frame. Pending cosmogenic nuclide analysis of fan deposits and river sediments will permit the derivation of fault slip rates, surface ages, modern and paleo-erosion rates, and sediment transport histories. These results will further refine our understanding of tectonic and climatic forcing of surface processes in the Quaternary.

  8. Development of multiple unconformities during the Devonian-Carboniferous transition on parts of Laurussia

    USGS Publications Warehouse

    Ettensohn, F.R.; Pashin, J.C.

    1997-01-01

    The Devonian-Carboniferous transition on Laurussia was a time of diverse geologic activity associated with the assembly of Pangea, including episodes of Late Devonian glacial-eustatic lowstand and active orogeny on four margins. Six widespread unconformities are present in the Devonian-Carboniferous (Mississippian) interval on southern parts of Laurussia. We suggest that attention to the timing and plan of the unconformities may provide ways of discerning tectonic and climatic controls on their respective origins. Indeed, unconformities generated by pure eustasy are ideally of interregional extent, whereas unconformities generated by tectonism reflect more local factors associated with the evolution of sedimentary basins. Each of the six unconformities analyzed provides evidence for concurrent eustasy and tectonism. Glaciation was apparently the dominant factor driving the development of unconformities during the latest Devonian. During the Early Carboniferous, however, the volume of glacial ice available to drive eustasy was limited and, at times, tectonism may have been the source of a subordinate eustatic signal. Development of unconformities in southern Laurussia appear to be local manifestations of tectonic and climatic processes associated with supercontinent assembly. Thus, the time may be at hand for construction of a new global stratigraphic paradigm that is based on the plate tectonic supercycle affecting continentality and climate.

  9. Viscoelastic Lithosphere Response and Stress Memory of Tectonic Force History (Invited)

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.

    2009-12-01

    While great attention is often paid to the details of creep deformation mechanisms, brittle failure and their compositional controls when predicting the response of lithosphere to tectonic forces, the lithosphere’s elastic properties are usually neglected; a viscous rheology alone is often used to predict the resulting distribution of stress with depth or to determine lithosphere strength. While this may simplify geodynamic modelling of lithosphere response to tectonic processes, the omission of the elastic properties can often give misleading or false predictions. The addition of the elastic properties of lithosphere material in the form of a visco-elastic rheology results is a fundamentally different lithosphere response. This difference can be illustrated by examining the application of horizontal tectonic force to a section of lithosphere incorporating the brittle-visco-elastic response of each infinitesimal lithosphere layer with temperature and stress dependent viscous rheology. The transient response of a visco-elastic lithosphere to a constant applied tectonic force and the resulting distribution of stress with depth are substantially different from that predicted by a viscous lithosphere model, with the same lithosphere composition and temperature structure, subjected to a constant lateral strain rate. For visco-elastic lithosphere subject to an applied horizontal tectonic force, viscous creep in the lower crust and mantle leads to stress decay in these regions and to stress amplification in the upper lithosphere through stress redistribution. Cooling of lithosphere with a visco-elastic rheology results in thermal stresses which, as a consequence of stress dissipation by creep and brittle failure, results in a complex and sometimes counter-intuitive distribution of stress with depth. This can be most clearly illustrated for the cooling of oceanic lithosphere, however similar or more complex behaviour can be expected to occur for continental lithosphere. The application of changes in applied tectonic force with time to a visco-elastic lithosphere model results in reversals in the sign of stress with depth as a consequence of the “memory” of past stress dissipation by creep and brittle deformation. Because of this “memory”, locally stress polarity may be opposite to that of the current applied tectonic force. A lithosphere with viscous rheology displays no such “memory” of the applied tectonic stress history. The stress “memory” of lithosphere with visco-elastic rheology to its history of applied tectonic force, heating and cooling adds to its effective rheological complexity, particularly for continental lithosphere.

  10. Interplay between climatic and tectonic processes in the St. Elias foreland, southern Alaska: Evolution of a glaciated convergent margin since the mid-Pleistocene

    NASA Astrophysics Data System (ADS)

    Worthington, L. L.; Gulick, S. P.; Ridgway, K. R.; Jaeger, J. M.; Cowan, E. A.; Slagle, A. L.; Forwick, M.

    2013-12-01

    The offshore St. Elias fold-thrust belt records the complex interaction between collisional tectonics and glacial climate variability, providing insight for models of orogenesis and the evolution of glacial depocenters. Ongoing collision of the Yakutat (YAK) microplate with North America (NA) has driven orogenesis of the St. Elias Mountains and the advance of the offshore deformation front to the southeast. Glacial erosion and deposition have provided sediment that constructed the upper continental shelf, much of which has been reincorporated into the orogenic wedge through offshore faulting and folding. We integrate core and downhole logging data from IODP Expedition 341 (Sites U1420 and U1421) drilled on the Yakutat shelf and slope with high-resolution and regional seismic profiles to investigate the coupled structural and stratigraphic evolution of the St. Elias margin. Site U1420 lies on the Yakutat shelf within the Bering Trough, a shelf-crossing trough that is within primary depocenter for Bering Glacier sediments. The sub-seafloor architecture of the Bering Trough region is defined by a regional unconformity that marks the first glacial advance to the shelf edge. Below the unconformity, the shelf is constructed by multiple aggradational packages that are likely a series of pro-glacial outer shelf/slope fans. Two faults underlie the glacial packages and have been rendered inactive as the depositional environment has evolved, while faulting elsewhere on the shelf has initiated. Site U1421 lies on the current continental slope, within the backlimb of an active thrust that forms part of the modern YAK-NA deformation front. At each of these sites, we recovered glacigenic diamict (at depths up to ~1015 m at Site U1420), all of which is younger than 0.781 Ma. Preliminary age models for the Bering Trough region indicate that the entire outer shelf and shelf edge environment have been built since the Mid-Pleistocene Transition (MPT), and is possibly even younger. In stark contrast to previous interpretations, the shelf environment, in addition to the proximal deep-sea fan system, appears to be a primary glacial depocenter since the MPT, with an average accumulation rate >1.3 mm/yr. Additionally, initiation of active deformation away from the Bering Trough depocenter likely occurred since ~1 Ma. These observations suggest that possible tectonic reorganization due to mass redistribution by glacial processes occurs at time scales on the order of 100kyr-1Myr. It follows that the St. Elias orogenic system may be more sensitive to glacial-interglacial cycles than previously recognized.

  11. The thermal evolution of Chinese central Tianshan and its implications: Insights from multi-method chronometry

    NASA Astrophysics Data System (ADS)

    Yin, Jiyuan; Chen, Wen; Hodges, Kip V.; Xiao, Wenjiao; Cai, Keda; Yuan, Chao; Sun, Min; Liu, Li-Ping; van Soest, Matthijs C.

    2018-01-01

    The Chinese Tianshan is located in the south of the Central Asian Orogenic Belt and formed during final consumption of the Paleo-Asian Ocean in the late Palaeozoic. In order to further elucidate the tectonic evolution of the Chinese Tianshan, we have established the temperature-time history of granitic rocks from the Chinese Tianshan through a multi-chronological approach that includes U/Pb (zircon), 40Ar/39Ar (biotite and K-feldspar), and (U-Th)/He (zircon and apatite) dating. Our data show that the central Tianshan experienced accelerated cooling during the late Carboniferous- to early Permian. Multiple sequences of complex multiple accretionary, subduction and collisional events could have induced the cooling in the Tianshan Orogenic Belt. The new 40Ar/39Ar and (U-Th)/He data, in combination with thermal history modeling results, reveal that several tectonic reactivation and exhumation episodes affected the Chinese central Tianshan during middle Triassic (245-210 Ma), early Cretaceous (140-100 Ma), late Oligocene-early Miocene (35-20 Ma) and late Miocene (12-9 Ma). The middle Triassic cooling dates was only found in the central Tianshan. Strong uplift and deformation in the Chinese Tianshan has been limited and localized. It have been concentrated in around major fault zone and the foreland thrust belt since the early Cretaceous. The middle Triassic and early Cretaceous exhumation is interpreted as distal effects of the Cimmerian collisions (i.e. the Qiangtang and Kunlun-Qaidam collision and Lhasa-Qiangtang collision) at the southern Eurasian margin. The Cenozoic reactivation and exhumation is interpreted as a far field response to the India-Eurasia collision and represents the beginning of modern mountain building and denudation in the Chinese Tianshan.

  12. Tectonothermal modeling of hydrocarbon maturation, Central Maracaibo Basin, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manske, M.C.

    1996-08-01

    The petroliferous Maracaibo Basin of northwestern Venezuela and extreme eastern Colombia has evolved through a complex geologic history. Deciphering the tectonic and thermal evolution is essential in the prediction of hydrocarbon maturation (timing) within the basin. Individual wells in two areas of the central basin, Blocks III and V, have been modeled to predict timing of hydrocarbon generation within the source Upper Cretaceous La Luna Formation, as well as within interbedded shales of the Lower-Middle Eocene Misoa Formation reservoir sandstones. Tectonic evolution, including burial and uplift (erosional) history, has been constrained with available well data. The initial extensional thermal regimemore » of the basin has been approximated with a Mackenzie-type thermal model, and the following compressional stage of basin development by applying a foreland basin model. Corrected Bottom Hole Temperature (BHT) measurements; from wells in the central basin, along with thermal conductivity measurements of rock samples from the entire sedimentary sequence, resulted in the estimation of present day heat flow. An understanding of the basin`s heat flow, then, allowed extrapolation of geothermal gradients through time. The relation of geothermal gradients and overpressure within the Upper Cretaceous hydrocarbon-generating La Luna Formation and thick Colon Formation shales was also taken into account. Maturation modeling by both the conventional Time-Temperature Index (TTI) and kinetic Transformation Ratio (TR) methods predicts the timing of hydrocarbon maturation in the potential source units of these two wells. These modeling results are constrained by vitrinite reflectance and illite/smectite clay dehydration data, and show general agreement. These results also have importance regarding the timing of structural formation and hydrocarbon migration into Misoa reservoirs.« less

  13. Fluid-assisted melting in a collisional orogen

    NASA Astrophysics Data System (ADS)

    Berger, A.; Burri, T.; Engi, M.; Roselle, G. T.

    2003-04-01

    The Southern Steep Belt (SSB) of the Central Alps is the location of backthrusting during syn- to post-collisional deformation. From its metamorphic evolution and lithological contents the SSB has been interpreted as a tectonic accretion channel (TAC [1]). The central part of the SSB is additionally characterized by anatexites, leucogranitic aplites and pegmatites. Dehydration melting of muscovite is rare but did occurr locally. Moreover, no evidence of dehydration melting of biotite has been formed in that products of incongruent melting reactions (garnet, opx or cordierite) are missing. The melts are mainly produced by the infiltration of an external aqueous fluid. The fluids must have originated from the breakdown of hydrous minerals at temperatures below the water saturated solidus of the quartz-feldspar-system, such that the liberated fluids could not been trapped in the melt. Using the thermal modeling program MELONPIT [2] and assuming that solid fragments ascended in combination with tectonic accreated radioactive material, a complex thermal evolution inside the TAC has been derived. During subduction of the downgoing plate, isotherms were locally inverted, then subsequently relaxed, when subduction slowed down. At the collisional stage a small region develope, where the isotherms were still bent, and where temperatures increased during decompression. Assuming that dehydration reactions were followed by upward flow of fluids released from this region fluid present partial melting was triggered. The flow direction of the fluid was controlled by the pressure gradient and the steeply oriented foliations in the SSB. According to the model, the area of upward flowing fluids should be limited to the SSB. This is consistent with the observed regional distribution of leucosomes derived from in-situ melts. [1] Engi et al. (2001) Geology 29: 1143-1146 [2] Roselle et al. (2002) Am. J. Sci. 302: 381-409

  14. Continent-Ocean Interactions Within East Asian Marginal Seas

    NASA Astrophysics Data System (ADS)

    Clift, Peter; Kuhnt, Wolfgang; Wang, Pinxian; Hayes, Dennis

    The study of the complex interactions between continents and oceans has become a leading area for 21st century earth cience. In this volume, continent—ocean interactions in tectonics, arc-continent collision, sedimentology, and climatic volution within the East Asian Marginal Seas take precedence. Links between oceanic and continental climate, the sedimentology of coastal and shelf areas, and the links between deformation of continental and oceanic lithosphere are also discussed. As an introduction to the science presented throughout the volume, Wang discusses many of the possible interactions between the tectonic evolution of Asia and both regional and global climate. He speculates that uplift of central Asia in the Pliocene may have triggered the formation of many of the major rivers that drain north through Siberia into the Arctic Ocean. He also argues that it is the delivery of this fresh water that allows the formation of sea ice in that area and triggered the start of Northern Hemispheric glaciation. This may be one of the most dramatic ways in which Asia has shaped the Earth's climate and represents an alternative to the other competing models that have previously emphasized the role of oceanic gateway closure in Central America. Moreover, his proposal for major uplift of at least part of Tibet and Mongolia as late as the Pliocene, based on the history of drainage evolution in Siberia, supports recent data from the southern Tarim Basin and from the Qilian Shan and Qaidam and Jiuxi Basins in northeast Tibet that indicate surface uplift at that time. Constraining the timing and patterns of Tibetan surface uplift is crucial to testing competing models for strain accommodation in Asia following India—Asia collision.

  15. South China Sea Tectonics and Magnetics: Constraints from IODP Expedition 349 and Deep-tow Magnetic Surveys

    NASA Astrophysics Data System (ADS)

    Lin, J.; Li, C. F.; Kulhanek, D. K.; Zhao, X.; Liu, Q.; Xu, X.; Sun, Z.; Zhu, J.

    2014-12-01

    The South China Sea (SCS) is the largest low-latitude marginal sea in the world. Its formation and evolution are linked to the complex continental-oceanic tectonic interaction of the Eurasian, Pacific, and Indo-Australian plates. Despite its relatively small size and short history, the SCS has undergone nearly a complete Wilson cycle from continental break-up to seafloor spreading to subduction. In January-March 2014, Expedition 349 of the International Ocean Discovery Program (IODP) drilled five sites in the deep basin of the SCS. Three sites (U1431, U1433, and U1434) cored into oceanic basement near the fossil spreading center on the East and Southwest Subbasins, whereas Sites U1432 and U1435 are located near the northern continent/ocean boundary of the East Subbasin. Shipboard biostratigraphy based on microfossils preserved in sediment directly above or within basement suggests that the preliminary cessation age of spreading in both the East and Southwest Subbasins is around early Miocene (16-20 Ma); however, post-cruise radiometric dating is being conducted to directly date the basement basalt in these subbasins. Prior to the IODP drilling, high-resolution near-seafloor magnetic surveys were conducted in 2012 and 2013 in the SCS with survey lines passing near the five IODP drilling sites. The deep-tow surveys revealed detailed patterns of the SCS magnetic anomalies with amplitude and spatial resolutions several times better than that of traditional sea surface measurements. Preliminary results reveal several episodes of magnetic reversal events that were not recognized by sea surface measurements. Together the IODP drilling and deep-tow magnetic surveys provide critical constraints for investigating the processes of seafloor spreading in the SCS and evolution of a mid-ocean ridge from active spreading to termination.

  16. An integrated profile of natural fractures in gas-bearing shale complex (Pomerania, Poland): based on structural profiling of oriented core and borehole logging data.

    NASA Astrophysics Data System (ADS)

    Bobek, Kinga; Jarosiński, Marek; Stadtmuller, Marek; Pachytel, Radomir; Lis-Śledziona, Anita

    2016-04-01

    Natural fractures in gas-bearing shales has significant impact on reservoir stimulation and increase of exploitation. Density of natural fractures and their orientation in respect to the maximum horizontal stress are crucial for propagation of technological hydraulic fractures. Having access to continuous borehole core profile and modern geophysical logging from several wells in the Pomeranian part of the Early Paleozoic Baltic Basin (Poland) we were able to compare the consistency of structural interpretation of several data sets. Although, final aim of our research is to optimize the method of fracture network reconstruction on a reservoir scale, at a recent stage we were focused on quantitative characterization of tectonic structures in a direct vicinity of boreholes. The data we have, cover several hundred meters long profiles of boreholes from the Ordovician and Silurian shale complexes. Combining different sets of data we broaden the scale of observation from borehole core (5 cm radius), through XRMI scan of a borehole wall (10 cm radius), up to penetration of a signal of an acoustic dipole logging (several tens of cm range). At the borehole core we examined the natural tectonic structures and mechanically significant features, like: mineral veins, fractured veins, bare fractures, slickensides, fault zones, stylolites, bedding plane and mechanically contrasting layers. We have also noticed drilling-induced features like centerline fractures and core disking, controlled by a recent tectonic stress. We have measured the orientation of fractures, their size, aperture and spacing and also describe the character of veins and tried to determine the stress regime responsible for fault slippage and fracture propagation. Wide range of analyzed features allowed us to discriminate fracture sets and reconstruct tectonic evolution of the complex. The most typical for analyzed shale complexes are steep and vertical strata-bound fractures that create an orthogonal joint system, which is locally disturbed by small-scale faults and fractures, associated with them. For regular joints, observed on borehole core, we have calculated variation of mean height and area and volume of mineralization for veins. Fracture density variation reveals good correlation with lithological shale formations which are comparable with Consistent Mechanical Units differentiated based on detailed lithological profiling and geophysical data (see Pachytel et al., this issue).We have also proposed a new method of a rose diagram construction presenting strike of fractures taking into account their size and angular error bar in strike determination. Each fracture was weighted with its length or aperture and an angular error was included by blurring the less credible records. This allowed for more precise adjustment of fracture sets direction in comparison to conventional diagrams without weighting procedure. Recently, we are processing acoustic dipole logs for anisotropy analyses aiming in comparison with density of fracture sets. Our study, which is conducted in the frame of ShaleMech Project (within Blue Gas Program) is in progress, thus the presented results should be considered as preliminary.

  17. Mars tectonics and volcanism

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1990-01-01

    The focus of this research was on three broad areas: (1) the relation between lithospheric stress in the vicinity of a growing volcano and the evolution of eruption characteristics and tectonic faulting; (2) the relation between elastic lithosphere thickness and thermal structure; and (3) a synthesis of constraints on heat flow and internal dynamics on Mars. The two reports presented are: (1) Heterogeneities in the Thickness of the Elastic Lithosphere of Mars--Constraints on Heat Flow and Internal Dynamics; and (2) State of Stress, Faulting, and Eruption Characteristics of Large Volcanoes on Mars.

  18. Secular cooling of Earth as a source of intraplate stress

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1987-01-01

    The once popular idea that changes in planetary volume play an important role in terrestrial orogeny and tectonics was generally discarded with the acceptance of plate tectonics. It is nonetheless likely that the Earth has been steadily cooling over the past 3-4 billion years, and the global contraction that accompanied such cooling would have led to a secular decrease in the radius of curvature of the plates. The implications of this global cooling and contraction are explored here for the intraplate stress field and the evolution of continental plates.

  19. Eastern Indian Ocean microcontinent formation driven by plate motion changes

    NASA Astrophysics Data System (ADS)

    Whittaker, J. M.; Williams, S. E.; Halpin, J. A.; Wild, T. J.; Stilwell, J. D.; Jourdan, F.; Daczko, N. R.

    2016-11-01

    The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margins, with plume-driven thermal weakening commonly inferred to facilitate calving. However, a role for plate tectonic reorganisations has also been suggested. Here, we show that a combination of plate tectonic reorganisation and plume-driven thermal weakening were required to calve the Batavia and Gulden Draak microcontinents in the Cretaceous Indian Ocean. We reconstruct the evolution of these two microcontinents using constraints from new paleontological samples, 40Ar/39Ar ages, and geophysical data. Calving from India occurred at 101-104 Ma, coinciding with the onset of a dramatic change in Indian plate motion. Critically, Kerguelen plume volcanism does not appear to have directly triggered calving. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces.

  20. Investigation of lunar crustal structure and isostasy. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurber, C.H.

    1987-07-01

    The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. Themore » present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.« less

  1. An Update on Tectonics

    NASA Astrophysics Data System (ADS)

    Geissman, John W.; Faccenna, Claudio; Niemi, Nathan A.

    2014-10-01

    In February 1982, the first issue of Tectonics was published. In the editorial policy statement for the journal, founding editors John Dewey, Paul Tapponier, and Clark Burchfiel wrote, "The central theme of Tectonics is the mechanical and thermal evolution of the lithospheric crust and mantle and the way that this is reflected in cratons, basins and mountains from the broad regional scale to the fine scale." The editors further stated, "We expect that papers on these and related topics would emanate from a wide variety of earth science disciplines ranging from physical modeling to geological field observation." Finally, with the confidence from this incredible team of editors, they noted, "We are aiming for a very rapid review process, allowing a maximum of about 1 month between submission and notification to the author of acceptance or rejection."

  2. Metamorphic and tectonic evolution of Ceuta peninsula (Internal Rif): new interpretation in the framework of arc and back arc evolution

    NASA Astrophysics Data System (ADS)

    Homonnay, Emmanuelle; Lardeaux, Jean-Marc; Corsini, Michel; Cenki-Tok, Bénédicte; Bosch, Delphine; Munch, Philippe; Romagny, Adrien; Ouazzani-Touhami, Mohamed

    2016-04-01

    In the last twenty years, various geophysical investigations have established that the Western Mediterranean opened in a subduction context as a back arc domain. In the Alboran basin the dip of the subduction plane is eastwards or southeastwards depending of considered models. If the geological records of back-arc opening are well-known, the arc-related tectonic and petrologic evolutions are still poorly documented. In order to decipher these markers, we focalised structural, petrological and thermo-chronological studies on the Ceuta peninsula located in the Rif belt, on the western part of the Gibraltar arc to the North of Morocco. The present-day tectonic pile is constituted by: (1) the upper Ceuta unit, composed of High Pressure and High Temperature metapelites retromorphosed under Amphibolite-facies condition, with Ultra-High Pressure relicts, and pyrigarnite and spinel bearing peridotites boudins at its base, (2) the lower Monte Hacho unit, with orthogneisses metamorphosed under Amphibolite-facies conditions. Structural analysis indicates a polyphase tectonic evolution: (1) an earlier deformation phase only observed in the UHP metapelites and characterized by a steep S1 foliation plane, (2) a main deformation phase associated to a pervasive gently dipping S2 foliation plane bearing a L2 stretching lineation and synschistose folds whose axes are parallel to L2 and (3) a late deformation phase which developed S3 foliation plane and L3 stretching lineation coeval with development of narrow normal ductile shear zones. A zone of increasing deformation, several dozen meters wide, is identified as a major ductile shear zone involving the peridotitic lenses at the base of the metapelites of the Ceuta unit and overlaying this upper unit on top of the orthogneisses of the Monte Hacho lower unit. The attitude of mylonitic foliation and stretching and mineral lineations as well as the numerous shear sense indicators observed in the shear zone are consistent with a thrusting toward the NE. Furthermore, biotite-sillimanite bearing S2 foliation affecting the whole of crustal rocks is contemporaneous with the movement on this main ductile thrusting. We combined garnet-biotite and GASP thermo-barometers with thermodynamic modelling (Theriak-Domino) in order to constrain pressure and temperature conditions of D2 and D3 tectono-metamorphic events. P-T conditions of D2 deformation are in the range 7-10kbar and 770-820°C and are compatible with syn-tectonic partial melting. D3 deformation event occurred at 1-7kbar and 400-550°C. These metamorphic conditions reflect abnormally high geothermal gradients during both shortening and thinning and are clearly compatible with the thermal evolution recognized in continental arcs. Preliminary U-Th-Pb (monazite, zircon and xenotime) and previous Ar39/Ar40 (micas) analyses, furnished similar ages around 21 Ma for D2 and D3 events, suggesting a very fast transition from arc to back-arc dynamics.

  3. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects

    NASA Astrophysics Data System (ADS)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.

    2015-12-01

    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  4. Tectonic framework of Turkish sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, P.O.

    1988-08-01

    Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very littlemore » in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.« less

  5. Thermochronologic constraints on mylonite and detachment fault development, Kettle Highlands, northeastern Washington and southern British Columbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, B.R.; Snee, L.W.

    1992-01-01

    The Kettle dome, northeastern Washington and southern British Columbia, is one of several large metamorphic core complexes in the region. New Ar-40/Ar-39 cooling dates from the mylonite immediately beneath the Kettle River detachment fault at Barney's Junction, a cross-cutting mafic dike, and the youngest Eocene lavas in the Republic graben set constraints on kinematic models of the tectonic evolution of the dome and related grabens: Amphibolite--hornblende (59.0 [+-] 0.2); Pegmatite--muscovite (49.3 [+-] 0.2); Pegmatite--K-feldspar (49.2 [+-] 1); Augen gneiss--K-feldspar (48.0 [+-] 1); Mafic dike--hornblende (54.5 [+-] 0.1) and biotite (49.6 [+-] 0.1); Klondike Mt. Formation lava--feeder dike (48.8 [+-] 1).more » The authors interpret the dates to indicate that the tectonized amphibolite, part of a Cretaceous and older metamorphosed terrane, had formed and cooled to [approx] 500 C by Late Paleocene, the mylonite zone was being domed above the ductile zone by Early Eocene at the time of emplacement of the dike--temporally equivalent to the Keller Butte suite, Eocene Colville batholith--which crosscuts the mylonite, and incipient rifting was occurring in the Republic graben as evidenced by dike swarms. The mylonite complex reached 300 C by 49Ma coincident with the termination of Sanpoil volcanism, and then cooled rapidly to near or below 150 C by 48 Ma. At about this time, mafic Klondike Mt. lavas mark the termination of Republic graben rifting and possibly detachment faulting along the Kettle River fault.« less

  6. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation

    NASA Astrophysics Data System (ADS)

    Huang, Zhouchuan; Wang, Liangshu; Xu, Mingjie; Ding, Zhifeng; Wu, Yan; Wang, Pan; Mi, Ning; Yu, Dayong; Li, Hua

    2015-12-01

    We measured shear-wave splitting of teleseismic XKS phases (i.e., SKS, SKKS and PKS) recorded by more than 300 temporary ChinArray stations in Yunnan of SE Tibet. The first-order pattern of XKS splitting measurements shows that the fast polarization directions (φ) change (at ∼26-27°N) from dominant N-S in the north to E-W in the south. While splitting observations around the eastern Himalayan syntax well reflect anisotropy in the lithosphere under left-lateral shear deformation, the dominant E-W φ to the south of ∼26°N is consistent with the maximum extension in the crust and suggest vertically coherent pure-shear deformation throughout the lithosphere in Yunnan. However, the thin lithosphere (<80 km) could account for only part (<0.7 s) of the observed splitting delay times (δt, 0.9-1.5 s). Anisotropy in the asthenosphere is necessary to explain the NW-SE and nearly E-W φ in these regions. The NE-SW φ can be explained by the counter flow caused by the subduction and subsequent retreat of the Burma slab. The E-W φ is consistent with anisotropy due to the absolute plate motion in SE Tibet and the eastward asthenospheric flow from Tibet to eastern China accompanying the tectonic evolution of the plateau. Our results provide new information on different deformation fields in different layers under SE Tibet, which improves our understanding on the complex geodynamics related to the tectonic uplift and southeastward expansion of Tibetan material under the plateau.

  7. Effect of basement structure and salt tectonics on deformation styles along strike: An example from the Kuqa fold-thrust belt, West China

    NASA Astrophysics Data System (ADS)

    Neng, Yuan; Xie, Huiwen; Yin, Hongwei; Li, Yong; Wang, Wei

    2018-04-01

    The Kuqa fold-thrust belt (KFTB) has a complex thrust-system geometry and comprises basement-involved thrusts, décollement thrusts, triangle zones, strike-slip faults, transpressional faults, and pop-up structures. These structures, combined with the effects of Paleogene salt tectonics and Paleozoic basement uplift form a complex structural zone trending E-W. Interpretation and comprehensive analysis of recent high-quality seismic data, field observations, boreholes, and gravity data covering the KFTB has been performed to understand the characteristics and mechanisms of the deformation styles along strike. Regional sections, fold-thrust system maps of the surface and the sub-salt layer, salt and basement structure distribution maps have been created, and a comprehensive analysis of thrust systems performed. The results indicate that the thrust-fold system in Paleogene salt range can be divided into five segments from east to west: the Kela-3, Keshen, Dabei, Bozi, and Awate segments. In the easternmost and westernmost parts of the Paleogene salt range, strike-slip faulting and basement-involved thrusting are the dominant deformation styles, as basement uplift and the limits of the Cenozoic evaporite deposit are the main controls on deformation. Salt-core detachment fold-thrust systems coincide with areas of salt tectonics, and pop-up, imbricate, and duplex structures are associated with the main thrust faults in the sub-salt layer. Distribution maps of thrust systems, basement structures, and salt tectonics show that Paleozoic basement uplift controlled the Paleozoic foreland basin morphology and the distribution of Cenozoic salt in the KFTB, and thus had a strong influence on the segmented structural deformation and evolution of the fold-thrust belt. Three types of transfer zone are identified, based on the characteristics of the salt layer and basement uplift, and the effects of these zones on the fault systems are evaluated. Basement uplift and the boundary of the salt deposit generated strike-slip faults in the sub-salt layer and supra-salt layers at the basin boundary (Model A). When changes in the basement occurred within the salt basin, strike-slip faults controlled the deformation styles in the sub-salt layer and shear-zone dominated in the supra-salt layer (Model B). A homogeneous basement and discontinues salt layer formed different accommodation zones in the sub- and supra-salt layers (Model C). In the sub-salt layer the thrusts form imbricate structures on the basal décollement, whereas the supra-salt layer shows overlapping, discontinuous faults and folds with kinds of salt tectonics, and has greater structural variation than the sub-salt layer.

  8. Lithospheric Models of the Middle East to Improve Seismic Source Parameter Determination/Event Location Accuracy

    DTIC Science & Technology

    2012-09-01

    State Award Nos. DE-AC52-07NA27344/24.2.3.2 and DOS_SIAA-11-AVC/NMA-1 ABSTRACT The Middle East is a tectonically complex and seismically...active region. The ability to accurately locate earthquakes and other seismic events in this region is complicated by tectonics , the uneven...and seismic source parameters show that this activity comes from tectonic events. This work is informed by continuous or event-based regional

  9. Transition of the Taiwan-Ryukyu collision-subduction process as revealed by ocean-bottom seismometer observations

    NASA Astrophysics Data System (ADS)

    Chin, Shao-Jinn; Lin, Jing-Yi; Chen, Yen-Fu; Wu, Wen-Nan; Liang, Chin-Wei

    2016-10-01

    Located at the arc-continental collision region between the Eurasian (EP) and Philippine Sea Plates (PSP), Taiwan is usually considered to have a complex tectonic environment, particularly along the eastern coast of the island. To gain a better understanding of the geological evolution of the east Taiwan area, the data from 8 Ocean Bottom Seismometers (OBS) acquired during the Across Taiwan Strait Explosion Experiment in 2012 and 14 inland seismic stations were used to determine a more detailed and accurate distribution of marine earthquakes. Based on the 333 relocated earthquakes and available geophysical data, we suggest two main tectonic boundaries for eastern Taiwan. South of 23.25°N, the homogeneous distribution of earthquakes in the crustal portion for both the inland and offshore areas suggests an ongoing collisional process. North of this location, between approximately 23.25°N and 23.8°N, the abrupt increasing of seismicity depth infers that the underthrusted arc/fore-arc material is deforming due to the collisional compression at depth. In this segment, the subsidence of the arc/fore-arc area determines the transition from collision to subduction. North of 23.8°N, the northwestern dipping PSP is well illustrated by the seismicity both onshore and offshore, indicating a dominant subduction process.

  10. Rotund versus skinny orogens: Well-nourished or malnourished gold?

    USGS Publications Warehouse

    Goldfarb, R.J.; Groves, D.I.; Gardoll, S.

    2001-01-01

    Orogenic gold vein deposits require a particular conjunction of processes to form and be preserved, and their global distribution can be related to broad-scale, evolving tectonic processes throughout Earth history. A heterogeneous distribution of formation ages for these mineral deposits is marked by two major Precambrian peaks (2800-2555 Ma and 2100-1800 Ma), a singular lack of deposits for 1200 m.y. (1800-600 Ma), and relatively continuous formation since then (after 600 Ma). The older parts of the distribution relate to major episodes of continental growth, perhaps controlled by plume-influenced mantle overturn events, in the hotter early Earth (ca. 1800 Ma or earlier). This worldwide process allowed preservation of gold deposits in cratons, roughly equidimensional, large masses of buoyant continental crust. Evolution to a less episodic, more continuous, modern-style plate tectonic regime led to the accretion of volcano-sedimentary complexes as progressively younger linear orogenic belts sorrounding the margins of the more buoyant cratons. The susceptibility of these linear belts to uplift and erosion can explain the overall lack of orogenic gold deposits at 1800-600 Ma, their exposure in 600-50 Ma orogens, the increasing importance of placer deposits back through the Phanerozoic since ca. 100 Ma, and the absence of gold deposits in orogenic belts younger than ca. 50 Ma.

  11. Tectonic Evolution of the Careón Ophiolite (Northwest Spain): A Remnant of Oceanic Lithosphere in the Variscan Belt.

    PubMed

    Díaz García F; Arenas; Martínez Catalán JR; González del Tánago J; Dunning

    1999-09-01

    Analysis of the Careón Unit in the Ordenes Complex (northwest Iberian Massif) has supplied relevant data concerning the existence of a Paleozoic oceanic lithosphere, probably related to the Rheic realm, and the early subduction-related events that were obscured along much of the Variscan belt by subsequent collision tectonics. The ophiolite consists of serpentinized harzburgite and dunite in the lower section and a crustal section made up of coarse-grained and pegmatitic gabbros. An Early Devonian zircon age (395+/-2 Ma, U-Pb) was obtained in a leucocratic gabbro. The whole section was intruded by numerous diabasic gabbro dikes. Convergence processes took place shortly afterward, giving rise to a mantle-rooted synthetic thrust system, with some coeval igneous activity. Garnet amphibolite, developed in metamorphic soles, was found discontinuously attached to the thrust fault. The soles graded downward to epidote-amphibolite facies metabasite and were partially retrogressed to greenschist facies conditions. Thermobarometric estimations carried out at a metamorphic sole (T approximately 650 degrees C; P approximately 11.5 kbar) suggested that imbrications developed in a subduction setting, and regional geology places this subduction in the context of an early Variscan accretionary wedge. Subduction and imbrication of oceanic lithosphere was followed by underthrusting of the Gondwana continental margin.

  12. Controls on drainage divide migration in the northern Sierras Pampeanas assessed through morphometric indicators

    NASA Astrophysics Data System (ADS)

    Seagren, E. G.; Schoenbohm, L. M.

    2017-12-01

    Drainage reorganization, primarily through progressive divide migration leading to discrete stream captures, is increasingly recognized as a common phenomenon during mountain-building events. This drainage rearrangement reflects complex interactions between tectonics, climate, and lithology, and can fundamentally change erosion and sedimentation patterns; therefore, determining the spatial extent and potential controls of divide migration is vital to understanding the topographic evolution of orogenic landscapes. Both geomorphic and morphometric evidence can be used to identify such drainage reorganization. The northern Sierras Pampeanas is an ideal location in which to study divide migration as limited glaciation and low out-of-channel erosion rates preserve evidence of reorganization. Additionally, several ranges in the region, such as Sierra de las Planchadas, exhibit geomorphic evidence of drainage rearrangement, including wind gaps and hairpin turns. Using ArcGIS, LSDTopoTools, and TopoToolbox, we conducted a systematic analysis of the spatial distribution of three morphometric indicators of divide migration: χ, Mx, and local headwater relief. Local `hotspots' undergoing drainage divide migration were identified using spatial autocorrelation and clustering methods - Gi* and Moran's I. Using spatial regression analysis, we assessed the potential controls of lithology, modern TRMM precipitation rates, and tectonics over divide migration. Preliminary results suggest broad westward migration of main drainage divides, following both the orographic precipitation gradient and regional slope.

  13. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    USGS Publications Warehouse

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  14. Accretionary history of the Archean Barberton Greenstone Belt (3.55-3.22 Ga), southern Africa

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1994-01-01

    The 3.55-3.22 Ga Barberton Greenstone Belt, South Africa and Swaziland, and surrounding coeval plutons can be divided into four tectono-stratigraphic blocks that become younger toward the northwest. Each block formed through early mafic to ultramafic volcanism (Onverwacht Group), probably in oceanic extensional, island, or plateau settings. Volcanism was followed by magmatic quiescence and deposition of fine-grained sediments, possibly in an intraplate setting. Late evolution involved underplating of the mafic crust by tonalitic intrusions along a subduction-related magmatic arc, yielding a thickened, buoyant protocontinental block. The growth of larger continental domains occurred both through magmatic accretion, as new protocontinental blocks developed along the margins of older blocks, and when previously separate blocks were amalgamated through tectonic accretion. Evolution of the Barberton Belt may reflect an Early Archean plate tectonic cycle that characterized a world with few or no large, stabilized blocks of sialic crust.

  15. Channel flow and localized fault bounded slice tectonics (LFBST): Insights from petrological, structural, geochronological and geospeedometric studies in the Sikkim Himalaya, NE India

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumit; Mukhopadhyay, Dilip K.; Chowdhury, Priyadarshi; Rubatto, Daniela; Anczkiewicz, Robert; Trepmann, Claudia; Gaidies, Fred; Sorcar, Nilanjana; Dasgupta, Somnath

    2017-06-01

    One of the enduring debates in the study of the Himalayan orogen (and continental collision zones in general) is whether the salient observed features are explained (a) by localized deformation along discrete, narrow fault zones/ductile shear zones separating individual blocks or slices (e.g. critical taper or wedge tectonic models), or (b) by distributed deformation dominated by wide zones of visco-plastic flow in the solid or a partially molten state (e.g. channel flow models). A balanced cross-section from Sikkim in the eastern Himalaya that is based on structural data and is drawn to satisfy petrological and geophysical constraints as well, is used in combination with information from petrology, geochronology, geospeedometry and microstructural data to address this question. We discuss that any tectonic model needs to be thermally, rheologically, geometrically and temporally viable in order to qualify as a suitable description of a system; models such as channel flow and critical taper are considered in this context. It is shown that channel flow models may operate with or without an erosional porthole (channel with tunnel and funnel mode vs. channels with only the tunnel mode) and that the predicted features differ significantly between the two. Subsequently, we consider a large body of data from Sikkim to show that a channel flow type model (in the tunneling without funneling mode), such as the ones of Faccenda et al. (2008), describes features formed at high temperatures very well, while features formed at lower temperatures are more consistent with the operation of localized, fault-bounded, slice tectonics, (LFBST, be it in the form of critical taper, wedge tectonics, or something else). Thus, the two modes are not competing, but collaborating, processes and both affect a given rock unit at different points of time during burial, metamorphism and exhumation. A transitional stage separates the two end-member styles of tectonic evolution. The proposed models bear similarities to those suggested by Mallet (1875) and Auden (1935) and mechanisms proposed by Beaumont and Jamieson (2010). We conclude by discussing some of the implications of such a model for motion on the major Himalayan faults, and by considering which features of any given rock are likely to record signatures of a particular style of tectonic evolution. Some directions for future research are suggested in the end.

  16. Cenozoic exhumation and tectonic evolution of the Qimen Tagh Range, northern Tibetan Plateau: Insights from the heavy mineral compositions, detrital zircon U-Pb ages and seismic interpretations

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wu, C.; Wang, J.; Zhou, T.; Zhang, C.; Li, J.

    2017-12-01

    The Qaidam Basin is the largest intermountain basin within the Tibetan Plateau. The Cenozoic sedimentary flling characteristics of the basin was significantly influenced by the surrounding tectonic belt, such as the Altyn Tagh Range to the north-west and Qimen Tagh Range to the south. The tectonic evolution of the Qimen Tagh Range and the structural relationship between the Qaidam Basin and Qimen Tagh Range remain controversial. To address these issues, we analyzed thousands of heavy mineral data, 720 detrital zircon ages and seismic data of the Qaidam Basin. Based on the regional geological framework and our kinematic analyses, the Cenozoic tectonic evolution of the Qimen Tagh Range can be divided into two stages. From the Early Eocene to the Middle Miocene, the Devonian (400-360 Ma) and Permian to Triassic (300-200 Ma) zircons which were sourced from the Qimen Tagh Range and the heavy mineral assemblage of zircon-leucoxene-garnet-sphene on the north flank of the Qimen Tagh Range indicated that the Qimen Tagh Range has been exhumed before the Eocene and acted as the primary provenance of the Qaidam Basin. The Kunbei fault system (i.e. the Kunbei, Arlar and Hongliuquan faults) in the southwest of the Qaidam Basin, which can be seen as a natural study window of the Qimen Tagh Range, was characterized by left-lateral strike-slip faults and weak south-dipping thrust faults based on the seismic sections. This strike-slip motion was generated by the uplift of the Tibetan Plateau caused by the onset of the Indian-Eurasian collision. Since the Middle Miocene, the primary mineral assemblages along the northern flank of the Qimen Tagh Range changed from the zircon-leucoxene-garnet-sphene assemblage to the epidote-hornblende-garnet-leucoxene assemblage. Simultaneously, the Kunbei fault system underwent intense south-dipping thrusting, and a nearly 2.2-km uplift can be observed in the hanging wall of the Arlar fault. We attributed these variations to the rapid uplift event of the Qimen Tagh Range. The intense tectonic activity is the far-feld effect of the full collision that occurred between the Indian-Eurasian plates.This work was financially supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (2017ZX05008-001).

  17. Integrated Analysis of Airborne Geophysical Data to Understand the Extent, Kinematics and Tectonic Evolution of the Precambrian Aswa Shear Zone in East Africa.

    NASA Astrophysics Data System (ADS)

    Katumwehe, A. B.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.

    2014-12-01

    The Aswa Shear zone (ASZ) is a Precambrian lithospheric structure which forms the western margin of the East African Orogeny (EAO) that influenced the evolution of many tectonic events in Eastern Africa including the East African Rift System. It separates the cratonic entities of Saharan Metacraton in the northeast from the Congo craton and the Tanzanian craton and the Kibaran orogenic belt to the southwest. However little is known about its kinematics and the extent and tectonic origin are not fully understood. We developed a new technique based on the tilt method to extract kinematic information from high-resolution airborne magnetic data. We also used radiometric data over Uganda integrated with Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) in South Sudan to understand the extent, kinematics and define the tectonic origin of ASZ. (1) Our results suggest that the ASZ extends in a NW-SE for ~550 km in Uganda and South Sudan. (2) The airborne magnetic and radiometric data revealed a much wider (~50 km) deformation belt than the mapped 5-10 km of exposed surface expression of the ASZ. The deformation belt associated with the shear is defined by three NW-trending sinistral strike-slip shear zones bounding structural domains with magnetic fabrics showing splays of secondary shear zones and shear-related folds. These folds are tighter close to the discrete shear zones with their axial traces becoming sub-parallel to the shear zones. Similar fold patterns are observed from South Sudan in the SRTM DEM. We interpret these folds as due to ENE-WSW shortening associated with the sinistral strike-slip movement. (3) To the northeast of the shear zone, the magnetic patterns suggest a series of W-verging nappes indicative of strong E-W oriented shortening. Based on the above observations, we relate the evolution of the ASZ to Neoproterozoic E-W collision between East and West Gondwana. This collision produced E-W contraction resulting in W-verging thrusts to the east and a sinistral strike-slip movement along the NW-trending ASZ with strain localization at the boundary between the Saharan Metacraton and the Tanzania craton. This evidence suggests that 1) ASZ lies at the boundary between Sahara Metacraton and Tanzania Craton 2) ASZ is not a product of escape tectonics as previously suggested.

  18. Greenstone belts: Their boundaries, surrounding rock terrains and interrelationships

    NASA Technical Reports Server (NTRS)

    Percival, J. A.; Card, K. D.

    1986-01-01

    Greenstone belts are an important part of the fragmented record of crustal evolution, representing samples of the magmatic activity that formed much of the Earth's crust. Most belts developed rapidly, in less than 100 Ma, leaving large gaps in the geological record. Surrounding terrains provide information on the context of greenstone belts. The effects of tectonic setting, structural geometry and evolution, associated plutonic activity and sedimentation are discussed.

  19. Aerogeophysical survey over Sør Rondane Mountains and its implications for revealing the tectonic evolution of East Antarctica

    NASA Astrophysics Data System (ADS)

    Mieth, Matthias; Steinhage, Daniel; Ruppel, Antonia; Damaske, Detlef; Jokat, Wilfried

    2013-04-01

    We are presenting new magnetic and gravity data of a high-resolution aerogephysical survey over the area of the Sør Rondane Mountains in the eastern Dronning Maud Land (DML). The aircraft survey is part of the joint geological and geophysical GEA campaign (Geodynamic Evolution of East Antarctica) of the Federal Agency for Geosciences and Natural Resources (BGR) and Alfred-Wegener-Institute for Polar and Marine Research (AWI), in cooperation with the Universities of Ghent, Bremen and Bergen. It was completed during the Antarctic summer season 2012/13, covering an area of more than 100000 square kilometer with a line spacing of 5 km. The data will be correlated with geological structures exposed in the mountain range as well as matched and merged with the data sets of the eastern and southern DML (acquired by AWI during the last decade) for comparison and discussion in the greater context of the tectonic evolution of East Antarctica. Preliminary results show that the magnetic anomaly pattern over the Sør Rondane Mountains differs from the pattern found over the central DML mountains as well as from the low amplitude pattern in between both regions, indicating a significant difference in the evolution of this region, which is in accordance with latest geological findings in this region.

  20. The oldest island arc and ophiolite complexes of the Russian Arctic (Taimyr Peninsula)

    NASA Astrophysics Data System (ADS)

    Vernikovskaya, Antonina E.; Vernikovsky, Valery A.; Metelkin, Dmitriy V.; Matushkin, Nikolay Y.; Romanova, Irina V.

    2015-04-01

    Knowing the age of indicator complexes such as island arc, ophiolite, collisional, subductional etc. is extremely important for paleogeodynamic reconstructions. The age along with other geological and geophysical data enables the reestablishing of the positions of terranes of various origins in relation to continental margins and to each other. When studying the issues concerning the ancient Arctida paleocontinent, the nature of terranes and continental plates that compose the present day arctic shelf and submerged ridges it is important to determine the main stages of tectonic events. At the same time it is particularly important to establish the earliest stages of tectonic transformations. The Taimyr-Severnaya Zemlya orogenic belt is one of the large accretionary-collisional key structures in the Arctic. The Central Taimyr accretionary belt includes two granite-metamorphic terranes: Faddey and Mamont-Shrenk that include the oldest igneous formations of Taimyr. Those are granitoids with U/Pb zircons age of 850-830 Ma (Faddey) and 940-885 Ma (Mamont-Shrenk). Presently we have determined fragments of paleo-island arcs and ophiolites in the framing of these terranes. Moreover, in addition to already identified Neoproterozoic (755-730 Ma) ophiolites and island arc rocks (plagiogranites, gabbro, volcanics) we found more ancient rock complexes in the framings of both terranes closer in age to the Meso-Neoproterozoic boundary. In the region of the Tree Sisters Lake a paleo-island arc complex was found including plagiogranites and plagiorhyodacites with U-Pb isotopic zircon age of 969-961 Ma. Sm-Nd isotopic data for these rocks showed a Mesoproterozoic model age: TNd(DM) varies from 1170 to 1219 Ma. These data as well as Rb-Sr isotopic investigations indicate a predominance of a mantle component in the magmatic sources of these rocks: ɛNd (967-961) = 5.1-5.2 and (87Sr/86Sr)0 =0.70258-0.70391. In the framing of the Mamont-Shrenk terrane we determined ophiolite fragments in the mouths of Krasnaya River and Kabachkovaya Hill. The Kabachkovaya ophiolites form near E-W elongated narrow zones of ultramafic rocks and small plutons of fine and medium grained gabbros and diabases among flows of tholeitic basalts forming pillow lavas and tuffs. Ar/Ar dating of amphiboles from metagabbros in the Krasnaya R. mouth yielded an age of 1029 Ma. In conclusion, these data indicate the existence of Meso-Neoproterozoic ophiolites and island arcs in the Russian Arctic, which, with available paleomagnetic data, allows composing more correct plate tectonic reconstructions for the early stages of the evolution of this region.

  1. Accretionary Tectonics of Rock Complexes in the Western Margin of the Siberian Craton

    NASA Astrophysics Data System (ADS)

    Likhanov, I. I.; Nozhkin, A. D.; Savko, K. A.

    2018-01-01

    The geological, geochemical, and isotope-geochronological evidence of the events at the final stage of the Neoproterozoic history of the Yenisei Range is considered (beginning from the formation of fragments of the oceanic crust in the region and their accretion to the Siberian Craton until the postaccretionary stage of crustal tension and onset of the Caledonian orogeny). Based on an analysis of new data on the petrogeochemical composition, age, and geodynamic nature of the formation of contrasting rocks in the composition of tectonic mélange of the Near-Yenisei (Prieniseiskaya) regional shear zone, we have found the chronological sequence of events that marks the early stages of the Paleoasian Ocean evolution in the zone of its junction with the Siberian Craton. These events are documented by the continental marginal, ophiolitic, and island-arc geological complexes, each of which has different geochemical features. The most ancient structures are represented by fragments of oceanic crust and island arcs from the Isakovka terrane (700-620 Ma). The age of glaucophane-schist metamorphic units that formed in the paleosubduction zone corresponds to the time interval of 640-620 Ma. The formation of high-pressure tectonites in the suture zone, about 600 Ma in age, marks the finishing stage of accretion of the Isakovka block to the western margin of the Siberian Craton. The final events in the early history of the Asian Paleoocean were related to the formation of Late Vendian riftogenic amygdaloidal basalts (572 ± 6.5 Ma) and intrusion of postcollisional leucogranites of the Osinovka massif (550-540 Ma), which intruded earlier fragments of the oceanic crust in the Isakovka terrane. These data allow us to refine the Late Precambrian stratigraphic scheme in the northwestern Trans-Angarian part of the Yenisei Range and the evolutionary features of the Sayan-Yenisei accretionary belt. The revealed Late Neoproterozoic landmarks of the evolution of the Isakovka terrane are attributed to the terminal phase of the breakup of Rodinia, separation of the Siberian Craton, and opening of the Paleoasian Ocean.

  2. Long-term variations of clay mineral composition in the Andaman Sea (IODP Exp. 353 Site U1447): preliminary result

    NASA Astrophysics Data System (ADS)

    Lee, J.; Khim, B. K.; Cho, H. G.; Kim, S.; 353 Scientists, I. E.

    2016-12-01

    Clay mineral studies in the Bengal Fan have allowed the reconstruction of the erosional history of the Himalayan-Tibetan complex since the Early Miocene. Several factors such as climate change and tectonic activity are important for the erosion rate of the Himalaya-Tibet complex. IODP Expedition 353 Site U1447 (10°47.4'N, 93°00'E; 1391 mbsl) was drilled on a ridge 45 km offshore Little Andaman Island in the Andaman Sea, penetrating to total depths of 738 m. Riverine sediments supplied mainly by the Irrawaddy and Salween (draining the Indo-Burman Ranges; smectite-rich) and the Ganga/Brahmaputra (draining the Himalaya; illite-rich) via the surface currents have been known to deposit in the Andaman Sea. We measured clay minerals of 38 sediment samples collected from 150 to 737 m CSF-A at Site U1447 in order to reveal long-term variation patterns of clay minerals and their controlling factors. Age reconstruction of Site U1447 aided by shipboard biostratigraphic and paleomagnetic data defined the study interval spanning from the Late Miocene ( 10 Ma) to Early Pleistocene ( 1.25 Ma). At this interval, clay minerals consist mainly of smectite (28-61% with an average of 47%) followed by illite (20-41% with an average of 29%), kaolinite (9-19% with an average of 14%), and chlorite (5-15% with an average of 10%). Variation of clay mineral compositions is divided into three stages; almost consistent variations of all clay minerals (from 750 to 570 m CSF-A; 10.0 to 7.5 Ma), gradual decrease of smectite and increase of illite and chlorite (from 570 to 400 m CSF-A; 7.5 to 4.5 Ma), and great fluctuation of all clay minerals (from 400 to 150 m CSF-A; 4.5 to 1.1 Ma). Such long-term clay mineral changes may be related to provenance switches, tectonic evolution of the source regions, climatic variations, degree of volcanism with basin evolution, sedimentation history by sea level changes or some combination of these factors.

  3. A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Kazemi, Tahmineh; Asahara, Yoshihiro

    2017-07-01

    The Hasansalaran plutonic complex is one of the main intrusive bodies with a wide range of granite, monzonite, diorite and syenite that crop out in northwest Iran. This body includes Paleozoic granitoids that are surrounded and cut by Cretaceous granitoids. Zircon U-Pb age dating shows that the crystallization of this body occurred at 360 Ma ago in the Early Carboniferous. Whole rock compositions of the investigated intrusive body, show high contents of Ga (11.1-76.3 ppm), Zr (73.5-1280 ppm), Zn (43.7-358 ppm), Y(17.9-177 ppm), enrichment of rare earth elements (REEs) together with high Ga/Al ratios and a strong Eu negative anomaly, fairly consistent with typical A-type signature. The low εNd(t = 360 Ma) value (< + 3) and high variation of 87Sr/86Sr(initial) ratios are evidence of the role of the continental component for the evolution of A-type granitoids in the Hasansalaran area. Because of the high contents of Ta, Yb, Nb and Y, all samples are plotted in the within-plate tectonic regime without interfering oceanic released fluids in the subduction zone. These high Nb content rocks (37.2-342 ppm without one sample) are classified as A1-type granitoids. Based on the distribution of A1- and A2-type granitoids in the Late Paleozoic in northwest Iran, the existence of some gabbroic rocks with tholeiitic to alkali composition and a long gap for magmatic activities in the area from 550 to 360 Ma (approximately 180 my.a.) between the Zagros and Tabriz faults, we suggest a new thematic model for evolution of northwest Iran in the Late Paleozoic. Based on our model, the upwelling of a mantle plume, probably due to the proto-Tethys oceanic rollback activity beneath northern Gondwana, had a crucial role in the uplifting of the continental crust and resulted in the crystallization of A-type granitoids with some gabbroic rocks in northwest Iran.

  4. Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope

    NASA Astrophysics Data System (ADS)

    Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.

    2010-12-01

    Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat Terrane is driving a range of tectonic and surface processes perturbing the Aleutian subduction system at its eastern extent and linking this system with Laramide style subduction and plate boundary strike-slip tectonics farther east. Targeted geodetic and seismic deployments as part of Earthscope could examine all of these features and seek to address fundamental questions about tectonic interactions.

  5. The tectonic and volcanic evolution of Venus: Catastrophic or gradual?

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1993-01-01

    Radar imaging and altimetry data from the Magellan mission have yielded important new constraints on the tectonic and volcanic history of Venus and on its internal dynamics. The planet lacks global plate tectonics, but a number of chasm systems and corona moat structures have arcuate planforms, asymmetric topogrpahic profiles, and relief analogous to deep-sea trenches on Earth and may be products of limited lithospheric underthrusting or subduction. Several lines of evidence point to a crust and upper mantle stronger than would be predicted by simple extrapolation from Earth and the 450 K greater surface temperature; these include the unrelaxed depths of impact craters, apparently large values of elastic lithosphere thickness, and large ratios of gravity to topography. The density of impact craters indicates an averate crater retention age of about 500 My, but not more than 5% of the recognized craters have been volcanically embayed. This last observation has led to the proposal that Venus has been subjected to one or more global resurfacing events, the latest about 500 My ago, and that the volcanic flux during intervals between such events has been low. That more recent tectonic activity has been widespread, however, is indicated by the high relief and slopes of mountains, chasm walls, and plateau margins; the significant fraction (0.3) of impact craters deformed by younger faults; and the postformational vertical deformation of long channels. Interior dynamical scenarios advanced to account for episodic volcanic resurfacing include catastrophic overturn of a global lithosphere thickened by cooling or compositional buoyancy and strongly time-dependent mantle convective heat flux. Outgassing considerations and analogy with Earth and other terrestrial planets, however, suggests that such catastrophic models are unlikely. If the mantle of Venus cooled more efficiently than that of Earth because of, say, different boundary conditions, a different flow law, or a different degree of layering, then the planet may in the last 500 My have attained lesser mantle temperatures, lower mantle heat flux, and a significantly lesser rate of magma production than Earth yet still display evidence for ongoing convection and active tectonics. Such a 'cold Venus' scenario would be broadly consistent with observations yet be characterized by a gradual volcanic and tectonic evolution.

  6. Strain partitioning in the footwall of the Somiedo Nappe: structural evolution of the Narcea Tectonic Window, NW Spain

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Alonso, Gabriel

    1996-10-01

    The Somiedo Nappe is a major thrust unit in the Cantabrian Zone, the external foreland fold and thrust belt of the North Iberian Variscan orogen. Exposed at the Narcea Tectonic Window are Precambrian rocks below the basal decollement of the Somiedo Nappe, which exhibit a different deformation style than the overlying Paleozoic rocks above the basal decollement. During Variscan deformation, folding and widespread subhorizontal, bedding-parallel decollements were produced in the hanging wall within the Paleozoic rocks. Vertical folding, with related axial-planar cleavage at a high angle to the decollement planes, developed simultaneously in the upper Proterozoic Narcea Slates of the footwall, below the detachment. The relative magnitude of finite strain, measured in the footwall rocks, diminishes towards the foreland. These observations indicate that (1) significant deformation may occur in the footwall of foreland fold and thrust belts, (2) the shortening mechanism in the footwall may be different from that of the hanging wall, and (3) in this particular case, the partitioning of the deformation implies the existence of a deeper, blind decollement surface contemporaneous with the first stages of the foreland development, that does not crop out in the region. This implies a significant shortening in the footwall, which must be taken into account when restoration and balancing of cross-sections is attempted. A sequential diagram of the evolution of the Narcea Tectonic Window with a minimum shortening of 85 km is proposed, explaining the complete Variscan evolution of the foreland to hinterland transition in the North Iberian Variscan orogen.

  7. Dynamic Landscapes and Sea Level Change in Human Evolution and Dispersal

    NASA Astrophysics Data System (ADS)

    King, G. C.; Devès, M. H.; Bailey, G.; Inglis, R.; Williams, M.

    2012-12-01

    Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris,are developing systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. These approaches use remote sensing techniques combined with archaeological and tectonic field surveys on land and underwater. Examples are shown from Europe, the Middle East and Africa to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.

  8. Signal and Noise in the Evolution of the Continental Lithosphere: Lessons from the Himalayan Syntaxes

    NASA Astrophysics Data System (ADS)

    Zeitler, P. K.; Meltzer, A.

    2012-12-01

    A number of multidisciplinary research projects have focused their attention on the Himalaya-Tibet orogen with the goal of gaining fundamental insights into mountain-building from this large and still-active system. These studies have led to important insights into both the orogen itself as well as the dynamics of collision in general. However, this greater level of scrutiny has also led to new questions and an understanding of how complex this orogen is in present dynamics and in its evolution. A question we would like to raise is the degree to which observations we make today reflect fundamental processes, the understanding of which can be exported to other orogenies in time and space, as opposed to reflecting contingencies in the evolution of the Himalaya-Tibet system's geology and tectonics that, while important, are perhaps not exportable to other orogens. In Tibet and especially the Himalaya, there are certainly some remarkable along-strike consistencies in structure, geology, geomorphology, and tectonic history that that would seem to amount to a strong indication that fundamental processes have been and are at work. However, the view from the extensive eastern and western syntaxes is not quite the same, where there is significant spatial variability in such features as Moho depth, distribution of shear-wave polarization, 3D distribution of crustal strain, the degrees and timing of exhumation and metamorphism, and the distribution of lower-crustal eclogite. Does this lateral variability represent geological noise, or are these features telling us something about initial and other boundary conditions? Given the current complexity of the arc terranes that make up large parts of southern Tibet, the diversity in these arc terranes as they faced the incoming India lithosphere could have constituted an equally diverse array of starting conditions for the collision: understanding the transition from convergence to collision and its impact on subsequent evolution of the orogen remains an outstanding question. One lesson that that has emerged from studies of the Himalaya and especially the syntaxes is that feedbacks, while difficult to document observationally, are likely to be important in orogenic processes, both within the solid Earth and between the solid Earth and the surface. Because some feedbacks involve the evolution of drainage networks, a question of scale can arise because even very localized processes, such as those that maintain base level, can have very widespread impacts on both geodynamics and the sedimentary record. Also, as hard as they are to document in real time, feedbacks have even less preservation potential, as is true for a number of the crustal and surface metrics and rates that we now routinely measure. Thus reconciling the broadly synorogenic picture we see today with what is recorded in ancient, more eroded terranes is a challenge, especially when it comes to unraveling the geodynamics of collisional margins.

  9. The Post-Eocene Evolution of the Doruneh Fault Region (Central Iran): The Intraplate Response to the Reorganization of the Arabia-Eurasia Collision Zone

    NASA Astrophysics Data System (ADS)

    Tadayon, Meisam; Rossetti, Federico; Zattin, Massimiliano; Nozaem, Reza; Calzolari, Gabriele; Madanipour, Saeed; Salvini, Francesco

    2017-12-01

    The Cenozoic deformation history of Central Iran has been dominantly accommodated by the activation of major intracontinental strike-slip fault zones, developed in the hinterland domain of the Arabia-Eurasia convergent margin. Few quantitative temporal and kinematic constraints are available from these strike-slip deformation zones, hampering a full assessment of the style and timing of intraplate deformation in Iran and the understanding of the possible linkage to the tectonic reorganization of the Zagros collisional zone. This study focuses on the region to the north of the active trace of the sinistral Doruneh Fault. By combing structural and low-temperature apatite fission track (AFT) and (U-Th)/He (AHe) thermochronology investigations, we provide new kinematic and temporal constraints to the deformation history of Central Iran. Our results document a post-Eocene polyphase tectonic evolution dominated by dextral strike-slip tectonics, whose activity is constrained since the early Miocene in response to an early, NW-SE oriented paleo-σ1 direction. A major phase of enhanced cooling/exhumation is constrained at the Miocene/Pliocene boundary, caused by a switch of the maximum paleo-σ1 direction to N-S. When integrated into the regional scenario, these data are framed into a new tectonic reconstruction for the Miocene-Quaternary time lapse, where strike-slip deformation in the intracontinental domain of Central Iran is interpreted as guided by the reorganization of the Zagros collisional zone in the transition from an immature to a mature stage of continental collision.

  10. Tectonics and volcanism of Eastern Aphrodite Terra: No subduction, no spreading

    NASA Technical Reports Server (NTRS)

    Hansen, Vicki L.; Keep, Myra; Herrick, Robert R.; Phillips, Roger J.

    1992-01-01

    Eastern Aphrodite Terra is approximately equal in size to the western North American Cordillera, from Mexico to Alaska. Its size and unique landforms make it an important area for understanding the tectonics of Venus, yet models for its formation are diametrically opposed. This region is part of the Equatorial Highlands, which was proposed as a region of lithospheric thinning, isostatic uplift, and attendant volcanism. Eastern Aphrodite Terra is dominated by circular structures within which deformation and volcanism are intimately related. These structures are marked by radial and concentric fractures, and volcanic flows that emanate from a central vent, as well as from concentric fracture sets. Cross-cutting relations between flows and concentric fracture sets indicate that outer concentric fracture sets are younger than inner fracture sets. The circular structures are joined by regional northeast- to east-trending fractures that dominantly postdate formation of the circular structures. We propose that the circular structures 'grow' outward with time. Although these structures probably represent addition of crust to the lithosphere, they do not represent significant lithospheric spreading or convergence, and the region does not mark the boundary between two distinct tectonic plates. This region is not easily explained by analogy with either terrestrial midocean rifts or subduction zones. It is perhaps best explained by upwelling of magma diapirs that blister the surface, but do not cause significant lithospheric spreading. Further study of the structural and volcanic evolution of this region using Magellan altimetry and SAR data should lead to better understanding of the tectonic evolution of this region.

  11. New geological data of New Siberian Archipelago

    NASA Astrophysics Data System (ADS)

    Sobolev, Nikolay; Petrov, Evgeniy

    2014-05-01

    The area of New Siberian Archipelago (NSA) encompasses different tectonic blocks is a clue for reconstruction of geological structure and geodynamic evolution of East Arctic. According to palaeomagnetic study two parts of the archipelago - Bennett and Anjou Islands formed a single continental block at least from the Early Palaeozoic. Isotope dating of De Long Islands igneous and sedimentary rocks suggests Neoproterozoic (Baikalian) age of its basement. The De Long platform sedimentary cover may be subdivided into two complexes: (1) intermediate of PZ-J variously deformed and metamorphosed rocks and (2) K-KZ of weakly lithified sediments. The former complex comprises the Cambrian riftogenic volcanic-clastic member which overlain by Cambrian-Ordovician turbiditic sequence, deposited on a continental margin. This Lower Palaeozoic complex is unconformably overlain by Early Cretaceous (K-Ar age of c.120 Ma) basalts with HALIP petrochemical affinities. In Anjou Islands the intermediate sedimentary complex encompasses the lower Ordovician -Lower Carboniferous sequence of shallow-marine limestone and subordinate dolomite, mudstone and sandstone that bear fossils characteristic of the Siberian biogeographic province. The upper Mid Carboniferous - Jurassic part is dominated by shallow-marine clastic sediments, mainly clays. The K-KZ complex rests upon the lower one with angular unconformity and consists mainly of coal-bearing clastic sediments with rhyolite lavas and tuffs in the bottom (117-110 Ma by K-Ar) while the complexe's upper part contains intraplate alkalic basalt and Neogene-Quaternary limburgite. The De-Long-Anjou block's features of geology and evolution resemble those of Wrangel Island located some 1000 km eastward. The Laptev Sea shelf outcrops in intrashelf rises (Belkovsky and Stolbovoy Islands) where its geology and structure may be observed directly. On Belkovsky Island non-dislocated Oligocene-Miocene sedimentary cover of littoral-marine coal-bearing unconformably overlies folded basement. The latter encompasses two sedimentary units: the Middle Devonian shallow-marine carbonate and Late-Devonian-Permian olistostrome - flysch deposited in transitional environment from carbonate platform to passive margin. Dating of detrital zircons suggests the Siberian Platform and Taimyr-Severnaya Zemlya areas as the most possible provenance. The magmatic activity on Belkovsky Island resulted in formation of Early Triassic gabbro-dolerite similar to the Siberian Platform traps. Proximity of Belkovsky Island to the north of Verkhoyansk foldbelt allows continuation of the latter into the Laptev Sea shelf. The geology of Bolshoy Lyakhovsky Island is discrepant from the rest of the NSA. In the south of Bolshoy Lyakhovsky Island the ophiolite crops complex out: it is composed of tectonic melange of serpentinized peridotite, bandedf gabbro, pillow-basalt, and pelagic sediments (black shales and cherts). All the rocks underwent epidot - amphibolite, glaucophane and greenschist facies metamorphism. The ophiolite is intruded by various in composition igneous massifs - from gabbro-diorite to leuco-granite, which occurred at 110-120 Ma. The Bolshoy Lyakhovsky Island structure is thought to be a westerly continuation of the South Anui suture of Chukchi.

  12. Episodic vs. Continuous Accretion in the Franciscan Accretionary Prism and Direct Plate Motion Controls vs. More Local Tectonic Controls on Prism Evolution

    NASA Astrophysics Data System (ADS)

    Dumitru, T. A.; Ernst, W. G.; Wakabayashi, J.

    2011-12-01

    Subduction at the Franciscan trench began ≈170-165 Ma and continues today off Oregon-Washington. Plate motion reconstructions, high-P metamorphic rocks, and the arc magmatic record suggest that convergence and thus subduction were continuous throughout this period, although data for 170 to 120 Ma are less definitive. About 25% of modern subduction zones are actively building an accretionary prism, whereas 75% are nonaccretionary, in which subduction erosion is gradually removing the prism and/or forearc basement. These contrasting behaviors in modern subduction zones suggest that the Franciscan probably fluctuated between accretionary and nonaccretionary modes at various times and places during its 170 million year lifespan. Accumulating geochronologic data are beginning to clarify certain accretionary vs. nonaccretionary intervals. (1) The oldest Franciscan rocks are high-P mafic blocks probably metamorphosed in a subophiolitic sole during initiation of subduction. They yield garnet Lu-Hf and hornblende Ar/Ar ages from ≈169 to 147 Ma. Their combined volume is extremely small and much of the Franciscan was probably in an essentially nonaccretionary mode during this period. (2) The South Fork Mountain Schist forms the structural top of the preserved wedge in northern California and thus was apparently the first genuinely large sedimentary body to accrete. This occurred at ≈123 Ma (Ar/Ar ages), suggesting major accretion was delayed a full ≈45 million years after the initiation of subduction. The underlying Valentine Spring Fm. accreted soon thereafter. This shift into an accretionary mode was nearly synchronous with the end of the Early Cretaceous magmatic lull and the beginning of the prolonged Cretaceous intensification of magmatism in the Sierra Nevada arc. (3) The Yolla Bolly terrane has generally been assigned a latest Jurassic to earliest Cretaceous age. Detrital zircon data confirm that some latest Jurassic sandstones are present, but they may be blocks in olistotromes and the bulk of the terrane may be mid-Cretaceous trench sediments. (4) New data from the Central mélange belt are pending. (5) Detrital zircon ages suggest much of the voluminous Coastal belt was deposited in a short, rapid surge in the Middle Eocene, coincident with major extension, core complex development, volcanism, and erosion in sediment source areas in Idaho-Montana. Rapid Tyee Fm deposition in coastal Oregon occurred at virtually the same time from the same sources. (6) Exposed post-Eocene Franciscan rocks are rare. It is tempting to ascribe subduction zone tectonic events directly to changes in relative motions between the subducting and overriding lithospheric plates. However, in modern subduction zones, varying sediment supply to the trench appears to be a more important control on accretionary prism evolution and this seems to be the case in the Franciscan as well. Franciscan accretion was apparently influenced primarily by complex continental interior tectonics controlling sediment supply from the North American Cordillera (which may in part reflect plate motion changes), rather than directly by changes in the motions of tectonic plates.

  13. How fast is the denudation of the Taiwan Mountains? (Invited)

    NASA Astrophysics Data System (ADS)

    Siame, L. L.; Derrieux, F.; KANG, C.; Bourles, D. L.; Braucher, R.; Léanni, L.; Chen, R.; Lee, J.; Chu, H.; Chang, C.; Byrne, T. B.

    2013-12-01

    Orogenic settings are particularly well suited to study and quantify the coupling relations between tectonics, topography, climate and erosion since they record tectonic evolution along convergent margins and the connection between deep and surface processes. However, the interaction of deep and shallow processes is still poorly understood and the role they play in the exhumation of rocks, the structural and kinematic evolution of orogenic wedges, and the relation between tectonics and climate-dependent surface processes are still debated. Therefore, quantification of denudation rates in a wide range of climatic and tectonic settings, as well as at various time and space scales, is a critical step in calibrating and validating landscape evolution models. In this study, we focus on the mountains of the arc-continent collision in Taiwan, which serve as one of the best examples in the world to understand and study mountain building processes. We investigate the pattern and magnitude of denudation rates at the scale of the orogenic system, deriving denudation rates from in situ-produced cosmogenic nuclide 10Be concentrations measured in (1) river-borne quartz minerals sampled at major watersheds outlets, and (2) bedrock outcrops along ridge crests and at summits located along the major drainage divide of the belt. We determined a denudation pattern showing a clear discrepancy between the western (1.7×0.2 mm/yr) and eastern (4.1×0.5 mm/yr) sides of the range. Conversely, bedrock denudation determined along ridge crests, summits and flat surfaces preserved at high elevations are characterized by significantly lower denudation rates on the order of 0.24×0.03 mm/yr. Altogether, the cosmogenic-derived denudation pattern at the orogen-scale reflects fundamental mountain building processes from frontal accretion in the Western Foothills to basal accretion and fast exhumation in the Central Range. Applied to the whole orogen, such field-based approach thus provides important input data to validate and calibrate the parameters to be supplied to landscape evolution models. Moreover, the comparison between cosmogenic bedrock-derived and basin-derived denudation rates allows discussing how the topographic relief of Taiwan has evolved through the last thousands of years, and thus documenting whether or not the Taiwan Mountains are in a topographic steady state.

  14. Controls on the evolution of carbonate landscapes in Provence, France using cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Thomas, Franck; Godard, Vincent; Bellier, Olivier; Shabanian, Esmaeil; Benedetti, Lucilla; Ollivier, Vincent; Rizza, Magali; Hollender, Fabrice; Team Aster; Guillou, Valéry

    2016-04-01

    The Provence region located in South-Eastern France has registered significant earthquakes in the last 1000 years, some reaching intensities up to IX. It is currently undergoing a very slow tectonic deformation with little seismicity and long recurrence intervals for major earthquakes (such as the 1909 magnitude 6 Lambesc earthquake). Several West-trending ranges are an important part of the landscape, and the influence of tectonic uplift compared to denudation during the Pliocene-Quaternary is not yet fully understood in the region. The geology of South-Eastern France is dominated by a thick Mesozoic series primarily consisting of carbonate rocks. The iconic ranges of Provence resulting from the Pyrenean orogeny (late Eocene) are mostly made up of uplifted lower Cretaceous. A minor reactivation occurred during the more recent Alpine late Cenozoic tectonic phase and contributed to the rejuvenation of the relief. Carbonate rocks are prone to complete chemical dissolution and are thus highly sensitive to climatic forcings such as precipitation. Moreover, the elevation and the frequency of freezing and thawing are parameters strongly influencing the geomorphic evolution in such environments. To investigate on this matter, 42 carbonate rock samples were collected for 36Cl denudation measurements on the Petit Luberon range. Denudation rates have been determined for both bedrock samples from the crest and sediments from rivers draining the southern and northern flanks of the range, allowing insights into long-term relief evolution. We observe a strong denudation contrast between the flanks lowering at 100-200 mm/ka and the summit surface, at around 30 mm/ka. These results suggest a transient evolution and a probable narrowing of the range. In addition, we collected 23 carbonate bedrock samples from other Mesozoic ranges in Provence with a wide altitude range (from 150 up to 1800 meters high asl), for similar 36Cl analysis. Our objective in this study (CEA-Cashima) is to have a regional overview of the distribution of denudation rates in an area dominated by carbonate rocks and to evaluate the influence of altitude, climate and associated processes on erosion and eventually link it to a slow regional uplift. Thus this study will allow a better understanding of the denudation processes in a carbonate dominated area characterized by slow tectonic deformations and moderate precipitations.

  15. Tectonic evolution of Honey Lake basin, northeastern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, D.L.; Saucedo, G.J.; Grose, T.L.T.

    New geologic mapping in northeastern California provides additional data on the age and tectonic evolution of the Honey Lake Basin. Rhylitic ash flow tuffs of latest Oligocene to early Miocene age (30 to 22 Ma) occur in the Fort Sage Mountains and in the Sierra Nevada but are not apparent in wells drilled in the Honey Lake basin. Though other interpretations can be made, the authors take this as evidence that the basin did not exist at that time. Volcanic rocks as old as 12 Ma do occur in the basin indicating initiation in mid-Miocene time probably as a grabenmore » due to block faulting. Syntectonic andesitic and basaltic volcanism occurred along faults bounding the Sierra Nevada block at 9 to 10 Ma. Lava issuing from these fractures flowed westward along Tertiary drainages indicating that the Sierran block had been uplifted and tilted westward. Andesites erupted during this time north and east of the basin are lithologically distinct from Sierran andesites. Strike-slip faulting began to dominate the tectonic setting of the region during late Pliocene and Quaternary time with the development of the Honey Lake Fault Zone. Holocene strike-slip displacement is indicated by offsets of the 12,000 year old Lake Lahontan shoreline and deposits containing a 7,000 year old ash.« less

  16. New insight on the paleoproterozoic evolution of the São Francisco Craton: Reinterpretation of the geology, the suture zones and the thicknesses of the crustal blocks using geophysical and geological data

    NASA Astrophysics Data System (ADS)

    Sampaio, Edson E. S.; Barbosa, Johildo S. F.; Correa-Gomes, Luiz C.

    2017-07-01

    The Archean-Paleoproterozoic Jequié (JB) and Itabuna-Salvador-Curaçá (ISCB) blocks and their tectonic transition zone in the Valença region, Bahia, Brazil are potentially important for ore deposits, but the geological knowledge of the area is still meager. The paucity of geological information restricts the knowledge of the position and of the field characteristics of the tectonic suture zone between these two crustal segments JB and ISCB. Therefore, interpretation of geophysical data is necessary to supplement the regional structural and petrological knowledge of the area as well as to assist mining exploration programs. The analysis of the airborne radiometric and magnetic data of the region has established, respectively, five radiometric domains and five magnetic zones. Modeling of a gravity profile has defined the major density contrasts of the deep structures. The integrated interpretation of the geophysical data fitted to the known geological information substantially improved the suture zone (lower plate JB versus upper plate ISCB) delimitation, the geological map of the area and allowed to estimate the thicknesses of these two blocks, and raised key questions about the São Francisco Craton tectonic evolution.

  17. Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data.

    PubMed

    Ohira, Akane; Kodaira, Shuichi; Nakamura, Yasuyuki; Fujie, Gou; Arai, Ryuta; Miura, Seiichi

    2017-11-17

    The interactions of the lithospheric plates that form the Earth's outer shell provide much of the evidentiary basis for modern plate tectonic theory. Seismic discontinuities in the lithosphere arising from mantle convection and plate motion provide constraints on the physical and chemical properties of the mantle that contribute to the processes of formation and evolution of tectonic plates. Seismological studies during the past two decades have detected seismic discontinuities within the oceanic lithosphere in addition to that at the lithosphere-asthenosphere boundary (LAB). However, the depth, distribution, and physical properties of these discontinuities are not well constrained, which makes it difficult to use seismological data to examine their origin. Here we present new active-source seismic data acquired along a 1,130 km profile across an old Pacific plate (148-128 Ma) that show oceanic mid-lithosphere discontinuities (oceanic MLDs) distributed 37-59 km below the seafloor. The presence of the oceanic MLDs suggests that frozen melts that accumulated at past LABs have been preserved as low-velocity layers within the current mature lithosphere. These observations show that long-offset, high-frequency, active-source seismic data can be used to image mid-lithospheric structure, which is fundamental to understanding the formation and evolution of tectonic plates.

  18. Hinterland tectonics and drainage evolution recorded by foreland basin archives: the Neogene Siwaliks of the Himalaya

    NASA Astrophysics Data System (ADS)

    Huyghe, Pascale; van der Beek, Peter; Matthias, Bernet; Catherine, Chauvel; Jean-Louis, Mugnier; Laurent, Husson; François, Chirouze

    2014-05-01

    Provenance analysis and detrital thermochronology of detrital synorogenic sediments, derived from erosion of mountain belts and deposited in surrounding sedimentary basins, are well-established methods to examine the exhumation history of convergent zones, tectonic activity and the associated evolution of the drainage network. We have conducted multidisciplinary studies on magnetostratigraphically dated sections throughout the Neogene Siwalik foreland basin of the Himalayan belt since more than 10 years. Sr, Nd and Hf isotopes are used as provenance indicators, providing information on the nature and size of catchment basins and their evolution through time in response to tectonics. Detrital zircon and apatite thermochronology provides constraints on exhumation rates in the hinterland of the Himalaya and the deformation of the Sub-Himalayan foreland basin. Throughout the Himalaya, detrital zircons from the Siwaliks generally show three age peaks: two static peaks (i.e., displaying constant peak ages through time), and a moving peak. The latter shows a constant lag time of ~4 m.y. corresponding to source-area exhumation rates on the order of 1.8 km/my, while the two static peaks respectively reveal a major 15-20 Ma exhumation event in the belt, the significance of which is still debated, and inheritance of pre-Himalayan ages that indicate recycling of Tethyan sediments. Therefore, our ZFT results suggest that the exhumation dynamics are broadly similar throughout the Himalaya since at least 13 m.y, as also shown by the Bengal Fan detrital sediment record. We relate this switch in tectonic regime to the destabilization of the Himalayan wedge that is rendered overcritical as a response to the transience of dynamic topography caused by the deforming underlying Indian slab. Nonetheless, in detail, the timing of thrusting in the Siwalik domain is delayed by about 1 my eastward as demonstrated by both structural and apatite fission-track data, suggesting overall eastward propagation of the main faults. The evolution of the sedimentary provenance can be explained by overall forward propagation of deformation in the Himalayan fold-thrust belt. In both the eastern and western syntaxes, it also shows stability of the major drainage systems of the Yarlung-Brahmaputra and Indus, respectively, suggesting that hinterland river incision kept pace with uplift of the syntaxes during the Neogene. Drainage reorganization may take place in the foreland basin because of thin-skinned tectonics but did not significantly affect sediment routing and the contribution of different sources of the upper catchment to the overall sediment budget. In contrast, major rivers in the Central Himalaya (such as the Kali Gandaki or the Karnali) could have been affected by changes in their upper catchment.

  19. Computer-based self-organized tectonic zoning: a tentative pattern recognition for Iran

    NASA Astrophysics Data System (ADS)

    Zamani, Ahmad; Hashemi, Naser

    2004-08-01

    Conventional methods of tectonic zoning are frequently characterized by two deficiencies. The first one is the large uncertainty involved in tectonic zoning based on non-quantitative and subjective analysis. Failure to interpret accurately a large amount of data "by eye" is the second. In order to alleviate each of these deficiencies, the multivariate statistical method of cluster analysis has been utilized to seek and separate zones with similar tectonic pattern and construct automated self-organized multivariate tectonic zoning maps. This analytical method of tectonic regionalization is particularly useful for showing trends in tectonic evolution of a region that could not be discovered by any other means. To illustrate, this method has been applied for producing a general-purpose numerical tectonic zoning map of Iran. While there are some similarities between the self-organized multivariate numerical maps and the conventional maps, the cluster solution maps reveal some remarkable features that cannot be observed on the current tectonic maps. The following specific examples need to be noted: (1) The much disputed extent and rigidity of the Lut Rigid Block, described as the microplate of east Iran, is clearly revealed on the self-organized numerical maps. (2) The cluster solution maps reveal a striking similarity between this microplate and the northern Central Iran—including the Great Kavir region. (3) Contrary to the conventional map, the cluster solution maps make a clear distinction between the East Iranian Ranges and the Makran Mountains. (4) Moreover, an interesting similarity between the Azarbaijan region in the northwest and the Makran Mountains in the southeast and between the Kopet Dagh Ranges in the northeast and the Zagros Folded Belt in the southwest of Iran are revealed in the clustering process. This new approach to tectonic zoning is a starting point and is expected to be improved and refined by collection of new data. The method is also a useful tool in studying neotectonics, seismotectonics, seismic zoning, and hazard estimation of the seismogenic regions.

  20. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol Okhotsk Ocean in central Asia

    NASA Astrophysics Data System (ADS)

    Kelty, Thomas K.; Yin, An; Dash, Batulzii; Gehrels, George E.; Ribeiro, Angela E.

    2008-04-01

    Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U-Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay-Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous (˜ 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic (˜ 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva-Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay-Hentey basin. Integrating all the age results from this study, we suggest that the Hangay-Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the early Carboniferous, allowing accumulation of a flysch complex in a long-evolving accretionary complex.

  1. Tectonic interpretations of Central Ishtar Terra (Venus) from Venera 15/16 and Magellan full-resolution radar images

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Vergely, P.; Masson, P.

    1994-03-01

    For more than a decade, the mapping of Venus has revealed a surface that has had a complex volcanic and tectonic history, especially in the northern latitudes. Detailed morphostructural analysis and tectonic interpretations of Central Ishtar Terra, based both on Venera 15/16 and Magellan full-resolution radar images, have provided additional insight to the formation and evolution of Venusian terrains. Ishtar Terra, centered at 0 deg E longitude and 62 deg N latitude, consists of a broad high plateau, Lakshmi Planum, partly surrounded by two highlands, Freyja and Maxwell Montes, which have been interpreted as orogenic belts based on Venera 15 and 16 data. Lakshmi Planum, the oldest part of Ishtar Terra, is an extensive and complexly fractured plateau that can be compared to a terrestrial craton. The plateau is partially covered by fluid lava flows similar to the Deccan traps in India, which underwent a late stage of extensional fracturing. After the extensional deformation of Lakshmi Planum, Freyja and Maxwell Montes were created by regional E-W horizontal shortening that produced a series of N-S folds and thrusts. However, this regional arrangement of folds and thrusts is disturbed locally, e.g. the compressive deformation of Freyja Montes was closely controlled by parallel WNW-ESE-trending left-lateral shear zones and the northwestern part of Maxwell Montes seems to be extruded laterally to the southwest, which implies a second oblique thrust front overlapping Lakshmi Planum. These mountain belts also shows evidence of a late volcanic stage and a subsequent period of relaxation that created grabens parallel to the highland trends, especially in Maxwell Montes.

  2. Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet

    NASA Astrophysics Data System (ADS)

    Laskowski, Andrew K.; Kapp, Paul; Ding, Lin; Campbell, Clay; Liu, XiaoHui

    2017-01-01

    The Lopu Range, located 600 km west of Lhasa, exposes a continental high-pressure metamorphic complex beneath India-Asia (Yarlung) suture zone assemblages. Geologic mapping, 14 detrital U-Pb zircon (n = 1895 ages), 11 igneous U-Pb zircon, and nine zircon (U-Th)/He samples reveal the structure, age, provenance, and time-temperature histories of Lopu Range rocks. A hornblende-plagioclase-epidote paragneiss block in ophiolitic mélange, deposited during Middle Jurassic time, records Late Jurassic or Early Cretaceous subduction initiation followed by Early Cretaceous fore-arc extension. A depositional contact between fore-arc strata (maximum depositional age 97 ± 1 Ma) and ophiolitic mélange indicates that the ophiolites were in a suprasubduction zone position prior to Late Cretaceous time. Five Gangdese arc granitoids that intrude subduction-accretion mélange yield U-Pb ages between 49 and 37 Ma, recording Eocene southward trench migration after collision initiation. The south dipping Great Counter Thrust system cuts older suture zone structures, placing fore-arc strata on the Kailas Formation, and sedimentary-matrix mélange on fore-arc strata during early Miocene time. The north-south, range-bounding Lopukangri and Rujiao faults comprise a horst that cuts the Great Counter Thrust system, recording the early Miocene ( 16 Ma) transition from north-south contraction to orogen-parallel (E-W) extension. Five early Miocene (17-15 Ma) U-Pb ages from leucogranite dikes and plutons record crustal melting during extension onset. Seven zircon (U-Th)/He ages from the horst block record 12-6 Ma tectonic exhumation. Jurassic—Eocene Yarlung suture zone tectonics, characterized by alternating episodes of contraction and extension, can be explained by cycles of slab rollback, breakoff, and shallow underthrusting—suggesting that subduction dynamics controlled deformation.

  3. Evolution of the Sibişel Shear Zone (South Carpathians): A study of its type locality near Răşinari (Romania) and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ducea, Mihai N.; Negulescu, Elena; Profeta, Lucia; Sǎbǎu, Gavril; Jianu, Denisa; Petrescu, Lucian; Hoffman, Derek

    2016-09-01

    The Sibişel Shear Zone is a 1-3 km wide, ductile shear zone located in the South Carpathian Mountains, Romania. In the Rășinari area, the ductile shear zone juxtaposes amphibolite facies rocks of the Lotru Metamorphic Suite against greenschist facies rocks of the Râuşorul Cisnădioarei Formation. The first represents the eroded remnants of Peri-Gondwanan arcs formed between the Neoproterozoic-Silurian (650-430 Ma), regionally metamorphosed to amphibolite facies during the Variscan orogeny (350-320 Ma). The second is composed of metasedimentary and metavolcanic Neoproterozoic-Ordovician (700-497 Ma) assemblages of mafic to intermediate bulk composition also resembling an island arc metamorphosed during the Ordovician (prior to 463 Ma). Between these lie the epidote amphibolite facies mylonitic and ultramylonitic rocks of the Sibișel Formation, a tectonic mélange dominated by mafic actinolite schists attenuated into a high strain ductile shear zone. Mineral Rb-Sr isochrons document the time of juxtaposition of the three domains during the Permian to Early Triassic ( 290-240 Ma). Ductile shear sense indicators suggest a right lateral transpressive mechanism of juxtaposition; the Sibişel shear zone is a remnant Permo-Triassic suture between two Early Paleozoic Gondwanan terranes. A zircon and apatite U-Th/He age transect across the shear zone yields Alpine ages (54-90 Ma apatite and 98-122 Ma zircon); these data demonstrate that the exposed rocks were not subjected to Alpine ductile deformation. Our results have significant implications for the assembly of Gondwanan terranes and their docking to Baltica during Pangea's formation. Arc terranes free of Variscan metamorphism existed until the Early Triassic, emphasizing the complex tectonics of terrane amalgamation during the closure of Paleotethys.

  4. Paleomagnetic Investigations on the Tectonic Evolution of the Southeastern Anatolian Ophiolites in Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Cengiz Cinku, M.; Karabulut, S.; Parlak, O.; Cabuk, B. S.; Ustaömer, T.; Hisarli, M. Z.

    2016-12-01

    Two E-W trending ophiolite belts crop out in SE Turkey, The southerly located ophiolites (Hatay, Koçali) were emplaced onto the Arabian Platform in Late Cretaceous whereas the northerly located ophiolites (Göksun, İspendere, Kömürhan, Guleman) were underthrust the S Tauride margin (i.e. Malatya-Keban Platform) in Late Cretaceous. Here we report our first paleomagnetic results from 155 different sites which was was focused on to the sheeted dyke complex, cumulate gabbros and extrusive sequences of each ophiolite from the N and S belts, while the cover units where sampled to distinguish emplacement related tectonic rotations from post-emplacement tectonic rotations. Rock magnetic experiments showed evidence of magnetite/titanomagnetite as the main magnetic carriers at the majority of sites. Progressive thermal and alternating demagnetization revealed that the characteristic remanent component is removed between 500 and 580 °C or 30-100 mT, respectively. Our new paleomagnetic results from the ophiolitic rocks emplaced in Arabian platform and the SE Anatolia show important implications to the spreading centre of the former ocean (s). Large counterclockwise rotations up to 100° are obtained from the sheeded dykes of the Hatay ophiolite in the Arabian plate with a paleolatitude of 16°, in contrast to the sheeded dykes of the Göksun ophiolite emplaced in the SE Anatolian with clockwise rotation of 90° and a paleolatitude of 22°. The relative movement of the ophiolitic series show their emplacement in the different zones. This study was financially supported by the project of the Scientific and Technical Research Council of Turkey (TUBITAK) with Project number 114R024.

  5. landforms evolution in collisional-dominated settings: the case of Northern Sicily (Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Nigro, Fabrizio; Renda, Pietro; Favara, Rocco

    2010-05-01

    In the young mountain chains underwent to emersion, the different crustal blocks which compose the belt may be subjected to differentiate tilting during uplift. The tilting process may be revealed both by the stratal pattern of the syn-uplifting deposits or deduced by the function altitude/area ratio. The prevailing of the uplift rate with respect to the tilting rate (and vice versa) result from the shape of this function. So, in young mountains the hypsometric analysis may results a useful tool for decipher how the crustal blocks are underwent to uplift. An integrate analysis based on stratigraphy, structural and morphometric data represents the correctly approach for characterise the landform evolution in regions underwent to active tectonics. In the aim to evaluate the recent tectonic history from topography in regions underwent to active deformations, by deducing the effect of tectonisms on landforms, the definition of the boundary conditions (regarding the crustal deformation) is fundamental for morphometric analysis. In fact, the morphologic style and the morphometric pattern in tectonically active settings are closely related to the dominance of rock masses exceeding for uplift (or failure for subsidence) with respect to the exogenous erosional processes. Collisional geodynamic processes induce crustal growth for faulting and folding. In this earth's sectors, the uplift of crustal blocks is a very common effect of compressional deformation. It reflects for example fold amplification and thrusting, but it is a very common process also in settings dominated by crustal thinning, where the viscoelastic properties of the lithosphere induce tilting and localised uplift of normal-faulted crustal blocks. The uplift rate is rarely uniform for wide areas within the orogens on the passive margins, but it changes from adjacent crustal blocks as the effect of space-variation of kinematics conditions or density. It also may change within a single block, as the effect of tilting, which induces synchronously mass elevation and subsidence. Not considering sea-level fluctuations and the climatic-lithologic parameters, the 2D distribution of uplift rate influences the landmass evolution in time. The tendency of rock masses to equilibrium resulting from concurrent tectonic building and denudation forces defines the geomorphic cycle. This evolution is checked by different stages, each characterised by a well-recognisable morphometric patterns. The dominance of uplift or erosion and concurrent block tilting induce characteristic a landform evolution tendency, which may be evaluated with the morphometric analysis. A lot of morphometric functions describe the equilibrium stage of landmasses, providing useful tools for deciphering how tectonics acts in typology (e.g. inducing uplift uniformly or with crustal block tilting) and resulting effects on landforms (magnitude of uplift rate vs tilting rate). We aim to contribute in the description of landforms evolution in Sicily (Central Mediterranean) under different morphoevolutive settings, where may prevails uplift, tilting or erosion, each characterised by different morphometric trends. The present-day elevation of Pliocene to upper Pleistocene deposits suggests that Northen Sicily underwent neotectonic uplift. The recent non-uniform uplift of Northern Sicily coastal sector is suggested by the different elevation of the Pliocene-Upper Pleistocene marine deposits. The maximum uplift rate characterise the NE Sicily and the minimum the NW Sicily. The overall westwards decreasing trend of uplift is in places broken in the sectors where are located a lot of morphostructures. Localised uplift rates higher than the adjacent coastal plains are suggested by the present-day elevation of the beachshore deposits of Tyrrhenian age. Northern Sicily may be divided into a lot of crustal blocks, underwent to different tilting and uplift rates. Accentuate tilting and uplift results from transtensional active faulting of the already emplaced chain units, as also suggested by seismicity and the focal plane solutions of recent strong earthquakes.

  6. Tectonic evolution of the Qumran Basin from high-resolution 3.5-kHz seismic profiles and its implication for the evolution of the northern Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Lubberts, Ronald K.; Ben-Avraham, Zvi

    2002-02-01

    The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.

  7. Sedimentary processes in modern and ancient oceanic arc settings: evidence from the Jurassic Talkeetna Formation of Alaska and the Mariana and Tonga Arcs, western Pacific

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.

    2006-01-01

    Sediment deposited around oceanic volcanic ares potentially provides the most complete record of the tectonic and geochemical evolution of active margins. The use of such tectonic and geochemical records requires an accurate understanding of sedimentary dynamics in an arc setting: processes of deposition and reworking that affect the degree to which sediments represent the contemporaneous volcanism at the time of their deposition. We review evidence from the modern Mariana and Tonga arcs and the ancient arc crustal section in the Lower Jurassic Talkeetna Formation of south-central Alaska, and introduce new data from the Mariana Arc, to produce a conceptual model of volcaniclastic sedimentation processes in oceanic arc settings. All three arcs are interpreted to have formed in tectonically erosive margin settings, resulting in long-term extension and subsidence. Debris aprons composed of turbidites and debris flow deposits occur in the immediate vicinity of arc volcanoes, forming relatively continuous mass-wasted volcaniclastic records in abundant accommodation space. There is little erosion or reworking of old volcanic materials near the arc volcanic front. Tectonically generated topography in the forearc effectively blocks sediment flow from the volcanic front to the trench; although some canyons deliver sediment to the trench slope, most volcaniclastic sedimentation is limited to the area immediately around volcanic centers. Arc sedimentary sections in erosive plate margins can provide comprehensive records of volcanism and tectonism spanning < 10 My. The chemical evolution of a limited section of an oceanic arc may be best reconstructed from sediments of the debris aprons for intervals up to ~ 20 My but no longer, because subduction erosion causes migration of the forearc basin crust and its sedimentary cover toward the trench, where there is little volcaniclastic sedimentation and where older sediments are dissected and reworked along the trench slope.

  8. The Stress-Strain State of Recent Structures in the Northeastern Sector of the Russian Arctic Region

    NASA Astrophysics Data System (ADS)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.

    2018-03-01

    Complex research to determine the stress-strain state of the Earth's crust and the types of seismotectonic destruction for the northeastern sector of the Russian Arctic was conducted. The principles of regional ranking of neotectonic structures were developed according to the activity of geodynamic processes, and argumentation for their class differentiation is presented. The structural-tectonic position, the parameters of the deep structure, the system of active faults, and the tectonic stress fields, calculated on the basis of both tectonophysical analysis of discontinuous and folded late Cenozoic deformations and seismological data, were analyzed. This complex of investigations made it possible to determine the directions of the main axes of deformations of the stress-strain state of the Earth's crust and to reveal the regularity in the change of tectonic regimes.

  9. Furrow Topography and the Elastic Thickness of Ganymede's Dark Terrain Lithosphere

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert T.; Nimmo, Francis; Giese, Bernd; Bader, Christina E.; DeRemer, Lindsay C.; Prockter, Louise M.

    2003-01-01

    The effective elastic thickness of Ganymede's lithosphere tell of the satellite's thermal evolution through time. Generally it has been inferred that dark terrain, which is less tectonically deformed than grooved terrain, represents regions of cooler and thicker lithosphere [1]. The ancient dark terrain is cut by furrows, tectonic troughs about 5 to 20 km in width, which may have formed in response to large ancient impacts [1, 2]. We have applied the methods of [3] to estimate effective elastic thickness based on topographic profiles across tectonic furrows, extracted from a stereo-derived digital elevation model (DEM) of dark terrain in Galileo Regio [4]. Asymmetry in furrow topography and inferred flexure suggests asymmetric furrow fault geometry. We find effective elastic thicknesses 0.4 km, similar to analyzed areas alongside bright grooved terrain. Data and Analysis: A broken-plate elastic model.

  10. Stress field during early magmatism in the Ali Sabieh Dome, Djibouti, SE Afar rift

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Le Gall, Bernard; Daoud, Ahmed Mohamed

    2014-09-01

    The so-called Ali Sabieh range, SE Afar rift, exhibits an atypical antiform structure occurring in the overall extensional tectonic context of the Afar triple junction. We dynamically analyzed the brittle deformation of this specific structural high using four different methods in order to better constrain the tectonic evolution of this key-area in the Afar depression. Paleostress inversions appear highly consistent using the four methods, which a posteriori validates this approach. Computed paleostress fields document two major signals: an early E-W extensional field, and a later transcurrent field, kinematically consistent with the previous one. The Ali Sabieh range may have evolved continuously during Oligo-Miocene times from large-scale extensional to transcurrent tectonism, as the result of probable local stress permutation between σ1 and σ2 stress axes.

  11. Multi-scale Onland-Offshore Investigations of the New Caledonia Ophiolite, SW Pacific

    NASA Astrophysics Data System (ADS)

    Clerc, C. N.; Collot, J.; Sevin, B.; Patriat, M.; Etienne, S.; Iseppi, M.; Lesimple, S.; Jeanpert, J.; Mortimer, N. N.; Poli, S.; Pattier, F.; Juan, C.; Robineau, B.; Godard, M.; Cluzel, D.

    2017-12-01

    The Peridotite Nappe of New Caledonia is one of the largest ultramafic ophiolite in the World: it represents about one quarter of the 500 x 80 km island of Grande Terre. This extensive upper mantle unit was tectonically emplaced during the Eocene onto the northeastern edge of Zealandia continent. It is weakly deformed because it was not involved in a collision belt after obduction. A dome-shaped Eocene HP/LT metamorphic complex was exhumed across the fore-arc mantle lithosphere in the northern tip of the island. Post-obduction Miocene to Present coral reefs developed in shallow waters around Grande Terre and surrounding islands. In the perspective of a possible onshore/offshore drilling project (IODP/ICDP), we present recent advances in our understanding of offshore extensions of this ophiolite. To the south of New Caledonia, the offshore continuation of the ultramafic allochthon has been identified by dredges and by its geophysical signature as a continuous linear body that extends over a distance of more than 400 km at about 2000m bsl. Such water depths allow an unprecedented seismic reflection imaging of a drowned and well-preserved ophiolite. Seismic profiles show that the nappe has a flat-top, and is capped by carbonate reefs and dissected by several major normal faults. To the east of this presumed ultramafic body, Felicité Ridge is a 30 km wide, 350 km long, dome-shaped ridge, which may be interpreted as the possible southern extension of the HP/LT metamorphic complex observed onshore. Onshore, several 150 to 200 m long cores were drilled in the ophiolite and airborne electromagnetic allowed high-resolution imaging down to 400 m depth. These recent results allow identification of internal thrusts within the peridotite body and more superficial landslides. The analysis of polyphase fracturation and associated serpentinization brings new constraints on the tectonic evolution of the ophiolite and its subsequent weathering pattern. We integrate these data and discuss the chronology of pre-, syn-, and post-obduction tectonic events. But our limited access to the deep parts of the ophiolite calls for the necessity of planning an onshore/offshore deep drilling project.

  12. Fabric evolution across a discontinuity between lower and upper crustal domains from field, microscopic, and anisotropy of magnetic susceptibility studies in central eastern Eritrea, NE Africa

    NASA Astrophysics Data System (ADS)

    Ghebreab, W.; Kontny, A.; Greiling, R. O.

    2007-06-01

    In the Neoproterozoic East African Orogen (EAO) of Eritrea, lower to middle crustal high-grade metamorphic rocks are juxtaposed against low-grade upper crustal rocks along diffuse tectonic contact zones or discontinuities. In the central eastern part of Eritrea, such a tectonic zone is exposed as a low-angle shear zone separating two distinct high- and low-grade domains, the Ghedem and Bizen, respectively. Integrated field, microfabric, and anisotropy of magnetic susceptibility (AMS) studies show that this low-angle shear zone formed during late deformation, D2, with top-to-the-E/SE sense of motion. The hanging wall upper crustal volcanosedimentary schists are mainly paramagnetic and the footwall middle crustal mylonitized orthogneisses are mainly ferrimagnetic. Magnetic fabric studies revealed a good agreement between metamorphic/mylonitic and magnetic foliations (Kmin) and helped to explain fabric development in the shear zone. The magnetic lineations (Kmax) reflect stretching lineations where stretched mineral aggregates dominate fine-grained mylonitic matrices and intersection lineations where microstructural studies revealed two fabric elements. AMS directional plots indicate that the orientations of the magnetic lineation and of the pole to the magnetic foliation vary systematically across the shear zone. While Kmax axes form two broad maxima oriented approximately N-S and E-W, the Kmin axes change from subhorizontal, generally westward inclination in the west to moderate to steep inclination in the direction of tectonic movement to the east. Because there is a systematic change in inclination of Kmin for individual samples, all samples together form a fairly well defined cluster distribution. The distribution of Kmin in combination with the E-W scattered plot of the Kmax is in accordance with the E/SE flow of mylonites over exhumed Damas core complex in the late Neoproterozoic. During the Cenozoic, the Red Sea rift-related detachments exploited the late orogenic shear zone, indicating that the discontinuities between ductile middle and brittle upper crustal layers in the region are reactivated low-angle shear zones and possible sites of core complexes.

  13. The Links Between the Formation of the Gulf of Mexico and the Late Proterozoic to Mesozoic Tectonic Evolution of Southern North America

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Mickus, K. L.; Gurrola, H.; Harry, D. L.; Pulliam, J.

    2016-12-01

    A full understanding of the Gulf of Mexico's geologic history depends on understanding the tectonic framework along the southern margin of North America. The first step in establishing this framework was the breakup of Laurentia during the Early Paleozoic. At least one tectonic block rifted away from Laurentia's southern margin at this time, and is interpreted to be presently located in Argentina. Rifting resulted in a sinuous margin consisting of alternating ridge and transform segments extending from the southeastern U.S. across Texas into northern Mexico. The Paleozoic margin is associated with a clearly defined gravity high, and ends in the trend of this high are associated with intersections of ridge and transform segments along the margin. By the end of the Paleozoic, continental assembly via the Appalachian-Ouachita orogeny added new terranes to the eastern and southern margins of Laurentia and the assembly of the supercontinent Pangea was complete. Triassic through Late Jurassic opening of the Gulf of Mexico (GOM) created a complex margin, initially mobilizing several crustal blocks that were eventually left behind on the North American margin as seafloor spreading developed within the Gulf and the Yucatan block separated and rotated into its current position. Recent deep seismic reflection profiles along the northern margin of the GOM show that rifted continental crust extends offshore for 250 km before the oceanic crust of the Gulf of Mexico is encountered. Our group has worked to produce four integrated models of the lithospheric structure based upon reflection, refraction, and teleseismic data acquired across this margin integrated with gravity, magnetic, geologic and drilling data. These models define a complex zone of crustal thinning along the Gulf Coastal plain of Texas that is covered by up to 10km of primarily Cretaceous and younger sedimentary rocks. To the east along the coastal plain region, we have defined two large crustal blocks that were essentially left behind by the opening of the Gulf of Mexico.

  14. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego

    2017-07-01

    Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process produces a high vapor-dominated zone close to the surface, whereas the WNW-striking faults could act as a boundary of the Copahue geothermal area to the south.

  15. Tectonostratigraphy and depositional history of the Neoproterozoic volcano-sedimentary sequences in Kid area, southeastern Sinai, Egypt: Implications for intra-arc to foreland basin in the northern Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Khalaf, E. A.; Obeid, M. A.

    2013-09-01

    This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian-Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1-D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The progressive change in lithofacies from marine intra-arc basin to continental molasses foreland basin and from compression to extension setting respectively, imply that the source area became peneplained, where the Kid basin became stabilized as sedimentation progressed following uplift. The scenario proposed of the study area supports the role of volcanic and tectonic events in architecting the facies and stratigraphic development.

  16. The Western Carpathians fold and thrust belt and its relationships with the inner zone of the orogen: constraints from sequentially restored, balanced cross-sections integrated with low-temperature thermochronometry

    NASA Astrophysics Data System (ADS)

    Mazzoli, Stefano; Castelluccio, Ada; Andreucci, Benedetta; Jankowski, Leszek; Ketcham, Richard A.; Szaniawski, Rafal; Zattin, Massimiliano

    2017-04-01

    The Western Carpathians are the northernmost, W-E-trending branch of a more than 1500 km long, curved orogen. Traditionally, the Western Carpathians have been divided into two distinct parts, namely the Inner Carpathians (including basement nappes) and the Outer Carpathians fold and thrust belt. These two major domains are separated by the so-called 'Pieniny Klippen Belt', a narrow zone of intensely deformed and sheared Mesozoic to Palaeogene rocks. In this contribution, a new interpretation for the tectonic evolution of the Western Carpathians is provided based on: (i) the analysis of the stratigraphy of the Mesozoic-Tertiary successions across the different orogenic domains; (ii) the construction of a series of balanced and restored cross-sections, validated by 2D forward modeling; and (iii) the integration of a large thermochronometric dataset (apatite fission tracks and apatite and zircon (U-Th-(Sm))/He ages). The latter work included thermo-kinematic modeling using FetKin, a finite element solver that takes as input a series of balanced cross-sections. The software solves the heat flow equations in 2D together with the predicted thermochronometric ages, which can be compared with the measured data. Moreover, the spatial distribution of burial depths, cooling ages and the rate of exhumation were correlated with heat flow, topographic relief, crustal and lithospheric thickness. This process allowed us to obtain the cooling history along each section and test the response of low-temperature thermochronometers to the changes in the thrust belt geometry produced by fault activity and topography evolution. Our sequentially restored, balanced cross-sections, showing a mix of thin-skinned thrusting and thick-skinned tectonic inversion involving the reactivation of pre-existing basement normal faults, effectively unravel the tectonic evolution of the thrust belt-foreland basin system. Our analysis provides a robust correlation of the stratigraphy from the Outer to the Inner Carpathians, independently of the occurrence of oceanic lithosphere in the area; it also allows for the reinterpretation of the tectonic relationships between the two major tectonic domains of the orogen, and the exhumation mechanisms affecting them. The interplay between thick- and thin-skinned thrusting had a relevant effect on the distribution of cooling ages. The non-homogeneous burial and exhumation history unravelled by our work suggests that different exhumation processes controlled the Neogene stages of the Carpathian evolution. In particular, the data point out a significant along-strike variation of exhumation mechanisms in the Outer Carpathian domain, ranging from Early Miocene syn-thrusting erosion to the west, to post-thrusting tectonic denudation in the central sector, to post-thrusting exhumation associated with uplift of the accretionary wedge to the east. Relatively young cooling ages (13 to 4 Ma) obtained for the Inner Carpathian domain were mainly associated with a later uplift, partly controlled by high-angle faulting, and coeval erosion. The effective integration of structural and thermochronometric methods carried out in this study provided, for the first time, a high-resolution thermo-kinematic model of the Western Carpathians from the Early Cretaceous onset of shortening to the present-day.

  17. Ogaden Basin subsidence history: Another key to the Red Sea-Gulf of Aden tectonic puzzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigott, J.D.; Neese, D.; Carsten, G.

    1995-08-01

    Previous work has attempted to understand the tectonic evolution of the Red Sea-Gulf of Aden region through a focus upon plate kinematics and reconstruction of plate interactions in a two dimensional sense. A significant complement to the three dimensional puzzle can be derived from a critical examination of the vertical component, tectonic subsidence analysis. By removing the isostatic contributions of sediment loading and unloading, and fluctuations in sea level, the remaining thermal-mechanical contribution to a basin`s subsidence can be determined. Such an analysis of several Ogaden Basin wells reveals multiple pulses of tectonic subsidence and uplift which correspond to far-fieldmore » tectonic activities in the Red Sea and Gulf of Aden. One of the more dramatic is a Jurassic tectonic pulse circa 145-130 m.a., and a later extensional event which correlates to a major subsidence event ubiquitous through-out the Gulf of Aden, related to Gondwana Land breakup activities. Tectonic uplift during the Tertiary coincides with early Red Sea rifting episodes. Such activities suggest the Ogaden Basin has been a relatively stable East African cratonic basin, but with heating-extension events related to nearby plate interactions. In terms of hydrocarbon generation, the use of steady state present day geothermal gradients, coupled with subsidence analysis shows that potential Paleozoic and Mesozoic source rocks initiated generation as early as the Jurassic. The generating potential of Paleozoic source rocks would only be exacerbated by later heating events. Furthermore, cooling and tectonic uplift during the Tertiary would tend to arrest on-going hydrocarbon generation for Jurassic source rocks in the Ogaden area.« less

  18. Deciphering the tectonometamorphis history of the Anarak Metamorphic Complex, Central Iran

    NASA Astrophysics Data System (ADS)

    Zanchetta, Stefano; Malaspina, Nadia; Zanchi, Andrea; Martin, Silvana; Benciolini, Luca; Berra, Fabrizio; Javadi, Hamid Reza; Koohpeyma, Meysam; Ghasemi, Mohammad R.; Sheikholeslami, Mohammad Reza

    2014-05-01

    The Cimmerian orogeny shaped the southern margin of Eurasia during the Late Permian and the Triassic. Several microplates, detached from Gondwana in the Early Permian, migrated northward to be accreted to the Eurasia margin. In the reconstruction of such orogenic event Iran is a key area. The occurrence of several "ophiolites" belt of various age, from Paleozoic to Cretaceous, poses several questions on the possibility that a single rather than multiple Paleotethys sutures occur between Eurasia and Iran. In this scenario the Anarak region in Central Iran still represents a conundrum. Contrasting geochronological, paleontological, paleomagnetic data and reported field evidence suggest different origins for the Anarak Metamorphic Complex (AMC). The AMC is either interpreted to be part of microplate of Gondwanan affinity, a relic of an accretionary wedge developed at the Eurasia margin during the Paleothetys subduction or part of the Cimmerian suture zone, occurring in NE Iran, displaced to central Iran by counterclockwise rotation of the central Iranian blocks from the Triassic. Our field structural data, petrographic and geochemical data, carried out in the frame of the DARIUS PROGRAMME, indicate that the AMC is not a single coherent block, but it consists of several units (Morghab, Chah Gorbeh, Patyar, Palhavand Gneiss, Lakh Marble, Doshak and dismembered "ophiolites") which display different tectonometamorphic evolutions. The Morghab and Chah Gorbeh units share a common history and they preserve, as a peculiar feature within metabasites, a prograde metamorphism with sin- to post-deformation growth of blueschists facies assemblages on pre-existing greenschist facies mineralogical associations. LT-HP metamorphism responsible for the growth of sodic amphibole has been recognized also within marble lenses at the southern limit of the Chah Gorbeh unit. Finally, evidence of LT-HP metamorphism also occur in the metabasites and possibly also in the serpentinites that form most of the "ophiolites" within the AMC. Structural analyses show that the Chah Gorbeh, Morghab units and the "ophiolites" have been tectonically coupled during at least two deformational phases that occurred at greenschist facies conditions and predate the LT-HP metamorphic overprint. Available geochronological data loosely constraints the subduction event in the Late Permian - Early Triassic times. Subsequent deformation events that occurred during the whole Mesozoic and the Cenozoic up to the Miocene and possibly later, resulted in folding, thrusting and faulting that dismembered the original tectonic contacts. Therefore, the correlations among deformation structures and metamorphic events in the different units are not straightforward. The other units of the AMC lack evidence of HP metamorphism, especially the Lakh Marble a large thrust sheet that occupies the uppermost structural position in the AMC. The contact with the underlying units is invariably tectonic, thus no original relationships have been preserved. So, if structural and petrographic data point out an accretionary wedge setting for the evolution of the Chah Gorbeh, Morghab and the "ophiolites", geodynamic significance and paleogeographic attribution of other units still remain controversial. In progress U-Pb dating of undeformed intrusive bodies and metamorphic minerals in the LT-HP rocks will soon help to better constrain the evolution of the ACM.

  19. Morpho-stratigraphic features of the northern shelf of the Strait of Gibraltar: Tectonic and sedimentary processes acting at different temporal scales

    NASA Astrophysics Data System (ADS)

    Luján, M.; Lobo, F. J.; Bruno, M.; de Castro, S.

    2018-06-01

    The northern shelf of the Strait of Gibraltar adjacent to Camarinal Sill, defined here as the Cape Paloma continental shelf, has been investigated by analyzing a set of geophysical data including multibeam bathymetric images, a side-scan sonar mosaic and high-resolution seismic profiles, and the simulation of water-mass circulation patterns along the northern coastal margin. The aim of the study was to establish the significance of factors determining the evolution of this shallow margin at different temporal scales and to assess the implications for bedform generation in strait settings, taking into account the complex tectonic evolution and the energetic hydrodynamic regime of the strait. Deformed basement rocks are part of the Betic-Rif thrust wedge, western Gibraltar Arc, mainly formed by the materials of the Flysch Complex units and covered by Pliocene to Quaternary post-orogenic deposits. A central high (Bajo de los Cabezos High) is delimited by lateral depressions, that nucleated two major depocentres with distinctive filling histories. The eastern depocentre is controlled by WNW-ESE faults cutting the Cretaceous-Miocene basement rocks; these faults generate horsts and grabens that could have contributed to the opening of the Strait of Gibraltar during the Pliocene. The largest and westernmost depocentre is related to the complete infilling of a shelf palaeovalley. The sediment cover is molded by different fields of submarine dunes and comet marks that indicate the influence of hydrodynamic processes on sediment transport at the coastal margin. The observations in the study area regarding bedform development must be placed into a wider context of strait sediment dynamics. The Cape Paloma continental shelf exhibits both erosional and depositional forms, due to its intermediate location between the strait, mostly dominated by erosional processes, and the Barbate Platform (northwest of the study area), mostly characterized by depositional forms. The long-term evolution of the sediment depocentres in the study area appears to be mainly influenced by the morpho-tectonic configuration of the margin, which in turn was established to a large extent by differential uplifting along the coast. In the shelf east of the central high, the basement horst and graben structure trapped sediments in the physiographic lows and fostered the formation of large-scale sediment banks. In the shelf west of the central high, the occurrence of a major infilled palaeovalley is in agreement with a gentle subsidence trend. The physiographic configuration is also thought to play a major role in defining short-term processes, particularly in confining a cyclonic eddy to the east of the Bajo de los Cabezos High during specific conditions of the tidal cycle. This eddy favors the recirculation of sediments in the coastal margin, as evidenced by small bedform fields that apparently show a wider distribution that the larger-scale, confined sediment banks, due to the instauration of the modern sediment dynamics after the complete shelf flooding. The sediment transport pattern established in the study area seems to be eventually captured by a submarine channel that provide an efficient mechanism for sediment export toward deep-water settings, where an extensive contourite depositional system has been documented.

  20. Structural controls on Eocene to Pliocene tectonic and metallogenic evolution of the southernmost Lesser Caucasus, Armenia: paleostress field reconstruction and fault-slip analysis

    NASA Astrophysics Data System (ADS)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik

    2017-04-01

    The Cenozoic evolution of the central segment of the Tethyan belt is dominated by oblique convergence and final collision of Gondwana-derived terranes and the Arabian plate with Eurasia, which created a favorable setting for the formation of the highly mineralized Meghri-Ordubad pluton in the southernmost Lesser Caucasus. Regional strike-slip faults played an important role in the control of the porphyry Cu-Mo and epithermal systems hosted by the Meghri-Ordubad pluton. In this contribution we discuss the paleostress and the kinematic environment of the major strike-slip and oblique-slip ore-controlling faults throughout the Eocene subduction to Mio-Pliocene post-collisional tectonic evolution of the Meghri-Ordubad pluton based on detailed structural field mapping of the ore districts, stereonet compilation of ore-bearing fractures and vein orientations in the major porphyry and epithermal deposits, and the paleostress reconstructions. Paleostress reconstructions indicate that during the Eocene and Early Oligocene, the main paleostress axe orientations reveal a dominant NE-SW-oriented compression, which is compatible with the subduction geometry of the Neotethys along Eurasia. This tectonic setting was favorable for dextral displacements along the two major, regional NNW-oriented Khustup-Giratakh and Salvard-Ordubad strike-slip faults. This resulted in the formation of a NS-oriented transrotational basin, known as the Central magma and ore- controlling zone (Tayan, 1998). It caused a horizontal clockwise rotation of blocks. The EW-oriented faults separating the blocks formed as en-échelon antithetic faults (Voghji, Meghrasar, Bughakyar and Meghriget-Cav faults). The Central zone consists of a network of EW-oriented sinistral and NS-oriented subparallel strike-slip faults (Tashtun, Spetry, Tey, Meghriget and Terterasar faults). They are active since the Eocene and were reactivated during the entire tectonic evolution of the pluton, but with different behaviors. During the Eocene, dextral displacement along the NS-oriented strike-slip faults were favorable for the opening of NE-oriented en-échelon normal faults. The NS-oriented faults, in particular at their intersection with EW- and NE-oriented faults, were important ore-controlling structures for the emplacement of major porphyry Cu-Mo (Dastakert, Aygedzor and Agarak) and epithermal (Tey-Lichkvaz and Terterasar) deposits. In summary, we conclude that from the Eocene to the Oligocene the dominant structural system consisted essentially in dextral strike-slip tectonics along the major NS-oriented faults. During the Oligocene to Miocene, NS-oriented compression and EW-oriented extension predominated, which is consistent with the collisional and post-collisional geodynamic evolution of the study area. This setting resulted in renewed dextral displacement along the NS-oriented ore-controlling faults, and sinistral displacement along the EW-oriented antithetic faults. This setting created the favorable geometry for opening NS- EW- and NE-oriented extension fractures, and the adequate conditions for the emplacement of vein-, stockwork-type porphyry deposits, including the giant Kadjaran deposit. During the Lower Miocene to Pliocene there was a rotation in the main regional stress components according to progressive regional evolution. Paleostress reconstructions indicate a change in compression from NS during the Miocene to NNW during the Pliocene. The Tashtun transcurrent fault had an oblique-slip behavior. It formed a negative flower structure with a sinistral strike-slip component, which resulted in the development of a pull-apart basin and the formation of the Lichk porphyry-epithermal system.

Top