Sample records for complex tectonic histories

  1. Philippine microplate tectonics and hydrocarbon exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, J.J. Jr.

    1986-07-01

    Hydrocarbon traps in the Philippine Islands developed during a long, complex history of microplate tectonics. Carbonate and clastic stratigraphic traps formed during Mesozoic and early Cenozoic rifting and drifting. Hydrocarbons, generated in deep rift basins, migrated to the traps during drifting. Later Cenozoic compressional tectonic activity and concomitant faulting enhanced some traps and destroyed others. Seismic data offshore from Palawan Island reveal the early trap histories. Later trap histories can be interpreted from seismic, outcrop, and remote-sensing data. Understanding the microplate tectonic history of the Philippines is the key to interpreting trap histories.

  2. The Cadiz margin study off Spain: An introduction

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.

    1999-01-01

    The Cadiz continental margin of the northeastern Gulf of Cadiz off Spain was selected for a multidisciplinary project because of the interplay of complex tectonic history between the Iberian and African plates, sediment supply from multiple sources, and unique Mediterranean Gateway inflow and outflow currents. The nature of this complex margin, particularly during the last 5 million years, was investigated with emphasis on tectonic history, stratigraphic sequences, marine circulation, contourite depositional facies, geotechnical properties, geologic hazards, and human influences such as dispersal of river contaminants. This study provides an integrated view of the tectonic, sediment supply and oceanographic factors that control depositional processes and growth patterns of the Cadiz and similar modem and ancient continental margins.

  3. Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus

    NASA Technical Reports Server (NTRS)

    Hurwitz, D. M.; Head, J. W.

    2009-01-01

    Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our progress in mapping the spatial and stratigraphic relationships of material units and our initial interpretations of the tectonic and volcanic history of the region surrounding the north pole of Venus

  4. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate

    PubMed Central

    Finarelli, John A.; Badgley, Catherine

    2010-01-01

    Continental biodiversity gradients result not only from ecological processes, but also from evolutionary and geohistorical processes involving biotic turnover in landscape and climatic history over millions of years. Here, we investigate the evolutionary and historical contributions to the gradient of increasing species richness with topographic complexity. We analysed a dataset of 418 fossil rodent species from western North America spanning 25 to 5 Ma. We compared diversification histories between tectonically active (Intermontane West) and quiescent (Great Plains) regions. Although diversification histories differed between the two regions, species richness, origination rate and extinction rate per million years were not systematically different over the 20 Myr interval. In the tectonically active region, the greatest increase in originations coincided with a Middle Miocene episode of intensified tectonic activity and global warming. During subsequent global cooling, species richness declined in the montane region and increased on the Great Plains. These results suggest that interactions between tectonic activity and climate change stimulate diversification in mammals. The elevational diversity gradient characteristic of modern mammalian faunas was not a persistent feature over geologic time. Rather, the Miocene rodent record suggests that the elevational diversity gradient is a transient feature arising during particular episodes of Earth's history. PMID:20427339

  5. Proterozoic orogens in southern Peninsular India: Contiguities and complexities

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Santosh, M.

    2013-12-01

    The Precambrian terranes of southern Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the southern and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents - Rodinia and Gondwana. These Proterozoic orogens are described as Southern Granulite Terrane (SGT) in the southern tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ˜400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear zone systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P-T paths, development of lithospheric shear zones, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale "flower structures", transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a subvertical grain conducive to reactivation tectonics. Our synthesis of the spatial distribution, geometry, kinematics and the transpressional strain of the shear zone systems provides insights into the tectono-metamorphic history of the Proterozoic orogens of southern India and their contiguity and complexities. Recent understanding of subduction, accretion and collisional history along these zones together with a long lived transpressional tectonic regime imply that these orogens witnessed identical tectonic regimes at different times in Earth history, although the major and common structural architecture was built during the final assembly of the Gondwana supercontinent.

  6. Viscoelastic Lithosphere Response and Stress Memory of Tectonic Force History (Invited)

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.

    2009-12-01

    While great attention is often paid to the details of creep deformation mechanisms, brittle failure and their compositional controls when predicting the response of lithosphere to tectonic forces, the lithosphere’s elastic properties are usually neglected; a viscous rheology alone is often used to predict the resulting distribution of stress with depth or to determine lithosphere strength. While this may simplify geodynamic modelling of lithosphere response to tectonic processes, the omission of the elastic properties can often give misleading or false predictions. The addition of the elastic properties of lithosphere material in the form of a visco-elastic rheology results is a fundamentally different lithosphere response. This difference can be illustrated by examining the application of horizontal tectonic force to a section of lithosphere incorporating the brittle-visco-elastic response of each infinitesimal lithosphere layer with temperature and stress dependent viscous rheology. The transient response of a visco-elastic lithosphere to a constant applied tectonic force and the resulting distribution of stress with depth are substantially different from that predicted by a viscous lithosphere model, with the same lithosphere composition and temperature structure, subjected to a constant lateral strain rate. For visco-elastic lithosphere subject to an applied horizontal tectonic force, viscous creep in the lower crust and mantle leads to stress decay in these regions and to stress amplification in the upper lithosphere through stress redistribution. Cooling of lithosphere with a visco-elastic rheology results in thermal stresses which, as a consequence of stress dissipation by creep and brittle failure, results in a complex and sometimes counter-intuitive distribution of stress with depth. This can be most clearly illustrated for the cooling of oceanic lithosphere, however similar or more complex behaviour can be expected to occur for continental lithosphere. The application of changes in applied tectonic force with time to a visco-elastic lithosphere model results in reversals in the sign of stress with depth as a consequence of the “memory” of past stress dissipation by creep and brittle deformation. Because of this “memory”, locally stress polarity may be opposite to that of the current applied tectonic force. A lithosphere with viscous rheology displays no such “memory” of the applied tectonic stress history. The stress “memory” of lithosphere with visco-elastic rheology to its history of applied tectonic force, heating and cooling adds to its effective rheological complexity, particularly for continental lithosphere.

  7. Tectonic histories between Alba Patera and Syria Planum, Mars

    USGS Publications Warehouse

    Anderson, R.C.; Dohm, J.M.; Haldemann, A.F.C.; Hare, T.M.; Baker, V.R.

    2004-01-01

    Syria Planum and Alba Patera are two of the most prominent features of magmatic-driven activity identified for the Tharsis region and perhaps for all of Mars. In this study, we have performed a Geographic Information System-based comparative investigation of their tectonic histories using published geologic map information and Mars Orbiter Laser Altimetry (MOLA) data. Our primary objective is to assess their evolutional histories by focusing on their extent of deformation in space and time through stratigraphic, paleotectonic, topographic, and geomorphologic analyses. Though there are similarities among the two prominent features, there are several distinct differences, including timing deformational extent, and tectonic intensity of formation. Whereas Alba Patera displays a major pulse of activity during the Late Hesperian/Early Amazonian, Syria Planum is a long-lived center that displays a more uniform distribution of simple graben densities ranging from the Noachian to the Amazonian, many of which occur at greater distances away from the primary center of activity. The histories of the two features presented here are representative of the complex, long-lived evolutional history of Tharsis. ?? 2004 Elsevier Inc. All rights reserved.

  8. Unraveling tectonics and climate forcing in the late-Neogene exhumation history of South Alaska

    NASA Astrophysics Data System (ADS)

    Valla, Pierre; Champagnac, Jean-Daniel; Shuster, David; Herman, Frédéric; Giuditta Fellin, Maria

    2015-04-01

    The southern Alaska range presents an ideal setting to study the complex interactions between tectonics, climate and surface processes in landscape evolution. It exhibits active tectonics with the ongoing subduction/collision between Pacific and North America, and major active seismogenic reverse and strike-slip faults. The alpine landscape, rugged topography and the important ice-coverage at present reveal a strong glacial imprint associated with high erosion and sediment transport rates. Therefore, the relative importance of climatically-driven glacial erosion and tectonics for the observed late-exhumation history appears to be quite complex to decipher. Here, we first perform a formal inversion of an extensive bedrock thermochronological dataset from the literature to quantify the large-scale 20-Myr exhumation history over the entire southern Alaska. We show that almost half of the variability within the thermochronological record can be explained by modern annual precipitations spatial distribution, the residuals clearly evidencing localized exhumation along major tectonic structures of the frontal fold and thrust belt. Our results confirm high exhumation rates in the St Elias "syntaxis" and frontal zones for the last 0-2 Myr, where major ice fields and high precipitation rates likely sustained high exhumation rates; however the impact of late Cenozoic glaciations is difficult to constrain because of the low resolution on the exhumation history older than ~2 Myr. On the contrary, our inversion outcomes highlight that north of the Bagley Icefield the long-term exhumation has remained quite slow and continuous over the last ~20 Myr, with no late-stage signal of exhumation change since the onset of glaciations despite a clear glacial imprint on the landscape. We thus focus on the Granite Range (Wrangell-St Elias National Park, Alaska), an area presenting a strong glacial imprint but minor tectonic activity with only localized brittle deformation. We sampled four elevation profiles over an East-West transect for low-temperature thermochrometry. Apatite (U-Th-Sm)/He dating provides ages between ~10 and 30 Ma, in agreement with published data, and shows apparent low long-term exhumation rates (~0.1 km/Myr). 4He/3He thermochronometry on a subset of samples reveals a more complex exhumation history, with a significant increase in exhumation since ~6-4 Ma that we relate to the early onset of glaciations and associated glacial erosion processes. Our results, in agreement with offshore sediment records, thus confirm an early glacial activity and associated erosion response in Alaska, well before the onset of Pliocene-Pleistocene Northern Hemisphere glaciations.

  9. Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Jercinovic, Michael J.; Terry, Michael P.

    1999-11-01

    High-resolution X-ray mapping and dating of monazite on the electron microprobe are powerful geochronological tools for structural, metamorphic, and tectonic analysis. X-ray maps commonly show complex Th, U, and Pb zoning that reflects monazite growth and overgrowth events. Age maps constructed from the X-ray maps simplify the zoning and highlight age domains. Microprobe dating offers a rapid, in situ method for estimating ages of mapped domains. Application of these techniques has placed new constraints on the tectonic history of three areas. In western Canada, age mapping has revealed multiphase monazite, with older cores and younger rims, included in syntectonic garnet. Microprobe ages show that tectonism occurred ca. 1.9 Ga, 700 m.y. later than mylonitization in the adjacent Snowbird tectonic zone. In New Mexico, age mapping and dating show that the dominant fabric and triple-point metamorphism occurred during a 1.4 Ga reactivation, not during the 1.7 Ga Yavapai-Mazatzal orogeny. In Norway, monazite inclusions in garnet constrain high-pressure metamorphism to ca. 405 Ma, and older cores indicate a previously unrecognized component of ca. 1.0 Ga monazite. In all three areas, microprobe dating and age mapping have provided a critical textural context for geochronologic data and a better understanding of the complex age spectra of these multistage orogenic belts.

  10. Crustal architecture and tectonic evolution of the Cauvery Suture Zone, southern India

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Yellappa, T.; Santosh, M.

    2016-11-01

    The Cauvery suture zone (CSZ) in southern India has witnessed multiple deformations associated with multiple subduction-collision history, with incorporation of the related accretionary belts sequentially into the southern continental margin of the Archaean Dharwar craton since Neoarchean to Neoproterozoic. The accreted tectonic elements include suprasubduction complexes of arc magmatic sequences, high-grade supracrustals, thrust duplexes, ophiolites, and younger intrusions that are dispersed along the suture. The intra-oceanic Neoarchean-Neoproterozoic arc assemblages are well exposed in the form of tectonic mélanges dominantly towards the eastern sector of the CSZ and are typically subjected to complex and multiple deformation events. Multi-scale analysis of structural elements with detailed geological mapping of the sub-regions and their structural cross sections, geochemical and geochronological data and integrated geophysical observations suggest that the CSZ is an important zone that preserves the imprints of multiple cycles of Precambrian plate tectonic regimes.

  11. Investigation of spreading center ecolution by joint inversion of seafloor magnetic anomaly and tectonic fabric data

    NASA Technical Reports Server (NTRS)

    Shoberg, Tom; Stein, Seth

    1994-01-01

    Spreading center segments that have experienced a complex tectonic history including rift propagation may have a complicated signature in bathymetric and magnetic anomaly data. To gain insight into the history of such regions, we have developed techniques in which both the magnetic anomaly patterns and seafloor fabric trends are predicted theoretically, and the combined predictions are compared numerically with the data to estimate best fitting parameters for the propagation history. Fitting functions are constructed to help determine which model best matches the digitized fabric and magnetic anomaly data. Such functions offer statistical criteria for choosing the best fit model. We use this approach to resolve the propagation history of the Cobb Offset along the Juan de Fuca ridge. In this example, the magnetic anomaly data prove more useful in defining the geometry of the propagation events, while the fabric, with its greater temporal resolution, is more useful for constraining the rate of propagation. It thus appears that joint inversion of magnetic and seafloor fabric data can be valuable in tectonic analyses.

  12. "Tectonic Petrameter," An Alternative Method to Teaching the Geologic Time Scale

    NASA Astrophysics Data System (ADS)

    Posner, E. S.

    2011-12-01

    I have over a decade of experience as a performance poet and am now a graduate student in the geosciences. I have created a performance poem / play script, "Tectonic Petrameter," as an alternative method of teaching the geologic time scale. "The Archean came next and it was a blast. Tectonic plates were smaller and they moved pretty fast. In an enthusiastic flash of ash, volcanic islands smashed together." The use of rhyme and rhythm presents a different and interdisciplinary approach to teaching Earth history that appeals to a wide range of learning styles and makes science fun, while clearly describing important concepts in geology and events in Earth history. "Now it's time to get down with the Coal Swamp Stomp! Tap your feet to the beat of the formation of peat like a plant plantation soaking up the bright heat." "Tectonic Petrameter" by itself is an illustrated spoken-word poem that leads audiences from all levels of scientific background on an excitingly educational journey through geologic time. I will perform my 10-minute memorized poem and present results from my ongoing study to assess the effectiveness of "Tectonic Petrameter" as a teaching tool in K-12 and introductory undergraduate classroom curricula. I propose that using "Tectonic Petrameter" as a performance piece and theatrical play script in K-12 and introductory undergraduate classrooms, as well as in broader community venues, may be an avenue for breaking down barriers related to teaching about Earth's long and complex history. Digital copies of "Tectonic Petrameter" will be made available to interested parties.

  13. Stratigraphy and Stress History Recorded by a Complex Volcano-Tectonic Feature in the Nemesis Tessera Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Doggett, T. C.; Grosfils, E. B.

    2002-01-01

    The stress history of a feature, identified as a previously uncataloged dike swarm, at 45N 191E is mapped as clockwise rotation of maximum horizontal compressive stress. It is intermediate between areas associated with compression, mantle upwelling and convection. Additional information is contained in the original extended abstract.

  14. Scientific results of the NASA-sponsored study project on Mars: Evolution of volcanism, tectonics, and volatiles

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C. (Editor); Sharpton, Virgil L. (Editor); Zimbelman, James R. (Editor)

    1990-01-01

    The objectives of the Mars: Evolution of Volcanism, Tectonics, and Volatiles (MEVTV) project are to outline the volcanic and tectonic history of Mars; to determine the influence of volatiles on Martian volcanic and tectonic processes; and to attempt to determine the compositional, thermal, and volatile history of Mars from its volcanic and tectonic evolution. Available data sets were used to test general models of the volcanic and tectonic history of Mars.

  15. Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives

    PubMed Central

    Badgley, Catherine; Smiley, Tara M.; Terry, Rebecca; Davis, Edward B.; DeSantis, Larisa R.G.; Fox, David L.; Hopkins, Samantha S.B.; Jezkova, Tereza; Matocq, Marjorie D.; Matzke, Nick; McGuire, Jenny L.; Mulch, Andreas; Riddle, Brett R.; Roth, V. Louise; Samuels, Joshua X.; Strömberg, Caroline A.E.; Yanites, Brian J.

    2018-01-01

    Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. PMID:28196688

  16. Mimas: Tectonic structure and geologic history

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Mimas, the innermost of the major saturnian satellites, occupies an important place in comparative studies of icy satellites. It is the smallest icy satellite known to have a mostly spherical shape. Smaller icy objects like Hyperion and Puck are generally irregular in shape, while larger ones like Miranda and Enceladus are spherical. Thus Mimas is near the diameter where the combination of increasing surface gravity and internal heating begin to have a significant effect on global structure. The nature and extent of endogenic surface features provide important constraints on the interior structure and history of this transitional body. The major landforms on Mimas are impact craters. Mimas has one of the most heavily cratered surfaces in the solar system. The most prominent single feature on Mimas is Herschel, an unrelaxed complex crater 130 km in diameter. The only other recognized landforms on Mimas are tectonic grooves and lineaments. Groove locations were mapped by Schenk, but without analysis of groove structures or superposition relationships. Mimas' tectonic structures are remapped here in more detail than previously has been done, as part of a general study of tectonic features on icy satellites.

  17. Science on Stage: Engaging and teaching scientific content through performance art

    NASA Astrophysics Data System (ADS)

    Posner, Esther

    2016-04-01

    Engaging teaching material through performance art and music can improve the long-term retention of scientific content. Additionally, the development of effective performance skills are a powerful tool to communicate scientific concepts and information to a broader audience that can have many positive benefits in terms of career development and the delivery of professional presentations. While arts integration has been shown to increase student engagement and achievement, relevant artistic materials are still required for use as supplemental activities in STEM (science, technology, engineering, mathematics) courses. I will present an original performance poem, "Tectonic Petrameter: A Journey Through Earth History," with instructions for its implementation as a play in pre-university and undergraduate geoscience classrooms. "Tectonic Petrameter" uses a dynamic combination of rhythm and rhyme to teach the geological time scale, fundamental concepts in geology and important events in Earth history. I propose that using performance arts, such as "Tectonic Petrameter" and other creative art forms, may be an avenue for breaking down barriers related to teaching students and the broader non-scientific community about Earth's long and complex history.

  18. Martian canyons and African rifts: Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    1978-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  19. A Tale of Two Orogens: Comparing Crustal Processes in the Proterozoic Trans-Hudson and Grenville Orogens, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Bastow, I. D.; Gilligan, A.; Petrescu, L.

    2016-12-01

    The Precambrian core of North America is an assemblage of Archean cratons and Proterozoic orogenic belts, preserving over 3 billion years of Earth history. Here we focus on two of the largest collisional orogens, using recent and ongoing seismological studies to probe their present-day structure and tectonic history. The 1.8 Ga collision between the Western Churchill and Superior cratons, along with microcontinental and island arc terranes, formed the Trans-Hudson Orogen (THO), a collisional belt similar in scale and shape to the present-day Himalaya-Karakoram-Tibet Orogen (HKTO). In the Mesoproterozoic, a series of collisions reworked the SE margin of the Superior craton and added new material over a period of several hundred Ma, culminating in the Grenvillian orogeny and the assembly of the supercontinent Rodinia. The Grenville Orogen is thought to have been a large, hot, long-lived plateau which subsequently underwent orogenic collapse. While similar in spatial scale, the Trans-Hudson and Grenville Orogens have significantly different tectonic histories, notably in terms of longevity and tectonic evolution. Comparison of these collisional belts with each other, and with the HTKO, provide valuable insights into plate-tectonic history. Recently a number of broadband seismograph installations have allowed a detailed study of present-day crustal structure beneath the THO and the Grenville. Receiver-function and surface wave studies provide information on crustal thickness variations, bulk crustal composition and crustal heterogeneity. The crust beneath the orogens is generally thicker, more mafic and more heterogeneous than that beneath neighbouring Archean and Phanerozoic domains, with significant along-strike variability and Moho complexity. We review and interpret the new crustal structure information in the context of the tectonic processes affecting the two contrasting orogens.

  20. Final report. [Mesozoic tectonic history of the northeastern Great Basin (Nevada)

    NASA Technical Reports Server (NTRS)

    Zamudio, Joe

    1993-01-01

    In eastern Nevada and western Utah is an extensive terrane that has experienced a complex tectonic history of Mesozoic deformation and superposed Tertiary extension. The Mesozoic tectonic history of this area has been the subject of controversy for the past twenty or more years. The debate has centered on whether major Mesozoic geologic structures were due to compressional or extensional tectonic regimes. The goal of our research was to decipher the deformational history of the area by combining detailed geologic mapping, remote sensing data analysis, and U-Pb and K-Ar geochronology. This study area includes the Dolly Varden Mountains and adjacent Currie Hills, located in the semi-arid environment of the northeastern Great Basin in Nevada. Vegetation cover in the Dolly Varden Mountains typically ranges from about 10 percent to 50 percent, with some places along drainages and on high, north-facing slopes where vegetation cover approaches 100 percent. Sagebrush is found at less vegetated lower elevations, whereas pinon pine and juniper are prevalent above 2,000 meters. A variety of geologic materials is exposed in the study area. A sequence of Late Paleozoic and Triassic sedimentary rocks includes limestone, dolomite, chert, sandstone, siltstone and shale. A two-phase granitic stock, called the Melrose, intruded these rocks, resulting in metamorphism along the intrusive contact. Tertiary volcanic rocks cover most of the eastern part of the Dolly Varden Mountains and low-lying areas in the Currie Hills.

  1. An evaporite-bearing accretionary complex in the northern front of the Betic-Rif orogen

    NASA Astrophysics Data System (ADS)

    Pérez-Valera, Fernando; Sánchez-Gómez, Mario; Pérez-López, Alberto; Pérez-Valera, Luis Alfonso

    2017-06-01

    The Guadalquivir Accretionary Complex forms a largely oblique prism at the northern edge of the Betic-Rif orogen, where Miocene sediments plus allochthonous evaporite-bearing units were accreted during the displacement of the Alborán Domain toward the west. Traditional interpretations end the tectonic structuring of the Betic Cordillera at the present topographic front, beyond which gravitational and/or diapiric processes would predominate. However, this study shows pervasive tectonic deformation in the outer prism with coherent oblique shortening kinematics, which is achieved through an alternation of roughly N-S arcuate thrust systems connected by E-W transfer fault zones. These structures accord well with the geophysical models that propose westward rollback subduction. The main stage of tectonic activity occurred in the early-middle Miocene, but deformation lasted until the Quaternary with the same kinematics. Evaporite rocks played a leading role in the deformation as evidenced by the suite of ductile structures in gypsum distributed throughout the area. S- and L- gypsum tectonites, scaly clay fabrics, and brittle fabrics coexist and consistently indicate westward motion (top to 290°), with subordinate N-S contraction almost perpendicular to the transfer zones. This work reveals ductile tectonic fabrics in gypsum as a valuable tool to elucidate the structure and deformational history of complex tectonic mélanges involving evaporites above the décollement level of accretionary wedges.

  2. Red River barrier and Pleistocene climatic fluctuations shaped the genetic structure of Microhyla fissipes complex (Anura: Microhylidae) in southern China and Indochina

    PubMed Central

    Yuan, Zhi-Yong; Suwannapoom, Chatmongkon; Yan, Fang; Poyarkov, Nikolay A.; Nguyen, Sang Ngoc; Chen, Hong-man; Chomdej, Siriwadee; Murphy, Robert W.

    2016-01-01

    South China and Indochina host striking species diversity and endemism. Complex tectonic and climatic evolutions appear to be the main drivers of the biogeographic patterns. In this study, based on the geologic history of this region, we test 2 hypotheses using the evolutionary history of Microhyla fissipes species complex. Using DNA sequence data from both mitochondrial and nuclear genes, we first test the hypothesis that the Red River is a barrier to gene flow and dispersal. Second, we test the hypothesis that Pleistocene climatic cycling affected the genetic structure and population history of these frogs. We detect 2 major genetic splits that associate with the Red River. Time estimation suggests that late Miocene tectonic movement associated with the Red River drove their diversification. Species distribution modeling (SDM) resolves significant ecological differences between sides of the Red River. Thus, ecological divergence also probably promoted and maintained the diversification. Genogeography, historical demography, and SDM associate patterns in southern China with climate changes of the last glacial maximum (LGM), but not Indochina. Differences in geography and climate between the 2 areas best explain the discovery. Responses to the Pleistocene glacial–interglacial cycling vary among species and regions. PMID:29491943

  3. Red River barrier and Pleistocene climatic fluctuations shaped the genetic structure of Microhyla fissipes complex (Anura: Microhylidae) in southern China and Indochina.

    PubMed

    Yuan, Zhi-Yong; Suwannapoom, Chatmongkon; Yan, Fang; Poyarkov, Nikolay A; Nguyen, Sang Ngoc; Chen, Hong-Man; Chomdej, Siriwadee; Murphy, Robert W; Che, Jing

    2016-12-01

    South China and Indochina host striking species diversity and endemism. Complex tectonic and climatic evolutions appear to be the main drivers of the biogeographic patterns. In this study, based on the geologic history of this region, we test 2 hypotheses using the evolutionary history of Microhyla fissipes species complex. Using DNA sequence data from both mitochondrial and nuclear genes, we first test the hypothesis that the Red River is a barrier to gene flow and dispersal. Second, we test the hypothesis that Pleistocene climatic cycling affected the genetic structure and population history of these frogs. We detect 2 major genetic splits that associate with the Red River. Time estimation suggests that late Miocene tectonic movement associated with the Red River drove their diversification. Species distribution modeling (SDM) resolves significant ecological differences between sides of the Red River. Thus, ecological divergence also probably promoted and maintained the diversification. Genogeography, historical demography, and SDM associate patterns in southern China with climate changes of the last glacial maximum (LGM), but not Indochina. Differences in geography and climate between the 2 areas best explain the discovery. Responses to the Pleistocene glacial-interglacial cycling vary among species and regions.

  4. Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives.

    PubMed

    Badgley, Catherine; Smiley, Tara M; Terry, Rebecca; Davis, Edward B; DeSantis, Larisa R G; Fox, David L; Hopkins, Samantha S B; Jezkova, Tereza; Matocq, Marjorie D; Matzke, Nick; McGuire, Jenny L; Mulch, Andreas; Riddle, Brett R; Roth, V Louise; Samuels, Joshua X; Strömberg, Caroline A E; Yanites, Brian J

    2017-03-01

    Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Significant Centers of Tectonic Activity as Identified by Wrinkle Ridges for the Western Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.

    2000-01-01

    The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.

  6. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    USGS Publications Warehouse

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  7. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data for Mars from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible postflow tectonic subsidence on the Snake River Plain in Idaho.

  8. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region of Mars: Indications of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible post-flow tectonic subsidence on the Snake River Plain in Idaho.

  9. Mars - A planet with a complex surface evolution

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Coradini, M.

    1975-01-01

    The surface of Mars has evolved to its present form through a complex sequence of tectonism and associated volcanism, impact processes, water erosion, mass movements, and wind action. The diversity of geological processes active in past Martian history far exceeded most predictions. By the same token, predictions of processes modifying the satellites of the outer planets may fall far short of the true range of phenomena. A summary of present though with regard to Martian surface evolution is presented to serve as a case in point of the value of imagery and topography data in making interpretations of geological histories.

  10. Inherited structure and coupled crust-mantle lithosphere evolution: Numerical models of Central Australia

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.

    2016-05-01

    Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).

  11. The Eocene-Miocene tectonic evolution of the Rif chain (Morocco): new data from the Jebha area

    NASA Astrophysics Data System (ADS)

    D'Assisi Tramparulo, Francesco; Ciarcia, Sabatino; El Ouaragli, Bilal; Vitale, Stefano; Najib Zaghloul, Mohamed

    2016-04-01

    Keywords: structural analysis, tectonics, shear bands, Miocene, Jebha Fault The Jebha area, located in the Central Rif, is a key sector to understand the orogenic evolution of the Rif chain. Here, the left lateral Jebha-Chrafate transfer fault, allowed, in the Miocene time, the westward migration of the internal thrust front. The structural analysis of the area revealed a complex tectonic history. The Eocene orogenic pulse produced the tectonic stacking of the Ghomaride thrust sheets. During the late Aquitanian and Langhian, under a dominant ENE-WSW shortening, imbrication of several Internal Dorsale Calcaire slices occurred. The following orogenic stage, characterized by a main SE tectonic transport, allowed the External Dorsale Calcaire to overthrust the Maghrebian Flysch Basin Units by means of a dominant thin-skinned tectonics. Synchronously with the buttressing following the collision of the allochthonous wedge against the External Rif domain, an out-of-sequence thrusting stage involved the Ghomaride and Dorsale Calcaire Units and a general back-thrusting deformed the entire tectonic pile. A renewal of the NE-SW shortening produced strike-slip faults and SW-verging folds and finally a radial extension affected the whole chain.

  12. The East Falcon Basin: Its Caribbean roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartok, P.; Boesi, T.

    1996-08-01

    The East Falcon Basin has been described persistently in the context of the Maracaibo Basin tectonic framework. It is the objective of the present study to demonstrate that the Falcon Basin is, in effect, a Caribbean basin juxtaposed on South America and affected by Caribbean tectonics. The oldest rocks outcropping in the region are Late Paleozoic metamorphic and igneous rocks rafted from northcentral Colombia, Middle Jurassic ophiolite complexes, sediments and metasediments and Cretaceous ophiolites transported by a melange of late Cretaceous to early Tertiary sediments. The south vergence of the Caribbean Nappe province has been documented and extends to themore » present limit of the Andean uplift and to the southern limit of the Coastal Range. The migrating foredeep that developed during the Paleocene-Eocene deposited dominantly basinal shales and thin sandstones. During the Oligocene the Caribbean faults of the Oca system and conjugates began with a dominantly transtensional regime becoming progressively transpressional by Miocene time. The facies development of the Oligocene-Miocene documents the tectonic history. Unique blocks remained as resistant blocks creating ramparts and modifying the basin configuration. During transpression northward-verging thrusting progressively migrated towards the present coastline. The most evident structures of the region are Caribbean in affinity and combined with the sedimentary history of the region can serve to unravel the complex Caribbean-South American plate interaction.« less

  13. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.

  14. Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus

    NASA Technical Reports Server (NTRS)

    Hurwitz, D. M.; Head, J. W.

    2010-01-01

    Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our interpretations of the volcanic history of the region surrounding the north pole of Venus and explore how analysis of new data support our interpretations

  15. Interactions of tectonic, igneous, and hydraulic processes in the North Tharsis Region of Mars

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.; Plescia, J. B.

    1991-01-01

    Recent work on the north Tharsis of Mars has revealed a complex geologic history involving volcanism, tectonism, flooding, and mass wasting. Our detailed photogeologic analysis of this region found many previously unreported volcanic vents, volcaniclastic flows, irregular cracks, and minor pit chains; additional evidence that volcanic tectonic processes dominated this region throughout Martian geologic time; and the local involvement of these processes with surface and near surface water. Also, photoclinometric profiles were obtained within the region of troughs, simple grabens, and pit chains, as well as average spacings of pits along pit chains. These data were used together with techniques to estimate depths of crustal mechanical discontinuities that may have controlled the development of these features. In turn, such discontinuities may be controlled by stratigraphy, presence of water or ice, or chemical cementation.

  16. Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery. [copper/molybdenum porphyrys

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Three major tectonic provinces have been mapped by geologic photointerpretation of ERTS-1 imagery over the Ok Tedi test site. These areas can be characterized as follows: (1) A broad area of low relief and mature topography suggesting a history of relative tectonic stability. (2) A narrow belt of moderate to high relief, broad open folds and prominent linear features. The Mount Fubilan-type porphyry copper deposits and recent volcanic effusive centers occur in this province. (3) A heterogeneous zone of high relief and high drainage density suggestive of relative structural complexity.

  17. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    NASA Astrophysics Data System (ADS)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  18. Iapetus: Tectonic structure and geologic history

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  19. Stratigraphy of the Martian northern plains

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.

    1993-01-01

    The northern plains of Mars are roughly defined as the large continuous region of lowlands that lies below Martian datum, plus higher areas within the region that were built up by volcanism, sedimentation, tectonism, and impacts. These northern lowlands span about 50 x 10(exp 6) km(sup 2) or 35 percent of the planet's surface. The age and origin of the lowlands continue to be debated by proponents of impact and tectonic explanations. Geologic mapping and topical studies indicate that volcanic, fluvial, and eolian deposition have played major roles in the infilling of this vast depression. Periglacial, glacial, fluvial, eolian, tectonic, and impact processes have locally modified the surface. Because of the northern plains' complex history of sedimentation and modification, much of their stratigraphy was obscured. Thus the stratigraphy developed is necessarily vague and provisional: it is based on various clues from within the lowlands as well as from highland areas within and bordering the plains. The results are summarized.

  20. Europa: Initial Galileo Geological Observations

    USGS Publications Warehouse

    Greeley, R.; Sullivan, R.; Klemaszewski, J.; Homan, K.; Head, J. W.; Pappalardo, R.T.; Veverka, J.; Clark, B.E.; Johnson, T.V.; Klaasen, K.P.; Belton, M.; Moore, J.; Asphaug, E.; Carr, M.H.; Neukum, G.; Denk, T.; Chapman, C.R.; Pilcher, C.B.; Geissler, P.E.; Greenberg, R.; Tufts, R.

    1998-01-01

    Images of Europa from the Galileo spacecraft show a surface with a complex history involving tectonic deformation, impact cratering, and possible emplacement of ice-rich materials and perhaps liquids on the surface. Differences in impact crater distributions suggest that some areas have been resurfaced more recently than others; Europa could experience current cryovolcanic and tectonic activity. Global-scale patterns of tectonic features suggest deformation resulting from non-synchronous rotation of Europa around Jupiter. Some regions of the lithosphere have been fractured, with icy plates separated and rotated into new positions. The dimensions of these plates suggest that the depth to liquid or mobile ice was only a few kilometers at the time of disruption. Some surfaces have also been upwarped, possibly by diapirs, cryomagmatic intrusions, or convective upwelling. In some places, this deformation has led to the development of chaotic terrain in which surface material has collapsed and/or been eroded. ?? 1998 Academic Press.

  1. Geophysical-geological studies of possible extensions of the New Madrid Fault Zone. Annual report, 1982. Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinze, W.J.; Braile, L.W.; Keller, G.R.

    1983-05-01

    An integrated geophysical/geologic program is being conducted to evaluate the rift complex hypothesis as an explanation for the earthquake activity in the New Madrid Seismic Zone and its extensions, to refine our knowledge of the rift complex, and to investigate the possible northern extensions of the New Madrid Fault Zone, especially its possible connection to the Anna, Ohio seismogenic region. Drillhole basement lithologies are being investigated to aid in tectonic analysis and geophysical interpretation, particularly in the Anna, Ohio area. Gravity and magnetic modeling combined with limited seismic reflection studies in southwest Indiana are interpreted as confirming speculation that anmore » arm of the New Madrid Rift Complex extends northeasterly into Indiana. The geologic and geophysical evidence confirm that the basement lithology in the Anna, Ohio area is highly variable reflecting a complex geologic history. The data indicate that as many as three major Late Precambrian tectonic features intersect within the basement of the Anna area suggesting that the seismicity may be related to basement zones of weakness.« less

  2. Geochemical characteristics of charnockite and high grade gneisses from Southern Peninsular Shield and their significance in crustal evolution

    NASA Technical Reports Server (NTRS)

    Sugavanam, E. B.; Vidyadharan, K. T.

    1988-01-01

    Presented here are the results of detailed investigations encompassing externsive structural mapping in the charnockite-high grade gneiss terrain of North Arcot district and the type area in Pallavaram in Tamil Nadu supported by petrography, mineral chemistry, major, minor and REE distribution patterns in various lithounits. This has helped in understanding the evolutionary history of the southern peninsular shield. A possible tectonic model is also suggested. The results of these studies are compared with similar rock types from parts of Andhra Pradesh, Kerala, Sri Lanka, Lapland and Nigeria which has brought about a well defined correlation in geochemical characteristics. The area investigated has an interbanded sequence of thick pile of charnockite and a supracrustal succession of shelf type sediments, layered igneous complex, basic and ultrabasic rocks involved in a complex structural, tectonic, igneous and metamorphic events.

  3. Structural characteristics and tectonics of northeastern Tellus Regio and Meni Tessera

    NASA Technical Reports Server (NTRS)

    Toermaenen, T.

    1992-01-01

    The Tellus Regio-Meni Tessera region is an interesting highland area characterized by large areas of complex ridged terrain or tessera terrain. The area was previously studied from the Venera 15/16 data, typical characteristics of complex tessera terrain of Tellus Regio were analyzed, and a formation mechanism was proposed. Apparent depths of compensation of approximately 30-50 km were calculated from Pioneer Venus gravity and topography data. These values indicate predominant Airy compensation for the area. Regional stresses and lithospheric structures were defined from analysis of surface structures, topography, and gravity data. In this work we concentrate on northeastern Tellus Regio and Meni Tessera, which are situated north and west of Tellus Regio. Structural features and relationships are analyzed in order to interpret tectonic history of the area. Study area was divided into three subareas: northeastern Tellus Regio, Meni Tessera, and the deformed plain between them.

  4. Tectonic models for Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, Dennis W.

    2006-01-01

    Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.

  5. Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James C Witcher

    2002-07-30

    The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps formore » the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.« less

  6. Paleomagnetic Constraints on the Tectonic History of the Mesozoic Ophiolite and Arc Terranes of Western Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.

    2017-12-01

    The North American Cordillera has been shaped by a long history of accretion of arcs and other buoyant crustal fragments to the western margin of the North American Plate since the Early Mesozoic. Accretion of these terranes resulted from a complex tectonic history interpreted to include episodes of both intra-oceanic subduction within the Panthalassa/Pacific Ocean, as well as continental margin subduction along the western margin of North America. Western Mexico, at the southern end of the Cordillera, contains a Late Cretaceous-present day long-lived continental margin arc, as well as Mesozoic arc and SSZ ophiolite assemblages of which the origin is under debate. Interpretations of the origin of these subduction-related rock assemblages vary from far-travelled exotic intra-oceanic island arc character to autochthonous or parautochthonous extended continental margin origin. We present new paleomagnetic data from four localities: (1) the Norian SSZ Vizcaíno peninsula Ophiolite; (2) its Lower Jurassic sedimentary cover; and (3) Barremian and (4) Aptian sediments derived from the Guerrero arc. The data show that the Mexican ophiolite and arc terranes have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. These spreading phases resulted in the temporal existence of tectonic plates between the North American and Farallon Plates, and upon closure of the basins, in the growth of the North American continent without addition of any far-travelled exotic terranes.

  7. Crustal Seismic Structure beneath Portugal (Western Iberia) and the role of Variscan Inheritance

    NASA Astrophysics Data System (ADS)

    Veludo, Idalina; Afonso Dias, Nuno; Fonseca, Paulo; Matias, Luís; Carrilho, Fernando; Haberland, Christian; Villaseñor, Antonio

    2017-04-01

    Mainland Portugal comprises most of the Western portion of the Iberian Peninsula, in a geodynamic setting associated with the Africa-Eurasia plate boundary. The crustal structure in Portugal is the result of a complex assemblage history of continental collision and extension with most of the surface is covered by rocks dating to the Variscan orogeny, the coastal ranges dominated by Mesozoic structures and Mesocenozoic basins covering partially the mainland. The impact and extension of this complex tectonic in the structure of the Iberian Lithosphere is still a matter of discussion, especially in its western part beneath Portugal. The existing knowledge relating the observed surface geology and lithospheric structures is sparse and sometimes incoherent, the relation between shallow and deep structures and their lateral extension still widely undetermined. Some questions still pertinent are the role and influence of the several tectonic units and their contacts in the present tectonic regime and in the stress field observed today, and the relation between the anomalous seismicity and associated crustal deformation rates with the inherited structure from past orogenies. In this study we present the results of a local earthquake tomographic study, performed to image this complex crustal structure down to 20 km depth. The relocation of the onshore seismicity recorded in the period 2000-2014 with the new 3D model allows cleansing some of the alignments and their correlation with some of the main active structures in Portugal enabling for the first time to correlate a large number of tectonic features to the small magnitude seismicity pattern. The seismicity distribution also displays a complex pattern, mainly reflecting the interaction between inherited Variscan structures with more recent fault systems created during the rifting stages of the Atlantic and diapir magmatic intrusions. The complex history of the assemblage of the crust beneath Western Iberia is well-marked in the final models. The arcuate shape of the Ibero-Armorican Arc can be perceived over the general pattern of the Vp and Vp/Vs anomalies and the heterogeneity observed on the surface geology are clearly marked in the tomograms. Other significant features are the low Vp values associated with the Mesocenozoic rocks outcropping in the Lusitanian and Algarve basins, and the low Vp and high Vp/Vs values of the sedimentary cover of the Lower-Tagus and Sado Basin. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.

  8. ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenardic, A.; Crowley, J. W., E-mail: ajns@rice.edu, E-mail: jwgcrowley@gmail.com

    2012-08-20

    A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees,more » for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ({sup s}uper-Earths{sup )}. The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.« less

  9. Tethys and the evolution in Afghanistan: tectonics and mineral resources

    NASA Astrophysics Data System (ADS)

    Okaya, N.; Onishi, C. T.; Mooney, W. D.

    2009-12-01

    The tectonic history and mineral resources of Afghanistan are related to the closing of the Paleo-Tethys Ocean and the opening of the Neo-Tethys Ocean. As part of this process, oceanic sediments and continental fragments were accreted onto northern Afghanistan during the Mesozoic Cimmerian orogeny. Deposits in the Paleo-Tethys Ocean iare presently represented by a thick sequence of Paleozoic sedimentary rocks within the Tajik/Turan block, part of the Eurasian continent in northern Afghanistan. The accreted micro-continents of the Cimmerian orogeny include: (1) the Farah block, (2) the Helmand block and (3) the exotic Kabul block. Later, during the Cretaceous, the East Nuristan island arc and the intra-oceanic island arc of Kohistan were sutured. Major faults in Afghanistan include: (1) the Herat fault, an E-W suture zone between the Eurasia continent and the terrains of the Cimmerian orogeny; (2) the N-S Punjao suture located between the Farah and Helmand blocks; and (3) the NE-SW oriented Chaman fault, part of a transpressional plate boundary located near the border with Pakistan. Such a complex blend of geology and tectonics gives host to abundant mineral resources. We summarize the tectonic evolution of Afghanistan in a series of lithospheric cross-sections, beginning at about 400 Ma., and identify the mineral resources in the context of the regional tectonics.

  10. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele

    2015-12-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from E-W in the Patagonian Andes to N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled the Late Cretaceous to Cenozoic evolution of the Magallanes fold-and-thrust belt, yielding the observed deformation pattern.

  11. Impacts and tectonism in Earth and moon history of the past 3800 million years

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1992-01-01

    The moon's surface, unlike the Earth's, displays a comparatively clear record of its past bombardment history for the last 3800 Myr, the time since active lunar tectonism under the massive premare bombardment ended. From Baldwin's (1987) tabulation of estimated ages for a representative sample of large lunar craters younger than 3800 Ma, six major cratering episodes can be discerned. These six bombardment episodes, which must have affected the Earth too, appear to match in time the six major episodes of orogenic tectonism on Earth, despite typical resolution errors of +/- 100 Myr and the great uncertainties of the two chronologies. Since more highly resolved events during the Cenozoic and Mesozoic Eras suggest the same correlation, it is possible that large impacts have influenced plate tectonics and other aspects of geologic history, perhaps by triggering flood basalt eruptions.

  12. In search of transient subduction interfaces in the Dent Blanche-Sesia Tectonic System (W. Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian

    2014-09-01

    In this paper we study the Alpine metamorphic history of a major tectonic zone which formed during Alpine orogeny, the Dent Blanche Thrust (DBT). This contact, located in the Northern Western Alps, juxtaposes some ophiolitic metasediment-rich remnants of the Liguro-Piemontese ocean (Tsaté Complex) with a composite continental, km-sized complex (Dent Blanche Tectonic System, DBTS) of Adriatic affinity thrusted over the ophiolite. In order to better understand the geodynamic meaning of the DBT region and adjacent units, we have reconstructed the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr geochronology, and field relationships. We show that the Tsaté Complex is formed by a stack of km-thick calcschists-bearing tectonic slices having experienced variable maximum burial temperatures between 360 °C and 490 °C at depths of ca. 25-40 km. Associated deformation ages span a range between 37 Ma and 41 Ma. The Arolla gneissic mylonites at the base of the DBTS experienced high-pressure (12-14 kbar), top-to-NW deformation at ca. 450 °C between 43 and 48 Ma. A first age of ca. 58 Ma has been obtained for high-pressure ductile deformation in the Valpelline shear zone, atop Arolla gneisses. Some of the primary, peak metamorphic fabrics have been reworked and later backfolded during exhumation and collisional overprint (ca. 20 km depth, 37-40 Ma) leading to the regional greenschist-facies retrogression which is particularly prominent within Tsaté metasediments. We interpret the Dent Blanche Thrust, at the base of the Arolla unit, as a fossilized subduction interface active between 43 and 48 Ma. Our geochronological results on the shear zone lining the top of the Arolla unit, together with previous P-T-t estimates on equivalent blueschist-facies shear zones cutting the Sesia unit, indicate an older tectonic activity between 58 and 65 Ma. We demonstrate here that observed younger ages towards lowermost structural levels are witness of the transient, downwards migration of the Alpine early Cenozoic blueschist-facies subduction interface. This down-stepping is interpreted to reflect the progressive underplating acting between 30 and 40 km depth in the Alpine subduction zone between late Cretaceous and late Eocene. Underplating involved first continental material derived from the stretched Adriatic margin followed by underplating of ocean-derived rocks in the Eocene. These results shed light on subduction-zone accretion processes and therefore provide a new perspective for the understanding of geophysical results imaging the plate-interface region in active subduction zones.

  13. From an active continental plate margin to continental collision: New constraints from the petrological, structural and geochronological record of the (ultra) high-P metamorphic Rhodope domain (N-Greece)

    NASA Astrophysics Data System (ADS)

    Mposkos, E.; Krohe, A.; Wawrzenitz, N.; Romer, R. L.

    2012-04-01

    The Rhodope domain occupies a key area along the suture between the European and the Apulian/Adriatic plate (Schmid et al., 2008), which collided in the early Tertiary (closure of the Vardar/Axios ocean, cf. Mposkos & Krohe, 2006). An integrated study of the geochronological, tectonic and petrological data of the Rhodope domain provides the unique opportunity resolving a 160 my lasting metamorphic evolution (Jurassic to Miocene) of an active plate margin to a high degree. The Greek Rhodope consists of several composite metamorphic complexes bounded by the Nestos thrust and several normal detachment systems. The PT- and structural records of the complexes constrain metamorphic, magmatic and tectonic processes, associated with subduction along a convergent plate margin including UHP metamorphism, MP to HP metamorphism associated with continental collision, and core complex formation linked to Aegean back arc extension. We focus on the Sidironero Complex that shows a polymetamorphic history. This is documented by SHRIMP and LA-ICP-MS U-Pb zircon ages of ca. 150 Ma from garnet-kyanite gneisses that are interpreted to record the HP/UHP metamorphism (Liati, 2005; Krenn et al., 2010). SHRIMP zircon ages of ca. 51 Ma from an amphibolitized eclogite is interpreted by Liati (2005) to record a second Eocene HP metamorphic event. We present new data from an integrated petrological, geochronological and tectonic study. Granulite facies and upper amphibolite facies metamorphic conditions are recorded by the mineral assemblage Grt-Ky-Bt-Pl-Kfs-Qtz-Rt and Grt-Ky-Bt-Ms-Pl-Qtz-Rt, respectively, in deformed migmatitic metapelites. Deformation occurred under granulite facies conditions. Monazites from the matrix, that formed during the granulite facies deformation, lack core/rim structures and are only locally patchy zoned. Monazite chemical compositions are related to varying reaction partners. Single grains and fractions of few grains yield ID-TIMS U-Pb ages that plot along the concordia between 64 to 60 Ma. One date of 55 Ma might represent Pb-loss during later fluid-induced dissolution-reprecipitation. We discuss the following questions: What is the history of the high-P metamorphic rocks in the Sidironero Complex? Were high-P rocks that have been already exhumed again dragged into the subduction channel? Which rocks from the upper plate are affected by high-P metamorphism evincing that subduction erosion is an important mechanism? We reconsider the significance of the P-T-t evolution in the light of the tectonic processes that took place along the depth extension of a convergent plate interface and during subsequent continental collision along the European/Apulian Suture zone. Krenn et al., 2010. Tectonics 29, TC4001. Liati, A., 2005. Contribution to Mineralogy and Petrology 150, 608-630. Mposkos, E. & Krohe, A. 2006. Canadian Journal of Earth Sciences 43, 1755-1776. Schmid S.M., et al. 2008. Swiss Journal of Geoscience 101, 139-183.

  14. Model of formation of Ishtar Terra, Venus

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Vergely, P.; Masson, Ph.

    1996-08-01

    For more than a decade, the radar mapping of Venus' surface has revealed that it results from a complex volcanic and tectonic history, especially in the northern latitudes. Ishtar Terra (0°E-62°E) consists of a high plateau, Lakshmi Planum, surrounded by highlands, Freyja Montes to the north and Maxwell Montes to the east. The latter is the highest relief of Venus, standing more than 10 km in elevation. The high resolution of Magellan radar images (120-300 m) allows us to interpret them in terms of tectonics and propose a model of formation for the central part of Ishtar Terra. The detailed tectonic interpretations are based on detailed structural and geologic cartography. The geologic history of Ishtar Terra resulted from two distinct, opposite tectonic stages with an important, transitional volcanic activity. First, Lakshmi Planum, the oldest part of Ishtar Terra is an extensive and complexly fractured plateau that can be compared to a terrestrial craton. Then the plateau is partially covered by fluid lava flows that may be similar to Deccan traps, in India. Second, after the extensional deformation of Lakshmi Planum and its volcanic activity, Freyja and Maxwell Montes formed by WSW-ENE horizontal crustal shortening. The latter produced a series of NNW-SSE parallel, sinuous, folds and imbricated structures that overlapped Lakshmi Planum westward. So these mountain belts have the same structural characteristics as terrestrial fold-and-thrust belts. These mountain belts also display evidence of a late volcanic stage and a subsequent period of relaxation that created grabens parallel to the highland trend, especially in Maxwell Montes.

  15. Elastic and viscoelastic model of the stress history of sedimentary rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    A model has been developed to calculate the elastic and viscoelastic stresses which develop in rocks at depth due to burial, uplift and diagenesis. This model includes the effect of the overburden load, tectonic or geometric strains, thermal strains, varying material properties, pore pressure variations, and viscoeleastic relaxation. Calculations for some simple examples are given to show the contributions of the individual stress components due to gravity, tectonics, thermal effects and pore pressure. A complete stress history for Mesaverde rocks in the Piceance basin is calculated based on available burial history, thermal history and expected pore pressure, material property andmore » tectonic strain variations through time. These calculations show the importance of including material property changes and viscoelastic effects. 15 refs., 48 figs.« less

  16. Connecting the Bird's Head to the Bird's Body - Cenozoic arc magmatism extends along the length of New Guinea.

    NASA Astrophysics Data System (ADS)

    Webb, Max; White, Lloyd; Jost, Benjamin

    2017-04-01

    New Guinea has a long, complicated history of arc magmatism. The present day shape of the island (resembling that of a bird in flight) formed as a result of oblique convergence of the Pacific and Caroline/Philippine plates with the northward moving Australian plate. This convergence resulted in multiple collisions of island arcs with continental crust, representing a modern day analogue to ancient accretionary orogens. This complex geological history has formed four major tectonic belts; accreted Palaeogene island arcs, the New Guinea Mobile Belt, the New Guinea Fold Belt and a stable platform. These tectonic belts are drawn across most of New Guinea in major review papers. However, these tectonic belts are not generally considered to extend through to New Guinea's western most peninsula (the Bird's Head). We present new field evidence, together with new U-Pb zircon geochronology and geochemical analyses from rocks collected within the Bird's Head. These document Middle to Late Miocene intermediate to felsic volcanic rocks and associated granitoid intrusives that formed along an active continental margin. These are effectively the equivalent of the Maramuni arc and Freida River Complex in eastern New Guinea. Several, broadly Eocene island arcs composed of dominantly mafic volcanic rocks are also found in the Bird's Head. These island arcs accreted along the Bird's Head sometime after their initial formation, possibly coinciding with Middle to Late Miocene active continental margin magmatism and we consider them to be equivalents of the Cyclops Mountains arc in Central New Guinea. This work demonstrates that New Guinea's east-west terranes are more extensive than previously thought. This potentially has implications for locating future ore deposits and understanding the relative position of the Bird's Head with respect to the rest of New Guinea in major plate reconstructions.

  17. The Interpretation Of Multiple Foliations In Metapelites: An Example From NW-Namibia

    NASA Astrophysics Data System (ADS)

    Passchier, C. W.

    2014-12-01

    Foliations in metapelites belong to the most important tools in structural geology to reconstruct deformation history and kinematics. Since foliations are easily developed and are hard to destroy, multiple foliations, associated with other structures such as folds and boudins, serve as a basis in reconstructing the tectonic history of all metamorphic terrains. Traditionally, such reconstructions assume regionally homogeneous tectonic effects producing distinct generations of structures, which are then labelled D1, D2, D3 etc. The Goantagab Domain in NW Namibia consists of Neoproterozoic pelitic and psammitic metaturbidites with only minor changes in facies, exposed over an area of 80x40km. The rocks were deformed in a transpressive Neoproterozoic to Cambrian tectonic event during the amalgamation of Gondwanaland. Five overprinting foliations can be recognised in the area, but only three are recognisable at any location and no foliation extends over the entire area. Apparently, small variations in kinematic vorticity and other kinematic parameters and in orientation of incremental strain axes lead to local foliation development and to gradients in foliation style. The similarity in field and microstructure of the different foliations, and gradations in their development make a classical approach using D1-D2-D3 labelling problematic. Since the fieldwork area is very well exposed, it is possible to determine which factors lead to local development and destruction of foliations during ongoing ductile deformation. Detailed analysis of the local foliation architecture and history is used to explore new methods in structural geology to handle complex multiple foliations in metamorphic terrains

  18. Making a report of a short trip in an ophiolitic complex with Google Earth

    NASA Astrophysics Data System (ADS)

    Aubret, Marianne

    2017-04-01

    Plate tectonics is taught in French secondary school (lower and upper-sixth). According to the curriculum, the comprehension of plate-tectonic processes and concepts should be based on field data. For example, the Alpine's ocean history is studied to understand how mountain ranges are formed. In this context, Corsica is a great open-air laboratory, but unfortunately, the traffic conditions are very difficult in the island and despite the short distances, it's almost impossible for teachers to take their students to the remarkable geologic spots. The «défilé de l'Inzecca» is one of them: there you can see a part of the alpine's ophiolitic complex. The aim of this activity is to elaborate a « KMZ folder » in Google Earth as a report of a short trip thanks to the students' data field; it is also the occasion to enrich the Google Earth KMZ folder already available for our teaching.

  19. An archean suture zone in the Tobacco Root Mountains? (1984) Evolution of Archean Continental Crust, SW Montana (1985)

    NASA Technical Reports Server (NTRS)

    Mogk, D. W.; Kain, L.

    1985-01-01

    The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.

  20. Geologic Map of the Big Delta B-1 Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O'Neill, J. Michael; Aleinikoff, John N.; Green, Gregory N.; Saltus, Richard W.; Gough, Larry P.

    2007-01-01

    Geologic mapping and U-Pb age dating of rocks from the Big Delta B-1 quadrangle, east-central Alaska, have yielded new insights into the geology and gold mineral resource for the headwater region of the Goodpaster River, northeast of Delta, Alaska. The area lies within the Yukon-Tanana Upland and is underlain by Paleozoic and Cretaceous crystalline bedrock and contains several gold mines and prospects. The Paleozoic units include biotite gneiss, quartzite interlayered with metapelite, and amphibolite gneiss. The Paleozoic units were intruded during the Devonian by tonalitic to granitic plutons, which, as a result of regional Mesozoic metamorphism and tectonism, are now augen gneiss and biotite orthogneiss. The Mesozoic regional metamorphism and ductile deformation of the entire Yukon-Tanana Upland culminated by the Late Cretaceous (about 116 Ma) as a result of northwest-directed regional transpression along the southern margin of the North American craton. This dynamothermal episode was followed by invasion of syn- to post-tectonic granodioritic to granitic batholiths during the Late Cretaceous (about 113-107 Ma), followed by a pulse of 100-95 Ma quartz feldspar porphyry intrusions. Gold mineralization is spatially associated with various post-tectonic Late Cretaceous granitic dikes and batholiths throughout the quadrangle. A northeast-trending structural corridor, described herein as the Black Mountain tectonic zone, both controlled the emplacement of some of the Cretaceous intrusive rocks, gold deposits, and prospects, as well as formed a deep-seated crustal conduit along which a subsequent rhyolite flow-dome complex erupted during the Paleocene. Tertiary uplift and erosion resulted in the development of extensive erosional pediments. Quaternary alpine glaciation carved beautiful, broad valleys in the eastern part of the quadrangle, leaving behind terminal moraines in the headwater region of the Goodpaster river drainage. Continued Holocene to Recent deformation along the Black Mountain tectonic zone has offset Tertiary terraces, as well as Quaternary fluvial and alluvial deposits, indicating that the area has a long, complex, and ongoing tectonic history.

  1. Triassic structural and stratigraphic evolution of the Central German North Sea sector

    NASA Astrophysics Data System (ADS)

    Wolf, Marco; Jähne-Klingberg, Fabian

    2017-04-01

    The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures along the major Upper Jurassic to Lower Cretaceous unconformity, which are related to erosion of Triassic evaporitic formations, will be shown.

  2. Stochastic Modelling of Seafloor Morphology

    DTIC Science & Technology

    1990-06-01

    trenches, and linear island chains to the point that many of the interesting questions of marine geology now concern the processes which have shaped...are all located near the Easter Island Microplate (Figure 5.2), a region with a complex tectonic history [Hey et al., 19851, and may be anomalous...the Clipperton Transform Fault [Macdonald and Fox, 1988]. Just south of Clipperton , the ridge crest is shallow (-2550 m) and the crestal horst is broad

  3. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  4. Noachian Faulting: What Do Faults Tell Us About the Tectonic History of Tharsis?

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Dohm, J. M.

    2001-01-01

    The western hemisphere of Mars is dominated by the formation of Tharsis, which is an enormous high-standing region (roughly 25% of the surface area of the planet) capped by volcanics, including the solar system's largest shield volcanoes. Tharsis is surrounded by an enormous radiating system of grabens and a circumferential system of wrinkle ridges that extends over the entire western hemisphere of Mars. This region is perhaps the largest and most long lived tectonic and volcanic province of any of the terrestrial planets with a well-preserved history of magmatic-driven activity that began in the Noachian and has lasted throughout Martian geologic time. Tharsis and the surrounding regions comprise numerous components, including volcanic constructs of varying sizes and extensive lava flow fields, large igneous plateaus, fault and ridge systems of varying extent and relative age of formation, gigantic outflow channel systems, vast system of canyons, and local and regional centers of tectonic activity. Many of these centers are interpreted to be the result of magmatic-related activity, including uplift, faulting, dike emplacement, volcanism, and local hydrothermal activity. Below we present a summary of our work for Tharsis focusing primarily on the earliest stage of development, the Noachian period. Here we hone in on the early centers and how they relate to the early development of the Tharsis Magmatic Complex (TMC).

  5. Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate

    USGS Publications Warehouse

    Harrison, R.W.; Tsiolakis, E.; Stone, B.D.; Lord, A.; McGeehin, J.P.; Mahan, S.A.; Chirico, P.

    2013-01-01

    The nature of the southern margin of the Anatolian microplate during the Neogene is complex, controversial and fundamental in understanding active plate-margin tectonics and natural hazards in the Eastern Mediterranean region. Our investigation provides new insights into the Late Pleistocene uplift history of Cyprus and the Troodos Ophiolite. We provide isotopic (14C) and radiogenic (luminescence) dates of outcropping marine sediments in eastern Cyprus that identify periods of deposition during marine isotope stages (MIS) 3, 4, 5 and 6. Past sea-levels indicated by these deposits are c. 95±25 m higher in elevation than estimates of worldwide eustatic sea-level. An uplift rate of c. 1.8 mm/year and possibly as much as c. 4.1 mm/year in the past c. 26–40 ka is indicated. Holocene marine deposits also occur at elevations higher than those expected for past SL and suggest uplift rates of c. 1.2–2.1 mm/year. MIS-3 marine deposits that crop out in southern and western Cyprus indicate uniform island-wide uplift. We propose a model of tectonic wedging at a plate-bounding restraining bend as a mechanism for Late Pleistocene to Holocene uplift of Cyprus; uplift is accommodated by deformation and seismicity along the margins of the Troodos Ophiolite and re-activation of its low-angle, basal shear zone.

  6. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.

  7. Magnetic fabrics in tectonically inverted sedimentary basins: a review

    NASA Astrophysics Data System (ADS)

    García-Lasanta, Cristina; Román-Berdiel, Teresa; Casas-Sainz, Antonio; Oliva-Urcia, Belén; Soto, Ruth; Izquierdo-Llavall, Esther

    2017-04-01

    Magnetic fabric studies in sedimentary rocks were firstly focused on strongly deformed tectonic contexts, such as fold-and-thrust belts. As measurement techniques were improved by the introduction of high-resolution equipments (e.g. KLY3-S and more recent Kappabridge susceptometers from AGICO Inc., Czech Republic), more complex tectonic contexts could be subjected to anisotropy of magnetic susceptibility (AMS) analyses in order to describe the relationship between tectonic conditions and the orientation and shape of the resultant magnetic ellipsoids. One of the most common complex tectonic frames involving deformed sedimentary rocks are inverted extensional basins. In the last decade, multiple AMS studies revealed that the magnetic fabric associated with the extensional stage (i.e. a primary magnetic fabric) can be preserved despite the occurrence of subsequent deformational processes. In these cases, magnetic fabrics may provide valuable information about the geometry and kinematics of the extensional episode (i.e. magnetic ellipsoids with their minimum susceptibility axis oriented perpendicular to the deposit plane and magnetic lineation oriented parallel to the extension direction). On the other hand, several of these studies have also determined how the subsequent compressional stage can modify the primary extensional fabric in some cases, particularly in areas subjected to more intense deformation (with development of compression-related cleavage). In this contribution we present a compilation of AMS studies developed in sedimentary basins that underwent different degree of tectonic inversion during their history, in order to describe the relationship of this degree of deformation and the degree of imprint that tectonic conditions have in the previous magnetic ellipsoid (primary extension-related geometry). The inverted basins included in this synthesis are located in the Iberian Peninsula and show: i) weak deformation (W Castilian Branch and Maestrazgo basin, Iberian Range); ii) transport along the hangingwall of thrusts with very slight internal deformation (Organyà basin, Central Pyrenees); iii) record of incipient compressive strain and foliation development (Cabuerniga basin, Basque-Cantabrian Basin; Lusitanian basin, W Portugal); iv) complete inversion associated with a remarkable transport along the hangingwall of thrusts and relatively large internal deformation (Cameros basin, Iberian Range); and v) major folding and flattening linked to foliation (Mauléon basin, Northern Pyrenees; Nogueres unit, Pyrenean Axial Zone).

  8. Evolving Concepts and Teaching Approaches In Tectonics and Sedimentation.

    ERIC Educational Resources Information Center

    Graham, Stephan Alan

    1983-01-01

    Discusses five recent advances in sedimentary tectonics, noting how they are incorporated into college curricula. Advances discussed include basin type, tectonic setting, facies analysis (in conjunction with basin type/setting), stratigraphic analysis of reflection seismic data, and quantitative analysis of subsidence histories of sedimentary…

  9. The Surface of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Head, J. W.

    2018-03-01

    This chapter reviews the conditions under which the basic landforms of Venus formed, interprets their nature, and analyzes their local, regional, and global age relationships. The strong greenhouse effect on Venus causes hyper-dry, almost stagnant near-surface environments. These conditions preclude water-driven, and suppress wind-related, geological processes; thus, the common Earth-like water-generated geological record of sedimentary materials does not currently form on Venus. Three geological processes are important on the planet: volcanism, tectonics, and impact cratering. The small number of impact craters on Venus ( 1,000) indicates that their contribution to resurfacing is minor. Volcanism and tectonics are the principal geological processes operating on Venus during its observable geologic history. Landforms of the volcanic and tectonic nature have specific morphologies, which indicate different modes of formation, and their relationships permit one to establish their relative ages. Analysis of these relationships at the global scale reveals that three distinct regimes of resurfacing comprise the observable geologic history of Venus: (1) the global tectonic regime, (2) the global volcanic regime, and (3) the network rifting-volcanism regime. During the earlier global tectonic regime, tectonic resurfacing dominated. Tectonic deformation at this time caused formation of strongly tectonized terrains such as tessera, and deformational belts. Exposures of these units comprise 20% of the surface of Venus. The apparent beginning of the global tectonic regime is related to the formation of tessera, which is among the oldest units on Venus. The age relationships among the tessera structures indicate that this terrain is the result of crustal shortening. During the global volcanic regime, volcanism overwhelmed tectonic activity and caused formation of vast volcanic plains that compose 60% of the surface of Venus. The plains show a clear stratigraphic sequence from older shield plains to younger regional plains. The distinctly different morphologies of the plains indicate different volcanic formation styles ranging from eruption through broadly distributed local sources of shield plains to the volcanic flooding of regional plains. The density of impact craters on units of the tectonic and volcanic regimes suggests that these regimes characterized about the first one-third of the visible geologic history of Venus. During this time, 80%–85% of the surface of the planet was renovated. The network rifting-volcanism regime characterized the last two-thirds of the visible geologic history of Venus. The major components of the regime include broadly synchronous lobate plains and rift zones. Although the network rifting-volcanism regime characterized 2/3 of the visible geologic history of Venus, only 15%–20% of the surface was resurfaced during this time. This means that the level of endogenous activity during this time has dropped by about an order of magnitude compared with the earlier regimes.

  10. Petrotectonic framework of granulites from northern part of Chilka Lake area, Eastern Ghats Belt, India: Compressional vis-à-vis transpressional tectonics

    NASA Astrophysics Data System (ADS)

    Das, Kaushik; Bose, Sankar; Karmakar, Subrata; Chakraborty, Supriya

    2012-02-01

    Granulite-facies rocks occurring north-east of the Chilka Lake anothosite (Balugan Massif) show a complex metamorphic and deformation history. The M1-D1 stage is identified only through microscopic study by the presence of S1 internal foliation shown by the M1 assemblage sillimanite-quartz-plagioclase-biotite within garnet porphyroblasts of the aluminous granulites and this fabric is obliterated in outcrop to map-scale by subsequent deformations. S2 fabric was developed at peak metamorphic condition (M2-D2) and is shown by gneissic banding present in all lithological units. S3 fabric was developed due to D3 deformation and it is tectonically transposed parallel to S2 regionally except at the hinge zone of the F3 folds. The transposed S2/S3 fabric is the regional characteristic structure of the area. The D4 event produced open upright F4 folds, but was weak enough to develop any penetrative foliation in the rocks except few spaced cleavages that developed in the quartzite/garnet-sillimanite gneiss. Petrological data suggest that the M4-D4 stage actually witnessed reactivation of the lower crust by late distinct tectonothermal event. Presence of transposed S2/S3 fabric within the anorthosite arguably suggests that the pluton was emplaced before or during the M3-D3 event. Field-based large-scale structural analyses and microfabric analyses of the granulites reveal that this terrain has been evolved through superposed folding events with two broadly perpendicular compression directions without any conclusive evidence for transpressional tectonics as argued by earlier workers. Tectonothermal history of these granulites spanning in Neoproterozoic time period is dominated by compressional tectonics with associated metamorphism at deep crust.

  11. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  12. A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin

    USGS Publications Warehouse

    Poag, C.W.; Sevon, W.D.

    1989-01-01

    The complex interplay between source-terrain uplift, basin subsidence, paleoclimatic shifts, and sea-level change, left an extensive sedimentary record in the contiguous offshore basins of the U.S. middle Atlantic margin (Salisbury Embayment, Baltimore Canyon Trough, and Hatteras Basin). Isopach maps of 23 postrift (Lower Jurassic to Quaternary) a allostratigraphic units, coupled with a revised stratigraphic framework, reveal that tectonism, by regulating sediment supply (accumulation rate), dominated the interplay of forcing mechanisms. Tectonic pulses are evidenced by abruptly accelerated sediment accumulation, marked latitudinal shifts in the location of depocenters, and regional changes in lithofacies. Relatively rapid tectonic subsidence during the Early and Middle Jurassic history of the basins may have enhanced sediment accumulation rates. Beginning in the Late Jurassic, however, subsidence rates decreased significantly, though occasional short pulses of subsidence may have effected relative sea-level rises. Sea-level change heavily influenced the distribution and redistribution of sediments one they reached the basins, and paleoclimate regulated the relative abundance of carbonates and evaporites in the basins. We conclude that source terrains of the central Appalachian Highlands were tectonically uplifted, intensely weathered, and rapidly eroded three times since the Late Triassic: (1) Early to Middle Jurassic (Aalenian to Callovian); (2) mid-Early Cretaceous (Barremian); and (3) Late Cenozoic (Middle Miocene). Intervals of tectonic quiescence following these three tectonic pulses provided conditions suitable for the formation of regional erosion surfaces, geomorphic features commonly reported to characterize the central Appalachian Highlands. This series of three, irregularly spaced, tectonic/quiescent cycles does not, however, match the traditional four-cycle concept of post-Triassic Appalachian "peneplanation". ?? 1989.

  13. Plate tectonics, damage and inheritance.

    PubMed

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  14. A Review of Tectonic Models and Analytical Data from Almora-Dadeldhura Klippe, Northwest India and Far Western Nepal.

    NASA Astrophysics Data System (ADS)

    Bosu, S.; Robinson, D.; Saha, A.

    2017-12-01

    Tectonic models developed from the Himalayan thrust belt constitute three models- critical taper, channel flow and wedge extrusion. Their differences are manifested in predicted minimum shortening, deformation propagation style and tectonic architecture across the thrust belt. Recent studies from isolated synformal klippen composed of Greater and Tethyan Himalayan rock within the Himalayan thrust belt disagree over the tectonic history, especially in the Almora-Dadeldhura klippe, which is the largest klippe in the thrust belt. These recent studies are limited to one transect each, and two or fewer types of analytical data to justify their models. Due to the limited spatial coverage, these studies often reflect a narrow perspective in their tectonic models; thus, combining the data from these studies provides a holistic view of the regional tectonic history. This study compiled the available data across the 350 km wide Almora-Dadeldhura klippe, using petrology, stratigraphy, metamorphic history, microstructure, U-Pb ages of intrusive granite, monazite and muscovite ages of the shear zones, and exhumation ages from apatite fission track, along with original field observations, microstructure and microtexture data from 5 different transects in northwest India and far western Nepal. The review of the compiled data suggests that the Himalayan thrust belt in northwest India and far western Nepal is a forward propagating thrust system, and that the analytical data support the critical taper model.

  15. The evolving landscape and climate of western Flores: an environmental context for the archaeological site of Liang Bua.

    PubMed

    Westaway, K E; Roberts, R G; Sutikna, T; Morwood, M J; Drysdale, R; Zhao, J-x; Chivas, A R

    2009-11-01

    The rapidly changing landscape of the eastern Indonesian archipelago has evolved at a pace dictated by its tropical climate and its geological and tectonic history. This has produced accelerated karstification, flights of alluvial terraces, and complex, multi-level cave systems. These cave systems sometimes contain a wealth of archaeological evidence, such as the almost complete skeleton of Homo floresiensis found at the site of Liang Bua in western Flores, but this information can only be understood in the context of the geomorphic history of the cave, and the more general geological, tectonic, and environmental histories of the river valley and region. Thus, a reconstruction of the landscape history of the Wae Racang valley using speleothems, geological structure, tectonic uplift, karst, cave, and terrace development, provides the necessary evidence to determine the formation, age, evolution, and influences on the site. This evidence suggests that Liang Bua was formed as two subterranean chambers approximately 600ka, but could not be occupied until approximately 190ka when the Wae Racang wandered to the southern side of the valley, exposing the chamber and depositing alluvial deposits containing artifacts. During the next approximately 190k.yr., the chambers coalesced and evolved into a multi-level and interconnected cave that was subjected to channel erosion and pooling events by the development of sinkholes. The domed morphology of the front chamber accumulated deep sediments containing well stratified archaeological and faunal remains, but ponded water in the chamber further prevented hominin use of the cave until approximately 100ka. These chambers were periodically influenced by river inundation and volcanic activity, whereas the area outside the cave was greatly influenced by glacial phases, which changed humid forest environments into grassland environments. This combined evidence has important implications for the archaeological interpretation of the site.

  16. Recent advances on the tectonic and magmatic evolution of the Greater Tibetan Plateau: A special issue in honor of Prof. Guitang Pan

    NASA Astrophysics Data System (ADS)

    Zhu, Di-Cheng; Chung, Sun-Lin; Niu, Yaoling

    2016-02-01

    The Greater Tibetan Plateau, also known in China as the Qinghai-Tibet Plateau or the Qingzang Plateau, is a tectonic amalgamation of numbers of continental collision events from the northwest in the early Paleozoic to the southwest in the Cenozoic (cf. Dewey et al., 1988; Pan et al., 2012; Yin and Harrison, 2000). These collision events resulted in orogenic belts that record the prolonged albeit complex histories of opening and closing of Tethyan ocean basins and associated tectonic and magmatic responses (cf. Chung et al., 2005; Pan et al., 2012; Song et al., 2014; Yin and Harrison, 2000; Zhu et al., 2013, 2015). Although many aspects related to these events have been recently synthesized with elegance by Pan et al. (2012) and Zhu et al. (2013) using data and observations made available since 2000, many scientific questions, such as the duration of oceanic basins, the collisional and accretionary processes of different terranes, the processes responsible for crustal growth, and the mechanisms for economic mineralization, remain underdeveloped and require further investigations with additional data.

  17. Analytically based forward and inverse models of fluvial landscape evolution during temporally continuous climatic and tectonic variations

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Petit, Carole

    2017-04-01

    Fluvial channels respond to changing tectonic and climatic conditions by adjusting their patterns of erosion and relief. It is therefore expected that by examining these patterns, we can infer the tectonic and climatic conditions that shaped the channels. However, the potential interference between climatic and tectonic signals complicates this inference. Within the framework of the stream power model that describes incision rate of mountainous bedrock rivers, climate variability has two effects: it influences the erosive power of the river, causing local slope change, and it changes the fluvial response time that controls the rate at which tectonically and climatically induced slope breaks are communicated upstream. Because of this dual role, the fluvial response time during continuous climate change has so far been elusive, which hinders our understanding of environmental signal propagation and preservation in the fluvial topography. An analytic solution of the stream power model during general tectonic and climatic histories gives rise to a new definition of the fluvial response time. The analytic solution offers accurate predictions for landscape evolution that are hard to achieve with classical numerical schemes and thus can be used to validate and evaluate the accuracy of numerical landscape evolution models. The analytic solution together with the new definition of the fluvial response time allow inferring either the tectonic history or the climatic history from river long profiles by using simple linear inversion schemes. Analytic study of landscape evolution during periodic climate change reveals that high frequency (10-100 kyr) climatic oscillations with respect to the response time, such as Milankovitch cycles, are not expected to leave significant fingerprints in the upstream reaches of fluvial channels. Linear inversion schemes are applied to the Tinee river tributaries in the southern French Alps, where tributary long profiles are used to recover the incision rate history of the Tinee main trunk. Inversion results show periodic, high incision rate pulses, which are correlated with interglacial episodes. Similar incision rate histories are recovered for the past 100 kyr when assuming constant climatic conditions or periodic climatic oscillations, in agreement with theoretical predictions.

  18. Accretion of the Archean Slave Province

    NASA Technical Reports Server (NTRS)

    Kusky, Timothy

    1988-01-01

    Detailed field studies of selected areas in the greenstone belts of the Slave Province of Canada were presented. This area was long cited as a type area by supporters of the (now generally abandoned) rift model of greenstone belts. It was shown that a plate tectonic interpretation accounted more successfully for the regional geology and identified four terranes that had experienced complex divergent and convergent histories between 2.7 and 3.4 Ga. A dismembered ophiolite was identified and a late episode of widespread granitic intrusion was recognized.

  19. The rotation and fracture history of Europa from modeling of tidal-tectonic processes

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose

    Europa's surface displays a complex history of tectonic activity, much of which has been linked to tidal stress caused by Europa's eccentric orbit and possibly non-synchronous rotation of the ice shell. Cycloids are arcuate features thought to have formed in response to tidal normal stress while strike-slip motion along preexisting faults has been attributed to tidal shear stress. Tectonic features thus provide constraints on the rotational parameters that govern tidal stress, and can help us develop an understanding of the tidal-tectonic processes operating on ice covered ocean moons. In the first part of this work (Chapter 3), I test tidal models that include obliquity, fast precession, stress due to non-synchronous rotation (NSR), and physical libration by comparing how well each model reproduces observed cycloids. To do this, I have designed and implemented an automated parameter-searching algorithm that relies on a quantitative measure of fit quality to identify the best fits to observed cycloids. I apply statistical techniques to determine the tidal model best supported by the data and constrain the values of Europa's rotational parameters. Cycloids indicate a time-varying obliquity of about 1° and a physical libration in phase with the eccentricity libration, with amplitude >1°. To obtain good fits, cycloids must be translated in longitude, which implies non-synchronous rotation of the icy shell. However, stress from NSR is not well-supported, indicating that the rotation rate is slow enough that these stresses relax. I build upon the results of cycloid modeling in the second section by applying calculations of tidal stress that include obliquity to the formation of strike-slip faults. I predict the slip directions of faults with the standard formation model---tidal walking (Chapter 5)---and with a new mechanical model I have developed, called shell tectonics (Chapter 6). The shell tectonics model incorporates linear elasticity to determine slip and stress release on faults and uses a Coulomb failure criterion. Both of these models can be used to predict the direction of net displacement along faults. Until now, the tidal walking model has been the only model that reproduces the observed global pattern of strike-slip displacement; the shell tectonics model incorporates a more physical treatment of fault mechanics and reproduces this global pattern. Both models fit the regional patterns of observed strike-slip faults better when a small obliquity is incorporated into calculations of tidal stresses. Shell tectonics is also distinct from tidal walking in that it calculates the relative growth rates of displacements in addition to net slip direction. Examining these growth rates, I find that certain azimuths and locations develop offsets more quickly than others. Because faults with larger offsets are easier to identify, this may explain why observed faults cluster in azimuth in many regions. The growth rates also allow for a more sophisticated statistical comparison between the predictions and observations. Although the slip directions of >75% of faults are correctly predicted using shell tectonics and 1° of obliquity, a portion of these faults could be fit equally well with a random model. Examining these faults in more detail has revealed a region of Europa in which strike-slip faults likely formed through local extensional and compressional deformation rather than as a result of tidal shear stress. This approach enables a better understanding of the tectonic record, which has implications on Europa's rotation history.

  20. Post-breakup tectonics in southeast Brazil from thermochronological data and combined inverse-forward thermal history modeling

    NASA Astrophysics Data System (ADS)

    Cogné, Nathan; Gallagher, Kerry; Cobbold, Peter R.; Riccomini, Claudio; Gautheron, Cecile

    2012-11-01

    The continental margin of southeast Brazil is elevated. Onshore Tertiary basins and Late Cretaceous/Paleogene intrusions are good evidence for post breakup tectono-magmatic activity. To constrain the impact of post-rift reactivation on the geological history of the area, we carried out a new thermochronological study. Apatite fission track ages range from 60.7 ± 1.9 Ma to 129.3 ± 4.3 Ma, mean track lengths from 11.41 ± 0.23 μm to 14.31 ± 0.24 μm and a subset of the (U-Th)/He ages range from 45.1 ± 1.5 to 122.4 ± 2.5 Ma. Results of inverse thermal history modeling generally support the conclusions from an earlier study for a Late Cretaceous phase of cooling. Around the onshore Taubaté Basin, for a limited number of samples, the first detectable period of cooling occurred during the Early Tertiary. The inferred thermal histories for many samples also imply subsequent reheating followed by Neogene cooling. Given the uncertainty of the inversion results, we did deterministic forward modeling to assess the range of possibilities of this Tertiary part of the thermal history. The evidence for reheating seems to be robust around the Taubaté Basin, but elsewhere the data cannot discriminate between this and a less complex thermal history. However, forward modeling results and geological information support the conclusion that the whole area underwent cooling during the Neogene. The synchronicity of the cooling phases with Andean tectonics and those in NE Brazil leads us to assume a plate-wide compressional stress that reactivated inherited structures. The present-day topographic relief of the margin reflects a contribution from post-breakup reactivation and uplift.

  1. Complex Tectonism on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Complex tectonism is evident in these images of Ganymede's surface. The solid state imaging camera on NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. The 80 kilometer (50 mile) wide lens-shaped feature in the center of the image is located at 32 degrees latitude and 188 degrees longitude along the border of a region of ancient dark terrain known as Marius Regio, and is near an area of younger bright terrain named Nippur Sulcus. The tectonism that created the structures in the bright terrain nearby has strongly affected the local dark terrain to form unusual structures such as the one shown here. The lens-like appearance of this feature is probably due to shearing of the surface, where areas have slid past each other and also rotated slightly. Note that in several places in these images, especially around the border of the lens-shaped feature, bright ridges appear to turn into dark grooves. Analysis of the geologic structures in areas like this are helping scientists to understand the complex tectonic history of Ganymede.

    North is to the top-left of the image, and the sun illuminates the surface from the southeast. The image covers an area about 63 kilometers (39 miles) by 120 kilometers (75 miles) across at a resolution of 188 meters (627 feet) per picture element. The images were taken on September 6, 1996 at a range of 18,522 kilometers (11,576 miles) by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  2. Problems of the active tectonics of the Eastern Black Sea

    NASA Astrophysics Data System (ADS)

    Javakhishvili, Z.; Godoladze, T.; Dreger, D. S.; Mikava, D.; Tvaliashvili, A.

    2016-12-01

    The Black Sea Basin is the part of the Arabian Eurasian Collision zone and important unit for understanding the tectonic process of the region. This complex basin comprises two deep basins, separated by the mid-Black Sea Ridge. The basement of the Black Sea includes areas with oceanic and continental crust. It was formed as a "back-arc" basin over the subduction zone during the closing of the Tethys Ocean. In the past decades the Black Sea has been the subject of intense geological and geophysical studies. Several papers were published about the geological history, tectonics, basement relief and crustal and upper mantle structure of the basin. New tectonic schemes were suggested (e. g. Nikishin et al 2014, Shillington et al. 2008, Starostenko et al. 2004 etc.). Nevertheless, seismicity of the Black Sea is poorly studied due to the lack of seismic network in the coastal area. It is considered, that the eastern basin currently lies in a compressional setting associated with the uplift of the Caucasus and structural development of the Caucasus was closely related to the evolution of the Eastern Black Sea Basin. Analyses of recent sequence of earthquakes in 2012 can provide useful information to understand complex tectonic structure of the Eastern Black Sea region. Right after the earthquake of 2012/12/23, National Seismic monitoring center of Georgia deployed additional 4 stations in the coastal area of the country, close to the epicenter area, to monitor aftershock sequence. Seismic activity in the epicentral area is continuing until now. We have relocated approximately 1200 aftershocks to delineate fault scarf using data from Georgian, Turkish and Russian datacenters. Waveforms of the major events and the aftershocks were inverted for the fault plane solutions of the events. For the inversion were used green's functions, computed using new 1D velocity model of the region. Strike-slip mechanism of the major events of the earthquake sequence indicates extensional features in the Eastern Black Sea Region as well.

  3. Cenozoic tectonic and climatic events in southern Iberian Peninsula: Implications for the evolutionary history of freshwater fish of the genus Squalius (Actinopterygii, Cyprinidae).

    PubMed

    Perea, Silvia; Cobo-Simon, Marta; Doadrio, Ignacio

    2016-04-01

    Southern Iberian freshwater ecosystems located at the border between the European and African plates represent a tectonically complex region spanning several geological ages, from the uplifting of the Betic Mountains in the Serravalian-Tortonian periods to the present. This area has also been subjected to the influence of changing climate conditions since the Middle-Upper Pliocene when seasonal weather patterns were established. Consequently, the ichthyofauna of southern Iberia is an interesting model system for analyzing the influence of Cenozoic tectonic and climatic events on its evolutionary history. The cyprinids Squalius malacitanus and Squalius pyrenaicus are allopatrically distributed in southern Iberia and their evolutionary history may have been defined by Cenozoic tectonic and climatic events. We analyzed MT-CYB (510 specimens) and RAG1 (140 specimens) genes of both species to reconstruct phylogenetic relationships and to estimate divergence times and ancestral distribution ranges of the species and their populations. We also assessed their levels of genetic structure and diversity as well as the amount of gene flow between populations. To investigate recent paleogeographical and climatic factors in southern Iberia, we modeled changes-through-time in sea level from the LGM to the present. Phylogenetic, geographic and population structure analyses revealed two well-supported species (S. malacitanus and S. pyrenaicus) in southern Iberia and two subclades (Atlantic and Mediterranean) within S. malacitanus. The origin of S. malacitanus and the separation of its Atlantic and Mediterranean populations occurred during the Serravalian-Tortonian and Miocene-Pliocene periods, respectively. These divergence events occurred in the Middle Pliocene and Pleistocene in S. pyrenaicus. In both species, Atlantic basins possessed populations with higher genetic diversity than Mediterranean, which may be explained by the Janda Lagoon. The isolation of S. malacitanus was earlier and related to the rising of the Betic Mountains. Divergence of its Atlantic and Mediterranean populations was associated with the creation of the freshwater systems of southern Iberia close to the Gibraltar Strait. The presence of S. pyrenaicus in southern Iberia may be the result of recent colonization associated with river capture, as demonstrated our biogeographic reconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-01-01

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic [open quotes]lowstand[close quotes] systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less

  5. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-12-31

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic {open_quotes}lowstand{close_quotes} systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less

  6. Evidence for a complex archean deformational history; southwestern Michipicoten Greenstone Belt, Ontario

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.; Shrady, Catherine H.

    1986-01-01

    The Michipicoten Greenstone Belt extends for about 150 km ENE from the northeastern angle of Lake Superior. In common with many other Archean greenstone belts, it is characterized by generally steep bedding dips and a distribution of major lithologic types suggesting a crudely synclinal structure for the belt as a whole. Detailed mapping and determination of structural sequence demonstrates that the structure is much more complex. The Archean history of the belt includes formation of at least three regionally significant cleavages, kilometer-scale overturning, extensive shearing, and diabase intrusion. Most well defined, mappable 'packages' of sedimentary rocks appear to be bounded by faults. These faults were active relatively early in the structural history of the belt, when extensive overturning also occurred. Steepening of dips, NW-SE shortening, development of steep NE cleavage, and pervasive shearing all postdate the early faulting and the regional overturning, obscuring much of the detail needed to define the geometry of the earlier structures. The results obtained so far suggest, however, that the Michipicoten Greenstone Belt underwent an early stage of thrusting and associated isoclinal folding, probably in a convergent tectonic environment.

  7. Regional geology and tectonics

    USGS Publications Warehouse

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the regional geology and tectonic origins of the major geologic units for the Northern Cordillera. The goals of the chapter are to: (1) provide a summary and regional overview of this vast region that contains a complicated geologic history; and (2) describe the major geologic units and tectonic events that cover a broad geologic time span from the Proterozoic to the Holocene (Recent).

  8. Tectonic control of complex slope failures in the Ameka River Valley (Lower Gibe Area, central Ethiopia): Implications for landslide formation

    NASA Astrophysics Data System (ADS)

    Kycl, Petr; Rapprich, Vladislav; Verner, Kryštof; Novotný, Jan; Hroch, Tomáš; Mišurec, Jan; Eshetu, Habtamu; Tadesse Haile, Ezra; Alemayehu, Leta; Goslar, Tomasz

    2017-07-01

    Even though major faults represent important landslide controlling factors, the role the tectonic setting in actively spreading rifts plays in the development of large complex landslides is seldom discussed. The Ameka complex landslide area is located on the eastern scarp of the Gibe Gorge, approximately 45 km to the west of the Main Ethiopian Rift and 175 km to the southwest of Addis Ababa. Investigation of the complex landslide failures required a combination of satellite and airborne data-based geomorphology, geological field survey complemented with structural analysis, radiocarbon geochronology and vertical electric sounding. The obtained observations confirmed the multiphase evolution of the landslide area. We have documented that, apart from climatic and lithological conditions, the main triggering factor of the Ameka complex landslide is the tectonic development of this area. The E-W extension along the NNE-SSW trending Main Ethiopian Rift is associated with the formation of numerous parallel normal faults, such as the Gibe Gorge fault and the almost perpendicular scissor faults. The geometry of the slid blocks of coherent lithology have inherited the original tectonic framework, which suggests the crucial role tectonics play in the fragmentation of the compact rock-masses, and the origin and development of the Ameka complex landslide area. Similarly, the main scarps were also parallel to the principal tectonic features. The local tectonic framework is dominated by faults of the same orientation as the regional structures of the Main Ethiopian Rift. Such parallel tectonic frameworks display clear links between the extension of the Main Ethiopian Rift and the tectonic development of the landslide area. The Ameka complex landslide developed in several episodes over thousands of years. According to the radiocarbon data, the last of the larger displaced blocks (representing only 2% of the total area) most likely slid down in the seventh century AD. The main scarps, namely the high scarps in the western part, are unstable over the long term and toppling and falling-type slope movements can be expected here in the future.

  9. Early Paleozoic tectonics for the New Siberian Islands terrane (Eastern Arctic)

    NASA Astrophysics Data System (ADS)

    Metelkin, D. V.; Chernova, A. I.; Vernikovsky, V. A.; Matushkin, N. Yu.

    2017-11-01

    The New Siberian Islands archipelago is one of the few research objects accessible for direct study on the eastern Arctic shelf. There are several models that have different interpretations of the Paleozoic tectonic history and the structural affinity of the New Siberian Islands terrane. Some infer a direct relationship with the passive continental margin of the Siberian paleocontinent. Others connect it with the marginal basins of Baltica and Laurentia, or the Chukotka-Alaska microplate. Our paleomagnetic investigation led us to create an apparent polar wander path for the early Paleozoic interval of geological history. Based on it we can conclude that the New Siberian Islands terrane could not have been a part of these continental plates. This study considers the possible tectonic scenarios of the Paleozoic history of the Earth, presents and discusses the corresponding global reconstructions describing the paleogeography and probable mutual kinematics of the terranes of the Eastern Arctic.

  10. The Influence of Inherited Topography and/or Tectonics on Paleo-channel Systems and Incised Valleys Offshore of South Carolina

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Hill, J. C.

    2016-12-01

    The Quaternary paleo-channel and incised valley systems of the Southeastern United States have been well documented onshore; however, few studies have focused on the positions and fill histories of these systems on the continental shelf. The effects of inherited topography can be studied through the integration of seismo-acoustic and core data. Existing offshore datasets have been used to document underlying structural and stratigraphic fabrics deeper than the Quaternary in the sedimentary record. By integrating these results with the published tectonic setting and onshore interpretations, some of the controls on paleo-channel/incised valley positions can be inferred. Preliminary results suggest the stress caused by the uplift along the Cape Fear Arch has been accommodated by shallow folding and reactivation of deeper structures in the South Carolina offshore province. The resultant topography may have dictated both the position and geometry of the fluvial incisions across the shelf. This in turn influences the accommodation space available to be filled in as sea level fluctuates. The depositional facies within the paleo-channel and incised valley range from single, uninterrupted fill to complex and repeated scour and fill with at least four different episodes of erosion and deposition. The observations and interpretations proposed here are the first steps in unraveling the complex interplay between sea level, climate, and tectonic changes on the morphology and stratigraphy of incised valleys and paleo-channels observed offshore of South Carolina.

  11. Geochemistry of siliciclastic rocks in the Peninsular, Chugach, and Prince William terranes: Implications for the tectonic evolution of south central Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, S.A.; Casey, J.F.; Bradley, D.

    1992-01-01

    According to some interpretations, south-central Alaska consists of a series of unrelated terranes juxtaposed by dominantly strike-slip motions some time after formation. Alternatively, these so-called terranes may be related components of a seaward-facing arc, forearc, and accretionary prism. To shed new light on the tectonic history of this area, 150 samples of siliciclastic rocks were analyzed for major, trace, and rare earth elements (REE). Shales were sampled from the Upper Cretaceous Matanuska and Paleogene Chickaloon Fms. of the Peninsular Terrane (forearc basin); argillaceous melange matrix from the Mesozoic McHugh Complex and slate from turbidites of the Upper Cretaceous Valdez Groupmore » of the Chugach Terrane (landward part of accretionary prism); and slate from turbidites of the Paleogene Orea Group of the Prince William Terrane (seaward part of accretionary prism). One tectonic model that may fit these geochemical data requires an early linkage between the Peninsular and Chugach-Prince William composite terranes. The geochemical signatures suggest that the McHugh Complex was derived from a mafic volcanic source and may represent an early accretionary stage of sediments derived from an oceanic arc. The progressive continental enrichment of the Valdez and Orca Groups may reflect later accretionary processes during and/or after the collision of the Talkectna arc with the North American continent. The similar increasingly continental source documented in the geochemistry of the forearc basin shales of the Matanuska and Chickaloon Fms. may suggest: that the presently defined Peninsular, Chugach, and Prince William terranes collectively represent one continuously evolving, seaward facing arc, forearc, and accretionary prism complex.« less

  12. Complex brittle deformation pattern along the Southern Patagonian Andes (Argentina)

    NASA Astrophysics Data System (ADS)

    Barberón, Vanesa; Sue, Christian; Ronda, Gonzalo; Ghiglione, Matías

    2016-04-01

    The Southern Patagonian Andes is located in the southern extreme of the Pacific subduction zone, where the Antartic oceanic plate sinks underneath South America. The history of the area begins with compression during Paleozoic, Jurassic extension associated to the rift and opening of the South Atlantic Ocean, then a sag stage in the Lower Cretaceous followed by a foreland phase as a result of plate tectonics (Ghiglione et al., 2016). The kinematic study is concentrated in the Argentinean foothills, between 46°40' and 48° SL. We measured around 800 fault planes and their striaes with the sense of movement in order to characterize the stress field. The software used to make the stress inversion were Tensor (Delvaux, 2011) and Multiple Inverse Method MIM (Yamaji et al., 2011). The stress field map was built with the results of the MIM. We present new data from 48 sites located in the northern sector of the Southern Patagonian Andes. The measurements were made in several rocks from Paleozoic to Lower Cretaceous, even though most were taken in pyroclastic jurassic rocks from El Quemado Complex. Paleostress tensors obtained are mostly strike-slip, although a 25% is normal and there are a few compresional. The pattern of faults found is complex. In some sites the tensor can be locally linked to satellite images and observations from the field or be related to a major thrust front. There is no clear correlation between the age and/or lithology with the tensor since the youngest rocks measured are Lower Cretaceous. Probably there are several generations of family faults connected to different and recent tectonic phases then the paleostress tensors might correspond to the latest tectonic events.

  13. Geologic setting of the Fortymile River area - Polyphase deformational history within part of the eastern Yukon-Tanana uplands of Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Day, Warren C.; Gamble, Bruce M.; Henning, Mitchell W.; Smith, Bruce D.

    2000-01-01

    The Fortymile River area lies within the Yukon-Tanana lithotectonic terrane of east-central Alaska. This terrane is a mosaic of several lithotectonic assemblages, each with a coherent lithologic, metamorphic, and deformational history. Previous workers have shown that the Fortymile River area is underlain by rocks of the Seventymile, Taylor Mountain, and Nisutlin assemblages. The Taylor Mountain tectonostratigraphic assemblage is the most widespread within study area and is made up of amphibolite-grade Paleozoic(?) metamorphosed supracrustal rocks that have been intruded by plutonic rocks. The protoliths for the supracrustal rocks include mafic volcanic(?) rocks, graywacke, sulfide-rich siliciclastic sediments, quartz-rich sandstone, pelite, and marble, all of which are cut by late sulfide-bearing quartz veins. The mafic metavolcanic(?) rocks are of both tholeiitic and calc-alkalic affinity and have distinctly different rare-earth-element abundances. The supracrustal rocks are interpreted to have been deposited on a continental margin and (or) distal to an island-arc complex in a back-arc basin.The Steele Creek Dome Tonalite is defined herein as a composite body of foliated biotite-hornblende tonalitic orthogneiss containing country-rock rafts of paragneiss. The complex lies within the Taylor Mountain assemblage and has been tectonized and presumably recrystallized during regional Early Jurassic ductile deformation. The tonalite is compositionally similar to other volcanic-arc granites. The entire sequence was intruded by a Early Jurassic(?) hornblende monzodioritediorite-quartz diorite suite.The area has been subjected to at least three phases of deformation. The first (D1) produced a strong regional S1 schistosity and local mineral lineations. The second (D2) deformation generated tight to isoclinal F2 folds, folding the S1 schistosity and L1 mineral lineations, and was accompanied by a weak axial-planar S2 cleavage and both L2 mineral and stretching lineations. The question remains if the D1 and D2 tectonic fabrics either (1) record end members of a continuous, relatively long lived, progressive ductile deformation associated with the peak regional metamorphism and northward-directed thrusting; or (2) were separate and distinct pulses of tectonism. The youngest deformation recognized (D3) folded the ductile fabric elements about south-plunging, east-vergent, open folds and records east-west-directed tectonic shortening.

  14. The tectonic evolution of the Madrean Archipelago and its impact on the geoecology of the Sky Islands

    Treesearch

    David Coblentz

    2005-01-01

    While the unique geographic location of the Sky Islands is well recognized as a primary factor for the elevated biodiversity of the region, its unique tectonic history is often overlooked. The mixing of tectonic environments is an important supplement to the mixing of flora and faunal regimes in contributing to the biodiversity of the Madrean Archipelago. The Sky...

  15. The contraction/expansion history of Charon with implications for its planetary-scale tectonic belt

    NASA Astrophysics Data System (ADS)

    Malamud, Uri; Perets, Hagai B.; Schubert, Gerald

    2017-06-01

    The New Horizons mission to the Kuiper belt has recently revealed intriguing features on the surface of Charon, including a network of chasmata, cutting across or around a series of high topography features, conjoining to form a belt. It is proposed that this tectonic belt is a consequence of contraction/expansion episodes in the moon's evolution associated particularly with compaction, differentiation and geochemical reactions of the interior. The proposed scenario involves no need for solidification of a vast subsurface ocean and/or a warm initial state. This scenario is based on a new, detailed thermo-physical evolution model of Charon that includes multiple processes. According to the model, Charon experiences two contraction/expansion episodes in its history that may provide the proper environment for the formation of the tectonic belt. This outcome remains qualitatively the same, for several different initial conditions and parameter variations. The precise orientation of Charon's tectonic belt, and the cryovolcanic features observed south of the tectonic belt may have involved a planetary-scale impact, that occurred only after the belt had already formed.

  16. Tectonics and petroleum prospects in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, A.N.

    1995-07-10

    Bangladesh is a part of the Bengal basin, bordered to the west and northwest by Jurassic-early Cretaceous volcanic trap rocks of the Rajmahal Hills, underlain by Precambrian shield and Gondwana sediments. The Bengal basin is the largest delta basin (approximately 23,000 sq miles) in the world, at the confluence of the Ganges and Brahmaputra rivers. The deep sea fan complex that is being built outward into the Bay of Bengal has in excess of 12 km of sediments. Rate of sediment transportation within the basin, from the Himalayas and the mountains and hills to the north, east, and west, exceedsmore » 1 billion tons/year. The tectonic and sedimentary history of Bangladesh is favorable for hydrocarbon accumulation. The basin is an underexplored region of 207,000 sq km where only 52 exploratory wells have been drilled with a success rate of more than 30%. In addition to the folded belt in the east, where gas and some oil have been found, the Garo-Rajmahal gap to the north and the deep sea fan to the south merit detailed exploration using state of the art technology. The paper describes the tectonics, sedimentation, petroleum prospects, and seismic surveys.« less

  17. Amalgamation of East Eurasia Since Late Paleozoic: Constraints from the Apparent Polar Wander Paths of the Major China Blocks

    NASA Astrophysics Data System (ADS)

    Wu, L.; Kravchinsky, V. A.; Potter, D. K.

    2014-12-01

    It has been a longstanding challenge in the last few decades to quantitatively reconstruct the paleogeographic evolution of East Eurasia because of its great tectonic complexities. As the core region, the major China cratons including North China Block, South China Block and Tarim Block hold the key clues for the understanding of the amalgamation history, tectonic activities and biological affinity among the component blocks and terranes in East Eurasia. Compared with the major Gondwana and Laurentia plates, however, the apparent polar wander paths of China are not well constrained due to the outdated paleomagnetic database and relatively loose pole selection process. With the recruitment of the new high-fidelity poles published in the last decade, the rejection of the low quality data and the strict implementation of Voo's grading scheme, we build an updated paleomagnetic database for the three blocks from which three types of apparent polar wander paths (APWP) are computed. Version 1 running mean paths are constructed during the pole selection and compared with those from the previous publications. Version 2 running mean and spline paths with different sliding time windows are computed from the thoroughly examined poles to find the optimal paths with the steady trend, reasonable speed for the polar drift and plate rotation. The spline paths are recommended for the plate reconstructions, however, considering the poor data coverage during certain periods. Our new China APWPs, together with the latest European reference path, the geological, geochronological and biological evidence from the studied Asian plates allow us to reevaluate the paleogeographic and tectonic history of East Eurasia.

  18. Late Cenozoic thermochronology and exhumation history of central Anatolia: Implications for the timing and nature of transition from collision to escape tectonics

    NASA Astrophysics Data System (ADS)

    Thomson, S. N.; Lefebvre, C.; Umhoefer, P. J.; Darin, M. H.; Whitney, D.; Teyssier, C. P.

    2016-12-01

    The central part of the Anatolian microplate in Turkey forms a complex tectonic zone situated between ongoing convergence of the Arabian and Eurasian plates to the east, and lateral escape of the Anatolian microplate as a rigid block to the west facilitated by two major strike-slip faults (the North and East Anatolian fault zones) that transitions westward into an extensional tectonic regime in western Turkey and the Aegean Sea related to subduction retreat. However, the geodynamic processes behind the transition from collision to escape, and the timing and nature of this transition, are complex and remain poorly understood. To gain a better understanding of the timing and nature of this transition, including the debated timing of ca. 35-20 Ma onset of collision between Arabia and Eurasia, we have undertaken a comprehensive low-temperature thermochronologic study in central Turkey to provide a record of exhumation patterns. We have collected over 150 samples, focused on the Central Anatolian Crystalline Complex (CACC), the Central Anatolian fault zone (CAFZ - proposed as a major lithosphere-scale structure that may also be related to onset of tectonic escape), and Eocene to Neogene sedimentary basins. Results include 113 apatite fission track (FT) ages (62 bedrock ages and 51 detrital ages), 26 detrital zircon FT ages, 218 apatite (U-Th)/He (He) ages from 84 mostly bedrock samples, and 15 zircon He ages from 6 bedrock samples. Our most significant new finding is identification of an early Miocene (ca. 22-15 Ma) phase of rapid cooling seen in the CACC. These cooling ages are localized in the footwalls of several large high-angle NW-SE trending normal faults, and imply significant footwall uplift and exhumation at this time. This early Miocene exhumation is restricted to entirely west of the CAFZ, and supports this fault marking a major tectonic transition active at this time. East of the CAFZ, AFT ages in sedimentary rocks show Eocene and older detrital ages despite much higher elevations (up to 3000m) suggesting uplift of the fault block east of CAFZ occurred since the late Miocene. An earlier Eocene (40-35 Ma) phase of cooling and exhumation is identified in deformed Paleocene-Eocene sedimentary rocks either side of the CAFZ likely related to a regional episode of shortening during final closure of the inner Tauride suture.

  19. Mineral deposits and metallogeny of Alaska

    USGS Publications Warehouse

    Goldfarb, Richard J.; Meighan, Corey J.; Meinert, Lawrence D.; Wilson, Frederic H.

    2016-01-01

    Alaska, the largest State within the United States, and mainly located north of latitude 60°, is an important part of the Circum-Arctic region. Alaska is a richly endowed region with a long and complex geologic history. The mining history is short by world standards but nevertheless there are a number of world-class deposits in Alaska, of which Red Dog and Pebble are among the largest of their respective types in the world. Alaska is a collection of geologic terranes or regions having distinct histories, most of which were tectonically assembled in the period from 400 million years to 50 million years ago (late Paleozoic through early Tertiary). They now occur as numerous fault-bounded blocks in the northernmost part of the North American Cordillera on the western margin of the Laurentian craton. These terranes are comprised of rocks ranging in age from Paleoproterozoic to Recent.

  20. Identifying Early Paleozoic tectonic relations in a region affected by post-Taconian transcurrent faulting, an example from the PA-DE Piedmont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcock, J.; Wagner, M.E.; Srogi, L.A.

    1993-03-01

    Post-Taconian transcurrent faulting in the Appalachian Piedmont presents a significant problem to workers attempting to reconstruct the Early Paleozoic tectonic history. One solution to the problem is to identify blocks that lie between zones of transcurrent faulting and that retain the Early Paleozoic arrangement of litho-tectonic units. The authors propose that a comparison of metamorphic histories of different units can be used to recognize blocks of this type. The Wilmington Complex (WC) arc terrane, the pre-Taconian Laurentian margin rocks (LM) exposed in basement-cored massifs, and the Wissahickon Group metapelites (WS) that lie between them are three litho-tectonic units in themore » PA-DE Piedmont that comprise a block assembled in the Early Paleozoic. Evidence supporting this interpretation includes: (1) Metamorphic and lithologic differences across the WC-WS contact and detailed geologic mapping of the contact that suggest thrusting of the WC onto the WS; (2) A metamorphic gradient in the WS with highest grade, including spinel-cordierite migmatites, adjacent to the WC indicating that peak metamorphism of the WS resulted from heating by the WC; (3) A metamorphic discontinuity at the WS-LM contact, evidence for emplacement of the WS onto the LM after WS peak metamorphism; (4) A correlation of mineral assemblage in the Cockeysville Marble of the LM with distance from the WS indicating that peak metamorphism of the LM occurred after emplacement of the WS; and (5) Early Paleozoic lower intercept zircon ages for the LM that are interpreted to date Taconian regional metamorphism. Analysis of metamorphism and its timing relative to thrusting suggest that the WS was associated with the WC before the WS was emplaced onto the LM during the Taconian. It follows that these units form a block that has not been significantly disrupted by later transcurrent shear.« less

  1. Polyphase tectono-magmatic and fluid history related to mantle exhumation in an ultra-distal rift domain: example of the fossil Platta domain, SE Switzerland

    NASA Astrophysics Data System (ADS)

    Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic; Lescanne, Marc

    2017-04-01

    Despite the fact that many studies have investigated mantle exhumation at magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid and thermal evolution of these ultra-distal domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex, however, the processes controlling the morpho-tectonic and magmatic evolution of these domains remain unknown. The aim of this study is to describe the 3D top basement morphology of an exhumed mantle domain, exposed over 200 km2 in the fossil Platta domain in SE Switzerland, and to define the timing and processes controlling its evolution. The examined Platta nappe corresponds to a remnant of the former ultra-distal Adriatic margin of the Alpine Tethys. The rift-structures are relatively well preserved due to the weak Alpine tectonic and metamorphic overprint during the emplacement in the Alpine nappe stack. Detailed mapping of parts of the Platta nappe enabled us to document the top basement architecture of an exhumed mantle domain and to investigate its link to later, rift/oceanic structures, magmatic additions and fluids. Our observations show a polyphase and/or complex: 1) deformation history associated with mantle exhumation along low-angle exhumation faults overprinted by later high-angle normal faults, 2) top basement morphology capped by magmato-sedimentary rocks, 3) tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and 4) fluid history including serpentinization, calcification, hydrothermal vent, rodingitization and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide important information on the temporal and spatial evolution of the tectonic, magmatic and fluid systems controlling the formation of ultra-distal magma-poor rifted margins as well as the processes controlling lithospheric breakup. In this context, our field observations can help to better understand the tectono-magmatic processes associated to these, not yet drilled domains that may form in young, narrow rifted margins (e.g. Red Sea, Gulf of Aden) or may represent the Ocean-Continent Transition in more mature, magma-poor Atlantic type systems.

  2. Tectonic history of the northern Nabitah fault zone, Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Quick, J.E.; Bosch, Paul S.

    1990-01-01

    Based on the presence of similar lithologies, similar structure, and analogous tectonic setting, the Mother Lode District in California is reviewed as a model for gold occurrences near the Nabitah fault zone in this report.

  3. Mineral chemistry of isotropic gabbros from the Manamedu Ophiolite Complex, Cauvery Suture Zone, southern India: Evidence for neoproterozoic suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Tsunogae, T.; Chetty, T. R. K.; Santosh, M.

    2016-11-01

    The dismembered units of the Neoproterozoic Manamedu Ophiolite Complex (MOC) in the Cauvery Suture Zone, southern India comprises a well preserved ophiolitic sequence of ultramafic cumulates of altered dunites, pyroxenites, mafic cumulates of gabbros, gabbro-norites and anorthosites in association with plagiogranites, isotropic gabbros, metadolerites, metabasalts/amphibolites and thin layers of ferruginous chert bands. The isotropic gabbros occur as intrusions in association with gabbroic anorthosites, plagiogranite and metabasalts/amphibolites. The gabbros are medium to fine grained with euhedral to subhedral orthopyroxenes, clinopyroxenes and subhedral plagioclase, together with rare amphiboles. Mineral chemistry of isotropic gabbros reveal that the clinopyroxenes are diopsidic to augitic in composition within the compositional ranges of En(42-59), Fs(5-12), Wo(31-50). They are Ca-rich and Na poor (Na2O < 0.77 wt%) characterized by high-Mg (Mg# 79-86) and low-Ti (TiO2 < 0.35 wt%) contents. The tectonic discrimination plots of clinopyroxene data indicate island arc signature of the source magma. Our study further confirms the suprasubduction zone origin of the Manamedu ophiolitic suite, associated with the subduction-collision history of the Neoproterozoic Mozambique ocean during the assembly of Gondwana supercontinent.

  4. Structure and kinematics of a major tectonic contact, Michipicoten greenstone belt, Ontario

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1992-01-01

    The Michipicoten greenstone belt, Ontario, experienced a complex history of folding, faulting, and fabric development. Near Wawa, a major east-west contact, here named the Steep Hill Falls (SHF) contact, extends entirely across the belt. The SHF contact is both an angular unconformity and a fault and is interpreted to be a regionally significant tectonic contact separating distinct northern and southern terranes, both of which include volcanic rocks of probable island-arc origin. The amount of horizontal transport involved in bringing the two terranes together along the SHF contact is not known. Mapping and structural analysis suggest that regionally significant horizontal displacements took place, with movement vectors that changed with time. Early faults, folds, and fabrics imply north-south to northeast-southwest (with respect to present directions) convergence, with a vergence reversal occurring during this complex event. The most likely models infer early south vergence and later north vergence. Transecting the earliest structures are younger (but still Archean) northeast-striking steep cleavages with associated upright folds that may relate to northwest-southeast assembly of the Superior Province craton. The craton assembly event thus involved a transport direction at a high angle to that inferred for the earlier assembly of the Michipicoten greenstone belt.

  5. Provenance of the lower Miocene of the Gulf of Mexico from detrital zircon double dating

    NASA Astrophysics Data System (ADS)

    xu, J.

    2013-12-01

    The lower Miocene interval of the Gulf of Mexico (GOM) has recently gained increasing attention from oil and gas industry due to its hydrocarbon potential below the salt canopy. However, it has been less well studied than both the underlying Oligocene and overlying middle Miocene strata. The lower Miocene worldwide is a transitional period of tectonic, climatic, and oceanographic change. In particular, it is a period of major tectonic reorganization in the western interior of North America (Rocky Mountains), involving a shift from the Oligocene thermal phase, with abundant volcanic activity recorded in the thick Frio/Vicksburg succession of the GOM, to the Miocene Basin-Range extensional phase. Climatic conditions also changed from a relatively arid Oligocene to wetter Miocene, resulting in increased sediment yields from exhumed tectonic structures. Previous provenance studies used proportions of quartz, feldspar and lithic fragments and consideration of likely river courses through known paleogeomorphological elements. Only limited detrital zircon (DZ) U-Pb studies on Paleocene strata have been undertaken and there has been no previous U-Pb and (U-Th)/He double dating in the GOM. In this study we apply the latest analytical approaches, such as DZ U-Pb dating to gain robust source terranes ages and more fully elucidate the complex sediment provenance and dispersal history of GOM. We also employ DZ (U-Th)/He (ZHe) dating, combined with DZ U-Pb, to not only define sedimentary provenance but also the exhumation histories of detrital source regions. Samples of lower Miocene outcrop exposures in Texas and Louisiana have been collected to discriminate the varied tectonic and drainage system changes across the basin in lateral. In addition, samples from the Eocene, Oligocene and middle Miocene have been obtained to reveal vertical shift of source terranes contributions. Our initial age data show detrital zircons of lower Miocene sediments come from a wide range of source terranes including a large populations from the western interior of North America (Rocky Mountains), Grenville, Mid-Continent, and Yavapai-Mazatzal provinces, with smaller populations from the Appalachian-Ouachita, Wyoming or Superior regions. Based on U-Pb dating results, we will carry out (U-Th)/He dating on selected zircons to reveal the detailed exhumation histories of the sediment source regions. Using the dual criteria of DZ crystallization age (U-Pb) and cooling age (U-Th/He) to constrain provenance will enable us to generate rigorous reconstructions of the lower Miocene depositional systems from source terrane to deep-water sink for this key transitional period in geologic history.

  6. Multiple tectonic mode switches indicate short-duration heat pulses in a Mio-Pliocene metamorphic core complex, West Papua, Indonesia

    NASA Astrophysics Data System (ADS)

    White, L. T.; Hall, R.; Gunawan, I.

    2017-12-01

    The Wandaman Peninsula is a narrow (<20 km), but mountainous (>2 km) promontory in remote western New Guinea. The peninsula is almost entirely composed of medium- to high-grade metamorphic rocks considered to be associated with a Mio-Pliocene metamorphic core complex. Previous work has shown that the uplift and exhumation of the core complex has potentially brought some extremely young eclogite to the surface. These might be comparable to the world's youngest (4.3 Ma) eclogites found in the D'Entrecasteaux Islands at the opposite end of New Guinea. We show that tectonic history of this region is complex. This is because the metamorphic sequences in the Wandaman Peninsula record multiple phases of deformation, all within the last few million years. This is demonstrated through methodical collation of cross-cutting relations from field and microstructural studies across the peninsula. The first phase of deformation and metamorphism is associated with crustal extension and partial melting that took place at 5-7 Ma according to new U-Pb data from metamorphic zircons. This extensional phase ceased after a tectonic mode switch and the region was shortened. This is demonstrated by two phases of folding (1. recumbent and 2. open) that overprint the earlier extensional fabrics. All previous structures were later overprinted by brittle extensional faults and uplift. This extensional phase is still taking place today, as is indicated by submerged forests exposed along the coastline associated with recent earthquakes and hot springs. The sequence of metamorphic rocks that are exposed in the Wandaman Peninsula show that stress and thermal conditions can change rapidly. If we consider that the present is a key to the past, then such results can identify the duration of deformation and metamorphic events more accurately than in much older orogenic systems.

  7. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    NASA Astrophysics Data System (ADS)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  8. Early impact basins and the onset of plate tectonics. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1977-01-01

    The fundamental crustal dichotomy of the Earth (high and low density crust) was established nearly 4 billion years ago. Therefore, subductable crust was concentrated at the surface of the Earth very early in its history, making possible an early onset for plate tectonics. Simple thermal history calculations spanning 1 billion years show that the basin forming impact thins the lithosphere by at least 25%, and increases the sublithosphere thermal gradients by roughly 20%. The corresponding increase in convective heat transport, combined with the highly fractured nature of the thinned basin lithosphere, suggest that lithospheric breakup or rifting occurred shortly after the formation of the basins. Conditions appropriate for early rifting persisted from some 100,000,000 years following impact. We suggest a very early stage of high temperature, fast spreading "microplate" tectonics, originating before 3.5 billion years ago, and gradually stabilizing over the Archaean into more modern large plate or Wilson Cycle tectonics.

  9. Tectonic History of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1993-01-01

    The topics covered include the following: patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus; aspects of modeling the tectonics of large volcanoes on the terrestrial planets; state of stress, faulting, and eruption characteristics of large volcanoes on Mars; origin and thermal evolution of Mars; geoid-to-topography ratios on Venus; a tectonic resurfacing model for Venus; the resurfacing controversy for Venus; and the deformation belts of Lavinia Planitia.

  10. New Madrid Seismotectonic Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buschbach, T.C.

    1986-06-01

    The New Madrid Seismotectonic Program was a large-scale multidisciplinary effort that was designed to define the structural setting and tectonic history of the New Madrid area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. The tectonic model proposed to explain the New Madrid seismicity is the ''zone of weakness'' model, which suggests that an ancient rift complex formed a zone of weakness in the earth's crust along which regional stresses are relieved. The Reelfoot Rift portion of the proposed rift complex is currently seismically active, and it must be considered capable and likely to bemore » exposed to large-magnitude earthquakes in the future. Earthquakes that occur in the Wabash Valley area are less abundant and generally have deeper hypocenters than earthquakes in the New Madrid area. The area of the Southern Indiana Arm must be considered to have seismic risk, although a lesser extent than the Reelfoot Rift. The east-west trending Rough Creek Graben is practically aseismic, probably in large part due to its orientation in the current stress field. The northwest-trending St. Louis Arm of the proposed rift complex includes a pattern of seismicity that extends from southern Illinois along the Mississippi River. This arm must be considered to have seismic risk, but because of the lack of development of a graben associated with the arm and the orientation of the arm in the current stress field, the risk appears to be less than in the Reelfoot Rift portion of the rift complex.« less

  11. Geomorphic Response to Spatial and Temporal Tectonic uplift on the Kenya Rift of East African Rift System

    NASA Astrophysics Data System (ADS)

    Xue, L.; Abdelsalam, M. G.

    2017-12-01

    Tectonic uplifts of the shoulders of the East Africa Rift System (EARS) have significant impact on the geological record by reorganizing drainage systems, increasing sediment supply, and changing climate and biogeography. Recent studies in geochronology, geomorphology and geophysics have provided some understanding of the timing of tectonic uplift and its distribution pattern of the (EARS). We do not know how the vertical motion is localized along the rift axis and the relative roles of upwelling of magma and rift extensional processes play in tectonic uplift history. This work presents detailed morphometric study of the fluvial landscape response to the tectonic uplift and climate shifting of the Kenya Rift shoulders in order to reconstruct their incision history, with special attention to timing, location, and intensity of uplift episodes. This work compiles the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and Sentinel-2A data, summarized previous 39Ar-40Ar and thermochronology data, and calculates long-term incision rate and geomorphic proxies (normalized steepness and chi-integral) along the Kenya Rift. It also models the age of tectonic/climatic events by using knickpoint celerity model and R/SR integrative approach. It found that the maximum long-term incision rates of 300 mm/kyr to be at the central Kenya Rift, possibly related to the mantle-driven process and rapid tectonic uplift. The geomorphic proxies indicate southward decreasing pattern of the short-term incision rate, possibly related to the migration of the mantle plume.

  12. The revised tectonic history of Tharsis

    NASA Astrophysics Data System (ADS)

    Bouley, Sylvain; Baratoux, David; Paulien, Nicolas; Missenard, Yves; Saint-Bézar, Bertrand

    2018-04-01

    Constraining the timing of the emplacement of the volcano-tectonic province of Tharsis is critical to understanding the evolution of mantle, surface environment and climate of Mars. The growth of Tharsis had exerted stresses on the lithosphere, which were responsible for tectonic deformation, previously mapped as radial or concentric faults. Insights into the emplacement history of Tharsis may be gained from an analysis of the characteristics and ages of these tectonic features. The number, total length, linear density of extensional or compressional faults in the Tharsis region and deformation rates are reported for each of the following 6 stages: Early and Middle Noachian (stage 1); Late Noachian (stage 2); Early Hesperian (stage 3); Late Hesperian (stage 4), Early Amazonian (stage 5) and Middle Amazonian to Late Amazonian (stage 6). 8571 Tharsis-related tectonic features (radial or concentric to the center of Tharsis) were assigned to one of these periods of time based on their relationship with stratigraphic units defined in the most recent geological map. Intense faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. However, we report a peak in both compressive and extensive rates of deformation during the Early Hesperian whereas the quantitative indicators for compressional and extensional tectonics vary within less than one order of magnitude from the Late Noachian to the Late Hesperian. These observations indicate a protracted growth of Tharsis during the first quarter of Mars evolution and declining from 3 Gyrs ago.

  13. Sand fairway mapping as a tool for tectonic restoration in orogenic belts

    NASA Astrophysics Data System (ADS)

    Butler, Rob

    2016-04-01

    The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.

  14. Protracted or multiple subduction of metapelites (Rhodope UHP domain, Greece)?

    NASA Astrophysics Data System (ADS)

    Krohe, A.; Wawrzenitz, N. H.; Mposkos, E.; Romer, R. L.

    2012-12-01

    The Rhodope domain formed along the suture between the European and the Apulian/Adriatic plate, which collided in the early Tertiary (closure of the Vardar/Axios ocean). Its metamorphic history includes UHP metamorphism documented by diamond inclusions in garnet (Mposkos & Kostopoulos 2001, Perraki et al. 2006, Schmidt et al. 2010), presumably of Jurassic age, and Eocene stages of MP and HP metamorphism. The age of UHPM is still a matter of debate: U-Pb SHRIMP ages extend from 184-172 Ma (monazite in metapelites) to ca. 42 Ma with clusters at 170-160, 150-140, 80-60, 50, 42 Ma, (U-Pb SHRIMP dating of zircon from amphibolitized eclogites and metapelites). These ages are interpreted to date subsequent stages of (U)HP metamorphism and decompression (Liati et al., 2005, Hoinkes et al. 2008, Bauer et al. 2006, Krenn et al 2010). However, these ages are obviously difficult to link with the metamorphic reactions. The metamorphic history has been interpreted in different ways, reflecting: (i) successive accretion of small terranes with rapid subduction and uplift histories (e.g. Liati et al. 2005); (ii) a composite of different tectonic units varying in earlier P-T histories, assembled by shear zones that reflect tectonic erosion and differential exhumation along the plate interface and that are now erased and overprinted (Krohe and Mposkos, 2002, Mposkos et al., 2010). These interpretations imply a different kinematics of the tectonic movements at depths, mechanical processes and process rates. Additionally, a protracted polymetamorphic history of larger volumes of the Rhodope UHP domain may be considered; e.g. the Kimi complex stayed in the lower crust for ca. 50-60 Ma after exhumation of the UHP rocks to this lower crustal level (Mposkos and Krohe, 2006). To constrain a precise age of the HP granulite facies and a minimum age of UHP metamorphism, we conduct an integrated structural, petrologic and geochronological study in a metapelite from the Sidronero Complex. The mineral assemblages Grt-Ky-Bt-Pl-Kfs-Qtz-Rt and Grt-Ky-Bt-Ms-Pl-Qtz-Rt, record a HP granulite facies metamorphism followed by upper amphibolite facies. The rock is particularly well suited for studying the granulite facies metamorphism, as it contains domains that are only weakly overprinted by later metamorphic episodes. ID-TIMS U-Pb ages of single monazite grains and fractions of few grains, that are only locally patchy-zoned and associated with garnet and kyanite, plot along the concordia between 64 to 60 Ma. One date of 55 Ma might represent Pb-loss during later fluid-induced dissolution-reprecipitation, probably related to biotite growth during the amphibolite facies overprint. On the base of these data, a model is discussed, in which rocks from the upper plate and HP-rocks that have been already exhumed, were dragged again into the subduction channel by subduction erosion Bauer et al. 2006, Lithos, 29, 207-228; Hoinkes et al. 2008, 3rd IGC Oslo, UHP-4; Krenn et al 2010, Tectonics, 29, TC4001; Krohe & Mposkos, 2002, Geol. Soc. Sp. Pub. 204, 151-178; Liati, A., 2005, Contrib. Mineral. Petrol., 150, 608-630; Mposkos, & Kostopoulos, 2001, EPSL, 192, 497-506; Mposkos & Krohe, 2006. Can. J. Earth Sci., 43, 1755-1776; Mposkos et al., 2010 Proc. XIX CBGA Congress, 100, 173-178; Perraki et al., 2006, EPSL, 241, 672-685; Schmidt et al., 2010, EJM, 22, 189-198.

  15. Cenozoic geodynamic evolution of the Aegean

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Brun, Jean-Pierre

    2010-01-01

    The Aegean region is a concentrate of the main geodynamic processes that shaped the Mediterranean region: oceanic and continental subduction, mountain building, high-pressure and low-temperature metamorphism, backarc extension, post-orogenic collapse, metamorphic core complexes, gneiss domes are the ingredients of a complex evolution that started at the end of the Cretaceous with the closure of the Tethyan ocean along the Vardar suture zone. Using available plate kinematic, geophysical, petrological and structural data, we present a synthetic tectonic map of the whole region encompassing the Balkans, Western Turkey, the Aegean Sea, the Hellenic Arc, the Mediterranean Ridge and continental Greece and we build a lithospheric-scale N-S cross-section from Crete to the Rhodope massif. We then describe the tectonic evolution of this cross-section with a series of reconstructions from ~70 Ma to the Present. We follow on the hypothesis that a single subduction has been active throughout most of the Mesozoic and the entire Cenozoic, and we show that the geological record is compatible with this hypothesis. The reconstructions show that continental subduction (Apulian and Pelagonian continental blocks) did not induce slab break-off in this case. Using this evolution, we discuss the mechanisms leading to the exhumation of metamorphic rocks and the subsequent formation of extensional metamorphic domes in the backarc region during slab retreat. The tectonic histories of the two regions showing large-scale extension, the Rhodope and the Cyclades are then compared. The respective contributions to slab retreat, post-orogenic extension and lower crust partial melting of changes in kinematic boundary conditions and in nature of subducting material, from continental to oceanic, are discussed.

  16. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol Okhotsk Ocean in central Asia

    NASA Astrophysics Data System (ADS)

    Kelty, Thomas K.; Yin, An; Dash, Batulzii; Gehrels, George E.; Ribeiro, Angela E.

    2008-04-01

    Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U-Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay-Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous (˜ 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic (˜ 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva-Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay-Hentey basin. Integrating all the age results from this study, we suggest that the Hangay-Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the early Carboniferous, allowing accumulation of a flysch complex in a long-evolving accretionary complex.

  17. Evolving in the highlands: the case of the Neotropical Lerma live-bearing Poeciliopsis infans (Woolman, 1894) (Cyprinodontiformes: Poeciliidae) in Central Mexico.

    PubMed

    Beltrán-López, Rosa Gabriela; Domínguez-Domínguez, Omar; Pérez-Rodríguez, Rodolfo; Piller, Kyle; Doadrio, Ignacio

    2018-04-20

    Volcanic and tectonic activities in conjunction with Quaternary climate are the main events that shaped the geographical distribution of genetic variation of many lineages. Poeciliopsis infans is the only poeciliid species that was able to colonize the temperate highlands of central Mexico. We inferred the phylogenetic relationships, biogeographic history, and historical demography in the widespread Neotropical species P. infans and correlated this with geological events and the Quaternary glacial-interglacial climate in the highlands of central Mexico, using the mitochondrial genes Cytochrome b and Cytochrome oxidase I and two nuclear loci, Rhodopsin and ribosomal protein S7. Populations of P. infans were recovered in two well-differentiated clades. The maximum genetic distances between the two clades were 3.3% for cytb, and 1.9% for coxI. The divergence of the two clades occurred ca. 2.83 Myr. Ancestral area reconstruction revealed a complex biogeographical history for P. infans. The Bayesian Skyline Plot showed a demographic decline, although more visible for clade A, and more recently showed a population expansion in the last 0.025 Myr. Finally, the habitat suitability modelling showed that during the LIG, clade B had more areas with high probabilities of presence in comparison to clade A, whereas for the LGM, clade A showed more areas with high probabilities of presence in comparisons to clade B. Poeciliopsis infans has had a complex evolutionary and biogeographic history, which, as in other co-distributed freshwater fishes, seems to be linked to the volcanic and tectonic activities during the Pliocene or early Pleistocene. Populations of P. infans distributed in lowlands showed a higher level of genetic diversity than populations distributed in highlands, which could be linked to more stable and higher temperatures in lowland areas. The fluctuations in population size through time are in agreement with the continuous fluctuations of the climate of central Mexico.

  18. Bahía de Banderas, Mexico: Morphology, Magnetic Anomalies and Shallow Structure

    NASA Astrophysics Data System (ADS)

    Mortera Gutiérrez, Carlos A.; Bandy, William L.; Ponce Núñez, Francisco; Pérez Calderón, Daniel A.

    2016-10-01

    The Bahía de Banderas lies within a tectonically complex area at the northern end of the Middle America Trench. The structure, morphology, subsurface geology and tectonic history of the bay are essential for unraveling the complex tectonic processes occurring in this area. With this focus, marine geophysical data (multi-beam bathymetry, high resolution seismic reflection and total field magnetic data) were collected within the bay and adjacent areas during four campaigns aboard the B.O. EL PUMA conducted in 2006 and 2009. These data image the detailed morphology of, and sedimentation patterns within, the Banderas Canyon (a prominent submarine canyon situated on the south side of the bay) as well as the shallow subsurface structure of the northern part of the bay and the submarine Marietas Ridge, which bounds the bay to the west. We find that the Marietas Ridge is presently a transtensional feature; the course of the Banderas Canyon is controlled by extensive turbidite fan sedimentation in its eastern extremity and by structural lineaments to the west; the canyon floor is filled by sediments and exhibits almost no evidence for recent tectonic movements; the southern canyon wall is quite steep and a few sediments are deposited as submarine fans at the base of the southern wall; and extensive turbidite fans form the lower part of the northern canyon wall, producing a gently sloping lower northern wall. We find no evidence for a regional east-west striking lineament between the bay and the Middle America Trench, which casts doubts on the previous assertion that the Banderas Canyon is unequivocally related to the presence of a regional half-graben. Finally, a N71°E oriented normal fault offsets the seafloor reflector by 15 m within the central part of the bay, suggesting that the bay is currently being subjected to NNW-SSE extension.

  19. Geophysical setting of the Wabash Valley fault system

    USGS Publications Warehouse

    Hildenbrand, T.G.; Ravat, D.

    1997-01-01

    Interpretation of existing regional magnetic and gravity data and new local high-resolution aeromagnetic data provides new insights on the tectonic history and structural development of the Wabash Valley Fault System in Illinois and Indiana. Enhancement of short-wavelength magnetic anomalies reveal numerous NW- to NNE-trending ultramafic dikes and six intrusive complexes (including those at Hicks Dome and Omaha Dome). Inversion models indicate that the interpreted dikes are narrow (???3 m), lie at shallow depths (500 km long and generally >50 km wide) and with deep basins (locally >3 km thick), the ancestral Wabash Valley faults express, in comparison, minor tectonic structures and probably do not represent a failed rift arm. There is a lack of any obvious relation between the Wabash Valley Fault System and the epicenters of historic and prehistoric earthquakes. Five prehistoric earthquakes lie conspicuously near structures associated with the Commerce geophysical lineament, a NE-trending magnetic and gravity lineament lying oblique to the Wabash Valley Fault System and possibly extending over 600 km from NE Arkansas to central Indiana.

  20. Valles Marineris Basin Beds: a Complex Story

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1985-01-01

    High resolution stereoimages of the central Valles Marineris enabled detailed geologic mapping on Ophir and Candor Chasmata. Abundant light colored deposits, both layered and massive, fill the chasmata in this region. Units within these deposits were identified by their erosional characteristics and superposition and cross cutting relations. The Valles Marineris beds reflect a history of repeated faulting, volcanic eruptions, and deposition and erosion, resulting in stratigraphic sequences with several unconformities. Because of the preponderance of apparent volcanic deposits inside the troughs, the chasmata may not be simple grabens, but rather giant volcano tectonic depressions. Major events in chasmata development are examined.

  1. Kinematic Evolution of the North-Tehran Fault (NTF), Alborz Mountains, Iran

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Ballato, P.; Strecker, M. R.; Shahpasandzadeh, M.; Friedrich, A.; Tabatabaei, S. H.

    2007-12-01

    The ENE-to NW-striking NTF is an active frontal thrust that delimits the Alborz Mountain range to the south with an up to 2000 m topographic break with respect to the adjacent Tehran plain. Eocene rocks of the Alborz range are thrusted over Neogene and Quaternary sediments of the alluvial Tehran embayment. The fault consists of right- stepping segments and merges to the east with the active Mosha-Fasham strike-slip fault (MFF). The complex tectonic history, involving changes in the direction of SHmax, has resulted in a composite tectonic landscape with inherited topographic and fault-kinematic fingerprints along the NTF. We therefore used a combination of fault-kinematic measurements and geomorphic observations to unravel the temporal tectonic evolution of this fault. Presently, the NTF is virtually inactive, although the tectonically overprinted landforms reflect tectonic activity on longer time scales during the Quaternary. Being located adjacent north of the Tehran megacity, there is thus considerable interest to decipher its youngest tectonic evolution and to better understand the relation with other fault systems. Our fault kinematic study has revealed an early dextral kinematic history for the NTF. Dextral strike-slip and oblique reverse faulting took place during NW-oriented shortening. The overall fault-geometry of the NTF suggests that it has evolved in relation to dextral transpression along the MFF. This early kinematic regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the fault segments. Fault linkage between the semi-independent ENE-striking NTF-segments and NW-striking thrusts (Emamzadeh Davud Fault [EDF], Purkan Vardij Thrust [PVT], NTF-prolongation) point towards an evolution into a nascent transpressional duplex. In this scenario the NTF segments constitute lateral ramps and the NW-striking faults act as frontal ramps. Topographic residuals, as an expression of high-uplift zones, indicate that the central segment of the NTF, incorporating the EDF was most effective in accommodating oblique convergence during this time. However, subtle knickpoints in the longitudinal river profiles crossing the PVT may indicate a relatively recent transfer of deformation onto this block. The youngest manifestations of deformation along the NTF, however, are left-lateral and normal faulting. This youngest phase of activity is documented by numerous striated and rotated conglomeratic clasts, meter-scale fault gouge zones with shear-sense indicators of oblique normal faulting, and multiple colluvial wedges with drag phenomena. Rupture traces and filled extensional cracks reaching the surface also document the seismogenic nature of these features. Since recent left-lateral transtension is also known from neighboring faults, e.g., the eastern MFF, our observations suggest that this youngest phase of tectonic activity of the NTF is a regional phenomenon, rather than the result of locally-determined geometries.

  2. Pacing of deep marine sedimentation in the middle Eocene synorogenic Ainsa Basin, Spanish Pyrenees: deconvolving a 6myr record of tectonic and climate controls

    NASA Astrophysics Data System (ADS)

    Mac Niocaill, C.; Cantalejo, B.; Pickering, K. T.; Grant, M.; Johansen, K.

    2016-12-01

    The Middle Eocene thrust-top Ainsa Basin of Northern Spain preserves world-class exposures of deep-marine submarine fan and related deposits. Detailed paleomagnetic, micropaleontologic, and time-series analysis enable us to deconvolve, for the first time in any ancient deep-marine basin worldwide, both the pacing on deposition of the fine-grained interfan sediments and the main sandbodies (submarine fans) through the history of the deep-marine basin. Our magnetostratigraphy and faunal constraints provide a chronological framework for sedimentation in the basin. We use time-series analysis of a range of geochemical and sedimentologic data to identify likely climatic signals in the sedimentary archive. This has enabled us to test the likely importance of climate versus tectonics in controlling deposition. We show that the fine-grained interfan sedimentation preserves a dominant Milankovitch-like cyclicity, whereas the sandbodies (fans) reflect a complex interplay of controls such as tectonics and climate in the sediment source area, including shallow-marine staging areas for sediment redeposition into deeper water. These results not only provide critical information about the timing of substantial coarse clastic delivery into the Ainsa Basin but also give constraints on sediment flux over a 6 Myr window.

  3. Lithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland

    NASA Astrophysics Data System (ADS)

    Yanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A.

    2017-11-01

    Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.

  4. A new subdivision of the central Sesia Zone (Aosta Valley, Italy)

    NASA Astrophysics Data System (ADS)

    Giuntoli, Francesco; Engi, Martin; Manzotti, Paola; Ballèvre, Michel

    2015-04-01

    The Sesia Zone in the Western Alps is a continental terrane probably derived from the NW-Adriatic margin and polydeformed at HP conditions during Alpine convergence. Subdivisions of the Sesia Zone classically have been based on the dominant lithotypes: Eclogitic Micaschist Complex, Seconda Zona Diorito-Kinzigitica, and Gneiss Minuti Complex. However, recent work (Regis et al., 2014) on what was considered a single internal unit has revealed that it comprises two or more tectonic slices that experienced substantially different PTDt-evolutions. Therefore, detailed regional petrographic and structural mapping (1:3k to 1:10k) was undertaken and combined with extensive sampling for petrochronological analysis. Results allow us to propose a first tectonic scheme for the Sesia Zone between the Aosta Valley and Val d'Ayas. A set of field criteria was developed and applied, aiming to recognize and delimit the first order tectonic units in this complex structural and metamorphic context. The approach rests on three criteria used in the field: (1) Discontinuously visible metasedimentary trails (mostly carbonates) considered to be monocyclic (Permo-Mesozoic protoliths); (2) mappable high-strain zones; and (3) visible differences in the metamorphic imprint. None of these key features used are sufficient by themselves, but in combination they allow us to propose a new map that delimits main units. We propose an Internal Complex with three eclogitic sheets, each 0.5-3 km thick. Dominant lithotypes include micaschists associated with mafic rocks and minor orthogneiss. The main foliation is of HP, dipping moderately NW. Each of these sheets is bounded by (most likely monometamorphic) sediments, <10-50 m thick. HP-relics (of eclogite facies) are widespread, but a greenschist facies overprint locally is strong close to the tectonic contact to neighbouring sheets. An Intermediate Complex lies NW of the Internal Complex and comprises two thinner, wedge-shaped units termed slices. These are composed of siliceous dolomite marbles, meta-granites and -diorites with few mafic boudins. The main foliation dips SE and is of greenschist facies, but omphacite, glaucophane, and garnet occur as relics. Towards the SW, the width of the Intermediate Complex is reduced from 0.5 km to a few meters. In the External Complex several discontinuous lenses occur; these comprise 2DK-lithotypes and are aligned with greenschist facies shear zones mapped within Gneiss Minuti. By combining these features, three main sheets were delimited in the External Complex, with the main foliation being of greenschist facies and dipping moderately SE. Petrological work and in situ U-Th-Pb dating of accessory phases is underway in several of these subunits of the Sesia Zone to constrain their PTDt-history and thus their Alpine assembly. REFERENCE Regis, D., Rubatto, D., Darling, J., Cenki-Tok, B., Zucali, M., Engi, M., 2014. Multiple metamorphic stages within an eclogite-facies terrane (Sesia Zone, Western Alps) revealed by Th-U-Pb petrochronology. J.Petrol. 55, 1429-1456.

  5. Oblique reactivation of lithosphere-scale lineaments controls rift physiography - the upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.

    2018-04-01

    Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of the lineament is reactivated in a range of tectonic styles, including both sinistral and dextral strike-slip motions, with the geometry and kinematics of these faults often inconsistent with what may otherwise be inferred from regional tectonics alone. Understanding these different styles of reactivation not only allows us to better understand the influence of sub-crustal lithospheric structure on rifting but also offers insights into the prevailing stress field during regional tectonic events.

  6. Investigation of the Cooling Capacity of Plate Tectonics and Flood Volcanism in the Evolution of Earth, Mars and Venus

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; Vlaar, N. J.; van den Berg, A. P.

    2003-12-01

    The cooling of the terrestrial planets from their presumed hot initial states to the present situation has required the operation of one or more efficient cooling mechanisms. In the recent history of the Earth, plate tectonics has been responsible for most of the planetary cooling. The high internal temperature of the early Earth, however, prevented the operation of plate tectonics because of the greater inherent buoyancy of thicker oceanic lithosphere (basaltic crust and depleted mantle) produced from a hotter mantle. A similar argument is valid for Venus, and also for Mars. An alternative cooling mechanism may therefore have been required during a part of the planetary histories. Starting from the notion that all heat output of planets is through their surfaces, we have constructed two parametric models to evaluate the cooling characteristics of two cooling mechanisms: plate tectonics and basalt extrusion / flood volcanism. We have applied these models to the Earth, Mars and Venus for present-day and presumed early thermal conditions. Our model results show that for a steadily (exponentially) cooling Earth, plate tectonics is capable of removing all the required heat at a rate comparable to or even lower than its current rate of operation during its entire history, contrary to earlier speculations. The extrusion mechanism may have been an important cooling agent in the early Earth, but requires global eruption rates two orders of magnitude greater than those of known Phanerozoic flood basalt provinces. This may not be a problem, since geological observations indicate that flood volcanism was both stronger and more ubiquitous in the early Earth. Because of its smaller size, Mars is capable of cooling conductively through its lithosphere at significant rates. As a result may have cooled without an additional cooling mechanism during its entire history. Venus, on the other hand, has required the operation of an additional cooling agent for probably every cooling phase of its possibly episodic history, with rates of activity comparable to those of the Earth.

  7. On volcanism and thermal tectonics on one-plate planets

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1978-01-01

    For planets with a single global lithospheric shell or 'plate', the thermal evolution of the interior affects the surface geologic history through volumetric expansion and the resultant thermal stress. Interior warming of such planets gives rise to extensional tectonics and a lithospheric stress system conductive to widespread volcanism. Interior cooling leads to compressional tectonics and lithospheric stresses that act to shut off surface volcanism. On the basis of observed surface tectonics, it is concluded that the age of peak planetary volume, the degree of early heating, and the age of youngest major volcanism on the one-plate terrestrial planets likely decrease in the order Mercury, Moon, Mars.

  8. Charon Complexity

    NASA Image and Video Library

    2015-09-10

    This image of Pluto's largest moon Charon, taken by NASA's New Horizons spacecraft 10 hours before its closest approach to Pluto on July 14, 2015 from a distance of 290,000 miles (470,000 kilometers), is a recently downlinked, much higher quality version of a Charon image released on July 15. Charon, which is 750 miles (1,200 kilometers) in diameter, displays a surprisingly complex geological history, including tectonic fracturing; relatively smooth, fractured plains in the lower right; several enigmatic mountains surrounded by sunken terrain features on the right side; and heavily cratered regions in the center and upper left portion of the disk. There are also complex reflectivity patterns on Charon's surface, including bright and dark crater rays, and the conspicuous dark north polar region at the top of the image. The smallest visible features are 2.9 miles 4.6 kilometers) in size. http://photojournal.jpl.nasa.gov/catalog/PIA19932

  9. What can a numerical landscape evolution model tell us about the evolution of a real landscape? Two examples of modeling a real landscape without recreating it

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Whipple, K. X.; Willenbring, J.; Crosby, B. T.; Brocard, G. Y.

    2013-12-01

    Numerical landscape evolution models (LEMs) offer us the unique opportunity to watch a landscape evolve under any set of environmental forcings that we can quantify. The possibilities for using LEMs are infinite, but complications arise when trying to model a real landscape. Specifically, numerical models cannot recreate every aspect of a real landscape because exact initial conditions are unknown, there will always be gaps in the known tectonic and climatic history, and the geomorphic transport laws that govern redistribution of mass due to surface processes will always be a simplified representation of the actual process. Yet, even with these constraints, numerical models remain the only tool that offers us the potential to explore a limitless range of evolutionary scenarios, allowing us to, at the very least, identify possible drivers responsible for the morphology of the current landscape, and just as importantly, rule out others. Here we highlight two examples in which we use a numerical model to explore the signature of different forcings on landscape morphology and erosion patterns. In the first landscape, the Northern Bolivian Andes, the relative imprint of rock uplift and precipitation patterns on landscape morphology is widely contested. We use the CHILD LEM to systematically vary climate and tectonics and quantify their fingerprints on channel profiles across a steep mountain front. We find that rock uplift and precipitation patterns in this landscape and others can be teased out by examining channel profiles of variably sized catchments that drain different parts of the topography. In the second landscape, the South Fork Eel River (SFER), northern California, USA, the tectonic history is relatively well known; a wave of rock uplift swept through the watershed from headwaters to outlet, perturbing the landscape and sending a wave of bedrock incision upstream. Nine millennial-scale erosion rates from along the mainstem of the river illustrate a pattern of downstream increasing erosion rate. Similarly, the proportion of the landscape that has adjusted to the tectonic perturbation increases from upstream to downstream. We use the CHILD LEM to explore whether the relationship between erosion rates and proportion of adjusted landscape is unique to the tectonic history of the SFER and if this relationship can be used as a fingerprint to identify the nature of tectonic perturbations in other locations. In both study sites, we do not try to recreate the exact morphology of the real landscape. Rather, we identify patterns in erosion rates and the morphology of the numerical landscape that can be used to interpret the tectonic history, climatic history, or both in these and other real landscapes.

  10. Development of the Earth's early crust: Implications from the Beartooth Mountains

    NASA Technical Reports Server (NTRS)

    Mueller, P. A.; Wooden, J. L.; Henry, D. J.; Mogk, D. W.

    1983-01-01

    The Beartooth Mountains of Montana and Wyoming are one of several major uplifts of Precambrian rocks in the northwestern of the Wyoming Province. The range is composed of a wide variety of rock types which record a complex geologic history that extends from early ( 3400 Ma) to late (approx 700 Ma) Precambrian time. The Archean geology of the range is complex and many areas remain unstudied in detail. In this discussion two areas are discussed for which there is considerable structural, geochemical and petrologic information. The easternmost portion of the range (EBT) and the northwesternmost portion, the North Snowy Block (NSB), contain rather extensive records of both early and late Archean geologic activity. These data are used to constrain a petrologic tectonic model for the development of continental crust in this area.

  11. Unraveling the Alteration History of Serpentinites and Associated Ultramafic Rocks from the Kampos HPLT Subduction Complex, Syros, Greece

    NASA Astrophysics Data System (ADS)

    Cooperdock, E. H. G.; Stockli, D. F.

    2016-12-01

    Serpentinization, hydration of peridotite, has a profound effect on fundamental tectonic and petrologic processes such as deformation of the lithosphere, bulk rheology, fluid-mobile element cycling and deep earth carbon cycling. Though numerous studies have investigated the petrology, structure and geochemistry of serpentinites, the absolute chronology of serpentinization remains elusive due to a lack of accessory minerals that can be dated using established geochronological techniques. Magnetite forms as a common secondary mineral in serpentinites from the fluid-induced breakdown reaction of primary peridotite minerals. Magnetite (U-Th)/He chronometry provides the potential to directly date the cooling of exhumed ultramafic bodies and the low-temperature fluid alteration of serpentinites. We present the first application of magnetite (U-Th)/He chronometry to date stages of alteration in ultramafic rocks from the Kampos mélange belt, a high-pressure low-temperature (HP-LT) subduction complex that experienced exhumation in the Miocene on the island of Syros, Greece. Two generations of magnetite are distinguishable by grain size, magnetite trace element geochemistry and (U-Th)/He age. Large magnetite grains (mm) from a chlorite schist and a serpentinite schist have distinct geochemical signatures indicative of formation during blackwall-related fluid alteration and record Mid-Miocene exhumation-related cooling ages, similar to zircon (U-Th)/He ages from northern Syros. Smaller grains (µm) from the serpentinite schist lack blackwall-related fluid signatures and record post-exhumation mineral formation associated with widespread high-angle Pliocene normal faulting. These results reveal evidence for multiple episodes of fluid-rock alteration, which has implications for the cooling history and local geochemical exchanges of this HP-LT terrane. Given the fundamental impact of serpentinizaton on a vast array of tectonic, petrological, and geochemical processes, the ability to differentiate and date these alteration events can be used to address significant questions related to serpentinization in exhumed subduction complexes, continental margins, or obducted ophiolites.

  12. Charon tectonics

    PubMed Central

    Beyer, Ross A.; Nimmo, Francis; McKinnon, William B.; Moore, Jeffrey M.; Binzel, Richard P.; Conrad, Jack W.; Cheng, Andy; Ennico, K.; Lauer, Tod R.; Olkin, C.B.; Robbins, Stuart; Schenk, Paul; Singer, Kelsi; Spencer, John R.; Stern, S. Alan; Weaver, H.A.; Young, L.A.; Zangari, Amanda M.

    2017-01-01

    New Horizons images of Pluto’s companion Charon show a variety of terrains that display extensional tectonic features, with relief surprising for this relatively small world. These features suggest a global extensional areal strain of order 1% early in Charon’s history. Such extension is consistent with the presence of an ancient global ocean, now frozen. PMID:28919640

  13. Tectonics of East Siberian Sea Basin and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Karpov, Yury; Antonina, Stoupakova; Anna, Suslova; Mariia, Agasheva

    2016-04-01

    The East Siberian Sea basin (ESSB) is the largest part of the Siberian Arctic shelf, extending for over 1000 km from New Siberian Islands archipelago to Wrangel Island. Nowadays East Siberian Sea margin is considered as a region with probable high petroleum potential. This part of Russian Arctic shelf is the least studied. The major problems in geological investigation of East Siberian Sea shelf are absence of deep wells in area and low seismic exploration maturity. Only general conclusions on its geology and hydrocarbon systems can be drawn based on limited seismic, gravity and magnetic data, supported by projection of onshore geological data to offshore. So, that's why now only complex geological and seismic stratigraphy interpretations are provided. Today we have several concepts and can summarize the tectonic history of the basin. The basin is filled with siliclastic sediments. In the deepest depocentres sediments thickness exceed 8 km in average. Seismic data was interpreted using methods of seismic stratigraphy. Stratigraphic interpretation was possible to achieve because seismic reflections follow chronostratigraphic correlations. Finally, main seismic horizons were indicated. Each indicated horizon follows regional stratigraphic unconformity. In case of absence of deep wells in ESSB, we can only prove possible source rocks by projection of data about New Siberian Islands archipelago source rocks on offshore. The petroleum potential of these rocks was investigated by several authors [1, 2, 3]. Perspective structures, investigated in ESSB were founded out by comparing seismogeological cross-sections with explored analogs in other Russian and foreign onshore and offshore basins. The majority of structures could be connected with stratigraphic and fault traps. New data on possible petroleum plays was analyzed, large massif of data on geology and tectonic history of the region was collected, so now we can use method of basin modelling to evaluate hydrocarbon saturation in most perspective prospects. Factors of tectonic history, high thickness of sediments in basin, founded possible oil and gas source rocks promise success in future exploration, but in ESSB we also recommend further geophysical investigations (seismic, gravy and magnetic) and well testing of some most perspective prospects, despite of high cost of these activities. We suppose, that investigations of ESSB should be continued to receive positive effects for Russian national economy in the nearest future. References [1] Kirillova (eds) [2013] Geological setting and petroleum potential of sedimentary basins of East Siberian Sea continental margin, v. 1, (in Russian) 249. [2] Sobolev (eds) [2012] Investigation of main sequences of Paleozoic and Meso-Cenozoic sedimentary and magmatic complexes of New Siberian Islands Archipelago, (in Russian), 143. [3] Suprunenko (eds) [2005] Petroleum zoning of Russian East Arctic shelf, Comparative analysis of petroleum potential of this aquatories with definition of perspective prospects and choise of most perspective objects for future projects, v. 1, (in Russian), 264.

  14. Seismic Discontinuities within the Crust and Mantle Beneath Indonesia as Inferred from P Receiver Functions

    NASA Astrophysics Data System (ADS)

    Woelbern, I.; Rumpker, G.

    2015-12-01

    Indonesia is situated at the southern margin of SE Asia, which comprises an assemblage of Gondwana-derived continental terranes, suture zones and volcanic arcs. The formation of SE Asia is believed to have started in Early Devonian. Its complex history involves the opening and closure of three distinct Tethys oceans, each accompanied by the rifting of continental fragments. We apply the receiver function technique to data of the temporary MERAMEX network operated in Central Java from May to October 2004 by the GeoForschungsZentrum Potsdam. The network consisted of 112 mobile stations with a spacing of about 10 km covering the full width of the island between the southern and northern coast lines. The tectonic history is reflected in a complex crustal structure of Central Java exhibiting strong topography of the Moho discontinuity related to different tectonic units. A discontinuity of negative impedance contrast is observed throughout the mid-crust interpreted as the top of a low-velocity layer which shows no depth correlation with the Moho interface. Converted phases generated at greater depth beneath Indonesia indicate the existence of multiple seismic discontinuities within the upper mantle and even below. The strongest signal originates from the base of the mantle transition zone, i.e. the 660 km discontinuity. The phase related to the 410 km discontinuity is less pronounced, but clearly identifiable as well. The derived thickness of the mantle-transition zone is in good agreement with the IASP91 velocity model. Additional phases are observed at roughly 33 s and 90 s relative to the P onset, corresponding to about 300 km and 920 km, respectively. A signal of reversed polarity indicates the top of a low velocity layer at about 370 km depth overlying the mantle transition zone.

  15. Plate tectonics and planetary habitability: current status and future challenges.

    PubMed

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  16. Tectonic Plates of China

    DTIC Science & Technology

    1977-04-01

    C. Sun and Ta-iang Teng Contractor: University of Southern California Principal Investigator: Professor Ta-liang Teng (213) 746-6124 Contract Number...83 i" I. INTRODUCTION Over the vast Chinese mainland, one of the most interesting and dynamic regions of the world, complex tectonics, coupled with...west Pacific and the Alpine- Himalaya tectonic belts, the multitude of Chinese tectonic com- plexities is evident from its enormous topographic relief

  17. The influence of a reverse-reactivated normal fault on natural fracture geometries and relative chronologies at Castle Cove, Otway Basin

    NASA Astrophysics Data System (ADS)

    Debenham, Natalie; King, Rosalind C.; Holford, Simon P.

    2018-07-01

    Despite the ubiquity of normal faults that have undergone compressional inversion, documentation of the structural history of natural fractures around these structures is limited. In this paper, we investigate the geometries and relative chronologies of natural fractures adjacent to a reverse-reactivated normal fault, the Castle Cove Fault in the Otway Basin, southeast Australia. Local variations in strain resulted in greater deformation within the fault damage zone closer to the fault. Structural mapping within the damage zone reveals a complex tectonic history recording both regional and local perturbations in stress and a total of 11 fracture sets were identified, with three sets geometrically related to the Castle Cove Fault. The remaining fracture sets formed in response to local stresses at Castle Cove. Rifting in the late Cretaceous resulted in normal movement of the Castle Cove Fault and associated rollover folding, and the formation of the largest fracture set. Reverse-reactivation of the fault and associated anticlinal folding occurred during late Miocene to Pliocene compression. Rollover folding may have provided structural traps if seals were not breached by fractures, however anticlinal folding likely post-dated the main episodes of hydrocarbon generation and migration in the region. This study highlights the need to conduct careful reconstruction of the structural histories of fault zones that experienced complex reactivation histories when attempting to define off-fault fluid flow properties.

  18. Fluvial archives, a valuable record of vertical crustal deformation

    NASA Astrophysics Data System (ADS)

    Demoulin, A.; Mather, A.; Whittaker, A.

    2017-06-01

    The study of drainage network response to uplift is important not only for understanding river system dynamics and associated channel properties and fluvial landforms, but also for identifying the nature of crustal deformation and its history. In recent decades, geomorphic analysis of rivers has proved powerful in elucidating the tectonic evolution of actively uplifting and eroding orogens. Here, we review the main recent developments that have improved and expanded qualitative and quantitative information about vertical tectonic motions (the effects of horizontal deformation are not addressed). Channel long profiles have received considerable attention in the literature, and we briefly introduce basic aspects of the behaviour of bedrock rivers from field and numerical modelling perspectives, before describing the various metrics that have been proposed to identify the information on crustal deformation contained within their steady-state characteristics. Then, we review the literature dealing with the transient response of rivers to tectonic perturbation, through the production of knickpoints propagating through the drainage network. Inverse modelling of river profiles for uplift in time and space is also shown to be very effective in reconstructing regional tectonic histories. Finally, we present a synthetic morphometric approach for deducing the tectonic record of fluvial landscapes. As well as the erosional imprint of tectonic forcing, sedimentary deposits, such as fluvial terrace staircases, are also considered as a classical component of tectonic geomorphology. We show that these studies have recently benefited from rapid advances in dating techniques, allowing more reliable reconstruction of incision histories and estimation of incision rates. The combination of progress in the understanding of transient river profiles and larger, more rigorous data sets of terrace ages has led to improved understanding of river erosion and the implications for terrace profile correlation, i.e., extrapolation of local data to entire profiles. Finally, planform changes in fluvial systems are considered at the channel scale in alluvial rivers and regional level in terms of drainage reorganisation. Examples are given of how numerical modelling can efficiently combine with topographic data to shed new light on the (dis)equilibrium state of drainage systems across regional drainage divides.

  19. Plio-pleistocene volcano-tectonic evolution of la Reforma Caldera, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Demant, Alain; Ortlieb, Luc

    1981-01-01

    La Reforma volcanic complex, in east-central Baja California, shows a characteristic caldera structure, 10 km in diameter. The first eruptive stage, during the Pliocene, was manifested by ash and pumice falls and by subaqueous pumitic flows. In a second stage basic flows were deposited in a near-shore environment (subaerial and pillow lavas). During the early Pleistocene a large ignimbritic eruption, producing mainly pantelleritic tuffs, immediately predated the formation of the caldera itself. Afterwards, along marginal fractures of the caldera, some rhyolitic domes and flows partially covered the thick ignimbritic sheet. A block of Miocene substratum, in the center of the caldera, has been uplifted, nearly 1 km, by "resurgent doming". Small outcrops of diorite might constitute the top of coarse-grained crystallized magmatic bodies, and thus support the "resurgent doming" interpretation. A few basaltic cones were finally built on the flanks of the caldera complex; the latter are not related to the caldera history but to the extension tectonics of the Gulf of California which are also responsible for the Tortuga Island and the Holocene Tres Virgenes tholeiitic cones. South of la Reforma are found the highest (+300 m) Pleistocene marine deposits of the Gulf coast of Baja California. The uplift of this area is due in part to the positive epeirogenic movements of the whole peninsular crustal block, and also to the late doming of the caldera. On the coastal (eastern) flank of La Reforma complex up to seven stepped wave-cut terraces have been preserved, the highest reaching more than +150 m and the lowest ones +25 m. Lateral correlations of the marine terraces along the whole Gulf of California suggest that this volcano-tectonic uplift, that is still active, is of the order of 240 mm/10 3 y. The set of terraces is interpreted to be Middle (700-125 × 10 3y) to Upper (125-80 × 10 3y) Pleistocene, and is tentatively correlated with the paleoclimatic chronology of deep-sea cores.

  20. Plate tectonic history of the Arctic

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  1. Two possibilities for New Siberian Islands terrane tectonic history during the Early Paleozoic based on paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Metelkin, Dmitry V.; Chernova, Anna I.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.

    2017-04-01

    The New Siberian Islands (NSI), located in the East Siberian Sea in the junction region of various structural elements, are a key target for deciphering the tectonic evolution of the Eastern Arctic. In recent years, we went on several expeditions and gathered an extensive geological material for this territory. Among other things, we could prove that the basement of the De Long and Anjou archipelagos structures is Precambrian and the overlying Paleozoic sections formed within the same terrane. The form of the boundaries of the NSI terrane are actively debated and are probably continued from the Lyakhovsky islands in the south-west to the southern parts of the submerged Mendeleev Ridge, for which there is increasing evidence of continental crust. Today there are several models that interpret the Paleozoic-Mesozoic tectonic history and structural affiliation of the NSI terrane. Some propose that the Paleozoic sedimentary section formed in a passive margin setting of the Siberian paleocontinent. Others compare its history with marginal basins of the Baltica and Laurentia continents or consider the NSI terrane as an element of the Chukotka-Alaska microplate. These models are mainly based on results of paleobiogeographical and lithological-facies analyses, including explanations of probable sources for detrital zircons. Our paleomagnetic research on sedimentary, volcanogenic-sedimentary and igneous rocks of the Anjou (Kotelny and Bel'kovsky islands) and De Long (Bennett, Jeannette and Henrietta islands) archipelagos let us calculate an apparent polar wander path for the early Paleozoic interval of geological history, which allows us to conclude that the NSI terrane could not have been a part of the continental plates listed above, but rather had active tectonic boundaries with them. Our paleomagnetic data indicate that the NSI terrane drifted slowly and steadily in the tropical and subtropical regions no higher than 40 degrees. However, the main uncertainty for the tectonic interpretation of these data is related to not knowing the true polarity and therefore the geographic hemisphere in which the terrane was located during the recording of the paleomagnetic signal. Consequently, we presented two possible tectonic histories for the Paleozoic of the NSI terrane, calculated and discussed the appropriate global reconstructions describing the paleogeography as well as probable mutual position and drift kinematics of the Eastern Arctic terranes. This study is supported by the Russian Science Foundation, grant No. 14-37-00030 and the Russian Foundation for Basic Research, grant No. 15-05-01428.

  2. Quantifying 10Be-derived Erosion Rates from the Min Shan in the Eastern Margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, H.; Moon, S.; Harrison, M.; Yin, A.

    2017-12-01

    Spatial and temporal variations of long-term erosion rates can provide fundamental insights into the topographic and tectonic development of Eastern Tibet. Previous studies have quantified erosion rates at thousand to million-year-timescales in the central and northern Longmen Shan region with a view of understanding the locally complex tectonic interactions. However, it is still unclear how the magnitude, rate, and style of tectonic deformation vary across the eastern margin of the Tibetan Plateau. In this study, we examine the erosional history and topographic development of the Min Shan, located north of the Longmen Shan and west of Sichuan basin. Over a distance of 50 km, elevations increase from 500 m in Sichuan Basin to a peak of 5600 m in the west. The eastern portion of our study area is a foreland thrust belt with relatively flat topography, while the western portion contains deformed silicic sedimentary strata with steep slopes and a topographic relief of >2000 m. In this study, we use cosmogenic 10Be from river sands to measure thousand-year-timescale erosion rates of 12 catchments across the Min Shan. We then compare these rates with published million-year-timescale exhumation rates from apatite and zircon (U-Th)/He and apatite and zircon fission track thermochronometers. These data should lead us to a better understanding of the spatial and temporal variations of deformation throughout the eastern Tibetan margin and help discern the relative effects of climate and tectonics in forming Himlayan landscapes.

  3. Lithospheric controls on crustal reactivation and intraplate mountain building in the Gobi Corridor, Central Asia

    NASA Astrophysics Data System (ADS)

    Cunningham, D.

    2017-12-01

    This talk will review the Permian-Recent tectonic history of the Gobi Corridor region which includes the actively deforming Gobi Altai-Altai, Eastern Tien Shan, Beishan and North Tibetan foreland. Since terrane amalgamation in the Permian, Gobi Corridor crust has been repeatedly reactivated by Triassic-Jurassic contraction/transpression, Late Cretaceous extension and Late Cenozoic transpression. The tectonic history of the region suggests the following basic principle for intraplate continental regions: non-cratonized continental interior terrane collages are susceptible to repeated intraplate reactivation events, driven by either post-orogenic collapse and/or compressional stresses derived from distant plate boundary convergence. Thus, important related questions are: 1) what lithospheric pre-conditions favor intraplate crustal reactivation in the Gobi Corridor (simple answer: crustal thinning, thermal weakening, strong buttressing cratons), 2) what are the controls on the kinematics of deformation and style of mountain building in the Gobi-Altai-Altai, Beishan and North Tibetan margin (simple answer: many factors, but especially angular relationship between SHmax and `crustal grain'), 3) how does knowledge of the array of Quaternary faults and the historical earthquake record influence our understanding of modern earthquake hazards in continental intraplate regions (answer: extrapolation of derived fault slip rates and recurrence interval determinations are problematic), 4) what important lessons can we learn from the Mesozoic-Cenozoic tectonic history of Central Asia that is applicable to the tectonic evolution of all intraplate continental regions (simple answer: ancient intraplate deformation events may be subtly expressed in the rock record and only revealed by low-temperature thermochronometers, preserved orogen-derived sedimentary sequences, fault zone evidence for younger brittle reactivation, and recognition of a younger class of cross-cutting tectonic structures).

  4. Post-rift Tectonic History of the Songliao Basin, NE China: Cooling Events and Post-rift Unconformities Driven by Orogenic Pulses From Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Song, Ying; Stepashko, Andrei; Liu, Keyu; He, Qingkun; Shen, Chuanbo; Shi, Bingjie; Ren, Jianye

    2018-03-01

    The classic lithosphere-stretching model predicts that the post-rift evolution of extensional basin should be exclusively controlled by decaying thermal subsidence. However, the stratigraphy of the Songliao Basin in northeastern China shows that the post-rift evolution was punctuated by multiple episodes of uplift and exhumation events, commonly attributed to the response to regional tectonic events, including the far-field compression from plate margins. Three prominent tectonostratigraphic post-rift unconformities are recognized in the Late Cretaceous strata of the basin: T11, T03, and T02. The subsequent Cenozoic history is less constrained due to the incomplete record of younger deposits. In this paper, we utilize detrital apatite fission track (AFT) thermochronology to unravel the enigmatic timing and origin of post-rift unconformities. Relating the AFT results to the unconformities and other geological data, we conclude that in the post-rift stage, the basin experienced a multiepisodic tectonic evolution with four distinct cooling and exhumation events. The thermal history and age pattern document the timing of the unconformities in the Cretaceous succession: the T11 unconformity at 88-86 Ma, the T03 unconformity at 79-75 Ma, and the T02 unconformity at 65-50 Ma. A previously unrecognized Oligocene unconformity is also defined by a 32-24 Ma cooling event. Tectonically, all the cooling episodes were regional, controlled by plate boundary stresses. We propose that Pacific dynamics influenced the wider part of eastern Asia during the Late Cretaceous until Cenozoic, whereas the far-field effects of the Neo-Tethys subduction and collision processes became another tectonic driver in the later Cenozoic.

  5. Tectonic escape in the evolution of the continental crust

    NASA Technical Reports Server (NTRS)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  6. The relationship between crustal tectonics and internal evolution in the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1977-01-01

    The relationship between crustal tectonics and thermal evolution is discussed in terms of the moon and Mercury. Finite strain theory and depth and temperature-dependent thermal expansion are used to evaluate previous conclusions about early lunar history. Factors bringing about core differentiation in the first 0.6 b.y. of Mercurian evolution are described. The influence of concentrating radioactive heat sources located in Mercury's crust on the predicted contraction is outlined. The predicted planetary volume change is explored with regard to quantitative limits on the extent of Mercurian core solidification. Lunar and Mercurian thermal stresses involved in thermal evolution are reviewed, noting the history of surface volcanism. It is concluded that surface faulting and volcanism are closely associated with the thermal evolution of the whole planetary volume. As the planet cools or is heated, several types of tectonic and volcanic effects may be produced by thermal stress occurring in the lithosphere.

  7. Thermal Anomaly Engendered by the Emplacement of AN Au-DEPOSIT: Example from the Franciscan Complex

    NASA Astrophysics Data System (ADS)

    Lahfid, A.; Lacroix, B.; Delchini, S.; Hughes, J.

    2016-12-01

    The thermal history of the Lucia subterrane located within the Franciscan Complex (California, USA) has been previously proposed by Underwood et al. (1995). Based on both vitrinite reflectance (Rm) and illite cristallinity methods, these authors suggest that the Lucia subterrane is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both the thermal anomaly and the deposit seem spatially correlated, their relationship is still poorly constrained. In order to better explain the anomalous temperatures recorded in the vicinity of the deposit and their possible link with mineralization processes, we first performed detailed geological and structural mapping within the Los Burros district coupled to a thermal study. The peak temperature reached by metasediments from the Lucia subterrane have been regionally investigated using Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through a careful fluid-inclusion study of the deposit, the potential source and the temperature of the fluid responsible for the Los Burros Au-deposit emplacement are currently being investigated. Our preliminary results confirm the previous temperatures and the presence of the thermal anomaly in the range 260-320ºC as inferred by Underwood et al (1995). In addition, our structural interpretation shows that the Los Burros deposit was emplaced during a late tectonic event marked by local reorientation of the regional tectonic features and the emplacement of meter-wide, quartz-calcite-sulfide extension veins. The temperatures determined by both methods (RSCM thermometry and fluid inclusion microthermometry) are consistent and support that the thermal anomaly is likely generated by the emplacement of the Los Burros Au-deposit during a local tectonic event.

  8. Development of the Philippine Mobile Belt in northern Luzon from Eocene to Pliocene

    NASA Astrophysics Data System (ADS)

    Suzuki, Shigeyuki; Peña, Rolando E.; Tam, Tomas A.; Yumul, Graciano P.; Dimalanta, Carla B.; Usui, Mayumi; Ishida, Keisuke

    2017-07-01

    The origin of the Philippine Archipelago is characterized by the combination of the oceanic Philippine Mobile Belt (PMB) and the Palawan Continental Block (PCB). This paper is focused on the geologic evolution of the PMB in northern Luzon from Eocene to Pliocene. The study areas (northern Luzon) are situated in the central part of the PMB which is occupied by its typical components made up of a pre-Paleocene ophiolitic complex, Eocene successions, Eocene to Oligocene igneous complex and late Oligocene to Pliocene successions. Facies analysis of the middle Eocene and late Oligocene to early Pliocene successions was carried out to understand the depositional environment of their basins. Modal sandstone compositions, which reflect the basement geology of the source area, were analyzed. Major element geochemistry of sediments was considered to reconstruct the tectonic settings. The following brief history of the PMB is deduced. During the middle Eocene, the PMB was covered by mafic volcanic rocks and was a primitive island arc. In late Eocene to late Oligocene time, the intermediate igneous complex was added to the mafic PMB crust. By late Oligocene to early Miocene time, the PMB had evolved into a volcanic island arc setting. Contributions from alkalic rocks are detected from the rock fragments in the sandstones and chemical composition of the Zigzag Formation. During the middle Miocene to Pliocene, the tectonic setting of the PMB remained as a mafic volcanic island arc.

  9. Arctic-Asian Mobile Belt - Global Structure in the North, Central, and East Asia

    NASA Astrophysics Data System (ADS)

    Shokalsky, Sergey; Petrov, Oleg; Pospelov, Igor; Kashubin, Sergey; Sobolev, Nikolay; Petrov, Evgeny

    2014-05-01

    Over the last decade under the international project of five countries, the geological surveys of Russia, China, Kazakhstan, Mongolia, and the Republic of Korea, with the participation of national academies of sciences in these countries compiled a set of digital maps at 1:2.5 M scale. It includes geological, tectonic, metallogenic maps and map of energy resources with databases for North, Central, and East Asia, area of more than 30 million km2. Map compilation was supervised by the Subcommission for Northern Eurasia and Subcommission for Tectonic Maps of the Commission for the Geological Map of the World under the auspices of UNESCO (CGMW). The set of maps was displayed at the 33rd IGC (Oslo, 2008) and 34th IGC (Brisbane, 2012). One of the largest accretion collages of orogenic belts of different ages on the planet (from the Neoproterozoic to Early Mesozoic) is clearly shown in the tectonic map compiled under the joint project. Extended polychronous mobile belt is bounded in the west by the East European Craton, in the east, by the Siberian Craton, in the south, by a chain of Gondwana cratonic blocks - North China, Tarim, Tajik. In the north it can be traced as a broad band within the Circumpolar Region, where it is limited by the North American Craton. The central part of the accretionary belt is hidden under the Meso-Cenozoic sediments of Western Siberia. Analysis of vast geological material shows that the Arctic-Asian mobile belt was formed on place of an extensive paleo-ocean, which closed with a successive rejuvenation of suture ophiolite zones from the marginal to axial zone and along strike to the north and east of the South Siberian segment towards Paleopacific. Arctic-Asian mobile belt is characterized by a complex combination of accretionary and riftogenic tectonic-magmatic processes. At its early stages, accretionary tectonics with a wide development of volcanic belts dominated; at the late ones (in the Late Paleozoic, Mesozoic, and Cenozoic) stretching, rifting and postrift subsidence were widely shown with the formation of oil and gas sedimentary basins with a thick sedimentary cover (West Siberian, Turan, Caspian, Middle Amur, Songliao), large igneous provinces (South Urals, West and East Siberian, Central Kazakhstan, Trans-Baikal, etc.) and rift systems (Mongol-Transbaikal, Baikal, etc.). The aim of further research under the existing joint projects should be identifying and tracing the boundaries of the Arctic-Asian mobile belt, study and correlation of geological complexes-indicators of major tectonic events, reconstruction of the history of the accretionary belt with superimposed oil and gas bearing sedimentary basins as a tectonic structure of the global level.

  10. Sedimentation and tectonics of the Sylhet trough, Bangladesh

    USGS Publications Warehouse

    Johnson, S.Y.; Nur Alam, A.M.

    1991-01-01

    The Sylhet trough, a sub-basin of the Bengal Basin in northeastern Bangladesh, contains a thick fill (12 to 16 km) of late Mesozoic and Cenozoic strata that record its tectonic evolution. Stratigraphic, sedimentologic, and petrographic data collected from outcrops, cores, well logs, and seismic lines are used to reconstruct the history of this trough. -from Authors

  11. Using the Mesozoic History of the Canadian Cordillera as a Case Study in Teaching Plate Tectonics.

    ERIC Educational Resources Information Center

    Chamberlain, Valerie Elaine

    1989-01-01

    Reviews a model used in the teaching of plate tectonics which includes processes and concepts related to: terranes and the amalgamation of terranes, relative plate motion and oblique subduction, the effects of continent-continent collision, changes in plate motion, plate configuration, and the type of plate boundary. Diagrams are included.…

  12. Pennsylvanian history of the Chautauqua Arch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennison, A.P.

    1993-03-01

    Westward extension of the Ozark Uplift known as the Chautauqua Arch is concealed by a Pennsylvanian cover. This cover provides an insight into its later tectonic history subsequent to its major Late Devonian uplift and truncation. Part of this arch was episodically uplifted during Pennsylvanian time in an area extending west from southwestern Missouri along the Kansas-Oklahoma border to western Montgomery County. Recent stratigraphic mapping in that county indicates moderate Late Desmoinesian to Missourian tectonism. Some strata present on both flanks of the arch are either comparatively thin or missing owing to unconformity truncation or non-deposition. Stratal loss involves themore » Lenapah Limestone, the Hepler and Lost Branch formations, the Cherryvale Shale and the Hertha, Drum, Dewey, Stanton and Wyandotte Limestones. Earlier movements also account for the truncation of Morrowan, Atokan and possibly some Early Desmoinesian beds over the arch. Between tectonic episodes along the arch there were periods of relative tectonic quiescence accompanied by shelf-edge carbonate banks, condensed sequences and siliciclastic sedimentation. West of Montgomery County in Chautauqua County, the widespread Late Pennsylvanian Virgilian outcrops show practically no tectonism. Therefore, the name Chautauqua Arch seems inappropriate for this Pennsylvanian arch, and the name Tri-State Arch is proposed. This arch is bounded on the north by the Cherokee Basin and on the south by the northern rise of the Arkoma Basin. Although this arch is commonly omitted on many tectonic maps, it is a stronger gravity feature than the Bourbon Arch about 50 miles northward. Both tectonic and sedimentary structures have produced much oil and gas entrapment along this arch. For example, an east-west fault south of Independence, aligned with buried Proterozoic hills, has been specially productive.« less

  13. Gravity anomalies, plate tectonics and the lateral growth of Precambrian North America

    NASA Technical Reports Server (NTRS)

    Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.

    1988-01-01

    The widespread gravity coverage of North America provides a picture of the gross structural fabric of the continent via the trends of gravity anomalies. The structural picture so obtained reveals a mosaic of gravity trend domains, many of which correlate closely with structural provinces and orogenic terranes. The gravity trend map, interpreted in the light of plate-tectonic theory, thus provides a new perspective for examining the mode of assembly and growth of North America. Suture zones, palaeosubduction directions, and perhaps, contrasting tectonic histories may be identified using gravity patterns.

  14. A geologic guide to Wrangell-Saint Elias National Park and Preserve, Alaska; a tectonic collage of northbound terranes

    USGS Publications Warehouse

    Winkler, Gary R.; with contributions by MacKevett, E. M.; Plafker, George; Richter, D.H.; Rosenkrans, D.S.; Schmoll, H.R.

    2000-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest unit in the U.S. National Park System, encompasses near 13.2 million acres of geological wonderments. This geologic guide presents history of exploration and Earth-science investigation; describes the complex geologic makeup; characterizes the vast college of accretion geologic terranes in this area of Alaska's continental margin; recapitulates the effects of earthquakes, volcanoes, and glaciers; characterizes the copper and gold resources of the parklands; and describes outstanding locales within the park and preserve area. A glossary of geologic terms and a categorized list of additional sources of information complete this report.

  15. Planetary environments and the conditions of life

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1988-01-01

    Geophysical models of the first 600 Ma ofthe earth's history following accretion and core formation point to a period of great environmental disequilibrium. In such an environment, the passage of energy from the earth's interior and from the sun through gas-liquid-solid domains and their boundaries with each other generated a dynamically interacting, complex hierarchy of self-organized structures ranging from bubbles at the sea-air interface to tectonic plates. The ability of a planet to produce such a hierarchy is speculated to be a prerequisite to the origin and sustenance of life. The application of this criterion to Mars argues against the origin of Martian life.

  16. Why is understanding when Plate Tectonics began important for understanding Earth?

    NASA Astrophysics Data System (ADS)

    Korenaga, J.

    2015-12-01

    Almost all kinds of geological activities on Earth depend critically on the operation of plate tectonics, but did plate tectonics initiate right after the solidification of a putative magma ocean, or did it start much later, e.g., sometime during the Archean? This problem of the initiation of plate tectonics in the Earth history presents us a unique combination of observational and theoretical challenges. Finding geological evidence for the onset of plate tectonics is difficult because plate tectonics is a dynamic process that continuously destroys a remnant of the past. We therefore need to rely on more secondary traces, the interpretation of which often involves theoretical considerations. At the same time, it is still hard to predict, on a firm theoretical ground, when plate tectonics should have prevailed, because there is no consensus on why plate tectonics currently takes place on Earth. Knowing when plate tectonics began is one thing, and understanding why it did so is another. The initiation of plate tectonics is one of the last frontiers in earth science, which encourages a concerted effort from both geologists and geophysicists to identify key geological evidence and distinguish between competing theories of early Earth evolution. Such an endeavor is essential to arrive at a self-contained theory for the evolution of terrestrial planets.

  17. Geologic Map of the Thaumasia Region, Mars

    USGS Publications Warehouse

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26). The medium-resolution Viking images used for mapping and base preparation also formed the basis of the 1:2,000,000 scale subquadrangle series. Earlier geologic maps of all or parts of the region include: (1) maps of the Phoenicis Lacus, Coprates, Thaumasia, and Argyre quadrangles at 1:5,000,000 scale based mainly on Mariner 9 images (respectively, Masursky and others, 1978; McCauley, 1978; McGill, 1978; and Hodges, 1980), (2) the global map of Mars at 1:25,000,000 (Scott and Carr, 1978) compiled largely from the 1:5,000,000 scale geologic maps, (3) maps showing lava flows in the Tharsis region at 1:2,000,000 scale compiled from Viking and Mariner 9 images (Scott, 1981; Scott and Tanaka, 1981a, b; Scott and others, 1981), (4) the map of the western equatorial region of Mars at 1:15,000,000 scale based on Viking images (Scott and Tanaka, 1986), and (5) the map of the Valles Marineris region at 1:2,000,000 scale compiled from Viking images (Witbeck and others, 1991). The previous maps have described the overall geology and geomorphology of the region but have not unraveled the detailed stratigraphy and complex evolution of this unique and geologically diverse martian province. The main purpose of this comprehensive mapping project is to reconstruct the stratigraphic, structural, and erosional histories of the Thaumasia region. The region is the last major province of the Tharsis region to undergo detailed structural mapping using Viking images; its history is essential to documenting the overall tectonic history of Tharsis. Other provinces of Tharsis that have been structurally mapped include Syria Planum (Tanaka and Davis, 1988), Tempe Terra and Ulysses Patera (Scott and Dohm, 1990b), and Alba Patera (Tanaka, 1990). Another primary mapping objective is to determine the region's volcanic history and assess the relations among fault systems and volcanoes (Wise and others, 1979; Scott and Tanaka, 1980; Whitford-Stark, 1982; Scott and Dohm, 1990a). A secondary mapping objective is to determine the distribution and ages of valleys. In our study, we incorporated detailed photogeologic mapping, comprehensive crater statistics (table 1), and geologic, paleotectonic, and paleoerosional Geographic Information System (GIS) databases. Sheets 1–3 show geologic units, faults and other significant structures, and valleys, respectively. To help unravel the complex geologic history of the Thaumasia region, we transferred the highly detailed geologic unit, paleotectonic, and paleoerosional information of sheets 1–3 into a multilayered GIS database for comparative analysis. The geologic information was transferred from hard copy into a digital format by scanning at 25 micron resolution on a drum scanner. The 2-bit scanned image was then converted to an x,y coordinate system using ARC/INFO's vectorization routine. The geologic unit, structural, and erosional data were transformed into the original map projection, Lambert Conformal. The average transformation root mean square error was 0.25 km (acceptable for the Thaumasia map base at 1:5,000,000 scale). After transformation, the features were properly attributed and tediously checked. Once digitized, the map data can be transformed into any map projection depending on the type of data analysis. For example, the equal-area sinusoidal projection was used for determining the precise area of geologic units (table 1). In addition to the geologic map and its attendant stratigraphic section, correlation chart, and description of map units, we include text sections that clarify the histories and temporal, spatial, and causal relations of the various geologic units and landforms of the Thaumasia region. The geologic summary section defines the sequence of major geologic events.

  18. Full-waveform inversion for the Iranian plateau

    NASA Astrophysics Data System (ADS)

    Masouminia, N.; Fichtner, A.; Rahimi, H.

    2017-12-01

    We aim to obtain a detailed tomographic model for the Iranian plateau facilitated by full-waveform inversion. By using this method, we intend to better constrain the 3-D structure of the crust and the upper mantle in the region. The Iranian plateau is a complex tectonic area resulting from the collision of the Arabian and Eurasian tectonic plates. This region is subject to complex tectonic processes such as Makran subduction zone, which runs along the southeastern coast of Iran, and the convergence of the Arabian and- Eurasian plates, which itself led to another subduction under Central Iran. This continent-continent collision has also caused shortening and crustal thickening, which can be seen today as Zagros mountain range in the south and Kopeh Dagh mountain range in the northeast. As a result of such a tectonic activity, the crust and the mantle beneath the region are expected to be highly heterogeneous. To further our understanding of the region and its tectonic history, a detailed 3-D velocity model is required.To construct a 3-D model, we propose to use full-waveform inversion, which allows us to incorporate all types of waves recorded in the seismogram, including body waves as well as fundamental- and higher-mode surface waves. Exploiting more information from the observed data using this approach is likely to constrain features which have not been found by classical tomography studies so far. We address the forward problem using Salvus - a numerical wave propagation solver, based on spectral-element method and run on high-performance computers. The solver allows us to simulate wave field propagating in highly heterogeneous, attenuating and anisotropic media, respecting the surface topography. To improve the model, we solve the optimization problem. Solution of this optimization problem is based on an iterative approach which employs adjoint methods to calculate the gradient and uses steepest descent and conjugate-gradient methods to minimize the objective function. Each iteration of such an approach is expected to bring the model closer to the true model.Our model domain extends between 25°N and 40°N in latitude and 42°E and 63°E in longitude. To constrain the 3-D structure of the area we use 83 broadband seismic stations and 146 earthquakes with magnitude Mw>4.5 -that occurred in the region between 2012 and 2017.

  19. Time-slice maps showing age, distribution, and style of deformation in Alaska north of 60° N.

    USGS Publications Warehouse

    Moore, Thomas E.; Box, Stephen E.

    2016-08-29

    The structural architecture of Alaska is the product of a complex history of tectonism that occurred along the Cordilleran and Arctic margins of North America through interactions with ancient and modern ocean plates and with continental elements derived from Laurentia, Siberia, and Baltica. To unravel the tectonic history of Alaska, we constructed maps showing the age, distribution, structural style, and kinematics of contractional and penetrative extensional deformation in Alaska north of latitude 60° N. at a scale of 1:5,000,000. These maps use the Geologic Map of the Arctic (Harrison and others, 2011) as a base map and follow the guidelines in the Tectonic Map of the Arctic project (Petrov and others, 2013) for construction, including use of the International Commission on Stratigraphy time scale (Cohen and others, 2013) divided into 20 time intervals. We find evidence for deformation in 14 of the 20 time intervals and present maps showing the known or probable extent of deformation for each time interval. Maps and descriptions of deformational style, age constraints, kinematics, and information sources for each deformational episode are discussed in the text and are reported in tabular form. This report also contains maps showing the lithologies and structural geology of Alaska, a terrane map, and the distribution of tectonically important units including post-tectonic sedimentary basins, accretionary complexes, ophiolites, metamorphic rocks.These new maps show that most deformational belts in Alaska are relatively young features, having developed during the late Mesozoic and Cenozoic. The oldest episode of deformation recognized anywhere in Alaska is found in the basement of the Farewell terrane (~1.75 Ga). Paleozoic and early Mesozoic deformational events, including Devonian deformation in the Arctic Alaska terrane, Pennsylvanian deformation in the Alexander terrane, Permian deformation in the Yukon Composite (Klondike orogeny) and Farewell terranes (Browns Fork orogeny), Early and Late Jurassic deformation in the Peninsular-Wrangellia terranes, and Early Cretaceous deformation in northern Alaska (early Brookian orogeny) show that within-terrane amalgamation events occurred prior to assembly of Alaska. Widespread episodes of deformation in the Late Cretaceous and early Cenozoic, in contrast, affected multiple terranes, indicating they occurred during or following the time of assembly of most of Alaska.The primary deformational event in northern Alaska was the Late Jurassic and Early Cretaceous (early) Brookian orogeny, which affected most terranes north and west of the early Cenozoic Tintina, Victoria Creek, Kaltag, and Poorman dextral-slip faults in central Alaska. In southern Alaska, formation of the southern Alaska accretionary complex (Chugach, Prince William, Yakutat terranes) and associated magmatism in the Peninsular-Wrangellia terrane began near the Triassic-Jurassic boundary and continued episodically throughout the remainder of the Mesozoic and the Cenozoic. The collision of these terranes with the Farewell and Yukon Composite terranes in central Alaska is recorded by contractional deformation that emanated from the intervening basins in the Late Cretaceous. The boundary between northern and central Alaska is constrained to late Early Cretaceous but is enigmatic and not obviously marked by contractional deformation. Early Cenozoic shortening and transpressional deformation is the most widespread event recorded in Alaska and produced the widespread late Brookian orogenic event in northern Alaska. Middle and late Cenozoic shortening and transpression is significant in southern Alaska inboard of the underthrusting Yakutat terrane at the Pacific margin subduction zone as well as in northeastern Alaska.

  20. Deformation history of the Neoproterozoic basement complex, Ain Shams area, Western Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Fakharani, Abdelhamid; Hamimi, Zakaria

    2013-04-01

    Ain Shams area, Western Arabian Shield, Saudi Arabia, is occupied by four main rock units; gneisses, metavolcanics, metasediments and syn- to post-tectonic granitoids. Field and structural studies reveal that the area was subjected to at least three phases of deformation (D1, D2 and D3). The structural features of the D1 are represented by tight to isoclinal and intrafolial folds (F1), axial plane foliation (S1) and stretching lineations (L1). This phase is believed to be resulted from an early NW-SE contractional phase due to the amalgamation between Asir and Jeddah tectonic terranes. D2 deformation phase progressively overprinted D1 structures and was dominated by thrusts, minor and major F2 thrust-related overturned folds. These structures indicate a top-to-the-NW movement direction and compressional regime during the D2 phase. Emplacement of the syn-tectonic granitoids is likely to have occurred during this phase. D3 structures are manifested F3 folds, which are open with steep to subvertical axial planes and axes moderately to steeply plunging towards the E, ENE and ESE directions, L3 is represented by crenulation lineations and kink bands. These structures attest NE-SW contractional phase, concurrent with the accretion of the Arabian-Nubian Shield (ANS) to the Saharan Metacraton (SM) and the final assembly between the continental blocks of East and West Gondwana.

  1. Timing of mid-crustal ductile extension in the northern Snake Range metamorphic core complex, Nevada: Evidence from U/Pb zircon ages

    NASA Astrophysics Data System (ADS)

    Lee, J.; Blackburn, T.; Johnston, S. M.

    2016-12-01

    Metamorphic core complexes (Mccs) within the western U.S. record a history of Cenozoic ductile and brittle extensional deformation, metamorphism, and magmatism, and exhumation within the footwall of high-angle Basin and Range normal faults. Documenting these histories within Mccs have been topics of research for over 40 years, yet there remains disagreement about: 1) whether the detachment fault formed and moved at low angles or initiated at high angles and rotated to a low angle; 2) whether brittle and ductile extensional deformation were linked in space and time; and 3) the temporal relationship of both modes of extension to the development of the detachment fault. The northern Snake Range metamorphic core complex (NSR), Nevada has been central to this debate. To address these issues, we report new U/Pb dates from zircon in deformed and undeformed rhyolite dikes emplaced into ductilely thinned and horizontally stretched lower plate rocks that provide tight bounds on the timing of ductile extension at between 38.2 ± 0.3 Ma and 22.50 ± 0.36 Ma. The maximum age constraint is from the Northern dike swarm (NDS), which was emplaced in the northwest part of the range pre- to syn-tectonic with ductile extension. The minimum age constraint is from the Silver Creek dike swarm (SDS) that was emplaced in the southern part of the range post ductile extensional deformation. Our field observations, petrography, and U/Pb zircon ages on the dikes combined with published data on the geology and kinematics of extension, moderate and low temperature thermochronology on lower plate rocks, and age and faulting histories of Cenozoic sedimentary basins adjacent to the NSR are interpreted as recording an episode of localized upper crustal brittle extension during the Eocene that drove upward ductile extensional flow of hot middle crustal rocks from beneath the NSR detachment soon after, or simultaneous with, emplacement of the NDS. Exhumation of the lower plate continued in a rolling hinge/isostatic rebound style; the western part of the lower plate was exhumed first and the eastern part extended ductilely either continuously or episodically until the early Miocene when the post-tectonic SDS was emplaced. Major brittle slip along the eastern part of the NSR detachment and along high angle normal faults exhumed the lower plate during middle Miocene.

  2. Resolving carbonate platform geometries on the Island of Bonaire, Caribbean Netherlands through semi-automatic GPR facies classification

    NASA Astrophysics Data System (ADS)

    Bowling, R. D.; Laya, J. C.; Everett, M. E.

    2018-07-01

    The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometre length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which support the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.

  3. Regional Crustal Velocity Models for Northern Arabian Platform and Turkish-Iranian Plateau

    NASA Astrophysics Data System (ADS)

    Aleqabi, G.; Wysession, M.; Ghalib, H.

    2008-12-01

    The geological structure of the Northern Arabian platform and surrounding mountains is dominated by the collision and suturing of the Arabian plate with the Eurasian plate and the formation of the Turkish-Iranian plateau. The structure of the Northern Arabian platform and surrounding region is poorly constrained. A recent deployment of 10 broadband seismometers in northern and central Iraq provides an opportunity to refine velocity models of the region. We have applied the Niching Genetic Algorithm waveform inversion technique to Rayleigh and Love waves traversing the Northern Arabian platform, the Zagros fold belt, the southern Turkish Plateau, the Iranian Plateau. Results show variations in crustal thickness and shear wave velocity between the Northern Arabian platform and the Turkish-Iranian plateau. In general the shear wave velocities are higher in the Northern Arabian platform than in the Plateaus. Variation of shear velocities within each of the provinces reflects the diversity in tectonic environment across the Zagros fold belt and the complex tectonic history of the region. Crustal thickness results show little crustal thickening has occurred due to collision.

  4. Resolving Carbonate Platform Geometries on the Island of Bonaire, Caribbean Netherlands through Semi-Automatic GPR Facies Classification

    NASA Astrophysics Data System (ADS)

    Bowling, R. D.; Laya, J. C.; Everett, M. E.

    2018-05-01

    The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated, on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometer length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which supports the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.

  5. Morphometric and magmatic evolution at the Boset-Bericha Volcanic Complex in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Siegburg, Melanie; Gernon, Thomas; Bull, Jonathan; Keir, Derek; Taylor, Rex; Nixon, Casey; Abebe, Bekele; Ayele, Atalay

    2017-04-01

    Tectono-magmatic interactions are an intrinsic feature of continental rifting and break up in the Main Ethiopian Rift (MER). The Boset-Bericha volcanic complex (BBVC) is one of the largest stratovolcanoes in the MER (with a total area of ˜870 km2), with volcanism largely occurring over the last ˜2 Myr. Despite the fact that 4 million people live within 100 km of the volcano, little is known about its eruptive history and how the volcanic system interacts with rift valley tectonics. Here, we present a detailed relative eruption chronology combined with morphometric analyses of different elements of the volcanic complex and petrological analyses to constrain morphometric and magmatic evolution at the BBVC. Additionally, tectonic activity has been characterised around the BBVC, all based on field observations and mapping using high-resolution digital elevation data. The BBVC consists of the Gudda Volcano and the younger Bericha Volcano, two silicic eruption centres located along the NNE-SSW trending rift axis. The fault population predominantly comprises distributed extensional faults parallel to the rift axis, as well as localised discrete faults with displacements of up to 50 m in the rift centre, and up to 200 m in the NE-SW trending border fault system. Multiple cones, craters and fissure systems are also oriented parallel to the rift axis, i.e. perpendicular to the minimum compressive stress. The eruption history of BBVC can be differentiated into 5 main eruption stages, subdivided into at least 12 eruptive phases with a total of 128 mappable lava flows. Crosscutting relationships of lava flows provide a relative chronology of the eruptive history of the BBVC, starting with pre-BBVC rift floor basalts, pre-caldera and caldera activity, three post-caldera phases at the Gudda Volcano and two phases forming the Bericha Volcano. At least four fissure eruption phases occurred along the rift axis temporally in between the main eruptive phases. Morphometric analyses indicate a total corrected volume of eruptive material at the BBVC of ˜36 km3. The magmatic and morphometric evolution of the BBVC is spatially and temporally complex, showing a bimodal distribution of effusive basalts towards explosive peralkaline trachytic and rhyolitic lavas for the Gudda and Bericha Volcano, respectively, with rare intermediate lavas from fissure eruptions. Preliminary geochemical data suggest that fractional crystallisation may have played an important role in driving magmatic evolution the BBVC. This study emphasises the important role of tectono-magmatic interactions in the evolution of a continental rift system.

  6. Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation

    NASA Astrophysics Data System (ADS)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann; Faghih, Ali; Kusky, Timothy

    2012-09-01

    To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represents part of a deformation zone between the Arabian and Eurasian plates, and can be interpreted to result from the Central Iran intracontinental deformation acting as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveal that the metamorphic and igneous rocks suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. Comparison of deformation features in the mylonites and other structural features within the footwall unit leads to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching during Middle to Late Eocene extensional tectonics. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex was deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture.

  7. Polyphase tertiary fold-and-thrust tectonics in the Belluno Dolomites: new mapping, kinematic analysis, and 3D modelling

    NASA Astrophysics Data System (ADS)

    Chistolini, Filippo; Bistacchi, Andrea; Massironi, Matteo; Consonni, Davide; Cortinovis, Silvia

    2014-05-01

    The Belluno Dolomites are comprised in the eastern sector of the Southern Alps, which corresponds to the fold-and-thrust belt at the retro-wedge of the Alpine collisional orogen. They are characterized by a complex and polyphase fold-and-thrust tectonics, highlighted by multiple thrust sheets and thrust-related folding. We have studied this tectonics in the Vajont area where a sequence of Jurassic, Cretaceous and Tertiary units have been involved in multiple deformations. The onset of contractional tectonics in this part of the Alps is constrained to be Tertiary (likely Post-Eocene) by structural relationships with the Erto Flysch, whilst in the Mesozoic tectonics was extensional. We have recognized two contractional deformation phases (D1 and D2 in the following), of which only the second was mentioned in previous studies of the area and attributed to the Miocene Neoalpine event. D1 and D2 are characterized by roughly top-to-WSW (possibly Dinaric) and top-to-S (Alpine) transport directions respectively, implying a 90° rotation of the regional-scale shortening axis, and resulting in complex thrust and fold interference and reactivation patterns. Geological mapping and detailed outcrop-scale kinematic analysis allowed us to characterize the kinematics and chronology of deformations. Particularly, relative chronology was unravelled thanks to (1) diagnostic fold interference patterns and (2) crosscutting relationships between thrust faults and thrust-related folds. A km-scale D1 syncline, filled with the Eocene Erto Flysch and "decapitated" by a D2 thrust fault, provides the best map-scale example of crosscutting relationships allowing to reconstruct the faulting history. Due to the strong competence contrast between Jurassic carbonates and Tertiary flysch, in this syncline spectacular duplexes were also developed during D2. In order to quantitatively characterize the complex interference pattern resulting from two orthogonal thrusting and folding events, we performed a dip-domain analysis that allowed to categorize the different fold limbs and reduce the uncertainty in the reconstruction of the fault network topology in map view. This enabled us to reconstruct a high-quality, low-uncertainty 3D structural and geological model, which unambiguously proves that deformations with a top-to-WSW Dinaric transport direction propagate farther to the west than previously supposed in this part of the Southern Alps. Our new structural reconstruction of the Vajont valley have also clarified the structural control on the 1963 catastrophic landslide (which caused over 2000 losses). Besides being a challenging natural laboratory for testing analysis and modelling methodologies to be used when reconstructing in 3D this kind of complex interference structures, the Vajont area also provides useful clues on the still-enigmatic structures in the frontal part of the Friuli-Venetian Southern Alps, buried in the Venetian Plain foredeep. These include active seismogenic thrust-faults and, at the same time, represent a growing interest for the oil industry.

  8. Multiscalar approach to archaeological site formation at GaJj17, East Turkana, Kenya

    NASA Astrophysics Data System (ADS)

    Murray, B. M.; Ranhorn, K. L.; Colarossi, D.; Mavuso, S. S.; Dogandžić, T.; Ziegler, M. J.; Warren, S. L.; Braun, D. R.; Harris, J. W. K.

    2017-12-01

    Kenya's East Turkana region hosts a rich Plio­Pleistocene record of fossils, archaeological artifacts, and sedimentary features whose chronostratigraphic histories are often obscured by landscape changes from erosional events and tectonic activity. The Middle Stone Age (MSA) record of the Koobi Fora Formation (KF Fm.) has particularly been subjected to this complex depositional history, making it a sparse unit and, consequently, widely understudied. Stratigraphically located in between the maximum capping unconformity of the KF Fm.'s Chari tuff ( 1.39 Ma) and that of the Galana Boi Fm. ( 10 ka), the unit provides a unique window into understanding the Late Pleistocene of the region. The MSA surface scatters at archaeological site GaJj17 prompted further study into the site's age and depositional chronology. The GaJj17 ridge is locally distinguished by its cap of Late Pleistocene sands overlying strata containing tuffs likely of the Upper Burgi (2.0­-1.87 Ma) or KBS (1.87­-1.56 Ma) members. To investigate whether GaJj17's preservation is due to tectonic deformation, a broader scale examination of the structural geology was conducted through surveys and aerial imagery. Regions of deformation were identified and mapped to establish the geological history of the locality. Resultant observations and elevation data offer insight into regional faults at the root of prolonged structural alterations which have facilitated the unique preservation of MSA materials. Through a multiscalar approach it is possible to understand both the formation of GaJj17 and the underlying processes behind preservation and destruction in the changing landscape of the Turkana basin, enabling future identification of archaeological sites through proxies of elevation, regional stratigraphy, and fault mapping. This research was supported by IRES grants 1358178 and 1358200 from the U.S. National Science Foundation.

  9. Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Courgeon, S.; Jorry, S. J.; Jouet, G.; Camoin, G.; BouDagher-Fadel, M. K.; Bachèlery, P.; Caline, B.; Boichard, R.; Révillon, S.; Thomas, Y.; Thereau, E.; Guérin, C.

    2017-06-01

    Understanding the impact of tectonic activity and volcanism on long-term (i.e. millions years) evolution of shallow-water carbonate platforms represents a major issue for both industrial and academic perspectives. The southern central Mozambique Channel is characterized by a 100 km-long volcanic ridge hosting two guyots (the Hall and Jaguar banks) and a modern atoll (Bassas da India) fringed by a large terrace. Dredge sampling, geophysical acquisitions and submarines videos carried out during recent oceanographic cruises revealed that submarine flat-top seamounts correspond to karstified and drowned shallow-water carbonate platforms largely covered by volcanic material and structured by a dense network of normal faults. Microfacies and well-constrained stratigraphic data indicate that these carbonate platforms developed in shallow-water tropical environments during Miocene times and were characterized by biological assemblages dominated by corals, larger benthic foraminifera, red and green algae. The drowning of these isolated carbonate platforms is revealed by the deposition of outer shelf sediments during the Early Pliocene and seems closely linked to (1) volcanic activity typified by the establishment of wide lava flow complexes, and (2) to extensional tectonic deformation associated with high-offset normal faults dividing the flat-top seamounts into distinctive structural blocks. Explosive volcanic activity also affected platform carbonates and was responsible for the formation of crater(s) and the deposition of tuff layers including carbonate fragments. Shallow-water carbonate sedimentation resumed during Late Neogene time with the colonization of topographic highs inherited from tectonic deformation and volcanic accretion. Latest carbonate developments ultimately led to the formation of the Bassas da India modern atoll. The geological history of isolated carbonate platforms from the southern Mozambique Channel represents a new case illustrating the major impact of tectonic and volcanic activity on the long-term evolution of shallow-water carbonate platforms.

  10. Thermal evolution and exhumation of deep-level batholithic exposures, southernmost Sierra Nevada, California

    USGS Publications Warehouse

    Saleeby, J.; Farley, K.A.; Kistler, R.W.; Fleck, R.J.

    2007-01-01

    The Tehachapi complex lies at the southern end of the Sierra Nevada batholith adjacent to the Neogene-Quaternary Garlock fault. The complex is composed principally of high-pressure (8-10 kbar) Cretaceous batholithic rocks, and it represents the deepest exposed levels of a continuous oblique crustal section through the southern Sierra Nevada batholith. Over the southern ???100 km of this section, structural/petrologic continuity and geochronological data indicate that ???35 km of felsic to intermediate-composition crust was generated by copious arc magmatism primarily between 105 and 99 Ma. In the Tehachapi complex, these batholithic rocks intrude and are bounded to the west by similar-composition gneissic-textured high-pressure batholithic rocks emplaced at ca. 115-110 Ma. This lower crustal complex is bounded below by a regional thrust system, which in Late Cretaceous time tectonically eroded the underlying mantle lithosphere, and in series displaced and underplated the Rand Schist subduction assemblage by low-angle slip from the outboard Franciscan trench. Geophysical and mantle xenolith studies indicate that the remnants of this shallow subduction thrust descend northward through the crust and into the mantle, leaving the mantle lithosphere intact beneath the greater Sierra Nevada batholith. This north-dipping regional structure records an inflection in the Farallon plate, which was segmented into a shallow subduc-tion trajectory to the south and a normal steeper trajectory to the north. We combine new and published data from a broad spectrum of thermochronom-eters that together form a coherent data array constraining the thermal evolution of the complex. Integration of these data with published thermobarometric and petro-genetic data also constrains the tectonically driven decompression and exhumation history of the complex. The timing of arc magmatic construction of the complex, as denoted above, is resolved by a large body of U/Pb zircon ages. High-confidence thermochronometric data track a single retrogressing path commencing from widely established solidus conditions at ca. 100 Ma, and traversing through time-temperature space as follows: (1) Sm/Nd garnet ???770-680 ??C at ca. 102-95 Ma, (2) U/Pb titanite ???750-600 ??C at ca. 102-95 Ma, (3) Ar/Ar hornblende ???570-490 ??C at ca. 94-91 Ma, (4) Rb/Sr biotite ???390-260 ??C at ca. 90-86 Ma, (5) Ar/Ar biotite ???320-240 ??C at ca. 88-85 Ma, and (6) (U-Th)/He zircon ???230-170 ??C at ca. 88-83 Ma. Additional stratigraphic constraints place the complex at surface conditions in Paleocene-early Eocene time (ca. 66-55 Ma). Integration of these results with thermobarometric and structural data, including published data on the underlying Rand Schist, reveals a profound tectonic event whereby rapid cooling and exhumation at rates potentially as high as 100s ??C/m.y. and >5 mm/yr initiated at ca. 98 Ma and peaked between 96 and 94 Ma. Between 93 and 85 Ma, cooling rates remained high, but decelerated with or without significant exhumation. Subsequent cooling and exhumation rates are poorly constrained but were much slower and ultimately resulted in Paleocene-Eocene surface exposure. Initial rapid exhumation and cooling are hypothesized to have been driven by abrupt flattening in the corresponding segment of the Farallon plate and the resulting tectonic erosion of the underlying mantle lithosphere. Protolith as well as meta-morphic pressure-temperature and age constraints on the Rand Schist indicate its rapid low-angle subduction between 93 and 88 Ma. Comparison of the Rand Schist and Tehachapi complex pressure-temperature-time paths in conjunction with structural relations strongly suggest that the schist ascended the equivalent of ???4 kbar relative to the Tehachapi complex by low-angle normal displacement along the Rand fault between 88 and 80 Ma to attain its current underplated structural position. Such extensional tectonism is hypothesized to have been driven by slab rollback

  11. Tectonic state: its significance and characterization in the assessment of seismic effects associated with reservoir impounding

    USGS Publications Warehouse

    Castle, R.O.; Clark, M.M.; Grantz, A.; Savage, J.C.

    1980-01-01

    Any analysis of seismicity associated with the filling of large reservoirs requires an evaluation of the natural tectonic state in order to determine whether impoundment is the basic source, a mechanically unrelated companion feature, or a triggering stimulus of the observed seismicity. Several arguments indicate that the associated seismicity is usually a triggered effect. Among the elements of tectonic state considered here (existing fractures, accumulated elastic strain, and deformational style), deformational style is especially critical in forecasting the occurrence of impoundment-induced seismicity. The observational evidence indicates that seismicity associated with impounding generally occurs in areas that combine steeply dipping faults, relatively high strain rates, and either extensional or horizontal-shear strain. Simple physical arguments suggest: (1) that increased fluid pressures resulting from increased reservoir head should enhance the likelihood of seismic activity, whatever the tectonic environment; (2) that stress changes resulting from surface loading may increase the likelihood of crustal failure in areas of normal and transcurrent faulting, whereas they generally inhibit failure in areas of thrust faulting. Comparisons with other earthquake-producing artificial and natural processes (underground explosions, fluid injection, underground mining, fluid extraction, volcanic emissions) indicate that reservoir loading may similarly modify the natural tectonic state. Subsurface loading resulting from fluid extraction may be a particularly close analogue of reservoir loading; "seismotectonic" events associated with fluid extraction have been recognized in both seismically active and otherwise aseismic regions. Because the historic record of seismicity and surface faulting commonly is short in comparison with recurrence intervals of earthquake and fault-slip events, tectonic state is most reliably appraised through combined studies of historic seismicity and faulting, instrumentally measured strain, and the geological record, especially that of the Quaternary. Experience in California and elsewhere demonstrates that the character and activity of recognized faults can be assessed by means of: instrumental earthquake investigations, repeated geodetic measurements, written history, archeological studies, fault topography, and local stratigraphic relations. Where faults are less easily distinguished, appraisals of tectonic state may be based on both the regional seismicity and the regional history of vertical movement as shown by: repeated levelling and sea-level measurements, written history, archeologic investigations, terrace and shoreline deformation, and denudation and sedimentation studies. ?? 1980.

  12. Thermal Evolution of the Earth from a Plate Tectonics Point of View

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Le Yaouanq, S.; Husson, L.; Conrad, C. P.; Tisseau, C.

    2011-12-01

    Earth's thermal history is classically studied using scaling laws that link the surface heat loss to the temperature and viscosity of the convecting mantle. When such a parameterization is used in the global heat budget of the Earth to integrate the mantle temperature backwards in time, a runaway increase of temperature is obtained, leading to the so-called "thermal catastrophe". We propose a new approach that does not rely on convective scaling laws but instead considers the dynamics of plate tectonics, including temperature-dependent surface processes. We use a multi-agent system to simulate time-dependent plate tectonics in a 2D cylindrical geometry with evolutive plate boundaries. Plate velocities are computed using local force balance and explicit parameterizations for plate boundary processes such as trench migration, subduction initiation, continental breakup and plate suturing. The number of plates is not imposed but emerges naturally. At a given time step, heat flux is integrated from the seafloor age distribution and a global heat budget is used to compute the evolution of mantle temperature. This approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the system. For Earth-like parameters, an average cooling rate of 60-70K per billion years is obtained, which is consistent with petrological and rheological constraints. Two time scales arise in the evolution of the heat flux: a linear long-term decrease and high-amplitude short-term fluctuations due to tectonic rearrangements. We show that the viscosity of the mantle is not a key parameter in the thermal evolution of the system and that no thermal catastrophe occurs when considering tectonic processes. The cooling rate of the Earth depends mainly on its ability to replace old insulating seafloor by young thin oceanic lithosphere. Therefore, the main controlling factors are parameters such as the resistance of continental lithosphere to breakup or the critical age for subduction initiation. We infer that simple convective considerations alone cannot account for the complex nature of mantle heat loss and that tectonic processes dictate the thermal evolution of the Earth.

  13. Breaking Ground on the Moon and Mars: Reconstructing Lunar Tectonic Evolution and Martian Central Pit Crater Formation

    NASA Astrophysics Data System (ADS)

    Williams, Nathan Robert

    Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon's surface in unprecedented detail and show many previously unidentified tectonic landforms, forcing a re-assessment of our views of lunar tectonism. I mapped lobate scarps, wrinkle ridges, and graben across Mare Frigoris -- selected as a type area due to its excellent imaging conditions, abundance of tectonic landforms, and range of inferred structural controls. The distribution, morphology, and crosscutting relationships of these newly identified populations of tectonic landforms imply a more complex and longer-lasting history of deformation that continues to today. I also performed additional numerical modeling of lobate scarp structures that indicates the upper kilometer of the lunar surface has experienced 3.5-18.6 MPa of differential stress in the recent past, likely due to global compression from radial thermal contraction. Central pit craters on Mars are another instance of intriguing structures that probe subsurface physical properties. These kilometer-scale pits are nested in the centers of many impact craters on Mars as well as on icy satellites. They are inferred to form in the presence of a water-ice rich substrate; however, the process(es) responsible for their formation is still debated. Previous models invoke origins by either explosive excavation of potentially water-bearing crustal material, or by subsurface drainage of meltwater and/or collapse. I assessed radial trends in grain size around central pits using thermal inertias calculated from Thermal Emission Imaging System (THEMIS) thermal infrared images. Average grain size decreases with radial distance from pit rims -- consistent with pit-derived ejecta but not expected for collapse models. I present a melt-contact model that might enable a delayed explosion, in which a central uplift brings ice-bearing substrate into contact with impact melt to generate steam explosions and excavate central pits during the impact modification stage.

  14. Geomorphic and geologic evidence for slip along the San Bernardino strand of the San Andreas Fault System through the San Gorgonio Pass structural knot, southern California

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.

    2017-12-01

    The San Gorgonio Pass (SGP) region of southern California represents an extraordinarily complex section of the San Andreas Fault (SAF) zone, often referred to as a structural knot. Complexity is expressed both structurally and geomorphically, and arises because multiple strands of the SAF have evolved here in Quaternary time. Our integration of geologic and geomorphic analyses led to recognition of multiple fault-bounded blocks characterized by crystalline rocks that have similar physical properties. Hence, any morphometric differences in hypsometric analysis, slope, slope distribution, texture, and stream-power measurements and discontinuities reflect landscape response to tectonic processes rather than differences in lithology. We propose that the differing morphometry of the two blocks on either side of the San Bernardino strand (SBS) of the SAF, the high-standing Kitching Peak block to the east and the lower, more subdued Pisgah Peak block to the west, strongly suggests that the blocks experienced different uplift histories. This difference in uplift histories, in turn suggests that dextral slip occurred over a long time interval on the SBS—despite long-lived controversy raised by the fact that, at the surface, a throughgoing trace of the SBS is not present at this location. A different tectonic history between the two blocks is consistent with the gravity data which indicate that low-density rocks underthrusting the Kitching Peak block are absent below the Pisgah Peak block (Langenheim et al., 2015). Throughgoing slip on the SBS implied by geomorphic differences between the two blocks is also consistent with displaced geologic and geomorphic features. We find compelling evidence for discrete offsets of between 0.6 and 6 km of dextral slip on the SBS, including offset of fluvial and landslide deposits, and beheaded drainages. Although we lack numerical age control for the offset features, the degree of soil development associated with displaced landforms suggests that the SBS has had a longer geologic history than previously proposed, and that this fault strand may have experienced episodic activity. Landscape evolution and geologic evidence together require that dextral slip on the SAF must have continued through the SGP structural knot during an extended interval in the past.

  15. Drake Passage opening history: a synthesis of existing and new data from diverse proxies

    NASA Astrophysics Data System (ADS)

    Barbeau, D. L.; Scotia Project Team

    2011-12-01

    The tectonic opening of the Drake Passage marine gateway between the Antarctic Peninsula and southern South America enabled development of the Antarctic circumpolar current, which has been variably ascribed to establishment and/or expansion of Cenozoic ice caps on Antarctica. Despite the importance of this gateway, interpretations of its opening history vary greatly, and are widely debated. Using data collected using a variety of geologic, geochemical, geophysical, and paleobiologic techniques, I summarize existing and new constraints on the tectonic history of Drake Passage, and evaluate temporal and kinematic models for its opening. In particular, new data from sediment provenance and thermochronology of Drake Passage margins integrated with independent paleoclimate, eustasy and paleobiology studies suggest that this gateway may have begun opening at least as early as the Paleocene -- 15 Myr prior to the oldest previous estimates.

  16. Pre-rift sedimentation of the Lomonosov Ridge, Arctic Ocean at 84°N - A correlation to the complex geologic evolution of the conjugated Kara Sea

    NASA Astrophysics Data System (ADS)

    Sauermilch, Isabel; Weigelt, Estella; Jokat, Wilfried

    2018-07-01

    The Arctic Ocean region plays, and has played in the geological past, a key role for Earth's climate and oceanic circulation and their evolution. Studying the Lomonosov Ridge, a narrow submarine continental ridge in the central Arctic Ocean, is essential to answer fundamental questions related to the complex tectonic evolution of the Arctic basins, the glacial history, and the details of known paleoceanographic changes in the Cenozoic. In this study, we present a new seismic dataset that provides insights into the sedimentary structures along the ridge, their possible origin, age and formation. We compare the structure and stratigraphy of the deeper parts of the ridge between 83°N and 84°30‧N to its conjugate, the Severnaya Zemlya Archipelago at the Eurasia margin. We propose that some sediment sequences directly underlying the prominent HARS (High Amplitude Reflector Sequence) formed well before the ridge separated from the Barents and Kara shelves and represent a prolongation of the North Kara Terrane, most likely part of the Neoproterozoic Timanide orogen. Towards Siberia along the Lomonosov Ridge, we interpret the HARS to be underlain by Upper Proterozoic-Lower Paleozoic metasedimentary material that is correlated to metamorphic complexes exposed on Bol'shevik Island. Northward, this unit descends and gives way to a foreland sedimentary basin complex of presumed Ordovician/Devonian age, which underwent strong deformation during the Triassic/Jurassic Novaya Zemlya orogeny. The transition zone between these units might mark a conjugate continuation of the Eurasian margin's Bol'shevik-Thrust Zone. A prominent erosional unconformity is observed over these strongly deformed foreland basins of the Eurasian and Lomonosov Ridge margins, and is conceivably related to vertical tectonics during breakup or a later basin-wide erosional event.

  17. Venus tectonics - An overview of Magellan observations

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Smrekar, Suzanne E.; Bindschadler, Duane L.; Grimm, Robert E.; Kaula, William M.; Mcgill, George E.; Phillips, Roger J.; Saunders, R. S.; Schubert, Gerald; Squyres, Steven W.

    1992-01-01

    Magellan observations of the tectonic characteristics of highland regions on Venus are discussed with reference to competing theories for highland formation and evolution. Complex rigid terrain, or tessera, and the extent to which these elevated blocks of intensely deformed crust may be genetically related to highlands are then considered. Further, the tectonics of plains and lowland regions are examined, including deformation belts and coronae, and possible relations between such features and mantle dynamics. Implications of these observations for the global tectonics of Venus are discussed.

  18. Late Cretaceous-Paleocene strike-slip faults along the East Greenland margin (63°N to 75°N): constraints for the North East Atlantic opening

    NASA Astrophysics Data System (ADS)

    Guarnieri, P.

    2012-04-01

    The East Greenland margin is a long stretch starting from 60°N up to 81°N in a distance of almost 3000 km. It represents the conjugate of the European margin now separated by the North East Atlantic (NEA). After a long period of E-W extension and almost N-S oriented rift basins since Early Cretaceous, separation between Greenland and Europe began at 55 Ma following a NE-SW oriented line of breakup and the emplacement of the North Atlantic Igneous Province (NAIP). Post-breakup thermal subsidence followed in the Eocene, and the Oligocene initiated a period of plate re-organization together with the initial separation of Jan Mayen microcontinent, a complex tectonic history with inversion structures and uplifts along both the East Greenland and European margins. The effect of this history is represented by exhumed sedimentary basins, dyke swarms, fault systems, intrusive centers, shield volcanoes and plateau lavas constituting highest mountain of Greenland with some peaks up to 3700 m (e.g. Watkins Bjerge). During expeditions for fieldwork in East Greenland (2009 to 2011) to collect new geological and structural data related to the North East Atlantic tectonics, four areas were visited: Skjoldungen 63°N, Kangerlussuaq 68°N, Traill Ø 72°N and Wollaston Forland 75°N. More than 1000 measurement of fault-slip data for structural analysis along major faults were collected and helicopter flights to collect oblique pictures for 3D-photogeology and 3D-mapping were taken. Kinematic analysis of brittle deformation associated with Late Cretaceous-Paleocene rift shows strike-slip movements. Palaeo-stress tensors reconstructed from fault-slip data highlight a NE-SW maximum horizontal stress in a strike-slip tectonic setting along the entire East Greenland margin (Guarnieri 2011a; Guarnieri 2011b; Guarnieri et al. 2011). Structural data show clear evidence for oblique rifting that corresponds in time to the "volcanic rift" (61-55 Ma) with in some cases the magmatic segmentation of macro-dyke complexes or the activation of major shear zones with strike-slip movements. Oblique rifting and strike-slip deformation along the East Greenland margin reflect the progressive clockwise shift, from W-E to NW-SE, of the separation trend between Greenland and Europe probably in response to the opening of the Labrador Sea.

  19. Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies

    NASA Astrophysics Data System (ADS)

    Rangin, Claude

    2016-01-01

    Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.

  20. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  1. MEVTV study: Early tectonic evolution of Mars: Crustal dichotomy to Valles Marineris

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.; Schultz, Richard A.

    1990-01-01

    Several fundamental problems were addressed in the early impact, tectonic, and volcanic evolution of the martian lithosphere: (1) origin and evolution of the fundamental crustal dichotomy, including development of the highland/lowland transition zone; (2) growth and evolution of the Valles Marineris; and (3) nature and role of major resurfacing events in early martian history. The results in these areas are briefly summarized.

  2. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    NASA Astrophysics Data System (ADS)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed self-consistent Multi-Order Power-Law Approach (MOPLA) to multi-scale field observations, we constrain likely paleo-tectonic controls of orogenic structural evolution rather than predicting a unique, but likely incorrect deformation history.

  3. Geologic map of the Metis Mons quadrangle (V–6), Venus

    USGS Publications Warehouse

    Dohm, James M.; Tanaka, Kenneth L.; Skinner, James A.

    2011-01-01

    The Metis Mons quadrangle (V–6) in the northern hemisphere of Venus (lat 50° to 75° N., long 240° to 300° E.) includes a variety of coronae, large volcanoes, ridge and fracture (structure) belts, tesserae, impact craters, and other volcanic and structural features distributed within a plains setting, affording study of their detailed age relations and evolutionary development. Coronae in particular have magmatic, tectonic, and topographic signatures that indicate complex evolutionary histories. Previously, the geology of the map region has been described either in general or narrowly focused investigations. Based on Venera radar mapping, a 1:15,000,000-scale geologic map of part of the northern hemisphere of Venus included the V–6 map region and identified larger features such as tesserae, smooth and hummocky plains materials, ridge belts, coronae, volcanoes, and impact craters but proposed little relative-age information. Global-scale mapping from Magellan data identified similar features and also determined their mean global ages with crater counts. However, the density of craters on Venus is too low for meaningful relative-age determinations at local to regional scales. Several of the coronae in the map area have been described using Venera data (Stofan and Head, 1990), while Crumpler and others (1992) compiled detailed identification and description of volcanic and tectonic features from Magellan data. The main purpose of this map is to reconstruct the geologic history of the Metis Mons quadrangle at a level of detail commensurate with a scale of 1:5,000,000 using Magellan data. We interpret four partly overlapping stages of geologic activity, which collectively resulted in the formation of tesserae, coronae (oriented along structure belts), plains materials of varying ages, and four large volcanic constructs. Scattered impact craters, small shields and pancake-shaped domes, and isolated flows superpose the tectonically deformed materials and appear to be the most youthful materials in the map region.

  4. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  5. The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2)

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Ivanov, M. A.

    2010-01-01

    Today, and throughout its recorded history, Venus can be classified as a "one-plate planet." The observable geological record of the planet comprises only the last 1/4 or less of its overall geologic history. As shown by many authors, it started with intensive deformation in broad regions to form tessera [1-6] during the Fortunian period of history [7]. The period of tessera formation quickly changed to numerous zonal deformational belts of ridges and grooves that were followed by emplacement of vast volcanic plains (shield plains, regional plains) [7,8]. During the final epoch of the geologic history of Venus, large but isolated centers of volcanism formed extensive fields of lavas, with tectonics concentrated within fewer very prominent rift zones [8,9]. The observable changes in intensity and character of volcanism and tectonics suggest progressive changes from thin lithosphere early in the geologic history to thick lithosphere during later epochs [6,10]. We have little idea of the character of the first 3/4 of Venus' history. So, what does the earliest period of recorded history tell us about the transition from the Pre-Fortunian to the Fortunian period and what insight does this give us into this earlier period?

  6. [The development of Rein van Bemmelens (1904-1983) undation theory: forty years of Dutch geology].

    PubMed

    Barzilay, Willemjan

    2009-01-01

    The Dutch geologist Rein van Bemmelen was the greatest opponent of plate tectonics in The Netherlands. He lived and worked during an important period in the history of earth sciences. He had studied geology when Wegeners theory was introduced and enthusiastically received in the Netherlands and he worked as a geologists during the period in which, after Wegeners theory was rejected in The Netherlands, several Dutch geologists came with their own theories to explain the origin of continents and oceans and in which plate tectonics was introduced in The Netherlands. He had proposed his own theory, the undation theory, at the beginning of the 1930s and kept on developing it during the following years. He continued to do so until his death in 1983. The history of the undation theory thus sheds light on the history of geology in The Netherlands. I will trace the history of geology in The Netherlands using Rein van Bemmelen and his undation theory as a lens.

  7. Detrital zircons from the Tananao metamorphic complex of Taiwan: Implications for sediment provenance and Mesozoic tectonics

    NASA Astrophysics Data System (ADS)

    Yui, T. F.; Maki, K.; Lan, C. Y.; Hirata, T.; Chu, H. T.; Kon, Y.; Yokoyama, T. D.; Jahn, B. M.; Ernst, W. G.

    2012-05-01

    Taiwan formed during the Plio-Pleistocene collision of Eurasia with the outboard Luzon arc. Its pre-Tertiary basement, the Tananao metamorphic complex, consists of the western Tailuko belt and the eastern Yuli belt. These circum-Pacific belts have been correlated with the high-temperature/low-pressure (HT/LP) Ryoke belt and the high-pressure/low-temperature (HP/LT) Sanbagawa belt of Japan, respectively. To test this correlation and to reveal the architecture and plate-tectonic history of the Tananao metamorphic basement, detrital zircons were separated from 7 metasedimentary rock samples for U-Pb dating by LA-ICPMS techniques. Results of the present study, coupled with previous data, show that (1) the Tailuko belt consists of a Late Jurassic to earliest Cretaceous accretionary complex sutured against a Permian-Early Jurassic marble ± metabasaltic terrane, invaded in the north by scattered Late Cretaceous granitic plutons; the latter as well as minor Upper Cretaceous cover strata probably formed in a circum-Pacific forearc; (2) the Yuli belt is a mid- to Late Cretaceous accretionary complex containing HP thrust sheets that were emplaced attending the Late Cenozoic Eurasian plate-Luzon arc collision; (3) these two Late Mesozoic belts are not coeval, and in part were overprinted by low-grade metamorphism during the Plio-Pleistocene collision; (4) accreted clastic sediments of the Tailuko belt contain mainly Phanerozoic detrital zircons, indicating that terrigenous sediments were mainly sourced from western Cathaysia, whereas in contrast, clastic rocks of the Yuli accretionary complex contain a significant amount of Paleoproterozoic and distinctive Neoproterozoic zircons, probably derived from the North China craton and the Yangtze block ± eastern Cathaysia, as a result of continent uplift/exhumation after the Permo-Triassic South China-North China collision; and (5) the Late Jurassic-Late Cretaceous formation of the Tananao basement complex precludes the possibility that the early Yanshanian (Early Jurassic) granitoids in southern China represent a landward arc contemporaneous with the later, outboard Tananao accretionary event.

  8. Seismic observation of a sharp post-garnet phase transition within the Farallon crust: Evidence for oceanic plateau subduction

    NASA Astrophysics Data System (ADS)

    Maguire, R.; Ritsema, J.

    2017-12-01

    The tectonic evolution of North America over the past 150 million years was heavily influenced by the complex subduction history of the Farallon plate. In particular, Laramide mountain building may have been triggered by the initiation of flat slab subduction in the late Cretaceous. While it has been proposed that the cause of slab flattening is related to the subduction of an oceanic plateau[1], direct geophysical evidence of a subducted oceanic plateau is lacking. Here, using P-to-S receiver functions, we detect a sharp seismic discontinuity at 720-km depth beneath the southeastern United States and Gulf of Mexico. We interpret this discontinuity as a garnet-to-bridgmanite phase transition occurring within a thickened Farallon crust. Our results are consistent with a subducted oceanic plateau (likely the conjugate half of the Hess rise) which is foundering below the base of the mantle transition zone. Additionally, we find a strong 520-km discontinuity beneath the southeastern United States which may indicate a hydrous transition zone due to the release of H2O from the Farallon slab. These results provide insight into the dynamics of flat slab subduction as well as the tectonic history of North America. [1] Livaccari, R. F., Burke, K., & Şengör, A. M. C. (1981). Was the Laramide orogeny related to subduction of an oceanic plateau? Nature, v. 289, p. 276-278, doi: 10.1038/289276a0

  9. The Pleistocene rivers of the English Channel region

    NASA Astrophysics Data System (ADS)

    Antoine, Pierre; Coutard, Jean-Pierre; Gibbard, Philip; Hallegouet, Bernard; Lautridou, Jean-Pierre; Ozouf, Jean-Claude

    2003-02-01

    The Pleistocene history of river systems that enter the English Channel from northern France and southern England is reviewed. During periods of low sea-level (cold stages) these streams were tributaries of the Channel River. In southern England the largest, the River Solent, is an axial stream that has drained the Hampshire Basin from the Early Pleistocene or late Pliocene. Other streams of southern England may be of similar antiquity but their records are generally short and their sedimentary history have been destroyed, as in northern Brittany, by coastal erosion and valley deepening as a consequence of tectonic uplift. In northern France, the Seine and Somme rivers have very well developed terrace systems recording incision that began at around 1 Ma. The uplift rate, deduced from the study of these terrace systems, is of 55 to 60 m myr-1 since the end of the Early Pleistocene. Generally the facies and sedimentary structures indicate that the bulk of the deposits in these rivers accumulated in braided river environments under periglacial climates in all the area around the Channel. Evolution of the rivers reflects their responses to climatic change, local geological structure and long-term tectonic activity. In this context the Middle Somme valley is characterised by a regular pattern in which incision occurs at the beginning of each glacial period within a general background of uplift. Nevertheless the response of the different rivers to climatic variations, uplift and sea-level changes is complex and variable according to the different parts of the river courses.

  10. Evolution Process and Structural Analysis of Precambrian Jirisan Metamorphic and Sancheong Anorthosite Complexes in the Jirisan Province, Yeongnam Massif, Korea

    NASA Astrophysics Data System (ADS)

    Kang, J. H.; Lee, D. S.

    2016-12-01

    The Jirisan metamorphic complex consists mainly of schist, blastoporphyritic granite gneiss, granitic gneiss, leucocratic gneiss, biotite gneiss, banded gneiss, migmatitic gneiss and granite gneiss. The Paleoproterozoic (1.87 1.79 Ga) Sancheong anorthosite complex, which intrude it, is classified into massive-type and foliation-type Sancheong anorthosite, Fe-Ti ore body, and mafic granulite which were formed from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma. These complexes went at least through three times of ductile deformation during Early Proterozoic Late Paleozoic. The D1 deformation formed sheath or "A" type folds and its characteristic orientation was uncertain due to the intensive multi-deformation superimposed after that. The D2 deformation occurred under the EW- or WNW-directed tectonic compression, and formed a regional NS or NNE trend of isoclinal and intrafolial folds and an extensive ductile shear zone accompanied by mylonitization. The D3 deformation occurred under the NS- or NNW-directed tectonic compression environment, and formed an EW or ENE trend of open and tight folds and a partial semibrittle shear zone accompanied by mylonitization, and rearranged the NS-trend pre-D3 structural elements into (E)NE or (W)NW direction. The D2 deformation generally increases from the center toward the margin of Sancheong anorthosite complex but is more intensive in the eastern than western parts of Sancheong anorthosite complex. While the D3 deformation is inversely more intensive in the its western than eastern parts. The D2 and D3 deformations are closely related to the distribution features of Sancheong anorthosite complex. These three tectonic events are expected to give important information in understanding and reconstructing the tectonic movement after the formation of Columbia Supercontinent as well as the present NS-trend tectonic frame of the Jirisan province of the Yeongnam massif, the Korean Peninsula.

  11. Plate tectonics 2.5 billion years ago: evidence at kolar, South India.

    PubMed

    Krogstad, E J; Balakrishnan, S; Mukhopadhyay, D K; Rajamani, V; Hanson, G N

    1989-03-10

    The Archean Kolar Schist Belt, south India, is a suture zone where two gneiss terranes and at least two amphibolite terranes with distinct histories were accrted. Amphibolites from the eastern and western sides of the schist belt have distinct incompatible element and isotopic characteristics sugesting that their volcanic protoliths were derived from dint mantle sources. The amphibolite and gneiss terranes were juxtaposed by horizontal compression and shearing between 2530 and 2420 million years ago (Ma) along a zone marked by the Kolar Schist Belt. This history of accretion of discrete crustal terranes resembles those of Phanerozoic convergent margins and thus suggests that plate tectonics operated on Earth by 2500 Ma.

  12. Plate tectonics 2.5 billion years ago - Evidence at Kolar, south India

    NASA Technical Reports Server (NTRS)

    Krogstad, E. J.; Hanson, G. N.; Balakrishnan, S.; Rajamani, V.; Mukhopadhyay, D. K.

    1989-01-01

    The Archean Kolar Schist Belt, south India, is a suture zone where two gneiss terranes and at least two amphibolite terranes with distinct histories were accreted. Amphibolites from the eastern and western sides of the schist belt have distinct incompatible element and isotopic characteristics suggesting that their volcanic protoliths were derived from different mantle sources. The amphibolite and gneiss terranes were juxtaposed by horizontal compression and shearing between 2530 and 2420 million years ago (Ma) along a zone marked by the Kolar Schist Belt. This history of accretion of discrete crustal terranes resembles those of Phanerozoic convergent margins and thus suggests that plate tectonics operated on earth by 2500 Ma.

  13. The tectonics of Venus: An overview

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1992-01-01

    While the Pioneer Venus altimeter, Earth-based radar observatories, and the Venera 15-16 orbital imaging radars provided views of large-scale tectonic features on Venus at ever-increasing resolution, the radar images from Magellan constitute an improvement in resolution of at least an order of magnitude over the best previously available. A summary of early Magellan observations of tectonic features on Venus was published, but data available at that time were restricted to the first month of mapping and represented only about 15 percent of the surface of the planet. Magellan images and altimetry are now available for more than 95 percent of the Venus surface. Thus a more global perspective may be taken on the styles and distribution of lithospheric deformation on Venus and their implications for the tectonic history of the planet.

  14. An outline of tectonic, igneous, and metamorphic events in the Goshute-Toano Range between Silver Zone Pass and White Horse Pass, Elko County, Nevada; a history of superposed contractional and extensional deformation

    USGS Publications Warehouse

    Ketner, Keith Brindley; Day, Warren C.; Elrick, Maya; Vaag, Myra K.; Zimmerman, Robert A.; Snee, Lawrence W.; Saltus, Richard W.; Repetski, John E.; Wardlaw, Bruce R.; Taylor, Michael E.; Harris, Anita G.

    1998-01-01

    Seven kinds of fault-bounded tracts are described. One of the tracts provides a good example of Mesozoic contractional folding and faulting; six exemplify various aspects of Miocene extensional faulting. Massive landslide deposits resulting from Tertiary faulting are described. Mesozoic intrusive rocks and extensive exposures of Miocene volcanic rocks are described and dated. The age ranges of stratigraphic units were based on numerous conodont collections, and ages of igneous rocks were determined by argon/argon and fission-track methods. The geologic complexity of the Goshute-Toano Range provides opportunities for many additional productive structural studies.

  15. Long term landscape evolution within central Apennines (Italy): Marsica and Peligna region morphotectonics and surface processes

    NASA Astrophysics Data System (ADS)

    Miccadei, E.; Piacentini, T.; Berti, C.

    2010-12-01

    The relief features of the Apennines have been developed in a complex geomorphological and geological setting from Neogene to Quaternary. Growth of topography has been driven by active tectonics (thrust-related crustal shortening and high-angle normal faulting related to crustal extension), regional rock uplift, and surface processes, starting from Late Miocene(?) - Early Pliocene. At present a high-relief landscape is dominated by morphostructures including high-standing, resistant Mesozoic and early Tertiary carbonates ridges (i.e. thrust ridges, faulted homocline ridges) and intervening, erodible Tertiary siliciclastics valleys (i.e. fault line valleys) and Quaternary continental deposits filled basins (i.e. tectonic valleys, tectonic basins). This study tries to identify paleo-uplands that may be linked to paleo-base levels and aims at the reconstruction of ancient landscapes since the incipient phases of morphogenesis. It analyzes the role of tectonics and morphogenic processes in the long term temporal scale landscape evolution (i.e. Mio?-Pliocene to Quaternary). It is focused on the marsicano-peligna region, located along the main drainage divide between Adriatic side and Tyrrhenian side of Central Apennines, one of the highest average elevation area of the whole chain. The work incorporates GIS-based geomorphologic field mapping of morphostructures and Quaternary continental deposits, and plano-altimetric analysis and morphometry (DEM-, map-based) of the drainage network (i.e. patterns, hypsometry, knick points, Ks). Field mapping give clues on the definition of paleo-landscapes related to different paleo-morpho-climatic environments (i.e. karst, glacial, slope, fluvial). Geomorphological evidence of tectonics and their cross-cutting relationships with morphostructures, continental deposits and faults, provide clues on the deciphering of the reciprocal relationship of antecedence of the paleo-landscapes and on the timing of morphotectonics. Morphotectonic features are related to Neogene thrusts, reactivated or displaced by complex kinematic strike slip and followed by extensional tectonic features (present surface evidence given by fault line scarps, fault line valleys, fault scarps, fault slopes, wind gaps, etc.). Geomorphic evidence of faults is provided also by morphometry of the drainage network: highest long slope of the main streams (knick points and Ks) are located where the streams cut across or run along recent faults. Correlation of tectonic elements, paleosurfaces, Quaternary continental deposits, by means of morphotectonic cross sections, lead to the identification, in the marsicano-peligna region, of areas in which morphotectonics acted in the same period, becoming younger moving from the West to the East. In conclusion, recognition of different morphotectonic features, identification of different paleo-landscapes, and reconstruction of their migration history, contribute to define the main phases of syn and post orogenic, Apennine chain landscape evolution: it results from the link of alternating morphotectonics and surface processes, due to migrating fault activity, rock uplift processes and alternating karst, glacial, slope, fluvial processes.

  16. Tectono-stratigraphy and low-grade metamorphism of Late Permian and Early Jurassic accretionary complexes within the Kurosegawa belt, Southwest Japan: Implications for mechanisms of crustal displacement within active continental margin

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kurihara, Toshiyuki; Mori, Hiroshi

    2013-04-01

    We characterize the tectono-stratigraphic architecture and low-grade metamorphism of the accretionary complex preserved in the Kurosegawa belt of the Kitagawa district in eastern Shikoku, Southwest Japan, in order to understand its internal structure, tectono-metamorphic evolution, and assessments of displacement of continental fragments within the complex. We report the first ever documented occurrence of an Early Jurassic radiolarian assemblage within the accretionary complex of the Kurosegawa belt that has been previously classified as the Late Permian accretionary complex, thus providing a revised age interpretation for these rocks. The accretionary complex is subdivided into four distinct tectono-stratigraphic units: Late Permian mélange and phyllite units, and Early Jurassic mélange and sandstone units. The stratigraphy of these four units is structurally repeated due to an E-W striking, steeply dipping regional fault. We characterized low-grade metamorphism of the accretionary complex via illite crystallinity and Raman spectroscopy of carbonaceous material. The estimated pattern of low-grade metamorphism showed pronounced variability within the complex and revealed no discernible spatial trends. The primary thermal structure in these rocks was overprinted by later tectonic events. Based on geological and thermal structure, we conclude that continental fragments within the Kurosegawa belt were structurally translated into both the Late Permian and Early Jurassic accretionary complexes, which comprise a highly deformed zone affected by strike-slip tectonics during the Early Cretaceous. Different models have been proposed to explain the initial structural evolution of the Kurosegawa belt (i.e., micro-continent collision and klippe tectonic models). Even if we presuppose either model, the available geological evidence requires a new interpretation, whereby primary geological structures are overprinted and reconfigured by later tectonic events.

  17. Interdisciplinary approach to exploit the tectonic memory in the continental crust of collisional belts.

    NASA Astrophysics Data System (ADS)

    Gosso, G.; Marotta, A. M.; Rebay, G.; Regorda, A.; Roda, M.; Spalla, M. I.; Zanoni, D.; Zucali, M.

    2015-12-01

    Collisional belts result by thoroughly competing thermo-mechanical disaggregation and coupling within both continental and oceanic lithospheric slices, during construction of tectono-metamorphic architectures. In multiply reworked metamorphics, tectonic units may be contoured nowadays on the base of coherent thermo-baric and structural time-sequences rather than simply relying on lithologic affinities. Sequences of equilibrium assemblages and related fabric imprints are an approach that appears as a more reliable procedure, that enables to define tectonic units as the volume of crustal slices that underwent corresponding variations during the dynamics of an active margin and takes into account a history of physical imprints. The dimensions of these tectonic units may have varied over time and must be reconstructed combining the tracers of structural and metamorphic changes of basement rocks, since such kind of tectono-metamorphic units (TMUs) is a realistic configuration of the discrete portions of orogenic crust that experienced a coherent sequence of metamorphic and textural variations. Their translational trajectories, and bulk shape changes during deformation, cannot simply be derived from the analysis of the geometries and kinematics of tectonic units, but are to be obtained by adding the reconstruction of quantitative P-T-d-t paths making full use of fossil mineral equilibria. The joint TMU field-and-laboratory definition is an investigation procedure that bears a distinct thermo-tectonic connotation, that, through modelling, offers the opportunity to test the physical compatibilities of plate-scale interconnected variables, such as density, viscosity, and heat transfer, with respect to what current interpretative geologic histories may imply. Comparison between predictions from numerical modelling and natural data obtained by this analytical approach can help to solve ambiguities on geodynamic significance of structural and thermal signatures, also as a function of tectonic rate of simulated convergent or divergent kinematics. In addition the estimate of structurally and mineral-chemically re-equilibrated volumes assists the choice of physical parameters selected to constrain numerical models.

  18. Unraveling Appalachian tectonics: domain analysis of topographic lineaments in Pennsylvania

    NASA Astrophysics Data System (ADS)

    Karimi, B.; Schon, K.; Nussbaum, G. W.; Storer, N. D.; McGuire, J. L.; Hardcastle, K.

    2016-12-01

    Litho-tectonic provinces provide different components of a regions' tectonic history, and are identified as spatial entities with common structural elements, or a number of contiguous related elements. The province boundaries are easily identified when geomorphic expressions are distinct, or significant rock exposure allows for little uncertainty. When exposures are limited, locations of boundaries between provinces are uncertain. In such instances, satellite imagery can be quite advantageous, as tectonically sourced features (faults, folds, fractures, and joints) may exert a strong control on topographic patterns by creating pathways for weathering and erosion. Lineament analyses of topography often focus on well-pronounced tectonic features to interpret regional tectonics. We suggest that lineament analyses including all topographic features may include more subtle tectonic features, resulting in the identification of minor heterogeneities within litho-tectonic provinces. Our study focuses on Appalachian tectonics, specifically in Pennsylvania (PA), home to the Appalachian Orocline and 5 distinct tectonic provinces. Using hillshades from a digital elevation model (DEM) of PA, we manually pick all topographic lineaments 1 km or greater, discriminating only against man-made structures. The final lineament coverage of the state is subdivided into smaller areas for which rose diagrams were prepared. The dominant lineament trends were compared and associated with known structural features. Peaks with no known source are marked as possible tectonic features requiring further research. A domain analysis is performed on the lineament data to identify the extent and interplay of swarms, followed by an investigation of their azimuthal compatibility. We present the results of our domain analysis of all topographic lineaments in the context of identifying litho-tectonic provinces associated with Appalachian tectonics in Pennsylvania, and possible heterogeneities within them.

  19. Isotope provenance of Eastern Himalayan rivers draining to the south into India, Nepal and Bhutan.

    NASA Astrophysics Data System (ADS)

    Gemignani, Lorenzo; Wijbrans, Jan; Najman, Yani; van der Beek, Peter

    2015-04-01

    The two syntaxis of the Himalaya (Eastern and western) are exhuming anomalously fast compared to the rest of Himalaya , and various hypothesis and models have been proposed to explain this, including coupled tectonic-erosion model of (Tectonic Aneurism)1-2 and ductile extrusion of weak lower crust from beneath Tibet by 'channel flow' 3 . The Namche Barwa metamorphic massif constitutes the eastern syntaxis of the belt and has experienced a complex history of uplift and deformation both influenced by intense fluvial erosion associated with the Yarlung-Tzangpo. Therefore, the Himalayas represent a unique natural laboratory where the interactions between the tectonics, erosion, climate and drainage evolution can be investigated. The purpose of the work is to understand in collaboration with other PhD students and European researchers collaborating in the iTECC Marie Curie Initial training Network the importance of processes involving the complex links and feedbacks between climate, tectonics and erosion. In this multi-disciplinary and multi-technique study the mains goals will be to assess the timing of rapid exhumation, to determine provenance source area exhumation of the syntaxis in relation to the big river capture event that has implicates the Yarlung-Tsangpo by the Brahmaputra, and the effect of the dilution of the syntaxis signal 's downstream. During the work the 40Ar/39Ar dating of single-grain detrital micas technique will be used to analyze smaller and younger grains using newly developed high sensitivity multi-collection noble gas mass spectrometry. Detrital zircon fission-track is perform to provides robust cooling age time of the sources terrains. Input from eastern syntaxis has been identified in the Brahmaputra sedimentary record by the appearance of very young grains (from 10 Ma to 6 Ma)4. To compare and to increase the previously collected data, fifteen samples from the Yarlung-Brahmaputra River system and from tributaries draining the Himalaya, the Arakan belt and the Shillong plateau, have been collected in the Arunachal Pradesh and Assam regions of the North-east India. The sampling work, and subsequent 40Ar/39Ar dating of single-grain micas, are used to determine provenance source area exhumation to obtain an overview of the age and the tectonic processes that have driven the exhumation of the Himalayan syntaxes in the late Neogene exhumation history. At a later stage the focus will be on the Ganges drainage system to obtain a more detailed overview of the processes laid by the late stage of the exhumation of the Eastern Himalaya. In this scenario is it possible to assume a Neogene rapid exhumation of the eastern syntaxis or is simply the effect of dilution which prevents the young ages doing to high erosion rate affecting the Namche Barwa from the last millions of years. How is the distribution of the syntaxis signal's in the main Siang and Brahmaputra drainage system at different position upstream and downstream, and how this aspect is related with influence of the main Himalayan tributaries, are questions to investigate.

  20. Paleoclimatic and Tectonic History of the Eastern Desert, Egypt and Surroundings

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.

    1997-01-01

    This report covers work for the Planetary Geology and Geophysics Program, which has focused on three areas: analysis of the tectonics and paleoclimatic conditions in north eastern Africa, analysis of surficial geology and damage associated with the 1993 Missouri River floods and rates of lava flow degradation at Lunar Crater volcanic field in Nevada. Work has resulted in several dozen abstracts, several dissertations and a number of papers.

  1. Plate tectonics on the terrestrial planets

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; Vlaar, N. J.; van den Berg, A. P.

    2004-05-01

    Plate tectonics is largely controlled by the buoyancy distribution in oceanic lithosphere, which correlates well with the lithospheric age. Buoyancy also depends on compositional layering resulting from pressure release partial melting under mid-ocean ridges, and this process is sensitive to pressure and temperature conditions which vary strongly between the terrestrial planets and also during the secular cooling histories of the planets. In our modelling experiments we have applied a range of values for the gravitational acceleration (representing different terrestrial planets), potential temperatures (representing different times in the history of the planets), and surface temperatures in order to investigate under which conditions plate tectonics is a viable mechanism for the cooling of the terrestrial planets. In our models we include the effects of mantle temperature on the composition and density of melt products and the thickness of the lithosphere. Our results show that the onset time of negative buoyancy for oceanic lithosphere is reasonable (less than a few hundred million years) for potential temperatures below ˜ 1500 ° C for the Earth and ˜ 1450 ° C for Venus. In the reduced gravity field of Mars a much thicker stratification is produced and our model indicates that plate tectonics could only operate on reasonable time scales at a potential mantle temperature below about 1300-1400 °C.

  2. Mercury

    NASA Technical Reports Server (NTRS)

    Vilas, Faith (Editor); Chapman, Clark R. (Editor); Matthews, Mildred Shapley (Editor)

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury.

  3. Cryptic Diversity of African Tigerfish (Genus Hydrocynus) Reveals Palaeogeographic Signatures of Linked Neogene Geotectonic Events

    PubMed Central

    Goodier, Sarah A. M.; Cotterill, Fenton P. D.; O'Ryan, Colleen; Skelton, Paul H.; de Wit, Maarten J.

    2011-01-01

    The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic events modified Africa's Neogene drainage. Haplotypes shared amongst extant Hydrocynus populations across northern Africa testify to recent dispersals that were facilitated by late Neogene connections across the Nilo-Sahelian drainage. These events in tigerfish evolution concur broadly with available geological evidence and reveal prominent control by the African Rift System, evident in the formative events archived in phylogeographic records of tigerfish. PMID:22194910

  4. The grand tour of the Ruby-East Humboldt metamorphic core complex, northeastern Nevada: Part 1 - Introduction & road log

    USGS Publications Warehouse

    Snoke, A.W.; Howard, K.A.; McGrew, A.J.; Burton, B.R.; Barnes, C.G.; Peters, M.T.; Wright, J.E.

    1997-01-01

    The purpose of this geological excursion is to provide an overview of the multiphase developmental history of the Ruby Mountains and East Humboldt Range, northeastern Nevada. Although these mountain ranges are commonly cited as a classic example of a Cordilleran metamorphic core complex developed through large-magnitude, mid-Tertiary crustal extension, a preceding polyphase Mesozoic contractional history is also well preserved in the ranges. An early phase of this history involved Late Jurassic two-mica granitic magmatism, high-temperature but relatively low-pressure metamorphism, and polyphase deformation in the central Ruby Mountains. In the northern Ruby Mountains and East Humboldt Range, a Late Cretaceous history of crustal shortening, metamorphism, and magmatism is manifested by fold-nappes (involving Archean basement rocks in the northern East Humboldt Range), widespread migmatization, injection of monzogranitic and leucogranitic magmas, all coupled with sillimanite-grade metamorphism. Following Late Cretaceous contraction, a protracted extensional deformation partially overprinted these areas during the Cenozoic. This extensional history may have begun as early as the Late Cretaceous or as late as the mid-Eocene. Late Eocene and Oligocene magmatism occurred at various levels in the crust yielding mafic to felsic orthogneisses in the deep crust, a composite granitic pluton in the upper crust, and volcanic rocks at the surface. Movement along a west-rooted, extensional shear zone in the Oligocene and early Miocene led to core-complex exhumation. The shear zone produced mylonitic rocks about 1 km thick at deep crustal levels, and an overprint of brittle detachment faulting at shallower levels as unroofing proceeded. Megabreccias and other synextensional sedimentary deposits are locally preserved in a tilted, upper Eocene through Miocene stratigraphic sequence. Neogene magmatism included the emplacement of basalt dikes and eruption of rhyolitic rocks. Subsequent Basin and Range normal faulting, as young as Holocene, records continued tectonic extension.

  5. Genetic approach to reconstruct complex regional geological setting of the Baltic basin in 3D geological model

    NASA Astrophysics Data System (ADS)

    Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.

    2012-04-01

    Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer thickness was adjusted by taking into account amount of erosion by the presence of the regional unconformities. Borehole data and structural maps of some surfaces were used in creating geological model of the BB. Used approach allowed creating geologically sound geometric model. At first borehole logs were used to reconstruct initial thicknesses of different strata in every tectonic stage, where topography of each strata was obtained sequentially summing thickness to the initial reference surface from structural maps. Thereby each layer reflects the topography and amount of slip along the fault of the overlying layer. Overlying tectonic cycle sequence is implemented into the model structure by using unconformity surface as an initial reference surface. Applied techniques made possible reliably reconstructing and predicting in areas of sparse data layer surface geometry, its thickness distribution and evaluating displacements along the fault planes. Overall results indicate that the used approach has a good potential in development of regional geological models for the sedimentary basins and is valid for spatial interpretation of geological structures, subordinating this process to geological evolution prerequisites. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060.

  6. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling

    DTIC Science & Technology

    2010-09-01

    crustal structures. But short periods are difficult to measure, especially in tectonically and geologically complex areas. On the other hand, gravity...East Africa Rift System Knowledge of crustal and upper mantle structure is of importance for understanding East Africa’s geodynamic evolution and for...area with less lateral heterogeneity but great tectonic complexity. To increase the effectiveness of the technique in this region, we explore gravity

  7. Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: Geochronological and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Ling, Xiao-Xiao; Stern, Robert J.; Santos, Jose F.; Meinhold, Guido; Ghorbani, Ghasem; Shahabi, Shirin

    2015-01-01

    Carboniferous igneous rocks constitute volumetrically minor components of Iranian crust but preserve important information about the magmatic and tectonic history of SW Asia. Ghushchi granites and gabbronorites in NW Iran comprise a bimodal magmatic suite that intruded Ediacaran-Cambrian gneiss and are good representatives of carboniferous igneous activity. Precise SIMS U-Pb zircon ages indicate that the gabbronorites and granites were emplaced synchronously at ~ 320 Ma. Ghushchi granites show A-type magmatic affinities, with typical enrichments in alkalis, Ga, Zr, Nb and Y, depletion in Sr and P and fractionated REE patterns showing strong negative Eu anomalies. The gabbronorites are enriched in LREEs, Nb, Ta and other incompatible trace elements, and are similar in geochemistry to OIB-type rocks. Granites and gabbronorites have similar εNd(t) (+ 1.3 to + 3.4 and - 0.1 to + 4.4, respectively) and zircon εHf(t) (+ 1.7 to + 6.2 and + 0.94 to + 6.5, respectively). The similar variation in bulk rock εNd(t) and zircon εHf(t) values and radiometric ages for the granites and gabbronorites indicate a genetic relationship between mafic and felsic magmas, either a crystal fractionation or silicate liquid immiscibility process; further work is needed to resolve petrogenetic details. The compositional characteristics of the bimodal Ghushchi complex are most consistent with magmatic activity in an extensional tectonic environment. This extension may have occurred during rifting of Cadomian fragments away from northern Gondwana during early phases of Neotethys opening.

  8. Latest Proterozoic stratigraphy and Earth history.

    PubMed

    Knoll, A H; Walter, M R

    1992-04-23

    The end of the Proterozoic Eon was a time of pronounced biological, biogeochemical, climatic and tectonic change. New bio- and chemostratigraphic data provide an improved framework for stratigraphic correlation, making possible a deeper understanding of latest Proterozoic Earth history and providing tools for a chronostratigraphic division of late Proterozoic time.

  9. Seafloor spreading on the Amsterdam-St. Paul hotspot plateau

    NASA Astrophysics Data System (ADS)

    Conder, James A.; Scheirer, Daniel S.; Forsyth, Donald W.

    2000-04-01

    The Amsterdam-St. Paul (ASP) platform on the intermediate rate Southeast Indian Ridge (SEIR) is the only oceanic hotspot plateau outside the Atlantic Ocean containing an active, mid-ocean ridge spreading axis. Because the ASP hotspot is small and remotely located, it has been relatively unstudied, and the ridge axis location in many places near the ASP plateau was previously unknown or ambiguous. We mapped the SEIR out to 1 Ma crust (Jaramillo anomaly) both on and near the ASP platform. We located the spreading center to within a few kilometers, based on side-scan sonar reflectivity. Recent off-platform magnetic anomalies and lineated abyssal hill topography are consistent with a simple spreading history. Off-platform full spreading rates increase from ˜63 km/Myr on segment H to the north of the platform to ˜65.5 km/Myr on segment K to the south. In contrast, inversions of seafloor magnetization based on uniform and variable thickness magnetic source layers reflect a complex on-platform tectonic history with ridge jumps, off-axis volcanism, and propagating rifts. On one section of the ASP plateau the spreading location has stabilized and is beginning to rift the plateau apart, generating symmetric magnetic anomalies and lineated topography for the last several hundred thousand years. The larger, more stable, spreading segments of the ASP platform are aligned with major volcanic edifices, suggesting that along-axis magma flow away from plume-fed centers is an important influence on spreading geometry. Many complex tectonic features observed on the ASP plateau, such as ridge jumps, en echelon, oblique spreading centers, and transforms oblique to the spreading direction, are comparable to features observed on Iceland. The similarities suggest that moderate crustal thickening at an intermediate rate spreading center may have similar effects to pronounced thickening at a slow rate spreading center.

  10. Apatite Fission-Track Analysis of the Middle Jurassic Todos Santos Formation from Chiapas, Mexico.

    NASA Astrophysics Data System (ADS)

    Abdullin, Fanis; Solé, Jesús; Shchepetilnikova, Valentina; Solari, Luigi; Ortega-Obregón, Carlos

    2014-05-01

    The Sierra de Chiapas (SCH), located in the south of Mexico, is a complex geological province that can be divided on four different lithological or tectonic areas: (1) the Chiapas Massif Complex (CMC); (2) the Central Depression; (3) the Strike-slip Fault Province, and (4) the Chiapas Fold-and-thrust Belt. The CMC mostly consists of Permian granitoids and meta-granitoids, and represents the basement of the SCH. During the Jurassic period red beds and salt were deposited on this territory, related to the main pulse of rifting and opening of the Gulf of Mexico. Most of the Cretaceous stratigraphy contains limestones and dolomites deposited on a marine platform setting during the postrift stage of the Gulf of Mexico rift. During the Cenozoic Era took place the major clastic sedimentation along the SCH. According the published low-temperature geochronology data (Witt et al., 2012), SCH has three main phases of thermo-tectonic history: (1) slow exhumation between 35 and 25 Ma, that affected mainly the basement (CMC) and is probably related to the migration of the Chortís block; (2) fast exhumation during the Middle-Late Miocene caused by strike-slip deformation that affects almost all Chiapas territory; (3) period of rapid cooling from 6 to 5 Ma, that affects the Chiapas Fold-and-thrust Belt, coincident with the landward migration of the Caribbean-North America plate boundaries. The two last events were the most significant on the formation of the present-day topography of the SCH. However, the stratigraphy of the SCH shows traces of the existence of earlier tectonic events. This study presents preliminary results of apatite fission-track (AFT) dating of sandstones from the Todos Santos Formation (Middle Jurassic). The analyses are performed with in situ uranium determination using LA-ICP-MS (e.g., Hasebe et al., 2004). The AFT data indicate that this Formation has suffered high-grade diagenesis (probably over 150 ºC) and the obtained cooling ages, about 70-60 Ma, correspond to a Late Cretaceous event. This tectonic event is contemporaneous with a startup of the Laramide Orogeny occurred in North America. The constructed time-temperature paths show the rapid cooling during the Middle-Late Miocene (15-10 Ma), like other published data. References: Hasebe et al. (2004) Chemical Geology, 207, 135-145 Witt et al. (2012) Tectonics, 31, TC6001, doi:10.1029/2012TC003141

  11. Ancient connections among the European rivers and watersheds revealed from the evolutionary history of the genus Telestes (Actinopterygii; Cypriniformes).

    PubMed

    Buj, Ivana; Marčić, Zoran; Ćaleta, Marko; Šanda, Radek; Geiger, Matthias F; Freyhof, Jörg; Machordom, Annie; Vukić, Jasna

    2017-01-01

    In order to better understand the complex geologic history of the Mediterranean area, we have analysed evolutionary history, phylogeographic structure and molecular diversity of freshwater fishes belonging to the genus Telestes. As primary freshwater fishes distributed largely in the Mediterranean basin, this genus represents a suitable model system for investigating the historical biogeography of freshwater drainage systems in southern Europe. In this investigation we have included samples representing all Telestes species and based our analyses on one mitochondrial and one nuclear gene. We have investigated phylogenetic structure inside the genus Telestes, estimated divergence times, reconstructed ancestral distribution ranges and described intraspecific molecular diversity. Diversification of Telestes started in the Early Miocene, when the ancestors of T. souffia, lineage comprising T. croaticus and T. fontinalis, and the one comprising T. pleurobipunctatus and T. beoticus got isolated. The remaining species are genetically more closely related and form a common cluster in the recovered phylogenetic trees. Complex geological history of southern Europe, including formation of continental bridges, fragmentation of landmass, closing of the sea corridor, local tectonic activities, led to complicated biogeographical pattern of this genus, caused by multiple colonization events and passovers between ancient rivers and water basins. Especially pronounced diversity of Telestes found in the Adriatic watershed in Croatia and Bosnia and Herzegovina is a consequence of a triple colonization of this area by different lineages, which led to an existence of genetically distinct species in neighboring areas. Significant intraspecific structuring is present in T. souffia, T. muticellus, T. croaticus and T. pleurobipunctatus. Besides in well-structured species, elevated levels of genetic polymorphism were found inside T. turskyi and T. ukliva, as a consequence of their old origin and unconstrained evolutionary history.

  12. New geophysical constraints on the tectonic history of the Bering Sea

    NASA Astrophysics Data System (ADS)

    Barth, G. A.; Scheirer, D. S.; Christeson, G. L.; Scholl, D. W.; Stern, R. J.

    2012-12-01

    The Bering Sea, between the ancient Beringian subduction margin and the modern Aleutian arc, is partitioned by two major mature arc remnants (Bowers and Shirshov ridges) into three distinct deepwater basins (Aleutian, Bowers, and Komandorsky). The formation history of these ridges and basins has yet to be resolved (Stern et al., this session), although it is a key component to understanding the nature of the Aleutian system's tectonic and volcanic behavior today. New multichannel seismic (MCS) reflection and OBS refraction results from the Aleutian basin and updated regional compilations of potential field data provide crisp new views of the deepest basin sediment, basement character, crustal structure, and potential field patterns of the deepwater Bering Sea. This clarity allows us to delve into the possibilities of crustal extension, magmatism, oceanic versus backarc spreading, and subduction related bending and compression in the evolution of the Aleutian basin and its margins. We reconsider tectonic history hypotheses and focus on whether these basins formed as trapped North Pacific oceanic crust of Mesozoic age or as Paleogene backarc basins. This Bering Sea geophysical data acquisition and synthesis effort is being carried out on behalf of the interagency US Extended Continental Shelf project (continentalshelf.gov), under which 2200 km of 2D MCS data, gravity, magnetics, and over 500 km of 2D OBS refraction coverage were acquired by the USGS in 2011 (MGL1111). The new data ties to roughly 27,000 km of vintage short streamer seismic reflection coverage in the Aleutian basin region, and to the global database of marine potential field trackline data. OBS results are well-constrained, and show an oceanic crustal structure near the US-Russia international boundary line averaging 7 to 8 km thick and reminiscent of the product of a fast-spreading mid-ocean ridge system. Sediment thickness averages near 4 km. MCS profiles show ample evidence of fluid venting pathways and methane hydrate accumulation. Basement topography is extreme, with troughs and half-dome blocks bounded by scarps with 1-2 km offset. Basement reflection character includes regions of rough, blocky, and bright smooth appearances, some reminiscent of extensional basins. Updates to the regional magnetics compilation honor shipboard resolution, improve the latest published global compilation for the region, and show demonstrably north-south orientation of a lineated magnetic fabric as well as hints of spreading center propagation and complex geometries.

  13. Morphological Analysis of Apo Volcanic Complex in Southern Mindanao, Philippines: implications on volcano-tectonic evolution of different volcanic units

    NASA Astrophysics Data System (ADS)

    Herrero, T. M. L.; van Wyk de Vries, B.; Lagmay, A. M. A.; Eco, R. C.

    2015-12-01

    The Apo Volcanic Complex (AVC) is one of the largest volcanic centers in the Philippines, located in the southern island of Mindanao. It is composed of four edifices and several smaller cones. The youngest volcanic unit, the Apo Dome, is the highest elevation in the Philippines. This unit is classified as potentially active, whereas other units, Talomo, Sibulan and Kitubod, are inactive. The study gives insight to the construction and deformation history of the volcanic units and imparts foresight to subsequent events that can affect populated areas. A morphological analysis integrating high-resolution digital terrain models and public domain satellite data and images was done to recognize and discriminate volcanic units and characterize volcano-tectonic features and processes. Morphological domains were defined based on surface textures, slope variation, degrees and controls of erosion, and lineament density and direction. This establishes the relative ages and extent of volcanic units as well as the volcano-tectonic evolution of the complex. Six edifice building events were recognized, two of which form the elevated base of Apo dome. The geodynamic setting of the region is imprinted in the volcanic units as five morphostructural lineaments. They reveal the changes in maximum regional stress through time such as the N-S extension found across the whole volcanic complex displaying the current stress regime. This has implications on the locality and propagation of geothermal activity, magma ascent, and edifice collapses. One main result of the compounded effects of inherited structures and current stress regime is the Sandawa Collapse Zone. This is a large valley formed by several collapses where NE-SW fractures propagate and the increasing lateral spreading by debuttressing continue to eat away the highest peak. The AVC is surrounded by the major metropolitan area of Davao City to the east and the cities of Kidapawan and Digos to the west and south, respectively. In addition, within 3 km of Apo Dome is a geothermal power plant. With the obvious socio-economic significance of the area, it is imperative to understand these deformations that allow structures to propagate, resulting to instability of the edifice and possibly volcanic unrest, and ultimately for the assessment of hazards and risks to the immediate sectors.

  14. Anatomy of an ancient subduction interface at 40 km depth: Insights from P-T-t-d data, and geodynamic implications (Dent Blanche, Western Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian

    2014-05-01

    An exhumed metamorphic suture zone over 40 km long is exposed in the Dent Blanche Region of the Western Alps belt, along the Swiss-Italian border. In this region, the metasediment-bearing ophiolitic remnants of the Liguro-Piemontese ocean (Tsaté complex) are overthrusted by a continental, km-sized complex (Dent Blanche Tectonic System: DBTS) of Austro-Alpine affinity. The DBTS represents a strongly deformed composite terrane with independent tectonic slices of continental and oceanic origin. In order to better understand the nature and the geodynamic meaning of the shear zone at the base of the DBTS (Dent Blanche Thrust, DBT) we re-evaluated the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr deformation ages and field relationships. Our results show that the Tsaté complex is formed by a stack of km-thick calcschists-bearing tectonic slices, having experienced variable maximum burial temperatures of between 360°C and 490°C at depths of ca. 25-40 km, between 41 Ma and 37 Ma. The Arolla gneissic mylonites constituting the base of the DBTS experienced a continuous record of protracted high-pressure (12-14 kbar), top-to-NW D1 deformation at 450-500°C between 43 and 55 Ma. Some of these primary, peak metamorphic fabrics have been sheared (top-to-SE D2) and backfolded during exhumation and collisional overprint (20 km depth, 35-40 Ma) leading to the regional greenschist facies retrogression particularly prominent within Tsaté metasediments. The final juxtaposition of the DBTS with the Tsaté complex occurred between 350 and 500°C during this later, exhumation-related D2 event. Although some exhumation-related deformation partially reworked D1 primary features, we emphasize that the DBT can be viewed as a remnant of the Alpine early Eocene blueschist-facies subduction interface region. The DBT therefore constitutes the deeper equivalent of some shallower portions of the Alpine subduction interface exposed 200 km eastwards in eastern Switzerland (e.g. Bachmann et al., 2009). Our results shed light on deep (25-45 km) subduction zone structures and dynamics and are therefore of major interest for geophysical studies imaging the plate interface region in active subduction zones.

  15. Spatial and temporal variation of tectonic uplift in the southeastern Ethiopian Plateau from morphotectonic analysis

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Alemu, Tadesse; Gani, Nahid D.; Abdelsalam, Mohamed G.

    2018-05-01

    We use morphotectonic analysis to study the tectonic uplift history of the southeastern Ethiopian Plateau (SEEP). Based on studies conducted on the Northwestern Ethiopian Plateau, steady-state and pulsed tectonic uplift models were proposed to explain the growth of the plateau since 30 Ma. We test these two models for the largely unknown SEEP. We present the first quantitative morphotectonic study of the SEEP. First, in order to infer the spatial distribution of the tectonic uplift rates, we extract geomorphic proxies including normalized steepness index ksn, hypsometric integral HI, and chi integral χ from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM). Second, we compare these rates with the thickness of flood basalt that we estimated from geological maps. Third, to constrain the timing of regional tectonic uplift, we develop a knickpoint celerity model. Fourth, we compare our results to those from the Northwestern Ethiopian Plateau to suggest a possible mechanism to explain regional tectonic uplift of the entire Ethiopian Plateau. We find an increase in tectonic uplift rates from the southeastern escarpments of the Afar Depression in the northeast to that of the Main Ethiopian Rift to the southwest. We identify three regional tectonic uplift events at 11.7, 6.5, and 4.5 Ma recorded by the development of regionally distributed knickpoints. This is in good agreement with ages of tectonic uplift events reported from the Northwestern Ethiopian Plateau.

  16. A New View of the Stratigraphic History of Venus

    NASA Astrophysics Data System (ADS)

    Guest, John E.; Stofan, Ellen R.

    1999-05-01

    Studies of Venus using Magellan data have so far generated two views about the way Venus has evolved. On the one hand, Venus has been suggested to have had a history in which there was a series of epochs, each represented by a different volcanic or tectonic process on a global scale (Basilevsky and Head 1995; J. W. Headet al.1996,Lunar Planet Sci. 27th, 525-526; P. T. Basilevskyet al.1997, InVenus II, Univ. of Arizona Press, Tucson). This we define as a directional history. On the other hand, there is evidence to suggest that coronae, rifts, wrinkle ridges, small and large edifices, and large flow fields have each formed throughout the portion of Venus' history revealed by presently exposed rock units. We propose that the plains have been built up by lavas erupted in a number of different styles, each occurring throughout the history represented by the exposed stratigraphy of the planet. Dates derived from crater counts accumulated from the combined area of specific types of feature such as coronae (e.g., M. H. Priceet al.1996,J. Geophys. Res.101, 4657-4672) must be interpreted with care as the method is based upon the assumption that features of like morphology have the same age. Detailed studies from full resolution Magellan data indicate that Venus has had a complex history in which most geologic processes have operated in a nondirectional fashion to a greater or lesser extent throughout the planet's history.

  17. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record

    USGS Publications Warehouse

    Weems, R.E.; Lewis, W.C.

    2002-01-01

    Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.

  18. The Crustal Structure of the Central Anatolia (Turkey) Using Receiver Functions

    NASA Astrophysics Data System (ADS)

    Yelkenci, S.; Benoit, M.; Kuleli, H.; Gurbuz, C.

    2005-12-01

    Central Anatolia lies in a transitional region between the extensional tectonics of western Anatolia and the complex transpressional tectonics of Eastern Anatolia, and has a complicated thermal and structural history. Few studies of the crustal structure of Anatolia have been performed, however, studies of the crustal structure of Eastern Anatolia showed that crustal thicknesses were thinner than previously thought. To further investigate the crustal structure in Central Anatolia, we present results from receiver function analysis using new data from broad-band instruments. The stations were equipped with 7 broadband three-component STS-2 and 13 short period three-component S-13 sensors. These stations operated for period of one and half months between the October and November, 2002, and yielded data for ~ 40 high quality receiver functions. Additionally, receiver functions were also computed using data from permanent stations MALT, ISP, and ANTO. We applied the hk-stacking technique of Zhu and Kanamori (2000) to receiver functions to obtain the crustal thickness and Vp/Vs ratios. Furthermore, we applied a waveform modeling technique to investigate mid-crustal discontinuties previously imaged in the region. Our results compare well with refraction-based crustal thicknesses in overlapped areas.

  19. Cenozoic topographic and climatic response to changing tectonic boundary conditions in Western North America

    NASA Astrophysics Data System (ADS)

    Kent-Corson, Malinda L.; Sherman, Laura S.; Mulch, Andreas; Chamberlain, C. Page

    2006-12-01

    This study presents an oxygen isotopic record from the Paleocene to the Pliocene based on the analysis of predominantly paleosol carbonate from intermontane basins in southwestern Montana and eastern Idaho. δ18O values of calcite decrease by 7 to 10‰ between ˜ 50 and 47 Ma in southwestern Montana and Idaho most likely as a result of an increase in elevation of 2.5 to 3.5 km. This rise in elevation is roughly contemporaneous with the emplacement of the nearby Challis Volcanics, and the formation of metamorphic core complexes in the hinterland of the Sevier thrust belt. Moreover, when compared to previous oxygen isotopic studies that show oxygen isotopic shifts of similar magnitude occurring later (in the late Eocene to early Oligocene in northeastern Nevada, and late Oligocene to Miocene in southern Nevada), the results of this study add to a growing body of evidence for a spatial and temporal migration of high surface elevations from north to south in the Great Basin of western United States. This surface uplift history supports tectonic models calling for north to south removal of the Farallon slab or delamination of the mantle lithosphere.

  20. True polar wander on Europa from global-scale small-circle depressions.

    PubMed

    Schenk, Paul; Matsuyama, Isamu; Nimmo, Francis

    2008-05-15

    The tectonic patterns and stress history of Europa are exceedingly complex and many large-scale features remain unexplained. True polar wander, involving reorientation of Europa's floating outer ice shell about the tidal axis with Jupiter, has been proposed as a possible explanation for some of the features. This mechanism is possible if the icy shell is latitudinally variable in thickness and decoupled from the rocky interior. It would impose high stress levels on the shell, leading to predictable fracture patterns. No satisfactory match to global-scale features has hitherto been found for polar wander stress patterns. Here we describe broad arcuate troughs and depressions on Europa that do not fit other proposed stress mechanisms in their current position. Using imaging from three spacecraft, we have mapped two global-scale organized concentric antipodal sets of arcuate troughs up to hundreds of kilometres long and 300 m to approximately 1.5 km deep. An excellent match to these features is found with stresses caused by an episode of approximately 80 degrees true polar wander. These depressions also appear to be geographically related to other large-scale bright and dark lineaments, suggesting that many of Europa's tectonic patterns may also be related to true polar wander.

  1. Theories of the Earth and the Nature of Science.

    ERIC Educational Resources Information Center

    Williams, James

    1991-01-01

    Describes the history of the science of geology. The author expounds upon the discovery of deep time and plate tectonics, explaining how the theory of deep time influenced the development of Darwin and Wallace's theory of evolution. Describes how the history of earth science helps students understand the nature of science. (PR)

  2. Constraints for timing of extensional tectonics in the western margin of the Red Sea in Eritrea

    NASA Astrophysics Data System (ADS)

    Ghebreab, Woldai; Carter, Andrew; Hurford, Anthony J.; Talbot, Christopher J.

    2002-06-01

    Recent work on asthenosphere-lithosphere coupling reinforces past observations that active and passive rifting models do not adequately describe real rifts. There remains insufficient knowledge of fundamental controls on rift architecture. In the actively extending Red Sea margin of eastern Eritrea, which lies at the Red Sea/Danakil-Gulf of Aden and the East African rift triple junction zone, the geometry and kinematics of extension are complex and poorly defined due to large data gaps. Extension and sea-floor spreading in both the Red Sea and Gulf of Aden have influenced the Neogene tectonic development of Eritrea but many of the structures have Pan-African origins and do not follow normal plate opening geometries. To constrain the rifting history in eastern Eritrea, apatite fission-track thermochronologic data were measured for 22 Pan-African rock samples. Results identify late Oligocene-early Miocene cooling coincident with extension and erosion along the conjugate margin in Yemen. A younger age group, confined to Mt Ghedem, relates to an episode of fault reactivation and dyke injection that began ˜10 Ma coincident with rotation of the nearby Danakil block. Initially this was driven by onset of sea-floor spreading in the Gulf of Aden and later, in the Pliocene, aided by northward rifting in the Afar depression concomitant with spreading in the Red Sea. These different processes highlight the complex linkage between different extensional events and rift architecture.

  3. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard

    2006-05-26

    The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.« less

  4. Tectonic summaries of magnitude 7 and greater earthquakes from 2000 to 2015

    USGS Publications Warehouse

    Hayes, Gavin P.; Meyers, Emma K.; Dewey, James W.; Briggs, Richard W.; Earle, Paul S.; Benz, Harley M.; Smoczyk, Gregory M.; Flamme, Hanna E.; Barnhart, William D.; Gold, Ryan D.; Furlong, Kevin P.

    2017-01-11

    This paper describes the tectonic summaries for all magnitude 7 and larger earthquakes in the period 2000–2015, as produced by the U.S. Geological Survey National Earthquake Information Center during their routine response operations to global earthquakes. The goal of such summaries is to provide important event-specific information to the public rapidly and concisely, such that recent earthquakes can be understood within a global and regional seismotectonic framework. We compile these summaries here to provide a long-term archive for this information, and so that the variability in tectonic setting and earthquake history from region to region, and sometimes within a given region, can be more clearly understood.

  5. Use of SPOT and ERS-1 SAR data to study the tectonic and climatic history of arid regions

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Peltzer, Gilles F.

    1993-01-01

    In order to separate the effects of the different tectonic and climatic processes on the shapes of desert piedmonts, a modified conic equation was fitted to digital topographic data for individual alluvial fans in Death Valley (California, U.S.). The topographic data were obtained from a SPOT panchromatic stereo pair and from the airborne interferometric SAR (Synthetic Aperture Radar) (TOPSAR). The conic fit allows parameters for the epex position, slope, and radial curvature to be compared with unit age, uplift rate, and climatic conditions. Preliminary results indicate that slope flattens with age and radial curvature is concave up, but decreases with age. Work is continuing on correlation of fit residuals and apex position with fan unit age. This information will help in the determination of tectonic uplift rates and the climatic history of the western U.S. ERS-1 SAR images were used to study an area of western China where a large strike slip fault crosses a series of alluvial fans and stream valleys. Previous analysis of SPOT panchromatic images of the area shows that offsets fans and streams can be recognized. Measurement of the rate of motion of this fault will help in the overall model of deformation of the Asian tectonic plate in response to the collision of the Indian plate.

  6. Petrology, thermobarometry and geochronology of Yelapa Complex: Implications in the tectonic history of the basement of Puerto Vallarta Batholith, Mexico

    NASA Astrophysics Data System (ADS)

    Gutiérrez Aguilar, F.; Schaaf, P. E. G.; Hernandez-Trevino, T.; Solis-Pichardo, G.; Vite-Sánchez, O.

    2017-12-01

    The Yelapa Complex (YC) is localizated in the north, central and western of Cabo Corrientes in Jalisco, México. Is constituted by metasedimentary, metaigneous and migmatites which are intruded by deformed plutons. The YC are part of the Puerto Vallarta Batholith a body of 9000 km2 exposed at the mid-western part of the Mexican Pacific margin. The para-gneis of YC in the region of Chimo, present a mineral assemblage of Sil + Bt + Pl ± Grt ± Fsp ± Ilm. The orto-gneis in the región of Cabo Corrientes are constituted by Pl + Amp ± Qz ± Ap ± Zrn. Phase equilibria modelling of two paragneis yield peak conditions of 7-8 kbar and 650-700ºC. The patterns of REE of the studied rocks suggest: 1) Enrichment of LREE and flat patterns in HREE with respect to chondrite and; 2) Negative Eu anomaly in all samples analyzed suggesting plagioclase fractionation. On the other hand, the study of individual zircons using LA-ICP-MS from 3 para-gneis and 1 orto-gneis yield following information: 1) A máximum depositional age of 223 Ma, which also show abundant zircón populations with ages between 241-273 Ma for para-gneis and 2) The protolith age crystallization of 127 Ma for orto-gneis. The results along with new Sr-Nd isotopic data from whole rock and Rb-Sr in micas, suggest a tectonic evolution for the Yelapa Complex as a transition from a passive continental margin regime ( 223-273 Ma) to a continental arc setting ( 127). Thus, regional metamorphism and multiple magmatic episodes were associated to the convergence of the Farallon and North America plates during the Middle Jurassic to the Late Cretaceous.

  7. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  8. Coastal tectonics on the eastern margin of the Pacific Rim: Late Quaternary sea-level history and uplift rates, Channel Islands National Park, California, USA

    USGS Publications Warehouse

    Muhs, Daniel R.; Simmons, Kathleen R.; Schumann, R. Randall; Groves, Lindsey T.; DeVogel, Stephen B.; Minor, Scott A.; Laurel, Deanna

    2014-01-01

    The Pacific Rim is a region where tectonic processes play a significant role in coastal landscape evolution. Coastal California, on the eastern margin of the Pacific Rm, is very active tectonically and geomorphic expressions of this include uplifted marine terraces. There have been, however, conflicting estimates of the rate of late Quaternary uplift of marine terraces in coastal California, particularly for the orthern Channel Islands. In the present study, the terraces on San Miguel Island and Santa Rosa Island were mapped and new age estimates were generated using uranium-series dating of fossil corals and amino acid geochronology of fossil mollusks. Results indicate that the 2nd terrace on both islands is ~120 ka and the 1st terrace on Santa Rosa Island is ~80 ka. These ages correspond to two global high-sea stands of the Last Interglacial complex, marine isotope stages (MIS) 5.5 and 51, respectively. The age estimates indicate that San Miguel Island and Santa Rosa Island have been tectonically uplifted at rates of 0.12e0.20 m/ka in the late Quaternary, similar to uplift rates inferred from previous studies on neighboring San Cruz Island. The newly estimated uplift rates for the northern Channel Islands are, however, an order of magnitude lower than a recent study that generated uplift rates from an offshore terrace dating to the Last Glacial period. The differences between the estimated uplift rates in the present study and the offshore study are explained by the magnitude of glacial isostatic adjustment (GIA) effects that were not known at the time of the earlier study. Set in the larger context of northeastern Pacific Rim tectonics, Channel Islands uplift rates are higher than those coastal localities on the margin of the East Pacific Rise spreading center, but slightly lower than those of most localities adjacent to the Cascadia subduction zone. The uplift rates reported here for the northern Channel Islands are similar to those reported for most other localities where strike-slip tectonics are dominant, but lower than localities where restraining bends (such as the Big Bend of the San Andreas Fault) result in crustal shortening.

  9. Geology Field Camp at Southern Illinois University: Six weeks exploring four tectonic regimes

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Conder, J. A.; Ferre, E. C.; Heij, G.

    2013-12-01

    Field Geology is typically the capstone course for an undergraduate Bachelor of Science degree in Geology. This type of course brings together the varied sub-disciplines and course topics students encounter in their undergraduate experience, and puts these in context of active Earth processes. At the same time, a significant fraction of Geology departments have dropped field geology from their offerings and students must choose from those programs still offering the course. Southern Illinois University has offered field geology for over 40 years, stationed in and around southwestern Montana. This field camp offers experiences with four distinct tectonic settings: thick-skin contractional, thin-skin contractional, extensional, and anorogenic. The most challenging projects of the course involve mapping and interpreting Laramide and Sevier compressionally deformed areas. The major difference between the two types of deformation is that Laramide ('thick-skinned') tectonics encompasses the mid-crust in deformation while Sevier ('thin-skinned') deformation is limited to the uppermost portion of the crust. This difference results in markedly different fold styles and other deformational structures encountered, requiring different approaches to understanding and constructing the deformational histories of the regions. Extensional tectonics are explored with a paleoseismology project at Hebgen Lake, in Grand Teton National Park where the students typically spend two days, and at the Bitterroot Shear Zone - the edge of a metamorphic core complex along the eastern boundary of the Idaho batholith. While recent work from EarthScope and elsewhere casts doubt on Yellowstone as a mantle plume, Yellowstone remains the classic example of a continental hotspot. During visits through the park, students distinguish between the recent volcanics and hydrothermal activity of Yellowstone and the nearby Eocene Absaroka volcanics. Expanding on the story of the Yellowstone hotspot, a visit is made to Craters of the Moon National Monument in the Snake River Plain to examine some of the youngest volcanics in North America. Not only does field camp give students an occasion to put their knowledge-base developed during their undergraduate years into action, but it is also an ideal opportunity to expose students to the varied approaches applicable to distinct tectonic problems and situations. At SIU, we are proud to offer a wide range of experiences drawing from several important tectonic provinces giving students a strong foundation for their future geological careers and continuing scientific development.

  10. Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan

    NASA Technical Reports Server (NTRS)

    Skiner, J. A., Jr.; Rogers, A. D.; Seelos, K. D.

    2009-01-01

    The highland-lowland boundary (HLB) of Mars is interpreted to be a complex tectonic and erosional transition that may hold evidence for past geologic processes and environments. The HLB-abutting margin of the Libya Montes and the interbasin plains of northern Tyrrhena Terra display an exceptional view of the earliest to middle history of Mars that has yet to be fully characterized. This region contains some of the oldest exposed materials on the Martian surface as well as aqueous mineral signatures that may be potential chemical artifacts of early highland formational processes. However, a full understanding of the regions geologic and stratigraphic evolution is remarkably lacking. Some outstanding questions regarding the geologic evolution of Libya Montes and northern Tyrrhena Terra in-clude: Does combining geomorphology and composition advance our understanding of the region s evolution? Can highland materials be subdivided into stratigraphically discrete rock and sediment sequences? What do major physiographic transitions imply about the balanced tectonism, climate change, and erosion? Where is the erosional origin and what is the post-depositional history of channel and plains units? When and in what types of environments did aqueous mineral signatures arise? This abstract introduces the geologic setting, science rationale, and first year work plan of a recently-funded 4-year geologic mapping proposal (project year = calendar year). The objective is to delineate the geologic evolution of Libya Montes and northern Tyrrhena Terra at 1:1M scale using both classical geomorphological and compositional mapping techniques. The funded quadrangles are MTMs 00282, -05282, -10282, 00277, -05277, and -10277.

  11. Tectonic, volcanic, and climatic geomorphology study of the Sierras Pampeanas Andes, northwestern Argentina

    NASA Technical Reports Server (NTRS)

    Bloom, A. L.; Strecker, M. R.; Fielding, E. J.

    1984-01-01

    A proposed analysis of Shuttle Imaging Radar-B (SIR-B) data extends current research in the Sierras Pampeanas and the Puna of northwestern Argentina to the determination - by the digital analysis of mountain-front sinuousity - of the relative age and amount of fault movement along mountain fronts of the late-Cenozoic Sierras Pampeanas basement blocks; the determination of the age and history of the boundary across the Andes at about 27 S latitude between continuing volcanism to the north and inactive volcanism to the south; and the determination of the age and extent of Pleistocene glaciation in the High Sierras, as well as the comparative importance of climatic change and tectonic movements in shaping the landscape. The integration of these studies into other ongoing geology projects contributes to the understanding of landform development in this active tectonic environment and helps distinguish between climatic and tectonic effects on landforms.

  12. Uplift rates of the marine terraces in the south coast of Japan deduced from in situ cosmogenic 10Be and 26Al

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Nagano, G.; Nakamura, A.; Maemoku, H.; Miyairi, Y.; Matsuzaki, H.

    2015-12-01

    Marine terraces are low-relief platforms located along coastal areas. They are formed by waves action with the changes in the relative sea level (RSL) that is affected by combined effects of the eustatic sea level (ESL) and the tectonic movements (e.g. uplift, subsidence and isostatic effect). Therefore, determining the ages and the elevations of the marine terraces allows us to reconstruct the ESL and/or the tectonic history of the study area. The Kii Peninsula and the southern coast of the Shikoku Island are located along the Nankai Trough where the Philippine Sea Plate is subducting under the Eurasian plate. There exist relatively well-preserved marine terraces along the coastal line with the elevation of ca. 50 -100 m. Because of this unique tectonic setting, the terraces are regarded as the suitable counterparts to reconstruct uplift history of the south coast of Japan. However, the ages of these terraces are poorly understood due to the lack of the ash layers that is suitable for the tephrochronology. In this study, we determine the age of the marine terraces using terrestrial in-situ cosmogenic radionuclides (TCN), 10Be and 26Al. This is the first age estimation of the marine terraces in Japan using TCN, allowing us to determine the uplift rates and the seismic history of the region.

  13. The imprint of Late Holocene tectonic reactivation on a megafan landscape in the northern Amazonian wetlands

    NASA Astrophysics Data System (ADS)

    Rossetti, D. F.; Valeriano, M. M.; Gribel, R.; Cohen, M. C. L.; Tatumi, S. H.; Yee, M.

    2017-10-01

    The modern Amazonian ecosystem outcomes from the complex interplay of different factors performed over the geological history, with tectonics being long speculated as perhaps a fundamental one. Nevertheless, areas where tectonic activity can be fully characterized are still scarce in view of the large dimension of this region. In this work, we investigate the signature of neotectonics in one megafan paleolandform that typifies a large sector of the Negro-Branco basin in northern Amazonia. The approach joined regional morphostructural descriptions of the Viruá megafan surface and the acquisition of topographic, sedimentological, and chronological data focusing on the central sector of the megafan. The results revealed an abundance of rivers that form dendritic, subdendritic, and trellis patterns. These rivers also have numerous straight segments, orthogonal junctions, and orthogonal shifts in courses. Structural lineaments, defined by straight channels and also straight lake margins, are aligned along the NW-SE and NE-SW directions that are coincidental with the main regional structural pattern in Amazonia. This study also led to recognize two large areas of lower topography in the south-central part of the megafan that consist of rectangular depressions parallel to the morphostructural lineaments. A sedimentological survey indicated that cores extracted external to the largest depression have only distributary channel and overbank sand sheet megafan deposits. Optically stimulated luminescence (OSL) ages ranged from 17.5 ± 2.0 to 46.9 ± 3.4 ky and radiocarbon ages ranged from 5.9-5.7 to 20.1-19.6 cal ky BP. In contrast, cores extracted within the depression consisted of fluvial deposits younger than 2.1-1.9 cal ky BP that increased in thickness toward the central part of the depression. We propose that the studied megafan was affected by tectonic reactivation until at least a couple thousand years ago. Tectonics would have produced subsiding areas more prone to flooding than adjacent terrains, which constituted sites for renewed deposition of fluvial sediments reworked from the megafan surface following its abandonment. A comparison of our data with those from other Amazonian areas with similar records of late Holocene tectonics suggests a landscape imprinted by faulting, probably of strike-slip motion. This finding increases the record of neotectonic activity in the Amazonian wetlands and may be useful in studies aiming at discussing the origin and extension of late Holocene deformation in the South American intraplate. In addition, we present a megafan with an unusual development in a cratonic region under the combined effect of climate and tectonics.

  14. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or associated with a continental terrane.This two volcano-sedimentary domains were finally juxtaposed due to the collision with an allochthonous oceanic arc that collide with the Continental margin in the Late Cretaceous marking the initiation of the Andean Orogeny.

  15. Drifting--Continents on the Move.

    ERIC Educational Resources Information Center

    Glenn, William H.

    1983-01-01

    Plate tectonics is the current framework for understanding earth history and processes. Recent progress in this field is discussed, focusing on continental growth, mountain building, hot spots, and mineral depositions. (JN)

  16. Combined structural analysis and dating of authigenic/synkinematic illite: A step towards unravelling brittle faulting processes in time and space

    NASA Astrophysics Data System (ADS)

    Viola, Giulio

    2017-04-01

    Faulting accommodates momentous deformation and its style reflects the complex interplay of often transient processes such as friction, fluid flow and rheological changes within generally dilatant systems. Brittle faults are thus unique archives of the stress state and the physical and chemical conditions at the time of both initial strain localization and subsequent slip(s) during structural reactivation. Opening those archives, however, may be challenging due to the commonly convoluted (if not even chaotic) nature of brittle fault architectures and fault rocks. This is because, once formed, faults are extremely sensitive to variations in stress field and environmental conditions and are prone to readily slip in a variety of conditions, also in regions affected by only weak, far-field stresses. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for any study aiming at reconstructing the complex framework of brittle deformation. However, considering that present-day exposures of faults only represent the end result of the faults' often protracted and heterogeneous histories, the obtained structural and mechanical results have to be integrated over the life span of the studied fault system. Dating of synkinematic illite/muscovite to constrain the time-integrated evolution of faults is therefore the natural addition to detailed structural studies. By means of selected examples it will be demonstrated how careful structural analysis integrated with illite characterization and K-Ar dating allows the high-resolution reconstruction of brittle deformation histories and, in turn, multiple constraints to be placed on strain localization, deformation mechanisms, fluid flow, mineral alteration and authigenesis within actively deforming brittle fault rocks. Complex and long brittle histories can thus be reconstructed and untangled in any tectonic setting.

  17. The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.; O'Neill, C.

    2015-06-01

    We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.

  18. Techniques, problems and uses of mega-geomorphological mapping

    NASA Technical Reports Server (NTRS)

    Embleton, C.

    1985-01-01

    A plea for a program of global geomorphological mapping based on remote sensing data is presented. It is argued that the program is a necessary step in bringing together the rapidly evolving concepts of plate tectonics with the science of geomorphology. Geomorphologists are urged to bring temporal scales into their subject and to abandon their recent isolation from tectonics and geological history. It is suggested that a start be made with a new geomorphological map of Europe, utilizing the latest space technology.

  19. Evolving Continents

    NASA Astrophysics Data System (ADS)

    Hamilton, Warren

    Brian Windley succeeds very well indeed at the formidable task he sets for himself in this greatly revised second edition of a book that first appeared in 1977. He synthesizes primarily the tectonic and petrologic evolution of the continents and secondarily their economic geologic, stratigraphic, and biologic history. The book is organized in well-balanced time sequence and topical chapters, followed by a fine overview. The author describes examples, generalizes from them, and seeks understanding of variations with time and with depth of the process acting on continents within a plate tectonic framework.

  20. Volcanism/tectonics working group summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovach, L.A.

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of the impacts of earthquakes, fault rupture, and volcanic eruption on the underground repository disposal of high-level radioactive wastes. The tectonics and seismic history of the Yucca Mountain site in Nevada is discussed and geologic analogs to that site are described.

  1. Uplifted ophiolitic rocks on Isla Gordon, southernmost Chile: implications for the closure history of the Rocas Verdes marginal basin and the tectonic evolution of the Beagle Channel region

    NASA Astrophysics Data System (ADS)

    Cunningham, W. D.

    1994-04-01

    A succession of mafic rocks that includes gabbro, sheeted dikes and deformed pillow basalts has been mapped in detail on Isla Gordon, southernmost Chile and is identified as an upper ophiolitic complex representing the uplifted floor of the Late Jurassic-Early Cretaceous Rocas Verdes marginal basin. The complex was uplifted, deformed, and regionally metamorphosed prior to the intrusion of an undeformed 90 Ma granodiorite that cuts the complex. The complex appears para-autochthonous, is gently tilted to the northeast and is internally sheared by near-vertical foliation zones. No evidence for obduction was observed although the base of the complex is not exposed. The ophiolitic rocks have been regionally metamorphosed to mid-upper greenschist levels. Isla Gordon is bounded by the northwest and southwest arms of the Beagle Channel, two important structural boundaries in the southernmost Andes that are interpreted to have accommodated north-side-up and left-lateral displacements. Directly north of Isla Gordon is the Cordillera Darwin metamorphic complex that exposes the highest grade metamorphic rocks in the Andes south of Peru. On the north coast of Isla Gordon a volcaniclastic turbidite sequence that is interpreted to have been deposited above the mafic floor is metamorphosed to lower greenschist levels in strong metamorphic contrast to amphibolite-grade othogneisses exposed in Cordillera Darwin only 2 km away across the northwest arm of the Beagle Channel. The profound metamorphic break across the northwest arm of the Beagle Channel and the regional northeast tilt of the ophiolitic complex are consistent with the previously proposed hypothesis that Isla Gordon represents the upper plate to an extensional fault that accommodated tectonic unroofing of Cordillera Darwin. However, limited structural evidence for extension was identified in this study to support the model and further work is needed to determine the relative importance of contractional, extensional and strike-slip displacements during the closure of the Rocas Verdes marginal basin and uplift of Cordillera Darwin. The Isla Gordon ophiolitic complex is correlative with other regional occurrences of ophiolitic rocks including the previously studied Tortuga, Sarmiento and Larsen Harbour complexes. The existence of the Isla Gordon ophiolitic complex helps link the known occurrences of the marginal basin floor into a semi-continuous belt that sheds light on the original continuity of the basin.

  2. Tectonic evolution of the Anadyr Basin, northeastern Eurasia, and its petroleum resource potential

    NASA Astrophysics Data System (ADS)

    Antipov, M. P.; Bondarenko, G. E.; Bordovskaya, T. O.; Shipilov, E. V.

    2009-09-01

    The published data on the sedimentation conditions, structure, and tectonic evolution of the Anadyr Basin in the Mesozoic and Cenozoic are reviewed. These data are re-examined in the context of modern tectonic concepts concerning the evolution of the northwestern Circum-Pacific Belt. The re-examination allows us not only to specify the regional geology and tectonic history, but also to forecast of the petroleum resource potential of the sedimentary cover based on a new concept. The sedimentary cover formation in the Anadyr Basin is inseparably linked with the regional tectonic evolution. The considered portion of the Chukchi Peninsula developed in the Late Mesozoic at the junction of the ocean-type South Anyui Basin, the Asian continental margin, and convergent zones of various ages extending along the Asia-Pacific interface. Strike-slip faulting and pulses of extension dominated in the Cenozoic largely in connection with oroclinal bending of structural elements pertaining to northeastern Eurasia and northwestern North America against the background of accretion of terranes along the zone of convergence with the Pacific oceanic plates. Three main stages are recognized in the formation of the sedimentary cover in the Anadyr Basin. (1) The lower portion of the cover was formed in the Late Cretaceous-Early Eocene under conditions of alternating settings of passive and active continental margins. The Cenomanian-lower Eocene transitional sedimentary complex is located largely in the southern Anadyr Basin (Main River and Lagoonal troughs). (2) In the middle Eocene and Oligocene, sedimentation proceeded against the background of extension and rifting in the northern part of the paleobasin and compression in its southern part. The compression was caused by northward migration of the foredeep in front of the accretionary Koryak Orogen. The maximum thickness of the Eocene-Oligocene sedimentary complex is noted mainly in the southern part of the basin and in the Central and East Anadyr troughs. (3) The middle Miocene resumption of sedimentation was largely related to strike-slip faulting and rifting. In the Miocene to Quaternary, sedimentation was the most intense in the central and northern parts of the Anadyr Basin, as well as in local strike-slip fault-line depressions of the Central Trough. Geological and geophysical data corroborate thrusting in the southern Anadyr Basin. The amplitude of thrusting over the Main River Trough reaches a few tens of kilometers. The vertical thickness of the tectonically screened Paleogene and Neogene rocks in the southern Main River Trough exceeds 10 km. The quantitative forecast of hydrocarbon emigration from Cretaceous and Paleogene source rocks testifies to the disbalance between hydrocarbons emigrated and accumulated in traps of petroleum fields discovered in the Anadyr Basin. The southern portion of the Anadyr Basin is the most promising for the discovery of new petroleum fields in the Upper Cretaceous, Eocene, and Upper Oligocene-Miocene porous and fracture-porous reservoir rocks in subthrust structural and lithological traps.

  3. Albanian ophiolites as probes of a mantle heterogeneity study

    NASA Astrophysics Data System (ADS)

    Meisel, Thomas; Ginley, Stephen; Koller, Friedrich; Walker, Richard J.

    2013-04-01

    Most ophiolites are believed to be tectonically obducted slivers of oceanic lithosphere. As such they can provide information not only about the history of crust formation, but also about the composition of the chemical composition of the recent and ancient mantle composition. The occurrence of the well preserved Albanian Ophiolite Complex covers the length of Albania (ca. 150 km) is an ideal object not only for the study of the history of Jurassic tectonic event, but also for the study of the heterogeneity of the upper oceanic mantle from a millimeter to a 100 km scale. The occurrence of two almost parallel ophiolite chains, which have been described to be of different petrography presenting different parts of the upper mantle (MOR vs. SSZ type), allows the investigation of additional aspects of mantle heterogeneity. In this study we want to take advantage of the geochemical characteristics of platinum group elements (PGE) and of lithophile elements to estimate the extant of mantle melting, metasomatic and mixing events of a large portion of mantle obducted contemporaneously. In a first step only peridotites from the mantle sections of the ophiolite complexes are studied for the PGE content and the osmium isotopic composition. Together with major and trace element compositional data, following tasks will be addressed: development of a strategy for field and lab sampling, identification of processes that happened before and after obduction such as melt depletion, metasomatism, serpentinisation etc. and the determination of the size of modified and "pristine" domains. Samples from the western Albanian Ophiolite belt have been studied so far. Although the locations spread over the entire belt a remarkable similarity of PGE abundances is observed. In detail deviations from a correlation of Lu and TiO2 concentration data are also reflected in aberrant mantle normalized PGE patterns. Interestingly enough, this behavior is not manifested in a trend in the 187Os/188Os distribution. As a result the Os isotopic compositions of the entire belt represent the range to be expected from a post Archean upper mantle. The observed heterogeneous distribution of osmium isotopic compositions is most likely an image of the long depletion and incomplete remixing history of the upper Earth's mantle which was not significantly modified through event leading to the formation of ophiolite belts.

  4. Structure, paleogeographic inheritance, and deformation history of the southern Atlas foreland fold and thrust belt of Tunisia

    NASA Astrophysics Data System (ADS)

    SaïD, Aymen; Baby, Patrice; Chardon, Dominique; Ouali, Jamel

    2011-12-01

    Structural analysis of the southern Tunisian Atlas was carried out using field observation, seismic interpretation, and cross section balancing. It shows a mix of thick-skinned and thin-skinned tectonics with lateral variations in regional structural geometry and amounts of shortening controlled by NW-SE oblique ramps and tear faults. It confirms the role of the Late Triassic-Early Jurassic rifting inheritance in the structuring of the active foreland fold and thrust belt of the southern Tunisian Atlas, in particular in the development of NW-SE oblique structures such as the Gafsa fault. The Late Triassic-Early Jurassic structural pattern is characterized by a family of first-order NW-SE trending normal faults dipping to the east and by second-order E-W trending normal faults limiting a complex system of grabens and horsts. These faults have been inverted during two contractional tectonic events. The first event occurred between the middle Turonian and the late Maastrichtian and can be correlated with the onset of the convergence between Africa and Eurasia. The second event corresponding to the principal shortening tectonic event in the southern Atlas started in the Serravalian-Tortonian and is still active. During the Neogene, the southern Atlas foreland fold and thrust belt propagated on the evaporitic décollement level infilling the Late Triassic-Early Jurassic rift. The major Eocene "Atlas event," described in hinterland domains and in eastern Tunisia, did not deform significantly the southern Tunisian Atlas, which corresponded in this period to a backbulge broad depozone.

  5. The lithosphere-asthenosphere boundary beneath the Korean Peninsula from S receiver functions

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Rhie, J.

    2017-12-01

    The shallow lithosphere in the Eastern Asia at the east of the North-South Gravity Lineament is well published. The reactivation of the upper asthenosphere induced by the subducting plates is regarded as a dominant source of the lithosphere thinning. Additionally, assemblage of various tectonic blocks resulted in complex variation of the lithosphere thickness in the Eastern Asia. Because, the Korean Peninsula located at the margin of the Erasian Plate in close vicinity to the trench of subducting oceanic plate, significant reactivation of the upper asthenosphere is expected. For the study of the tectonic history surrounding the Korean Peninsula, we determined the lithosphere-asthenosphere boundary (LAB) beneath the Korean Peninsula using common conversion point stacking method with S receiver functions. The depth of the LAB beneath the Korean Peninsula ranges from 60 km to 100 km and confirmed to be shallower than that expected for Cambrian blocks as previous global studies. The depth of the LAB is getting shallower to the south, 95 km at the north and 60 km at the south. And rapid change of the LAB depth is observed between 36°N and 37°N. The depth change of the LAB getting shallower to the south implies that the source of the lithosphere thinning is a hot mantle upwelling induced by the northward subduction of the oceanic plates since Mesozoic. Unfortunately, existing tectonic models can hardly explain the different LAB depth in the north and in the south as well as the rapid change of the LAB depth.

  6. Lithospheric Models of the Middle East to Improve Seismic Source Parameter Determination/Event Location Accuracy

    DTIC Science & Technology

    2012-09-01

    State Award Nos. DE-AC52-07NA27344/24.2.3.2 and DOS_SIAA-11-AVC/NMA-1 ABSTRACT The Middle East is a tectonically complex and seismically...active region. The ability to accurately locate earthquakes and other seismic events in this region is complicated by tectonics , the uneven...and seismic source parameters show that this activity comes from tectonic events. This work is informed by continuous or event-based regional

  7. P-wave velocity anisotropy related to sealed fractures reactivation tracing the structural diagenesis in carbonates

    NASA Astrophysics Data System (ADS)

    Matonti, C.; Guglielmi, Y.; Viseur, S.; Garambois, S.; Marié, L.

    2017-05-01

    Fracture properties are important in carbonate reservoir characterization, as they are responsible for a large part of the fluid transfer properties at all scales. It is especially true in tight rocks where the matrix transfer properties only slightly contribute to the fluid flow. Open fractures are known to strongly affect seismic velocities, amplitudes and anisotropy. Here, we explore the impact of fracture evolution on the geophysical signature and directional Vp anisotropy of fractured carbonates through diagenesis. For that purpose, we studied a meter-scale, parallelepiped quarry block of limestone using a detailed structural and diagenetic characterization, and numerous Vp measurements. The block is affected by two en-échelon fracture clusters, both being formed in opening mode (mode 1) and cemented, but only one being reactivated in shear. We compared the diagenetic evolution of the fractures, which are almost all 100% filled with successive calcite cements, with the P-wave velocities measured across this meter-scale block of carbonate, which recorded the tectonic and diagenetic changes of a South Provence sedimentary basin. We found that a directional Vp anisotropy magnitude as high as 8-16% correlates with the reactivated fractures' cluster dip angle, which is explained by the complex filling sequence and softer material present inside the fractures that have been reactivated during the basin's tectonic inversion. We show that although a late karstification phase preferentially affected these reactivated fractures, it only amplified the pre-existing anisotropy due to tectonic shear. We conclude that Vp anisotropy measurements may help to identify the fracture sealing/opening processes associated with polyphased tectonic history, the anisotropy being independent of the current stress-state. This case shows that velocity anisotropies induced by fractures resulted here from a cause that is different from how these features have often been interpreted: selective reactivation of sealed fractures clusters rather than direction of currently open ones.

  8. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong

    2015-12-01

    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by widespread intracontinental orogeny and continental reconstruction, are commonly termed the Yanshan Revolution (Movement) in the Chinese literature.

  9. Basin analysis in the Southern Tethyan margin: Facies sequences, stratal pattern and subsidence history highlight extension-to-inversion processes in the Cretaceous Panormide carbonate platform (NW Sicily)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio

    2018-01-01

    In the Mediterranean, the South-Tethys paleomargin experienced polyphased tectonic episodes and paleoenvironmental perturbations during Mesozoic time. The Cretaceous shallow-water carbonate successions of the Panormide platform, outcropping in the northern edge of the Palermo Mountains (NW Sicily), were studied by integrating facies and stratal pattern with backstripping analysis to recognize the tectonics vs. carbonate sedimentation interaction. The features of the Requienid limestone, including geometric configuration, facies sequence, lithological changes and significance of the top-unconformity, highlight that at the end of the Lower Cretaceous the carbonate platform was tectonically dismembered in various rotating fault-blocks. The variable trends of the subsidence curves testify to different responses, both uplift and downthrow, of various platform-blocks impacted by extensional tectonics. Physical stratigraphic and facies analysis of the Rudistid limestone highlight that during the Upper Cretaceous the previously carbonate platform faulted-blocks were subjected to vertical movements in the direction opposite to the displacement produced by the extensional tectonics, indicating a positive tectonic inversion. Comparisons with other sectors of the Southern Tethyan and Adria paleomargins indicate that during the Cretaceous these areas underwent the same extensional and compressional stages occurring in the Panormide carbonate platform, suggesting a regional scale significance, in time and kinematics, for these tectonic events.

  10. Late Tharsis tectonic activity and implications for Early Mars

    NASA Astrophysics Data System (ADS)

    Bouley, S.; Baratoux, D.; Paulien, N.; Missenard, Y.; Saint-Bezar, B.

    2017-12-01

    Constraining the timing of Tharsis volcanism is critical to understanding the planet's evolution including its climate, surface environment and mantle dynamics. The tectonic history of the Tharsis bulge was previously documented from the distribution and ages of related tectonic features [1]. Here we revisit the ages of 7493 Tharsis-related tectonic features based on their relationship with stratigraphic units defined in the new geological map [2]. Conversely to previous tectonic mapping [1], which suggested that Tharsis growth was nearly achieved during the Noachian, we find a protracted growth of Tharsis during the Hesperian. Faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. Accumulated tectonic deformation was maximum in the Early Hesperian for compressional strain (Solis, Lunae and Ascuris Planum) and extended over time from Noachian to Amazonian for extensional strain (Noctis Labyrinthus and Fossae, Sinai Planum and Tractus, Ulysses and Fortuna fossae, Alba Patera). This new scenario is consistent with a protracted growth of Tharsis dome during the Hesperian and with the timing a large Tharsis-driven true polar wander post-dating the incision of Late Noachian/Hesperian valley networks[3]. References:[1] Anderson et al. JGR-Planets 106, E9, 20,563-20,585 (2001).[2] Tanaka, K.L. et al. Geologic map of Mars (2014). [3] Bouley et al. Nature doi:10.1038 (2016)

  11. An ostracode based paleolimnologic and paleohydrologic history of Death Valley: 200 to 0 ka

    USGS Publications Warehouse

    Forester, R.M.; Lowenstein, T.K.; Spencer, R.J.

    2005-01-01

    Death Valley, a complex tectonic and hydrologic basin, was cored from its lowest surface elevation to a depth of 186 m. The sediments range from bedded primary halite to black muds. Continental ostracodes found in the black muds indicate that those sediments were deposited in a variety of hydrologic settings ranging from deep, relatively fresh water to shallow saline lakes to spring discharge supported wetlands. The alkaline-enriched, calcium-depleted paleolake waters indicate extrabasinal streamflow and basin-margin spring discharge. The alkaline-depleted, calcium-enriched paleowetland waters indicate intrabasinal spring discharge. During Marine Isotope Stage 6 (MIS 6, ca. 180-140 ka) the hydrologic settings were highly variable, implying that complex relations existed between climate and basin hydrology. Termination II (MIS 6 to MIS 5E) was a complex multicyclic sequence of paleoenvironments, implying that climates oscillated between high and low effective moisture. MIS 4 (ca. 73-61 ka) was a spring discharge supported wetland complex. During MIS 2 (ca. 20-12 ka) the hydrologic settings were variable, although they are not fully understood because some black muds deposited during that time were lost during coring. ?? 2005 Geological Society of America.

  12. A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific hydrothermal vents.

    PubMed

    Johnson, Shannon B; Won, Yong-Jin; Harvey, Julio Bj; Vrijenhoek, Robert C

    2013-01-24

    The inhabitants of deep-sea hydrothermal vents occupy ephemeral island-like habitats distributed sporadically along tectonic spreading-centers, back-arc basins, and volcanically active seamounts. The majority of vent taxa undergo a pelagic larval phase, and thus varying degrees of geographical subdivision, ranging from no impedance of dispersal to complete isolation, often exist among taxa that span common geomorphological boundaries. Two lineages of Bathymodiolus mussels segregate on either side of the Easter Microplate, a boundary that separates the East Pacific Rise from spreading centers connected to the Pacific-Antarctic Ridge. A recent sample from the northwest flank of the Easter Microplate contained an admixture of northern and southern mitochondrial haplotypes and corresponding alleles at five nuclear gene loci. Genotypic frequencies in this sample did not fit random mating expectation. Significant heterozygote deficiencies at nuclear loci and gametic disequilibria between loci suggested that this transitional region might be a 'Tension Zone' maintained by immigration of parental types and possibly hybrid unfitness. An analysis of recombination history in the nuclear genes suggests a prolonged history of parapatric contact between the two mussel lineages. We hereby elevate the southern lineage to species status as Bathymodiolus antarcticus n. sp. and restrict the use of Bathymodiolus thermophilus to the northern lineage. Because B. thermophilus s.s. exhibits no evidence for subdivision or isolation-by-distance across its 4000 km range along the EPR axis and Galápagos Rift, partial isolation of B. antarcticus n. sp. requires explanation. The time needed to produce the observed degree of mitochondrial differentiation is consistent with the age of the Easter Microplate (2.5 to 5.3 million years). The complex geomorphology of the Easter Microplate region forces strong cross-axis currents that might disrupt self-recruitment of mussels by removing planktotrophic larvae from the ridge axis. Furthermore, frequent local extinction events in this tectonically dynamic region might produce a demographic sink rather than a source for dispersing mussel larvae. Historical changes in tectonic rates and current patterns appear to permit intermittent contact and introgression between the two species.

  13. A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific hydrothermal vents

    PubMed Central

    2013-01-01

    Background The inhabitants of deep-sea hydrothermal vents occupy ephemeral island-like habitats distributed sporadically along tectonic spreading-centers, back-arc basins, and volcanically active seamounts. The majority of vent taxa undergo a pelagic larval phase, and thus varying degrees of geographical subdivision, ranging from no impedance of dispersal to complete isolation, often exist among taxa that span common geomorphological boundaries. Two lineages of Bathymodiolus mussels segregate on either side of the Easter Microplate, a boundary that separates the East Pacific Rise from spreading centers connected to the Pacific-Antarctic Ridge. Results A recent sample from the northwest flank of the Easter Microplate contained an admixture of northern and southern mitochondrial haplotypes and corresponding alleles at five nuclear gene loci. Genotypic frequencies in this sample did not fit random mating expectation. Significant heterozygote deficiencies at nuclear loci and gametic disequilibria between loci suggested that this transitional region might be a ‘Tension Zone’ maintained by immigration of parental types and possibly hybrid unfitness. An analysis of recombination history in the nuclear genes suggests a prolonged history of parapatric contact between the two mussel lineages. We hereby elevate the southern lineage to species status as Bathymodiolus antarcticus n. sp. and restrict the use of Bathymodiolus thermophilus to the northern lineage. Conclusions Because B. thermophilus s.s. exhibits no evidence for subdivision or isolation-by-distance across its 4000 km range along the EPR axis and Galápagos Rift, partial isolation of B. antarcticus n. sp. requires explanation. The time needed to produce the observed degree of mitochondrial differentiation is consistent with the age of the Easter Microplate (2.5 to 5.3 million years). The complex geomorphology of the Easter Microplate region forces strong cross-axis currents that might disrupt self-recruitment of mussels by removing planktotrophic larvae from the ridge axis. Furthermore, frequent local extinction events in this tectonically dynamic region might produce a demographic sink rather than a source for dispersing mussel larvae. Historical changes in tectonic rates and current patterns appear to permit intermittent contact and introgression between the two species. PMID:23347448

  14. Implications for the crustal Architecture in West Antarctica revealed by the means of depth-to-the-bottom of the magnetic source (DBMS) mapping and 3D FEM geothermal heat flux models

    NASA Astrophysics Data System (ADS)

    Dziadek, Ricarda; Gohl, Karsten; Kaul, Norbert

    2017-04-01

    The West Antarctic Rift System (WARS) is one of the largest rift systems in the world, which displays unique coupled relationships between tectonic processes and ice sheet dynamics. Palaeo-ice streams have eroded troughs across the Amundsen Sea Embayment (ASE) that today route warm ocean deep water to the West Antarctic Ice Sheet (WAIS) grounding zone and reinforce dynamic ice sheet thinning. Rift basins, which cut across West Antarctica's landward-sloping shelves, promote ice sheet instability. Young, continental rift systems are regions with significantly elevated geothermal heat flux (GHF), because the transient thermal perturbation to the lithosphere caused by rifting requires 100 m.y. to reach long-term thermal equilibrium. The GHF in this region is, especially on small scales, poorly constrained and suspected to be heterogeneous as a reflection of the distribution of tectonic and volcanic activity along the complex branching geometry of the WARS, which reflects its multi-stage history and structural inheritance. We investigate the crustal architecture and the possible effects of rifting history from the WARS on the ASE ice sheet dynamics, by the use of depth-to-the-bottom of the magnetic source (DBMS) estimates. These are based on airborne-magnetic anomaly data and provide an additional insight into the deeper crustal properties. With the DBMS estimates we reveal spatial changes at the bottom of the igneous crust and the thickness of the magnetic layer, which can be further incorporated into tectonic interpretations. The DBMS also marks an important temperature transition zone of approximately 580°C and therefore serves as a boundary condition for our numerical FEM models in 2D and 3D. On balance, and by comparison to global values, we find average GHF of 90 mWm-2 with spatial variations due to crustal heterogeneities and volcanic activities. This estimate is 30% more than commonly used in ice sheet models in the ASE region.

  15. 3D Integrated geophysical-petrological modelling of the Iranian lithosphere

    NASA Astrophysics Data System (ADS)

    Mousavi, Naeim; Ardestani, Vahid E.; Ebbing, Jörg; Fullea, Javier

    2016-04-01

    The present-day Iranian Plateau is the result of complex tectonic processes associated with the Arabia-Eurasia Plate convergence at a lithospheric scale. In spite of previous mostly 2D geophysical studies, fundamental questions regarding the deep lithospheric and sub-lithospheric structure beneath Iran remain open. A robust 3D model of the thermochemical lithospheric structure in Iran is an important step toward a better understanding of the geological history and tectonic events in the area. Here, we apply a combined geophysical-petrological methodology (LitMod3D) to investigate the present-day thermal and compositional structure in the crust and upper mantle beneath the Arabia-Eurasia collision zone using a comprehensive variety of constraining data: elevation, surface heat flow, gravity potential fields, satellite gravity gradients, xenoliths and seismic tomography. Different mantle compositions were tested in our model based on local xenolith samples and global data base averages for different tectonothermal ages. A uniform mantle composition fails to explain the observed gravity field, gravity gradients and surface topography. A tectonically regionalized lithospheric mantle compositional model is able to explain all data sets including seismic tomography models. Our preliminary thermochemical lithospheric study constrains the depth to Moho discontinuity and intra crustal geometries including depth to sediments. We also determine the depth to Curie isotherm which is known as the base of magnetized crustal/uppermost mantle bodies. Discrepancies with respect to previous studies include mantle composition and the geometry of Moho and Lithosphere-Asthenosphere Boundary (LAB). Synthetic seismic Vs and Vp velocities match existing seismic tomography models in the area. In this study, depleted mantle compositions are modelled beneath cold and thick lithosphere in Arabian and Turan platforms. A more fertile mantle composition is found in collision zones. Based on our 3D thermochemical model we propose a new scenario to interpret the geodynamical history of area. In this context the present-day central Iran block would be as remain of the older and larger Iranian block present before the onset of Turan platform subduction beneath the Iranian Plateau. Further analysis of sub-lithospheric density anomalies (e.g., subducted slabs) is required to fully understand the geodynamics of the area.

  16. The upper crust laid on its side: tectonic implications of steeply tilted crustal slabs for extension in the basin and range

    USGS Publications Warehouse

    Howard, Keith A.

    2005-01-01

    Tilted slabs expose as much as the top 8–15 km of the upper crust in many parts of the Basin and Range province. Exposures of now-recumbent crustal sections in these slabs allow analysis of pre-tilt depth variations in dike swarms, plutons, and thermal history. Before tilting the slabs were panels between moderately dipping, active Tertiary normal faults. The slabs and their bounding normal faults were tilted to piggyback positions on deeper footwalls that warped up isostatically beneath them during tectonic unloading. Stratal dips within the slabs are commonly tilted to vertical or even slightly overturned, especially in the southern Basin and Range where the thin stratified cover overlies similarly tilted basement granite and gneiss. Some homoclinal recumbent slabs of basement rock display faults that splay upward into forced folds in overlying cover sequences, which thereby exhibit shallower dips. The 15-km maximum exposed paleodepth for the slabs represents the base of the brittle upper crust, as it coincides with the depth of the modern base of the seismogenic zone and the maximum focal depths of large normal-fault earthquakes in the Basin and Range. Many upended slabs accompany metamorphic core complexes, but not all core complexes have corresponding thick recumbent hanging-wall slabs. The Ruby Mountains core complex, for example, preserves only scraps of upper-plate rocks as domed-up extensional klippen, and most of the thick crustal section that originally overlay the uplifted metamorphic core now must reside below little-tilted hanging-wall blocks in the Elko-Carlin area to the west. The Whipple and Catalina Mountains core complexes in contrast are footwall to large recumbent hanging-wall slabs of basement rock exposing 8-15 km paleodepths that originally roofed the metamorphic cores; the exposed paleodepths require that a footwall rolled up beneath the slabs.

  17. An Intracratonic Record of North American Tectonics

    NASA Astrophysics Data System (ADS)

    Lovell, Thomas Rudolph

    Investigating how continents change throughout geologic time provides insight into the underlying plate tectonic process that shapes our world. Researchers aiming to understand plate tectonics typically investigate records exposed at plate margins, as these areas contain direct structural and stratigraphic information relating to tectonic plate interaction. However, these margins are also susceptible to destruction, as orogenic processes tend to punctuate records of plate tectonics. In contrast, intracratonic basins are long-lived depressions located inside cratons, shielded from the destructive forces associated with the plate tectonic process. The ability of cratonic basins to preserve sedimentological records for extended periods of geologic time makes them candidates for recording long term changes in continents driven by tectonics and eustacy. This research utilizes an intracratonic basin to better understand how the North American continent has changed throughout Phanerozoic time. This research resolves geochronologic, thermochronologic, and sedimentologic changes throughout Phanerozoic time (>500 Ma) within the intracratonic Illinois Basin detrital record. Core and outcrop sampling provide the bulk of material upon which detrital zircon geochronologic, detrital apatite thermochronologic, and thin section petrographic analyses were performed. Geochronologic evidence presented in Chapters 2 and 3 reveal the Precambrian - Cretaceous strata of the intracratonic Illinois Basin yield three detrital zircon U-Pb age assemblages. Lower Paleozoic strata yield ages corresponding to predominantly cratonic sources (Archean - Mesoproterozoic). In contrast, Middle - Upper Paleozoic strata have a dominant Appalachian orogen (Neoproterozoic - Paleozoic) signal. Cretaceous strata yield similar ages to underlying Upper Paleozoic strata. We conclude that changes in the provenance of Illinois Basin strata result from eustatic events and tectonic forcings. This evidence demonstrates that changes in the detrital record of the Illinois Basin coincide with well-documented, major tectonic and eustatic events that altered and shaped North American plate margins. Chapter 4 presents 24 apatite (U-Th)/He (AHe) ages (3 - 423 Ma) taken from subsurface Cambrian and Pennsylvanian sandstones in the Illinois Basin. Time-temperature simulations used to reproduce these ages predict a basin thermal history with a maximum temperature of 170°C in post-Pennsylvanian time followed by Mesozoic cooling at 0.3°C/Myr. These thermal simulations suggest 3 km of additional post-Pennsylvanian burial (assuming 30°C/km geotherm) followed by subsequent Mesozoic - Cenozoic removal. This burial-exhumation history is concurrent with Late Mesozoic tectoniceustatic fluctuations, including Atlantic and Gulf of Mexico opening, rejuvenation of the Appalachian region, and Gulf of Mexico sediment influx, and the Cretaceous high sea level stand. The Geochronologic and thermochronologic evidence presented in the following chapters suggests the Illinois Basin potentially contains a more robust record of North American tectonics than previously thought. These observations provide a new perspective on the utility of intracratonic basins in understanding long term changes to continental bodies.

  18. Multiple, discrete inversion episodes revealed by apatite fission track analysis along the southernmost Atlantic margin of South Africa

    NASA Astrophysics Data System (ADS)

    Wildman, M.; Brown, R. W.; Persano, C.; Stuart, F. M.

    2013-12-01

    The morpho-tectonic history of the western South African continental margin and interior plateau remains enigmatic. Recent investigations of offshore sediment accumulation and interpretations of onshore structural and geomorphological observations have highlighted the complex geological evolution of South Africa throughout the Mesozoic and Cenozoic. Moreover, advances in geodynamic modelling approaches have explored the crustal response to varying styles of rifting and the influence of mantle upwelling beneath the African plate. These geological observations and models, however, require validation from quantitative constraints on the surface response (i.e. uplift and erosion) to syn- and post rift thermal and tectonic processes Over the last two decades, low temperature thermochronometry, particularly apatite fission track analysis (AFTA) and apatite (U-Th)/He, have been effective tools in providing these constraints by tracking the time-temperature history of rocks through c. 60 - 110°C and 80 - 40°C, respectively. The unique ability of AFTA to constrain both the timing and nature of sample cooling rests largely on the sensitivity of fission track annealing to temperature. Here, we present new AFT data from a suite of samples across the entire western continental margin of South Africa which contributes to a now extensive AFT dataset spanning the entire sub-continent. This dataset broadly invokes at least two discrete episodes of cooling driven by km scale denudation at c. 130 Ma, following rifting and break up of West Gondwana, and 90 Ma as a response to renewed tectonic uplift. However, the apparent lack of correlation of AFT age with elevation or with distance from the coast highlight the spatial and temporal variability of post-rift cooling that may be related to Mid-Cretaceous structural reactivation along the margin. We also present thermal history modelling using the Bayesian transdimensional inverse modelling approach of QTQt (Gallagher, 2012). Modelling was performed for several outcrop samples, including a 604 m vertical profile, and two borehole profiles from the interior plateau with bottom depths of 2.5 (QU 1/65) and 6.2 km (KC 1/70). The results of this novel modelling approach are interpreted alongside independent on and offshore geological observations to lend additional support to the occurrence of multiple, discrete episodes of denudation driven cooling at c. 150 - 130 and 90 Ma, and possibly a later Cretaceous episode of cooling at c. 70 Ma. The existence of a Late Cretaceous or younger period of enhanced denudation is being further explored through ongoing work combining new AFT data with apatite (U-Th)/He data to generate more robust thermal history information and provide new insights into the timing and magnitude of the major periods of uplift and erosion that have formed the first order topography of South Africa. Gallagher, K., 2012, Transdimensional inverse thermal history modeling for quantitative thermochronology: Journal of Geophysical Research: Solid Earth, v. 117(B2).

  19. Deformational history of part of the Acatlán Complex: Late Ordovician Early Silurian and Early Permian orogenesis in southern Mexico

    NASA Astrophysics Data System (ADS)

    Malone, J. R.; Nance, R. D.; Keppie, J. D.; Dostal, J.

    2002-10-01

    The Paleozoic Acatlán Complex of southern Mexico comprises polydeformed metasedimentary, granitoid, and mafic-ultramafic rocks variously interpreted as recording the closure of the Iapetus, Rheic, and Ouachitan Oceans. The complex is tectonically juxtaposed on its eastern margin against Grenville-age gneisses (Oaxacan Complex) that are unconformably overlain by Lower Paleozoic strata containing fossils of Gondwanan affinity. A thick siliciclastic unit (Chazumba and Cosoltepec Formations) at the base of the complex is considered part of a Lower Paleozoic accretionary prism with a provenance that isotopically resembles the Oaxacan Complex. This unit is tectonically overridden by a locally eclogitic mafic-ultramafic unit interpreted as a westward-obducted ophiolite, the emplacement of which was synchronous with mylonitic granitoid intrusion at ca. 440 Ma. Both units are unconformably overlain by a deformed volcano-sedimentary sequence (Tecomate Formation) attributed to a volcanic arc of presumed Devonian age. Deformed granitoids in contact with this sequence have been dated at ca. 371 (La Noria granite) and 287 Ma (Totoltepec pluton). Three phases of penetrative deformation (D 1-3) affect the Cosoltepec Formation; the last two correlate with two penetrative deformational phases that affect the Tecomate Formation. D 1 is of unknown kinematics but predates deposition of the Tecomate Formation and likely records obduction at ca. 440 Ma (Acatecan orogeny). A folded foliation in the Totoltepec pluton appears to record both deformational phases in the Tecomate Formation, bracketing D 2 and D 3 between 287 Ma and the deposition of the nonconformably overlying Leonardian Matzitzi Formation. D 2 records north-south dextral transpression and south-vergent thrusting and is attributed to the collision of Gondwana and southern Laurentia (Ouachitan orogeny) at ca. 290 Ma, the kinematics being consistent with the northward motion of Mexico that is required by most continental reconstructions for the final assembly of Pangea. D 3, which produced broadly north-south, upright folds, is also attributed to this collision and likely followed D 2 closely in the latest Paleozoic.

  20. Mesozoic Deformation and Its Geological Significance in the Southern Margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, Rongwei; Liu, Hailing; Yao, Yongjian; Wang, Yin

    2018-05-01

    The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed structural and stratigraphic interpretations of the multi-channel seismic profiles, calibrated with relevant drilling and dredging data, show major Mesozoic structural features. A structural restoration was done to remove the Cenozoic tectonic influence and calculate the Mesozoic tectonic compression ratios. The results indicate that two groups of compressive stress with diametrically opposite orientations, S(S)E-N(N)W and N(N)W-S(S)E, were active during the Mesozoic. The compression ratio values gradually decrease from north to south and from west to east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate at which the Nansha block drifted northward in the late Jurassic to late Cretaceous. The Nansha block drifted northward until it collided and sutured with the southern China margin. The opening of the present South China Sea may be related to this suture zone, which was a tectonic zone of weakness.

  1. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault

    USGS Publications Warehouse

    Yue, Y.; Ritts, B.D.; Graham, S.A.; Wooden, J.L.; Gehrels, G.E.; Zhang, Z.

    2004-01-01

    Determination of long-term slip rate for the Altyn Tagh fault is essential for testing whether Asian tectonics is dominated by lateral extrusion or distributed crustal shortening. Previous slip-history studies focused on either Quaternary slip-rate measurements or pre-Early Miocene total-offset estimates and do not allow a clear distinction between rates based on the two. The magmatic and metamorphic history revealed by SHRIMP zircon dating of clasts from Miocene conglomerate in the Xorkol basin north of the Altyn Tagh fault strikingly matches that of basement in the southern Qilian Shan and northern Qaidam regions south of the fault. This match requires that the post-Early Miocene long-term slip rate along the Altyn Tagh fault cannot exceed 10 mm/year, supporting the hypothesis of distributed crustal thickening for post-Early Miocene times. This low long-term slip rate and recently documented large pre-Early Miocene cumulative offset across the fault support a two-stage evolution, wherein Asian tectonics was dominated by lateral extrusion before the end of Early Miocene, and since then has been dominated by distributed crustal thickening and rapid plateau uplift. ?? 2003 Elsevier B.V. All rights reserved.

  2. Biogeographical Consequences of Cenozoic Tectonic Events within East Asian Margins: A Case Study of Hynobius Biogeography

    PubMed Central

    Li, Jun; Fu, Cuizhang; Lei, Guangchun

    2011-01-01

    Few studies have explored the role of Cenozoic tectonic evolution in shaping patterns and processes of extant animal distributions within East Asian margins. We select Hynobius salamanders (Amphibia: Hynobiidae) as a model to examine biogeographical consequences of Cenozoic tectonic events within East Asian margins. First, we use GenBank molecular data to reconstruct phylogenetic interrelationships of Hynobius by Bayesian and maximum likelihood analyses. Second, we estimate the divergence time using the Bayesian relaxed clock approach and infer dispersal/vicariance histories under the ‘dispersal–extinction–cladogenesis’ model. Finally, we test whether evolutionary history and biogeographical processes of Hynobius should coincide with the predictions of two major hypotheses (the ‘vicariance’/‘out of southwestern Japan’ hypothesis). The resulting phylogeny confirmed Hynobius as a monophyletic group, which could be divided into nine major clades associated with six geographical areas. Our results show that: (1) the most recent common ancestor of Hynobius was distributed in southwestern Japan and Hokkaido Island, (2) a sister taxon relationship between Hynobius retardatus and all remaining species was the results of a vicariance event between Hokkaido Island and southwestern Japan in the Middle Eocene, (3) ancestral Hynobius in southwestern Japan dispersed into the Taiwan Island, central China, ‘Korean Peninsula and northeastern China’ as well as northeastern Honshu during the Late Eocene–Late Miocene. Our findings suggest that Cenozoic tectonic evolution plays an important role in shaping disjunctive distributions of extant Hynobius within East Asian margins. PMID:21738684

  3. True Polar Wander of Mercury

    NASA Astrophysics Data System (ADS)

    Keane, J. T.; Matsuyama, I.

    2018-05-01

    We use new MESSENGER gravity data to investigate how impact basins and volcanic provinces alter Mercury's moments of inertia. We find that Mercury has reoriented tens of degrees over its history, affecting tectonics, volatiles, and more.

  4. The origin of islands in the Kandalaksha Gulf of the White Sea: joint work of internal and external geodynamic processes

    NASA Astrophysics Data System (ADS)

    Kosevich, Natalia; Romanovskaya, Maria

    2016-04-01

    The modern White Sea basin is a part of the encounter zone between the East European Platform and of the Fennoscandian Shield. The Kandalaksha Gulf in its northwest lies on the Mesoarchean-Paleoproterozoic structure known as the White Sea Shift Belt. In the Oligocene, it entered its neotectonic stage. Geologically, there are two structural storeys beneath the seafloor of the Kandalaksha Gulf: 1) crystalline bedrock of the Archean White Sea complex; 2) a cover of sediment consisting of three layers: Riphean sandstones, terrigenous Vendian deposits; a cloak of Pleistocene and Holocene deposits and sediments - glacial drifts, transitional glaciomarine sediments and purely marine sediments. The modern White Sea is a young basin formed just 10 to 12 ka. The geological and geomorphic history of the White Sea region was very complicated, with various and often conflicting tectonic movements. Besides the postglacial isostatic rise of Scandinavia amounted to some 100 meters in the White Sea area. The White Sea has numerous islands that are very different in the geological-geomorphological and genetic senses because their origin is the result of interactions between various endogenous and exogenous processes. Large and detailed scale geological and morphological researches of the islands at the southern and northern coast of the Kandalaksha Gulf have been carried out. Landforms of the islands were produced by the joint effects of such processes as (1) glacial-tectonic effects and marine wave action, (2) tidal and surge effects; (3) glacial-tectonic, marine, and gravity effects, and (4) glacial-tectonic, marine, lake, and biogenic effects (Kosevich, 2015). The relief structure of the islands has the following regularities: 1) structures of the northern coast islands are more often landforms that are composed of loose deposits with small sites of structural denudation residual outcrops; 2) the structures of the southern coast islands are typically combinations of loose deposits and bedrock outcrops; structural denudation landforms dominate over the marine and biogenic landforms in this case, rocky surfaces of these islands predominate over others. The relief of islands is a combination of smoothed rounded top bedrock surfaces (massifs) with subhorizontal sites that are covered with loose marine deposits. Analysis of the spatial distribution of the genetic types of islands in the Kandalaksha Gulf has revealed that in the apical part of the gulf all genetic types of islands occur, while upon approaching the mouth, one type (tectonic-glacial-accumulative-denudation with marine reworking) becomes predominant. Thus, geological, structural, geomorphic features of Kandalahksha Gulf islands are the results of the complex interaction of the internal and external geodynamic processes. Kosevich N. Geological-geomorphological types of islands in the Kandalaksha Gulf, White Sea. Moscow Univ. Geol.Bull., 2015, vol. 70, N 4. P. 318-326.

  5. Thermochronological evidence for polyphase post-rift reactivation in SE Brazil

    NASA Astrophysics Data System (ADS)

    Cogné, N.; Gallagher, K.; Cobbold, P. R.; Riccomini, C.

    2012-04-01

    The continental margin of SE Brazil shows good evidence for tectonic activity well after the break-up of Western Gondwana (see Cobbold et al., 2001 for a review). Additionally, SE Brazil ranks as an HEPM (high elevation passive margin), summits reaching 2800 m. To constrain the onshore evolution of the margin, especially during the Tertiary, we did a new thermochronological and structural study. After an initial regional study, during which we found additional evidence for a major phase of exhumation during the Late Cretaceous to Early Tertiary (Cogné et al., 2011), we focussed on a region that was clearly subject to Tertiary tectonics. This region includes the Tertiary Taubaté basin and the adjacent Serra do Mar and Serra da Mantiqueira. We used two thermochronolgical methods on the same samples, apatite fission tracks (AFT) and U-Th/He on apatite (AHe). AFT ages range from 129.3±4.3 Ma to 60.7±1.9 Ma with mean track lengths (MTL) from 14.31±0.24 μm to 11.41±0.23 μm, whereas AHe ages range from 519.6±16.6 to 10.1±0.1 Ma. A subset of AHe ages, selected on the basis of data consistency and geological arguments, has a smaller range (122.4±2.5 to 45.1±1.5 Ma). We have combined inverse and forward modelling to assess the range of acceptable thermal histories. Results of inverse modelling confirm our earlier study by showing a Late Cretaceous phase of cooling. Around the onshore Taubaté Basin, for a limited number of samples, another period of cooling occurred during the Early Tertiary, around the time when the basin formed. The inferred thermal histories for most of the samples also imply a later reheating, followed by a Neogene cooling. According to forward modelling, the evidence for reheating seems to be robust around the margins of the Taubaté Basin, but elsewhere the data cannot really discriminate between this and a less complex thermal history. However forward modelling and geologically independent information support the conclusion that the whole area cooled and uplifted during the Neogene. The synchronicity of the cooling phases with tectonic pulses in the Andes and in NE Brazil, as well as the tectonic setting of the Tertiary basins (Cogné et al., submitted) lead us to attribute these phases to a plate-wide compressive stress, which reactivated inherited structures during the Late Cretaceous and Tertiary. The relief of the margin is therefore due, more to polyphase post-rift reactivation and uplift, than to rifting itself. - Cobbold, P.R., Meisling, K.E., Mount, V.S., 2001. Reactivation of an obliquely rifted margin, Campos and Santos Basins, Southeastern Brazil. AAPG Bulletin 85, 1925-1944. - Cogné, N., Gallagher, K., Cobbold, P.R., 2011. Post-rift reactivation of the onshore margin of southeast Brazil: Evidence from apatite (U-Th)/He and fission-track data. Earth and Planetary Science Letters 309, 118-130. - Cogné, N., Cobbold, P.R., Riccomini, C., Gallagher, K. Tectonic setting of the Taubaté basin (southeastern Brazil): insights from regional seismic profiles and outcrop data. Submitted to Journal of South American Earth Sciences.

  6. The Stress-Strain State of Recent Structures in the Northeastern Sector of the Russian Arctic Region

    NASA Astrophysics Data System (ADS)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.

    2018-03-01

    Complex research to determine the stress-strain state of the Earth's crust and the types of seismotectonic destruction for the northeastern sector of the Russian Arctic was conducted. The principles of regional ranking of neotectonic structures were developed according to the activity of geodynamic processes, and argumentation for their class differentiation is presented. The structural-tectonic position, the parameters of the deep structure, the system of active faults, and the tectonic stress fields, calculated on the basis of both tectonophysical analysis of discontinuous and folded late Cenozoic deformations and seismological data, were analyzed. This complex of investigations made it possible to determine the directions of the main axes of deformations of the stress-strain state of the Earth's crust and to reveal the regularity in the change of tectonic regimes.

  7. Tectonic framework of Turkish sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, P.O.

    1988-08-01

    Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very littlemore » in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.« less

  8. Extending Whole-earth Tectonics To The Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  9. Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes

    NASA Astrophysics Data System (ADS)

    Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin

    2018-03-01

    The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.

  10. Exhumation and stress history in the sedimentary cover during Laramide thick-skinned tectonics assessed by stylolite roughness analysis.

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin

    2017-04-01

    Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in such a broken-foreland context offers a unique opportunity to discuss how thick-skinned tectonics impacts stress distribution in the sedimentary cover.

  11. Mars Geological Province Designations for the Interpretation of GRS Data

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Kerry, K.; Baker, V. R.; Boynton, W.; Maruyama, Shige; Anderson, R. C.

    2005-01-01

    Introduction: An overarching geologic theory, GEOMARS, coherently explains many otherwise anomalous aspects of the geological history of Mars. Premises for a theory of martian geologic evolution include: (1) Mars is a water-rich terrestrial planet, (2) terrestrial planets should evolve through progressive stages of dynamical history (accretion, differentiation, tectonism) and mantle convection (magma ocean, plate tectonism, stagnant lid), and (3) the early history of Earth affords an analogue to the evolution of Mars. The theory describes the following major stages of evolution for Mars (from oldest to youngest): Stage 1 - shortly after accretion, Mars differentiates to a liquid metallic core, a mantle boundary (MBL) of high-pressure silicate mineral phases, upper mantle, magma ocean, thin komatiic crust, and convecting steam atmosphere; Stage 2- Mars cools to condense its steam atmosphere and transform its mode of mantle convection to plate tectonism; subduction of waterrich oceanic crust initiates arc volcanism and transfers water, carbonates and sulfates to the mantle; Stage 3 - the core dynamo initiates, and the associated magnetosphere leads to conditions conducive to the development of near-surface life and photosynthetic production of oxygen; Stage 4 - accretion of thickened, continental crust and subduction of hydrated oceanic crust to the mantle boundary layer and lower mantle of Mars occurs; Stage 5 - the core dynamo stops during Noachian heavy bombardment while plate tectonism continues; Stage 6 - initiation of the Tharsis superplume (approx. between 4.0 and 3.8Ga) occurs, and Stage 7 - the superlume phase (stagnant-lid regime) of martian planetary evolution with episodic phases of volcanism and water outflows continues into the present. The GEOMARS Theory is testable through a multidisciplinary approach, including utilizing GRS-based information. Based on a synthesis of published geologic, paleohydrologic, topographic, geophysical, spectral, and elemental information, we have defined geologic provinces that represent significant windows into the geological evolution of Mars, unfolding the GEOMARS Theory and forming the basis for interpreting GRS data.

  12. Temporal and Spatial Evolution of Dynamic Support From River Profiles: A Framework for Madagascar and Africa

    NASA Astrophysics Data System (ADS)

    Paul, J. D.; Roberts, G. G.; White, N.

    2012-04-01

    It is generally accepted that the surface topography of Africa is a manifestation of convective circulation in the sub-lithospheric mantle. Here, we present an inverse method whereby longitudinal river profiles are interrogated to extract quantitative estimates of spatial and temporal variations in the rate of tectonic uplift. Surface processes can provide an important window into transient convective circulation in the sub-lithospheric mantle. River profiles act as 'tectonic tape recorders': we assume the generation of broad, convex-upward knickzones to represent the effect of tectonic uplift shifting the river system into a state of disequilibrium. Profiles evolve through time primarily via the headward retreat of these knickzones. We use a conjugate gradient inverse algorithm to minimise the misfit between observed river profiles - derived from a regional Digital Elevation Model (DEM) - and calculated profiles obtained by varying the uplift rate history. We jointly invert a total of 98 Malagasy and 570 African river profiles to obtain a history of the cumulative tectonic uplift through geological time. We show that Africa has undergone two phases of rapid uplift: first in Eocene times; secondly, since 10 Ma. While the first gave rise to broad, long wavelength topography, the second led to more localised domal swells of high relief. We propose the existence of two wavelengths of dynamic support, reflecting a change in the style of convection in the upper mantle since 50 Ma. Our results correlate strongly with independent geological estimates of uplift across Africa and Madagascar, while our calculated landscape surface following 50 Myr of uplift corresponds closely to a surface fit across present-day drainage divides. Finally we calculate the solid sediment flux delivered to major African deltas as a function of time. This onshore record provides an important indirect constraint on the history of vertical motions at the surface, and agrees well with the offshore flux record, obtained from mapping the thickness of chronostratigraphic sediment packages at the deltas.

  13. Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar

    USGS Publications Warehouse

    Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.

    2011-01-01

    Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.

  14. Rotund versus skinny orogens: Well-nourished or malnourished gold?

    USGS Publications Warehouse

    Goldfarb, R.J.; Groves, D.I.; Gardoll, S.

    2001-01-01

    Orogenic gold vein deposits require a particular conjunction of processes to form and be preserved, and their global distribution can be related to broad-scale, evolving tectonic processes throughout Earth history. A heterogeneous distribution of formation ages for these mineral deposits is marked by two major Precambrian peaks (2800-2555 Ma and 2100-1800 Ma), a singular lack of deposits for 1200 m.y. (1800-600 Ma), and relatively continuous formation since then (after 600 Ma). The older parts of the distribution relate to major episodes of continental growth, perhaps controlled by plume-influenced mantle overturn events, in the hotter early Earth (ca. 1800 Ma or earlier). This worldwide process allowed preservation of gold deposits in cratons, roughly equidimensional, large masses of buoyant continental crust. Evolution to a less episodic, more continuous, modern-style plate tectonic regime led to the accretion of volcano-sedimentary complexes as progressively younger linear orogenic belts sorrounding the margins of the more buoyant cratons. The susceptibility of these linear belts to uplift and erosion can explain the overall lack of orogenic gold deposits at 1800-600 Ma, their exposure in 600-50 Ma orogens, the increasing importance of placer deposits back through the Phanerozoic since ca. 100 Ma, and the absence of gold deposits in orogenic belts younger than ca. 50 Ma.

  15. Sandbox rheometry: Co-evolution of stress and strain in Riedel- and Critical Wedge-experiments

    NASA Astrophysics Data System (ADS)

    Ritter, Malte C.; Santimano, Tasca; Rosenau, Matthias; Leever, Karen; Oncken, Onno

    2018-01-01

    Analogue sandbox experiments have been used for a long time to understand tectonic processes, because they facilitate detailed measurements of deformation at a spatio-temporal resolution unachievable from natural data. Despite this long history, force measurements to further characterise the mechanical evolution in analogue sandbox experiments have only emerged recently. Combined continuous measurements of forces and deformation in such experiments, an approach here referred to as "sandbox rheometry", are a new tool that may help to better understand work budgets and force balances for tectonic systems and to derive constitutive laws for regional scale deformation. In this article we present an experimental device that facilitates precise measurements of boundary forces and surface deformation at high temporal and spatial resolution. We demonstrate its capabilities in two classical experiments: one of strike-slip deformation (the Riedel set-up) and one of compressional accretionary deformation (the Critical Wedge set-up). In these we are able to directly observe a correlation between strain weakening and strain localisation that had previously only been inferred, namely the coincidence of the maximum localisation rate with the onset of weakening. Additionally, we observe in the compressional experiment a hysteresis of localisation with respect to the mechanical evolution that reflects the internal structural complexity of an accretionary wedge.

  16. Deep structure of the Alborz Mountains by joint inversion of P receiver functions and dispersion curves

    NASA Astrophysics Data System (ADS)

    Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.

    2018-04-01

    The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.

  17. The thermal evolution of Chinese central Tianshan and its implications: Insights from multi-method chronometry

    NASA Astrophysics Data System (ADS)

    Yin, Jiyuan; Chen, Wen; Hodges, Kip V.; Xiao, Wenjiao; Cai, Keda; Yuan, Chao; Sun, Min; Liu, Li-Ping; van Soest, Matthijs C.

    2018-01-01

    The Chinese Tianshan is located in the south of the Central Asian Orogenic Belt and formed during final consumption of the Paleo-Asian Ocean in the late Palaeozoic. In order to further elucidate the tectonic evolution of the Chinese Tianshan, we have established the temperature-time history of granitic rocks from the Chinese Tianshan through a multi-chronological approach that includes U/Pb (zircon), 40Ar/39Ar (biotite and K-feldspar), and (U-Th)/He (zircon and apatite) dating. Our data show that the central Tianshan experienced accelerated cooling during the late Carboniferous- to early Permian. Multiple sequences of complex multiple accretionary, subduction and collisional events could have induced the cooling in the Tianshan Orogenic Belt. The new 40Ar/39Ar and (U-Th)/He data, in combination with thermal history modeling results, reveal that several tectonic reactivation and exhumation episodes affected the Chinese central Tianshan during middle Triassic (245-210 Ma), early Cretaceous (140-100 Ma), late Oligocene-early Miocene (35-20 Ma) and late Miocene (12-9 Ma). The middle Triassic cooling dates was only found in the central Tianshan. Strong uplift and deformation in the Chinese Tianshan has been limited and localized. It have been concentrated in around major fault zone and the foreland thrust belt since the early Cretaceous. The middle Triassic and early Cretaceous exhumation is interpreted as distal effects of the Cimmerian collisions (i.e. the Qiangtang and Kunlun-Qaidam collision and Lhasa-Qiangtang collision) at the southern Eurasian margin. The Cenozoic reactivation and exhumation is interpreted as a far field response to the India-Eurasia collision and represents the beginning of modern mountain building and denudation in the Chinese Tianshan.

  18. Tectonothermal modeling of hydrocarbon maturation, Central Maracaibo Basin, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manske, M.C.

    1996-08-01

    The petroliferous Maracaibo Basin of northwestern Venezuela and extreme eastern Colombia has evolved through a complex geologic history. Deciphering the tectonic and thermal evolution is essential in the prediction of hydrocarbon maturation (timing) within the basin. Individual wells in two areas of the central basin, Blocks III and V, have been modeled to predict timing of hydrocarbon generation within the source Upper Cretaceous La Luna Formation, as well as within interbedded shales of the Lower-Middle Eocene Misoa Formation reservoir sandstones. Tectonic evolution, including burial and uplift (erosional) history, has been constrained with available well data. The initial extensional thermal regimemore » of the basin has been approximated with a Mackenzie-type thermal model, and the following compressional stage of basin development by applying a foreland basin model. Corrected Bottom Hole Temperature (BHT) measurements; from wells in the central basin, along with thermal conductivity measurements of rock samples from the entire sedimentary sequence, resulted in the estimation of present day heat flow. An understanding of the basin`s heat flow, then, allowed extrapolation of geothermal gradients through time. The relation of geothermal gradients and overpressure within the Upper Cretaceous hydrocarbon-generating La Luna Formation and thick Colon Formation shales was also taken into account. Maturation modeling by both the conventional Time-Temperature Index (TTI) and kinetic Transformation Ratio (TR) methods predicts the timing of hydrocarbon maturation in the potential source units of these two wells. These modeling results are constrained by vitrinite reflectance and illite/smectite clay dehydration data, and show general agreement. These results also have importance regarding the timing of structural formation and hydrocarbon migration into Misoa reservoirs.« less

  19. The Enduring Legacy of New Zealand's UNCLOS Investment (Invited)

    NASA Astrophysics Data System (ADS)

    Wood, R.; Davy, B. W.; Herzer, R. H.; Barnes, P.; Barker, D. H.; Stagpoole, V.; Uruski, C.

    2013-12-01

    Data collected by surveys for New Zealand's extended continental shelf project have contributed to research into the tectonic history and resource potential of New Zealand. More than 20 scientific papers and a similar number of conference presentations and posters have used the data collected by these surveys. Data collected by these surveys have added significantly to national and international databases. Although the surveys were generally oriented to establish prolongation rather than to cross structural trends, the data have revealed the crustal, basement and sedimentary structure of many parts of the New Zealand region. In the area east of New Zealand, the data provide insight into the Cretaceous evolution of the New Zealand sector of Gondwana. Data collected southwest of New Zealand provided details about the relatively sudden transition from sea floor spreading between New Zealand and Australia in the Tasman Sea to orthogonal spreading in the Emerald Basin and the development of the modern Australian-Pacific plate boundary, including Late Tertiary motion on the Alpine Fault in the South Island, New Zealand. The data have been used to understand the formation of the New Caledonia Basin, the Norfolk Ridge and their associated structures, and they underpin the international collaboration between New Zealand, New Caledonia and Australia to promote resource exploration in the Tasman Sea. Data north of New Zealand have been used to understand the complex tectonic history of back arc spreading and island arc migration in the South Fiji Basin region. Seismic data collected along the axis of the New Caledonia Basin led to extensive hydrocarbon exploration surveys in the deepwater Taranaki region inside New Zealand's EEZ, and to an application for a hydrocarbon exploration licence in New Zealand's extended continental shelf.

  20. Thin-skinned tectonics of the Upper Ojai Valley and Sulphur Mountain area, Ventura basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huftile, G.J.

    1991-08-01

    By integrating surface mapping with subsurface well data and drawing cross sections and subsurface maps, the geometry of shallow structures and their geologic history of the Upper Ojai Valley of California can be reconstructed. The geometry of shallow structures, the geologic history, and the location of earthquake foci then offer constraints on the deep structure of this complex area. The Upper Ojai Valley is a tectonic depression between opposing reverse faults. Its northern border is formed by the active, north-dipping San Cayetano fault, which has 6.0 km of stratigraphic separation in the Silverthread area of the Ojai oil field andmore » 2.6 km of stratigraphic separation west of Sisar Creek. The fault dies out farther west in Ojai Valley, where the south-vergent shortening is transferred to a blind thrust. The southern border of the Upper Ojai Valley is formed by the Quaternary Lion fault set, which dips south and merges into the Sisar decollement within the south-dipping, ductile, lower Miocene Rincon formation. By the middle Pleistocene, the Sulphur Mountain anticlinorium and the Big Canyon syncline began forming as a fault-propagation fold; the fault-propagation fold is rooted in the Sisar decollement, a passive backthrust rising from a blind thrust at depth. The formation of the Sulphur Mountain anticlinorium was followed closely by the ramping of the south-dipping Lion fault set to the surface over the nonmarine upper Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the Lion Fault set near the surface. Area-balancing of the deformation shows shortening of 15.5 km, and suggests a 17 km depth to the brittle-ductile transition.« less

  1. Late Cenozoic Vertical Motions of the Coachella Valley Using Apatite U-Th/He and 4/3He Thermochronometry

    NASA Astrophysics Data System (ADS)

    Mason, C. C.; Spotila, J. A.; Fame, M. L.; Dorsey, R. J.; Shuster, D. L.

    2015-12-01

    The Coachella Valley of southern California (USA) is a late Cenozoic transform-related sedimentary basin created by top-to-the-east extension on the West Salton detachment fault and dextral strike-slip offset on the San Andreas fault (Axen and Fletcher, 1998), which has continued to subside as a result of northeastward tilting since initiation of the San Jacinto fault ca. 1.2 Ma. Though it is generally agreed that these large regional faults are responsible for creation of high relief and deep subsidence in the Coachella Valley, the timing, magnitude, and geometries of fault offsets on these structures are still debated. This project applies an integrated source-to-sink approach to investigate tectonic models for evolution of the Pacific-North American plate boundary as recorded in the world-class natural laboratory of the Coachella Valley. In this study we integrate new thermochronometry-constrained kinematic models with tectonostratigraphic interpretations to help quantify the timing, rates, and magnitudes of tectonically driven vertical crustal motions and resulting mass fluxes. We sampled bedrock for U-Th/He (A-He) thermochronometry in the Mecca Hills, Santa Rosa, San Jacinto, and Little San Bernardino Mountains in both spatially focused and widely distributed areas. We also present new results from apatite 4/3He thermochronometry to help constrain the most recent exhumation histories. A-He results reveal spatially variable exhumation ages. The southwest Santa Rosa Mountains experienced late Miocene-early Pliocene exhumation along their southwest flank, while new A-He ages from ranges bounding Coachella Valley reveal complex uplift histories. We integrate our data set with previously published thermochronometric data to improve a regional synthesis of late Cenozoic vertical motions of the Coachella Valley.

  2. Detrital Record of Phanerozoic Tectonics in Iran: Evidence From U-Pb Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Horton, B. K.; Gillis, R. J.; Stockli, D. F.; Hassanzadeh, J.; Axen, G. J.; Grove, M.

    2004-12-01

    Ion-microprobe U-Pb ages of 91 detrital zircon grains supplement ongoing investigations of the tectonic history of Iran, a critical region bridging the gap between the Alpine and Himalayan orogenic belts. These data improve understanding of the distribution of continental blocks during a complex history of Late Proterozoic (Pan-African) crustal growth, Paleozoic passive-margin sedimentation, early Mesozoic collision with Eurasia, and Cenozoic collision with Arabia. U-Pb analyses of detrital zircon grains from four sandstone samples (two Lower Cambrian, one uppermost Triassic-Lower Jurassic, one Neogene) collected from the Alborz mountains of northern Iran reveal a spectrum of ages ranging from 50 to 2900 Ma. Most analyses yield concordant to moderately discordant ages. The Lower Cambrian Lalun and Barut sandstones yield age distribution peaks at approximately 550-650, 1000, and 2500 Ma, consistent with a Gondwanan source area presently to the south and west in parts of Iran and the Arabian-Nubian shield (Saudi Arabia and northwestern Africa). The uppermost Triassic-Lower Jurassic Shemshak Formation exhibits a broad range of U-Pb ages, including peaks of approximately 200-260, 330, 430, 600, and 1900 Ma, requiring a Eurasian source area presently to the north and east in the Turan plate (Turkmenistan and southwestern Asia). Neogene strata display both the youngest and oldest ages (approximately 50 and 2900 Ma) of any samples, a result of substantial sedimentary recycling of older Phanerozoic cover rocks. Because the youngest zircon ages for three of the four samples are indistinguishable from their stratigraphic (depositional) ages, these data suggest rapid exhumation and help constrain the termination age of Late Proterozoic-Early Cambrian (Pan-African) orogenesis and the timing of the Iran-Eurasia collision.

  3. Late-Quaternary Exhumation of Namche Barwa Constrained Using Low-temperature Multi-OSL-thermochronometry

    NASA Astrophysics Data System (ADS)

    King, G. E.; Herman, F.

    2015-12-01

    Exhumation rates >5 mm a-1 have been reported for Namche Barwa, making it one of the most rapidly exhuming places on earth. The driver of such high exhumation rates has been highly debated, and two principle hypotheses have evolved: first the aneurysm model (Zeitler et al., 2001) which proposes that a weakening of the crust coupled with extremely active surface processes causes a spatially stationary locus of exhumation. Secondly a northward plunging antiform that is progressively migrating north-eastward (Seward and Burg, 2008) may instead explain the concentration of extremely low cooling ages and rapid exhumation. Distinguishing the effects of tectonic and surface processes, as well as climate is complex, especially given that most existing thermochronometric systems are unable to resolve late-stage cooling histories. Here we present multi-OSL-thermochronometry which comprises a series of different systems with closure temperature ranging from 30 to 70 oC. We have applied this new technique to a suite of samples from the Namche Barwa massif and are able to resolve cooling histories over 0.1 Ma timescales. Our data indicate propagation of a knick-point along the Parlung river, which can be explained by progressive north-eastward migration of a northward plunging antiform. We suggest therefore that river incision does not feedback onto tectonics, as proposed by the aneurysm model. References Seward, D., Burg, J-P., 2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data. Tectonophysics 451, 282-289. Zeitler, P.K., Meltzer, A.S., Koons, P.O., et al., 2001. Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism. GSA Today 11, 4-9.

  4. Overview of geology and tectonic evolution of the Baikal-Tuva area.

    PubMed

    Gladkochub, Dmitry; Donskaya, Tatiana

    2009-01-01

    This chapter provides the results of geological investigations of the main tectonic units of the Baikal-Tuva region (southwestern part of Siberia) during the last decades: the ancient Siberian craton and adjacent areas of the Central Asian Orogenic belt. In the framework of these main units we describe small-scale blocks (terranes) with focus on details of their inner structure and evolution through time. As well as describing the geology and tectonics of the area studied, we give an overview of underwater sediments, neotectonics, and some phenomena of history and development of the Baikal, Khubsugul, Chargytai, and Tore-Chol Lakes basins of the Baikal-Tuva region. It is suggested that these lakes' evolution was controlled by neotectonic processes, modern seismic activity, and global climate changes.

  5. SRTM Stereo Pair: Northwest of Bhuj, India

    NASA Image and Video Library

    2001-05-31

    On January 26, 2001, the Kachchh region in western India suffered the most deadly earthquake in India history. Geologists traversed the region looking for ground surface disruptions, that could provide clues to the tectonic processes here.

  6. Panta Rhei - the changing face of rocks (Stephan Mueller Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Passchier, Cees W.

    2017-04-01

    The Earth's lithosphere changes shape continuously by plate tectonics and other processes but, unfortunately, we cannot directly access the deeper parts of our planet to study this evolution and the active deformation processes involved. Indirect, geophysical observations allow us to reconstruct processes on a larger scale, but the details on a smaller scale must be studied from samples of metamorphic rocks that have travelled to the surface by complex paths, being modified along the way. Structural analysis of metamorphic rocks has helped to unravel deformation mechanisms and the associated geometric, mineralogical and geochemical changes, but even so there remains a lot to be learned: For example, we know little about the formation of porphyroblasts and their relation with the surrounding fabric, or of porphyroclasts, mineral fish, foliations, lineations, flanking structures, strain fringes and other vorticity gauges; likewise, on a larger scale, the development of gneiss domes, and complex ductile shear zones is poorly understood. This may seem a problem for specialists only, but it actually concerns all large-scale tectonic studies, since the geometry of deformation structures is the "tool-box" of tectonic reconstructions. Recent tectonic processes and large-scale changes in the arrangement of lithospheric fragments are relatively well understood, because we can rely on direct observations of current processes. However, the further we go back in time, down to the Archean, the more we rely on incomplete data obtained from metamorphic rocks that have been preserved. In many cases, deformation geometries in rocks are the single witnesses available of ancient tectonic processes and history, and their correct interpretation is therefore of crucial importance. Without a reliable structural geology toolbox, it is not possible to correctly interpret early, especially Precambrian tectonic processes. This will be demonstrated with examples from Namibia and Australia. Clearly, our understanding of the way in which rocks flow and of the evolution of their final deformation geometries must be improved. One problem is that in tectonics, as in other studies, research is increasingly and briefly directed towards a few highly specialised isolated phenomena that are in the focus of attention, ignoring the huge gaps in our knowledge that separate these. This situation can be improved by the application of new and multidisciplinary research methods, by the identification of "natural experiments", and by more integrated, systematic studies of the connection between structures that at first glance may seem unrelated. These techniques, however, will mostly tell us what happens on the crystal-to-metre scale, while they reveal little on the scale of orogenic belts and continents. For the latter, we need field observations, although there are currently multiple developments that conspire against the progress of field-based studies. Field studies are time consuming in an age where results must be published rapidly, and are hampered by inclement weather and instable local political situations. In addition there is a lack of field-adapted information collection and long-term storage tools. Fortunately, this can now be improved dramatically with the application of drones, photogrammetry and field-adapted mapping software, which in combination can build and store a permanent database of deformation structures, to use in present and future studies. Hopefully, this combination of improved collection and processing of field-based data and a systematic improvement of our understanding of the development of deformation geometries will enhance our fundamental knowledge of flow in rocks. Then, finally, will we begin to understand how everything moves - panta rhei!

  7. New Developments Regarding the KT Event and Other Catastrophes in Earth History

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Papers presented at the conference on New Developments Regarding the KT Event and Other Catastrophes in Earth History are included. Topics covered include: trajectories of ballistic impact ejecta on a rotating earth; axial focusing of impact energy in the earth's interior: proof-of-principle tests of a new hypothesis; in search of Nemesis; impact, extinctions, volcanism, glaciations, and tectonics: matches and mismatches.

  8. Plate tectonics and biogeographical patterns of the Pseudophoxinus (Pisces: Cypriniformes) species complex of central Anatolia, Turkey.

    PubMed

    Hrbek, Tomas; Stölting, Kai N; Bardakci, Fevzi; Küçük, Fahrettin; Wildekamp, Rudolf H; Meyer, Axel

    2004-07-01

    We investigated the phylogenetic relationships of Pseudophoxinus (Cyprinidae: Leuciscinae) species from central Anatolia, Turkey to test the hypothesis of geographic speciation driven by early Pliocene orogenic events. We analyzed 1141 aligned base pairs of the complete cytochrome b mitochondrial gene. Phylogenetic relationships reconstructed by maximum likelihood, Bayesian likelihood, and maximum parsimony methods are identical, and generally well supported. Species and clades are restricted to geologically well-defined units, and are deeply divergent from each other. The basal diversification of central Anatolian Pseudophoxinus is estimated to have occurred approximately 15 million years ago. Our results are in agreement with a previous study of the Anatolian fish genus Aphanius that also shows a diversification pattern driven by the Pliocene orogenic events. The distribution of clades of Aphanius and Pseudophoxinus overlap, and areas of distribution comprise the same geological units. The geological history of Anatolia is likely to have had a major impact on the diversification history of many taxa occupying central Anatolia; many of these taxa are likely to be still unrecognized as distinct. Copyright 2004 Elsevier Inc.

  9. Global geologic map of Ganymede

    USGS Publications Warehouse

    Collins, Geoffrey C.; Patterson, G. Wesley; Head, James W.; Pappalardo, Robert T.; Prockter, Louise M.; Lucchitta, Baerbel K.; Kay, Johnathan P.

    2014-01-01

    Ganymede is the largest satellite of Jupiter, and its icy surface has been formed through a variety of impact cratering, tectonic, and possibly cryovolcanic processes. The history of Ganymede can be divided into three distinct phases: an early phase dominated by impact cratering and mixing of non-ice materials in the icy crust, a phase in the middle of its history marked by great tectonic upheaval, and a late quiescent phase characterized by a gradual drop in heat flow and further impact cratering. Images of Ganymede suitable for geologic mapping were collected during the flybys of Voyager 1 and Voyager 2 (1979), as well as during the Galileo Mission in orbit around Jupiter (1995–2003). This map represents a synthesis of our understanding of Ganymede geology after the conclusion of the Galileo Mission. We summarize the properties of the imaging dataset used to construct the map, previously published maps of Ganymede, our own mapping rationale, and the geologic history of Ganymede. Additional details on these topics, along with detailed descriptions of the type localities for the material units, may be found in the companion paper to this map (Patterson and others, 2010).

  10. Geology is the Key to Explain Igneous Activity in the Mediterranean Area

    NASA Astrophysics Data System (ADS)

    Lustrino, M.

    2014-12-01

    Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.

  11. Accretionary Tectonics of Rock Complexes in the Western Margin of the Siberian Craton

    NASA Astrophysics Data System (ADS)

    Likhanov, I. I.; Nozhkin, A. D.; Savko, K. A.

    2018-01-01

    The geological, geochemical, and isotope-geochronological evidence of the events at the final stage of the Neoproterozoic history of the Yenisei Range is considered (beginning from the formation of fragments of the oceanic crust in the region and their accretion to the Siberian Craton until the postaccretionary stage of crustal tension and onset of the Caledonian orogeny). Based on an analysis of new data on the petrogeochemical composition, age, and geodynamic nature of the formation of contrasting rocks in the composition of tectonic mélange of the Near-Yenisei (Prieniseiskaya) regional shear zone, we have found the chronological sequence of events that marks the early stages of the Paleoasian Ocean evolution in the zone of its junction with the Siberian Craton. These events are documented by the continental marginal, ophiolitic, and island-arc geological complexes, each of which has different geochemical features. The most ancient structures are represented by fragments of oceanic crust and island arcs from the Isakovka terrane (700-620 Ma). The age of glaucophane-schist metamorphic units that formed in the paleosubduction zone corresponds to the time interval of 640-620 Ma. The formation of high-pressure tectonites in the suture zone, about 600 Ma in age, marks the finishing stage of accretion of the Isakovka block to the western margin of the Siberian Craton. The final events in the early history of the Asian Paleoocean were related to the formation of Late Vendian riftogenic amygdaloidal basalts (572 ± 6.5 Ma) and intrusion of postcollisional leucogranites of the Osinovka massif (550-540 Ma), which intruded earlier fragments of the oceanic crust in the Isakovka terrane. These data allow us to refine the Late Precambrian stratigraphic scheme in the northwestern Trans-Angarian part of the Yenisei Range and the evolutionary features of the Sayan-Yenisei accretionary belt. The revealed Late Neoproterozoic landmarks of the evolution of the Isakovka terrane are attributed to the terminal phase of the breakup of Rodinia, separation of the Siberian Craton, and opening of the Paleoasian Ocean.

  12. Long-term variations of clay mineral composition in the Andaman Sea (IODP Exp. 353 Site U1447): preliminary result

    NASA Astrophysics Data System (ADS)

    Lee, J.; Khim, B. K.; Cho, H. G.; Kim, S.; 353 Scientists, I. E.

    2016-12-01

    Clay mineral studies in the Bengal Fan have allowed the reconstruction of the erosional history of the Himalayan-Tibetan complex since the Early Miocene. Several factors such as climate change and tectonic activity are important for the erosion rate of the Himalaya-Tibet complex. IODP Expedition 353 Site U1447 (10°47.4'N, 93°00'E; 1391 mbsl) was drilled on a ridge 45 km offshore Little Andaman Island in the Andaman Sea, penetrating to total depths of 738 m. Riverine sediments supplied mainly by the Irrawaddy and Salween (draining the Indo-Burman Ranges; smectite-rich) and the Ganga/Brahmaputra (draining the Himalaya; illite-rich) via the surface currents have been known to deposit in the Andaman Sea. We measured clay minerals of 38 sediment samples collected from 150 to 737 m CSF-A at Site U1447 in order to reveal long-term variation patterns of clay minerals and their controlling factors. Age reconstruction of Site U1447 aided by shipboard biostratigraphic and paleomagnetic data defined the study interval spanning from the Late Miocene ( 10 Ma) to Early Pleistocene ( 1.25 Ma). At this interval, clay minerals consist mainly of smectite (28-61% with an average of 47%) followed by illite (20-41% with an average of 29%), kaolinite (9-19% with an average of 14%), and chlorite (5-15% with an average of 10%). Variation of clay mineral compositions is divided into three stages; almost consistent variations of all clay minerals (from 750 to 570 m CSF-A; 10.0 to 7.5 Ma), gradual decrease of smectite and increase of illite and chlorite (from 570 to 400 m CSF-A; 7.5 to 4.5 Ma), and great fluctuation of all clay minerals (from 400 to 150 m CSF-A; 4.5 to 1.1 Ma). Such long-term clay mineral changes may be related to provenance switches, tectonic evolution of the source regions, climatic variations, degree of volcanism with basin evolution, sedimentation history by sea level changes or some combination of these factors.

  13. Elucidating tectonic events and processes from variably tectonized conglomerate clast detrital geochronology: examples from the Hongliuhe Formation in the southern Central Asian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Cleven, Nathan; Lin, Shoufa; Davis, Donald; Xiao, Wenjiao; Guilmette, Carl

    2017-04-01

    This work expands upon detrital zircon geochronology with a sampling and analysis strategy dating granitoid conglomerate clasts that exhibit differing degrees of internal ductile deformation. As deformation textures within clastic material reflect the variation and history of tectonization in the source region of a deposit, we outline a dating methodology that can provide details of the provenance's tectonomagmatic history from deformation-relative age distributions. The method involves bulk samples of solely granitoid clasts, as they are representative of the magmatic framework within the provenance. The clasts are classified and sorted into three subsets: undeformed, slightly deformed, and deformed. LA-ICPMS U-Pb geochronology is performed on zircon separates of each subset. Our case study, involving the Permian Hongliuhe Formation in the southern Central Asian Orogenic Belt, analyzes each of the three clast subsets, as well as sandstone detrital samples, at three stratigraphic levels to yield a profile of the unroofed provenance. The age spectra of the clast samples exhibit different, wider distributions than sandstone samples, considered an effect of proximity to the respective provenance. Comparisons of clast data to sandstone data, as well as comparisons between stratigraphic levels, yield indications of key tectonic processes, in addition to the typical characteristics provided by detrital geochronology. The clast data indicates a minimal lag time, implying rapid exhumation rates, whereas sandstone data alone would indicate a 90 m.y. lag time. Early Paleozoic arc building episodes appear as Ordovician peaks in sandstone data, and Silurian-Devonian peaks in clast data, indicating a younging of magmatism towards the proximal provenance. A magmatic hiatus starts in the Devonian, correlating with the latest age of deformed clasts, interpreted as timing of collisional tectonics. Provenance interpretation using the correlations seen between the clast and sandstone data proves to be more detailed and more robust than that determined from sandstone samples alone. The variably tectonized clast detrital geochronology method offers a regional reconnaissance tool that can address the practical limits of studying regional granitoid distributions.

  14. Southernmost Andes and South Georgia Island, North Scotia Ridge: Zircon U-Pb and muscovite {40Ar }/{39Ar } age constraints on tectonic evolution of Southwestern Gondwanaland

    NASA Astrophysics Data System (ADS)

    Mukasa, Samuel B.; Dalziel, Ian W. D.

    1996-11-01

    Zircon U-Pb and muscovite {40Ar }/{39Ar } isotopic ages have been determined on rocks from the southernmost Andes and South Georgia Island, North Scotia Ridge, to provide absolute time constraints on the kinematic evolution of southwestern Gondwanaland, until now known mainly from stratigraphic relations. The U-Pb systematics of four zircon fractions from one sample show that proto-marginal basin magmatism in the northern Scotia arc, creating the peraluminous Darwin granite suite and submarine rhyolite sequences of the Tobifera Formation, had begun by the Middle Jurassic (164.1 ± 1.7 Ma). Seven zircon fractions from two other Darwin granites are discordant with non-linear patterns, suggesting a complex history of inheritances and Pb loss. Reference lines drawn through these points on concordia diagrams give upper intercept ages of ca. 1500 Ma, interpreted as a minimum age for the inherited zircon component. This component is believed to have been derived from sedimentary rocks in the Gondwanaland margin accretionary wedge that forms the basement of the region, or else directly from the cratonic "back stop" of that wedge. Ophiolitic remnants of the Rocas Verdes marginal basin preserved in the Larsen Harbour complex on South Georgia yield the first clear evidence that Gondwanaland fragmentation had resulted in the formation of oceanic crust in the Weddell Sea region by the Late Jurassic (150 ± 1 Ma). The geographic pattern in the observed age range of 8 to 13 million years in these ophiolitic materials, while not definitive, is in keeping with propagation of the marginal basin floor northwestward from South Georgia Island to the Sarmiento Complex in southern Chile. Rocks of the Beagle granite suite, emplaced post-tectonically within the uplifted marginal basin floor, have complex zircon U-Pb systematics with gross discordances dominated by inheritances in some samples and Pb loss in others. Of eleven samples processed, only two had sufficient amounts of zircon for multiple fractions, and only one yielded colinear points. These points lie close to the lower concordia intercept for which the age is 68.9 ± 1.0 Ma, but their upper intercept is not well known. Inasmuch as this age is similar to the {40Ar }/{39Ar } age of secondary muscovite growing in extensional fractures of pulled-apart feldspar phenocrysts in a Beagle suite granitic pluton (plateau age is 68.1 ± 0.4 Ma), we interpret the two dates as good time constraints for cooling following a period of extensional deformation probably related to the tectonic denudation of the highgrade metamorphic complex of Cordillera Darwin in Tierra del Fuego.

  15. Intermittent Granular Dynamics at a Seismogenic Plate Boundary.

    PubMed

    Meroz, Yasmine; Meade, Brendan J

    2017-09-29

    Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10^{-15}  s^{-1}, and released intermittently at intervals >100  yr, in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91±20  km, here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.

  16. Intermittent Granular Dynamics at a Seismogenic Plate Boundary

    NASA Astrophysics Data System (ADS)

    Meroz, Yasmine; Meade, Brendan J.

    2017-09-01

    Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10-15 s-1 , and released intermittently at intervals >100 yr , in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91 ±20 km , here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.

  17. The curious history of Tethys as evidenced by irregular craters and variable tectonism

    NASA Astrophysics Data System (ADS)

    Ferguson, S. N.; Rhoden, A.; Nayak, M.; Asphaug, E. I.

    2017-12-01

    At first glance, the surface of Saturn's moon Tethys appears dominated by craters and its large canyon system, Ithaca Chasma. However, high-resolution Cassini imagery reveals a surface rife with curious geologic features, perhaps indicative of non-heliocentric impact populations and, potentially, a history of tectonic activity. We mapped three regions on Tethys to survey the diversity of features present on the surface, determine crater counts for each region, map and analyze fracture patterns, and identify constraints on the impactor populations. One study region is just south and west of the Odysseus impact basin (R1), and the other two regions sit slightly west of Ithaca Chasma (R2 and R3). The regions were imaged at average resolutions of 200m/pix, which is adequate to identify craters down to D=1km. Of 1200 total craters counted, we have identified 195 elliptical craters and 28 polygonal craters. Elliptical craters likely form from slow, oblique impacts, whereas polygonal craters are indicative of underlying tectonic structure. We identified 605 small craters, D=1-2km, across the three regions; we find that R1 has many more 1-10 km craters than R2 and R3. We also mapped 367 linear features. The median and range of orientations of the linear features vary across the regions. Despite their proximity, the orientations of lineations in R2 and R3 are not consistent with the orientation of Ithaca Chasma. This could be suggestive of different epochs of tectonic activity on Tethys. When compared with R2 and R3, R1 has more small craters, more lineations, and a preferred orientation of lineations that is distinct from the other two regions. Possible causes for a larger population of small craters in R1 include secondary craters from Odysseus and oblique impacts from debris ejected from Tethys' co-orbital moons, which should create many more 1km craters in R1 than the other regions. Due to the oblique impact angles predicted for incoming co-orbital debris, these impacts may have also produced some of the lineations observed in R1. Oblique impacts can also form elliptical craters, but that would imply much larger debris than expected from the craters presently observed on the co-orbitals. We discuss additional analysis and implications of Tethys' curious geologic features on its bombardment and tectonic history.

  18. Studies related to the Charleston, South Carolina, earthquake of 1886; tectonics and seismicity

    USGS Publications Warehouse

    Gottfried, David; Annell, C.S.; Byerly, G.R.; Lanphere, Marvin A.; Phillips, Jeffrey D.; Gohn, Gregory S.; Houser, Brenda B.; Schneider, Ray R.; Ackermann, Hans D.; Yantis, B.R.; Costain, John K.; Schilt, F. Steve; Brown, Larry; Oliver, Jack E.; Kaufman, Sidney; Hamilton, Robert Morrison; Behrendt, John C.; Henry, V. James; Bayer, Kenneth C.; Daniels, David L.; Zietz, Isidore; Popenoe, Peter; Chowns, T.M.; Williams, C.T.; Dooley, Robert E.; Wampler, J.; Dillon, William P.; Klitgord, Kim D.; Paull, Charles K.; McGinnis, Lyle D.; Dewey, James W.; Tarr, Arthur C.; Rhea, Susan; Wentworth, Carl M.; Mergner-Keefer, Marcia; Bollinger, G.A.; Gohn, Gregory S.

    1983-01-01

    Since 1973, the U.S. Geological Survey (USGS), with support from the Nuclear Regulatory Commission, has conducted extensive investigations of the tectonic and seismic history of the Charleston, S.C., earthquake zone and surrounding areas. The goal of these investigations has been to discover the cause of the large intraplate Charleston earthquake of 1886, which dominates the record of seismicity in the Southeastern United States, through an understanding of the historic and modern seismicity at Charleston and of the tectonic setting of the seismicity. This goal is being pursued to evaluate the potential for additional large earthquakes in the Charleston area and surrounding regions and to determine whether the Charleston area differs tectonically in any significant fashion from other parts of the Southeastern United States. An understanding of the specific cause for the 1886 event and of the regional distribution of any structures that are generically related to or geometrically and mechanically similar to the source structure is essential for evaluation of seismic hazards throughout the Southeast.The results given herein represent significant progress toward understanding the tectonic setting of the Charleston-area seismicity. Several chapters in the volume address the distribution and origin of pre-Cretaceous rocks and structures beneath Coastal Plain sediments in the Charleston area and regionally beneath the southern Atlantic Coastal Plain and adjacent Continental Shelf. The modern seismicity at Charleston is occurring at depths equal to or greater than the known extent of these older structures, and rejuvenation of an older fault in the modern stress field is a possible cause of the seismicity. Accordingly, several chapters discuss the possible relationships of the various pre-Cretaceous structures to faults identified near Charleston that have a known Cretaceous and Cenozoic movement history and to the historic and instrumentally recorded seismicity. However, at the present time, none of the young structures can be related unequivocally to the seismicity because earthquake fault-plane solutions and hypocenter distributions do not agree with the locations and orientations of these structures. Therefore, a major emphasis of continuing USGS investigations near Charleston will be to identify additional faults, if any exist, to delineate fault movement histories, and to further refine earthquake locations, focal mechanisms, and related seismological interpretations.

  19. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  20. Tectonic interpretations of Central Ishtar Terra (Venus) from Venera 15/16 and Magellan full-resolution radar images

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Vergely, P.; Masson, P.

    1994-03-01

    For more than a decade, the mapping of Venus has revealed a surface that has had a complex volcanic and tectonic history, especially in the northern latitudes. Detailed morphostructural analysis and tectonic interpretations of Central Ishtar Terra, based both on Venera 15/16 and Magellan full-resolution radar images, have provided additional insight to the formation and evolution of Venusian terrains. Ishtar Terra, centered at 0 deg E longitude and 62 deg N latitude, consists of a broad high plateau, Lakshmi Planum, partly surrounded by two highlands, Freyja and Maxwell Montes, which have been interpreted as orogenic belts based on Venera 15 and 16 data. Lakshmi Planum, the oldest part of Ishtar Terra, is an extensive and complexly fractured plateau that can be compared to a terrestrial craton. The plateau is partially covered by fluid lava flows similar to the Deccan traps in India, which underwent a late stage of extensional fracturing. After the extensional deformation of Lakshmi Planum, Freyja and Maxwell Montes were created by regional E-W horizontal shortening that produced a series of N-S folds and thrusts. However, this regional arrangement of folds and thrusts is disturbed locally, e.g. the compressive deformation of Freyja Montes was closely controlled by parallel WNW-ESE-trending left-lateral shear zones and the northwestern part of Maxwell Montes seems to be extruded laterally to the southwest, which implies a second oblique thrust front overlapping Lakshmi Planum. These mountain belts also shows evidence of a late volcanic stage and a subsequent period of relaxation that created grabens parallel to the highland trends, especially in Maxwell Montes.

  1. Tectonics and metallogenic provinces

    USGS Publications Warehouse

    Guild, P.W.

    1983-01-01

    Various theories have been advanced to explain the well-known uneven distribution of metals and ore-deposit types in space and time. Primordial differences in the mantle, preferential concentration of elements in the crust, the prevalence of ore-forming processes at certain times and (or) places, and combinations of one or several of these factors have all been called upon to account for the "metallogenic provinces," which can be defined loosely as regions containing similar deposits of one or a group of metals or minerals. Because many, perhaps most, provinces have complex, multistage origins, the relative importance of inheritance vs. process is still controversial. In recent years the geographic relationship of many geologically young provinces to present-day plate-tectonic positions (accreting or consuming margins, intraplate structures, etc.) has been widely recognized, and the presumption is strong that older provinces had similar relationships to former plates. As most ore deposits resulted from a favorable conjunction of geological processes that are no longer operative, elucidation of their genesis requires reconstruction of the geologic history of the province, with particular emphasis on events coeval with mineralization. Tectonic analysis is an important aspect of this reconstruction; data from orbiting satellites have contributed greatly to this analysis, as the voluminous literature of the past decade testifies. Both the synoptic view of large areas and the ability to emphasize faint contrasts have revealed linear, curvilinear, and circular features not previously recognized from field studies. Some of these undoubtedly reflect basement structures that have contributed to the development, or limit the extent, of metallogenic provinces. Their recognition and delineation will be increasingly valuable to the assessment of resources available and as guides to exploration for the ores needed by future generations. ?? 1983.

  2. ALVIN investigation of an active propagating rift system, Galapagos 95.5° W

    USGS Publications Warehouse

    Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, Norman H.; Johnson, H. Paul; Neal, C.A.

    1992-01-01

    ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.

  3. Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet

    NASA Astrophysics Data System (ADS)

    Laskowski, Andrew K.; Kapp, Paul; Ding, Lin; Campbell, Clay; Liu, XiaoHui

    2017-01-01

    The Lopu Range, located 600 km west of Lhasa, exposes a continental high-pressure metamorphic complex beneath India-Asia (Yarlung) suture zone assemblages. Geologic mapping, 14 detrital U-Pb zircon (n = 1895 ages), 11 igneous U-Pb zircon, and nine zircon (U-Th)/He samples reveal the structure, age, provenance, and time-temperature histories of Lopu Range rocks. A hornblende-plagioclase-epidote paragneiss block in ophiolitic mélange, deposited during Middle Jurassic time, records Late Jurassic or Early Cretaceous subduction initiation followed by Early Cretaceous fore-arc extension. A depositional contact between fore-arc strata (maximum depositional age 97 ± 1 Ma) and ophiolitic mélange indicates that the ophiolites were in a suprasubduction zone position prior to Late Cretaceous time. Five Gangdese arc granitoids that intrude subduction-accretion mélange yield U-Pb ages between 49 and 37 Ma, recording Eocene southward trench migration after collision initiation. The south dipping Great Counter Thrust system cuts older suture zone structures, placing fore-arc strata on the Kailas Formation, and sedimentary-matrix mélange on fore-arc strata during early Miocene time. The north-south, range-bounding Lopukangri and Rujiao faults comprise a horst that cuts the Great Counter Thrust system, recording the early Miocene ( 16 Ma) transition from north-south contraction to orogen-parallel (E-W) extension. Five early Miocene (17-15 Ma) U-Pb ages from leucogranite dikes and plutons record crustal melting during extension onset. Seven zircon (U-Th)/He ages from the horst block record 12-6 Ma tectonic exhumation. Jurassic—Eocene Yarlung suture zone tectonics, characterized by alternating episodes of contraction and extension, can be explained by cycles of slab rollback, breakoff, and shallow underthrusting—suggesting that subduction dynamics controlled deformation.

  4. Ages of fracturing and resurfacing in the Amenthes region, Mars

    NASA Technical Reports Server (NTRS)

    Maxwell, Ted A.; Mcgill, George E.

    1988-01-01

    An attempt is made to determine whether there is any tectonic evidence in the relatively recent history of the boundary zone that will place contraints on the origin of the Martian dichotomy. It is found that the timing of resurfacing events and structural modification of outlier plateaus and mesas in the Martian eastern hemisphere provides a contraint on the history of tectonic events along the cratered terrain-northern plains boundary. The circumferential grabens surrounding the Isidis basin ceased forming before the final emplacement of ridged plains on the adjacent northern lowlands. The cratered plateau east of the Isidis basin includes two crater populations; stripping of the rims of craters was complete before downfalling of the transition zone between the cratered terrain and the northern plains, and a young population of craters on the plateau records the same age as the ridged plains units north of the boundary.

  5. The Links Between the Formation of the Gulf of Mexico and the Late Proterozoic to Mesozoic Tectonic Evolution of Southern North America

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Mickus, K. L.; Gurrola, H.; Harry, D. L.; Pulliam, J.

    2016-12-01

    A full understanding of the Gulf of Mexico's geologic history depends on understanding the tectonic framework along the southern margin of North America. The first step in establishing this framework was the breakup of Laurentia during the Early Paleozoic. At least one tectonic block rifted away from Laurentia's southern margin at this time, and is interpreted to be presently located in Argentina. Rifting resulted in a sinuous margin consisting of alternating ridge and transform segments extending from the southeastern U.S. across Texas into northern Mexico. The Paleozoic margin is associated with a clearly defined gravity high, and ends in the trend of this high are associated with intersections of ridge and transform segments along the margin. By the end of the Paleozoic, continental assembly via the Appalachian-Ouachita orogeny added new terranes to the eastern and southern margins of Laurentia and the assembly of the supercontinent Pangea was complete. Triassic through Late Jurassic opening of the Gulf of Mexico (GOM) created a complex margin, initially mobilizing several crustal blocks that were eventually left behind on the North American margin as seafloor spreading developed within the Gulf and the Yucatan block separated and rotated into its current position. Recent deep seismic reflection profiles along the northern margin of the GOM show that rifted continental crust extends offshore for 250 km before the oceanic crust of the Gulf of Mexico is encountered. Our group has worked to produce four integrated models of the lithospheric structure based upon reflection, refraction, and teleseismic data acquired across this margin integrated with gravity, magnetic, geologic and drilling data. These models define a complex zone of crustal thinning along the Gulf Coastal plain of Texas that is covered by up to 10km of primarily Cretaceous and younger sedimentary rocks. To the east along the coastal plain region, we have defined two large crustal blocks that were essentially left behind by the opening of the Gulf of Mexico.

  6. Tectonostratigraphy and depositional history of the Neoproterozoic volcano-sedimentary sequences in Kid area, southeastern Sinai, Egypt: Implications for intra-arc to foreland basin in the northern Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Khalaf, E. A.; Obeid, M. A.

    2013-09-01

    This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian-Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1-D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The progressive change in lithofacies from marine intra-arc basin to continental molasses foreland basin and from compression to extension setting respectively, imply that the source area became peneplained, where the Kid basin became stabilized as sedimentation progressed following uplift. The scenario proposed of the study area supports the role of volcanic and tectonic events in architecting the facies and stratigraphic development.

  7. The Post-Eocene Evolution of the Doruneh Fault Region (Central Iran): The Intraplate Response to the Reorganization of the Arabia-Eurasia Collision Zone

    NASA Astrophysics Data System (ADS)

    Tadayon, Meisam; Rossetti, Federico; Zattin, Massimiliano; Nozaem, Reza; Calzolari, Gabriele; Madanipour, Saeed; Salvini, Francesco

    2017-12-01

    The Cenozoic deformation history of Central Iran has been dominantly accommodated by the activation of major intracontinental strike-slip fault zones, developed in the hinterland domain of the Arabia-Eurasia convergent margin. Few quantitative temporal and kinematic constraints are available from these strike-slip deformation zones, hampering a full assessment of the style and timing of intraplate deformation in Iran and the understanding of the possible linkage to the tectonic reorganization of the Zagros collisional zone. This study focuses on the region to the north of the active trace of the sinistral Doruneh Fault. By combing structural and low-temperature apatite fission track (AFT) and (U-Th)/He (AHe) thermochronology investigations, we provide new kinematic and temporal constraints to the deformation history of Central Iran. Our results document a post-Eocene polyphase tectonic evolution dominated by dextral strike-slip tectonics, whose activity is constrained since the early Miocene in response to an early, NW-SE oriented paleo-σ1 direction. A major phase of enhanced cooling/exhumation is constrained at the Miocene/Pliocene boundary, caused by a switch of the maximum paleo-σ1 direction to N-S. When integrated into the regional scenario, these data are framed into a new tectonic reconstruction for the Miocene-Quaternary time lapse, where strike-slip deformation in the intracontinental domain of Central Iran is interpreted as guided by the reorganization of the Zagros collisional zone in the transition from an immature to a mature stage of continental collision.

  8. A synthesis of Jurassic and Early Cretaceous crustal evolution along the southern margin of the Arctic Alaska–Chukotka microplate and implications for defining tectonic boundaries active during opening of Arctic Ocean basins

    USGS Publications Warehouse

    Till, Alison B.

    2016-01-01

    A synthesis of Late Jurassic and Early Cretaceous collision-related metamorphic events in the Arctic Alaska–Chukotka microplate clarifies its likely movement history during opening of the Amerasian and Canada basins. Comprehensive tectonic reconstructions of basin opening have been problematic, in part, because of the large size of the microplate, uncertainties in the location and kinematics of structures bounding the microplate, and lack of information on its internal deformation history. Many reconstructions have treated Arctic Alaska and Chukotka as a single crustal entity largely on the basis of similarities in their Mesozoic structural trends and similar late Proterozoic and early Paleozoic histories. Others have located Chukotka near Siberia during the Triassic and Jurassic, on the basis of detrital zircon age populations, and suggested that it was Arctic Alaska alone that rotated. The Mesozoic metamorphic histories of Arctic Alaska and Chukotka can be used to test the validity of these two approaches.A synthesis of the distribution, character, and timing of metamorphic events reveals substantial differences in the histories of the southern margin of the microplate in Chukotka in comparison to Arctic Alaska and places specific limitations on tectonic reconstructions. During the Late Jurassic and earliest Cretaceous, the Arctic Alaska margin was subducted to the south, while the Chukotka margin was the upper plate of a north-dipping subduction zone or a zone of transpression. An early Aptian blueschist- and greenschist-facies belt records the most profound crustal thickening event in the evolution of the orogen. It may have resulted in thicknesses of 50–60 km and was likely the cause of flexural subsidence in the foredeep of the Brooks Range. This event involved northern Alaska and northeasternmost Chukotka; it did not involve central and western Chukotka. Arctic Alaska and Chukotka evolved separately until the Aptian thickening event, which was likely a result of the rotation of Arctic Alaska into central and western Chukotka. In northeastern Chukotka, the thickened rocks are separated from the relatively little thickened continental crust of the remainder of Chukotka by the oceanic rocks of the Kolyuchin-Mechigmen zone. The zone is a candidate for an Early Cretaceous suture that separated most of Chukotka from northeast Chukotka and Alaska. Albian patterns of magmatism, metamorphism, and deformation in Chukotka and the Seward Peninsula may represent an example of escape tectonics that developed in response to final amalgamation of Chukotka with Eurasia.

  9. Ogaden Basin subsidence history: Another key to the Red Sea-Gulf of Aden tectonic puzzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigott, J.D.; Neese, D.; Carsten, G.

    1995-08-01

    Previous work has attempted to understand the tectonic evolution of the Red Sea-Gulf of Aden region through a focus upon plate kinematics and reconstruction of plate interactions in a two dimensional sense. A significant complement to the three dimensional puzzle can be derived from a critical examination of the vertical component, tectonic subsidence analysis. By removing the isostatic contributions of sediment loading and unloading, and fluctuations in sea level, the remaining thermal-mechanical contribution to a basin`s subsidence can be determined. Such an analysis of several Ogaden Basin wells reveals multiple pulses of tectonic subsidence and uplift which correspond to far-fieldmore » tectonic activities in the Red Sea and Gulf of Aden. One of the more dramatic is a Jurassic tectonic pulse circa 145-130 m.a., and a later extensional event which correlates to a major subsidence event ubiquitous through-out the Gulf of Aden, related to Gondwana Land breakup activities. Tectonic uplift during the Tertiary coincides with early Red Sea rifting episodes. Such activities suggest the Ogaden Basin has been a relatively stable East African cratonic basin, but with heating-extension events related to nearby plate interactions. In terms of hydrocarbon generation, the use of steady state present day geothermal gradients, coupled with subsidence analysis shows that potential Paleozoic and Mesozoic source rocks initiated generation as early as the Jurassic. The generating potential of Paleozoic source rocks would only be exacerbated by later heating events. Furthermore, cooling and tectonic uplift during the Tertiary would tend to arrest on-going hydrocarbon generation for Jurassic source rocks in the Ogaden area.« less

  10. A review of the paleomagnetic data from Cretaceous to lower Tertiary rocks from Vietnam, Indochina and South China, and their implications for Cenozoic tectonism in Vietnam and adjacent areas

    NASA Astrophysics Data System (ADS)

    Cung, Thu'ọ'ng Chí; Geissman, John W.

    2013-09-01

    Available paleomagnetic data from rock formations of Cretaceous age from Vietnam, Indochina and South China are compiled and reviewed in the context of their tectonic importance in a common reference frame with respect to Eurasia's coeval paleopoles. Key factors that play an important role in determining the reliability of a paleomagnetic result for utilization in tectonic studies have been taken into consideration and include the absence of evidence of remagnetization, which is a feature common to many rocks in this region. Overall, the Cretaceous paleomagnetic data from the South China Block show that the present geographic position of the South China Block has been relatively stable with respect to Eurasia since the mid-Cretaceous and that the paleomagnetically detected motion of a coherent lithospheric block must be based on the representative data obtained from different specific localities across the block in order to separate more localized, smaller scale deformation from true lithosphere scale motion (translation and/or rotation) of a tectonic block. Cretaceous to early Tertiary paleomagnetic data from the Indochina-Shan Thai Block reveal complex patterns of intra-plate deformation in response to the India-Eurasia collision. Paleomagnetically detected motions from the margins of tectonic blocks are interpreted to mainly reflect displacement of upper crustal blocks due to folding and faulting processes. Rigid, lithosphere scale block rotation is not necessarily supported by the paleomagnetic data. The paleomagnetic results from areas east and south of the Red River fault system suggest that this major transcurrent fault system has had a complicated slip history through much of the Cenozoic and that it does not demarcate completely non-rotated and significantly rotated parts of the crust in this area. However, most paleomagnetic results from areas east and south of the Red River fault system at the latitude of Yunnan Province are consistent with a very modest (about 800 km+-), yet paleomagnetically resolvable southward component of latitudinal translation. Accordingly, given the difficulty in separating actual lithosphere-scale plate motions from those of relatively thin, upper crustal blocks, we advocate extreme caution in interpreting paleomagnetic data from regions such as Indochina where block interaction and strong deformation are known to have occurred.

  11. An eclogite-bearing continental tectonic slice in the Zermatt-Saas high-pressure ophiolites at Trockener Steg (Zermatt, Swiss Western Alps)

    NASA Astrophysics Data System (ADS)

    Weber, Sebastian; Bucher, Kurt

    2015-09-01

    The Theodul Glacier Unit (TGU) at "Trockener Steg" represents a continental slice, embedded within the ophiolitic Zermatt-Saas Zone. The Zermatt-Saas Zone is the remnant of the Piemonte-Liguria oceanic lithosphere, formed in the middle Jurassic and subducted up to eclogite facies conditions in the Early Tertiary. The close spatial association of the TGU to the Zermatt-Saas Zone permits a comparison of the metamorphic evolution of the units by detailed field mapping and a petrological investigation of eclogites. The eclogites from both tectono-metamorphic units can be clearly distinguished by their textures, mineral assemblages and by mineral and bulk-rock composition. Geothermobarometry and computed assemblage stability diagrams for the TGU eclogites indicate P-T conditions of 2.2 ± 0.1 GPa and 580 ± 50 °C. These derived P-T conditions must be considered as minimum peak metamorphic conditions the rocks achieved during subduction. The P-T data are different from those derived for eclogites of Zermatt-Saas Zone adjacent to the Theodul Glacier Unit, that reached maximal burial depths at 2.3-2.4 GPa and 500 ± 50 °C. While the estimates of the eclogites of Zermatt-Saas Zone are in good agreement with some of the previous studies, the contrasting P-T estimates for the TGU eclogites suggest that the Zermatt-Saas complex must be subdivided into several tectonic subunits. The non-uniform peak conditions over the "Trockener Steg" area and the maximum pressures conditions reported from ultra-high pressure localities within Zermatt-Saas Zone suggest, that individual tectonic slices have been assembled after detachment from the slab at the return-point, i.e. along the exhumation path. Detached packages of rocks may range from small tectonic slices up to several kilometer-sized fragments. The TGU is separated from the surrounding rocks of the ophiolite unit by two major tectonic contacts. In addition, the formation of biotite-rich crusts along the basal contact of the TGU is evidence of prolonged fluid channeling along the basal thrust. The presence of hydrous decompression assemblages replacing earlier formed high-pressure mineral assemblages within the studied eclogite suggests that fluids were present throughout most of the TGU exhumation history.

  12. Hydrogeological impacts of a railway tunnel in fractured Precambrian gneiss rocks (south-eastern Norway)

    NASA Astrophysics Data System (ADS)

    Kværner, Jens; Snilsberg, Petter

    2013-11-01

    Groundwater monitoring along the Romeriksporten tunnel, south-eastern Norway, provided an opportunity for studying the impacts of tunnelling on groundwater in fractured Precambrian gneiss rocks, and examining relations between bedrock hydrology, tectonic weakness zones and catchments. Tunnel leakage resulted in groundwater drawdown up to 35 m in weakness zones, converted groundwater discharge zones into recharge zones, and affected groundwater chemistry. The magnitude of drawdown and fluctuations in groundwater level differed between weakness zones, and varied with distance from the tunnel route, tunnel leakage, and recharge from catchments. Clear differences in groundwater level and fluctuation patterns indicated restricted groundwater flow between weakness zones. The groundwater drawdowns demonstrated coherent water-bearing networks to 180-m depth in faults and fracture zones. Similar groundwater levels with highly correlated fluctuations demonstrated hydraulic connectivity within fracture zones. Different groundwater drawdown and leakage in weakness zones with different appearance and influence of tectonic events demonstrated the importance of the geological history for bedrock hydrogeology. Water injection into the bedrock counteracted groundwater drawdowns. Even moderate leakage to underground constructions may lead to large groundwater drawdown in areas with small groundwater recharge. Hydrogeological interpretation of tectonic weakness zones should occur in the context of geological history and local catchment hydrology.

  13. Remote sensing revealed drainage anomalies and related tectonics of South India

    NASA Astrophysics Data System (ADS)

    Ramasamy, SM.; Kumanan, C. J.; Selvakumar, R.; Saravanavel, J.

    2011-03-01

    Drainages have characteristic pattern and life histories with youthful stage in hilly areas, mature stage in plains and old stage in the coastal zones. The deviations from their normal life histories, especially aberrations in their flow pattern in the form of various drainage anomalies have been inferred to be the indications of dominantly the Eustatic and Isostatic changes. This, especially after the advent of Earth Observing Satellites, has attracted the geoscientists from all over the world, for studying such drainage anomalies. In this connection, a study has been undertaken in parts of South India falling south of 14° south latitude to comprehensively map some drainage anomalies like deflected drainages, eyed drainages and compressed meanders and to evolve the tectonic scenario therefrom. The mapping of such mega drainage anomalies and the related lineaments/faults from the satellite digital data and the integration of such lineaments/faults with the overall lineament map of South India showed that the study area is marked by active N-S block faults and NE-SW sinistral and NW-SE dextral strike slip faults. Such an architecture of active tectonic grains indicates that the northerly directed compressive force which has originally drifted the Indian plate towards northerly is still active and deforming the Indian plate.

  14. Tectonochemistry of the Brooks Range Ophiolite, Alaska

    NASA Astrophysics Data System (ADS)

    Biasi, J.; Asimow, P. D.; Harris, R. A.

    2017-12-01

    The Brooks Range Ophiolite (BRO), recently estimated to be 1800km2 in area, is the largest ophiolite in the Western Hemisphere. However, due to its remote location, it remains one of the least studied. Mineral exploration and reconnaissance-level mapping of the ophiolite were done in the 1970s and 1980s. Some chemical analyses were also performed, but since that time the BRO has received little attention. Over the subsequent 25+ years, the study of ophiolites has advanced greatly. These early studies found that the BRO lies in the structurally highest position in the Brooks Range, and its obduction probably coincided with the collision between the Koyukuk Arc and the Arctic-Alaska continental margin. It is therefore important to determine the tectonic setting in which the BRO formed if one wants to understand the tectonic history of the Northern Cordillera during the Jurassic/Cretaceous. Here we present new tectonochemistry data from the BRO. This includes whole-rock data (via XRF), trace element data (via XRF and ICP-MS), and mineral chemistries (via Electron Microprobe). Using immobile element fingerprinting, we constrain the tectonic setting in which the BRO formed and how this information ties in with other events in the Northern Cordillera's history. The fingerprinting results are supplemented by Cr-in-spinel data and Al-in-olivine thermometry.

  15. River history.

    PubMed

    Vita-Finzi, Claudio

    2012-05-13

    During the last half century, advances in geomorphology-abetted by conceptual and technical developments in geophysics, geochemistry, remote sensing, geodesy, computing and ecology-have enhanced the potential value of fluvial history for reconstructing erosional and depositional sequences on the Earth and on Mars and for evaluating climatic and tectonic changes, the impact of fluvial processes on human settlement and health, and the problems faced in managing unstable fluvial systems. This journal is © 2012 The Royal Society

  16. Old stories and lost pieces of the Eastern Mediterranean puzzle: a new approach to the tectonic evolution of the Western Anatolia and the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem

    2015-04-01

    During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200 km. Therefore the original NE-SW extension records on the core complexes rotated to the N-S orientation and replace 45o in reference to the core complexes in Greece, 6. During this stage, the left-lateral shear along the Burdur-Fethiye Shear Zone indicates the southern part of the counterclockwise rotation. 7. The North Anatolian Fault started to form as the result of the collision of the Arabian Microplate and the Eurasian Plate in the late Miocene. This continental transform fault propagated into the Marmara Region in the late Pliocene. Its late westward escape by cutting the Trakya-Eskişehir Fault Zone on three points generates its transportation through Trakya-Eskişehir Fault Zone splays. 8. During the Miocene, while Greece was rotating 20o clockwise and continuing to be shaped by the NW-SE normal faults, which were formed as a result of back-arc tectonic, the late westward escape of the Anatolia changed the orientation of the NEE-SWW striking oblique-extensional fault-controlled Miocene basins to NE-SW direction. The rotational E-W basins, which had developed by the North Anatolian Fault tectonics, superimposed with these Miocene basins .

  17. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    USGS Publications Warehouse

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic optimization technique are found to be most effective in determining the optimal value of the tectonic parameters. Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the presence of observation and numerical uncertainties. The algorithm succeeds even when the synthetic data has detailed information only in a limited depth interval and has a different dominant frequency in the synthetic and observed seismograms. The methodology presented here even works when the basin input data contains only 75 per cent of the stratigraphic layering information compared with the actual basin in a limited depth interval.

  18. Tectonic context of the penetrative fracture system origin in the Early Paleozoic shale complex (Baltic Basin, Poland/Sweden).

    NASA Astrophysics Data System (ADS)

    Jarosiński, Marek; Gluszynski, Andrzej; Bobek, Kinga; Dyrka, Ireneusz

    2017-04-01

    Characterization of natural fracture and fault pattern play significant role for reservoir stimulation design and evaluation of its results. Having structural observations limited to immediate borehole surrounding it is a common need to build up a fracture model of reservoir in a range of stimulation reservoir volume or even beyond. To do this we need both a 3D seismic model and a consistent concept of the regional tectonic evolution. We present the result of integrated tectonic study in several deep boreholes target the Lower Paleozoic shale complex of Baltic Basin (BB), combined with analysis of 3D seismic survey and outcrop screening in Scania (Swedish part of the BB). During deposition of shale complex in the Ordovician and Silurian the research area was located 200-300 km away from the continental margin of Baltica involved in the Caledonian collision with the Eastern Avalonia. This distance allowed the shale complex to avoid significant tectonic deformation. Regional seismic cross section reveals the general pattern of the BB infill characteristic for the foreland basin underwent post-collisional isostatic rebound. Due to stress changes in collisional context the shale complex was cross-cut by steep, mostly inverse faults trending NW-SE and NE-SW. The fault zones oriented NW-SE are associated with an array of en echelon faults characteristic for strike-slip displacement. In our interpretation, these faults of Silurian (Wenlock) age create pattern of the regional pop-up structure, which is simultaneously involved in the plate flexure extension. Seismic attributes (e.g. curvature or ant tracking) highlight lineaments which mostly mimic the faults orientation. However, attributes show also some artefacts that come from regular array of seismic sources and receivers, which mimic the orthogonal joint system. Structural observations on borehole core lead us to conclusion that regular, orthogonal fracture system developed after maximum burial of the complex, triggered by mechanism of natural hydraulic fracturing due to hydrocarbon generation. These fractures create veins filled with calcite that growth was controlled by mechanical layering and the TOC content of the shale complex. The main joint fracture pattern is stable across at least 300 hundred kilometers, from the Polish to Swedish portion of Baltic Basin. Therefore a major tectonic event is expected to govern its origin. The Late Carboniferous thin-skinned compression exerted at the edge of the East European Craton, is preferred tectonic fracture triggering factor. This age of jointing is confirmed by the strike of principal joint set characteristic for Variscan compression. In addition, principal joint system is sensitive (=younger) to a presence of the Caledonian-age faults in Pomerania but insensitive (=older) to the Mesozoic faults in Scania. Above genetic considerations should be taken into account while building the self-consistent discrete fracture network of faults and fractures for the purpose of shale reservoir stimulation.

  19. Digital database of microfossil localities in Alameda and Contra Costa Counties, California

    USGS Publications Warehouse

    McDougall, Kristin; Block, Debra L.

    2014-01-01

    The eastern San Francisco Bay region (Contra Costa and Alameda Counties, California) is a geologically complex area divided by faults into a suite of tectonic blocks. Each block contains a unique stratigraphic sequence of Tertiary sediments that in most blocks unconformably overlie Mesozoic sediments. Age and environmental interpretations based on analysis of microfossil assemblages are key factors in interpreting geologic history, structure, and correlation of each block. Much of this data, however, is distributed in unpublished internal reports and memos, and is generally unavailable to the geologic community. In this report the U.S. Geological Survey microfossil data from the Tertiary sediments of Alameda and Contra Costa counties are analyzed and presented in a digital database, which provides a user-friendly summary of the micropaleontologic data, locality information, and biostratigraphic and ecologic interpretations.

  20. Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Bergner, A. G. N.; Strecker, M. R.; Trauth, M. H.; Deino, A.; Gasse, F.; Blisniuk, P.; Dühnforth, M.

    2009-12-01

    The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modern climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14C and 40Ar/ 39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.

  1. On the Evolution of Terrestrial Planets: Implications of Evolutionary Paths and Evolving Lid-States

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.

    2015-12-01

    Growing geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain [e.g., 1, 2, and references therein]. Accordingly, information from current observations and processes have the potential of sampling portions of the Earth that has both formed under and been modified by differing tectonic regimes. Here we use coupled 3D mantle convection and planetary tectonics simulations to explore evolutionary paths and planetary tectonic regimes. Early in the geologic lifetime of a terrestrial planet, high mantle temperatures favour stagnant-lids. As radiogenics decay, an initial stagnant-lid may yield into a high temperature mobile-lid state. The transition from an initial stagnant-lid is a function of yield strength, in addition to both internal and surface temperatures. Each lid-state has specific diagnostics and implications for internal parameters, and consequently planetary evolution. The implication within this framework is that a system with a different thermal evolution has the potential to migrate through tectonic regimes at the same 'thermal time' (e.g. temperature), but very different 'temporal times'. This indicate that multiple modes of convection and surface tectonics can potentially operate on a single planetary body at different times in its evolution, as consequence of changing internal parameters, surface temperatures, and differing thermal histories. We will discuss the implications of terrestrial worlds that can alternate, and be offset between multiple tectonic states over giga-year timescales. [1] O'Neill et. al. (2013b) Geol. Soc. London; [2] Weller et al. (2015) EPSL

  2. Seismotectonic zoning of Azerbaijan territory

    NASA Astrophysics Data System (ADS)

    Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad

    2017-04-01

    Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep structure of Greater and Lesser Caucasus, detailed description of the deep structure of Caspian zone, Kur and Caspian megadepressions, identification of nappe-folded structure of the Absheron Peninsula and the Absheron threshold at the border of Middle and South Caspian, justification of the possible hydrocarbon concentration at the tectonically stratified substantial complexes of mountain and foothill areas, etc. Based on the outcomes of implemented researches, some general conclusions and schemes were drawn for some parts of the project region within the plate tectonics conceptual frameworks, to include the territories of Lesser Caucasus and South Caspian. Analysis and comparison of these data with macroseismic and instrumental data allowed us to conduct seismotectonic studies in a region and develop a new scheme of seismotectonic map with outlined recent and forecasted seismic activity. There also correlated foci zones of earthquakes with subhorizontal and subvertical borders in earth crust, which shows their structure-dynamic relationship. In the one hand, the earthquake foci zones belong to the faults of the basement which extend to sedimentary cover and their intersection knots. On the other hand, there appearing inner-block seismogenic levels, namely, in seismic generation acts all the earth crust: tectonic stress results on movements along fault zones, as well as lateral displacements along non-stable contacts of the structure-substance complexes of different competency.

  3. Evaluation of existing knowledge of the tectonic history and lithospheric structure of South America

    NASA Technical Reports Server (NTRS)

    Keller, G. R.; Lidiak, E. G. (Principal Investigator)

    1980-01-01

    While data is available on the lithospheric and crustal structure of the Andes region of South America, there is limited knowledge of these aspects of the eastern portion of the continent. For this reason, a surface wave dispersion study of the area was initiated. Long period seismograms were obtained for a tripartite analysis of dispersion. A flow chart of the analysis to be conducted is presented along with a preliminary geologic/tectonic map that was prepared. Efforts to characterize the provinces identified in terms of their geological and geophysical parameters continue.

  4. Formation and tectonic evolution of the Cretaceous Jurassic Muslim Bagh ophiolitic complex, Pakistan: Implications for the composite tectonic setting of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Mehrab; Kerr, Andrew C.; Mahmood, Khalid

    2007-10-01

    The Muslim Bagh ophiolitic complex Balochistan, Pakistan is comprised of an upper and lower nappe and represents one of a number of ophiolites in this region which mark the boundary between the Indian and Eurasian plates. These ophiolites were obducted onto the Indian continental margin around the Late Cretaceous, prior to the main collision between the Indian and Eurasian plates. The upper nappe contains mantle sequence rocks with numerous isolated gabbro plutons which we show are fed by dolerite dykes. Each pluton has a transitional dunite-rich zone at its base, and new geochemical data suggest a similar mantle source region for both the plutons and dykes. In contrast, the lower nappe consists of pillow basalts, deep-marine sediments and a mélange of ophiolitic rocks. The rocks of the upper nappe have a geochemical signature consistent with formation in an island arc environment whereas the basalts of the lower nappe contain no subduction component and are most likely to have formed at a mid-ocean ridge. The basalts and sediments of the lower nappe have been intruded by oceanic alkaline igneous rocks during the northward drift of the Indian plate. The two nappes of the Muslim Bagh ophiolitic complex are thus distinctively different in terms of their age, lithology and tectonic setting. The recognition of composite ophiolites such as this has an important bearing on the identification and interpretation of ophiolites where the plate tectonic setting is less well resolved.

  5. Geometry and active tectonics of the Los Osos-Hosgri Fault Intersection in Estero Bay, CA: Reconciling seismicity patterns with near-surface geology

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Hardebeck, J.; Johnson, S. Y.; Kluesner, J.

    2016-12-01

    Characterizing active structures within structurally complex fault intersections is essential for unraveling the deformational history and for assessing the importance of fault intersections in regional earthquake hazard assessments. We employ an integrative, multi-scale geophysical approach to describe the 3D geometry and active tectonics of the offshore Los Osos fault (LOF) in Estero Bay, California. The shallow structure of the LOF, as imaged with multibeam and high-resolution seismic-reflection data, reveals a complex west-diverging zone of active faulting that bends into and joins the Hosgri fault. The down-dip geometry of the LOF as revealed by gravity, magnetic, and industry multi-channel seismic data, is vertical to steeply-dipping and varies along strike. As the LOF extends offshore, it is characterized by SW-side-up motion on a series of W-NW trending, steeply SW-dipping reverse faults. The LOF bends to the north ( 23°) as it approaches the Hosgri fault and dips steeply to the NE along a magnetic basement block. Inversion of earthquake focal mechanisms within Estero Bay yields maximum compressive stress axes that are near-horizontal and trend approximately N15E. This trend is consistent with dextral strike-slip faulting along NW-SE trending structures such as the Hosgri fault and northern LOF, and oblique dip-slip motion along the W-NW trending section of the LOF. Notably, NW-SE trending structures illuminated by seismicity in Estero Bay coincide with, but also appear to cross-cut, LOF structures imaged in the near-surface. We suggest this apparent disconnect reflects ongoing fault reorganization at a dynamic and inherently unstable fault intersection, in which the seismicity reflects active deformation at depth that is not clearly expressed in the near-surface geology. Direct connectivity between the Hosgri and Los Osos faults suggests a combined earthquake rupture is possible; however, the geometrical complexity along the offshore LOF may limit the extent of rupture.

  6. Recent developments in understanding the tectonic evolution of the Southern California offshore area: Implications for earthquake-hazard analysis

    USGS Publications Warehouse

    Fisher, M.A.; Langenheim, V.E.; Nicholson, C.; Ryan, H.F.; Sliter, R.W.

    2009-01-01

    During late Mesozoic and Cenozoic time, three main tectonic episodes affected the Southern California offshore area. Each episode imposed its unique structural imprint such that early-formed structures controlled or at least influenced the location and development of later ones. This cascaded structural inheritance greatly complicates analysis of the extent, orientation, and activity of modern faults. These fault attributes play key roles in estimates of earthquake magnitude and recurrence interval. Hence, understanding the earthquake hazard posed by offshore and coastal faults requires an understanding of the history of structural inheritance and modifi-cation. In this report we review recent (mainly since 1987) findings about the tectonic development of the Southern California offshore area and use analog models of fault deformation as guides to comprehend the bewildering variety of offshore structures that developed over time. This report also provides a background in regional tectonics for other chapters in this section that deal with the threat from offshore geologic hazards in Southern California. ?? 2009 The Geological Society of America.

  7. Similarities and contrasts in tectonic and volcanic style and history along the Colorado plateaus-to-basin and range transition zone in Western Arizona: Geologic framework for tertiary extensional tectonics

    NASA Technical Reports Server (NTRS)

    Young, R. A.; Mckee, E. H.; Hartman, J. H.; Simmons, A. M.

    1985-01-01

    The overall temporal and spatial relations between middle Tertiary volcanism and tectonism from the Basin and Range province onto the edge of the Colorado Plateaus province suggest that a single magnetic-tectonic episode affected the entire region more or less simultaneously during this period. The episode followed a post-Laramide (late Eocene through Oligocene) period of 25 million years of relative stability. Middle Tertiary volcanism did not migrate gradually eastward in a simple fashion onto the Colorado Plateau. In fact, late Oligocene volcanism appears to be more voluminous near the Aquarius Mountains than throughout the adjacent Basin and Range province westward to the Colorado River. Any model proposed to explain the cause of extension and detachment faulting in the eastern part of the Basin and Range province must consider that the onset of volcanism appears to have been approximately synchronous from the Colorado River region of the Basin and Range across the transition zone and onto the edge of the Colorado Plateaus.

  8. Geological evolution of the Pietersburg greenstonebelt, South Africa and associated gold mineralization

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Dewit, M. J.

    1986-01-01

    The polyphase history of gold mineralization seen in the Pietersburg greenstone belt is integrated with the geochemical and tectonic evolution of greenstone belts as a whole. The four distinct regional geological settings of gold mineralization are described.

  9. Subsurface architecture of a strike-slip collapse structure: insights from Ilopango caldera, El Salvador

    NASA Astrophysics Data System (ADS)

    Saxby, Jennifer; Gottsmann, Joachim; Cashman, Katherine; Gutierrez, Eduardo

    2016-04-01

    While most calderas are created by roof collapse along ring-like faults into an emptying magma reservoir during a large and violent explosive eruption, an additional condition for caldera formation may be tectonically induced extensional stresses. Here we provide geophysical insights into the shallow sub-volcanic plumbing system of a collapse caldera in a major strike-slip tectonic setting by inverting Bouguer gravity data from the Ilopango caldera in El Salvador. Despite a long history of catastrophic eruptions with the most recent in 500 A.D., the internal architecture of the caldera has not been investigated, although studies of the most recent eruption have not identified the ring faults commonly associated with caldera collapse. The gravity data show that low-density material aligned along the principal stress orientations of the El Salvador Fault Zone (ESFZ) forms a pronounced gravity low beneath the caldera. Extending to around 6 km depth, the low density structure likely maps a complex stacked shallow plumbing system composed of magmatic and fractured hydrothermal reservoirs. A substantial volume of the plumbing system must be composed of a vapour phase to explain the modeled negative density contrasts. We use these constraints to map the possible multi-phase parameter space contributing to the subsurface architecture of the caldera and propose that the local extension along the complex ESFZ controls accumulation, ascent and eruption of magma at Ilopango. The data further suggest that future eruptions at Ilopango could be facilitated by rapid rise of magma along conjugate fault damage zones through a mechanically weak crust under tension. This may explain the absence of clear ring fault structures at the caldera.

  10. Mineral parageneses, regional architecture, and tectonic evolution of Franciscan metagraywackes, Cape Mendocino-Garberville-Covelo 30' x 60' quadrangles, northwest California

    USGS Publications Warehouse

    Ernst, W.G.; McLaughlin, Robert J.

    2012-01-01

    The Franciscan Complex is a classic subduction-zone assemblage. In northwest California, it comprises a stack of west vergent thrust sheets: westernmost Eastern Belt outliers; Central Belt mélange; Coastal Belt Yager terrane; Coastal Belt Coastal terrane; Coastal Belt King Range/False Cape terranes. We collected samples and determined P-T conditions of recrystallization for 88 medium-fine-grained metasandstones to assess their subduction-exhumation histories and assembly of the host allochthons. Feebly recrystallized Yager, Coastal, and King Range strata retain clear detrital features. Scattered neoblastic prehnite occurs in several Coastal terrane metasandstones; traces of possible pumpellyite are present in three Yager metaclastic rocks. Pumpellyite ± lawsonite ± aragonite-bearing Central Belt metasandstones are moderately deformed and reconstituted. Intensely contorted, thoroughly recrystallized Eastern Belt affinity quartzose metagraywackes contain lawsonite + jadeitic pyroxene ± aragonite ± glaucophane. We microprobed neoblastic phases in 23 rocks, documenting mineral parageneses that constrain the tectonic accretion and metamorphic P-T evolution of these sheets. Quasi-stable mineral assemblages typify Eastern Belt metasandstones, but mm-sized domains in the Central and Coastal belt rocks failed to achieve chemical equilibrium. Eastern Belt slabs rose from subduction depths approaching 25–30 km, whereas structurally lower Central Belt mélanges returned from ∼15–18 km. Coastal Belt assemblages suggest burial depths less than 5–8 km. Eastern and Central belt allochthons sequentially decoupled from the downgoing oceanic lithosphere and ascended into the accretionary margin; K-feldspar-rich Coastal Belt rocks were stranded along the continental edge without undergoing appreciable subduction, probably during Paleogene unroofing of the older, deeply subducted units of the Franciscan Complex in east-vergent crustal wedges.

  11. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  12. Paleomagnetism of the Neoproterozoic Mount Harper Volcanic Complex, Canada

    NASA Astrophysics Data System (ADS)

    Eyster, A. E.; Macdonald, F. A.; O'Connell, R. J.

    2012-12-01

    Paleomagnetism can be used to identify apparent polar wander, which involves contributions from plate tectonics and true polar wander. True polar wander events have been suggested to have played an important role throughout Earth's history. The Neoproterozoic Mount Harper Volcanic Complex (MHVC) provides paleomagnetic data that bears on this issue. The MHVC is located in the southern Ogilvie Mountains in the Yukon Territory, on the north-west corner of the Laurentian craton. The MHVC involves up to 1200 m of basaltic and andesitic flows. The MHVC reflects the propagating rifting event involved in the breakup of the supercontinent Rodinia. The MHVC is well dated with an age of 717.43± 0.14Ma from the top (Macdonald et al., Science, 2010). Below the MHVC are alluvial fan conglomerate and sandstone from Proterozoic normal faulting. Above the MHVC is a glacial diamictite dated to 716.47± 0.24 Ma and related to Snowball Earth glaciation (Macdonald et al., Science, 2010). Both block and core samples were collected from different members of the MHVC for paleomagnetic study. Included in the sampling were several stratigraphic sections. Alternating field and thermal stepwise demagnetization methods were used to analyze specimens. Magnetic components were determined using principal component analysis and Fisher statistical procedures were used to calculate mean directions. The stratigraphically sampled basalt flows yielded two components. One was a common secondary overprint, and the other was a high stability component which yielded two different directions. One pole is the same as the accepted Neoproterozoic Laurentian grand mean pole and the other is ˜50 degrees away from this grand mean pole. Several possible interpretations are explored- tectonic rotation, true polar wander or the presence of a non-dipolar geomagnetic field.

  13. High-resolution numerical modeling of tectonic underplating in circum-Pacific subduction zones: toward a better understanding of deformation in the episodic tremor and slip region?

    NASA Astrophysics Data System (ADS)

    Menant, A.; Angiboust, S.; Gerya, T.; Lacassin, R.; Simoes, M.; Grandin, R.

    2017-12-01

    Study of now-exhumed ancient subduction systems have evidenced km-scale tectonic units of marine sediments and oceanic crust that have been tectonically underplated (i.e. basally accreted) from the downgoing plate to the overriding plate at more than 30-km depth. Such huge mass transfers must have a major impact, both in term of long-term topographic variations and seismic/aseismic deformation in subduction zones. However, the quantification of such responses to the underplating process remains poorly constrained. Using high-resolution visco-elasto-plastic thermo-mechanical models, we present with unprecedented details the dynamics of formation and destruction of underplated complexes in subductions zones. Initial conditions in our experiments are defined in order to fit different subduction systems of the circum-Pacific region where underplating process is strongly suspected (e.g. the Cascadia, SW-Japan, New Zealand, and Chilean subduction zones). It appears that whatever the subduction system considered, underplating of sediments and oceanic crust always occur episodically forming a coherent nappe stacking at depths comprised between 10 and 50 km. At higher depth, a tectonic mélange with a serpentinized mantle wedge matrix developed along the plates interface. The size of these underplated complexes changes according to the subduction system considered. For instance, a 15-km thick nappe stacking is obtained for the N-Chilean subduction zone after a series of underplating events. Such an episodic event lasts 4-5 Myrs and can be responsible of a 2-km high uplift in the forearc region. Subsequent basal erosion of these underplated complexes results in their only partial preservation at crustal and mantle depth, suggesting that, after exhumation, only a tiny section of the overall underplated material can be observed nowadays in ancient subduction systems. Finally, tectonic underplating in our numerical models is systematically associated with (1) an increasing thickness of the high-strained subduction channel and (2) an accumulation of fluid-rich materials that serve as an environment for episodic tremor and slip events assisted by tectonic shearing and fluid release and percolation.

  14. Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge

    NASA Astrophysics Data System (ADS)

    Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo

    2017-10-01

    The Trinidad dome, Escambray complex, Cuba, forms part of an accretionary wedge built during intra-oceanic subduction in the Caribbean from the Late Cretaceous to Cenozoic. The structure reflects syn-subduction exhumation during thickening of the wedge, followed by extension. Field mapping, metamorphic and structural analysis constrain the tectonic evolution into five stages. Three ductile deformation events (D1, D2 and D3) are related to metamorphism in a compressional setting and formation of several nappes. D1 subduction fabrics are only preserved as relict S1 foliation and rootless isoclinal folds strongly overprinted by the main S2 foliation. The S2 foliation is parallel to sheared serpentinised lenses that define tectonic contacts, suggesting thrust stacks and underthrusting at mantle depths. Thrusting caused an inverted metamorphic structure with higher-grade on top of lower-grade nappes. Exhumation started during D2 when the units were incorporated into the growing accretionary wedge along NNE-directed thrust faults and was accompanied by substantial decompression and cooling. Folding and thrusting continued during D3 and marks the transition from ductile to brittle-ductile conditions at shallower crustal levels. The D4-5 events are related to extension and contributed to the final exhumation (likely as a core complex). D4 is associated with a regional spaced S4 cleavage, late open folds, and numerous extension veins, whereas D5 is recorded by normal and strike-slip faults affecting all nappes. The P-t path shows rapid exhumation during D2 and slower rates during D3 when the units were progressively incorporated into the accretionary prism. The domal shape formed in response to tectonic denudation assisted by normal faulting and erosion at the surface during the final stages of structural development. These results support tectonic models of SW subduction of the Proto-Caribbean crust under the Caribbean plate during the latest Cretaceous and provide insights into the tectonic evolution of accretionary wedges in an intra-arc setting.

  15. Tectonic Origin of Serpentinites on Syros, Greece: Geochemical Signatures of Seafloor Serpentinization Preserved in the HP/LT Subduction Complex

    NASA Astrophysics Data System (ADS)

    Raia, N. H.; Cooperdock, E. H. G.; Barnes, J.; Stockli, D. F.; Schwarzenbach, E. M.

    2016-12-01

    Serpentinized ultramafic rocks are commonly found in exhumed HP/LT subduction complexes, but their tectonic origins (i.e., setting of serpentinization) are difficult to decipher due to extensive alteration. Growing literature and geochemical datasets demonstrate that immobile elements (REE, HFSE) in serpentinites can retain magmatic signatures indicative of the tectonic setting of parent peridotite, while fluid-mobile elements and stable isotopic signatures shed light on the fluids causing serpentinization. This study combines whole-rock trace and major element geochemistry, stable isotope (δD and δO) analyses with petrographic observation to determine the tectonic origin of ultramafic rocks in the HP/LT Aegean subduction complex. The best-preserved HP rocks of the Cycladic Blueschist Unit (CBU) are found on Syros, Greece, where serpentinized ultramafic rocks within the CBU are closely associated with metamorphosed remnants of subducted oceanic crust. All samples are completely serpentinized, lacking relict pyroxene or spinel grains, with typical assemblages consisting of serpentine, talc, chlorite, magnetite, and minor carbonate. The serpentinizing fluid was characterized using stable isotopes. δD and δO values of bulk-rock serpentinite powders and chips, respectively, suggest seafloor serpentinites hydrated by seawater at low T, typical of alteration at mid-ocean ridges and hyper-extended margins (δD = -64 to -33‰ and δO = 5.2 to 9.0‰). To fingerprint a tectonic origin, whole rock serpentinite REE patterns are compared to a global database of whole rock serpentinite analyses from fore-arc mantle wedge, mid-ocean ridge, and hyper-extended margin tectonic settings. Whole rock major element, trace element, and REE analyses are consistent with limited melt extraction, flat REE patterns (LaN/SmN = 0.2-2.6, SmN/YbN = 0.3-3.5; N= C1 normalized), and do not show pronounced Eu anomalies. These data are consistent with abyssal peridotites derived from hyper-extended margin settings, although some overlap with mid-ocean ridge serpentinites makes it difficult to rule out. In any case, the geochemical signatures retained in these serpentinites indicate they are unlikely sourced from the mantle wedge, as has been historically speculated.

  16. The Middlesex Fells Volcanic Complex: A Revised Tectonic Model based on Geochronology, Geochemistry, and Field Data

    NASA Astrophysics Data System (ADS)

    Hampton, R.

    2017-12-01

    The Boston Bay area is composed of several terranes originating on the paleocontinent of Avalonia, an arc terrane that accreted onto the continent of Laurentia during the Devonian. Included in these terranes is the Middlesex Fells Volcanic Complex, a bimodal complex composed of both intrusive and extrusive igneous rocks. Initial studies suggested that this volcanic complex formed during a rift event as the Avalonian continent separated from its parent continent 700-900 Ma. New geochemical and geochronological data and field relationships observed in this study establishes a new tectonic model. U-Pb laser ablation zircon data on four samples from different units within the complex reveal that the complex erupted 600 Ma. ICP-MS geochemical analysis of the metabasalt member of the complex yield a trace element signature enriched in Rb, Pb, and Sr and depleted in Th, indicating a subduction component to the melt and interpreted as an eruption into a back-arc basin. The felsic units similarly have an arc related signature when plotted on trace element spider diagrams and tectonic discrimination diagrams. Combined with the field relationships, including an erosional unconformity, stratigraphic and intrusional relationships and large faults from episodic extension events, this data suggests that the Middlesex Fells Volcanic Complex was erupted as part of the arc-sequence of Avalonia and as part of the formation of a back-arc basin well after Avalonia separated from its parent continent. This model presents a significantly younger eruption scenario for the Middlesex Fells Volcanics than previously hypothesized and may be used to study and compare to other volcanics from Avalon terranes in localities such as Newfoundland and the greater Boston area.

  17. The Influence of the Ufimian Tectonic Concentric Structure on the Hydrocarbon Migration and Ore Genesis

    NASA Astrophysics Data System (ADS)

    Filippov, V. A.

    2018-01-01

    The Ufimian tectonic concentric structure (UTC) is a regional structure with concentric and zonal structure of the internal gravity field. In the Neoproterozoic this structure was at higher hypsometric level relative to the Bashkir Meganticlinorium. The most significant uplift of this tectonic concentric structure happened at the beginning of the Karatau time ( 825 Ma) and was accompanied by the formation of a ring fractured zone, favorable for hydrocarbon migration from the Lower Riphean black shales. Due to this, bitumens with higher Mo content in the Neoproterozoic and Paleozoic deposits are confined spatially to this zone. The bitumenosity of the Neoproterozoic deposits on the southern slope of the Ufimian tectonic concentric structure could have contributed to the formation of complex Cu-Ag-Mo-Re ores (copper sands) at the upper boundary of terrigenous red deposits of the Zilmerdak Formation. Positive structures identified in the Neoproterozoic deposits near the margin of the Ufimian tectonic concentric structure are considered to be promising for searching for hydrocarbon fields.

  18. Thermal history from both sides of the South Atlantic passive margin - A comparison: Argentinean pampa vs. South African escarpement.

    NASA Astrophysics Data System (ADS)

    Kollenz, Sebastian; Glasmacher, Ulrich A.

    2014-05-01

    The eastern Argentina South Atlantic passive continental margin is distinguished by a very flat topography. Out of the so called Pampean flat two mountain ranges are arising. These mountain ranges, the Sierras Australes and the Sierras Septentrionales, are located in the State of Buenos Aires south of the capital Buenos Aires. In existing literature the Sierras Australes are correlated with the South African cape fold belt (Torsvik 2009; Lopez Gamundi & Rossello 1998). Existing thermochronological data shows different post-breakup cooling histories for both areas and different AFT-ages. Published thermochronological ages (e.g. Raab et al. 2002, 2005, Gallagher et al et al. 1998)from the south African escarpement vary around 150 and 100 Ma (Gallagher et al. 1998). Only some spots in the eastern part of South Africa towards the pacific margin show older ages of 250 Ma and older than 350 Ma (Gallagher et al. 1998). New thermochronological data (AHe, AFT and ZHe) from the Sierras Australes indicate a different cooling history by revealing a range of varying ages due to younger tectonic activity. By comparing the data sets from both areas it is getting clear that the post-rift evolution of both continents is differing very strong. Gallagher, K., Brown, R. and Johnson, C. 1998. Fission track analysis and its application to geological problems. Annual review of Earth and Planetary Science, 26, 519-572. Lopez Gamundi, O.R., Rossello, E.A. (1998): Basin fill evolution and paleotectonic patterns along the Samfrau geosyncline: the Sauce Grande basin-Ventana foldbelt (Argentina) and Karoo basin-Cape foldbelt (South Africa) revisited. Geol Rundsch 86 :819-834. Raab, M.J., Brown, R.W., Gallagher, K., Carter, A. and Webber, K. 2002. late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics. 349, 75-92. Raab, M.J., Brown, R.W., Gallagher, K., Webber, K. and Gleadow, A.J.W. 2005. denudational and thermal history of the Early Cretaceous Brandberg and Okenyenya igneous complexes on Namibia's passive margin. Tectonics. 24, TC3006, doi:10.1029/2004TC001688 Torsvik, T.H., Rousse, S., Labails, C., Smethurst, M. A. (2009): A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int. 177, 1315-1333.

  19. Longitudinal Variation in Paleo-channel Complex Geometry and Associated Fill: Offshore South Carolina

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Hill, J. C.

    2017-12-01

    In northeastern South Carolina, several shallow (<25 m deep) paleo-channel complexes have previously been interpreted as the result of the southward migration of the ancestral Pee Dee River system along the southern limb of the Cape Fear Arch since the Pliocene. These paleo-channel complexes can be traced 80 km across the continental shelf via Boomer and Chirp subbottom data. The Murrells Inlet paleo-channel complex is the most well imaged offshore; and this data coverage provides an opportunity for a detailed seismic stratigraphic interpretation and analysis of downstream variability. Initial observations from this case study indicate that inner shelf incisions, where bedrock is folded and faulted, tend to be shallow with numerous channels, while the incisions across the middle shelf appear to be deeper and contains larger, more sinuous channels that are cut into broadly tilted strata with a gentle south-southeastward dip. This suggests the geometry and spatial distribution of the incisions were a function of the inherited fabric of the underlying basement, which created local deflection and areas of aggradation and degradation. The inner shelf paleo-channel complex fill is dominated by fluvial cut and fill seismic facies, while the middle shelf contains a wide variety of seismic facies (i.e. transparent, layered, chaotic, etc). This overall longitudinal fill pattern is most likely due to each location's general proximity to base level. The variation in the cut and fill seismic facies may be driven by substantial changes in discharge, driven locally by the joining of another major river or by climatic changes in the drainage basin. There also appears to be preferential reoccupation of previously filled paleo-channels, as the basement in this region is Tertiary and Cretaceous carbonates and siliciclastic rocks that are more resistant to erosion. The most recent occupation in any given paleo-channel tends to be on the southern margin, which may imply tectonic forcing from the uplift of the Cape Fear Arch. Preliminary results from this case study suggest that first order controls on the position and geometry of the paleo-channel complexes appears to be largely allogenic (i.e. tectonic and base level driven), while the depositional history of the fill may have been a mix of autogenic and allogenic processes.

  20. Venus Stratigraphy: Results from the Mapping of Six Quadrangles (Invited)

    NASA Astrophysics Data System (ADS)

    Stofan, E. R.; Guest, J. E.

    1999-09-01

    Two views about the way Venus has evolved have been generated from studies of Magellan data. Venus has been suggested to have had a history in which there was a series of epochs each represented by a different volcanic or tectonic process on a global scale (e.g., Basilevsky et al. 1997). However, there is evidence to suggest that coronae, rifts, wrinkle ridges, small and large edifices, and large flow fields have each formed throughout the portion of Venus' history revealed by presently exposed rock units (Guest and Stofan, 1999). We propose that the plains have been built up by lavas erupted in a number of different styles, each occurring throughout the history represented by the exposed stratigraphy of the planet. The low number and apparent randomness of the impact crater population has left us with an inability to date individual terrains on Venus. Dates derived from crater counts accumulated from the combined area of specific types of feature such as coronae (e.g., Price et al. 1996), must be interpreted with care as the method is based upon the assumption that features of like morphology have the same age. Additional problems arise with features such as corona and large volcanoes, where late-stage volcanic flows mask evidence of the timing of the initiation of the feature with respect to surrounding units. Our detailed studies indicate that Venus has had a complex history in which most geologic processes have operated in a non-directional fashion to a greater or lesser extent throughout the planet's history.

  1. Uses of vitrinite reflectance in determining thermal history in sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castano, J.R.

    1985-02-01

    Vitrinite reflectance (VR), adapted from coal petrology, came into routine use in the petroleum industry in the late 1960s. Initially, the principal goal was to help establish the VR limits for oil and gas generation. Subsequently, VR has become accepted as the most useful measure of burial history and paleotemperature, largely because VR affords the most practical means of measuring the progression of organic metamorphism. VR is used to correlate other measures of thermal history such as chemical maturity parameters, Rock-Eval t/sub max/, and burial-history reconstruction. VR can aid in identifying unconformities, geopressured sections, and thermally altered zones. Combined withmore » good temperature data, the determination of VR equivalents from temperature and burial time are used to evaluate the relationship of depth to log VR obtained directly. The time and temperature required for maturation in Tertiary basins stresses the interplay of both factors in the maturation process. Reflectance has been employed in deciphering the burial history and tectonic evolution of many areas, including structurally complex regions as the Alps and the Wyoming Overthrust Belt. Interpretational problems that arise include: (1) VR can be altered by the absorption of hydrogen-rich materials, oxidation, and natural coking; (2) the presence of reworked and caved organic matter produces multiple reflectance populations; and (3) vitrinite is sometimes difficult to distinguish from solid hydrocarbons and some inerts if the particle size is small. Most of these problems are resolved at the microscope. Interpretation is improved significantly by analyzing a series of samples rather than an isolated sample.« less

  2. A subaquatic moraine complex in overdeepened Lake Thun (Switzerland) unravelling the deglaciation history of the Aare Glacier

    NASA Astrophysics Data System (ADS)

    Fabbri, S. C.; Buechi, M. W.; Horstmeyer, H.; Hilbe, M.; Hübscher, C.; Schmelzbach, C.; Weiss, B.; Anselmetti, F. S.

    2018-05-01

    To investigate the history of the Aare Glacier and its overdeepened valley, a high-resolution multibeam bathymetric dataset and a 2D multi-channel reflection seismic dataset were acquired on perialpine Lake Thun (Switzerland). The overdeepened basin was formed by a combination of tectonically predefined weak zones and glacial erosion during several glacial cycles. In the deepest region of the basin, top of bedrock lies at ∼200 m below sea level, implying more than 750 m of overdeepening with respect to the current fluvial base level (i.e. lake level). Seismic stratigraphic analysis reveals the evolution of the basin and indicates a subaquatic moraine complex marked by high-amplitude reflections below the outermost edge of a morphologically distinct platform in the southeastern part of the lake. This stack of seven subaquatic terminal moraine crests was created by a fluctuating, "quasi-stagnant" grounded Aare Glacier during its overall recessional phase. Single packages of overridden moraine crests are seismically distuinguishable, which show a transition downstream into prograding clinoforms with foresets at the ice-distal slope. The succession of subaquatic glacial sequences (foresets and adjacent bottomsets) represent one fifth of the entire sedimentary thickness. Exact time constraints concerning the deglacial history of the Aare Glacier are very sparse. However, existing 10Be exposure ages from the accumulation area of the Aare Glacier and radiocarbon ages from a Late-Glacial lake close to the outlet of Lake Thun indicate that the formation of the subaquatic moraine complex and the associated sedimentary infill must have occurred in less than 1000 years, implying high sedimentation rates and rapid disintegration of the glacier. These new data improve our comprehension of the landforms associated with the ice-contact zone in water, the facies architecture of the sub- to proglacial units, the related depositional processes, and thus the retreat mechanisms of the Aare Glacier.

  3. Looking for Plate Tectonics in all the wrong fluids

    NASA Astrophysics Data System (ADS)

    Davaille, Anne

    2017-04-01

    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  4. Eclogites and garnet clinopyroxenites in the Anrakhai complex, Central Asian Orogenic Belt, Southern Kazakhstan: P-T evolution, protoliths and some geodynamic implications

    NASA Astrophysics Data System (ADS)

    Pilitsyna, Anfisa V.; Tretyakov, Andrey A.; Degtyarev, Kirill E.; Cuthbert, Simon J.; Batanova, Valentina G.; Kovalchuk, Elena V.

    2018-03-01

    The Anrakhai Metamorphic Complex (AMC), located in the SE part of the Chu-Ili Mountains of Southern Kazakhstan in the western part of Central Asian Orogenic Belt, exhibits occurrences of HP metamorphic rocks in the form of eclogites and garnet clinopyroxenites with peak metamorphic conditions of 750-850° and 15-19 kbar estimated with both conventional geothermobarometric methods and phase diagram modeling. P-T estimates as well as intimate field relations evidently imply a common metamorphic history for eclogites and garnet clinopyroxenites of the AMC. These high-pressure, medium temperature eclogite facies P-T conditions are indicative of a collision or subduction tectonic setting. Major and trace element geochemistry suggests that they probably had a common magmatic origin as part of a suite of differentiated tholeiitic intrusions. Furthermore, distinctive mineral and chemical compositions of these eclogites and garnet clinopyroxenites correspond to the Fe-Ti type of ultramafic rocks suggesting that they may have been derivatives of intraplate tholeiitic melts, introduced into continental crust before HP metamorphism.

  5. Venus - Complex Network of Narrow Fractures Near Hestia Rupes Region

    NASA Image and Video Library

    1996-10-23

    This image from NASA Magellan spacecraft covers region near Hestia Rupes on the northwestern corner of Aphrodite Terra. The complex network of narrow (<1 kilometer) fractures in the center of the image extends for approximately 50 kilometers (31 miles). This network exhibits tributary-like branches similar to those observed in river systems on Earth. However, the angular intersections of tributaries suggest tectonic control. These features appear to be due to drainage of lava along preexisting fractures and subsequent collapse of the surface. The underlying tectonic fabric can be observed in the northeast trending ridges which predate the plains. http://photojournal.jpl.nasa.gov/catalog/PIA00469

  6. 3D seismic investigation of the structural and stratigraphic characteristics of the Pagasa Wedge, Southwest Palawan Basin, Philippines, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Ilao, Kimberly A.; Morley, Christopher K.; Aurelio, Mario A.

    2018-04-01

    The Pagasa Wedge is a poorly imaged deepwater orogenic wedge that has been variously interpreted as representing an accretionary prism, a former accretionary prism modified by thrusting onto a thinned continental margin, and a gravity-driven fold-thrust belt. This study, using 2D and 3D seismic data, together with well information indicates that at least the external part of the wedge is dominantly composed of mass transport complexes, capped by syn-kinematic sediments that have thrusts and normal faults superimposed upon them. Drilling shows that despite stratigraphic repetition of Eocene Middle Miocene units, there is stratigraphic omission of Oligocene and Early Miocene units. This absence suggests that mass transport processes have introduced the Eocene section into the wedge rather than tectonic thrusting. The accretionary prism stage (Oligocene) of the Central Palawan Ophiolite history appears to be marked by predominantly north-vergent deformation. The Deep Regional Unconformity (∼17 Ma) likely indicates the approximate time when obduction ceased in Palawan. The Pagasa Wedge is a late-stage product of the convergence history that was active in its final phase sometime above the top of the Nido Limestone (∼16 Ma) and the base of the Tabon Limestone in the Aboabo-A1X well (∼9 Ma). The top of the wedge is traditionally associated with the Middle Miocene Unconformity (MMU), However the presence of multiple unconformities, diachronous formation tops, local tectonic unconformities and regional diachronous events (e.g. migrating forebulges) all suggest simply giving a single age (or assigning a single unconformity, such as the MMU as defining the top of the Pagasa Wedge is inappropriate. The overall NE-SW trend of the wedge, and the dominant NW transport of structures within the wedge diverge from the more northerly transport direction determined from outcrops in Palawan, and also from the Nido Limestone in the SW part of the Pagasa Wedge. Possibly this NW transport direction is more related to gravity-driven structures responding to uplift of NE-SW Dangerous Grounds margin during the Middle Miocene (related to slab breakoff?) than it is to thrusting rooted in a plate boundary. The final modification of the wedge occurred when the effects of compression deformation on the wedge had largely ended, but gravity processes (in particular mass transport and normal faulting) still operated.

  7. Application of ring tectonic theory to Mercury and other solar system bodies

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.

    1981-01-01

    It is pointed out that multiringed structures, by their presence or absence, provide a powerful tool for deciphering the thermal histories of the solid planets. The theory of ring tectonics considered by Melosh and McKinnon (1978) and Melosh et al. (1980) establishes the framework of that undertaking. The present investigation has the objective to apply this conceptualization in detail to the multiringed basins on Mercury, taking into account also a brief review concerning the current state of understanding of ring tectonics on the moon, Mars, earth, Ganymede, and Callisto. The small, icy satellites of Saturn are also discussed. The mechanics of multiple ring formation are related to the collapse of the transient basin cavity when the excavation depth and lithosphere thickness are comparable. Attention is given to the Caloris Basin on Mercury, the peak ring basins on Mercury, and the Argyre Basin on Mars.

  8. Lakshmi Planum: A distinctive highland volcanic province

    NASA Astrophysics Data System (ADS)

    Roberts, Kari M.; Head, James W.

    Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region.

  9. Lakshmi Planum: A distinctive highland volcanic province

    NASA Technical Reports Server (NTRS)

    Roberts, Kari M.; Head, James W.

    1989-01-01

    Lakshmi Planum, a broad smooth plain located in western Ishtar Terra and containing two large oval depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. Lakshmi is situated 3 to 5 km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. Four primary characteristics distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio: (1) high altitude, (2) plateau-like nature, (3) the presence of very large, low volcanic constructs with distinctive central calderas, and (4) its compressional tectonic surroundings. Building on the previous work of Pronin, the objective is to establish the detailed nature of the volcanic deposits on Lakshmi, interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and the tectonic environment of the region.

  10. Mars: Lithospheric Flexure of the Tharsis Montes Volcanoes and the Evolutionary Relationship to Their Tectonic History

    NASA Astrophysics Data System (ADS)

    Chute, H.; Dombard, A. J.; Byrne, P. K.

    2017-12-01

    Lithospheric flexure associated with Arsia, Pavonis, and Ascraeus Montes has been previously studied to constrain the timeline and breadth of endogenic surface features surrounding these volcanoes. Here, we simulate the radial extent of two specific load-related features: annular graben and flank terraces. Detailed mapping of Ascraeus Mons (the youngest of the three volcanoes) showed a phase of compression of the edifice, forming the terraces and an annulus of graben immediately off the flanks, followed by a period of extension that formed additional graben superposed on the terraces on the lower flanks of the edifice. This transition from compression to extension on the lower flanks has been difficult to reconcile in mechanical models. We explore, with finite-element simulations, the effects of a thermal anomaly associated with an intrusive crustal underplate, which results in locally thinning the lithosphere (in contrast to past efforts that assumed a constant-thickness lithosphere). We find that it is primarily the horizontal extent of this thermal anomaly that governs how the lithosphere flexes under a volcano, as well as the transition from flank compression to a tight annulus of extensional stresses. Specifically, we propose that the structures on Ascraeus may be consistent with an early stage of volcanic growth accompanied by an underplate about the same width as the edifice that narrowed as volcanism waned, resulting in an inward migration of the extensional horizontal stresses from the surrounding plains onto the lower flanks. By linking the surface strains on the volcano with the volcano-tectonic evolution predicted by our flexure model, we can further constrain a more accurate timeline for the tectonic history of Ascraeus Mons. More broadly, because these tectonic structures are commonly observed, our results provide a general evolutionary model for large shield volcanoes on Mars.

  11. Intra-Arc extension in Central America: Links between plate motions, tectonics, volcanism, and geochemistry

    NASA Astrophysics Data System (ADS)

    Phipps Morgan, Jason; Ranero, Cesar; Vannucchi, Paola

    2010-05-01

    This study revisits the kinematics and tectonics of Central America subduction, synthesizing observations of marine bathymetry, high-resolution land topography, current plate motions, and the recent seismotectonic and magmatic history in this region. The inferred tectonic history implies that the Guatemala-El Salvador and Nicaraguan segments of this volcanic arc have been a region of significant arc tectonic extension; extension arising from the interplay between subduction roll-back of the Cocos Plate and the ~10-15 mm/yr slower westward drift of the Caribbean plate relative to the North American Plate. The ages of belts of magmatic rocks paralleling both sides of the current Nicaraguan arc are consistent with long-term arc-normal extension in Nicaragua at the rate of ~5-10 mm/yr, in agreement with rates predicted by plate kinematics. Significant arc-normal extension can ‘hide' a very large intrusive arc-magma flux; we suggest that Nicaragua is, in fact, the most magmatically robust section of the Central American arc, and that the volume of intrusive volcanism here has been previously greatly underestimated. Yet, this flux is hidden by the persistent extension and sediment infill of the rifting basin in which the current arc sits. Observed geochemical differences between the Nicaraguan arc and its neighbors which suggest that Nicaragua has a higher rate of arc-magmatism are consistent with this interpretation. Smaller-amplitude, but similar systematic geochemical correlations between arc-chemistry and arc-extension in Guatemala show the same pattern as the even larger variations between the Nicaragua arc and its neighbors. We are also exploring the potential implications of intra-arc extension for deformation processes along the subducting plate boundary and within the forearc ‘microplate'.

  12. Deciphering the History of Martian Volatiles: A Multi-Component Space Exploration Program

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.

    2000-07-01

    To characterize Mars climate evolution requires to trace back the history of volatile species, including water. Indeed, atmospheric gases control, through UV-visible absorption and IR radiative transfer, the thermal structure of the atmosphere, the surface temperature, and ultimately the global hydrological system, which is a major component of the present Earth climate system. The composition and mass of the atmosphere is controlled by physical/chemical processes acting as sources (outgassing) or sinks (atmospheric escape, surface weathering, physical trapping in the subsurface). The history of volatiles is influenced by inner planet processes, like core convection which may give rise to a planetary-scale magnetic field able to withhold the atmosphere from the solar wind, inhibiting escape, or mantle convection, through outgassing and recycling of gas by geochemical cycles. Conversely, atmosphere may possibly retroact on the inner planet dynamical regime, for example if large amounts of liquid water are maintained at the surface by greenhouse effect, which could favour specific tectonism styles (like plate tectonism). The history of volatiles may therefore be related, not only to climate, but also to the thermal history of the inner planet, through a complicated chain of causes and effects. It is an essential link for reconstructing the global evolution of the Mars system. Focusing on climate, it appears that, provided the present climate system is understood and modelled, it must be possible to extrapolate to the past, provided the way the atmosphere evolved is known, as well as solar emission fluxes controlling thermal structure and escape.

  13. High temperature (>350 °C) thermal histories of the long lived (>500 Ma) active margin of Ecuador and Colombia: Apatite, titanite and rutile U-Pb thermochronology

    NASA Astrophysics Data System (ADS)

    Paul, Andre N.; Spikings, Richard A.; Ulianov, Alexey; Ovtcharova, Maria

    2018-05-01

    Quantitative reconstruction of thermal histories can be a powerful tool to study numerous natural processes such as tectonic plate interaction, cratonic stability and extra-terrestrial phenomena such as asteroid ejection. A majority of thermochronological studies have focused on temperatures lower than 300 °C. Few previous studies have demonstrated that U-Pb data from apatite and other accessory phases can be used to recover thermal history information at T > 350 °C. We present U-Pb data from apatite, to constrain the thermal histories of Triassic peralluminous anatectites from the Northern Andes between the temperatures of ∼350-550 °C. The accuracy of the thermal history models is assessed by comparisons with previous geological models, and comparisons with pre-existing and newly acquired U/Pb (titanite and rutile), 40Ar/39Ar (muscovite) and low temperature thermochronological data. This study also examines the feasibility of using a large, regionally dispersed apatite U-Pb data set to obtain continuous thermal history paths along a long-lived (>500 Ma) active margin. A second aim of this study is to further test the hypothesis that the dominant mechanism for Pb displacement through apatite is volume diffusion, as opposed to aqueous fluid interaction. The thermal history models derived from the Triassic anatectites exposed in the Andes of Colombia and Ecuador are entirely consistent with lower temperature thermochronological constraints, and previously established geochronological and geochemical constraints. They reveal and quantify trench parallel changes in the amount of Jurassic - Early Cretaceous extension, significantly bolstering and adding to previous tectonic interpretations. Confirmation of the utility of U-Pb thermochronology provides geologists with a powerful tool for investigating the high-temperature thermal evolution of accessory minerals.

  14. Venus magmatic and tectonic evolution

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Hansen, V. L.

    1993-01-01

    Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.

  15. North-South contraction of the mojave block and strike-slip tectonics in southern california.

    PubMed

    Bartley, J M; Glazner, A F; Schermer, E R

    1990-06-15

    The Mojave block of southern California has undergone significant late Cenozoic north-south contraction. This previously unappreciated deformation may account for part of the discrepancy between neotectonic and plate-tectonic estimates of Pacific-North American plate motion, and for part of the Big Bend in the San Andreas fault. In the eastern Mojave block, contraction is superimposed on early Miocene crustal extension. In the western Mojave block, contractional folds and reverse faults have been mistaken for extensional structures. The three-dimensional complexity of the contractional structures may mean that rigid-block tectonic models of the region based primarily on paleomagnetic data are unreliable.

  16. Mantle structure and tectonic history of SE Asia

    NASA Astrophysics Data System (ADS)

    Hall, Robert; Spakman, Wim

    2015-09-01

    Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs that detached in the Early Miocene such as the Sula slab, now found in the lower mantle north of Lombok, and the Proto-South China Sea slab now at depths below 700 km curving from northern Borneo to the Philippines. Based on our tectonic model we interpret virtually all features seen in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.

  17. History and Evolution of Precambrian plate tectonics

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2014-05-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction continues but the plates are weakened enough to allow buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by pulling at and breaking the plate. References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370.

  18. Feeling and Understanding Plate Tectonics - How can We attract Museum Visitors Attention?

    NASA Astrophysics Data System (ADS)

    Simon, Gilla; Apel, Michael

    2017-04-01

    Earthquakes, volcano eruptions and other natural hazards are commonly paid attention to, if news about disastrous events reach us. The mission of an Earth Science or Natural History Museum, however, goes beyond explaining the causes of natural disasters, but should also present science history and cutting edge research. Since dealing with a subject, especially with one, which seems to be in the abstract, is more effective, we realised two new projects where our visitors can feel and understand plate tectonics in a more exciting way. In 2015 we installed an earthquake simulator in our permanent exhibition to allow our visitors the physical experience of an earthquake. Because of static restrictions the simulator is housed in a container outside the building where it can be visited as a booked program upon prior reservation or by joining public tours on Sundays and special occasions. The simulation of six real earthquakes in two spatial directions is accompanied by a movie presenting facts about the earthquake itself (e.g. location, magnitude, damage and victims), but also general information about plate tectonics. This standard program takes about 20 minutes. During an educational program, however, not only the simulator is visited, but also the permanent exhibition, where the guide can focus on different aspects and then might choose specific earthquakes and information blocs in the simulator. In addition workshops with experiments are offered for school classes and other groups. This allows us to offer an individual program fitting to the visitor group. In 2016 we converted an old movie room to a state of the art media room. In cooperation with Media Informatics students we developed a quiz for three different levels and various themes like earthquakes, volcanoes, history and plate tectonics in general. Starting the quiz, a virtual earthquake destroys a building which will be reconstructed if the participants answer multiple choice questions correctly. Though, the rebuilding of the house is faster if a group of participants plays together. A first statistic evaluation of the media room shows that the quiz is greatly accepted by the visitors: The quiz is played on an average six times per hour and abortion rate is very low with less than 10%.

  19. Late Cretaceous-Cenozoic Basin framework and petroleum potential of Panama and Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, P.; Kolarsky, R.

    Despite its location between major petroleum provinces in northwestern South America and northern Central America, there is a widespread negative perception of the petroleum potential of Panama and Costa Rica in southern Central America. Several factors may contribute to this perception: (1) the on and offshore geology of many areas has only be studied in a reconnaissance fashion; (2) sandstone reservoirs and source rocks are likely to be of poor quality because Upper Cretaceous-Cenozoic sandstones are eroded from island arc or oceanic basement rocks and because oil-prone source rocks are likely to be scarce in near-arc basins; and (3) structuralmore » traps are likely to be small and fragmented because of complex late Cenozoic thrust and strike-slip tectonics. On the other hand, onshore oil and gas seeps, shows and small production in wildcat wells, and source rocks with TOC values up to 26% suggest the possibility of future discoveries. In this talk, we present the results of a regional study using 3100 km of offshore seismic lines kindly provided by industry. Age and stratigraphic control of offshore lines is constrained by limited well data and detailed field studies of basin outcrops in coastal areas. We describe the major structures, stratigraphy, and tectonic history of the following areas: Gulf of Panama and Gulf of Chiriqui of Panama and the Pacific and Caribbean margins of Costa Rica.« less

  20. Planetary environments and the conditions of life.

    PubMed

    Chang, S

    1988-01-01

    Life arose on Earth within a billion years (1 Ga) after planetary accretion and core formation. The geological record, which begins 3.8 Ga BP, indicates environmental conditions much like today's, except for the absence of oxygen. By 3.5 Ga BP microbial ecosystems were already colonizing shallow marine hydrothermal environments along shorelines of volcanic islands. Although similar environments could have existed more than 3.8 Ga BP, they may not have been the spawning grounds of life. Geophysical models of the first 600 Ma of Earth history following accretion and core formation point to a period of great environmental disequilibrium. In such an environment the passage of energy from Earth's interior and from the Sun through gas-liquid-solid domains and their boundaries with each other generated a dynamically interacting, complex hierarchy of self-organized structures, ranging from bubbles at the sea-air interface to tectonic plates. Nested within this hierarchy were the precursors of living systems. The ability of a planet to produce such a hierarchy is speculated to be a prerequisite for the origin and sustenance of life. Application of this criterion to Mars, which apparently experienced no plate tectonism, argues against the origin of martian life. Because only further geological and biogeochemical exploration of the planet can place these qualitative speculations on firm ground, the search for evidence of extinct life on Mars continues to be of highest scientific priority.

  1. Ductile strain rate recorded in the Symvolon syn-extensional plutonic body (Rhodope core complex, Greece)

    NASA Astrophysics Data System (ADS)

    Cirrincione, Rosolino; Fazio, Eugenio; Ortolano, Gaetano; Fiannacca, Patrizia; Kern, Hartmut; Mengel, Kurt; Pezzino, Antonino; Punturo, Rosalda

    2016-04-01

    The present contribution deals with quantitative microstructural analysis, which was performed on granodiorites of the syn-tectonic Symvolon pluton (Punturo et al., 2014) at the south-western boundary of the Rhodope Core Complex (Greece). Our purpose is the quantification of ductile strain rate achieved across the pluton, by considering its cooling gradient from the centre to the periphery, using the combination of a paleopiezometer (Shimizu, 2008) and a quartz flow law (Hirth et al., 2001). Obtained results, associated with a detailed cooling history (Dinter et al., 1995), allowed us to reconstruct the joined cooling and strain gradient evolution of the pluton from its emplacement during early Miocene (ca. 700°C at 22 Ma) to its following cooling stage (ca. 500-300°C at 15 Ma). Shearing temperature values were constrained by means of a thermodynamic approach based on the recognition of syn-shear assemblages at incremental strain; to this aim, statistical handling of mineral chemistry X-Ray maps was carried out on microdomains detected at the tails of porphyroclasts. Results indicate that the strain/cooling gradients evolve "arm in arm" across the pluton, as also testified by the progressive development of mylonitic fabric over the magmatic microstructures approaching the host rock. References • Dinter, D. A., Macfarlane, A., Hames, W., Isachsen, C., Bowring, S., and Royden, L. (1995). U-Pb and 40Ar/39Ar geochronology of the Symvolon granodiorite: Implications for the thermal and structural evolution of the Rhodope metamorphic core complex, northeastern Greece. Tectonics, 14 (4), 886-908. • Shimizu, I. (2008). Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms. Journal of Structural Geology, 30 (7), 899-917. • Hirth, G., Teyssier, C., and Dunlap, J. W. (2001). An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90 (1), 77-87. • Punturo, R., Cirrincione, R., Fazio, E., Fiannacca, P., Kern, H., Mengel, K., Ortolano G., and Pezzino, A. (2014). Microstructural, compositional and petrophysical properties of mylonitic granodiorites from an extensional shear zone (Rhodope Core complex, Greece). Geological Magazine, 151 (6), 1051-1071.

  2. Structural and geophysical interpretation of Roatan Island, Honduras, Western Caribbean

    NASA Astrophysics Data System (ADS)

    Sutton, Daniel Scott

    Roatan Island is the largest of the Bay Islands of Honduras. These islands form an emergent crest off the Caribbean coast of Honduras called the Bonacca Ridge. The Bartlett Trough to the north and subsequent Bonacca Ridge were likely formed due to the transform fault system of the Motagua-Swan Islands Fault System. This fault system forms the tectonic plate boundary between the North American and Caribbean plates. Although the timing and kinematics are poorly constrained, the Bay Islands and the Bonacca Ridge were likely uplifted due to transpression along this left-lateral strike-slip system. With limited regional exposures along the adjacent tectonic boundary, this study aimed to present a structural interpretation for Roatan. This new interpretation is further explained through regional considerations for a suggested geologic history of the northwestern Caribbean. In order to better constrain the kinematics of uplift and exhumation of Roatan Island, structural, gravity, and magnetic surveys were conducted. Principal attention was directed to the structural relationship between the geologic units and their relationship to one another through deformation. Resulting geologic cross-sections from this study present the metamorphic basement exposed throughout the island to be in a normal structural order consisting of biotite schist and gneiss, with overlying units of chlorite schist, carbonate, and conglomerate. These units have relatively concordant strike and dip measurements, consistent with resultant magnetic survey readings. Additionally, large and irregular bodies of amphibolite and serpentinite throughout the island are interpreted to have been emplaced as mafic and ultra-mafic intrusions in weakness zones along Early Paleogene transform system fault planes. The interpretation and suggested geologic history from this study demonstrate the importance of transpressive tectonics both local to Roatan and regionally throughout geologic history. Consideration of this interpretation will help to further constrain regional studies over the northwestern Caribbean.

  3. Kinematics of a former oceanic plate of the Neotethys revealed by deformation in the Ulukışla basin (Turkey)

    NASA Astrophysics Data System (ADS)

    Gürer, Derya; van Hinsbergen, Douwe J. J.; Matenco, Liviu; Corfu, Fernando; Cascella, Antonio

    2016-10-01

    Kinematic reconstruction of modern ocean basins shows that since Pangea breakup a vast area in the Neotethyan realm was lost to subduction. Here we develop a first-order methodology to reconstruct the kinematic history of the lost plates of the Neotethys, using records of subducted plates accreted to (former) overriding plates, combined with the kinematic analysis of overriding plate extension and shortening. In Cretaceous-Paleogene times, most of Anatolia formed a separate tectonic plate—here termed "Anadolu Plate"—that floored part of the Neotethyan oceanic realm, separated from Eurasia and Africa by subduction zones. We study the sedimentary and structural history of the Ulukışla basin (Turkey); overlying relics of this plate to reconstruct the tectonic history of the oceanic plate and its surrounding trenches, relative to Africa and Eurasia. Our results show that Upper Cretaceous-Oligocene sediments were deposited on the newly dated suprasubduction zone ophiolites ( 92 Ma), which are underlain by mélanges, metamorphosed and nonmetamorphosed oceanic and continental rocks derived from the African Plate. The Ulukışla basin underwent latest Cretaceous-Paleocene N-S and E-W extension until 56 Ma. Following a short period of tectonic quiescence, Eo-Oligocene N-S contraction formed the folded structure of the Bolkar Mountains, as well as subordinate contractional structures within the basin. We conceptually explain the transition from extension, to quiescence, to shortening as slowdown of the Anadolu Plate relative to the northward advancing Africa-Anadolu trench resulting from collision of continental rocks accreted to Anadolu with Eurasia, until the gradual demise of the Anadolu-Eurasia subduction zone.

  4. Tectonic stratification and seismicity of the accretionary prism of the Azerbaijani part of Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Alizade, Akif; Kangarli, Talat; Aliyev, Fuad

    2013-04-01

    The Greater Caucasus has formed during last stage of the tectogenesis in a geodynamic condition of the lateral compression, peculiar to the zone pseudo-subduction interaction zone between Northern and Southern Caucasian continental microplates. Its present day structure formed as a result of horizontal movements of the different phases and sub-phases of Alpine tectogenesis (from late Cimmerian to Valakhian), and is generally regarded as zone where, along Zangi deformation, the insular arc formations of the Northern edge of South Caucasian microplate thrust under the Meso-Cenozoic substantial complex contained in the facials of marginal sea of Greater Caucasus. The last, in its turn, has been pushed beneath the North-Caucasus continental margin of the Scythian plate along Main Caucasus Thrust fault. Data collected from the territory of Azerbaijan and its' sector of the Caspian area stands for pseudo-subduction interaction of microplates which resulted in the tectonic stratification of the continental slope of Alpine formations, marginal sea and insular arc into different scale plates of south vergent combined into napping complexes. In the orogeny's present structure, tectonically stratified Alpine substantial complex of the marginal sea of Greater Caucasus bordered by Main Caucasus and Zangi thrusts, is represented by allochthonous south vergent accretionary prism in the front of first deformation with its' root buried under the southern border of Scythian plate. Allocated beneath mentioned prism, the autochthonous bedding is presented by Meso-Cenosoic complex of the Northern flank of the South-Caucasian miroplate, which is in its' turn crushed and lensed into southward shifted tectonic microplates gently overlapping the northern flank of Kura flexure along Ganykh-Ayrichay-Alyat thrust. Data of real-time GPS measurement of regional geodynamics indicates that pseudo-subduction of South Caucasian microplate under the North Caucasian microplate still continues during present stage of alpine tectogenesis. Among others, ongoing pseudo-subduction is indicated by data of regional seismicity which is irregularly distributed by depth (foci levels 2-6; 8-12; 17-22; 25-45 km). Horizontal and vertical seismic zoning is explained by Earth crust's block divisibility and tectonic stratification, within the structure of which the earthquake focuses are mainly confined to the crossing nodes of differently oriented ruptures, or to the planes of deep tectonic disruptions and lateral displacements along unstable contacts of the substantial complexes with various degree of competence. At present stage of tectogenesis, seismically most active are the structures of the northern flank of South Caucasian microplate, controlled by Ganyx-Ayrichay-Alyat deep thrust with "General Caucasus" spread in the west, and sub-meridian right-lateral strike slip zone of the Western Caspian fault in the east of Azerbaijani part of Greater Caucasus.

  5. Geological setting of the southern termination of Western Alps

    NASA Astrophysics Data System (ADS)

    d'Atri, Anna; Piana, Fabrizio; Barale, Luca; Bertok, Carlo; Martire, Luca

    2016-09-01

    A revision of the stratigraphic and tectonic setting of the southern termination of the Western Alps, at the junction of the Maritime Alps with the westernmost Ligurian Alps, is proposed. In response to the Alpine kinematic evolution, a number of tectonic units formed on the deformed palaeo-European continental margin and were arranged in a NW-SE striking anastomosed pattern along the north-eastern boundary of the Argentera Massif. Because these tectonic units often cut across the palaeogeographic subdivision of the Alpine literature and show only partial affinity with their distinctive stratigraphic features, new attributions are proposed. The Subbriançonnais domain is here intended as a "deformation zone", and its tectonic units have been attributed to Dauphinois and Provençal domains; furthermore, the Eocene Alpine Foreland Basin succession has been interpreted, based on the affinity of its lithologic characters and age, as a single feature resting above all the successions of the different Mesozoic domains. The Cretaceous tectono-sedimentary evolution of the studied domains was characterized by intense tectonic controls on sedimentation inducing lateral variations of stratigraphic features and major hydrothermal phenomena. Since the early Oligocene, transpressional tectonics induced a NE-SW shortening, together with significant left-lateral movements followed by (late Oligocene-middle Miocene) right-lateral movements along E-W to SE-NW striking shear zones. This induced the juxtaposition and/or stacking of Briançonnais, Dauphinois and Ligurian tectonic units characterized by different metamorphic histories, from anchizonal to lower greenschist facies. This evolution resulted in the arrangement of the tectonostratigraphic units in a wide "transfer zone" accommodating the Oligocene WNW-ward movement of portions of the palaeo-European margin placed at the south-western termination of Western Alps and the Miocene dextral shearing along SE striking faults that bound the Argentera Massif on its NE side.

  6. Seperating Long-term Hydrological Loading and Tectonic Deformation Observed with Multi-temporal SAR Interferometry and GPS in Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    LI, G.; Lin, H.

    2014-12-01

    From 2000 till present, most endorheic lakes in Tibetan plateau experienced quick increasing. Several largest lakes, gathered several meters depth water during one decade. Such massive mass increasing will lead to elastic and visco-elastic deformation of the ground. Qinghai-Tibetan Plateau is one the most active tectonic places in the world; monitoring its ground deformation is essential, when loading effect is a nuisance item. Due to the sparse distribution of GPS sites and most are roving sites, it is hard to distinguish tectonic component from mass loading effect. In this research we took Selin Co Lake located at Nujiang-Bangoin suture zone and evaluated long time ground deformation at hundred kilometers scale by multi-temporal SAR interferometry and simulate the ground deformation by loading history evaluated by multi mission satellite altimetry and optical images observation. At Nujiang-Bangoin suture zone, where GPS presented the maximum ground subsidence in Qinghai-Tibetan Plateau of 3.6mm/a which was found at the shore of Selin Co Lake from 1999 to 2011, when it experienced water level increasing of 0.7m/a. A model of elastic plate lying over Newtonian viscous half-space matches well with the results of multi-temporal SAR interferometry and GPS observations. We concluded that near Selin Co Lake area, ground deformation is composed by both tectonic and hydrological loading part. As SAR image coverage is much smaller than tectonic scale, we contribute the deformation detected by InSAR to loading effect. After evaluating and removing the hydrological loading effect, we founds that Nujiang-Bangoin suture zone did not experience quick subsidence, but only limited to 0.5mm/a. Selin Co Lake's quick volume increasing caused 3mm/a subsidence rate to the nearest GPS site. The Second nearest site showed the 1.4mm/a subsidence totally, which were composed by 1.05mm/a hydrological loading effect and the rest was tectonic. We also found that Young's Modulus is the most essential parameter for loading effect simulation, and our simulation gave the similar Young's Modulus as the previous seismic tomographic INDEPTH III program did. Therefore with accurate seismic tomographic results and loading history detected by remote sensing could accurately simulate ground deformation caused by hydrological loading.

  7. Study of cataclastic deformation in compressive tectonic regime of a sandstone from south central Pyrenees, Spain: Timing of deformation bands occurrence during burial history and comparison with geomechanical models.

    NASA Astrophysics Data System (ADS)

    Robert, Romain; Robion, Philippe; David, Christian; Souloumiac, Pauline; Saillet, Elodie

    2017-04-01

    In high porosity sandstone lithologies, deformation bands (DBs) are characterized by changes in micro-structural characteristics inducing a localized change in the petrophysical properties of the rock. These DBs, which are generally tabular structures from millimeters to few centimeters thick, can be used at the field scale to decipher extensional or compactional tectonic regime. However, numerous parameters in addition to the tectonic regime may affect development of DBs, and particularly the evolution of porosity during burial history. The aim of this work is to understand the relationship between the DBs occurrence in tectonic shortening regime and the timing of grain cementation that occurs during burial for an analogue to siliciclastic reservoir. For that purpose, we have focused our analysis on the Aren syn-tectonic sandstone formation, maastrichtian in age, localized on the front of the Boixols thrust, on the southern side of the Sant Corneli anticline, in the south central Pyrenees (Spain). The outcrops are localized in the Tremp-Graus basin, all along a 30 km East-West trend where 10 different sites, in which deformation bands are observable, have been investigated and sampled. The structural geometry of the basin is constrained with 3 serial N-S oriented cross sections showing an increase of the shortening from West to East. Our field work strategy was to, 1) measure the orientation of the DBs in each site, 2) take cores both within the DBs and the host rock to conduct systematic thin section investigations, and 3) take oriented cores in order to study the magnetic fabric giving informations on the internal deformation linked to a set of deformation band and regional N-S shortening. Field data show a minimum of two sets of DBs on each site with variation of orientations and densities. These DBs are perpendicular to the strata which prove their early occurrence, recording the initial stages of local deformation and evolution of the Boixols fold and thrust. At the microstructures scale, DBs are characterized by grain crushing with hertzian fractures associated with pore collapse. All these evidences allow us to define these structures as compaction bands. Further microscopical investigation, grain size distribution and initial porosity are determined by image analysis. These data are confronted to geomechanical models in order to investigate the relationship between the occurrences of DBs in the burial history and the diagenesis of the rock during the compressive event.

  8. Structural context and variation of ocean plate stratigraphy, Franciscan Complex, California: insight into mélange origins and subduction-accretion processes

    NASA Astrophysics Data System (ADS)

    Wakabayashi, John

    2017-12-01

    The transfer (accretion) of materials from a subducting oceanic plate to a subduction-accretionary complex has produced rock assemblages recording the history of the subducted oceanic plate from formation to arrival at the trench. These rock assemblages, comprising oceanic igneous rocks progressively overlain by pelagic sedimentary rocks (chert and/or limestone) and trench-fill clastic sedimentary rocks (mostly sandstone, shale/mudstone), have been called ocean plate stratigraphy (OPS). During accretion of OPS, megathrust slip is accommodated by imbricate faults and penetrative strain, shortening the unit and leading to tectonic repetition of the OPS sequence, whereas OPS accreted at different times are separated by non-accretionary megathrust horizons. The Franciscan subduction complex of California accreted episodically over a period of over 150 million years and incorporated OPS units with a variety of characteristics separated by non-accretionary megathrust horizons. Most Franciscan OPS comprises MORB (mid-ocean-ridge basalt) progressively overlain by chert and trench-fill clastic sedimentary rocks that are composed of variable proportions of turbidites and siliciclastic and serpentinite-matrix olistostromes (sedimentary mélanges). Volumetrically, the trench-fill component predominates in most Franciscan OPS, but some units have a significant component of igneous and pelagic rocks. Ocean island basalt (OIB) overlain by limestone is less common than MORB-chert assemblages, as are abyssal serpentinized peridotite slabs. The earliest accreted OPS comprises metabasite of supra-subduction zone affinity imbricated with smaller amounts of metaultramafic rocks and metachert, but lacking a clastic component. Most deformation of Franciscan OPS is localized along discrete faults rather than being distributed in the form of penetrative strain. This deformation locally results in block-in-matrix tectonic mélanges, in contrast to the sedimentary mélanges making up part of the clastic OPS component. Such tectonic mélanges may include blocks and matrix derived from the olistostromes. Franciscan subduction and OPS accretion initiated in island arc crust at about 165-170 Ma, after which MORB and OIB were subducted and accreted following a long (tens of mega-ampere) gap with little or no accretion. Following subduction initiation, a ridge crest approached the trench but probably went dormant prior to its subduction (120-125 Ma), after which the subducted oceanic crust became progressively older until about 95 Ma. From 95 Ma, the age of subducted oceanic crust decreased progressively until arrival of the Pacific-Farallon spreading center led to termination of subduction and conversion to a transform plate boundary.

  9. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  10. New Developments Regarding the KT Event and Other Catastrophes in Earth History

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    Papers presented at the conference on New Developments Regarding the KT Event and Other Catastrophes in Earth History are included. Topics covered include: trajectories of ballistic impact ejecta on a rotating earth; axial focusing of impact energy in the earth's interior: proof-of-principle tests of a new hypothesis; in search of Nemesis; impact, extinctions, volcanism, glaciations, and tectonics: matches and mismatches. Separate abstracts have been prepared for articles from this report.

  11. On numerical modeling of one-dimensional geothermal histories

    USGS Publications Warehouse

    Haugerud, R.A.

    1989-01-01

    Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.

  12. Provenance and tectonic setting of the supra-crustal succession of the Qinling Complex: Implications for the tectonic affinity of the North Qinling Belt, Central China

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Huang, Qianwen; Liu, Xijun; Krapež, Bryan; Yu, Jinhai; Bai, Zhian

    2018-06-01

    The Qinling Complex lies in the Qinling orogenic belt of Central China and holds the key to understanding the evolution of this feature. The Qinling Complex comprises a basement complex composed of amphibolite and ecologite, overlain by a supra-crustal succession that has been metamorphosed to the upper greenschist facies at approximately 516-509 Ma. The protoliths of the meta-sedimentary rocks are graywackes, which are divided into lower, middle and upper units. Detrital zircons from nine samples of the supra-crustal succession have ages ranging from 1182 to 1158 Ma for the lower unit, 957 to 955 Ma for the middle unit and 917 to 840 Ma for the upper unit. The lower unit is intruded by a ca. 960 Ma pluton. The bulk compositions of these meta-sedimentary rocks and their detrital zircon ages clearly indicate derivation from Meso- and Neo-proterozoic granites. Thus, we suggest that the sedimentary succession was derived from an arc-related tectonic setting and that none of the detritus was sourced from the southern margin of the North China Block or from the northern and western margins of the South China Block. We conclude that the North Qinling Belt was an independent micro-continental block during the Meso- to Neo-proterozoic.

  13. Morphologic studies of the Moon and planets

    NASA Technical Reports Server (NTRS)

    El-Baz, F.; Maxwell, T. A.

    1984-01-01

    The impact, volcanic, and tectonic history of the Moon and planets were investigated over an eight year period. Research on the following topics is discussed: lunar craters, lunar basins, lunar volcanoes, correlation of Apollo geochemical data, lunar geology, Mars desert landforms, and Mars impact basins.

  14. State of stress, faulting, and eruption characteristics of large volcanoes on Mars

    NASA Technical Reports Server (NTRS)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1993-01-01

    The formation of a large volcano loads the underlying lithospheric plate and can lead to lithospheric flexure and faulting. In turn, lithospheric stresses affect the stress field beneath and within the volcanic edifice and can influence magma transport. Modeling the interaction of these processes is crucial to an understanding of the history of eruption characteristics and tectonic deformation of large volcanoes. We develop models of time-dependent stress and deformation of the Tharsis volcanoes on Mars. A finite element code is used that simulates viscoelastic flow in the mantle and elastic plate flexural behavior. We calculate stresses and displacements due to a volcano-shaped load emplaced on an elastic plate. Models variously incorporate growth of the volcanic load with time and a detachment between volcano and lithosphere. The models illustrate the manner in which time-dependent stresses induced by lithospheric plate flexure beneath the volcanic load may affect eruption histories, and the derived stress fields can be related to tectonic features on and surrounding martian volcanoes.

  15. Deformation-related spectroscopic features in natural Type Ib-IaA diamonds from Zimmi (West African craton)

    NASA Astrophysics Data System (ADS)

    Smit, Karen V.; D'Haenens-Johansson, Ulrika F. S.; Howell, Daniel; Loudin, Lorne C.; Wang, Wuyi

    2018-06-01

    Zimmi diamonds (Sierra Leone) have 500 million year mantle residency times whose origin is best explained by rapid tectonic exhumation to shallower depths in the mantle, associated with continental collision but prior to kimberlite eruption. Here we present spectroscopic data for a new suite of Zimmi sulphide-bearing diamonds that allow us to evaluate the link between their spectroscopic features and their unusual geological history. Cathodoluminesence (CL) imaging of these diamonds revealed irregular patterns with abundant deformation lamellae, associated with the diamonds' tectonic exhumation. Vacancies formed during deformation were subsequently naturally annealed to form vacancy clusters, NV0/- centres and H3 (NVN0). The brownish-yellow to greenish-yellow colours observed in Zimmi Ib-IaA diamonds result from visible absorption by a combination of isolated substitutional nitrogen ( {N}S^0 ) and deformation-related vacancy clusters. Colour-forming centres and other spectroscopic features can all be attributed to the unique geological history of Zimmi Ib-IaA diamonds and their rapid exhumation after formation.

  16. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    USGS Publications Warehouse

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  17. Tectonic wedging in the forearc basin - Accretionary prism transition, Lesser Antilles forearc

    NASA Technical Reports Server (NTRS)

    Torrini, Rudolph, Jr.; Speed, Robert C.

    1989-01-01

    This paper describes regional structure of the inner forearc of the southern Lesser Antilles, which contains an extensive 50-70 km wide inner forearc deformation belt (IFDB) developed above crystalline basement of the undeformed forearc basin (FAB), close to and perhaps above its probable subduction trace with Atlantic lithosphere. The IFDB is analyzed, with emphasis placed on five transects across the belt, using mainly migrated seismic sections and balanced model cross sections. The IFDB features and its evolution are discussed, with special attention given to the major structures divided by early and late stages of development, paleobathymetric history, event timing, displacement and strain, and alternative tectonic explanations.

  18. Relationships between thermal maturity indices calculated using Arrhenius equation and Lopatin method: implications for petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, D.A.

    1988-02-01

    Thermal maturity can be calculated with time-temperature indices (TTI) based on the Arrhenius equation using kinetics applicable to a range of Types II and III kerogens. These TTIs are compared with TTI calculations based on the Lopatin method and are related theoretically (and empirically via vitrinite reflectance) to the petroleum-generation window. The TTIs for both methods are expressed mathematically as integrals of temperature combined with variable linear heating rates for selected temperature intervals. Heating rates control the thermal-maturation trends of buried sediments. Relative to Arrhenius TTIs, Lopatin TTIs tend to underestimate thermal maturity at high heating rates and overestimate itmore » as low heating rates. Complex burial histories applicable to a range of tectonic environments illustrate the different exploration decisions that might be made on the basis of independent results of these two thermal-maturation models. 15 figures, 8 tables.« less

  19. New evidence for "far-field" Holocene sea level oscillations and links to global climate records

    NASA Astrophysics Data System (ADS)

    Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.

    2018-04-01

    Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.

  20. Secondary mineral growth in fractures in the Miravalles geothermal system, Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochelle, C.A.; Milodowski, A.E.; Savage, D.

    1989-01-01

    A mineralogical, fluid-chemical, and theoretical study of hydrothermal alteration in veins from drillcore from the Miravalles geothermal field, Costa Rica has revealed a complex history of mineral-fluid reaction which may be used to characterize changes in temperature and fluid composition with time. Mineralogical and mineral-chemical data are consistent with hydrothermal alteration in the temperature range 200{sup 0}-270{sup 0}C, with deeper portions of the system having undergone temperatures in excess of 300{sup 0}C. Thermodynamic calculations suggest that the observed alteration assemblage is not equilibrium with current well fluids, unless estimates of reservoir pH are incorrect. Fe-Al zoning of prehnite and epidotemore » in veins is consistent with rapid, isothermal fluctuations in fluid composition at current reservoir temperatures, and may be due to changes in volatile content of the fluid due to tectonic activity.« less

  1. Age and correlation of the Calera Limestone in the Permanente terrane of northern California

    USGS Publications Warehouse

    Sliter, William V.; McGann, Mary

    1992-01-01

    Planktonic foraminifers indicate that outcrops of Calera Limestone from the Permanente terrane in the Franciscan Complex of northern California range in age from possibly as old as Barremian to late Turonian. Underlying black limestone, which is devoid of planktonic foraminifers, presumably is Barremian in age or older. The top of the sequence exposed in major quarries is always faulted. Improved biostratigraphic resolution shows two patterns of missing time intervals. The primary pattern, which is found at all localities and involves missing planktonic foraminiferal zones in the late Aptian to early Albian and the late Albian, is linked to paleoceanographic changes in the Cretaceous Pacific Ocean. The secondary pattern, which is found at the scattered outcrops outside the major quarries and involves missing zones in the Albian and Cenomanian, suggests the results of a common tectonic history related to the accretion of a large seamount.

  2. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  3. Volcanic complexes in the eastern ridge of the Canary Islands: the Miocene activity of the island of Fuerteventura

    NASA Astrophysics Data System (ADS)

    Ancochea, E.; Brändle, J. L.; Cubas, C. R.; Hernán, F.; Huertas, M. J.

    1996-03-01

    Fuerteventura has been since early stages of its growth the result of three different adjacent large volcanic complexes: Southern, Central and Northern. The definition of these volcanic complexes and their respective growing episodes is based on volcano-stratigraphic, morphological and structural criteria, particularly radial dyke swarms. Each complex has its own prolonged history that might be longer than 10 m.y. During that time, several periods of activity alternating with gaps accompanied by important erosion took place. The evolution of each volcanic complex has been partially independent but all the three are affected by at least three Miocene tectonic phases that controlled considerably their activity. The volcanic complexes are deeply eroded and partially submerged. In the core of the Northern and the Central volcanic complexes there is a set of submarine and plutonic rocks intensely traversed by a dyke swarm, known as the Basal Complex. The Basal Complex has been interpreted in different ways but all previous authors have considered it to be prior to the subaerial shield stage of the island. Here we advance the idea that the Basal Complex represent the submarine growing stage of the volcanic complexes and the hypabyssal roots (plutons and dykes) of their successive subaerial growing episodes. Two seamounts situated nearby, southwest of the island, might be interpreted as remains of two other major volcanoes. These two volcanoes, together with those forming the present emerged island of Fuerteventura, and finally those of Famara and Los Ajaches situated further north on Lanzarote constitute a chain of volcanoes located along a lineation which is subparallel to the northwestern African coastline and which may relate to early Atlantic spreading trends in the area.

  4. The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data

    PubMed Central

    Doglioni, Carlo; Ligi, Marco; Scrocca, Davide; Bigi, Sabina; Bortoluzzi, Giovanni; Carminati, Eugenio; Cuffaro, Marco; D'Oriano, Filippo; Forleo, Vittoria; Muccini, Filippo; Riguzzi, Federica

    2012-01-01

    The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side. PMID:23240075

  5. Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Lotout, Caroline; Pitra, Pavel; Poujol, Marc; Van Den Driessche, Jean

    2017-03-01

    New U-Pb dating on zircon yielded ca. 470 Ma ages for the granitoids from the Lévézou massif in the southern French Massif Central. These new ages do not support the previous interpretation of these granitoids as syn-tectonic intrusions emplaced during the Late Devonian-Early Carboniferous thrusting. The geochemical and isotopic nature of this magmatism is linked to a major magmatic Ordovician event recorded throughout the European Variscan belt and related to extreme thinning of continental margins during a rifting event or a back-arc extension. The comparable isotopic signatures of these granitoids on each side of the eclogite-bearing leptyno-amphibolitic complex in the Lévézou massif, together with the fact that they were emplaced at the same time, strongly suggest that these granitoids were originally part of a single unit, tectonically duplicated by either isoclinal folding or thrusting during the Variscan tectonics.

  6. Tectonics of the Easter plate

    NASA Technical Reports Server (NTRS)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  7. The tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    NASA Technical Reports Server (NTRS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus.

  8. The tectonic puzzle of the Messina area (Southern Italy): insights from new seismic reflection data.

    PubMed

    Doglioni, Carlo; Ligi, Marco; Scrocca, Davide; Bigi, Sabina; Bortoluzzi, Giovanni; Carminati, Eugenio; Cuffaro, Marco; D'Oriano, Filippo; Forleo, Vittoria; Muccini, Filippo; Riguzzi, Federica

    2012-01-01

    The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side.

  9. Polyphase tectonics at the southern tip of the Manila trench, Mindoro-Tablas Islands, Philippines

    NASA Astrophysics Data System (ADS)

    Marchadier, Yves; Rangin, Claude

    1990-11-01

    The southern termination of the Manila trench within the South China Sea continental margin in Mindoro is marked by a complex polyphase tectonic fabric in the arc-trench gap area. Onshore Southern Mindoro the active deformation front of the Manila trench is marked by parallel folds and thrusts, grading southward to N50° W-trending left-lateral strike-slip faults. This transpressive tectonic regime, active at least since the Late Pliocene, has overprinted the collision of an Early Miocene volcanic arc with the South China Sea continental margin (San Jose platform). The collision is postdated by deposition of the Late Miocene-Early Pliocene elastics of the East Mindoro basin. The tectonic and geological framework of this arc, which overlies a metamorphic basement and Eocene elastics, suggests that it was built on a drifted block of the South China Sea continental margin.

  10. Ixora (Rubiaceae) on the Philippines - crossroad or cradle?

    PubMed

    Banag, Cecilia I; Mouly, Arnaud; Alejandro, Grecebio Jonathan D; Bremer, Birgitta; Meve, Ulrich; Grimm, Guido W; Liede-Schumann, Sigrid

    2017-06-07

    The Philippine archipelago is globally one of the most important model island systems for studying evolutionary processes. However, most plant species on this archipelago have not yet been studied in sufficient detail. The main aim of this study is to unravel the evolutionary history and biogeographic relationships of the Philippine members of the pantropical genus Ixora. The complex plastid and nuclear divergence patterns in Philippine Ixora, documented using tree and network approaches, reveal a highly dynamic evolution in Ixora, involving several phases of radiation and recolonization. Philippine Ixora comprises at least five lineages, of which one is most closely related to species from Wallacea, and the remaining four to species from Asia. Our study highlights the importance of Philippine species for understanding phytogeographic patterns in the Indomalayan-Australasian eco-region. The overall genetic differentiation, as well as the incongruence between genealogies based on the biparentally inherited nucleome and the maternally inherited plastome in Ixora, reflect the complex tectonic history of the Philippine archipelago. The Ixora lineage related to Wallacean species supports the delimitation of different ecozones along Huxley's line, because it is absent from Palawan. The remaining four lineages are all allied with Asian taxa, reflecting several waves of colonization. Close relationships between some widespread Philippine species and locally adapted narrow endemics suggest that the widespread, genetically diverse species act as pools for the formation of new species in a process of ongoing speciation. Our results suggest that the species concepts of some of the more widespread taxa need to be revised.

  11. Sedimentation and tectonics in the southern Bida Basin, Nigeria: depositional response to varying tectonic context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braide, S.P.

    1990-05-01

    The Upper Cretaceous Bida basin of central Nigeria is sandwiched between the Precambrian schist belts of the Northern Nigerian massif and the West African craton. Of interest is the southern part of the basin, which developed in continental settings, because the facies architecture of the sedimentary fill suggests a close relation between sedimentation dynamics and basin margin tectonics. This relationship is significant to an understanding of the basin's origin, which has been controversial. A simple sag and rift origin has been suggested, and consequently dominated the negative thinking on the hydrocarbon prospects of the basin which were considered poor. Thismore » detailed study of the facies indicates rapid basin-wide changes from various alluvial fan facies through flood-basin and deltaic facies to lacustrine facies. Paleogeographic reconstruction suggests lacustrine environments were widespread and elongate. Lacustrine environments occurred at the basin's axis and close to the margins. This suggests the depocenter must have migrated during the basin's depositional history and subsided rapidly to accommodate the 3.5-km-thick sedimentary fill. Although distinguishing pull-apart basins from rift basins, based solely on sedimentologic grounds, may be difficult, the temporal migration of the depocenter, as well as the basin architecture of upward coarsening cyclicity, show a strong tectonic and structural overprint that suggests a tectonic framework for the Southern Bida basin similar in origin to a pull-apart basin.« less

  12. Wrench tectonics in Abu Dhabi, United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, M.; Mohamed, A.S.

    1995-08-01

    Recent studies of the geodynamics and tectonic history of the Arabian plate throughout geologic time have revealed that Wrench forces played an important role in the structural generation and deformation of Petroleum basins and reservoirs of the United Arab Emirates. The tectonic analysis of Abu Dhabi revealed that basin facies evolution were controlled by wrench tectonics, examples are the Pre-Cambrian salt basin, the Permo-Triassic and Jurassic basins. In addition, several sedimentary patterns were strongly influenced by wrench tectonics, the Lower Cretaceous Shuaiba platform margin and associated reservoirs is a good example. Wrench faults, difficult to identify by conventional methods, weremore » examined from a regional perspective and through careful observation and assessment of many factors. Subsurface structural mapping and geoseismic cross-sections supported by outcrop studies and geomorphological features revealed a network of strike slip faults in Abu Dhabi. Structural modelling of these wench forces including the use of strain ellipses was applied both on regional and local scales. This effort has helped in reinterpreting some structural settings, some oil fields were interpreted as En Echelon buckle folds associated with NE/SW dextral wrench faults. Several flower structures were interpreted along NW/SE sinistral wrench faults which have significant hydrocarbon potential. Synthetic and Antithetic strike slip faults and associated fracture systems have played a significant role in field development and reservoir management studies. Four field examples were discussed.« less

  13. Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China

    NASA Astrophysics Data System (ADS)

    Du, Qiuding; Wang, Zhengjiang; Wang, Jian; Deng, Qi; Yang, Fei

    2016-03-01

    Meso- to Neoproterozoic magmatic events are widespread in the Yangtze Block. The geochronology and tectonic significance of the Shennongjia Group in the Yangtze Block are still highly controversial. An integrated geochronology and geochemistry approach provides new insights into the geochronological framework, tectonic setting, magmatic events, and basin evolution of the northern Yangtze Block. Our new precise sensitive high-resolution ion microprobe U-Pb data indicate a deposition age of 1180 ± 15 Ma for the Shicaohe Formation subalkaline basaltic tuff that is geochemically similar to modern intracontinental rift volcanic rocks. The integration of available geochemical data together with our new U-Pb ages indicates the Shicaohe Formation subalkaline basaltic tuff formed ca. 1180 in a continental rift-related setting on a passive continental margin. The Shennongjia Group is topped by the Zhengjiaya Formation volcanic sequence, indicating arc-related igneous events at 1103 Ma. The transition of the late Mesoproterozoic tectonic regime from intracontinental extension to convergence occurred between ca. 1180 and 1103 Ma in the northern Yangtze Block. Tectonic evolution in the Neoproterozoic led to accretion along the northern margin of the Yangtze Block. These results provide geochronological evidence, which is of utmost importance for reconfiguration of the chronostratigraphic framework and for promoting research on Mesoproterozoic strata in China, thereby increasing understanding of magmatic events and basin evolutionary history in the northern Yangtze Block.

  14. Review of past and present geotectonic concepts of eastern indonesia

    NASA Astrophysics Data System (ADS)

    Katili, John A.

    By the turn of the last century Dutch geoscientists already were comparing the Indonesian island arcs to the complicated structures of the European Alps and recognized that the Indonesian Archipelago possessed a dual character, both as the intersection of two of the largest and youngest mountain systems, and as an intercontinental zone between the Asiatic and Australian continents. About half a century ago they discovered in Indonesia the largest negative gravity anomalies at sea, and established that the depth of earthquake epicenters increases landward from the trenches. Despite the limited marine technology then, they discerned that the Indonesian island arcs represent a mountain belt in statu nascendi, exhibiting a systematic relationship of active tectonic and magmatic features to the deep submarine trenches. The geological and geophysical findings at sea by the first Snellius Expedition were integrated with the theories born out of the results of geological mapping on land. This is why the tectonic theories proposed by Dutch and other European geologists before the second World War were superior to those proposed by others. Though most of these theories can no longer be accepted without modification or refinement, they constitute part of the basis of the new global tectonics. Since the advent of the plate-tectonic concept, active subduction zones, transform faults and spreading centers have been recognized in Indonesia with reasonable confidence, by their physiographic, geologic and geophysical characteristics. In contrast to this, in much of the interior of the Eurasian continent the structural complexity of similar rock assemblages which have been folded, thrust and crumpled together by nearby subduction and collision is far more difficult to unravel. Consequently, the sort of geologic events deduced from the Indonesian Archipelago are of a type that should be recorded in older tectonic belts around the globe. The modern tectonic setting of the whole equatorial Indo-Pacific region, for example, has recently been compared to the terrane map of the North American Cordillera. The position of eastern Indonesia within the plate-tectonic framework is the key to resolving contradictory views on the tectonics of the Banda Sea. For example, did the Indonesian orogeny take place at the Gondwana margin or the Asian margin, are Timor and Seram a tectonic melange and thus part of the Tertiary Indonesian island arcs, or are these two islands a part of the passive Australian margin? Oceanic magnetic stripes from the Sulu, Celebes and Banda Seas all trend NE-SW. These new data suggest that the Sulu, Celebes and probably the Banda Sea represent areas of trapped Indian Ocean crust. Deep sea drilling in the Banda Sea can resolve much controversy. The Banda Sea occupies a critical position in the complex convergent zone between Australia, Southeast Asia and the Philippine Sea Plate. The determination of the stratigraphy and basement ages of the Banda Sea will constrain evolutionary models which have been proposed. Another unsolved question of key importance in our understanding of the evolution of Sulawesi and the Moluccas is the function and timing of events of the Birdhead 'bacon slicer', or the tectonic shaving in Irian Jaya. Once this mechanism is understood, the development and timing of the various structural features of Sulawesi, Halmahera and the Banda Arc will be classified. Opinions still differ regarding the 'birthplace' of the micro-continents in the Banda Sea. Some regard them as a result of Jurassic rifting of Gondwana in northwestern Australia while others consider them displaced westward from northern Irian Jaya along the Sorong transform fault. Several authors suggested that the eastern parts of Sulawesi, Buru and Seram represent micro-continents which originated from Irian Jaya, while others considered East Sulawesi and north Sulawesi remnants of ophiolite belts or fragments of island arcs that originate from the Pacific Ocean. Contrary to those who positioned Sulawesi close to Kalimantan in Miocene time or who separated the eastern and western arms of Sulawesi and placed them around continental Australia during its drift northwards, I maintain the view that in Miocene time Sulawesi emerged as a double island arc east of Kalimantan. For the Halmahera arc-trench system a similar origin during a younger phase of crustal movement could be advocated. The shape of the two eastern arms of Sulawesi and Halmahera can be compared with an 'arrowhead' pointing westward, with two larger slightly arcuate western arms as a 'wave front' proceeding from it. Thus Sulawesi and Halmahera were once north-south trending island arcs convex towards the Pacific with westward-dipping subduction zones. After collision with the irian Jaya plate, a reversal of polarity occurred as demonstrated by the trenches which developed northwest of Sulawesi and west of Halmahera. This controversy cannot be solved without determining the absolute ages of the eastern Sulawesi subduction complex. Marine research should also focus on the Sorong transform fault system between Sulawesi and Irian Jaya to elucidate its role in the westward displacement of the Sula-Banggai - Buton continental fragments. The nature, structure and history of the ridges in the Central Banda Sea, and their relationship to the oceanic crust of the adjacent North and South Banda Basin, should be investigated in more detail. Seram, Buru and Ambon require detailed studies to determine whether the arc-trench system predominates or whether micro-continent tectonics played the more significant role in their evolution. In the geological future, eastern Indonesia will be squashed between Australia and Asia, and the region will resemble the complex terrains now observed in the Alps and the Hercynian regions, a conclusion already drawn by the Dutch pioneers several decades ago.

  15. Catalog of earthquake hypocenters for Augustine, Redoubt, Iliamna, and Mount Spurr volcanoes, Alaska: January 1, 1991 - December 31, 1993

    USGS Publications Warehouse

    Jolly, Arthur D.; Power, John A.; Stihler, Scott D.; Rao, Lalitha N.; Davidson, Gail; Paskievitch, John F.; Estes, Steve; Lahr, John C.

    1996-01-01

    The 1992 eruptions at Mount Spurr's Crater Peak vent provided the highlight of the catalog period. The crisis included three sub-plinian eruptions, which occurred on June 27, August 18, and September 16-17, 1992. The three eruptions punctuated a complex seismic sequence which included volcano-tectonic (VT) earthquakes, tremor, and both deep and shallow long period (LP) earthquakes. The seismic sequence began on August 18, 1991, with a small swarm of volcano-tectonic events beneath Crater Peak, and spread throughout the volcanic complex by November of the same year. Elevated levels of seismicity persisted at Mount Spurr beyond the catalog time period.

  16. The QuakeSim Project: Numerical Simulations for Active Tectonic Processes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry

    2004-01-01

    In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.

  17. Cenozoic tectonic reorganizations of the Death Valley region, southeast California and southwest Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.

    2011-01-01

    The Death Valley region, of southeast California and southwest Nevada, is distinct relative to adjacent regions in its structural style and resulting topography, as well as in the timing of basin-range extension. Cenozoic basin-fill strata, ranging in age from greater than or equal to 40 to approximately 2 million years are common within mountain-range uplifts in this region. The tectonic fragmentation and local uplift of these abandoned basin-fills indicate a multistage history of basin-range tectonism. Additionally, the oldest of these strata record an earlier, pre-basin-range interval of weak extension that formed broad shallow basins that trapped sediments, without forming basin-range topography. The Cenozoic basin-fill strata record distinct stratigraphic breaks that regionally cluster into tight age ranges, constrained by well-dated interbedded volcanic units. Many of these stratigraphic breaks are long recognized formation boundaries. Most are angular unconformities that coincide with abrupt changes in depositional environment. Deposits that bound these unconformities indicate they are weakly diachronous; they span about 1 to 2 million years and generally decrease in age to the west within individual basins and regionally, across basin boundaries. Across these unconformities, major changes are found in the distribution and provenance of basin-fill strata, and in patterns of internal facies. These features indicate rapid, regionally coordinated changes in strain patterns defined by major active basin-bounding faults, coincident with step-wise migrations of the belt of active basin-range tectonism. The regionally correlative unconformities thus record short intervals of radical tectonic change, here termed "tectonic reorganizations." The intervening, longer (about 3- to 5-million-year) interval of gradual, monotonic evolution in the locus and style of tectonism are called "tectonic stages." The belt of active tectonism in the Death Valley region has abruptly stepped westward during three successive tectonic reorganizations that intervened between four stages of basin-range tectonism, the youngest of which is ongoing. These three tectonic reorganizations also intervened between four stages of volcanic activity, each of which has been distinct in the compositions of magmas erupted, in eruption rates, and in the locus of volcanic activity—which has stepped progressively westward, in close coordination with the step-wise migrations in the locus of basin-range extension. The timing of the Cenozoic tectonic reorganizations in the Death Valley region correlates closely with the documented timing of episodic reorganizations of the boundary between the Pacific and North American plates, to the west and southwest. This supports models that explain the widely distributed transtensional tectonism in southwestern North America since approximately 40 million years ago as resulting from traction imposed by the adjacent, divergent Pacific plate.

  18. This Dynamic Planet: World map of volcanoes, earthquakes, impact craters and plate tectonics

    USGS Publications Warehouse

    Simkin, Tom; Tilling, Robert I.; Vogt, Peter R.; Kirby, Stephen H.; Kimberly, Paul; Stewart, David B.

    2006-01-01

    Our Earth is a dynamic planet, as clearly illustrated on the main map by its topography, over 1500 volcanoes, 44,000 earthquakes, and 170 impact craters. These features largely reflect the movements of Earth's major tectonic plates and many smaller plates or fragments of plates (including microplates). Volcanic eruptions and earthquakes are awe-inspiring displays of the powerful forces of nature and can be extraordinarily destructive. On average, about 60 of Earth's 550 historically active volcanoes are in eruption each year. In 2004 alone, over 160 earthquakes were magnitude 6.0 or above, some of which caused casualties and substantial damage. This map shows many of the features that have shaped--and continue to change--our dynamic planet. Most new crust forms at ocean ridge crests, is carried slowly away by plate movement, and is ultimately recycled deep into the earth--causing earthquakes and volcanism along the boundaries between moving tectonic plates. Oceans are continually opening (e.g., Red Sea, Atlantic) or closing (e.g., Mediterranean). Because continental crust is thicker and less dense than thinner, younger oceanic crust, most does not sink deep enough to be recycled, and remains largely preserved on land. Consequently, most continental bedrock is far older than the oldest oceanic bedrock. (see back of map) The earthquakes and volcanoes that mark plate boundaries are clearly shown on this map, as are craters made by impacts of extraterrestrial objects that punctuate Earth's history, some causing catastrophic ecological changes. Over geologic time, continuing plate movements, together with relentless erosion and redeposition of material, mask or obliterate traces of earlier plate-tectonic or impact processes, making the older chapters of Earth's 4,500-million-year history increasingly difficult to read. The recent activity shown on this map provides only a present-day snapshot of Earth's long history, helping to illustrate how its present surface came to be. The map is designed to show the most prominent features when viewed from a distance, and more detailed features upon closer inspection. The back of the map zooms in further, highlighting examples of fundamental features, while providing text, timelines, references, and other resources to enhance understanding of this dynamic planet. Both the front and back of this map illustrate the enormous recent growth in our knowledge of planet Earth. Yet, much remains unknown, particularly about the processes operating below the ever-shifting plates and the detailed geological history during all but the most recent stage of Earth's development.

  19. The fate of water within Earth and super-Earths and implications for plate tectonics

    PubMed Central

    2017-01-01

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416729

  20. The fate of water within Earth and super-Earths and implications for plate tectonics.

    PubMed

    Tikoo, Sonia M; Elkins-Tanton, Linda T

    2017-05-28

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.

  1. Reports on crustal movements and deformations. [bibliography

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Peck, T.

    1983-01-01

    This Catalog of Reports on Crustal Movements and Deformation is a structured bibliography of scientific papers on the movements of the Earth crust. The catalog summarizes by various subjects papers containing data on the movement of the Earth's surface due to tectonic processes. In preparing the catalog we have included studies of tectonic plate motions, spreading and convergence, microplate rotation, regional crustal deformation strain accumulation and deformations associated with the earthquake cycle, and fault motion. We have also included several papers dealing with models of tectonic plate motion and with crustal stress. Papers which discuss tectonic and geologic history but which do not present rates of movements or deformations and papers which are primarily theoretical analyses have been excluded from the catalog. An index of authors cross-referenced to their publications also appears in the catalog. The catalog covers articles appearing in reviewed technical journals during the years 1970-1981. Although there are citations from about twenty journals most of the items come from the following publications: Journal of Geophysical Research, Tectonophysics, Geological Society of America Bulletin of the Seismological Society of America, Nature, Science, Geophysical Journal of the Royal Astronomical Society, Earth and Planetary Science Letters, and Geology.

  2. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    USGS Publications Warehouse

    Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphael; Gebelin, Aude; Chamberlain, C. Page

    2015-01-01

    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (−90‰ to −154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ −154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ −125‰), where 40Ar/39Ar geochronological data indicate Miocene (18–15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.

  3. Seafloor Tectonic Fabric from Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Smith, Walter H. F.

    Ocean floor structures with horizontal scales of 10 to a few hundred kilometers and vertical scales of 100 m or more generate sea surface gravity anomalies observable with satellite altimetry. Prior to 1990, altimeter data resolved only tectonic lineaments, some seamounts, and some aspects of mid-ocean ridge structure. New altimeter data available since mid-1995 resolve 10-km--scale structures over nearly all the world's oceans. These data are the basis of new global bathymetric maps and have been interpreted as exhibiting complexities in the sea floor spreading process including ridge jumps, propagating rifts, and variations in magma supply. This chapter reviews the satellite altimetry technique and its resolution of tectonic structures, gives examples of intriguing tectonic phenomena, and shows that structures as small as abyssal hills are partially resolved. A new result obtained here is that the amplitude of the fine-scale (10--80 km) roughness of old ocean floor is spreading-rate dependent in the same that it is at mid-ocean ridges, suggesting that fine-scale tectonic fabric is generated nearly exclusively by ridge-axis processes.

  4. The surface and interior of Venus

    NASA Technical Reports Server (NTRS)

    Masursky, H.; Kaula, W. M.; Russell, C. T.; Schubert, G.; Mcgill, G. E.; Pettengill, G. H.; Shapiro, I. I.; Phillips, R. J.

    1977-01-01

    The present knowledge of Venus is reviewed with discussions of the nature and history of both the surface, crust and interior. Instrumentation on board the Pioneer Venus Orbiter, including the radar mapper, radio tracking and the fluxgate magnetometer, is described. Topographic, geological, Bouguer gravity, magnetic, and crustal thickness maps will be constructed from Orbiter data. These maps should provide information on composition and thermal history, the major geological or geophysical provinces, the rate of past and present tectonic activity, and evidence of past or present MHD dynamos.

  5. Geophysical advances triggered by 1964 Great Alaska Earthquake

    USGS Publications Warehouse

    Haeussler, Peter J.; Leith, William S.; Wald, David J.; Filson, John R.; Wolfe, Cecily; Applegate, David

    2014-01-01

    A little more than 50 years ago, on 27 March 1964, the Great Alaska earthquake and tsunami struck. At moment magnitude 9.2, this earthquake is notable as the largest in U.S. written history and as the second-largest ever recorded by instruments worldwide. But what resonates today are its impacts on the understanding of plate tectonics, tsunami generation, and earthquake history as well as on the development of national programs to reduce risk from earthquakes and tsunamis.

  6. Fluvial deposits of Yellowstone tephras: Implications for late Cenozoic history of the Bighorn basin area, Wyoming and Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1992-01-01

    Several deposits of tephra derived from eruptions in Yellowstone National Park occur in the northern Bighorn basin area of Wyoming and Montana. These tephra deposits are mixed and interbedded with fluvial gravel and sand deposited by several different rivers. The fluvial tephra deposits are used to calculate stream incision rates, to provide insight into drainage histories and Quaternary tectonics, to infer the timing of alluvial erosion-deposition cycles, and to calibrate rates of soil development. ?? 1992.

  7. Boron Isotopes as Tracers of the Tectonic Origin and Geological History of Serpentinites in Subduction and Suture Zones.

    NASA Astrophysics Data System (ADS)

    Martin, C.; Harlow, G. E.; Flores, K. E.; Angiboust, S.

    2017-12-01

    Serpentinites are known to play a key role in subduction, because they contain significant water content and can be enriched in elements such as As, B, Li, Sb, and U. They originate by hydration of peridotite by two different processes: (i) by a seawater source reacting with peridotite beneath the ocean crust and (ii) by reaction of peridotite at the base of the mantle-wedge with fluids released from the slab during subduction. In suture zones, it is relatively common to find serpentinite from both exhumed subduction channel mélange (from the mantle wedge) and ophiolite (from the oceanic crust), but recognizing them and their tectonic origin can be difficult. A recent study based on samples from the Guatemala Suture Zone demonstrated that boron (B) isotopes can be used as a probe of the fluid from which serpentinites form. Serpentinites from an ophiolite complex have positive δ11B, as expected for peridotites hydrated by seawater-derived fluid, whereas serpentinite samples from the matrix of the mélange (coming from the roof of the subducting channel) have negative δ11B, in agreement with hydration of mantellic peridotites by fluids released at 30-70 km depth from metamorphic rocks. Serpentinites from tectonically well-constrained locations were selected to extend our knowledge of metasomatism in subduction-related areas. The trace-element contents and B isotopes were measured in situ, respectively by LA-ICP-MS and LA-MC-ICP-MS on samples from the oceanic crust (ophiolite = Guatemala, Iran, Cuba), the subduction forearc (Nicaragua), and the mantle wedge (Guatemala, Iran, Japan, Myanmar). The spider diagrams and REE patterns, as well as a B/La vs. As/La diagram do not show any reliable difference to distinguish the tectonic origin of the serpentinite. However, in a δ11B vs. B content diagram, the serpentinites seem to plot in a triangle with fluid endmembers representing (i) seawater (δ11B = 40‰, [B] = 5ppm), (ii) metabasite-issued metamorphic fluids, and (iii) metasediments-issued metamorphic fluids (δ11B varies with temperature from +19 to - 15‰, [B] badly constrained but likely varies with depth (i.e., T) from hundreds (in metasediments) to few (in metabasites) ppm). Thus, the tectonic origin of serpentinites encountered in suture areas as well as the fluid(s) responsible of it might be defined in a δ11B vs. B diagram.

  8. Geohistory analysis of the Santa Maria basin, California, and its relationship to tectonic evolution of the continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.

    1991-02-01

    The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less

  9. Transposition of foliations and superposition of lineations during polyphase deformation in the Nevado-Filabride complex: tectonic implications

    NASA Astrophysics Data System (ADS)

    Ruiz-Fuentes, Alejandro; Aerden, Domingo G. A. M.

    2018-01-01

    Detailed structural analysis in a ca. 80 km2 area of the western Nevado-Filabride complex (Betic Cordillera) reveals a heterogeneous internal structure characterized by multiple cross-cutting foliations and lineations that locally transpose earlier ones. The large-scale geometry of these fabrics conflicts with continuous westward to south-westward tectonic transport related to thrusting or crustal extension, and mismatches a previously inferred extensional detachment in the area. Multiple crenulation lineations can be distinguished in the field and correlated with five foliation intersection axes (FIA1-5) preserved in garnet and plagioclase porphyroblasts of the western Sierra Nevada. These indicate crustal shortening in different directions associated with vertical foliation development and intermitted stages of gravitational collapse producing horizontal foliations. The large spread of lineation- and fold-axes trends in the Nevado-Filabride complex results from the mixed presence of multiple generations of these structures whose distinction is critical for tectonic models. The five principal FIA trends remarkably match successive vectors of relative Africa-Iberia plate motion since the Eocene, suggesting that deformation of the Nevado-Filabride took place during this period, although peak metamorphism in at least some of its parts was reached as late as the Middle Miocene.

  10. Cenozoic Ignimbrites, Source Calderas, Relict Magma Chambers, and Tectonic Settings: Perspectives from Cordilleran North America (Invited)

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.

    2009-12-01

    In the early 1960s, new concepts and innovative techniques coalesced spectacularly to improve understanding of Tertiary pyroclastic volcanism in North America. Spotty recognition of welded tuff, among rocks mostly described as silicic lava flows, exploded with identification of individual ignimbrite sheets, some having volumes >103 km3 and extending >100 km from source calderas. R.l. Smith, during study of the Bandelier Tuff in New Mexico, documented complexities of welding and crystallization zones that provided a genetic framework (cooling units) for ignimbrite studies (even while confusion continues in some areas where talus and vegetation obscure bench-forming contact zones between densely welded cliffs). Also in the 1960s, application of isotopic age determinations (initially K-Ar, now largely superceded by 40Ar/39Ar laser fusion) and precise paleomagnetic pole directions became key tools for correlating ignimbrites, deciphering eruptive histories, and determining volcano-tectonic patterns. Dated ignimbrites provide unique stratigraphic markers within volcanic field, as well as datums for regional structures and the shifting patterns of volcanism related to global plate motions--another happy coincidence in the 1960s as plate-tectonic models were formulated. Tertiary ignimbrite flare-ups along the Cordilleran margin increasingly are recognized as coinciding with inception of regional extension, especially during transitions from episodes of low-angle convergence. Many large caldera sources for the Tertiary ignimbrites have now been identified, in place of prior vague concepts of “volcano-tectonic depressions”, especially as the contrasts between thin outflow and thickly ponded intracaldera ignimbrite with interleaved collapse breccia became appreciated. Multi-km-thick fills in many calderas document that collapse begins early during large ignimbrite eruptions, and downsag inception was succeeded by breakage along ring faults. Resurgent uplift has been identified at many ignimbrite calderas, building on the pioneering observations of van Bemmelen at Lake Toba, Indonesia. Still many Tertiary caldera systems remain poorly understood where buried beneath younger rocks, others completely eroded to levels of subvolcanic granitic plutons. Links between silicic volcanism and batholith formation in continental crust continue a major research focus; improved petrologic, isotopic, and geophysical techniques are helping evaluate compositional and age relations between extrusive and intrusive components, as well as present-day intrusion geometry relative to times of peak volcanism. Ignimbrites that preserve quenched compositional gradients, commonly from rhyolite upward into crystal-rich dacite, were early recognized as special opportunities for magma-chamber studies, especially as analytical methods improved (XRF and INAA rock chemistry, microprobe mineral compositions, radiogenic and stable isotope geochemistry). These demonstrated the importance of mafic magma from the mantle, melting/assimilation in the lower crust, and mixing of diverse magmas during rise and eruption, even as recent studies by electron and/or ion probe documented complex crystal cargos (mixed phenocrysts, xenocrysts, and antecrysts).

  11. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    USGS Publications Warehouse

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  12. Quaternary sedimentation and subsidence history of Lake Baikal, Siberia, based on seismic stratigraphy and coring

    USGS Publications Warehouse

    Colman, Steven M.; Karabanov, E.B.; Nelson, C. H.

    2003-01-01

    The long, continuous, high-latitude, stratigraphic record of Lake Baikal was deposited in three broad sedimentary environments, defined by high-resolution seismic-reflection and coring methods: (1) turbidite depositional systems, by far the most widespread, characterizing most of the margins and floors of the main basins of the lake, (2) large deltas of major drainages, and (3) tectonically or topographically isolated ridges and banks. Holocene sedimentation rates based on radiocarbon ages vary by more than an order of magnitude among these environments, from less than about 0.03 mm/yr on ridges and banks to more than about 0.3 mm/yr on basin floors. Extrapolating these rates, with a correction for compaction, yields tentative estimates of about 25 and 11 Ma for the inception of rifting in the Central and North basins, respectively, and less than 6 Ma for the 200-m sediment depth on Academician Ridge. The Selenga Delta has the distinctive form of a classic prograding Gilbert-type delta, but its history appears to represent a complex combination of tectonism and sedimentation. The central part of the delta is underlain by prograding, shallow-water sequences, now several hundred meters below the lake surface. These deposits and much of the delta slope are mantled by fine-grained, deep-water, hemipelagic deposits whose base is estimated to be about 650,000 years old. Modern coarse-grained sediment bypasses the delta slope through fault-controlled canyons that feed large, subaqueous fans at the ends of the South and Central basins. These relations, along with abundant other evidence of recent faulting and the great depths of the Central and South basins, suggest that these two rift basins have experienced a period of unusually rapid subsidence over the last 650,000 years, during at least part of which sedimentation has failed to keep pace.

  13. Structures and microfabrics of the Franciscan Complex (California): Inferences on the rheology and kinematics of a subduction channel

    NASA Astrophysics Data System (ADS)

    Krohe, A.; Wassmann, S.; Trepmann, C.; Stoeckhert, B.

    2009-12-01

    The characteristic feature of the Franciscan Subduction Complex (FSC) is a chaotic mélange structure with centimeter- to about one kilometer-sized tectonic blocks composed of metabasalts, floating in a matrix of oceanic meta-sediments or, locally, serpentinites. Investigating map scale structures, microfabrics, and P-T-histories of the FSC, we try to gain information on the mechanical properties of rocks and their influence on the kinematics of material transport in a subduction channel. Structures and microfabrics indicate that metabasalts from the oceanic crust as well as mantle-derived ultramafic rocks (i) underwent fragmentation and sealing under high pore fluid pressure, (ii) remaining internally undeformed, or (iii) deform by dissolution precipitation creep. Importantly, microfabrics which would indicate crystal plastic deformation or dislocation creep are systematically absent. This means that, during the entire P-T history, differential stresses generally remained too low to activate crystal plastic deformation or dislocation creep. Hence the material in the subduction channel is characterized by a low strength, being either limited by brittle failure at high pore fluid pressure, or a Newton viscosity, which is expected for dissolution precipitation creep. We interpret the characteristic mélange structure as to reflect this mechanical state of the system: Brittle failure at quasi-lithostatic fluid pressures down to great depths is recorded in the tectonic blocks by the widespread occurrence of aragonite-bearing veins. This leads to fragmentation into the blocks of variable size and moderate aspect ratios, which behave as rigid inclusions in a flowing matrix with distributed deformation by dissolution precipitation creep. In contrast, a power law rheology characteristic for dislocation creep, would favor strain localization into shear zones at sites of stress concentration. However, such shear zones formed at high-P metamorphic conditions are not identified. Mechanical contrasts within the mélange are presumably governed by variations in grain sizes and the nature of interphase boundaries, which both control viscous deformation by dissolution precipitation creep. As such, huge viscosity contrasts between matrix and rigid blocks can persist during burial to HP metamorphic conditions and decompression, while the mélange is deformed to very high bulk strain. These findings pose constraints on the large scale properties of a subduction channel presently active at depth, to be identified by geophysical methods.

  14. Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic-early Jurassic tectonics associated with the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Yixuan; Liang, Xiao; Wang, Genhou; Yuan, Guoli; Bons, Paul D.

    2018-03-01

    The Mesozoic orogeny in Central Qiangtang Metamorphic Belt, northern Tibet, provides important insights into the geological evolution of the Paleo-Tethys Ocean. However, the Triassic-early Jurassic tectonics, particularly those associated with the continental collisionstage, remains poorly constrained. Here we present results from geological mapping, structural analysis, P-T data, and Ar-Ar geochronology of the Mayer Kangri metamorphic complex. Our data reveal an E-W-trending, 2 km wide dome-like structure associated with four successive tectonic events during the Middle Triassic and Early Jurassic. Field observations indicate that amphibolite and phengite schist complexes in this complex are separated from the overlying lower greenschist mélange by normal faulting with an evident dextral shearing component. Open antiform-like S2 foliation of the footwall phengite schist truncates the approximately north-dipping structures of the overlying mélange. Microtextures and mineral chemistry of amphibole reveal three stages of growth: Geothermobarometric estimates yield temperatures and pressures of 524 °C and 0.88 GPa for pargasite cores, 386 °C and 0.34 GPa for actinolite mantles, and 404 °C and 0.76 GPa for winchite rims. Peak blueschist metamorphism in the phengite schist occurred at 0.7-1.1 GPa and 400 °C. Our Ar-Ar dating of amphibole reveals rim-ward decreasing in age bands, including 242.4-241.2 Ma, ≥202.6-196.8, and 192.9-189.8 Ma. The results provide evidence for four distinct phases of Mesozoic tectonic evolution in Central Qiangtang: (1) northward oceanic subduction beneath North Qiangtang ( 244-220 Ma); (2) syn-collisional slab-break off (223-202 Ma); (3) early collisional extension driven by buoyant extrusion flow from depth ( 202.6-197 Ma); and (4) post-collision contraction and reburial (195.6-188.7 Ma).

  15. Evaluation of the Interplate and Intraplate Deformations of the African Continent Using cGNSS Data

    NASA Astrophysics Data System (ADS)

    Apolinário, J. P.; Fernandes, R. M. S.; Bos, M. S.; Meghraoui, M.; Miranda, J. M. A.

    2014-12-01

    Two main plates, Nubia and Somalia, plus some few more tectonic blocks in the East African Rift System (EARS) delimit the African continent. The major part of the external plate boundaries of Africa is well defined by oceanic ridge systems with the exception of the Nubia-Eurasia complex convergence-collision tectonic zone. In addition, the number and distribution of the tectonic blocks along the EARS region is a major scientific issue that has not been completely answered so far. Nevertheless, the increased number of cGNSS (continuous Global Navigation Satellite Systems) stations in Africa with sufficient long data span is helping to better understand and constrain the complex sub-plate distribution in the EARS as well as in the other plate boundaries of Africa. This work is the geodetic contribution for the IGCP-Project 601 - "Seismotectonics and Seismic Hazards in Africa". It presents the current tectonic relative motions of the African continent based on the analysis of the estimated velocity field derived from the existing network of cGNSS stations in Africa and bordering plate tectonics. For the majority of the plate pairs, we present the most recent estimation of their relative velocity using a dedicated processing. The velocity solutions are computed using HECTOR, a software that takes into account the existing temporal correlations between the daily solutions of the stations. It allows to properly estimate the velocity uncertainties and to detect any artifacts in the time-series. For some of the plate pairs, we compare our solutions of the angular velocities with other geodetic and geophysical models. In addition, we also study the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) for tectonic units with few stations, and in particular for the Victoria and Rovuma blocks of the EARS. Finally, we compute estimates of velocity fields for several sub-regions correlated with the seismotectonic provinces and discuss the level of interplate and intraplate deformations in Africa.

  16. Seismicity of the Earth 1900–2010 Middle East and vicinity

    USGS Publications Warehouse

    Jenkins, Jennifer; Turner, Bethan; Turner, Rebecca; Hayes, Gavin P.; Davies, Sian; Dart, Richard L.; Tarr, Arthur C.; Villaseñor, Antonio; Benz, Harley M.

    2013-01-01

    No fewer than four major tectonic plates (Arabia, Eurasia, India, and Africa) and one smaller tectonic block (Anatolia) are responsible for seismicity and tectonics in the Middle East and surrounding region. Geologic development of the region is a consequence of a number of first-order plate tectonic processes that include subduction, large-scale transform faulting, compressional mountain building, and crustal extension. In the east, tectonics are dominated by the collision of the India plate with Eurasia, driving the uplift of the Himalaya, Karakorum, Pamir and Hindu Kush mountain ranges. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting, resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Off the south coasts of Pakistan and Iran, the Makran trench is the surface expression of active subduction of the Arabia plate beneath Eurasia. Northwest of this subduction zone, collision between the two plates forms the approximately 1,500-km-long fold and thrust belts of the Zagros Mountains, which cross the whole of western Iran and extend into northeastern Iraq. Tectonics in the eastern Mediterranean region are dominated by complex interactions between the Africa, Arabia, and Eurasia plates, and the Anatolia block. Dominant structures in this region include: the Red Sea Rift, the spreading center between the Africa and Arabia plates; the Dead Sea Transform, a major strike-slip fault, also accommodating Africa-Arabia relative motions; the North Anatolia Fault, a right-lateral strike-slip structure in northern Turkey accommodating much of the translational motion of the Anatolia block westwards with respect to Eurasia and Africa; and the Cyprian Arc, a convergent boundary between the Africa plate to the south, and Anatolia Block to the north.

  17. Stratification of Seismic Anisotropy Beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Eaton, D. W.; Bastow, I. D.

    2012-12-01

    The Hudson Bay region has a complex tectonic history spanning ~4 Ga of Earth's evolution. During the ~1.8 Ga Trans-Hudson orogeny, the Archean Superior and Western Churchill cratons collided following the subduction of a Pacific-scale ocean. It is thought that a significant amount of juvenile material is preserved in the Trans-Hudson Orogen, in part due to the complex double-indentor geometry of the Superior-Churchill collision. In the region of interest, the orogen lies beneath a large but shallow Paleozoic intra-cratonic basin. Studies of the crust and upper mantle beneath this region have been enabled through the HuBLE (Hudson Bay Lithospheric Experiment) project, through the deployment of broadband seismographs around the Bay and across the islands to the north. A surface-wave tomography study has taken advantage of the data coverage, providing new information on phase velocity heterogeneity and anisotropy for wave periods of 25-200 seconds (equivalent to depths from the lower crust to ~300 km). On a large scale, our results show that the entire region is underlain by a seismically fast lithospheric lid corresponding to the continental keel. The lithospheric thickness ranges from ~180km in the northeast, beneath a zone of Paleozoic rifting, to ~280km beneath central Hudson Bay. Within the lithosphere, seismic velocities vary laterally, including high-velocity material wrapping around the Bay in the uppermost mantle. In the mid-lithosphere, two high-velocity cores are imaged, with a zone of lower velocity between them beneath the Bay. We interpret these high-velocity structures to represent the strongest central cores of the Superior and Churchill cratons, with more-juvenile material preserved between them. The near-vertical geometry of the lower-velocity zone suggests that it is only the effects of terminal collision of the cratonic cores, rather than any preceding subduction, that is preserved today. The lowermost lithosphere has a more uniform velocity, and may represent a pervasive zone of metasomatism or underplating. Anisotropy patterns across the region also vary with depth, suggesting ~3 layers of stratification of lithospheric fabric. At the shallowest depths, anisotropic fast directions wrap around the Bay in a similar fashion to the patterns of isotropic wavespeed. The upper lithospheric mantle below is characterized by relatively weak and incoherent anisotropy; however the mid-to-lower lithosphere shows stronger anisotropy, with a pattern of fast directions broadly consistent with the tectonics of the Superior-Churchill collision as inferred from potential-field data. This may suggest some degree of coherency of deformation between the crust, uppermost mantle and lower lithosphere. These models of seismic wavespeed variation beneath the Hudson Bay region reveal the preservation of a major collision zone during the assembly of the Laurentian continental mass, and also suggest that the Archean cratons can be subdivided into different lithospheric domains that reflect their tectonic history but do not necessarily correspond to surface geological boundaries.

  18. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Qi; Paszkiewicz, Mateusz; Du, Ping; Zhang, Liding; Lin, Tao; Chen, Zhi; Klyatskaya, Svetlana; Ruben, Mario; Seitsonen, Ari P.; Barth, Johannes V.; Klappenberger, Florian

    2018-03-01

    Interfacial supramolecular self-assembly represents a powerful tool for constructing regular and quasicrystalline materials. In particular, complex two-dimensional molecular tessellations, such as semi-regular Archimedean tilings with regular polygons, promise unique properties related to their nontrivial structures. However, their formation is challenging, because current methods are largely limited to the direct assembly of precursors, that is, where structure formation relies on molecular interactions without using chemical transformations. Here, we have chosen ethynyl-iodophenanthrene (which features dissymmetry in both geometry and reactivity) as a single starting precursor to generate the rare semi-regular (3.4.6.4) Archimedean tiling with long-range order on an atomically flat substrate through a multi-step reaction. Intriguingly, the individual chemical transformations converge to form a symmetric alkynyl-Ag-alkynyl complex as the new tecton in high yields. Using a combination of microscopy and X-ray spectroscopy tools, as well as computational modelling, we show that in situ generated catalytic Ag complexes mediate the tecton conversion.

  19. Optimal Planet Properties For Plate Tectonics Through Time And Space

    NASA Astrophysics Data System (ADS)

    Stamenkovic, Vlada; Seager, Sara

    2014-11-01

    Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up and regulation of gases relevant for life. This allows for the first time to discuss the tectonic mode of a rocky planet from a practical astrophysical perspective.

  20. Molecular tectonics: hierarchical organization of heterobimetallic coordination networks into heterotrimetallic core-shell crystals.

    PubMed

    Zhang, Fan; Adolf, Cyril R R; Zigon, Nicolas; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2017-03-23

    Combinations of a neutral Pt(ii) organometallic tecton bearing two triphenylphosphine and two 3-ethynylpyridyl coordinating moieties in trans positions with MX 2 complexes (M = Co(ii) and X = Cl - or Br - and M = Zn(ii) and X = Cl - ) lead to the formation of isostructural 1D heterobimetallic coordination compounds. By 3D epitaxial growth processes, using coordination bonding, heterotrimetallic core-shell crystals are generated by the growth of crystalline layers on seed crystals.

  1. Venus as a laboratory for studying planetary surface, interior, and atmospheric evolution

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Hensley, S.; Helbert, J.

    2013-12-01

    As Earth's twin, Venus offers a laboratory for understanding what makes our home planet unique in our solar system. The Decadal Survey points to the role of Venus in answering questions such as the supply of water and its role in atmospheric evolution, its availability to support life, and the role of geology and dynamics in controlling volatiles and climate. On Earth, the mechanism of plate tectonics drives the deformation and volcanism that allows volatiles to escape from the interior to the atmosphere and be recycled into the interior. Magellan revealed that Venus lacks plate tectonics. The number and distribution of impact craters lead to the idea Venus resurfaced very rapidly, and inspired numerous models of lithospheric foundering and episodic plate tectonics. However we have no evidence that Venus ever experienced a plate tectonic regime. How is surface deformation affected if no volatiles are recycled into the interior? Although Venus is considered a ';stagnant' lid planet (lacking plate motion) today, we have evidence for recent volcanism. The VIRTIS instrument on Venus Express mapped the southern hemisphere at 1.02 microns, revealing areas likely to be unweathered, recent volcanic flows. Additionally, numerous studies have shown that the crater population is consistent with ongoing, regional resurfacing. How does deformation and volcanism occur in the absence of plates? At what rate is the planet resurfacing and thus outgassing? Does lithospheric recycling occur with plate tectonics? In the 25 years since Magellan, the design of Synthetic Aperture Radar has advanced tremendously, allowing order of magnitude improvements in altimetry and imaging. With these advanced tools, we can explore Venus' past and current tectonic states. Tesserae are highly deformed plateaus, thought to be possible remnants of Venus' earlier tectonic state. How did they form? Are they low in silica, like Earth's continents, indicating the presence of abundant water? Does the plains volcanism cover an earlier tectonic surface, or perhaps cover ancient impact basins? Was there an abrupt transition in tectonic style, perhaps due to degassing of the crust or a more gradual shift? What is the nature of Venus' modern tectonics? Is the lithosphere still deforming? Is there recent or active volcanism? Is volcanism confined to hotspots, areas above mantle plumes? Has plains volcanism ceased? What are the implications for volatile history? These questions can be addressed via a combination of high resolution altimetry, imaging, and surface emissivity mapping.

  2. Mantle convection: concensus and queries (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Ricard, Y.

    2012-04-01

    Thermal convection driven by surface cooling and internal heat production is the cause of endogenic activity of all planets, expressed as tectonic activity and volcanism for solid planets. The sluggish convection of the silicated mantle also controls the activity of the metallic core and the possibility of an active dynamo. A glimpse of the internal structure of Earth's mantle is provided by seismic tomography. However, both the limited resolution of seismic methods and the complexity of the relations between seismic velocities and the thermo-mechanical parameters (mostly temperature and density), leave to the geodynamicist a large degree of interpretation. At first order, a very simple model of mantle heterogeneities, only built from the paleogeographic positions of Cenozoic and Mesozoic slabs, explains the pattern and amplitude of Earth's plate motions and gravity field, while being in agreement with long wavelength tomography. This indicates that the mantle dynamics is mostly controlled by thermal anomalies and by the dynamics of the top boundary layer, the lithosphere. However, the presence of various complexities due to variations in elemental composition and to phase transitions is required by seismology, mineralogy and geochemistry. I will review how these complexities affect the dynamics of the transition zone and of the deep mantle and discuss the hypothesis on their origins, either primordial or as a consequence of plate tectonics. The rheologies that are used in global geodynamic models for the mantle and the lithosphere remain very simplistic. Some aspects of plate tectonics (e.g., the very existence of plates, their evolution, the dynamics of one-sided subductions...) are now reproduced by numerical simulations. However the rheologies implemented and their complexities remain only remotely related to that of solid minerals as observed in laboratories. The connections between the quantities measured at microscopic scale (e.g., mineralogy, grainsize, mechanisms of creeping, anisotropy, preferential shape orientations, water content...), their macroscopic averages, and the retroaction between them, are still unclear. The understanding of these relations would explain why Earth has plate tectonics while the other planets of the solar system, including her sister planet Venus, do not. As plate tectonics can be advocated to be a major ingredient for life to developp, we can speculate that a better understanding of the interaction between rheology and geodynamics would help us to estimate on what extrasolar planets including super earths, life might be expected.

  3. Modeling the poroelastic response to megathrust earthquakes: A look at the 2012 Mw 7.6 Costa Rican event

    NASA Astrophysics Data System (ADS)

    McCormack, Kimberly A.; Hesse, Marc A.

    2018-04-01

    We model the subsurface hydrologic response to the 7.6 Mw subduction zone earthquake that occurred on the plate interface beneath the Nicoya peninsula in Costa Rica on September 5, 2012. The regional-scale poroelastic model of the overlying plate integrates seismologic, geodetic and hydrologic data sets to predict the post-seismic poroelastic response. A representative two-dimensional model shows that thrust earthquakes with a slip width less than a third of their depth produce complex multi-lobed pressure perturbations in the shallow subsurface. This leads to multiple poroelastic relaxation timescales that may overlap with the longer viscoelastic timescales. In the three-dimensional model, the complex slip distribution of 2012 Nicoya event and its small width to depth ratio lead to a pore pressure distribution comprising multiple trench parallel ridges of high and low pressure. This leads to complex groundwater flow patterns, non-monotonic variations in predicted well water levels, and poroelastic relaxation on multiple time scales. The model also predicts significant tectonically driven submarine groundwater discharge off-shore. In the weeks following the earthquake, the predicted net submarine groundwater discharge in the study area increases, creating a 100 fold increase in net discharge relative to topography-driven flow over the first 30 days. Our model suggests the hydrological response on land is more complex than typically acknowledged in tectonic studies. This may complicate the interpretation of transient post-seismic surface deformations. Combined tectonic-hydrological observation networks have the potential to reduce such ambiguities.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallmeyer, R.D.; Gee, D.G.; Beckholmen, M.

    In central portions of the Scandinavian Caledonides, greenschist facies volcanosedimentary successions within the Koeli Nappe Complex have been thrust several hundred kilometers eastward onto the Baltoscandian platform. These were derived from eugeoclinal terranes situated outboard (west) of the Baltica continent during the early Paleozoic. The Koeli Nappe Complex is tectonically underlain by higher grade units within the Seve Nappe Complex. These are composed of amphibolite and granulite facies rocks and locally contain eclogites. The Seve Nappes tectonically separate Koeli units from structurally lower allochthons derived from more inboard environments along the Baltoscandian miogeocline. Previous mineral isotopic age-determinations from Seve andmore » Koeli units have been in the 430 to 390 Ma range and have been interpreted to presumably date cooling following Scandian (Middle Silurian to Early Devonian) metamorphism. However, incremental-release /sup 40/Ar//sup 39/Ar dates recorded by minerals within some of the Koeli and Seve Nappes exposed in Jaemtland, Sweden (Taennforsen and Are districts) provide evidence of earlier tectonothermal activity. Hornblendes from the Seve and Koeli Nappe Complexes display variably discordant age spectra as a result of low-temperature, experimental evolution of loosely bound extraneous argon components. However, in most analyses plateau ages of 510 to 475 Ma (Koeli) and 465 to 455 Ma (Seve) are defined. In contrast, muscovite and biotite from all tectonic units record Scandian cooling ages between 245 and 410 Ma. The older events recorded by hornblende within these Seve and Koeli units are evidence of early Caledonian tectonothermal activity and subsequent diachronous cooling during the Early-Middle Ordovician.« less

  5. Deformation Record Associated To The Valdoviño Fault (Variscan Orogeny, NW Iberia)

    NASA Astrophysics Data System (ADS)

    Llana-Funez, S.; Fernández, F. J.

    2013-12-01

    The Valdoviño Fault is a subvertical left-lateral strike-slip fault that exceeding a hundred kms in length formed in the late stages of the Variscan orogeny in NW Iberia. The fault cuts through the pile of allochthonous thrust sheets that conform the suture zone of the orogen and constitutes the eastern boundary of one of them, the Ordenes complex. In the section along the Atlantic coast, the fault core has a thickness of about 100 m in width with foliated rocks showing a subvertical attitude. It is formed by several rock types, beginning from the west these are: coarse grained foliated granitoids, tectonic breccia with fragments of high grade mafic rocks, fine-grained gneiss, serpentinites, fine-grained amphibolites and two-mica granites. The fault zone samples some of the lithologies found to the base of the Ordenes complex, emplaced and deformed prior to the nucleation of the Valdoviño Fault. Intense deformation produces extreme grain comminution particularly in felsic and basic rocks. Planolinear fabrics are predominant, with a subhorizontal lineation. The intensity of the deformation and the reduction in thickness of the various lithotypes is interpreted as indicative of the amount of strain accumulated during its tectonic history. Two types of tectonites stand out along the trace of the fault: the tectonic breccias at the coastal section (nucleated in basic rocks and in serpentinites) and the SC fabrics in syntectonic granitoids. Both evidence different deformation conditions during the activity of the fault. The band of tectonic breccias developed in basic rocks is a few meters thick and has a number of mm-thick ultracataclasites cutting sharply the breccia. The ultracataclasites show one straight side that cuts through the various components of the breccias (either earlier fault rocks as fragments of metabasites). The slipping surfaces all have a subvertical attitude consistent to the current orientation of the major fault. Earlier ultracataclastic bands are fractured and deformed prior to be overprinted by late ultracataclastic bands, indicating that the fracturing process that produces the extreme grain comminution was recurrent and repeated in time. These slipping surfaces show no clear indication about the sense of shear during fast movements, although more distributed cataclastic deformation in between single slip events seem compatible in places with left-lateral movement. The Valdoviño fault is intruded by two types of granitoids: granodiorites and two-mica granites. Courrieux (1984) showed the distribution in map view of sinistral SC fabrics, predominantly in the granitoid to the east of the Valdoviño Fault. Towards the core of the fault zone strain intensity increases to the point of obliterating the S fabric, developing thicker shear zones with extreme grain size reduction. Isolated mica fish and porphyroclasts of feldspar indicate clearly a left-lateral sense of shear. Work in progress aims to relate the timing of the slip events in the basic breccias with respect to the development of ultramilonitic SC fabrics in the granitoids. Ultimately we aim to establish the nature and conditions of tectonic activity along the Valdoviño Fault.

  6. Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III

    2009-01-01

    The BAT province is of particular interest with respect to evaluating Venus geologic, tectonic, and volcanic history and provides tests of global paradigms regarding her thermal evolution. The BAT is "ringed" by volcano-tectonic troughs (Parga, Hecate, and Devana Chasmata), has an anomalously high-density of volcanic features with concentrations 2-4 times the global average [1], and is spatially coincident with "young terrain" as illustrated by Average Surface Model Ages [2, 3]. The BAT province is key to understanding Venus current volcanic and tectonic modes, which may provide insight for evaluating Venus historical record. Several quadrangles, two 1:5,000,000 scale - Isabella (V-50) Quadrangle and Devana Chasma (V-29) Quadrangle and two 1:10,000,000 scale - Helen Planitia (I-2477) and Guinevere Planitia (I-2457), are in various stages of production (Figure 1). This abstract will report on their levels of completion as well as highlight some current results and outstanding issues.

  7. Active tectonics and earthquake potential of the Myanmar region

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  8. Coral reef evolution on rapidly subsiding margins

    USGS Publications Warehouse

    Webster, J.M.; Braga, J.C.; Clague, D.A.; Gallup, C.; Hein, J.R.; Potts, D.C.; Renema, W.; Riding, R.; Riker-Coleman, K.; Silver, E.; Wallace, L.M.

    2009-01-01

    A series of well-developed submerged coral reefs are preserved in the Huon Gulf (Papua New Guinea) and around Hawaii. Despite different tectonics settings, both regions have experienced rapid subsidence (2-6??m/ka) over the last 500??ka. Rapid subsidence, combined with eustatic sea-level changes, is responsible for repeated drowning and backstepping of coral reefs over this period. Because we can place quantitative constraints on these systems (i.e., reef drowning age, eustatic sea-level changes, subsidence rates, accretion rates, basement substrates, and paleobathymetry), these areas represent unique natural laboratories for exploring the roles of tectonics, reef accretion, and eustatic sea-level changes in controlling the evolution of individual reefs, as well as backstepping of the entire system. A review of new and existing bathymetric, radiometric, sedimentary facies and numerical modeling data indicate that these reefs have had long, complex growth histories and that they are highly sensitive, recording drowning not only during major deglaciations, but also during high-frequency, small-amplitude interstadial and deglacial meltwater pulse events. Analysis of five generalized sedimentary facies shows that reef drowning is characterized by a distinct biological and sedimentary sequence. Observational and numerical modeling data indicate that on precessional (20??ka) and sub-orbital timescales, the rate and amplitude of eustatic sea-level changes are critical in controlling initiation, growth, drowning or sub-aerial exposure, subsequent re-initiation, and final drowning. However, over longer timescales (> 100-500??ka) continued tectonic subsidence and basement substrate morphology influence broad scale reef morphology and backstepping geometries. Drilling of these reefs will yield greatly expanded stratigraphic sections compared with similar reefs on slowly subsiding, stable and uplifting margins, and thus they represent a unique archive of sea-level and climate changes, as well as a record of the response of coral reefs to these changes over the last six glacial cycles. ?? 2008 Elsevier B.V. All rights reserved.

  9. Seismic Structure of the Half-Graben of Santiaguillo, Durango, Mexico

    NASA Astrophysics Data System (ADS)

    Gomez-Gonzalez, J. M.; Nieto-Samaniego, A. F.; Barajas-Gea, I.; Alaniz-Alvarez, S. A.; Diaz-Baez, I.

    2007-05-01

    The Santiaguillo half-graben is part of the San Luis-Tepehuanes fault system, which is a major structure separating two physiographic provinces, the Mesa Central and the Sierra Madre Occidental. The younger movement of the faults is Quaternary, which is affecting the rocks of the Durango volcanic field. In this work, we study the faults and grabens forming the complex structure of the Santiaguillo half-graben. These structures result from active extensional tectonics since the Oligocene. The contemporary tectonic deformations have been manifested in the last 50 years by a number of earthquakes occurred in the region (1.2 < M < 4.5, epicenter depths < 10 km). The most recent event occurred on July 29, 2003, is a small-sized earthquake M4.5 reported by the Servicio Sismologico Nacional (SSN) that struck the middle of the basin. Some other small-sized earthquakes, microseismicity and swarms occurred around the basin. However, the lack of permanent seismic stations has prevented a recorded history of this activity. We report the preliminary results from the Durango network, which consists of an 8-station passive short-period array deployed around the Laguna de Santiaguillo. This temporal and portable network has been installed for a period of roughly 12 months starting in April 2006, over an area of about 80 km length and 40 km width. The overall aim of our experiment is to understand the driven forces controlling the tectonics of the western side of the Mesa Central in western Mexico. We combine structural observations and recorded seismicity to locate the potential seismogenic structures. Another objective is characterizing some of the crustal properties in the region. Results show a sparsed and scattered seismic activity. We recorded about 50 microearthquakes, half of them were located out side of the array. Bulk of this activity does not coincide with previously reported activity, which implies a more difficult definition of the seismogenic zones.

  10. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    USGS Publications Warehouse

    Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon

    2014-01-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  11. Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean

    NASA Astrophysics Data System (ADS)

    Likhanov, Igor I.; Régnier, Jean-Luc; Santosh, M.

    2018-04-01

    The tectonic evolution of the Siberian Cratonic margins offers important clues for global paleogeographic reconstructions, particularly with regard to the complex geological history of Central Asia. The Yenisey Ridge fold-and-thrust belt at the western margin of the Siberian Craton forms part of the Central Asian Orogenic Belt (CAOB) and is a key to understand the Precambrian tectonic evolution of the Siberian Craton and crustal growth in the CAOB, the world's largest Phanerozoic accretionary orogenic belt. Here we report for the first time, the occurrence of glaucophane schist relics in tectonites within the Yenisey shear zone which provides insights on Chilean-type convergent boundary. We present results from isotope geochronology (SHRIMP zircon analysis and mica 40Ar/39Ar dating), coupled with P-T calculations derived from conventional geothermobarometry and pseudosections in the system NCKFMASH that suggest two superimposed metamorphic events. During the first stage, glaucophane schists formed at around 640-620 Ma at P-T conditions of 8-10 kbar and 400-450 °C. In the second stage, the rocks experienced dynamic metamorphism (c. 600 Ma) at 11-15 kbar/550-640 °C. The differences in P-T parameters between weakly deformed rocks and intensely deformed tectonites and P-T paths suggest distinct tectonic processes. Geochemical features of the mafic tectonites suggest N-MORB and E-MORB affinity, and the zircon U-Pb ages suggest formation of the protoliths at 701.6 ± 8.4. The sequence of spreading, subduction and shear deformation identified in our study correlate with the early stages of development of the Paleo-Asian Ocean at the western margin of the Siberian Craton and supports the spatial proximity of Siberia and Laurentia at 700-600 Ma, as proposed for the Late Neoproterozoic paleogeographic reconstructions and as robustly constrained from large igneous province (LIP) record.

  12. Paleomagnetic and Geochronologic Data from Central Asia: Inferences for Early Paleozoic Tectonic Evolution and Timing of Worldwide Glacial Events

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Meert, J. G.; Levashova, N.; Grice, W. C.; Gibsher, A.; Rybanin, A.

    2007-12-01

    The Neoproterozoic to early Paleozoic Ural-Mongol belt that runs through Central Asia is crucial for determining the enigmatic amalgamation of microcontinents that make up the Eurasian subcontinent. Two unique models have been proposed for the evolution of Ural-Mongol belt. One involves a complex assemblage of cratonic blocks that have collided and rifted apart during diachronous opening and closing of Neoproterozoic to Devonian aged ocean basins. The opposing model of Sengor and Natal"in proposes a long-standing volcanic arc system that connected Central Asian blocks with the Baltica continent. The Aktau-Mointy and Dzabkhan microcontinents in Kazakhstan and Central Mongolia make up the central section of the Ural-Mongol belt, and both contain glacial sequences characteristic of the hypothesized snowball earth event. These worldwide glaciations are currently under considerable debate, and paleomagnetic data from these microcontients are a useful contribution to the snowball controversy. We have sampled volcanic and sedimentary sequences in Central Mongolia, Kazakhstan and Kyrgyzstan for paleomagnetic and geochronologic study. U-Pb data, 13C curves and abundant fossil records place age constraints on sequences that contain glacial deposits of the hypothesized snowball earth events. Carbonates in the Zavkhan Basin in Mongolia are likely remagnetized, but fossil evidence within the sequence suggests a readjusted age control on two glacial events that were previously labeled as Sturtian and Marinoan. U-Pb ages from both Kazakhstan and Mongolian volcanic sequences imply a similar evolution history of the areas as part of the Ural-Mongol fold belt, and these ages paired with paleomagnetic and 13C records have important tectonic implications. We will present these data in order to place better constraints on the Precambrian to early Paleozoic tectonic evolution of Central Asia and the timing of glacial events recorded in the area.

  13. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Thermal histories of Mercury and the Moon. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    To determine a planet's thermal history, a wide range of data is necessary. These data include remote sensing results, photogeologic evidence, magnetic field and remanent magnetization data, composition and ages of samples, and physical parameters of the planet and its orbit. Few of these data form unambiguous constraints for thermal models of Mercury. Igneous Chronology as the time history of the differentiation and igneous activity, is defined. Igneous Chronology is used here in the sense of the apparent igneous or relative chronology of geologic events, such as plains formation (through whatever mechanism) relative to the crater production and tectonic history (lineament and scarp formation).

  14. Global water cycle and the coevolution of the Earth's interior and surface environment.

    PubMed

    Korenaga, Jun; Planavsky, Noah J; Evans, David A D

    2017-05-28

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×10 14  g yr -1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  15. Global water cycle and the coevolution of the Earth’s interior and surface environment

    PubMed Central

    Planavsky, Noah J.; Evans, David A. D.

    2017-01-01

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416728

  16. Linking the southern West Junggar terrane to the Yili Block: Insights from the oldest accretionary complexes in West Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Ren, Rong; Han, Bao-Fu; Guan, Shu-Wei; Liu, Bo; Wang, Zeng-Zhen

    2018-06-01

    West Junggar is known to tectonically correlate with East Kazakhstan; however, the tectonic link of the southern West Junggar terrane to adjacent regions still remains uncertain. Here, we examined the oldest accretionary complexes, thus constraining its tectonic evolution and link during the Early-Middle Paleozoic. They have contrasting lithologic, geochemical, and geochronological features and thus, provenances and tectonic settings. The Laba Unit was derived from the Late Ordovician-Early Devonian continental arc system (peaking at 450-420 Ma) with Precambrian substrate, which formed as early as the Early Devonian and metamorphosed during the Permian; however, the Kekeshayi Unit was accumulated in an intra-oceanic arc setting, and includes the pre-Late Silurian and Late Silurian subunits with or without Precambrian sources. Integrated with the regional data, the southern West Junggar terrane revealed a tectonic link to the northern Yili Block during the Late Silurian to Early Devonian, as suggested by the comparable Precambrian zircon age spectra between the southern West Junggar terrane and the micro-continents in the southern Kazakhstan Orocline, the proximal accumulation of the Laba Unit in the continental arc atop the Yili Block, and the sudden appearance of Precambrian zircons in the Kekeshayi Unit during the Late Silurian. This link rejects the proposals of the southern West Junggar terrane as an extension of the northern Kazakhstan Orocline and the Middle Paleozoic amalgamation of West Junggar. A new linking model is thus proposed, in which the southern West Junggar terrane first evolved individually, and then collided with the Yili Block to constitute the Kazakhstan continent during the Late Silurian. The independent and contrasting intra-oceanic and continental arcs also support the Paleozoic archipelago-type evolution of the Central Asian Orogenic Belt.

  17. New seismo-stratigraphic and marine magnetic data of the Gulf of Pozzuoli (Naples Bay, Tyrrhenian Sea, Italy): inferences for the tectonic and magmatic events of the Phlegrean Fields volcanic complex (Campania)

    NASA Astrophysics Data System (ADS)

    Aiello, Gemma; Marsella, Ennio; Fiore, Vincenzo Di

    2012-06-01

    A detailed reconstruction of the stratigraphic and tectonic setting of the Gulf of Pozzuoli (Naples Bay) is provided on the basis of newly acquired single channel seismic profiles coupled with already recorded marine magnetics gathering the volcanic nature of some seismic units. Inferences for the tectonic and magmatic setting of the Phlegrean Fields volcanic complex, a volcanic district surrounding the western part of the Gulf of Naples, where volcanism has been active since at least 50 ka, are also discussed. The Gulf of Pozzuoli represents the submerged border of the Phlegrean caldera, resulting from the volcano-tectonic collapse induced from the pyroclastic flow deposits of the Campanian Ignimbrite (35 ka). Several morpho-depositional units have been identified, i.e., the inner continental shelf, the central basin, the submerged volcanic banks and the outer continental shelf. The stratigraphic relationships between the Quaternary volcanic units related to the offshore caldera border and the overlying deposits of the Late Quaternary depositional sequence in the Gulf of Pozzuoli have been highlighted. Fourteen main seismic units, both volcanic and sedimentary, tectonically controlled due to contemporaneous folding and normal faulting have been revealed by geological interpretation. Volcanic dykes, characterized by acoustically transparent sub-vertical bodies, locally bounded by normal faults, testify to the magma uprising in correspondence with extensional structures. A large field of tuff cones interlayered with marine deposits off the island of Nisida, on the western rim of the gulf, is related to the emplacement of the Neapolitan Yellow Tuff deposits. A thick volcanic unit, exposed over a large area off the Capo Miseno volcanic edifice is connected with the Bacoli-Isola Pennata-Capo Miseno yellow tuffs, cropping out in the northern Phlegrean Fields.

  18. The Portland Basin: A (big) river runs through it

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  19. Expanding Evolutionary Theory beyond Darwinism with Elaborating, Self-Organizing, and Fractionating Complex Evolutionary Systems

    ERIC Educational Resources Information Center

    Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.

    2010-01-01

    Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…

  20. The integration of palaeogeography and tectonics in refining plate tectonic models: an example from SE Asia

    NASA Astrophysics Data System (ADS)

    Masterton, S. M.; Markwick, P.; Bailiff, R.; Campanile, D.; Edgecombe, E.; Eue, D.; Galsworthy, A.; Wilson, K.

    2012-04-01

    Our understanding of lithospheric evolution and global plate motions throughout the Earth's history is based largely upon detailed knowledge of plate boundary structures, inferences about tectonic regimes, ocean isochrons and palaeomagnetic data. Most currently available plate models are either regionally restricted or do not consider palaeogeographies in their construction. Here, we present an integrated methodology in which derived hypotheses have been further refined using global and regional palaeogeographic, palaeotopological and palaeobathymetric maps. Iteration between our self-consistent and structurally constrained global plate model and palaeogeographic interpretations which are built on these reconstructions, allows for greater testing and refinement of results. Our initial structural and tectonic interpretations are based largely on analysis of our extensive global database of gravity and magnetic potential field data, and are further constrained by seismic, SRTM and Landsat data. This has been used as the basis for detailed interpretations that have allowed us to compile a new global map and database of structures, crustal types, plate boundaries and basin definitions. Our structural database is used in the identification of major tectonic terranes and their relative motions, from which we have developed our global plate model. It is subject to an ongoing process of regional evaluation and revisions in an effort to incorporate and reflect new tectonic and geologic interpretations. A major element of this programme is the extension of our existing plate model (GETECH Global Plate Model V1) back to the Neoproterozic. Our plate model forms the critical framework upon which palaeogeographic and palaeotopographic reconstructions have been made for every time stage in the Cretaceous and Cenozoic. Generating palaeogeographies involves integration of a variety of data, such as regional geology, palaeoclimate analyses, lithology, sea-level estimates, thermo-mechanical events and regional tectonics. These data are interpreted to constrain depositional systems and tectonophysiographic terranes. Palaeotopography and palaeobathymetry are derived from these tectonophysiographic terranes and depositional systems, and are further constrained using geological relationships, thermochronometric data, palaeoaltimetry indicators and modern analogues. Throughout this process, our plate model is iteratively tested against our palaeogeographies and their environmental consequences. Both the plate model and the palaeogeographies are refined until we have obtained a consistent and scientifically robust result. In this presentation we show an example from Southeast Asia, where the plate model complexity and wide variation in hypotheses has huge implications for the palaeogeographic interpretation, which can then be tested using geological observations from well and seismic data. For example, the Khorat Plateau Basin, Northeastern Thailand, comprises a succession of fluvial clastics during the Cretaceous, which include the evaporites of the Maha Sarakham Formation. These have been variously interpreted as indicative of saline lake or marine incursion depositional environments. We show how the feasibility of these different hypotheses is dependent on the regional palaeogeography (whether a marine link is possible), which in turn depends on the underlying plate model. We show two models with widely different environmental consequences. A more robust model that takes into account all these consequences, as well as data, can be defined by iterating through the consequences of the plate model and geological observations.

  1. Faulting at Thebes Gap, Mo. -Ill. : Implications for New Madrid tectonism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, R.W.; Schultz, A.P.

    1992-01-01

    Recent geologic mapping in the Thebes Gap area has identified numerous NNE- and NE-striking faults having a long-lived and complex structural history. The faults are located in an area of moderate recent seismicity at the northern margin of the Mississippi embayment, approximately 45 km north of the New Madrid seismic zone. Earliest deformation occurred along dextral strike-slip faults constrained as post-Devonian and pre-Cretaceous. Uplift and erosion of all Carboniferous strata suggest that this faulting is related to development of the Pascola arch (Ouachita orogeny). This early deformation is characterized by strongly faulted and folded Ordovician through Devonian rocks overlain inmore » places with angular unconformity by undeformed Cretaceous strata. Elsewhere, younger deformation involves Paleozoic, Cretaceous, Paleocene, and Eocene formations. These units have experienced both minor high-angle normal faulting and major, dextral strike-slip faulting. Quaternary-Tertiary Mounds Gravel is also involved in the latest episode of strike-slip deformation. Enechelon north-south folds, antithetic R[prime] shears, and drag folds indicate right-lateral motion. Characteristic positive and negative flower structures are commonly revealed in cross section. Right-stepping fault strands have produced pull-apart basins where Ordovician, Silurian, Devonian, Cretaceous, and Tertiary units are downdropped several hundreds of meters and occur in chaotic orientations. Similar fault orientations and kinematics, as well as recent seismicity and close proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.« less

  2. Fingerprinting stress: Stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding—The case of the Monte Nero anticline in the Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille

    2016-07-01

    In this study we show for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a fold-and-thrust belt. First, we present a new method that gives access to stress inversion using tectonic stylolites without access to the stylolite surface and compare results with calcite twin inversion. Second, we use our new approach to present a high-resolution deformation and stress history that affected Meso-Cenozoic limestone strata in the Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). In this area an extensive stylolite-joint/vein network developed during layer-parallel shortening (LPS), as well as during and after folding. Stress fingerprinting illustrates how stress in the sedimentary strata did build up prior to folding during LPS. The stress regime oscillated between strike slip and compressional during LPS before ultimately becoming strike slip again during late stage fold tightening. Our case study shows that high-resolution stress fingerprinting is possible and that this novel method can be used to unravel temporal relationships that relate to local variations of regional orogenic stresses. Beyond regional implications, this study validates our approach as a new powerful toolbox to high-resolution stress fingerprinting in basins and orogens combining joint and vein analysis with sedimentary and tectonic stylolite and calcite twin inversion techniques.

  3. Amplitude interpretation and visualization of three-dimensional reflection data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enachescu, M.E.

    1994-07-01

    Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements notmore » obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.« less

  4. Active deformation and evolution of the upper forearc slope of the central Ryukyu Arc, northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Arai, K.; Inoue, T.; Sato, T.

    2016-12-01

    The Ryukyu Arc, which extend for over 1200 km along the east coast of Asia from Kyushu to Taiwan, and the associated Ryukyu Trench, are products of the subduction of the Philippine Sea Plate beneath the Eurasian Plate. The Okinawa Trough, a back-arc basin located landward of the Ryukyu Arc, formed in the Late Miocene (Gungor et al., 2012) or the Late Pliocene-Early Pleistocene (Sibuet et al., 1998); its formation is a key geologic event associated with complex tectonic movements and changes in the topographic configuration of the Ryukyu Arc. Geological Survey of Japan (GSJ), AIST has started the marine geological mapping project around Ryukyu Arc since the 2008 FY. Multi channel (16 ch) high-resolution seismic profiles were acquired during these cruises by the GI-gun (355cu. inch) or the Cluster-gun (30+30 cu. inch) systems. Survey area in the southeast off Okinawa Island is located on the upper forearc slope along the Ryukyu Trench. Seismic reflections of shelf and the upper forearc slope show no obvious deformation such as the fold and faults parallel to the Ryukyu Trench axis. In contrast, some active faults, which were perpendicular to the Ryukyu Trench axis (NW-SE direction), were observed. An acoustic basement, which is characterized distinct reflector had tilted southeastward (trenchward) and was unconformable overlain by the stratified sediments. These sediments divided into four seismic units. We present the geological history and tectonics of the central Ryukyu Arc.

  5. Zircon U-Pb Ages from an Ultra-High Temperature Metapelite, Rauer Group, East Antarctica: Implications for Overprints by Grenvillian and Pan-African Events

    USGS Publications Warehouse

    Wang, Yanbin; Tong, Laixi; Liu, Dunyi

    2007-01-01

    SHRIMP U-Pb dating of zircon from an ultra-high temperature (UHT, ~1000 °C) granulite-facies metapelite from the Rauer Group, Mather Peninsula, east Antarctica, has yielded evidence for two episodes of metamorphic zircon growth, at ~1.00 Ga and ~530 Ma, and two episodes of magmatism in the source region for the protolith sediment, at ~2.53 and ~2.65 Ga, were identified from the zircon cores. Successive zircon growth at ~1.00 Ga and ~530 Ma records a sequence of distinct, widely spaced high-temperature metamorphic and/or anatectic events related to Grenvillian and Pan-African orogenesis. This study presents the first robust geochronological evidence for the timing of UHT metamorphism of the Rauer Group, supporting arguments that the peak UHT metamorphic event occurred at ~1.00 Ga and was overprinted by a separate high-grade event at ~530 Ma. The new age data indicate that the UHT granulites of the Rauer Group experienced a complex, multi-stage tectonothermal history, which cannot simply be explained via a single Pan-African (~500 Ma) high-grade tectonic event. This is critical in understanding the role of the eastern Prydz Bay region during the assembly of the east Gondwana supercontinent, and the newly recognized inherited Archaean ages (~2.53 and ~2.65 Ga) suggest a close tectonic relationship between the Rauer Group and the adjacent Archaean of the Vestfold Hills

  6. 3-D crustal structure beneath the southern Korean Peninsula from local earthquakes

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Park, J. H.; Park, Y.; Hao, T.; Kang, S. Y.; Kim, H. J.

    2017-12-01

    Located at the eastern margin of the Eurasian continent, the geology and tectonic evolution of the Korean Peninsula are closely related to the rest of the Asian continent. Although the widespread deformation of eastern Asia and its relation to the geology and tectonics of the Korean Peninsula have been extensively studied, the answers to many fundamental questions about the peninsula's history remain inconclusive. The three-dimensional subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a three-dimensional velocity model of the upper crust beneath the southern Korean Peninsula using 19,935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks maintained by Korea Meteorological Administration and Korea Institute of Geosciences and Mineral Resources. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North China and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  7. Neoproterozoic transpression and granite magmatism in the Gavilgarh-Tan Shear Zone, central India: Tectonic significance of U-Pb zircon and U-Th-total Pb monazite ages

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anupam; Chatterjee, Amitava; Das, Kaushik; Sarkar, Arindam

    2017-10-01

    The Gavilgarh-Tan Shear Zone (GTSZ) is a crustal-scale shear/fault zone that dissects the unclassified basement gneisses separating two major supracrustal belts, viz. the Paleo- to Mesoproterozoic (≥1.5 Ga) Betul Belt and the Neoproterozoic (∼1.0 Ga) Sausar Belt, of the Central Indian Tectonic Zone (CITZ). The GTSZ extends for more than 300 km strike length, partly covered by the Deccan Trap flows. Granitoid rocks ranging from syenogranite to granodiorite in composition, sheared at temperatures corresponding to the amphibolite facies metamorphic condition, define the GTSZ in the Kanhan River Valley. Earlier geological studies have suggested that the GTSZ underwent a sinistral-sense partitioned transpression in response to an oblique collision between two continental fragments, possibly related to crustal thickening and high-pressure granulite metamorphism (the Ramakona-Katangi granulite: RKG) in the northern part of the Sausar Belt. LA-ICP-MS U-Pb dating of zircon and EPMA U-Th-total Pb dating of monazite grains from four different types of syn-tectonic granitoids of the GTSZ carried out in the present study show that granitoids intruded the basement gneisses between 1.2 Ga and 0.95 Ga, given the error limit of the calculated ages. The age of transpression and mylonitization is more definitely bracketed between 1.0 Ga and 0.95 Ga, which correlates well with the published ages of deformation and metamorphism in the Sausar Belt. This age data strongly supports the suggested collisional tectonic model involving the GTSZ and the RKG granulites of the Sausar Belt and underlines a Grenvillian-age tectonic history for the southern part of the Central Indian Tectonic Zone (CITZ), which possibly culminated in the crustal assembly of the Neoproterozoic supercontinent Rodinia.

  8. Late Cenozoic tectonic activity of the Altyn Tagh range: Constraints from sedimentary records from the Western Qaidam Basin, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fang, Xiaomin; Wang, Yadong; Song, Chunhui; Zhang, Weilin; Yan, Maodu; Han, Wenxia; Zhang, Dawen

    2018-07-01

    The Altyn Tagh range (ATR) is the northern geological boundary of the Tibetan Plateau and plays a key role in accommodating its Cenozoic lithospheric deformation. However, knowledge of the structural style and age of uplift of the ATR is limited and controversial. The Qaidam Basin, in the southeast side of the ATR, provides an outstanding field laboratory for understanding the history and mechanisms of ATR growth. This study presents a detailed sedimentological analysis of a 1040-m-thick late Cenozoic ( 17-5.0 Ma) sedimentary sequence from the western Qaidam Basin, together with the analysis of sedimentological data from nearby boreholes and sections. Our aims were to determine the spatiotemporal evolution of the sedimentary sequences in the study area and to explore their response to late Cenozoic tectonic activity in the ATR. The results show three major intervals of the sedimentary characteristics in the study area: >17-16 Ma, 10 Ma and <5 Ma, which are closely related to the development of unconformities and growth strata recorded by high-resolution seismic reflection profiles. Combining the results with a comprehensive provenance analysis and with published records of regional climate change and tectonic activity, we discuss the possible factors responsible for the variations in the sedimentary characteristics of the studied sections. We conclude that significant tectonic responses in the western Qaidam Basin during the late Cenozoic were caused by three stages of tectonic activity of the ATR, at >17-16 Ma, 16-10 Ma and 10 Ma, during which the ATR respectively experienced tectonic uplift, fast strike-slip motion and intense uplift.

  9. Accretionary history of the Altai-Mongolian terrane: perspectives from granitic zircon U-Pb and Hf-isotope data

    NASA Astrophysics Data System (ADS)

    Cai, Keda; Sun, Min; Xiao, Wenjiao

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) consists of many tectonic terranes with distinct origin and complicated evolutionary history. Understanding of individual block is crucial to reconstruct the geodynamic history of the gigantic accetionary collage. This study presents zircon U-Pb ages and Hf isotopes for the granitoid rocks in the Russian Altai mountain range (including Gorny Altai, Altai-Mongolian terrane and CTUS suture zone between them), in order to clarify the timing of granitic magmatism, source nature, continental crustal growth and tectonic evolution. Our dating results suggest that granitic magmatism of the Russian Altai mountain range occurred in three major episodes including 445~429 Ma, 410~360 Ma and ~241 Ma. Most of the zircons within the Paleozoic granitoids present comparable positive ɛHf(t) values and Neoproterozoic crustal model ages, which favor the interpretation that the juvenile crustal materials produced in the early stage of CAOB were probably dominant sources for the Paleozoic magmatism in the region. The inference is also supported by widespread occurrence of short-lived juvenile materials including ophiolites, seamount relics and arc assemblages in the north CAOB. Consequently, the Paleozoic massive granitic rocks maybe not represent continental crustal growth at the time when they were emplaced, but rather record reworking of relatively juvenile Proterozoic crustal rocks although mantle-derived mafic magma was possibly involved to sever as heat engine during granitic magma generation. The Early Triassic granitic intrusion may be product in an intra-plate environment, as the case of same type rocks in the adjacent areas. The positive ɛHf(t) values (1.81~7.47) and corresponding Hf model ages (0.80~1.16 Ga) together with evidence of petrology are consistent with the interpretation that the parental magma of the Triassic granitic intrusion was produced from enriched mantle-derived sources under an usually high temperature condition which is likely due to basaltic magma that underplated the lower crust. Our data combined with evidence of the regional geology enable us to conclude that the Gorny Altai and Altai-Mongolian terranes possibly have similar tectonic natures, but represent two separate accretionary systems before Devonian collision. The accretion and amalgamation processes resulted in the Paleozoic granitoid magmatism and caused the two terranes to merge as a composite tectonic domain at the Siberian continental margin.

  10. Basin deconstruction-construction: Seeking thermal-tectonic consistency through the integration of geochemical thermal indicators and seismic fault mechanical stratigraphy ​- Example from Faras Field, North Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Pigott, John D.; Abouelresh, Mohamed O.

    2016-02-01

    To construct a model of a sedimentary basin's thermal tectonic history is first to deconstruct it: taking apart its geological elements, searching for its initial conditions, and then to reassemble the elements in the temporal order that the basin is assumed to have evolved. Two inherent difficulties implicit to the analysis are that most organic thermal indicators are cumulative, irreversible and a function of both temperature and time and the non-uniqueness of crustal strain histories which complicates tectonic interpretations. If the initial conditions (e.g. starting maturity of the reactants and initial crustal temperature) can be specified and the boundary conditions incrementally designated from changes in the lithospheric heat engine owing to stratigraphic structural constraints, then the number of pathways for the temporal evolution of a basin is greatly reduced. For this investigation, model input uncertainties are reduced through seeking a solution that iteratively integrates the geologically constrained tectonic subsidence, geochemically constrained thermal indicators, and geophysically constrained fault mechanical stratigraphy. The Faras oilfield in the Abu Gharadig Basin, North Western Desert, Egypt, provides an investigative example of such a basin's deconstructive procedure. Multiple episodes of crustal extension and shortening are apparent in the tectonic subsidence analyses which are constrained from the fault mechanical stratigraphy interpreted from reflection seismic profiles. The model was iterated with different thermal boundary conditions until outputs best fit the geochemical observations. In so doing, the thermal iterations demonstrate that general relationship that basin heat flow increases decrease vertical model maturity gradients, increases in surface temperatures shift vertical maturity gradients linearly to higher values, increases in sediment conductivities lower vertical maturities with depth, and the addition of ;ghost; layers (those layers removed) prior to the erosional event increase maturities beneath, and conversely. These integrated constraints upon the basin evolution model indicate that the principal source rocks, Khatatba and the lowest part of the Alam El Bueib formations, entered the oil window at approximately 95 Ma and the gas window at approximately 25 Ma. The upper part of the Alam El Bueib Formation is within the oil window at the present day. Establishing initial and boundary value conditions for a basin's thermal evolution when geovalidated by the integration of seismic fault mechanical stratigraphy, tectonic subsidence analysis, and organic geochemical maturity indicators provides a powerful tool for optimizing petroleum exploration in both mature and frontier basins.

  11. The Lord Howe Rise continental ribbon: a fragment of eastern Gondwana that reveals the drivers of continental rifting and plate tectonics

    NASA Astrophysics Data System (ADS)

    Saito, S.; Hackney, R. I.; Bryan, S. E.; Kimura, J. I.; Müller, D.; Arculus, R. J.; Mortimer, N. N.; Collot, J.; Tamura, Y.; Yamada, Y.

    2016-12-01

    Plate tectonics and resulting changes in crustal architecture profoundly influence global climate, oceanic circulation, and the origin, distribution and sustainability of life. Ribbons of continental crust rifted from continental margins are one product of plate tectonics that can influence the Earth system. Yet we have been unable to fully resolve the tectonic setting and evolution of huge, thinned, submerged, and relatively inaccessible continental ribbons like the Lord Howe Rise (LHR), which formed during Cretaceous fragmentation of eastern Gondwana. Thinned continental ribbons like the LHR are not easily explained or predicted by plate-tectonic theory. However, because Cretaceous rift basins on the LHR preserve the stratigraphy of an un-accreted and intact continental ribbon, they can help to determine whether plate motion is self-organised—passively driven by the pull of negatively-buoyant subducting slabs—or actively driven by convective flow in the mantle. In a self-organising scenario, the LHR formed in response to ocean-ward retreat of the long-lived eastern Gondwana subduction zone and linked upper-plate extension. In the mantle-driven scenario, the LHR resulted from rifting near the eastern edge of Gondwana that was triggered by processes linked to emplacement of a silicic Large Igneous Province. These scenarios can be distinguished using the ribbon's extensional history and the composition and tectonic affinity of igneous rocks within rift basins. However, current knowledge of LHR rift basins is based on widely-distributed marine and satellite geophysical data, limited dredge samples, and sparse shallow drilling (<600 m below-seafloor). This limits our ability to understand the evolution of extended continental ribbons, but a recent deep crustal seismic survey across the LHR and a proposed IODP deep stratigraphic well through a LHR rift basin provide new opportunities to explore the drivers behind rifting, continental ribboning and plate tectonics.

  12. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the seismological history of an area, as well as the characteristics of the parent geothermal fluids, adding an effective tool for geothermal exploration tasks.

  13. Geology. Grade 6. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Anchorage School District, AK.

    This resource book introduces sixth-grade children to the environment by studying rocks and other geological features. Nine lessons are provided on a variety of topics including: (1) geologic processes; (2) mountain building; (3) weathering; (4) geologic history and time; (5) plate tectonics; (6) rocks and minerals; (7) mineral properties; (8)…

  14. Using National Parks to Transform Physical Geology into an Inquiry Experience

    ERIC Educational Resources Information Center

    Newbill, Phyllis Leary

    2009-01-01

    For an inquiry-based alternative to lectures and recall tests, I encouraged learners to become "geotourists"; that is, learners researched and developed a geologic guidebook to a United States National Park of their choice. Over the course of a semester, students wrote chapters on plate tectonics, the rock cycle, geologic history,…

  15. Multi-Grid and Resolution Full-Wave Tomography and Moment Tensor Inversion (Postprint)

    DTIC Science & Technology

    2012-06-04

    Denver: University of Colorado. Chen, P., L. Zhao, and T.H. Jordan (2007). Full 3D tomography for crustal structure of the Los Angeles Region, Bull...M.J.R. Wortel, and W. Spakman (2006). Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions, J. Geophys

  16. Introduction

    Treesearch

    V. Alaric Sample

    2014-01-01

    Throughout Earth’s history, its climates have been changing, and biotic systems have mutated, migrated, and otherwise adapted as tectonic shifts have reconfigured the continents and polar ice caps have ebbed and flowed across the latitudes through glacial cycles. In our own era, there is growing evidence that changes in climate that in the past have taken place over...

  17. Diagenetic history of late Oligocene-early Miocene carbonates in East Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Zainal Abidin, N. S.; Raymond, R. R.; Bashah, N. S. I.

    2017-10-01

    Limestones are particularly susceptible to drastic early diagenesis modifications, mainly cementation and dissolution. During the early Miocene, a major tectonic deformation has caused a widespread of uplift in Sabah. This has resulted change in depositional environment from deep to shallow marine, which favours the deposition of Gomantong Limestone. This study aims to investigate the diagenetic history of Gomantong Limestone in East Sabah. Thorough understanding of the diagenetic processes may provide data to unravel the tectonic activities which affected the reservoir quality of the carbonates. Combining the data from comprehensive petrographic analysis, and Scanning Electron Microscopy (SEM) of 30 samples, two main cements type were identified. These are microcrystalline cement and Mg-calcite cement of granular and blocky mosaics which are dominantly seen in all samples. The sequence of diagenesis events are determined as (1) micritization; (2) grain scale compaction; (3) cementation (pore-filling); (4) mechanical compaction and cementation infilling fractures and (5) chemical compaction. These diagenetic events are interpreted as reflection of changes in diagenetic environment from shallow marine to deep burial. The massive cementation in the Gomantong Limestone has resulted into a poor reservoir quality.

  18. Sedimentary facies and depositional history of the Swan Islands, Honduras

    NASA Astrophysics Data System (ADS)

    Ivey, Marvin L.; Breyer, John A.; Britton, Joseph C.

    1980-10-01

    Swan Island is a Honduran possession in the western Caribbean, located on the southeastern side of the Cayman Trench. Two sedimentary assemblages are found on the island: an older bedded sequence of mid-Tertiary age (Aquitanian or Burdigalian) and a younger sedimentary sequence of Late Pleistocene age. The older sequence is composed of a series of calcarenites, calcilutites, and siliciclastic mudstones; capping these are cliff-forming reefal carbonates of the younger sequence. The rocks of the older bedded sequence accumulated in deep water. Sedimentation consisted of a constant rain of pyroclastic debris interrupted by the episodic introduction of upslope carbonate material by turbidity currents. Uplift and deformation of this sequence was initiated sometime after the Early Miocene. By the Late Pleistocene, uplift had brought the rocks into water depths conducive to coral growth. Pleistocene sedimentation on the island was controlled by the interaction between tectonic uplift and eustatic sea-level changes. The primary controlling force on the tectonic history of the island is its proximity to the boundary between the North American and Caribbean plates.

  19. Rotation and strain rate of Sulawesi from geometrical velocity field

    NASA Astrophysics Data System (ADS)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    One of methods that can be used to determine the tectonic deformation status is rate estimation from geometric rotation and strain using quantitative velocity data from GPS observations. Microplate Sulawesi region located in the zone of triple junction (Eurasia, Australia and Philippine Sea Plates) has very complex tectonic and seismic condition, which is why become very important to know its recent deformation status in order to study neo-tectonic and disaster mitigation. Deformation rate quantification is estimated in two parameters: rotation and geodetic strain rate of each GPS station Delaunay triangle in the study area. The analysis in this study is not done using the grids since there is no rheological information at location that can be used as the interpolation-extrapolation constraints. Our analysis reveals that Sulawesi is characterized by rapid rotation in several different domains and compression-strain pattern that varies depending on the type and boundary conditions of microplate. This information is useful for studying neo tectonic deformation status and earthquake disaster mitigation.

  20. Precambrian accretionary history and phanerozoic structures-A unified explanation for the tectonic architecture of the nebraska region, USA

    USGS Publications Warehouse

    Carlson, M.P.

    2007-01-01

    The Phanerozoic history in Nebraska and adjacent regions contains many patterns of structure and stratigraphy that can be directly related to the history of the Precambrian basement rocks of the area. A process is proposed that explains the southward growth of North America during the period 1.8-1.6 Ga. A series of families of accretionary events during the Proterozoic emplaced sutures that remained as fundamental basement weak zones. These zones were rejuvenated in response to a variety of continental stress events that occurred during the Phanerozoic. By combining the knowledge of basement history with the history of rejuvenation during the Phanerozoic, both the details of Proterozoic accretionary growth and an explanation for the patterns of Phanerozoic structure and stratigraphy is provided. ?? 2007 The Geological Society of America. All rights reserved.

  1. Kinematic reconstruction of the Caribbean region since the Early Jurassic

    NASA Astrophysics Data System (ADS)

    Bochman, Lydian; van Hinsbergen, Douwe; Torsvik, Trond; Spakman, Wim; Pindell, James

    2014-05-01

    The Caribbean region results from a complex tectonic history governed by the interplay of the North American, South American and (Paleo-)Pacific plates, between which the Caribbean plate evolved since the early Cretaceous. During its entire tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, which hampers a quantitative integration into the global circuit of plate motions. In addition, reconstructions of the region have so far not resulted in a first order kinematic description of the main tectonic units in terms of Euler poles and finite rotation angles. Here, we present an updated, quantitatively described kinematic reconstruction of the Caribbean region back to 200 Ma integrated into the global plate circuit, and implemented with GPlates free software. Our analysis of Caribbean tectonic evolution incorporates an extensive literature review. To constrain the Caribbean plate motion between the American continents, we use a novel approach that takes structural geological observations rather than marine magnetic anomalies as prime input, and uses regionally extensive metamorphic and magmatic phenomena such as the Great Arc of the Caribbean, the Caribbean Large Igneous Province (CLIP) and the Caribbean high-pressure belt as correlation markers. The resulting model restores the Caribbean plate back along the Cayman Trough and major strike-slip faults in Guatemala, offshore Nicaragua, offshore Belize and along the Northern Andes towards its position of origin, west of the North and South American continents in early Cretaceous time. We provide the paleomagnetic reference frame for the Caribbean region by rotating the Global Apparent Polar Wander Path into coordinates of the Caribbean plate interior, Cuba, and the Chortis Block. We conclude that a plate kinematic scenario for a Panthalassa/Pacific origin of Caribbean lithosphere leads to a much simpler explanation than a Proto-Caribbean/Atlantic origin. Placing our reconstruction in the most recent mantle reference frames shows that the CLIP erupted 2000-3000 km east of the modern Galápagos hotspot, and may not have been derived from the corresponding mantle plume. Finally, our reconstruction suggests that most if not all modern subduction zones surrounding the Caribbean plate initiated at transform faults, two of these (along the southern Mexican and NW South American margins) evolved diachronously as a result of migrating trench-trench-transform triple junctions.

  2. Late Cretaceous to Cenozoic deformation and exhumation of the Chilean Frontal Cordillera (28°-29°S), Central Andes

    NASA Astrophysics Data System (ADS)

    Martínez, Fernando; Parra, Mauricio; Arriagada, César; Mora, Andrés; Bascuñan, Sebastián; Peña, Matías

    2017-11-01

    The Frontal Cordillera in northern Chile is located over the flat-slab subduction segment of the Central Andes. This tectonic province is characterized by a thick-skinned structural style showing evidence of tectonic inversion and basement-involved compressive structures. Field data, U-Pb geochronological and apatite fission track data were used to unravel partially the tectonic history of the area. Previous U-Pb ages of synorogenic deposits exposed on the flanks of basement-core anticlines indicate that Andean deformation started probably during Late Cretaceous with the tectonic inversion of Triassic and Jurassic half-grabens. New U-Pb ages of the synorogenic Quebrada Seca Formation suggest that this deformation continued during Paleocene (66-60 Ma) with the reverse faulting of pre-rift basement blocks. The analysis of new apatite fission-track data shows that a rapid and coeval cooling related to exhumation of the pre-rift basement blocks occurred during Eocene times. This exhumation event is interpreted for first time in the Chilean Frontal Cordillera and it could have occurred simultaneously with the propagation of basement-involved structures. The age of this exhumation event coincides with the Incaic orogenic phase, which is interpreted as the most important to the Central Andes in terms of shortening, uplift and exhumation.

  3. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

    NASA Astrophysics Data System (ADS)

    Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit

    2017-09-01

    The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

  4. High precision U-PB geochronology and implications for the tectonic evolution of the Superior Province

    NASA Technical Reports Server (NTRS)

    Davis, D. W.; Corfu, F.; Krogh, T. E.

    1986-01-01

    The underlying mechanisms of Archean tectonics and the degree to which modern plate tectonic models are applicable early in Earth's history continue to be a subject of considerable debate. A precise knowledge of the timing of geological events is of the utmost importance in studying this problem. The high precision U-Pb method has been applied in recent years to rock units in many areas of the Superior Province. Most of these data have precisions of about + or - 2-3 Ma. The resulting detailed chronologies of local igneous development and the regional age relationships furnish tight constraints on any Archean tectonic model. Superior province terrains can be classified into 3 types: (1) low grade areas dominated by meta-volcanic rocks (greenstone belts); (2) high grade, largely metaplutonic areas with abundant orthogneiss and foliated to massive I-type granitoid bodies; and (3) high grade areas with abundant metasediments, paragneiss and S-type plutons. Most of the U-Pb age determinations have been done on type 1 terrains with very few having been done in type 3 terrains. A compilation of over 120 ages indicates that the major part of igneous activity took place in the period 2760-2670 Ma, known as the Kenoran event. This event was ubiquitous throughout the Superior Province.

  5. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma

    NASA Astrophysics Data System (ADS)

    Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.

    2017-12-01

    The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing the history of plate motion and subduction and tracing the geological and deformation records in continents play a significant role in revealing the effects of complex plate motions and the interactions of plate boundary forces on plate-mantle coupling and plate motion-intracontinental deformation coupling.

  6. Dispersal and vicariance: the complex evolutionary history of boid snakes.

    PubMed

    Noonan, Brice P; Chippindale, Paul T

    2006-08-01

    Since the early 1970s, boine snakes (Boidae: Boinae) have served as a prime example of a group whose current distribution was shaped by vicariant events associated with the fragmentation of the supercontinent Gondwana. Early phylogenetic treatments of this group, and what were thought to be closely related groups (Erycinae and Pythoninae) based on morphological features, produced a relatively stable view of relationships that has strongly influenced subsequent molecular-based work. We examined 4307 base pairs (bp) of nucleotide sequence data obtained from five nuclear loci (c-mos, NT3, BDNF, RAG1, and ODC) and one mitochondrial locus (cyt b) for all genera of erycines and boines, plus representatives of other groups, including those previously thought to be closely allied with boines (Ungaliophiidae, Loxocemidae, Xenopeltidae, and Pythoninae). Our results suggest that the Boidae is not monophyletic, and its current division into three subfamilies (Erycinae, Boinae, and Pythoninae) does not accurately reflect evolutionary history. We find that the evolutionary relationships are better reflected by current geographic distributions and tectonic history than by the morphological characters that have long served as the foundation of boid phylogeny. Divergence time estimates suggest that this strong congruence between geography and phylogeny is the result of several vicariant and dispersal events in the Late Cretaceous and Paleocene associated with the fragmentation of the Gondwanan supercontinent. Our results demonstrate the importance of both vicariance and dispersal in shaping the global distributions of terrestrial organisms.

  7. Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources

    USGS Publications Warehouse

    Williams, S. Jeffress; Kulp, Mark; Penland, Shea; Kindinger, Jack L.; Flocks, James G.; Buster, Noreen A.; Holmes, Charles W.

    2009-01-01

    Extending nearly 400 km from Sabine Pass on the Texas-Louisiana border east to the Chandeleur Islands, the Louisiana coastal zone (Fig. 11.1) along the north-central Gulf of Mexico is the southern terminus of the largest drainage basin in North America (>3.3 million km2), which includes the Mississippi River delta plain where approximately 6.2 million kilograms per year of sediment is delivered to the Gulf of Mexico (Coleman 1988). The Mississippi River, active since at least Late Jurassic time (Mann and Thomas 1968), is the main distributary channel of this drainage system and during the Holocene has constructed one of the largest delta plains in the world, larger than 30,000 km2 (Coleman and Prior 1980; Coleman 1981; Coleman et al. 1998). The subsurface geology and geomorphology of the Louisiana coastal zone reffects a complex history of regional tectonic events and fluvial, deltaic, and marine sedimentary processes affected by large sea-level fluctuations. Despite the complex geology of the north-central Gulf basin, a long history of engineering studies and Scientific research investigations (see table 11.1) has led to substantial knowledge of the geologic framework and evolution of the delta plain region (see also Bird et al., chapter 1 in this volume). Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources. Available from: https://www.researchgate.net/publication/262802561_Mississippi_River_delta_plain_Louisiana_coast_and_inner_shelf_Holocene_geologic_framework_processes_and_resources [accessed Sep 13, 2017].

  8. The Taili-Yiwulüshan metamorphic core complex corridor: Diachronous exhumation and relationships to the adjacent basins based on new 40Ar/39Ar and (U-Th-Sm)/He mineral ages

    NASA Astrophysics Data System (ADS)

    Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Genser, Johann; Dunkl, István; Heberer, Bianca; Jin, Wei; Zeng, Zuoxun; Li, Weimin; Wen, Quanbo; Li, Jing

    2015-04-01

    The Xingcheng-Taili ductile shear zone (western Liaoning Province in China) formed during latest Jurassic to Early Cretaceous crustal extension of the eastern North China craton, and exhumed low to medium metamorphic grade Archean, Upper Triassic and Upper Jurassic granitic rocks. The Mesozoic Yiwulüshan metamorphic core complex (Yiwulüshan MCC) is dominated by a NNE-SSW elongated dome with a left-lateral shear zone, which is located in the northeastern part of Xingcheng-Taili ductile shear zone, and combine as Taili-Yiwulüshan metamorphic core complex corridor. To the east, it is bounded by the NNE-trending Cretaceous to Eocene Liaohe basin (the northern extension of the Bohai Bay basin), and to the west by the Cretaceous-aged Fuxin-Yixian basin, which could potentially interpreted as supra-detachment basins. Here, we present results from a multi-method thermochronological study and coupled with structural investigations and sections of adjacent supra-detachment basins, which constrain the timing of regional deformation as well as the cooling history and exhumation processes of the low- to middle-grade metamorphic complex in the Taili-Yiwulüshan MCC corridor, in order to understand the mode of lithospheric scale reactivation, extension and thinning of the North China craton. The new40Ar/39Ar muscovite, biotite, K-feldspar and (U-Th)/He apatite ages from granitic rocks help constrain the thermal evolution during its exhumation. The thermochronologic studies have shown at least three stages of exhumation and cooling from late Jurassic to Eocene in Xingcheng-Taili shear zone should be distinguished, e.g., ~ 150-130 Ma, 130-115 Ma and 115-52 Ma, respectively. Diachronous onset and subsequent parallel cooling and exhumation characterize the early thermal history. The Yiwulüshan MCC has a similar exhumation history from 135 to 97 Ma with a similar cooling history. The development of Taili-Yiwulüshan MCC corridor is associated with synkinematic emplacement, exhumation, and volcanic-clastic deposition in the supra-detachment basins. Initiation of the unroofing history resulted from ductile left-lateral shearing since latest Jurassic times. Diachronous onset and subsequent cooling and exhumation characterize the early thermal history. The second and third stages of cooling started lasted until the recently active faulting. Start form the Early Cretaceous the detachment shear zone truncating by the later brittle normal fault. The (U-Th)/He age of 52.3 ± 4.7 Ma indicating final Eocene exhumation of the Taili area is consistent with normal faulting in the Bohai basin area in the east. Based on the present results and published information, that Cretaceous WNW-ESE extensional deformation and lithosphere thinning in the Taili-Yiwulüshan corridor and throughout the eastern North China craton, the synchroneity of cooling and exhumation of metamorphic core complexes, the formation of supra-detachment basins, and regional alkaline igneous activity reflects Early Cretaceous regional extensional tectonics , possibly resulting from roll-back of the subducted Pacific plate beneath North China Craton.

  9. Lu-Hf Garnet Geochronology Reveals the Tectonic History of Precambrian Rocks in the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Aronoff, R.; Andronicos, C.; Vervoort, J. D.; Hunter, R. A.

    2014-12-01

    Lu-Hf garnet dating of Proterozoic rocks of the southwestern United States provides constraints on the timing and geographic extent of metamorphism associated with the Yavapai, Mazatzal, and newly recognized Picuris orogenies. Prior work focusing on U-Pb dating of plutons and Ar geochronology has left the timing of prograde metamorphism ambiguous, particularly in northern New Mexico and southern Colorado. Because the Lu-Hf system dates the onset of garnet growth, it can constrain the timing of the prograde P-T path. Garnet schist samples from central and northern New Mexico exhibit garnet growth restricted to the time period between ~1460 and 1400 Ma. In the Picuris and Manzano mountains, the oldest Lu-Hf garnet ages predate the U-Pb ages of ~1.4 Ga plutons located near the dated samples. This implies that garnet growth, and therefore the onset of amphibolite facies metamorphism, cannot be driven by contact metamorphism, as has been previously inferred. Garnet-bearing samples from the Needle and Wet Mountains in southern Colorado display a range of garnet ages between ~1750 and 1470 Ma. A garnet gneiss from the Needle Mountains in southwestern Colorado yields an age of 1748 Ma, which is consistent with the Yavapai orogeny. This Lu-Hf garnet age has not been reset by contact metamorphism associated with the emplacement of the ~1.4 Ga Eolus batholith. Anatectic garnet in an orthogneiss from the northern Wet Mountains yields an age of 1601 Ma and is interpreted to date partial melting at the close of the Mazatzal orogeny. A 1476 Ma garnet age from the aureole of the 1440 Ma Oak Creek pluton is interpreted to date upper amphibolite facies metamorphism. The age distribution of these samples shows that rocks in Colorado underwent a complex, poly-metamorphic history, while rocks in New Mexico underwent a single progressive metamorphic event. This contrast implies that the boundary between rocks deformed and metamorphosed during the ~1800-1600 Ma Yavapai and Mazatzal orogenies and those only deformed and metamorphosed during the ~1460-1400 Ma Picuris orogeny lies in northern New Mexico, along what has previously been considered the Mazatzal front. By using Lu-Hf geochronology to directly date a rock-forming mineral, we are better able to reconstruct the tectonic history of this region.

  10. Present-day Horizontal Mobility in the Serbian Part of the Pannonian Basin; Inferences from the Geometric Analysis of Deformations

    NASA Astrophysics Data System (ADS)

    Sušić, Zoran; Toljić, Marinko; Bulatović, Vladimir; Ninkov, Toša; Stojadinović, Uroš

    2016-10-01

    In tectonically complex environments, such as the Pannonian Basin surrounded by the Alps-Dinarides and Carpathians orogens, monitoring of recent deformations represents very challenging matter. Efficient quantification of active continental deformations demands the use of a multidisciplinary approach, including neotectonic, seismotectonic and geodetic methods. The present-day tectonic mobility in the Pannonian Basin is predominantly controlled by the northward movement of the Adria micro-plate, which has produced compressional stresses that were party accommodated by the Alps-Dinarides thrust belt and partly transferred towards its hinterland. Influence of thus induced stresses on the recent strain field, deformations and tectonic mobility in the southern segment of the Pannonian Basin has been investigated using GPS measurements of the horizontal mobility in the Vojvodina area (northern Serbia).

  11. Sedimentary petrography of the Early Proterozoic Pretoria Group, Transvaal Sequence, South Africa: implications for tectonic setting

    NASA Astrophysics Data System (ADS)

    Schreiber, U. M.; Eriksson, P. G.; van der Neut, M.; Snyman, C. P.

    1992-11-01

    Sandstone petrography, geochemistry and petrotectonic assemblages of the predominantly clastic sedimentary rocks of the Early Proterozoic Pretoria Group, Transvaal Sequence, point to relatively stable cratonic conditions at the beginning of sedimentation, interrupted by minor rifting events. Basement uplift and a second period of rifting occurred towards the end of Pretoria Group deposition, which was followed by the intrusion of mafic sill swarms and the emplacement of the Bushveld Complex in the Kaapvaal Craton at about 2050 Ma, the latter indicating increased extensional tectonism, and incipient continental rifting. An overall intracratonic lacustrine tectonic setting for the Pretoria Group is supported by periods of subaerial volcanic activity and palaeosol formation, rapid sedimentary facies changes, significant arkosic sandstones, the presence of non-glacial varves and a highly variable mudrock geochemistry.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramdhan, Mohamad; Nugraha, Andri Dian

    Toba area has complex tectonic setting attracting many earth scientists to study and understand tectonic and geological process or setting. The area is affected by oblique subduction zone, Renun Sumatran fault sub segment and some volcanoes that are near it. The earthquake catalogue provided by BMKG from April, 2009 to December, 2011 must be relocated firstly to get the precise hypocenter. We used catalogue data of P and S phase or P phase only and double-difference method to relocate the earthquakes. The results show hypocenter position enhancement that can be interpreted tectonically. The earthquakes after relocation relating to the Sumatranmore » fault, subduction zone, volcanoes and seismic activities beneath Toba caldera can be mapped clearly. The relocated hypocenters in this study are very important to provide information for seismic hazard assessment and disaster mitigation study.« less

  13. Tectonic and metallogenic model for northeast Asia

    USGS Publications Warehouse

    Parfenov, Leonid M.; Nokleberg, Warren J.; Berzin, Nikolai A.; Badarch, Gombosuren; Dril, Sergy I.; Gerel, Ochir; Goryachev, Nikolai A.; Khanchuk, Alexander I.; Kuz'min, Mikhail I.; Prokopiev, Andrei V.; Ratkin, Vladimir V.; Rodionov, Sergey M.; Scotese, Christopher R.; Shpikerman, Vladimir I.; Timofeev, Vladimir F.; Tomurtogoo, Onongin; Yan, Hongquan; Nokleberg, Warren J.

    2011-01-01

    This document describes the digital files in this report that contains a tectonic and metallogenic model for Northeast Asia. The report also contains background materials. This tectonic and metallogenic model and other materials on this report are derived from (1) an extensive USGS Professional Paper, 1765, on the metallogenesis and tectonics of Northeast Asia that is available on the Internet at http://pubs.usgs.gov/pp/1765/; and (2) the Russian Far East parts of an extensive USGS Professional Paper, 1697, on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera that is available on the Internet at http://pubs.usgs.gov/pp/pp1697/. The major purpose of the tectonic and metallogenic model is to provide, in movie format, a colorful summary of the complex geology, tectonics, and metallogenesis of the region. To accomplish this goal four steps were taken: (1) 13 time-stage diagrams, from the late Neoproterozoic (850 Ma) through the present (0 Ma), were adapted, generalized, and transformed into color static time-stage diagrams; (2) the 13 time-stage diagrams were placed in a computer morphing program to produce the model; (3) the model was examined and each diagram was successively adapted to preceding and subsequent diagrams to match the size and surface expression of major geologic units; and (4) the final version of the model was produced in successive iterations of steps 2 and 3. The tectonic and metallogenic model and associated materials in this report are derived from a project on the major mineral deposits, metallogenesis, and tectonics of the Northeast Asia and from a preceding project on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. Both projects provide critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major scientific goals and benefits of the projects are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between North America and eastern Asia.

  14. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    NASA Astrophysics Data System (ADS)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault, possibly inherited from compressional tectonics. These earthquakes raise serious concerns on our understanding of fault segmentation and seismicity evolution during sequences of normal faulting earthquakes. Finally, the retrieved rupture history has important implications on seismic hazard assessment and on the maximum expected magnitude in a given tectonic area.

  15. Can tract element distributions reclaim tectonomagmatic facies of basalts in greenstone assemblages?

    NASA Technical Reports Server (NTRS)

    Butler, J. C.

    1986-01-01

    During the past two decades many words have been written both for and against the hypothesis that the tectonic setting of a suite of igneous rocks is retained by the chemical variability within the suite. For example, it is argued that diagrams can be constructed from modern/recent basalt subcompositions within the system Ti-Zr-Y-Nb-Sr such that tectonomagmatic settings can be reclaimed. If one accepts this conclusion, it is tempting to inquire as to how far this hypothesis can be extended into other petrological realms. If chemical variations of metabasalts retain information relating to their genesis (tectonic setting), for example, this would be most helpful in reconstructing the history of basalts from greenstone belts. A discussion follows.

  16. Intermittent plate tectonics?

    PubMed

    Silver, Paul G; Behn, Mark D

    2008-01-04

    Although it is commonly assumed that subduction has operated continuously on Earth without interruption, subduction zones are routinely terminated by ocean closure and supercontinent assembly. Under certain circumstances, this could lead to a dramatic loss of subduction, globally. Closure of a Pacific-type basin, for example, would eliminate most subduction, unless this loss were compensated for by comparable subduction initiation elsewhere. Given the evidence for Pacific-type closure in Earth's past, the absence of a direct mechanism for termination/initiation compensation, and recent data supporting a minimum in subduction flux in the Mesoproterozoic, we hypothesize that dramatic reductions or temporary cessations of subduction have occurred in Earth's history. Such deviations in the continuity of plate tectonics have important consequences for Earth's thermal and continental evolution.

  17. Antarctic Tectonics: Constraints From an ERS-1 Satellite Marine Gravity Field

    PubMed

    McAdoo; Laxon

    1997-04-25

    A high-resolution gravity field of poorly charted and ice-covered ocean near West Antarctica, from the Ross Sea east to the Weddell Sea, has been derived with the use of satellite altimetry, including ERS-1 geodetic phase, wave-form data. This gravity field reveals regional tectonic fabric, such as gravity lineations, which are the expression of fracture zones left by early (65 to 83 million years ago) Pacific-Antarctic sea-floor spreading that separated the Campbell Plateau and New Zealand continent from West Antarctica. These lineations constrain plate motion history and confirm the hypothesis that Antarctica behaved as two distinct plates, separated from each other by an extensional Bellingshausen plate boundary active in the Amundsen Sea before about 61 million years ago.

  18. Boninites: Characteristics and tectonic constraints, northeastern Appalachians

    USGS Publications Warehouse

    Kim, J.; Jacobi, R.D.

    2002-01-01

    Boninites are high Mg andesites that are thought to form in suprasubduction zone tectonic environments as primary melts from refractory mantle. Boninites provide a potential constraint on tectonic models for ancient terranes that contain boninites because the only unequivocal tectonic setting in which "modern" boninites have been recognized is a fore-arc setting. Tectonic models for "modern" boninite genesis include subduction initiation ("infant arc"), fore-arc spreading, and the forearc side of intra-arc rifting (spreading). These models can be differentiated by the relative age of the boninites and to a lesser degree, geochemistry. The distinctive geochemistry of boninites promotes their recognition in ancient terranes. As detailed in this report, several mafic terranes in the northeastern Appalachians contain boninites; these terranes were situated on both sides of Iapetus. The characteristics of these boninites can be used to constrain tectonic models of the evolution of the northeastern Appalachians. On the Laurentian side of Iapetus, "infant arc" boninites were not produced ubiquitously during the Cambrian subduction initiation, unless sampling problems or minimum age dates obscure a more widespread boninite "infant arc". The Cambrian subduction initiation on the Laurentian side was probably characterized by both "infant arc" boninitic arc construction (perhaps the >496 Ma Hawley Formation and the >488 Ma Betts Cove Ophiolite) and "normal" arc construction (Mt. Orford). This duality is consistent with the suggestion that the pre-collisional geometry of the Laurentian margin was complex. The Bay of Islands Complex and Thetford Mines ophiolite boninites are likely associated with forearc/intra-arc spreading during the protracted evolution of the Cambrian arc system. The relatively young boninites in the Bronson Hill Arc suggest that the Taconic continuous eastward subduction tectonic model is less tenable than other models. On the Gondwana side of Iapetus, the Tea Arm boninites of the Exploits Group stratigraphically rest on arc and MORB volcanics. This stratigraphy, and the relatively young age of the boninites (486 Ma), compared to assumed subduction initiation age (>513 Ma), suggest that the boninites may be more consistent with fore-arc spreading/intra-arc spreading. However, an "infant arc" model cannot be dismissed, and is commonly proposed for the nearby boninites in the Wild Bight Group. ?? 2002 Elsevier Science Ltd. All rights reserved.

  19. A new plate tectonic concept for the eastern-most Mediterranean

    NASA Astrophysics Data System (ADS)

    Huebscher, C.; McGrandle, A.; Scaife, G.; Spoors, R.; Stieglitz, T.

    2012-04-01

    Owing to the seismogenic faults bordering the Levant-Sinai realm and the discovery of giant gas reservoirs in the marine Levant Basin the scientific interest in this tectonically complex setting increased in recent years. Here we provide a new model for the Levant Basin architecture and adjacent plate boundaries emphasizing the importance of industrial seismic data for frontier research in earth science. PSDM seismics, residual gravity and depth to basement maps give a clear line of evidence that the Levant Basin, formerly considered as a single tectonic entity, is divided into two different domains. Highly stretched continental crust in the southern domain is separated from deeper and presumably Tethyan oceanic crust in the north. A transform continuing from southwest Cyprus to the Carmel Fault in northern Israel is considered as the boundary. If this interpretation holds, the Carmel-Cyprus Transform represents a yet unknown continent-ocean boundary in the eastern Mediterranean, thus adding new constrains for the Mediterranean plate tectonic puzzle. The Eratosthenes Seamount, considered as the spearhead of incipient continental collision in the eastern Mediterranean, is interpreted as a carbonate platform that developed above a volcanic basement. NW-SE trending strike-slip faults are abundant in the entire Levant region. Since this trend also shapes the topography of the Levant hinterland including Quaternary deposits their recent tectonic activity is quite likely. Thus, our study supports previous studies which attributed the evolution of submarine canyons and Holocene triggering of mass failures not only to salt tectonics or depositional processes, but also to active plate-tectonics.

  20. Speciation, population structure, and demographic history of the Mojave Fringe-toed Lizard (Uma scoparia), a species of conservation concern

    PubMed Central

    Gottscho, Andrew D; Marks, Sharyn B; Jennings, W Bryan

    2014-01-01

    The North American deserts were impacted by both Neogene plate tectonics and Quaternary climatic fluctuations, yet it remains unclear how these events influenced speciation in this region. We tested published hypotheses regarding the timing and mode of speciation, population structure, and demographic history of the Mojave Fringe-toed Lizard (Uma scoparia), a sand dune specialist endemic to the Mojave Desert of California and Arizona. We sampled 109 individual lizards representing 22 insular dune localities, obtained DNA sequences for 14 nuclear loci, and found that U. scoparia has low genetic diversity relative to the U. notata species complex, comparable to that of chimpanzees and southern elephant seals. Analyses of genotypes using Bayesian clustering algorithms did not identify discrete populations within U. scoparia. Using isolation-with-migration (IM) models and a novel coalescent-based hypothesis testing approach, we estimated that U. scoparia diverged from U. notata in the Pleistocene epoch. The likelihood ratio test and the Akaike Information Criterion consistently rejected nested speciation models that included parameters for migration and population growth of U. scoparia. We reject the Neogene vicariance hypothesis for the speciation of U. scoparia and define this species as a single evolutionarily significant unit for conservation purposes. PMID:25360285

  1. P-T evolution of metasedimentary rocks of the Santa Filomena Complex, Riacho do Pontal Orogen, Borborema Province (NE Brazil): Geothermobarometry and metamorphic modelling

    NASA Astrophysics Data System (ADS)

    Santos, Felipe H.; Amaral, Wagner S.; Luvizotto, George L.; Martins de Sousa, Daniel F.

    2018-03-01

    We present in this paper petrologic data and discuss the pressure-temperature (P-T) metamorphic history of the neoproterozoic metasedimentary rocks of the Santa Filomena Complex, Riacho do Pontal Orogen, which is inserted in the southern portion of the Borborema Province (Northeast Brazil). Therefore, the data provide constraints on metamorphic evolution during Neoproterozoic Brasiliano Orogeny in Northeast Brazil. The rocks studied are aluminous schists and paragneisses. Silver-gray and red pelitic schists are intensely deformed, biotite-muscovite rich, contain centimeter-sized garnet, staurolite and kyanite porphyroblasts, and subordinately plagioclase and quartz. Paragneisses are from light gray to dark gray colored, medium to coarse-grained and display a well-spaced foliated matrix of biotite, and kyanite and garnet porphyroblasts. Locally, the schists and paragneisses are migmatized. Pressure-temperature modelling based on thermobarometric calculations indicate that metamorphism reached 643 °C with pressures estimated in 12 kbar. Pre-peak and post-peak metamorphic conditions are constrained by mineralogical and textural relationships: garnet inclusion-rich and inclusion-free (possible of higher T) are documented and the inclusion-rich core probably indicates a Sn-1 foliation that was transposed by Sn. The pre-peak stage most probably occurred close to 500 °C and 8 kbar, in upper greenschist to lower amphibolite facies metamorphism along kyanite stability field. We also propose that post-peak stage was associated with isothermal decompression along a possible path of tectonic exhumation in conditions of 600 °C and 7 kbar. To further evaluate the equilibrium condition, pressure-temperature pseudosections were calculated for the metasedimentary rocks. Thus, the estimated metamorphic peak took place in the upper amphibolite facies. A suggested clockwise pressure-temperature path is compatible with the regional tectonic setting of continent-continent collision which occurred in the Late Neoproterozoic of Borborema Province, during the Brasiliano Orogeny.

  2. Palaeo island-affinities revisited--biogeography and systematics of the Indo-Pacific genus Cethosia Fabricius (Lepidoptera: Nymphalidae).

    PubMed

    Müller, C J; Beheregaray, L B

    2010-10-01

    The Indo-Pacific is a very complex region encompassing several micro-continents with unique tectonic and geomorphologic histories. Unsurprisingly, the biogeographic history of Indo-Pacific biota is generally poorly known, especially that of organisms found in the heart of the region, the biodiversity hotspot known as Wallacea. Here, we explore the biogeographic history of the Indo-Pacific butterfly genus Cethosia using all known species and many distinctive subspecies. Cethosia butterflies span the Indo-Pacific tropics, including several lineages with localized endemism that are critically important when reconstructing biogeographic history of the Indo-Pacific and, in particular, of Wallacea. A phylogenetic hypothesis is proposed, based on sequences of the mitochondrial genes cytochrome oxidase subunit I (COI) and NADH dehydrogenase 5 (ND5), and the nuclear wingless gene. Both Maximum Parsimony and Bayesian analyses showed that the genus is monophyletic and consistently recovered seven, generally very well supported, clades, namely the cydippe, leschenault, biblis, nietneri, hypsea, penthesilea and cyane clades. Species group relationships are largely concordant with general morphology (i.e., wing pattern and colouration) and, based on the phylogeny, we propose a revised systematic classification at the species level. The evolution of the genus appears associated with the inferred geological history of the region, in particular with respect to the expanding Wallacea theory, whereby ancient connected terranes were fragmented during the mid Miocene to early Pliocene, approximately 14-3 Mya. Recent diversification events in Cethosia were likely promoted by climatic fluctuations during the Pliocene and, to a lesser extent, the Pleistocene. Our results support the view that, while dispersal has been important for Cethosia throughout much of the region, the high levels of island endemism and the essentially allopatric radiations recovered in Cethosia in Wallacea are better explained by vicariant processes linked to the history of formation of micro-continent and associated palaeo islands. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  3. Palaeomagnetic constraints on the evolution of the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N)

    NASA Astrophysics Data System (ADS)

    Morris, Antony; Pressling, Nicola; Gee, Jeffrey; John, Barbara; MacLeod, Christopher

    2010-05-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. For example, recent analyses suggest that detachment faults may underlie more than 50% of the Mid Atlantic Ridge (MAR) and may take up most of the overall plate divergence at times when magma supply to the ridge system is reduced. The most extensively studied oceanic core complex is Atlantis Massif, located at 30°N on the MAR. This forms an inside-corner bathymetric high at the intersection of the Atlantis Transform Fault and the MAR. The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305. This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. The core (Hole U1309D) reflects the interplay between magmatism and deformation prior to, during, and subsequent to a period of footwall displacement and denudation associated with slip on the detachment fault. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. In a number of intervals, however, the gabbros exhibit a complex remanence structure with the presence of intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are more consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. Differences in the width of blocking temperature spectra between samples appear to control the number of components present; samples with narrow and high temperature spectra record only R1 components, whereas those with broader blocking temperature spectra record multicomponent (R1-N1 and R1-N1-R2) remanences. The common occurrence of detachment faults in slow and ultra-slow spreading oceanic crust suggests they accommodate a significant component of plate divergence. However, the sub-surface geometry of oceanic detachment faults remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We resolve this debate using paleomagnetic remanences as a marker for tectonic rotation of the Atlantis Massif footwall. Previous ODP/IODP palaeomagnetic studies have been restricted to analysis of magnetic inclination data, since hard-rock core pieces are azimuthally unoriented and free to rotate in the core barrel. For the first time we have overcome this limitation by independently reorienting core pieces to a true geographic reference frame by correlating structures in individual pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of paleomagnetic data and subsequent tectonic interpretation without the need for a priori assumptions on the azimuth of the rotation axis. Results indicate a 46°±6° counterclockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011°±6°. This provides unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby faults initiate at higher dips and rotate to their present day low angle geometries.

  4. Do cosmogenic nuclides (10Be, 14C , 21Ne, 26Al) track late Quaternary climate changes on the Altiplano?

    NASA Astrophysics Data System (ADS)

    Hippe, K.; Kober, F.; Zeilinger, G.; Ivy-Ochs, S.; Kubik, P.; Maden, C.; Wieler, R.

    2010-12-01

    The high Altiplano plateau is the most prominent element of the Central Andes, separating the Andean Cordilleras between 15° to 22° S. It represents a tectonically quiet, intramontane basin with arid to semi-arid climate, low relief and internal drainage. Throughout the late Quaternary regional climate on the Altiplano repeatedly changed between wet and dry conditions [1]. The influence of climate on the plateau evolution during the Pleistocene/Holocene is unclear, however, as data on erosion processes and rates on the Altiplano are sparse. Here, we present a multiple-nuclide study investigating surface denudation at the eastern Altiplano of Bolivia (16°-17° S) on millennial and longer timescales. The aim is a better understanding of the complex feedback between climate, tectonics and geomorphology on the topographic evolution of the Andes. Catchment-wide denudation (CWD) rates are provided for a 150 km NW-SE transect along the Altiplano edge based on the analyses of cosmogenic 10Be, 26Al, 21Ne and in-situ 14C in river-borne sediment. Single nuclide CWD rates obtained for 10Be, 26Al and 21Ne are similar for all three nuclides and on the order of 3-37 mm/ka. Thus, the calculated denudation rates provide an averaged denudation history dating back at least to the middle Pleistocene. Denudation rates correlate positively with the mean basin hillslope, which is mainly controlled by basin lithology. For most catchments both, the 26Al/10Be ratios and the 21Ne/10Be ratios indicate a complex erosion/exposure history with probably several periods of sediment storage and burial/shielding totalling ~0.5 - 1.2 Ma. Local geomorphology featuring low slopes and low relief, small terraces and local floodplains also suggests that sediment transport might have been periodically ineffective. Concentrations of in-situ produced short-lived 14C are significantly lower than expected from the concentrations of the long-lived and stable cosmogenic nuclides. This would indicate a 30-40 fold increase in denudation rates since ~3000 years, which appears rather unlikely. Hence, the measured in-situ 14C concentrations may actually reflect sediment storage. Partial sediment shielding at ~80-150 cm depth is plausible from field evidence. Due to the fast decay of 14C, such shielding would result in a drop of the 14C concentration from saturation to the measured values already after several 1000 years. Nevertheless, other explanations as incomplete sediment mixing also have to be taken into account. Interestingly, our CWD long-term data agree well with short-term sediment yield data from the Altiplano (5.6-48 mm/ka) [2]. This suggests an overall uniformity in erosional processes and rates throughout the late Quaternary. The agreement between single nuclide denudation rates, despite the complex storage history, also argues for rather long-term steady-state conditions and highlights the insensitivity of long-lived cosmogenic nuclides to low amplitude, short-term variations in climate. References: [1] Plazcek et al. (2006), GSA Bulletin 118, 515-532, [2] Guyot et al. (1992), Lake Titicaca 113-119.

  5. Low-angle detachment origin for the Red Sea Rift System?

    NASA Astrophysics Data System (ADS)

    Voggenreiter, W.; Hötzl, H.; Mechie, J.

    1988-07-01

    The tectonic and magmatic history of the Jizan coastal plain (Tihama Asir, southwest Arabia) suggests a two-stage evolution. A first stage of extension began during the Oligocene and ended with uplift of the Arabian graben shoulder which began about 14 Ma ago. It was followed by a period of approximately 10 Ma characterized by magmatic and tectonic quiescence. A second stage of extension began roughly contemporaneously with the onset of seafloor spreading in the southern Red Sea some 4-5 Ma ago and is still active today. The geometry of faulting in the Jizan area supports a Wernicke model of simple shear for the development of the southern Red Sea. Regional asymmetries of the Red Sea area, such as the distribution of volcanism, the marginal topography and asymmetries in the geophysical signatures are consistent with such a model. Available seismic profiles allow a rough estimate for β-values of the Arabian Red Sea margin and were used to simulate subsidence history and heat flow of the Red Sea for "classical" two-layer stretching models. Neither finite uniform nor finite non-uniform stretching models can account for observed subsidence and heat flow data. Thus, two model scenarios of whole-lithosphere normal simple-shear are presented for the geological history of the southwestern Arabian margin of the Red Sea. These models are limited because of the Serravallian rearrangement in the kinematics of the Red Sea.

  6. Reconstruction of the strain pattern in the Somma-Vesuvius area: field and remote sensing analyses

    NASA Astrophysics Data System (ADS)

    D'Assisi Tramparulo, Francesco; Bisson, Marina; Isaia, Roberto; Tadini, Alessandro; Vitale, Stefano

    2016-04-01

    Keywords: Somma-Vesuvio, structural analysis, volcano-tectonics. This study present a detailed structural analysis of the Somma-Vesuvio (SV) volcanic complex that couples field data about faults, fractures and dykes with the analysis of lineaments identified from high-resolution (1m) DTM deriving from LiDAR data. Field data were collected within the SV caldera,in some quarries along the volcano flanks, and in few outcrops along the carbonate reliefs bounding the southern sector of the Campania plain. A total of 8,500 orientation data have been analyzed through rose diagrams and inversion methods while a total of more than 4,000 lineaments were identified after the analyses of multiple hill shades obtained by applying different pseudo-illuminations (from NW, NE, SE and SW) and appropriate filters to the original DTM. Results indicate a complex interaction between volcanic (local) and tectonic (regional) stress fields. The preliminary analysis of lineaments indicate that most of them are radial with respect to the center of the caldera, however a "tectonic" component is present, mainly represented by the NNE-SSW, ENE-WSW and the well-known Apenninic (NW-SE) direction.

  7. Hydrocarbon gas seeps of the convergent Hikurangi margin, North Island, New Zealand

    USGS Publications Warehouse

    Kvenvolden, K.A.; Pettinga, J.R.

    1989-01-01

    Two hydrocarbon gas seeps, located about 13 km apart, have distinctive molecular and isotopic compositions. These seeps occur within separate tectonic melange units of narrow parallel trending and structurally complex zones with incorporated upper Cretaceous and Palaeogene passive continental margin deposits which are now compressively deformed and imbricated along the convergent Hikurangi margin of North Island, New Zealand. At Brookby Station within the Coastal High, the seeping hydrocarbon gas has a methane/ethane ratio of 48 and ??13C and ??D values of methane of -45.7 and -188???, respectively (relative to the PDB and SMOW standards). Within the complex core of the Elsthorpe Anticline at Campbell Station seep, gas has a methane/ethane ratio of about 12000, and the methane has ??13C and ??D values of -37.4 and -170???, respectively. The source of the gases cannot be positively identified, but the gases probably originate from the thermal decomposition of organic matter in tectonically disturbed upper Cretaceous and/or lower Tertiary sedimentary rocks of passive margin affinity and reach the surface by migration along thrust faults associated with tectonic melange. The geochemical differences between the two gases may result from differences in burial depths of similar source sediment. ?? 1989.

  8. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia

    PubMed Central

    Che, Jing; Zhou, Wei-Wei; Hu, Jian-Sheng; Yan, Fang; Papenfuss, Theodore J.; Wake, David B.; Zhang, Ya-Ping

    2010-01-01

    Asian frogs of the tribe Paini (Anura: Dicroglossidae) range across several first-order tectono-morphological domains of the Cenozoic Indo-Asian collision that include the Tibetan Plateau, the Himalayas, and Indochina. We show how the tectonic events induced by the Indo-Asian collision affected the regional biota and, in turn, how the geological history of the earth can be viewed from a biological perspective. Our analysis of a concatenated dataset comprising four nuclear gene sequences of Paini revealed two main radiations, corresponding to the genera Nanorana (I) and Quasipaa (II). Five distinct clades are recognized: Tibetan plateau clade (I-1), Himalaya clade (I-2), environs of Himalaya–Tibetan plateau clade (I-3), South China clade (II-1), and Indochina clade (II-2). This pattern of relationships highlights the significance of geography in shaping evolutionary history. Building on our molecular dating, ancestral region reconstruction, and distributional patterns, we hypothesize a distinct geographic and climatic transition in Asia beginning in the Oligocene and intensifying in the Miocene; this stimulated rapid diversification of Paini. Vicariance explains species formation among major lineages within Nanorana. Dispersal, in contrast, plays an important role among Quasipaa, with the southern Chinese taxa originating from Indochina. Our results support the tectonic hypothesis that an uplift in the Himalaya–Tibetan plateau region resulting from crustal thickening and lateral extrusion of Indochina occurred synchronously during the transition between Oligocene and Miocene in reaction to the Indo-Asian collision. The phylogenetic history of Paini illuminates critical aspects of the timing of geological events responsible for the current geography of Southeast Asia. PMID:20643945

  9. Recognition of Cretaceous, Paleocene, and Neogene tectonic reactivation through apatite fission-track analysis in Precambrian areas of southeast Brazil: association with the opening of the south Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Tello Saenz, C. A.; Hackspacher, P. C.; Hadler Neto, J. C.; Iunes, P. J.; Guedes, S.; Ribeiro, L. F. B.; Paulo, S. R.

    2003-01-01

    Apatite fission-track analysis was used for the determination of thermal histories and ages in Precambrian areas of southeast Brazil. Together with geological and geomorphologic information, these ages enable us to quantify the thermal histories and timing of Mesozoic and Cenozoic epirogenic and tectonic processes. The collected samples are from different geomorphologic blocks: the high Mantiqueira mountain range (HMMR) with altitude above 1000 m, the low Mantiqueira mountain range (LMMR) under 1000 m, the Serra do Mar mountain range (SMMR), the Jundiaí and Atlantic Plateaus, and the coastline, all of which have distinct thermal histories. During the Aptian (˜120 Ma), there was an uplift of the HMMR, coincident with opening of the south Atlantic Ocean. Its thermal history indicates heating (from ˜60 to ˜80 °C) until the Paleocene, when rocks currently exposed in the LMMR reached temperatures of ˜100 °C. In this period, the Serra do Mar rift system and the Japi erosion surface were formed. The relief records the latter. During the Late Cretaceous, the SMMR was uplifted and probably linked to its origin; in the Tertiary, it experienced heating from ˜60 to ˜90 °C, then cooling that extends to the present. The SMMR, LMMR, and HMMR were reactivated mainly in the Paleocene, and the coastline during the Paleogene. These processes are reflected in the sedimentary sequences and discordances of the interior and continental margin basins.

  10. Structure of Franciscan complex in the Stanley Mountain window, Southern Coast ranges, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, R.J.

    1982-11-01

    Three sets of deformational events are recognized in the Franciscan Complex of the Stanley Mt. area, S. Coast ranges, California. First, in pre-melange time, shortening of the relatively cohesive sequence of interbedded graywacke and mudstone formed isoclinal folds and an axial-plane slaty cleavage. Second, fragmentation of the once cohesive sequence, probably over a considerable period of time, produced the configuration now considered a melange. Third, after the melange developed, the Franciscan Complex was deformed along with the surrounding upper Mesozoic Great Valley sequence into the Stanley Mt. antiform. In the cohesive Upper Cretaceous Carrie Creek Formation, macroscopic and mesoscopic foldsmore » have 2 predominant orientations. The less cohesive Franciscan Complex attempted to fold, as shown by the distribution of shear foliations on stereographic projections, but lack of lithologic continuity and slip along previously formed shear fractures prevents the recognition of macroscopic folds. Hence, in the Franciscan Complex of the Stanley Mt. window, several lines of evidence show that the melange structure is tectonic in origin, not just a tectonic imprint superimposed upon already chaotic rocks of sedimentary origin (olistostromes). 43 references.« less

  11. Final « pop-up » structural reactivation of the internal part of an orogenic wedge: west-central Pyrenees

    NASA Astrophysics Data System (ADS)

    Meresse, F.; Jolivet, M.; Labaume, P.; Teixell, A.

    2009-04-01

    Université Montpellier 2, INSU-CNRS, Laboratoire Géosciences Montpellier, cc060, 34095 Montpellier Cedex 5, France florian.meresse@gm.univ-montp2.fr Tectonics-sedimentation relationships are often used to describe the tectonic evolution of orogenic wedges. However, does the sedimentary record associated to the build-up of the wedge recall the entire tectonic history? Numerous studies based on tectono-stratigraphic and thermochronological data, as well as numerical modeling, have demonstrated that on the large scale the growth of the Pyrenees is characterized by a southward propagation of the deformation (e.g., Muñoz, 1992; Morris et al., 1998; Fitzgerald et al., 1999; Beaumont et al., 2000). However, in the west-central Pyrenees, recent thermochronological data have suggested that the in-sequence propagation of the basement thrust system was followed by out-of-sequence (re)activation of hinterland structures after the South-Pyrenean Frontal Thrust had been sealed (Jolivet et al., 2007). To better describe the structural evolution of the Pyrenean prism, we focused our work on a NNE-SSW transect from the northern piedmont (Bagnères-de-Bigorre), through the Axial Zone and down to the Jaca basin where tectonics-sedimentation relationships have been extensively described (e.g., Teixell, 1996). A crustal scale cross-section combined with detailed apatite fission track analysis are used as a case study to unravel in detail the deformation history. Apatite fission track data from the Bagnères-de-Bigorre Paleozoic massif (central ages: 41-42 Ma) and the Lesponne Hercynian granite (central age: 31 Ma) located in the North-Pyrenean Zone and in the north of the Axial Zone, respectively, reveal Middle Eocene-Early Oligocene denudation ages of the northern part of the wedge. Immediately to the south, central ages around 24-20 Ma attest to a Latest Oligocene-Early Miocene denudation ages of the Chiroulet granite. According to the structural context, these results suggest a late exhumation stage associated with the tectonic (re)activation of north-vergent thrusts in the northern part of the Axial Zone. Similarly, results from the southern flank of the Axial Zone and the northern part of the Jaca basin suggest a denudation age around 18 Ma (Meresse et al., this volume), which may be linked to out-of-sequence tectonic movements on a south-vergent basement thrust (Bielsa thrust, Jolivet et al., 2007). In conclusion, thermochronological data reveal an Early Miocene "pop-up" exhumation of the internal parts of the Pyrenean wedge, which also shows that the Pyrenean compressional deformation ended later than the generally accepted Aquitanian age deduced from tectonics-sedimentation relationships. This late exhumation was achieved through out-of-sequence (re)activation of hinterland structures linked to a final internal thickening stage in the orogenic prism.

  12. The Pinjaur dun (intermontane longitudinal valley) and associated active mountain fronts, NW Himalaya: Tectonic geomorphology and morphotectonic evolution

    NASA Astrophysics Data System (ADS)

    Singh, Vimal; Tandon, S. K.

    2008-12-01

    The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts. In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations. The values of valley floor width to height ratio ( Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02-5.12. Vf for the four major valleys associated with MF1B ranged from 1.1-1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active. Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the intermontane valley. Surface profile analysis helped in deciphering the growth history of the fault bend fold structures of the outermost Siwalik hills. The effects of tectonic activity on the proximal part of the Indo-Gangetic plains are interpreted from the remarkable river deflections that are aligned linearly over tens of kilometers in a zone about 10 km south of the HFT. Based on these integrated structural and tectonic geomorphological approaches, a morphotectonic evolutionary model of the dun has been proposed. This model highlights the role of uplift and growth history of the fault bend fold structures of the outermost Siwalik hills on (i) the depositional landforms and drainage development of the Pinjaur dun, and (ii) valley development of the outermost Siwalik hills. Importantly, this study postulates the formation of an incipient mountain front that is evolving ahead of the HFT and the outermost Siwalik hills in the Indo-Gangetic plains.

  13. Revisit of Criteria and Evidence for the Tectonic Erosion vs Accretion in East Asian Margin

    NASA Astrophysics Data System (ADS)

    Kimura, G.; Hamahashi, M.

    2015-12-01

    Accretionary and erosive margins provide tectonic end-members in subduction zone and how these tectonic processes might be recorded and recognizable in ancient subduction complexes remains a challenging issue. Tectonic erosion includes sediment subduction and basal erosion along the plate boundary megathrust and drags down the crust of the upper plate into the mantle. Geologic evidence for the erosion is commonly based on lost geological tectono-stratigraphic data, i.e. gaps in the record and indirect phenomena such as subsidence of the forearc slopes. A topographically rough surface such as seamount has been suggested to work like an erosive saw carving the upper plate. Another mechanism of basal erosion has been suggested to be hydrofracturing of upper plate materials due to dehydration-induced fluid pressures, resulting in entrainment of upper plate materials into the basal décollement. Considering the interaction between the ~30 km thick crust of the upper plate and subducting oceanic plate, a subduction dip angle of ~15°, and convergent rate of ~10 cm/year, at least ~1 Ma of continuous basal erosion is necessary to induce clear subsidence of the forearc because the width of plate interface between the upper crustal and subducting plates is about 115 km (30/cos15°). In several examples of subduction zones, for example the Japan Trench and the Middle America Trench off Costa Rica, the subsidence of a few thousand metres of the forearc, combined with a lack of accretionary prism over a period of several million years, suggest that the erosive condition needs to be maintained for several to tens of million years.Such age gaps in the accretionary complex, however, do not automatically imply that tectonic erosion has taken place, as other interpretations such as no accretion, cessation of subduction, and/or later tectonic modification, are also possible. Recent drilling in the forearc of the Nankai Trough suggests that the accretion was ceased between ~12 Ma to ~8 Ma due to the transference of subduction from the Pacific Plate to the Philippine Sea Plate, as opposed to the continuous subduction of the Phillipine Sea Plate with subduction erosion.

  14. Geostatistical analysis of the power-law exponents of the size distribution of earthquakes, Quaternary faults and monogenetic volcanoes in the Central Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Mendoza-Ponce, A.; Perez Lopez, R.; Guardiola-Albert, C.; Garduño-Monroy, V. H.; Figueroa-Soto, Á.

    2017-12-01

    The Trans Mexican Volcanic Belt (TMVB) is related to the convergence between the Cocos and Rivera plates beneath the North American plate by the Middle America Trench (MAT). Moreover, there is also intraplate faulting within the TMVB, which is responsible of important earthquakes like the Acambay in 1912 (Mw 7.0) and Maravatío in 1979 (Mb 5.3). In this tectonic scheme, monogenetic volcanoes, active faulting and earthquakes configure a complex tectonic frame where different spatial anisotropy featured this activity. This complexity can be characterized by the power-law of the frequency-size distribution of the monogenetic volcanoes, the faults and the earthquakes. This power-law is determined by the b-value of the Gutenberg-Richter law in case of the earthquakes. The novelty of this work is the application of geostatistics techniques (variograms) for the analysis of spatial distribution of the b-values obtained from the size distribution of the basal diameter for monogenetic volcanoes in the Michoacán-Guanajuato Volcanic Field (bmv), surface area for faults in the Morelia-Acambay fault system (bf) and the seismicity in the Central TMVB (beq). Therefore, the anisotropy in each case was compared and a geometric tectonic model was proposed. The evaluation of the spatial distribution of the b-value maps gives us a general interpretation of the tectonic stress field and the seismic hazard in the zone. Hence, the beq-value map for the seismic catalog shows anomalously low and high values, reveling two different processes, one related to a typical tectonic rupture (low b-values) and the other one related to hydraulic fracturing (high b-values). The resulting bmv-map for the diameter basal cones indicates us the locations of the ages of the monogenetic volcanoes, giving important information about the volcanic hazard. High bmv-values are correlated with the presence of young cinder cones and an increasing probability of a new volcano. For the Morelia-Acambay fault system, the bf-map shows the strongest locations along the system where tectonic stress accumulates.

  15. Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model

    NASA Astrophysics Data System (ADS)

    Kooi, Henk; Beaumont, Christopher

    1996-02-01

    Linear systems analysis is used to investigate the response of a surface processes model (SPM) to tectonic forcing. The SPM calculates subcontinental scale denudational landscape evolution on geological timescales (1 to hundreds of million years) as the result of simultaneous hillslope transport, modeled by diffusion, and fluvial transport, modeled by advection and reaction. The tectonically forced SPM accommodates the large-scale behavior envisaged in classical and contemporary conceptual geomorphic models and provides a framework for their integration and unification. The following three model scales are considered: micro-, meso-, and macroscale. The concepts of dynamic equilibrium and grade are quantified at the microscale for segments of uniform gradient subject to tectonic uplift. At the larger meso- and macroscales (which represent individual interfluves and landscapes including a number of drainage basins, respectively) the system response to tectonic forcing is linear for uplift geometries that are symmetric with respect to baselevel and which impose a fully integrated drainage to baselevel. For these linear models the response time and the transfer function as a function of scale characterize the model behavior. Numerical experiments show that the styles of landscape evolution depend critically on the timescales of the tectonic processes in relation to the response time of the landscape. When tectonic timescales are much longer than the landscape response time, the resulting dynamic equilibrium landscapes correspond to those envisaged by Hack (1960). When tectonic timescales are of the same order as the landscape response time and when tectonic variations take the form of pulses (much shorter than the response time), evolving landscapes conform to the Penck type (1972) and to the Davis (1889, 1899) and King (1953, 1962) type frameworks, respectively. The behavior of the SPM highlights the importance of phase shifts or delays of the landform response and sediment yield in relation to the tectonic forcing. Finally, nonlinear behavior resulting from more general uplift geometries is discussed. A number of model experiments illustrate the importance of "fundamental form," which is an expression of the conformity of antecedent topography with the current tectonic regime. Lack of conformity leads to models that exhibit internal thresholds and a complex response.

  16. Quantitative analysis of the tectonic subsidence in the Potiguar Basin (NE Brazil)

    NASA Astrophysics Data System (ADS)

    Lopes, Juliana A. G.; de Castro, David L.; Bertotti, Giovanni

    2018-06-01

    The Potiguar Basin, located in the Brazilian Equatorial Margin, evolved from a complex rifting process implemented during the Atlantic Ocean opening in the Jurassic/Cretaceous. Different driving mechanisms were responsible for the onset of an aborted onshore rift and an offshore rift that initiated crustal rupture and the formation of a continental transform margin. Therefore, we applied the backstripping method to quantify the tectonic subsidence during the rift and post-rift phases of Potiguar Basin formation and to analyze the spatial variation of subsidence during the two successive and distinct tectonic events responsible for the basin evolution. The parameters required to apply this methodology were extracted from 2D seismic lines and exploratory well data. The tectonic subsidence curves present periods with moderate subsidence rates (up to 300 m/My), which correspond to the evolution of the onshore Potiguar Rift (∼141 to 128 Ma). From 128-118 Ma, the tectonic subsidence curves show no subsidence in the onshore Potiguar Basin, whereas subsidence occurred at high rates (over 300 m/My) in the offshore rift. The post-rift phase began ca. 118 Ma (Aptian), when the tectonic subsidence drastically slowed to less than 35 m/My, probably related to thermal relaxation. The tectonic subsidence rates in the various sectors of the Potiguar Rift, during the different rift phases, indicate that more intense faulting occurred in the southern portion of the onshore rift, along the main border faults, and in the southeastern portion of the offshore rift. During the post-rift phase, the tectonic subsidence rates increased from the onshore portion towards the offshore portion until the continental slope. The highest rates of post-rift subsidence (up to 35 m/My) are concentrated in the central region of the offshore portion and may be related to lithospheric processes related to the continental crust rupture and oceanic seafloor spreading. The variation in subsidence rates and the pattern of tectonic subsidence curves allowed us to interpret the tectonic signature recorded by the sedimentary sequences of the Potiguar Basin during its evolution. In the onshore rift area, the tectonic subsidence curves presented subsidence rates up to 300 m/My during a long-term rift phase (13 Ma), which confirmed that this portion had an extensional tectonic regime. In the offshore rift, the curves presented high subsidence rates of over 300 m/My in a shorter period (5-10 My), typical of basins formed in a transtensional tectonic regime.

  17. Weathering on a stagnant lid planet: Prospects for habitability?

    NASA Astrophysics Data System (ADS)

    Foley, B. J.

    2016-12-01

    Plate tectonics plays a major role in the operation of the long term carbon cycle on Earth, which in turn buffers Earth's climate by regulating atmospheric CO2 levels. As a result, plate tectonics has long been considered to be essential for maintaining habitable conditions over geologic timescales. In particular, plate tectonics returns carbon to the mantle through subduction, allowing for long-lived CO2 degassing to the atmosphere, and plate tectonics sustains a large supply of fresh, weatherable rock at the surface through continual uplift, orogeny, and seafloor spreading. Without a large supply of fresh rock weathering can become supply-limited, where no climate regulating weathering feedback occurs. However, another mechanism for supplying fresh rock to the surface is through volcanism. Volcanism occurs on rocky planets, at least for some portion of their history, regardless of their mode of surface tectonics. In this presentation I assess whether a stagnant lid planet can avoid supply-limited weathering, and thus buffer its climate through the weathering feedback, when the supply of fresh rock is provided solely by volcanism. A simple analysis shows that the amount of CO2 in the mantle is critical for determining whether volcanic degassing overwhelms the supply of rock produced by eruptions, leading to supply-limited weathering and a hot climate, or not. Models of the coupled evolution of climate, mantle temperature, and volcanic rate are then used to determine how long a habitable climate could be maintained on a stagnant lid planet, and how different initial conditions influence this timescale. The results have important implications for the prospects for habitability of stagnant lid planets.

  18. Tectono-sedimentary constraints to the Oligocene-to-Miocene evolution of the Peloritani thrust belt (NE Sicily)

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Nigro, F.

    1999-12-01

    The Peloritani thrust belt belongs to the southern sector of the Calabrian Arc and is formed by a set of south-verging tectonic units, including crystalline basement and sedimentary cover (from the top: Aspromonte U.; Mela U.; Mandanici U.; Fondachelli U.; Longi-Taormina U.), piled up starting from Late Oligocene. At least two main terrigenous clastic formations lie with complicated relationships on top of the previous units: the Frazzanò Fm (Oligocene) and the Stilo-Capo d'Orlando Fm (Late Oligocene?-Early Miocene), as syn-to-post-tectonic deposits. These clastic deposits have different characteristics, in space and time, representing or flysch-like sequences involved in several thrust events (Frazzanò Fm) or molassic-like sequences (Stilo-Capo d'Orlando Fm), which unconformably overlie the tectonic units. In the present paper we describe a kinematic model of the progressive foreland migration of the Peloritani thrust belt, starting from Oligocene, carrying piggy-back basins and incorporating foredeep deposits, recognised in the Frazzanò-Stilo-Capo d'Orlando terrigenous successions. In general, the facies and structural observations on the overall Oligo-Miocene clastic sequences, outcropping in the Western Peloritani Mts, indicate: (a) the distal character of the Frazzanò Fm; (b) a complex group of terrigenous facies of the Stilo-Capo d'Orlando Fm, with lateral-to-vertical organisation, characterised by a distal-to-proximal-to-distal facies trend; (c) facies analogies of the basal portions of the Stilo-Capo d'Orlando Fm with the Frazzanò Fm; (d) the involvement of the Frazzanò Fm in lowermost and more external thrusting, and of the basal (Late Oligocene?) distal Stilo-Capo d'Orlando facies in the higher and inner thrusting during the early stages of deformation; (e) the involvement of the proximal Stilo-Capo d'Orlando facies in the tectonic edifice during the Early Miocene deformation; (f) the generally unconformable stratigraphical contacts of the higher proximal-to-distal (Early Miocene) Stilo-Capo d'Orlando facies on the constructing mobile belt; and (g) the presence of various thrust-faults, distinguished in a sequential order. The collected data allow us to hypothesise that the Oligo-Miocene tectono-sedimentary history was characterised by a foredeep with a deforming internal flank, probably lying in onlap on the constructing tectonic edifice (Frazzanò-lower Stilo-Capo d'Orlando Fms), and then deformed and covered by a piggy-back like sequence (middle-upper Stilo-Capo d'Orlando Fm), which was subsequently also deformed. The tectono-sedimentary evolution of the Peloritani belt has been probably developed through a progressive migration towards the foreland of a foredeep-compressional front couple and the chain body. The thrust stack progressively incorporates terrigenous foredeep deposits and in turn carried piggy-back basins.

  19. Peering into the deep: Illuminating the crustal evolution of the Eucla basement and its relationship to the Albany-Fraser Orogen of southwest Australia.

    NASA Astrophysics Data System (ADS)

    Hartnady, Michael; Kirkland, Chris; Clark, Chris; Spaggiari, Catherine; Smithies, Hugh

    2017-04-01

    The Albany-Fraser Orogen is a 1200 km long east to northeasterly trending Palaeoproterozoic to Mesoproterozoic orogenic belt that defines the southern to southeastern margin of the West Australian Craton (WAC). The belt records a long and complex geological history spanning the break-up of Nuna between 2000 and 1700 Ma and amalgamation of Rodinia between 1300 and 1000 Ma. Recent geochronological, geochemical and isotopic work has shown that the Albany-Fraser Orogen formed through a protracted period of reworking of the margin of the Archean Yilgarn Craton (part of the WAC) with various additions of mantle-derived material. The Cretaceous Bight and Cenozoic Eucla Basins partially overlie the northeastern part of the Albany-Fraser Orogen and completely cover 1000 km of crystalline basement (the Eucla basement) that separates the belt from the South Australian Craton. This basement constitutes the glue between the major building blocks of Proterozoic Australia, yet, its geological history is poorly understood. New drill cores penetrating the basement have intersected interlayered granitic and gabbroic rocks that yield U-Pb zircon dates that are dissimilar to any magmatic ages from units within the adjoining Albany-Fraser Orogen, with the exception of the youngest, 1190-1125 Ma magmatic suite. In addition, mantle-like hafnium and neodymium isotopic signatures indicate that the rocks of the Eucla basement are dominated by new juvenile addition, and may represent an allochthonous terrane of oceanic heritage. New ɛHf contour maps for the Albany-Fraser Orogen and Eucla basement highlight this difference. Time-slicing the isotopic dataset reveals a pattern of Palaeoproterozoic juvenile magmatism sub-perpendicular to the present day structural grain in the belt. If this marks the presence of an older lithospheric structure then it demonstrates the power that time-constrained isotopic mapping provides for illuminating lithospheric architecture through time. This may be particularly useful for unravelling crustal evolution in regions with complex tectonic histories.

  20. Stratigraphy and tectonic history of the Tucson Basin, Pima County, Arizona, based on the Exxon state (32)-1 well

    USGS Publications Warehouse

    Houser, Brenda B.; Peters, Lisa; Esser, Richard P.; Gettings, Mark E.

    2004-01-01

    The Tucson Basin is a relatively large late Cenozoic extensional basin developed in the upper plate of the Catalina detachment fault in the southern Basin and Range Province, southeastern Arizona. In 1972, Exxon Company, U.S.A., drilled an exploration well (Exxon State (32)-1) near the center of the Tucson Basin that penetrated 3,658 m (12,001 ft) of sedimentary and volcanic rocks above granitoid basement. Detailed study of cuttings and geophysical logs of the Exxon State well has led to revision of the previously reported subsurface stratigraphy for the basin and provided new insight into its depositional and tectonic history. There is evidence that detachment faulting and uplift of the adjacent Catalina core complex on the north have affected the subsurface geometry of the basin. The gravity anomaly map of the Tucson Basin indicates that the locations of subbasins along the north-trending axis of the main basin coincide with the intersection of this axis with west-southwest projections of synforms in the adjacent core complex. In other words, the subbasins overlie synforms and the ridges between subbasins overlie antiforms. The Exxon State well was drilled near the center of one of the subbasins. The Exxon well was drilled to a total depth of 3,827 m (12,556 ft), and penetrated the following stratigraphic section: Pleistocene(?) to middle(?) Miocene upper basin-fill sedimentary rocks (0-908 m [0-2,980 ft]) lower basin-fill sedimentary rocks (908-1,880 m [2,980-6,170 ft]) lower Miocene and upper Oligocene Pantano Formation (1,880-2,516 m [6,170-8,256 ft]) upper Oligocene to Paleocene(?) volcanic and sedimentary rocks (2,516-3,056 m [8,256-10,026 ft]) Lower Cretaceous to Upper Jurassic Bisbee Group (3,056-3,658 m [10,026-12,001 ft]) pre-Late Jurassic granitoid plutonic rock (3,658-3,827 m [12,001- 12,556 ft]). Stratigraphy and Tectonic History of the Tucson Basin, Pima County, Arizona, Based on the Exxon State (32)-1 Well The 1,880 m (6,170 ft) of basin-fill sedimentary rocks consist of alluvial-fan, alluvial-plain, and playa facies. The uppermost unit, a 341-m-thick (1,120-ft) lower Pleistocene and upper Pliocene alluvial-fan deposit (named the Cienega Creek fan in this study), is an important aquifer in the Tucson basin. The facies change at the base of the alluvial fan may prove to be recognizable in well data throughout much of the basin. The well data show that a sharp boundary at 908 m (2,980 ft) separates relatively unconsolidated and undeformed upper basin fill from denser, significantly faulted lower basin fill, indicating that there were two stages of basin filling in the Tucson basin as in other basins of the region. The two stages apparently occurred during times of differing tectonic style in the region. In the Tucson area the Pantano Formation, which contains an andesite flow dated at about 25 Ma, fills a syntectonic basin in the hanging wall of the Catalina detachment fault, reflecting middle Tertiary extension on the fault. The formation in the well is 636 m thick (2,086 ft) and consists of alluvial-fan, playa, and lacustrine sedimentary facies, a lava flow, and rock- avalanche deposits. Analysis of the geophysical logs indicates that a K-Ar date of 23.4 Ma reported previously for the Pantano interval of the well was obtained on selected cuttings collected from a rock-avalanche deposit near the base of the unit and, thus, does not date the Pantano Formation. The middle Tertiary volcanic and sedimentary rocks have an aggregate thickness of 540 m (1,770 ft). We obtained a new 40Ar/ 39Ar age of 26.91+0.18 Ma on biotite sampled at a depth of 2,584-2,609 m (8,478-8,560 ft) from a 169-m-thick (554-ft) silicic tuff in this interval. The volcanic rocks probably correlate with other middle Tertiary volcanic rocks of the area, and the sedimentary rocks may correlate with the Cloudburst and Mineta Formations exposed on the flanks of the San Pedro Basin to the northeast. The Bisbee Group in the Exxon well is 602 m (1,975 f

Top