Sample records for complex tectonic regime

  1. Crustal architecture and tectonic evolution of the Cauvery Suture Zone, southern India

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Yellappa, T.; Santosh, M.

    2016-11-01

    The Cauvery suture zone (CSZ) in southern India has witnessed multiple deformations associated with multiple subduction-collision history, with incorporation of the related accretionary belts sequentially into the southern continental margin of the Archaean Dharwar craton since Neoarchean to Neoproterozoic. The accreted tectonic elements include suprasubduction complexes of arc magmatic sequences, high-grade supracrustals, thrust duplexes, ophiolites, and younger intrusions that are dispersed along the suture. The intra-oceanic Neoarchean-Neoproterozoic arc assemblages are well exposed in the form of tectonic mélanges dominantly towards the eastern sector of the CSZ and are typically subjected to complex and multiple deformation events. Multi-scale analysis of structural elements with detailed geological mapping of the sub-regions and their structural cross sections, geochemical and geochronological data and integrated geophysical observations suggest that the CSZ is an important zone that preserves the imprints of multiple cycles of Precambrian plate tectonic regimes.

  2. The Surface of Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Head, J. W.

    2018-03-01

    This chapter reviews the conditions under which the basic landforms of Venus formed, interprets their nature, and analyzes their local, regional, and global age relationships. The strong greenhouse effect on Venus causes hyper-dry, almost stagnant near-surface environments. These conditions preclude water-driven, and suppress wind-related, geological processes; thus, the common Earth-like water-generated geological record of sedimentary materials does not currently form on Venus. Three geological processes are important on the planet: volcanism, tectonics, and impact cratering. The small number of impact craters on Venus ( 1,000) indicates that their contribution to resurfacing is minor. Volcanism and tectonics are the principal geological processes operating on Venus during its observable geologic history. Landforms of the volcanic and tectonic nature have specific morphologies, which indicate different modes of formation, and their relationships permit one to establish their relative ages. Analysis of these relationships at the global scale reveals that three distinct regimes of resurfacing comprise the observable geologic history of Venus: (1) the global tectonic regime, (2) the global volcanic regime, and (3) the network rifting-volcanism regime. During the earlier global tectonic regime, tectonic resurfacing dominated. Tectonic deformation at this time caused formation of strongly tectonized terrains such as tessera, and deformational belts. Exposures of these units comprise 20% of the surface of Venus. The apparent beginning of the global tectonic regime is related to the formation of tessera, which is among the oldest units on Venus. The age relationships among the tessera structures indicate that this terrain is the result of crustal shortening. During the global volcanic regime, volcanism overwhelmed tectonic activity and caused formation of vast volcanic plains that compose 60% of the surface of Venus. The plains show a clear stratigraphic sequence from older shield plains to younger regional plains. The distinctly different morphologies of the plains indicate different volcanic formation styles ranging from eruption through broadly distributed local sources of shield plains to the volcanic flooding of regional plains. The density of impact craters on units of the tectonic and volcanic regimes suggests that these regimes characterized about the first one-third of the visible geologic history of Venus. During this time, 80%–85% of the surface of the planet was renovated. The network rifting-volcanism regime characterized the last two-thirds of the visible geologic history of Venus. The major components of the regime include broadly synchronous lobate plains and rift zones. Although the network rifting-volcanism regime characterized 2/3 of the visible geologic history of Venus, only 15%–20% of the surface was resurfaced during this time. This means that the level of endogenous activity during this time has dropped by about an order of magnitude compared with the earlier regimes.

  3. Searching for Hysteresis in Models of Mantle Convection with Grain-Damage

    NASA Astrophysics Data System (ADS)

    Lamichhane, R.; Foley, B. J.

    2017-12-01

    The mode of surface tectonics on terrestrial planets is determined by whether mantle convective forces are capable of forming weak zones of localized deformation in the lithosphere, which act as plate boundaries. If plate boundaries can form then a plate tectonic mode develops, and if not convection will be in the stagnant lid regime. Episodic subduction or sluggish lid convection are also possible in between the nominal plate tectonic and stagnant lid regimes. Plate boundary formation is largely a function of the state of the mantle, e.g. mantle temperature or surface temperature, and how these conditions influence both mantle convection and the mantle rheology's propensity for forming weak, localized plate boundaries. However, a planet's tectonic mode also influences whether plate boundaries can form, as the driving forces for plate boundary formation (e.g. stress and viscous dissipation) are different in a plate tectonic versus stagnant lid regime. As a result, tectonic mode can display hysteresis, where convection under otherwise identical conditions can reach different final states as a result of the initial regime of convection. Previous work has explored this effect in pseudoplastic models, finding that it is more difficult to initiate plate tectonics starting from a stagnant lid state than it is to sustain plate tectonics when already in a mobile lid regime, because convective stresses in the lithosphere are lower in a stagnant lid regime than in a plate tectonic regime. However, whether and to what extent such hysteresis is displayed when alternative rheological models for lithospheric shear localization are used is unknown. In particular, grainsize reduction is commonly hypothesized to be a primary cause of shear localization and plate boundary formation. We use new models of mantle convection with grain-size evolution to determine how the initial mode of surface tectonics influences the final convective regime reached when convection reaches statistical steady-state. Scaling analysis is performed to quantify how subduction initiation from a stagnant lid differs from sustaining subduction in a mobile lid. The implications of our results for the evolution of the mode of surface tectonics on terrestrial planets will also be discussed.

  4. Permeability changes induced by microfissure closure and opening in tectonized materials. Effect on slope pore pressure regime.

    NASA Astrophysics Data System (ADS)

    De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca

    2015-04-01

    Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.

  5. The Stress-Strain State of Recent Structures in the Northeastern Sector of the Russian Arctic Region

    NASA Astrophysics Data System (ADS)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.

    2018-03-01

    Complex research to determine the stress-strain state of the Earth's crust and the types of seismotectonic destruction for the northeastern sector of the Russian Arctic was conducted. The principles of regional ranking of neotectonic structures were developed according to the activity of geodynamic processes, and argumentation for their class differentiation is presented. The structural-tectonic position, the parameters of the deep structure, the system of active faults, and the tectonic stress fields, calculated on the basis of both tectonophysical analysis of discontinuous and folded late Cenozoic deformations and seismological data, were analyzed. This complex of investigations made it possible to determine the directions of the main axes of deformations of the stress-strain state of the Earth's crust and to reveal the regularity in the change of tectonic regimes.

  6. Seabeam and seismic reflection imaging of the tectonic regime of the Andean continental margin off Peru (4°S to 10°S)

    USGS Publications Warehouse

    Bourgois, J.; Pautot, G.; Bandy, W.; Boinet, T.; Chotin, P.; Huchon, P.; Mercier de Lepinay, B.; Monge, F.; Monlau, J.; Pelletier, B.; Sosson, M.; von Huene, Roland E.

    1988-01-01

    The Andean margin off Peru is an “extensional active margin” or a “collapsing active margin” developing a subordinated accretionary complex induced by massive collapse of the middle slope area.

  7. Continental crust formation on early Earth controlled by intrusive magmatism

    NASA Astrophysics Data System (ADS)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-05-01

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the “Plutonic squishy lid” tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  8. Continental crust formation on early Earth controlled by intrusive magmatism.

    PubMed

    Rozel, A B; Golabek, G J; Jain, C; Tackley, P J; Gerya, T

    2017-05-18

    The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

  9. The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Geersen, Jacob; Behrmann, Jan Hinrich; Ridente, Domenico; Chiocci, Francesco Latino; Bialas, Jörg; Papenberg, Cord; Cukur, Deniz; Urlaub, Morelia; Micallef, Aaron

    2016-01-01

    Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice/continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes.

  10. Analogue modelling on the interaction between shallow magma intrusion and a strike-slip fault: Application on the Middle Triassic Monzoni Intrusive Complex (Dolomites, Italy)

    NASA Astrophysics Data System (ADS)

    Michail, Maria; Coltorti, Massimo; Gianolla, Piero; Riva, Alberto; Rosenau, Matthias; Bonadiman, Costanza; Galland, Olivier; Guldstrand, Frank; Thordén Haug, Øystein; Rudolf, Michael; Schmiedel, Tobias

    2017-04-01

    The southwestern part of the Dolomites in Northern Italy has undergone a short-lived Ladinian (Middle Triassic) tectono-magmatic event, forming a series of significant magmatic features. These intrusive bodies deformed and metamorphosed the Permo-Triassic carbonate sedimentary framework. In this study we focus on the tectono-magmatic evolution of the shallow shoshonitic Monzoni Intrusive Complex of this Ladinian event (ca 237 Ma), covering an area of 20 km^2. This NW-SE elongated intrusive structure (5 km length) shows an orogenic magmatic affinity which is in contrast to the tectonic regime at the time of intrusion. Strain analysis shows anorogenic transtensional displacement in accordance with the ENE-WSW extensional pattern in the central Dolomites during the Ladinian. Field interpretations led to a detailed description of the regional stratigraphic sequence and the structural features of the study area. However, the geodynamic context of this magmatism and the influence of the inherited strike-slip fault on the intrusion, are still in question. To better understand the specific natural prototype and the general mechanisms of magma emplacement in tectonically active areas, we performed analogue experiments defined by, but not limited to, first order field observations. We have conducted a systematic series of experiments in different tectonic regimes (static conditions, strike-slip, transtension). We varied the ratio of viscous to brittle stresses between magma and country rock, by injecting Newtonian fluids both of high and low viscosity (i.e. silicone oil/vegetable oil) into granular materials of varying cohesion (sand, silica flour, glass beads). The evolving surface and side view of the experiments were monitored by photogrammetric techniques for strain analyses and topographic evolution. In our case, the combination of the results from field and analogue experiments brings new insights regarding the tectonic regime, the geometry of the intrusive body, and the deformational pattern of the evolving system.

  11. Spatial variation of present-day stress field and tectonic regime in Tunisia and surroundings from formal inversion of focal mechanisms: Geodynamic implications for central Mediterranean

    NASA Astrophysics Data System (ADS)

    Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed

    2015-06-01

    We compiled 123 focal mechanisms from various sources for Tunisia and adjacent regions up to Sicily, to image the current stress field in the Maghrebides chain (from Tunisia to Sicily) and its foreland. Stress inversion of all the available data provides a first-order stress field with a N150°E horizontal compression (SHmax) and a transpressional tectonic regime, but the obtained stress tensor poorly fit to the data set. We separated them into regional subsets (boxes) in function of their geographical proximity, kinematic regime, homogeneity of kinematic orientations, and tectonic setting. Their respective inversion evidences second- and third-order spatial variations in tectonic regime and horizontal stress directions. The stress field gradually changes from compression in the Maghrebides thrust belt to transpression and strike slip in the Atlassic and Pelagian foreland, respectively, where preexisting NW-SE to E-W deep faults system are reactivated. This spatial variation of the sismotectonic stress field and tectonic regime is consistent with the neotectonic stress field determined by others from fault slip data. The major Slab Transfer Edge Propagator faults (i.e., North-South Axis-Hammamet relay and Malte Escarpment), which laterally delimit the subducting slabs, play an active role in second- and third-order lateral variations of the tectonic regime and stress field orientations over the Tunisian/Sicilian domain. The past and current tectonic deformations and kinematics of the central Mediterranean are subordinately guided by the plate convergence (i.e., Africa-Eurasia), controlled or influenced by lateral slab migration/segmentation and by deep dynamics such as lithosphere-mantle interaction.

  12. Polyphase tectonics at the southern tip of the Manila trench, Mindoro-Tablas Islands, Philippines

    NASA Astrophysics Data System (ADS)

    Marchadier, Yves; Rangin, Claude

    1990-11-01

    The southern termination of the Manila trench within the South China Sea continental margin in Mindoro is marked by a complex polyphase tectonic fabric in the arc-trench gap area. Onshore Southern Mindoro the active deformation front of the Manila trench is marked by parallel folds and thrusts, grading southward to N50° W-trending left-lateral strike-slip faults. This transpressive tectonic regime, active at least since the Late Pliocene, has overprinted the collision of an Early Miocene volcanic arc with the South China Sea continental margin (San Jose platform). The collision is postdated by deposition of the Late Miocene-Early Pliocene elastics of the East Mindoro basin. The tectonic and geological framework of this arc, which overlies a metamorphic basement and Eocene elastics, suggests that it was built on a drifted block of the South China Sea continental margin.

  13. Proterozoic orogens in southern Peninsular India: Contiguities and complexities

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Santosh, M.

    2013-12-01

    The Precambrian terranes of southern Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the southern and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents - Rodinia and Gondwana. These Proterozoic orogens are described as Southern Granulite Terrane (SGT) in the southern tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ˜400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear zone systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P-T paths, development of lithospheric shear zones, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale "flower structures", transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a subvertical grain conducive to reactivation tectonics. Our synthesis of the spatial distribution, geometry, kinematics and the transpressional strain of the shear zone systems provides insights into the tectono-metamorphic history of the Proterozoic orogens of southern India and their contiguity and complexities. Recent understanding of subduction, accretion and collisional history along these zones together with a long lived transpressional tectonic regime imply that these orogens witnessed identical tectonic regimes at different times in Earth history, although the major and common structural architecture was built during the final assembly of the Gondwana supercontinent.

  14. From P-T-age to secular change and global tectonic regimes (or Essene in reverse - from granulites to blueschists and eclogites over time)

    NASA Astrophysics Data System (ADS)

    Brown, M.

    2006-12-01

    Essene's contributions began pre-plate tectonics more than 40 years ago; they range from mineralogy to tectonics, from experiments and thermobarometry to elements and isotopes, and from the Phanerozoic to the Precambrian. Eric is a true polymath! Assessing the P-T conditions and age distribution of crustal metamorphism is an important step in evaluating secular change in tectonic regimes and geodynamics. In general, Archean rocks exhibit moderate-P - moderate-to-high-T facies series metamorphism (greenstone belts and granulite terranes); neither blueschists nor any record of deep continental subduction and return are documented and only one example of granulite facies ultrahigh-temperature metamorphism is reported. Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian, although G-UHTM facies series rocks may be inferred at depth in younger orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the formation and breakup of supercontinents, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those around the modern Pacific rim. Medium-temperature eclogite - high-pressure granulite metamorphism (E-HPGM) also is first recognized in the Neoarchean rock record, and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E- HPGM belts are complementary to G-UHTM belts, and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; lawsonite blueschists and eclogites (high-pressure metamorphism, HPM), and ultrahigh pressure metamorphism (UHPM) characterized by coesite or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts - reflecting a duality of thermal regimes - appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G- UHTM and E-HPGM belts since the Neoarchean manifests the onset of a `Proterozoic plate tectonics regime', although the style of tectonics likely involved differences from modern Earth. Although the style of Proterozoic subduction remains cryptic, the change in tectonic regime whereby interactions between discrete lithospheric plates generated tectonic settings with contrasting thermal regimes was a landmark event in Earth history. The `Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the `modern plate tectonics regime' characterized by colder subduction, and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of blueschists and HPM-UHPM in the rock record.

  15. Extending Whole-earth Tectonics To The Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  16. Quantitative analysis of the tectonic subsidence in the Potiguar Basin (NE Brazil)

    NASA Astrophysics Data System (ADS)

    Lopes, Juliana A. G.; de Castro, David L.; Bertotti, Giovanni

    2018-06-01

    The Potiguar Basin, located in the Brazilian Equatorial Margin, evolved from a complex rifting process implemented during the Atlantic Ocean opening in the Jurassic/Cretaceous. Different driving mechanisms were responsible for the onset of an aborted onshore rift and an offshore rift that initiated crustal rupture and the formation of a continental transform margin. Therefore, we applied the backstripping method to quantify the tectonic subsidence during the rift and post-rift phases of Potiguar Basin formation and to analyze the spatial variation of subsidence during the two successive and distinct tectonic events responsible for the basin evolution. The parameters required to apply this methodology were extracted from 2D seismic lines and exploratory well data. The tectonic subsidence curves present periods with moderate subsidence rates (up to 300 m/My), which correspond to the evolution of the onshore Potiguar Rift (∼141 to 128 Ma). From 128-118 Ma, the tectonic subsidence curves show no subsidence in the onshore Potiguar Basin, whereas subsidence occurred at high rates (over 300 m/My) in the offshore rift. The post-rift phase began ca. 118 Ma (Aptian), when the tectonic subsidence drastically slowed to less than 35 m/My, probably related to thermal relaxation. The tectonic subsidence rates in the various sectors of the Potiguar Rift, during the different rift phases, indicate that more intense faulting occurred in the southern portion of the onshore rift, along the main border faults, and in the southeastern portion of the offshore rift. During the post-rift phase, the tectonic subsidence rates increased from the onshore portion towards the offshore portion until the continental slope. The highest rates of post-rift subsidence (up to 35 m/My) are concentrated in the central region of the offshore portion and may be related to lithospheric processes related to the continental crust rupture and oceanic seafloor spreading. The variation in subsidence rates and the pattern of tectonic subsidence curves allowed us to interpret the tectonic signature recorded by the sedimentary sequences of the Potiguar Basin during its evolution. In the onshore rift area, the tectonic subsidence curves presented subsidence rates up to 300 m/My during a long-term rift phase (13 Ma), which confirmed that this portion had an extensional tectonic regime. In the offshore rift, the curves presented high subsidence rates of over 300 m/My in a shorter period (5-10 My), typical of basins formed in a transtensional tectonic regime.

  17. The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.; O'Neill, C.

    2015-06-01

    We use 3D mantle convection and planetary tectonics models to explore the links between tectonic regimes and the level of internal heating within the mantle of a planet (a proxy for thermal age), planetary surface temperature, and lithosphere strength. At both high and low values of internal heating, for moderate to high lithospheric yield strength, hot and cold stagnant-lid (single plate planet) states prevail. For intermediate values of internal heating, multiple stable tectonic states can exist. In these regions of parameter space, the specific evolutionary path of the system has a dominant role in determining its tectonic state. For low to moderate lithospheric yield strength, mobile-lid behavior (a plate tectonic-like mode of convection) is attainable for high degrees of internal heating (i.e., early in a planet's thermal evolution). However, this state is sensitive to climate driven changes in surface temperatures. Relatively small increases in surface temperature can be sufficient to usher in a transition from a mobile- to a stagnant-lid regime. Once a stagnant-lid mode is initiated, a return to mobile-lid is not attainable by a reduction of surface temperatures alone. For lower levels of internal heating, the tectonic regime becomes less sensitive to surface temperature changes. Collectively our results indicate that terrestrial planets can alternate between multiple tectonic states over giga-year timescales. Within parameter space regions that allow for bi-stable behavior, any model-based prediction as to the current mode of tectonics is inherently non-unique in the absence of constraints on the geologic and climatic histories of a planet.

  18. A New Framework For The Evolution of Terrestrial Planets: Bi-stability, Stochastic Effects, and the Non-Uniqueness of Tectonic States

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.

    2017-12-01

    Of all the Solar System bodies, the Earth is the only one for which significant observation and constraints are accessible such that they can be used to discriminate between competing models of Earth's tectonic evolution. Therefore, it is a natural tendency to use these observations to inform more general models of planetary evolution. Yet, our understating of Earth's evolution is far from complete. Geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain. In recent years, the potential of tectonic bi-stability (multiple stable, energetically allowed solutions) has been shown to be dynamically viable, both from analytical analysis and through numeric experiments in two and three dimensions. The indication is that multiple tectonic modes may operate on a single planetary body at different times within its temporal evolution. Further, there exists the potential that feedback mechanisms between the internal dynamics and surface processes (e.g., surface temperature changes driven by long term climate evolution), acting at different thermal evolution times, can cause terrestrial worlds to alternate between multiple tectonic states over giga-year timescales. Implied here is that terrestrial planets have the potential to migrate through tectonic regimes at similar `thermal evolutionary times' - points were planets have a similar bulk mantle temperature and energies -, but at very different `temporal times' - time since planetary formation. It can then be shown that identical planets at similar stages of their evolution may exhibit different tectonic regimes due to random fluctuations. A new framework of planetary evolution that moves toward probabilistic arguments based on general physical principals, as opposed to particular rheologies, and incorporates the potential of tectonic regime transitions and multiple tectonics states being viable at equivalent physical and chemical conditions, will be discussed.

  19. On the sensitivity of transtensional versus transpressional tectonic regimes to remote dynamic triggering by Coulomb failure

    USGS Publications Warehouse

    Hill, David P.

    2015-01-01

     Accumulating evidence, although still strongly spatially aliased, indicates that although remote dynamic triggering of small-to-moderate (Mw<5) earthquakes can occur in all tectonic settings, transtensional stress regimes with normal and subsidiary strike-slip faulting seem to be more susceptible to dynamic triggering than transpressional regimes with reverse and subsidiary strike-slip faulting. Analysis of the triggering potential of Love- and Rayleigh-wave dynamic stresses incident on normal, reverse, and strike-slip faults assuming Andersonian faulting theory and simple Coulomb failure supports this apparent difference for rapid-onset triggering susceptibility.

  20. On the Evolution of Terrestrial Planets: Implications of Evolutionary Paths and Evolving Lid-States

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.

    2015-12-01

    Growing geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain [e.g., 1, 2, and references therein]. Accordingly, information from current observations and processes have the potential of sampling portions of the Earth that has both formed under and been modified by differing tectonic regimes. Here we use coupled 3D mantle convection and planetary tectonics simulations to explore evolutionary paths and planetary tectonic regimes. Early in the geologic lifetime of a terrestrial planet, high mantle temperatures favour stagnant-lids. As radiogenics decay, an initial stagnant-lid may yield into a high temperature mobile-lid state. The transition from an initial stagnant-lid is a function of yield strength, in addition to both internal and surface temperatures. Each lid-state has specific diagnostics and implications for internal parameters, and consequently planetary evolution. The implication within this framework is that a system with a different thermal evolution has the potential to migrate through tectonic regimes at the same 'thermal time' (e.g. temperature), but very different 'temporal times'. This indicate that multiple modes of convection and surface tectonics can potentially operate on a single planetary body at different times in its evolution, as consequence of changing internal parameters, surface temperatures, and differing thermal histories. We will discuss the implications of terrestrial worlds that can alternate, and be offset between multiple tectonic states over giga-year timescales. [1] O'Neill et. al. (2013b) Geol. Soc. London; [2] Weller et al. (2015) EPSL

  1. Relationships between tectonism, volcano-tectonism and volcanism: the Ischia island (Italy) case.

    NASA Astrophysics Data System (ADS)

    Marotta, E.; de Vita, S.; Orsi, G.; Sansivero, F.

    2005-12-01

    The resurgent calderas of Ischia, Campi Flegrei and Pantelleria are characterized by differentially displaced blocks, and distribution of later eruption vents in a well defined sector of the resurgent area. These features suggest a simple shearing block resurgence mechanism. Moreover, the studies carried out on Ischia and Campi Flegrei evidenced a very complex structural pattern due to deformation related to the local stress regime induced by magmatism and volcanism and also to reactivation of regional structures. In order to better define the relationships among tectonic, volcano-tectonic and caldera resurgence mechanism, a structural study has been carried out at Ischia, where the Mt. Epomeo has been uplifted of about 900 m in the past 30 ka. The measures taken on 1,400 planar surfaces (faults, joints and fracture cleavages) show that the resurgent area is composed of differentially displaced blocks whose uplifting is maximum for the Mt. Epomeo and decreases southeastward. The resurgent area has a poligonal shape resulting from the reactivation of regional faults and by the activation of faults directly related to volcano-tectonism. The limit of the resurgent area is not defined towards the north, as beach deposits displaced at variable elevation by E-W and NW-SE trending faults, are exposed along the coastline. The western sector is bordered by inward-dipping, high-angle reverse faults, whose directions vary from N40E to NS and N50W from NW to SW of the block, testifying a compressional stress regime active in this area. These features are cut by late outward-dipping normal faults due to gravitational readjustment of the slopes. Vertical faults border the block at NE ad SW with right transtensive and left transpressive movements, respectively. The area located to the east of the most uplifted block, characterized by a tensile stress regime, has been deformed by N-S, N40-70E and N15W trending normal faults, with maximum elongation direction along N50W. The results of our study and the volcanological data of the past 3 ka, suggest that the eastern part of the resurgent block is the area with highest probability of vent opening in case of renewal of volcanism. Occurrence of landslides just before and after eruptions, suggest that resurgence occurs through discontinuous vertical movements which likely trigger the volcanic activity.

  2. Seismological and structural constraints on the 2011-2013, Mmax 4.6 seismic sequence at the south-eastern edge of the Calabrian arc (North-eastern Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Cammarata, Laura; Catalano, Stefano; Gambino, Salvatore; Palano, Mimmo; Pavano, Francesco; Romagnoli, Gino; Scaltrito, Antonio; Tortorici, Giuseppe

    2018-01-01

    Between June 2011 and September 2013, the Nebrodi Mountains region was affected by a seismic swarm consisting of > 2700 events with local magnitude 1.3 ≤ ML ≤ 4.6 and located in the 5-9 km depth interval. The seismic swarm defines a seismogenetic volume elongated along the E-W direction and encompasses the NW-SE-oriented tectonic boundary between the Calabrian arc (north-eastward) and the Sicilide units (south-westward). By exploring the recent tectonic deformation and the seismic behavior of the region, this study aims at providing additional constraints on the seismogenetic faults at the southern termination of the Calabrian arc. Waveform similarities analysis allowed observing that 45% of the whole dataset can be grouped into six different families of seismic events. Earthquake multiplet families are mainly located in the eastern part of the seismogenetic volume. We suggest that such a feature is responsive to the lateral lithological variations as highlighted by geology (at the surface) and P-wave seismic tomography (at depth of 10 km). Stress tensor inversions performed on FPSs indicate that the investigated region is currently subject to a nearly biaxial stress state in an extensional regime, such that crustal stretching occurs along both NW-SE and NE-SW directions. Accordingly, mesoscale fault geometries and kinematics analyses evidence that a younger normal faulting stress regime led to a tectonic negative inversion by replacing the pre-existing strike-slip one. Based on our results and findings reported in recent literature, we refer such a crustal stretching to mantle upwelling process (as evidenced by diffuse mantle-derived gas emissions) coupled with a tectonic uplift involving north-eastern Sicily since Middle Pleistocene. Moreover, seismic swarms striking the region would be related to the migration of mantle and sub-crustal fluids toward the surface along the complex network of tectonic structures cutting the crust and acting as pathways.

  3. Active stress from earthquake focal mechanisms along the Padan-Adriatic side of the Northern Apennines (Italy), with considerations on stress magnitudes and pore-fluid pressures

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Bracone, Vito

    2009-10-01

    The active tectonic regime along the outer Northern Apennines (Padan-Adriatic area) is a matter of debate. We analyse the active tectonic regime by systematically inverting earthquake focal mechanisms in terms of their driving stress field, comparing two different stress inversion methods. Earthquakes within the area often deviate from Andersonian conditions, being characterized by reverse or transpressional slip on high-angle faults even if the regime is almost purely thrust faulting (e.g. Reggio Emilia 1996 and Faenza 2000 earthquakes). We analyse the stress conditions at faulting for the Reggio Emilia and Faenza earthquakes in order to infer the stress magnitudes and the possible role of fluid pressures. The stress analysis defines a consistent pattern of sub-horizontal active deviatoric compression arranged nearly perpendicular to the eastern front of the Padan-Adriatic fold-and-thrust system, independent of the stress inversion method used. The results are consistent with active compression operating within the Padan-Adriatic belt. The stress field is thrust faulting (sub-vertical σ3), except for the Cesena-Forlì and Ancona areas, where a strike-slip regime (sub-vertical or steeply-plunging σ2) operates. The strike-slip regimes are interpreted as being caused by the superposition of local tensional stresses due to oroclinal bending (i.e. rotations of the belt about vertical axes) on the regional compressional stress field. Kinematic complexities characterize the 1996 Reggio Emilia seismic sequence. The distribution of these complexities is not random, suggesting that they are due to local variations of the regional stress field within the unfaulted rocks surrounding the coseismic rupture. The stress conditions at faulting for the Reggio Emilia 1996 and Faenza 2000 earthquakes, coupled with the observation that seismicity in the Padan-Adriatic area often occurs in swarms, suggest that high pore-fluid pressures (Pf ≥ 70% of the lithostatic load) operate within the compressed crust. The estimated stress difference ( σ1- σ3) is ≤ 460-560 MPa at 15-20 km depth.

  4. Indentation tectonics in northern Taiwan: insights from field observations and analog models

    NASA Astrophysics Data System (ADS)

    Lu, Chia-Yu; Lee, Jian-Cheng; Malavieille, Jacques

    2017-04-01

    In northern Taiwan, contraction, extension, transcurrent shearing, and block rotation are four major tectonic deformation mechanisms involved in the progressive deformation of this arcuate mountain belt. The recent evolution of the orogen is controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also by the corner shape of the plate boundary. Based on field observations, analyses, geophysical data (mostly GPS) and results of experimental models, we interpret the curved shape of northern Taiwan as a result of contractional deformation (involving imbricate thrusting and folding, backthrusting and backfolding). The subsequent horizontal and vertical extrusion, combined with increasing transcurrent & rotational deformation (bookshelf-type strike-slip faulting and block rotation) induced transcurrent/ rotational extrusion and extrusion related extensional deformation. A special type of extrusional folds characterizes that complex deformation regime. The tectonics in northern Taiwan reflects a single, regional pattern of deformation. The crescent-shaped mountain belt develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough. Three sets of analog sandbox models are presented to illustrate the development of tectonic structures and their kinematic evolution

  5. Structural analysis and Miocene-to-Present tectonic evolution of a lithospheric-scale, transcurrent lineament: The Sciacca Fault (Sicilian Channel, Central Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Fedorik, Jakub; Toscani, Giovanni; Lodolo, Emanuele; Civile, Dario; Bonini, Lorenzo; Seno, Silvio

    2018-01-01

    Seismo-stratigraphic and structural analysis of a large number of multichannel seismic reflection profiles acquired in the northern part of the Sicilian Channel allowed a 3-D reconstruction of a regional NS-trending transfer zone which displays a transcurrent tectonic regime, and that is of broad relevance for its seismotectonic and geodynamic implications. It is constituted of two major transcurrent faults delimiting a 30-km-wide, mostly undeformed basin. The western fault (Capo Granitola) does not show clear evidence of present-day tectonic activity, and toward the south it is connected with the volcanic area of the Graham Bank. The eastern fault (Sciacca) is structurally more complex, showing active deformation at the sea-floor, particularly evident along the Nerita Bank. The Sciacca Fault is constituted of a master and splay faults compatible with a right-lateral kinematics. Sciacca Fault is superimposed on an inherited weakness zone (a Mesozoic carbonate ramp), which borders to the east a 2.5-km-thick Plio-Quaternary basin, and that was reactivated during the Pliocene. A set of scaled claybox analogue models was carried out in order to better understand the tectonic processes that led to the structural setting displayed by seismic data. Tectonic structures and uplift/subsidence patterns generated by the models are compatible with the 3-D model obtained from seismic reflection profiles. The best fit between the tectonic setting deriving from the interpretation of seismic profiles and the analogue models was obtained considering a right-lateral movement for the Sciacca Fault. Nevertheless, the stress field in the study area derived from GPS measurements does not support the present-day modelled right-lateral kinematics along the Sciacca Fault. Moreover, seismic events along this fault show focal mechanisms with a left-lateral component. We ascribe the slip change along the Sciacca Fault, from a right-lateral transcurrent regime to the present-day left-lateral kinematics to a change of principal horizontal stress direction starting from Late Pliocene.

  6. 2000-2002 Sultandağı-Afyon Earthquake Activity in Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.

    2016-12-01

    Western Anatolia is one of the seismically active region in Turkey. The high seismic activity is a result of the complex tectonic deformation of the Anatolian plate which has been dominated by the N-S extensional tectonic regime in the western edge. This extensional tectonic regime is partially maintained by a relative movement of the African-Arabian plates to north, average 2.5 cm per year. In western Turkey, relatively 3 major earthquakes (Mw≥6.0) were identified on the Sultandağı Fault zone (Afyon-Akşehir Graben) between years of 2000-2002. First event occurred at the year of 2000 (Eber-Sultandagi Earthquake, Mw=6.0) , and both events were occurred at February 3, 2002 Sultandağı (Mw=6.5) and Cay-Sultandagi (Mw=6.0). In this study, mentioned local earthquake activity, have been investigated to understand their nature and relation of the regional seismic activity and tectonic deformation on the Sultandağı Fault Zone (Afyon-Akşehir Graben) in western Anatolia. At first, we analyzed the distribution of mainshock and aftershocks of the two earthquakes which occurred in February 3, 2002 in the region. Fault mechanism solutions of the selected earthquakes and detailed stress regime analyses performed for the mainshock and aftershock sequences of two earthquakes. In regard with mentioned earthquakes, the identified surface ruptures have been investigated by detailed geological field study in the region. Also source mechanism solutions of the selected 17 regional earthquakes between years of 2000 and 2009 years in the region provided to understand the relation of the Sultandagi earthquakes sequences and regional seismic activity. Regional and local seismic investigations shows that, consecutive seismic activity is a result of the disturbance of stress balance in the region which has been triggered by sequentially occuring of earthquakes and triggering in short interval in years of 2000-2002. Also all seismic source studies approved that extensional deformation and normal faulting is dominant in the region. This study was supported by the Department of Science Fellowship and Grant programs (2014-2219) of TUBITAK (The Scientific and Technological Research Council of Turkey) and by Massachusetts Institute of Technology (MIT) The Earth Resources Laboratory (ERL).

  7. Tectonic evolution, structural styles, and oil habitat in Campeche Sound, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angeles-Aquino, F.J.; Reyes-Nunez, J.; Quezada-Muneton, J.M.

    1994-12-31

    Campeche Sound is located in the southern part of the Gulf of Mexico. This area is Mexico`s most important petroleum province. The Mesozoic section includes Callovian salt deposits; Upper Jurassic sandstones, anhydrites, limestones, and shales; and Cretaceous limestones, dolomites, shales, and carbonate breccias. The Cenozoic section is formed by bentonitic shales and minor sandstones and carbonate breccias. Campeche Sound has been affected by three episodes of deformation: first extensional tectonism, then compressional tectonism, and finally extensional tectonism again. The first period of deformation extended from the middle Jurassic to late Jurassic and is related to the opening of the Gulfmore » of Mexico. During this regime, tilted block faults trending northwest-southwest were dominant. The subsequent compressional regime occurred during the middle Miocene, and it was related to northeast tangential stresses that induced further flow of Callovian salt and gave rise to large faulted, and commonly overturned, anticlines. The last extensional regime lasted throughout the middle and late Miocene, and it is related to salt tectonics and growth faults that have a middle Miocene shaly horizon as the main detachment surface. The main source rocks are Tithonian shales and shaly limestones. Oolite bars, slope and shelf carbonates, and regressive sandstones form the main reservoirs. Evaporites and shales are the regional seals. Recent information indicates that Oxfordian shaly limestones are also important source rocks.« less

  8. Plutonic-squishy lid and beyond: implications of intrusive magmatism and characterization of a new global-tectonic regime on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Louro Lourenço, Diogo; Rozel, Antoine; Ballmer, Maxim; Tackley, Paul

    2017-04-01

    It is now well established that compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. Mechanisms that have been found to facilitate plate tectonics include: water circulation [Regenauer-Lieb et al., Science 2001; Dymkova and Gerya, GRL 2013], presence of continents [Rolf and Tackley, GRL 2011], and melting [Korenaga, GJI 2009; Armann and Tackley, JGR 2012]. In a recent work by Lourenço et al. [EPSL 2016], it has been shown that Earth-like plate tectonics is more likely to occur in planets that can produce a crust of variable thickness and density through melt extraction from the mantle. The authors employed a first-order approximation by assuming that all magmatism was extrusive. However, volumes of intruded magmas are observed to be around 4- 9 times more present on Earth than erupted magmas [Crisp, J. Volcanol. Geotherm. Res. 1984]. Therefore, intrusive magmatism is thought to play a role in the dynamics of the lithosphere on Earth [Cawood et al., Geol. Soc. Am. Bull. 2013] and other Earth-like planets. We extend the work of Lourenço et al. [2016] by taking into account intrusive magmatism, and systematically investigate the effect of plutonism, in conjugation with eruptive volcanism. We present a set of 2D spherical annulus simulations of thermo-compositional global mantle convection using StagYY [Tackley, PEPI 2008], which uses a finite-volume discretization of the governing compressible anelastic Stokes equations. Tracers are used to track composition and to allow for the treatment of partial melting and crustal formation. A direct solver is employed to obtain a solution of the Stokes and continuity equations, using the PETSc toolkit. The heat equation is solved in two steps: advection is performed using the MPDATA scheme and diffusion is then solved implicitly using a PETSc solver. Results show that three common convection regimes are usually reached in simulations when using a visco-plastic rheology: stagnant-lid regime (a one-plate planet), episodic lid (where the lithosphere is unstable and frequently overturns into the mantle), and mobile-lid regime (similar to plate tectonics). At high intrusion efficiencies, we observe and characterise a new additional regime called here "plutonic-squishy lid". This regime is characterised by a set of strong plates separated by warm and weak regions due to plutonism. Eclogitic drippings and lithospheric delaminations often occur around these weak regions. These processes lead to significant surface velocities, even if subduction is not active. The location of plate boundaries is strongly time-dependent and mainly occurs in magma intrusion regions. This regime is also distinctive because it generates a thin lithosphere, which results in high conductive heat fluxes and lower internal temperatures when compared to a stagnant lid. The plutonic-squishy-lid regime has the potential to be applicable to the Archean Earth and Venus, as it combines elements of both protoplate tectonic and vertical tectonic models, such as horizontal plate motion and reprocessing of the lithosphere for the former, and lithospheric diapirism, volcanism, and basal delamination for the later.

  9. The tectonic evolution of the Madrean Archipelago and its impact on the geoecology of the Sky Islands

    Treesearch

    David Coblentz

    2005-01-01

    While the unique geographic location of the Sky Islands is well recognized as a primary factor for the elevated biodiversity of the region, its unique tectonic history is often overlooked. The mixing of tectonic environments is an important supplement to the mixing of flora and faunal regimes in contributing to the biodiversity of the Madrean Archipelago. The Sky...

  10. Characteristics of global strong earthquakes and their implications for the present-day stress pattern

    NASA Astrophysics Data System (ADS)

    Wei, Ju; Weifeng, Sun; Jinhui, Luo

    2017-10-01

    Earthquakes occurred on the surface of the Earth contain comprehensive and abundant geodynamic connotations, and can serve as important sources for describing the present-day stress field and regime. An important advantage of the earthquake focal mechanism solution is the ability to obtain the stress pattern information at depth in the lithosphere. During the past several decades, an increasing number of focal mechanisms were available for estimating the present-day stress field and regime. In the present study, altogether 553 focal mechanism data ranging from the year 1976 to 2017 with Mw ≥ 7.0 were compiled in the Global/Harvard centroid moment tensor (CMT) catalogue, the characteristics of global strong earthquakes and the present-day stress pattern were analyzed based on these data. The majority of global strong earthquakes are located around the plate boundaries, shallow-focus, and thrust faulting (TF) regime. We grouped 518 of them into 12 regions (Boxes) based on their geographical proximity and tectonic setting. For each box, the present-day stress field and regime were obtained by formal stress inversion. The results indicated that the maximum horizontal principal stress direction was ˜ N-S-trending in western North America continent and southwestern Indonesia, ˜ NNE-SSW-trending in western Middle America and central Asia, ˜ NE-SW in southeastern South America continent and northeastern Australia, ˜ NEE-SWW-trending in western South America continent and southeastern Asia, ˜ E-W-trending in southeastern Australia, and ˜ NW-SE-trending in eastern Asia. The results can provide additional constraints to the driving forces and geodynamic models, allowing them to explain the current plate interactions and crustal tectonic complexities better.

  11. Morphological Analysis of Apo Volcanic Complex in Southern Mindanao, Philippines: implications on volcano-tectonic evolution of different volcanic units

    NASA Astrophysics Data System (ADS)

    Herrero, T. M. L.; van Wyk de Vries, B.; Lagmay, A. M. A.; Eco, R. C.

    2015-12-01

    The Apo Volcanic Complex (AVC) is one of the largest volcanic centers in the Philippines, located in the southern island of Mindanao. It is composed of four edifices and several smaller cones. The youngest volcanic unit, the Apo Dome, is the highest elevation in the Philippines. This unit is classified as potentially active, whereas other units, Talomo, Sibulan and Kitubod, are inactive. The study gives insight to the construction and deformation history of the volcanic units and imparts foresight to subsequent events that can affect populated areas. A morphological analysis integrating high-resolution digital terrain models and public domain satellite data and images was done to recognize and discriminate volcanic units and characterize volcano-tectonic features and processes. Morphological domains were defined based on surface textures, slope variation, degrees and controls of erosion, and lineament density and direction. This establishes the relative ages and extent of volcanic units as well as the volcano-tectonic evolution of the complex. Six edifice building events were recognized, two of which form the elevated base of Apo dome. The geodynamic setting of the region is imprinted in the volcanic units as five morphostructural lineaments. They reveal the changes in maximum regional stress through time such as the N-S extension found across the whole volcanic complex displaying the current stress regime. This has implications on the locality and propagation of geothermal activity, magma ascent, and edifice collapses. One main result of the compounded effects of inherited structures and current stress regime is the Sandawa Collapse Zone. This is a large valley formed by several collapses where NE-SW fractures propagate and the increasing lateral spreading by debuttressing continue to eat away the highest peak. The AVC is surrounded by the major metropolitan area of Davao City to the east and the cities of Kidapawan and Digos to the west and south, respectively. In addition, within 3 km of Apo Dome is a geothermal power plant. With the obvious socio-economic significance of the area, it is imperative to understand these deformations that allow structures to propagate, resulting to instability of the edifice and possibly volcanic unrest, and ultimately for the assessment of hazards and risks to the immediate sectors.

  12. The East Falcon Basin: Its Caribbean roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartok, P.; Boesi, T.

    1996-08-01

    The East Falcon Basin has been described persistently in the context of the Maracaibo Basin tectonic framework. It is the objective of the present study to demonstrate that the Falcon Basin is, in effect, a Caribbean basin juxtaposed on South America and affected by Caribbean tectonics. The oldest rocks outcropping in the region are Late Paleozoic metamorphic and igneous rocks rafted from northcentral Colombia, Middle Jurassic ophiolite complexes, sediments and metasediments and Cretaceous ophiolites transported by a melange of late Cretaceous to early Tertiary sediments. The south vergence of the Caribbean Nappe province has been documented and extends to themore » present limit of the Andean uplift and to the southern limit of the Coastal Range. The migrating foredeep that developed during the Paleocene-Eocene deposited dominantly basinal shales and thin sandstones. During the Oligocene the Caribbean faults of the Oca system and conjugates began with a dominantly transtensional regime becoming progressively transpressional by Miocene time. The facies development of the Oligocene-Miocene documents the tectonic history. Unique blocks remained as resistant blocks creating ramparts and modifying the basin configuration. During transpression northward-verging thrusting progressively migrated towards the present coastline. The most evident structures of the region are Caribbean in affinity and combined with the sedimentary history of the region can serve to unravel the complex Caribbean-South American plate interaction.« less

  13. Neotectonic deformation in Tunisia (North of the African plate)

    NASA Astrophysics Data System (ADS)

    Soumaya, Abdelkader; Ben Ayed, Noureddine; Kadri, Ali; Delvaux, Damien; Khayati Ammar, Hayet; Braham, Ahmed

    2017-04-01

    In Tunisia, at the extreme North of the African plate, the neotectonic context is largely influenced by the Eurasia-Africa convergence. The aim of this work is to characterize the neotectonic regime that affected this region during Quaternary. Field work investigations integrated with published data allowed to evidence a spatial-temporal variation of the tectonic stress regime during this period. The spatial repartition of the different types of Quaternary to historical deformation shows a North-South neotectonic zoning in Tunisia. After lower Pleistocene, the Tellian domain (Maghrebides) in the North and its Atlassic foreland in central Tunisia are affected by NNW-SSE compression. It generated E-W to NE-SW folds and reverse faults, well developed in the Plio-Quaternary molassic basins of Kechabta and Jendouba (Northern Tunisia). In the Atlas, the major E-W and N-S pre-existing faults have been reactivated with dextral and sinistral strike-slip kinematic respectively, associated to en-echelon folds (Kasserine, N-S Axis, Northern Chott belt...). After the Tyrrhenian, a submeridian compressional regime affected Northern Tunisia (e.g., Bizerte region) and was responsible for the E-W folding of marine strata. More to the South, in the Tunisian Sahel, transtensional tectonics with a NW-SE horizontal maximal compression (SHmax) deformed the Tyrrhenian marine series (Khénis, Skanès, Monastir…). During the Holocene and up to present-day times, N-S compressional tectonics reactivated the E-W pre-existing faults with a reverse movement in Northern Tunisia (Bulla Regia, Utica …), generating historical earthquakes. In Central Tunisia, the Aqueduct of Cherichira (built around AD 850) is displaced by a N-S normal fault. Similarly, a mosaic of a roman house is shifted by 10 cm, along a N-S sinistral normal fault. These deformations evidence a transtensional tectonic regime. During the Quaternary, all the NW-SE oriented grabens are subsiding (e.g., Bizerte Lake, Grombalia, and others in central Atlas). They can be explained by the coexistence of extensional and compressional structures in a general compressional tectonic regime with NNW-SSE SHmax.

  14. Cenozoic Shift From Compression to Strike-Slip Stress Regime in the High Andes at 30°S, During the Shallowing of the Slab: Implications for the El Indio/Tambo Mineral District

    NASA Astrophysics Data System (ADS)

    Giambiagi, Laura; Álvarez, Patricia Pamela; Creixell, Christian; Mardonez, Diego; Murillo, Ismael; Velásquez, Ricardo; Lossada, Ana; Suriano, Julieta; Mescua, José; Barrionuevo, Matías

    2017-11-01

    In the High Andes of central Chile, above the flat-slab segment, analysis of more than 1,000 fault slip data from Miocene outcrops provides evidence for a change of the regional tectonic regime from compressional to strike slip. This shift in tectonic regime occurred during the waning stages of arc volcanism between 14 and 11 Ma, as a result of the shallowing of the Nazca plate, in conjunction with the migration of deformation to the Precordillera. During the early to middle Miocene, a compressive regime with horizontal σ1 axis (N86°E) was responsible for reverse slip along NNE to N-striking faults. During the late Miocene, a shift to strike-slip tectonics took place due to an increase in the absolute magnitude of the vertical stress component as the crust thickened and the gravitational potential energy increase. We argue that instead of the previously accepted highly compressional setting in the arc region during the slab flattening, the change to a strike-slip regime was the main control on mineralization. Mineralization was controlled by the promotion of fluid expulsion from the magma chambers along active, subvertical strike-slip fault systems with a high slip tendency, and focusing of fluids in localized areas undergoing extension. Under this strike-slip regime, the El Indio, Tambo, and La Despensa fault systems formed as dextral strike-slip systems. The tips and jogsites along these faults experienced local extensional stress fields, forming the El Indio and Tambo mineral districts.

  15. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    PubMed

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-30

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate tectonic processes.

  16. Role of tectonic inheritance in the instauration of Tunisian Atlassic fold-and-thrust belt: Case of Bouhedma - Boudouaou structures

    NASA Astrophysics Data System (ADS)

    Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad

    2016-07-01

    Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.

  17. Recent state of stress change in the Walker Lane zone, western Basin and Range province, United States

    NASA Astrophysics Data System (ADS)

    Bellier, Olivier; Zoback, Mary Lou

    1995-06-01

    The NW to north-trending Walker Lane zone (WLZ) is located along the western boundary of the northern Basin and Range province with the Sierra Nevada. This zone is distinguished from the surrounding Basin and Range province on the basis of irregular topography and evidence for both normal and strike-slip Holocene faulting. Inversion of slip vectors from active faults, historic fault offsets, and earthquake focal mechanisms indicate two distinct Quaternary stress regimes within the WLZ, both of which are characterized by a consistent WNW σ3 axis; these are a normal faulting regime with a mean σ3 axis of N85°±9°W and a mean stress ratio (R value) (R=(σ2-σ1)/(σ3-σ1)) of 0.63-0.74 and a younger strike-slip faulting regime with a similar mean σ3 axis (N65° - 70°W) and R values ranging between ˜ 0.1 and 0.2. This younger regime is compatible with historic fault offsets and earthquake focal mechanisms. Both the extensional and strike-slip stress regimes reactivated inherited Mesozoic and Cenozoic structures and also produced new faults. The present-day strike-slip stress regime has produced strike-slip, normal oblique-slip, and normal dip-slip historic faulting. Previous workers have explained the complex interaction of active strike-slip, oblique, and normal faulting in the WLZ as a simple consequence of a single stress state with a consistent WNW σ3 axis and transitional between strike-slip and normal faulting (maximum horizontal stress approximately equal to vertical stress, or R ≈ 0 in both regimes) with minor local fluctuations. The slip data reported here support previous results from Owens Valley that suggest deformation within temporally distinct normal and strike-slip faulting stress regimes with a roughly constant WNW trending σ3 axis (Zoback, 1989). A recent change from a normal faulting to a strike-slip faulting stress regime is indicated by the crosscutting striae on faults in basalts <300,000 years old and is consistent with the dominantly strike-slip earthquake focal mechanisms and the youngest striae observed on faults in Plio-Quaternary deposits. Geologic control on the timing of the change is poor; it is impossible to determine if there has been a single recent absolute change or if there is, rather, an alternating or cyclical variation in stress magnitudes. Our slip data, in particular, the cross-cutting normal and strike-slip striae on the same fault plane, are inconsistent with postulated simple strain partitioning of deformation within a single regional stress field suggested for the WLZ by Wesnousky and Jones [1994]. The location of the WLZ between the deep-seated regional extension of the Basin and Range and the right-lateral strike-slip regional tectonics of the San Andreas fault zone is probably responsible for the complex interaction of tectonic regimes in this transition zone. In early to mid-Tertiary time the WLZ appears to have had a similarly complex deformational history, in this case as a back arc or intra-arc region, accommodating at least part of the right-lateral component of oblique convergence as well as a component of extension.

  18. Experimental Microfracture Permeability Development in Crystalline Rocks Under Different Tectonic Stress Regimes

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Armitage, P. J.

    2011-12-01

    Geothermal fields rely on permeable fracture networks that can act for significant periods of time. In crystalline rocks, permeability may be stimulated by injections of fluid pressure at depth. We show how high-pressure laboratory experiments can be used to quantify the effects of different stress states on the permeability of two rocks; Darley Dale sandstone (~10-16 m2 permeability) and Westerly granite (~10-20 m2 permeability). It is well known that microfractures start to grow at stresses around one half of the failure stress. Failure in the experiments was reproduced in several ways: (1) by fixing σ3 and increasing σ1 - equivalent to a compressive or strike-slip tectonic regime (2) by fixing σ1 and decreasing σ3 - equivalent to an extensional tectonic regime (3) by increasing the pore fluid pressure at a fixed differential stress to simulate high pore fluid pressure failure, and (4) by fixing the mean stress while increasing σ1 and decreasing σ3 in sympathy. Permeability was monitored during all of these tests. From these tests we are able to quantify the relative contributions of mean stress, differential stress and pore fluid pressure on the permeability in the pre-failure region. This provides key data on the development of microfracture permeability that might be produced during the stimulation of geothermal fields during injection within different tectonic environments.

  19. Interaction of tectonic and depositional processes that control the evolution of the Iberian Gulf of Cadiz margin

    USGS Publications Warehouse

    Maldonado, A.; Nelson, C.H.

    1999-01-01

    This study provides an integrated view of the growth patterns and factors that controlled the evolution of the Gulf of Cadiz continental margin based on studies of the tectonic, sedimentologic and oceanographic history of the area. Seven sedimentary regimes are identified, but there are more extensive descriptions of the late Cenozoic regimes because of the larger data base. The regimes of the Mesozoic passive margin include carbonate platforms, which become mixed calcareous-terrigenous deposits during the Late Cretaceous-early Tertiary. The Oligocene and Early Miocene terrigenous regimes developed, in contrast, over the active and transcurrent margins near the African-Iberian plate boundary. The top of the Gulf of Cadiz olistostrome, emplaced in the Late Miocene, is used as a key horizon to define the 'post-orogenic' depositional regimes. The Late Miocene progradational margin regime is characterized by a large terrigenous sediment supply to the margin and coincides with the closing of the Miocene Atlantic-Mediterranean gateways. The terrigenous drift depositional regime of the Early Pliocene resulted from the occurrence of high eustatic sea level and the characteristics of the Mediterranean outflow currents that developed after the opening of the Strait of Gibraltar. The Late Pliocene and Quaternary regimes are dominated by sequences of deposits related to cycles of high and low sea levels. Deposition of shelf-margin deltas and slope wedges correlate with regressive and low sea level regimes caused by eustasy and subsidence. During the highstand regimes of the Holocene, inner shelf prograding deltas and deep-water sediment drifts were developed under the influence of the Atlantic inflow and Mediterranean outflow currents, respectively. A modern human cultural regime began 2000 years ago with the Roman occupation of Iberia; human cultural effects on sedimentary regimes may have equalled natural factors such as climate change. Interplay of tectonic and oceanographic controls dominated the evolution of the Cadiz margin during the Cenozoic. Depositional sequences formed where the tectonic setting provided the accommodation space and the shape of the deposits has been greatly influenced by the strong unidirectional Atlantic inflow currents on the shelf and Mediterranean outflow currents on the slope. The entire cycle of the inflow and outflow deposition along the margin has been controlled first by the tectonic evolution of the Betic and Rif gateways, which become closed during the Late Miocene, and after the Messinian by the opening of the Strait of Gibraltar. Strong current development during eustatic sea level highstands of the Pliocene and Quaternary has controlled deposition because of maximum sill depths at Gibraltar for water circulation. Lowstand sea levels slowed circulation and resulted in mud drapes over the slope and regressive stratigraphic sequences over the shelf. More recently, the human industrial revolution has caused heavy metal contamination of sediment and water over the Cadiz margin. Human activity also has affected sedimentation rates because of deforestation that caused increased depositional rates near undammed rivers and decreased rates where rivers have been dammed. Future research efforts will need to focus on: (1) the effect of increased Mediterranean outflow caused by river damming plus global warming and the increased outflow as a potential trigger for new ice ages; (2) assessments of geologic hazards for planning man-made shoreline structures, developing offshore petroleum resources and maintaining undersea communications cables; and (3) confirmation of the general geologic history of the Cadiz margin.

  20. Io: Mountains and crustal extension

    NASA Technical Reports Server (NTRS)

    Heath, M. J.

    1985-01-01

    It is argued that there is good reason to conclude that mountains on Io, like those on Earth, are subject to growth and decay. The decay of mountains will be assisted by the ability of SO sub 2 to rot silicate rock and by explosive escape of sub-surface SO sub 2 from aquifers (Haemus Mons is seen to be covered by bright material, presumably fallout from a SO sub 2 rich plume which had been active on the mountain flanks). On the west side of the massif at 10 degrees S, 270 degrees W a rugged surface consists of long ridges running perpendicular to the downslope direction, suggesting tectonic denudation with crustal blocks sliding down the mountain flank. Tectonic denudation may be assisted, as in the case of the Bearpaw Mountains, Montana by overloading mountain flanks with volcanic products. The surfaces of some massifs exhibit a well developed, enigmatic corrugated terrain, consisting of complex ridge systems. Ridges may bifurcate, anastomose to form closed depressions and form concentric loops. Taken together, observations of morphology, heat flux, surface deposits and styles of volcanism may point to the existence of lithosphere domains with distinct compositions and tectonic regimes.

  1. Neoproterozoic Evolution and Najd‒Related Transpressive Shear Deformations Along Nugrus Shear Zone, South Eastern Desert, Egypt (Implications from Field‒Structural Data and AMS‒Technique)

    NASA Astrophysics Data System (ADS)

    Hagag, W.; Moustafa, R.; Hamimi, Z.

    2018-01-01

    The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.

  2. Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model

    NASA Astrophysics Data System (ADS)

    Kooi, Henk; Beaumont, Christopher

    1996-02-01

    Linear systems analysis is used to investigate the response of a surface processes model (SPM) to tectonic forcing. The SPM calculates subcontinental scale denudational landscape evolution on geological timescales (1 to hundreds of million years) as the result of simultaneous hillslope transport, modeled by diffusion, and fluvial transport, modeled by advection and reaction. The tectonically forced SPM accommodates the large-scale behavior envisaged in classical and contemporary conceptual geomorphic models and provides a framework for their integration and unification. The following three model scales are considered: micro-, meso-, and macroscale. The concepts of dynamic equilibrium and grade are quantified at the microscale for segments of uniform gradient subject to tectonic uplift. At the larger meso- and macroscales (which represent individual interfluves and landscapes including a number of drainage basins, respectively) the system response to tectonic forcing is linear for uplift geometries that are symmetric with respect to baselevel and which impose a fully integrated drainage to baselevel. For these linear models the response time and the transfer function as a function of scale characterize the model behavior. Numerical experiments show that the styles of landscape evolution depend critically on the timescales of the tectonic processes in relation to the response time of the landscape. When tectonic timescales are much longer than the landscape response time, the resulting dynamic equilibrium landscapes correspond to those envisaged by Hack (1960). When tectonic timescales are of the same order as the landscape response time and when tectonic variations take the form of pulses (much shorter than the response time), evolving landscapes conform to the Penck type (1972) and to the Davis (1889, 1899) and King (1953, 1962) type frameworks, respectively. The behavior of the SPM highlights the importance of phase shifts or delays of the landform response and sediment yield in relation to the tectonic forcing. Finally, nonlinear behavior resulting from more general uplift geometries is discussed. A number of model experiments illustrate the importance of "fundamental form," which is an expression of the conformity of antecedent topography with the current tectonic regime. Lack of conformity leads to models that exhibit internal thresholds and a complex response.

  3. Calculation of Tectonic Strain Release from an Explosion in a Three-Dimensional Stress Field

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; O'Brien, M. S.

    2012-12-01

    We have developed a 3D nonlinear finite element code designed for calculation of explosions in 3D heterogeneous media and have incorporated the capability to perform explosion calculations in a prestressed medium. The effect of tectonic prestress on explosion-generated surface waves has been discussed since the 1960's. In most of these studies tectonic release was described as superposition of a tectonic source modeled as a double couple, multipole or moment tensor, plus a point explosion source. The size of the tectonic source was determined by comparison with the observed Love waves and the Rayleigh wave radiation pattern. Day et al. (1987) first attempted to perform numerical modeling of tectonic release through an axisymmetric calculation of the explosion Piledriver. To the best of our knowledge no one has previously performed numerical calculations for an explosion in a three-dimensional stress field. Calculation of tectonic release depends on a realistic representation of the stress state in the earth. In general the vertical stress is equal to the overburden weight of the material above at any given point. The horizontal stresses may be larger or smaller than this value up to the point where failure due to frictional sliding relieves the stress. In our calculations, we use the normal overburden calculation to determine the vertical stress, and then modify the horizontal stresses to some fraction of the frictional limit. This is the initial stable state of the calculation prior to introduction of the explosion. Note that although the vertical stress is still equivalent to the overburden weight, the pressure is not, and it may be either increased or reduced by the tectonic stresses. Since material strength increases with pressure, this also can substantially affect the seismic source. In general, normal faulting regimes will amplify seismic signals, while reverse faulting regimes will decrease seismic signals; strike-slip regimes may do either. We performed a 3D calculation of the Shoal underground nuclear explosion including tectonic prestress. Shoal was a 12.5 kiloton nuclear explosion detonated near Fallon, Nevada. This event had strong heterogeneity in near field waveforms and is in a region under primarily extensional tectonic stress. There were three near-field shot level recording stations located in three directions each at about 590 meters from the shot. Including prestress consistent with the regional stress field causes variations in the calculated near-field waveforms similar to those observed in the Shoal data.

  4. The last interglacial period at Guantanamo Bay, Cuba and an estimate of late Quaternary tectonic uplift rate in a strike-slip regime

    NASA Astrophysics Data System (ADS)

    Schweig, E. S.; Muhs, D. R.; Simmons, K. R.; Halley, R. B.

    2015-12-01

    Guantanamo Bay, Cuba is an area dominated by a strike-slip tectonic regime and is therefore expected to have very low Quaternary uplift rates. We tested this hypothesis by study of an unusually well preserved emergent reef terrace around the bay. Up to 12 m of unaltered, growth-position reef corals are exposed at about 40 sections examined around ˜40 km of coastline. Maximum reef elevations in the protected, inner part of the bay are ˜11-12 m, whereas outer-coast shoreline angles of wave-cut benches are as high as ˜14 m. Fifty uranium-series analyses of unrecrystallized corals from six localities yield ages ranging from ˜134 ka to ˜115 ka, when adjusted for small biases due to slightly elevated initial 234U/238U values. Thus, ages of corals correlate this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Previously, we dated the Key Largo Limestone to the same high-sea stand in the tectonically stable Florida Keys. Estimates of paleo-sea level during MIS 5.5 in the Florida Keys are ~6.6 to 8.3 m above present. Assuming a similar paleo-sea level in Cuba, this yields a long-term tectonic uplift rate of 0.04-0.06 m/ka over the past ~120 ka. This estimate supports the hypothesis that the tectonic uplift rate should be low in this strike-slip regime. Nevertheless, on the southeast coast of Cuba, east of our study area, we have observed flights of multiple marine terraces, suggesting either (1) a higher uplift rate or (2) an unusually well-preserved record of pre-MIS 5.5 terraces not observed at Guantanamo Bay.

  5. Dynamic stresses, Coulomb failure, and remote triggering

    USGS Publications Warehouse

    Hill, D.P.

    2008-01-01

    Dynamic stresses associated with crustal surface waves with 15-30-sec periods and peak amplitudes 5 km). The latter is consistent with the observation that extensional or transtensional tectonic regimes are more susceptible to remote triggering by Rayleigh-wave dynamic stresses than compressional or transpressional regimes. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems.

  6. Tectonostratigraphy and depositional history of the Neoproterozoic volcano-sedimentary sequences in Kid area, southeastern Sinai, Egypt: Implications for intra-arc to foreland basin in the northern Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Khalaf, E. A.; Obeid, M. A.

    2013-09-01

    This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian-Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1-D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The progressive change in lithofacies from marine intra-arc basin to continental molasses foreland basin and from compression to extension setting respectively, imply that the source area became peneplained, where the Kid basin became stabilized as sedimentation progressed following uplift. The scenario proposed of the study area supports the role of volcanic and tectonic events in architecting the facies and stratigraphic development.

  7. A Regime Diagram for Subduction

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.

    2009-12-01

    Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction regimes are generated primarily as a product of two mechanisms. The first mechanism is that of the competition between the weight of the slab and the strength of the plate, which can be understood in terms of the applied bending moment, and this competition results in a particular radius of curvature (for which we provide a simple scaling theory). The second mechanism is the interaction between the slab and the more viscous lower mantle, which produces each regime's distinct slab morphology. Thus, the emergence of five distinct styles of subduction is a direct consequence of the presence of the modest barrier to flow into the lower mantle. Although only 2 of these styles presently operate on Earth, the possibility exists that other modes may have been the predominant mode in the past. Based on these models, we propose that the lithosphere is the primary factor in describing key elements of the plate tectonics system over time, rather than the convecting mantle. We discuss the various factors that may have influenced secular changes in Earth's tectonic behavior, some of which may have interesting consequences for the geochemical evolution of the Earth.

  8. Neotectonics and geomorphic evolution of the northwestern arm of the Yellowstone Tectonic Parabola: Controls on intra-cratonic extensional regimes, southwest Montana

    USGS Publications Warehouse

    Ruleman, Chester A.; Larsen, Mort; Stickney, Michael C.

    2014-01-01

    The catastrophic Hebgen Lake earthquake of 18 August 1959 (MW 7.3) led many geoscientists to develop new methods to better understand active tectonics in extensional tectonic regimes that address seismic hazards. The Madison Range fault system and adjacent Hebgen Lake–Red Canyon fault system provide an intermountain active tectonic analog for regional analyses of extensional crustal deformation. The Madison Range fault system comprises fault zones (~100 km in length) that have multiple salients and embayments marked by preexisting structures exposed in the footwall. Quaternary tectonic activity rates differ along the length of the fault system, with less displacement to the north. Within the Hebgen Lake basin, the 1959 earthquake is the latest slip event in the Hebgen Lake–Red Canyon fault system and southern Madison Range fault system. Geomorphic and paleoseismic investigations indicate previous faulting events on both fault systems. Surficial geologic mapping and historic seismicity support a coseismic structural linkage between the Madison Range and Hebgen Lake–Red Canyon fault systems. On this trip, we will look at Quaternary surface ruptures that characterize prehistoric earthquake magnitudes. The one-day field trip begins and ends in Bozeman, and includes an overview of the active tectonics within the Madison Valley and Hebgen Lake basin, southwestern Montana. We will also review geologic evidence, which includes new geologic maps and geomorphic analyses that demonstrate preexisting structural controls on surface rupture patterns along the Madison Range and Hebgen Lake–Red Canyon fault systems.

  9. How did Earth not End up like Venus?

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Lenardic, A.; Weller, M. B.

    2017-12-01

    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  10. In situ stress conditions at IODP Site C0002 reflecting the tectonic evolution of the sedimentary system near the seaward edge of the Kumano basin, offshore from SW Japan

    NASA Astrophysics Data System (ADS)

    Song, Insun; Chang, Chandong

    2017-05-01

    This paper presents a complete set of in situ stress calculations for depths of 200-1400 meters below seafloor at Integrated Ocean Drilling Program (IODP) Site C0002, near the seaward margin of the Kumano fore-arc basin, offshore from southwest Japan. The vertical stress component was obtained by integrating bulk density calculations from moisture and density logging data, and the two horizontal components were stochastically optimized by minimizing misfits between a probabilistic model and measured breakout widths for every 30 m vertical segment of the wellbore. Our stochastic optimization process reveals that the in situ stress regime is decoupled across an unconformity between an accretionary complex and the overlying Kumano fore-arc basin. The stress condition above the unconformity is close to the critical condition for normal faulting, while below the unconformity the geologic system is stable in a normal to strike-slip fault stress regime. The critical state of stress demonstrates that the tectonic evolution of the sedimentary system has been achieved mainly by the regionally continuous action of a major out-of-sequence thrust fault during sedimentation in the fore-arc basin. The stable stress condition in the accretionary prism is interpreted to have resulted from mechanical decoupling by the accommodation of large displacement along the megasplay fault.

  11. Giant rhinoceros Paraceratherium and other vertebrates from Oligocene and middle Miocene deposits of the Kağızman-Tuzluca Basin, Eastern Turkey.

    PubMed

    Sen, Sevket; Antoine, Pierre-Olivier; Varol, Baki; Ayyildiz, Turhan; Sözeri, Koray

    2011-05-01

    A recent fieldwork in the Kağızman-Tuzluca Basin in northeastern Turkey led us to the discovery of three vertebrate localities which yielded some limb bones of the giant rhino Paraceratherium, a crocodile tooth, and some small mammals, respectively. These discoveries allowed, for the first time to date some parts of the sedimentary units of this basin. This study also shows that the dispersal area of Paraceratherium is wider than it was known before. Eastern Turkey has several Cenozoic sedimentary basins formed during the collision of the Arabian and Eurasian plates. They are poorly documented for vertebrate paleontology. Consequently, the timing of tectonic activities, which led to the formation of the East Anatolian accretionary complex, is not constrained enough with a solid chronological framework. This study provides the first biostratigraphic evidences for the infill under the control of the compressive tectonic regime, which built the East Anatolian Plateau.

  12. In situ stress variations at the Variscan deformation front — Results from the deep Aachen geothermal well

    NASA Astrophysics Data System (ADS)

    Trautwein-Bruns, Ute; Schulze, Katja C.; Becker, Stephan; Kukla, Peter A.; Urai, Janos L.

    2010-10-01

    In 2004 the 2544 m deep RWTH-1 well was drilled in the city centre of Aachen to supply geothermal heat for the heating and cooling of the new student service centre "SuperC" of RWTH Aachen University. Aachen is located in a complex geologic and tectonic position at the northern margin of the Variscan deformation front at the borders between the Brabant Massif, the Hohes Venn/Eifel areas and the presently active rift zone of the Lower Rhine Embayment, where existing data on in situ stress show complex changes over short distances. The borehole offers a unique opportunity to study varying stress regimes in this area of complex geodynamic evolution. This study of the in situ stresses is based on the observation of compressive borehole breakouts and drilling-induced tensile fractures in electrical and acoustic image logs. The borehole failure analysis shows that the maximum horizontal stress trends SE-NW which is in accordance with the general West European stress trend. Stress magnitudes modelled in accordance to the Mohr-Coulomb Theory of Sliding Friction indicate minimum and maximum horizontal stress gradients of 0.019 MPa/m and 0.038 MPa/m, respectively. The occurrence of drilling-induced tensile failure and the calculated in situ stress magnitudes are consistent with a model of strike-slip deformation. The observed strike-slip faulting regime supports the extension of the Brabant Shear Zone proposed by Ahorner (1975) into the Aachen city area, where it joins the major normal faulting set of the Roer Valley Graben zone. This intersection of the inherited Variscan deformation grain and the Cenozoic deformation resulting in recent strike-slip and normal faulting activity proves the tectonically different deformation responses over a short distance between the long-lived Brabant Massif and the Cenozoic Rhine Rift System.

  13. Strike-slip deformation reflects complex partitioning of strain in the Nankai Accretionary Prism (SE Japan)

    NASA Astrophysics Data System (ADS)

    Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.

    2018-01-01

    Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.

  14. Regional and contact metamorphism within the Moy Intrusive Complex, Grampian Highlands, Scotland

    NASA Astrophysics Data System (ADS)

    Zaleski, E.

    1985-04-01

    In central Scotland, the Moy Intrusive Complex consists of (1) the Main Phase — syntectonic peraluminous granodiorite to granite emplaced at c. 455 Ma, intruded by (2) the Finglack Alaskite — post-tectonic leucocratic granite emplaced at 407+/-5 Ma. The Main Phase was emplaced into country rocks at amphibolite facies temperatures. Rb-Sr dates and a compositional spectrum of decreasing celadonite content in Main Phase muscovite suggest the persistence of c. 550° C temperatures for c. 30 Ma but with a declining pressure regime, i.e. isothermal uplift. The Finglack Alaskite was intruded at high structural level, leading to the development of a contact metamorphic aureole in the Main Phase. The thermal effects of contact metamorphism include intergrowths of andalusite, biotite and feldspar in pseudomorphs after muscovite. This is associated with recrystallized granoblastic quartz. Muscovite breakdown and reaction with adjacent biotite, quartz and feldspar, i.e. a function of local mineral assemblage rather than bulk rock composition, is postulated to explain the occurrence of metamorphic andalusite in a granitoid rock. The Main Phase pluton of the Moy Intrusive Complex lies within a NNE trending belt of c. 450 Ma Caledonian tectonic and magmatic activity paralleling the Moine Thrust, and extending from northern Scotland to the Highland Boundary Fault. Syntectonic ‘S-type’ magmatism with upper crustal source areas implies crustal thickening and suggests an intracratonic orogeny.

  15. Late Cenozoic thermochronology and exhumation history of central Anatolia: Implications for the timing and nature of transition from collision to escape tectonics

    NASA Astrophysics Data System (ADS)

    Thomson, S. N.; Lefebvre, C.; Umhoefer, P. J.; Darin, M. H.; Whitney, D.; Teyssier, C. P.

    2016-12-01

    The central part of the Anatolian microplate in Turkey forms a complex tectonic zone situated between ongoing convergence of the Arabian and Eurasian plates to the east, and lateral escape of the Anatolian microplate as a rigid block to the west facilitated by two major strike-slip faults (the North and East Anatolian fault zones) that transitions westward into an extensional tectonic regime in western Turkey and the Aegean Sea related to subduction retreat. However, the geodynamic processes behind the transition from collision to escape, and the timing and nature of this transition, are complex and remain poorly understood. To gain a better understanding of the timing and nature of this transition, including the debated timing of ca. 35-20 Ma onset of collision between Arabia and Eurasia, we have undertaken a comprehensive low-temperature thermochronologic study in central Turkey to provide a record of exhumation patterns. We have collected over 150 samples, focused on the Central Anatolian Crystalline Complex (CACC), the Central Anatolian fault zone (CAFZ - proposed as a major lithosphere-scale structure that may also be related to onset of tectonic escape), and Eocene to Neogene sedimentary basins. Results include 113 apatite fission track (FT) ages (62 bedrock ages and 51 detrital ages), 26 detrital zircon FT ages, 218 apatite (U-Th)/He (He) ages from 84 mostly bedrock samples, and 15 zircon He ages from 6 bedrock samples. Our most significant new finding is identification of an early Miocene (ca. 22-15 Ma) phase of rapid cooling seen in the CACC. These cooling ages are localized in the footwalls of several large high-angle NW-SE trending normal faults, and imply significant footwall uplift and exhumation at this time. This early Miocene exhumation is restricted to entirely west of the CAFZ, and supports this fault marking a major tectonic transition active at this time. East of the CAFZ, AFT ages in sedimentary rocks show Eocene and older detrital ages despite much higher elevations (up to 3000m) suggesting uplift of the fault block east of CAFZ occurred since the late Miocene. An earlier Eocene (40-35 Ma) phase of cooling and exhumation is identified in deformed Paleocene-Eocene sedimentary rocks either side of the CAFZ likely related to a regional episode of shortening during final closure of the inner Tauride suture.

  16. Final report. [Mesozoic tectonic history of the northeastern Great Basin (Nevada)

    NASA Technical Reports Server (NTRS)

    Zamudio, Joe

    1993-01-01

    In eastern Nevada and western Utah is an extensive terrane that has experienced a complex tectonic history of Mesozoic deformation and superposed Tertiary extension. The Mesozoic tectonic history of this area has been the subject of controversy for the past twenty or more years. The debate has centered on whether major Mesozoic geologic structures were due to compressional or extensional tectonic regimes. The goal of our research was to decipher the deformational history of the area by combining detailed geologic mapping, remote sensing data analysis, and U-Pb and K-Ar geochronology. This study area includes the Dolly Varden Mountains and adjacent Currie Hills, located in the semi-arid environment of the northeastern Great Basin in Nevada. Vegetation cover in the Dolly Varden Mountains typically ranges from about 10 percent to 50 percent, with some places along drainages and on high, north-facing slopes where vegetation cover approaches 100 percent. Sagebrush is found at less vegetated lower elevations, whereas pinon pine and juniper are prevalent above 2,000 meters. A variety of geologic materials is exposed in the study area. A sequence of Late Paleozoic and Triassic sedimentary rocks includes limestone, dolomite, chert, sandstone, siltstone and shale. A two-phase granitic stock, called the Melrose, intruded these rocks, resulting in metamorphism along the intrusive contact. Tertiary volcanic rocks cover most of the eastern part of the Dolly Varden Mountains and low-lying areas in the Currie Hills.

  17. The Essence of Cooperation: Establishing a Framework for Success in Military Regimes

    DTIC Science & Technology

    2015-06-01

    illustrate this point, Krasner rejects the conventional realist’s billiard ball analogy in favor of an image of tectonic plates . In this metaphor...regimes and states act as the plates in contact with one another, putting pressure on each other over time and moving at different rates of speed.43

  18. Coupling intensity and isostatic competition between subducting slab and overriding plate control trench motions and tectonics of the overriding plate

    NASA Astrophysics Data System (ADS)

    Wu, G.; Moresi, L. N.

    2017-12-01

    Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the differential subduction and isostatic differences along strike are the major cause of complex trench behavior and tectonic variations in the overriding plate. Finally, our models must be placed in a reference frame outside our modeled domain when used in global scale.

  19. A geological interpretation of Seasat-SAR imagery of Jamaica

    NASA Technical Reports Server (NTRS)

    Wadge, G.; Dixon, T. H.

    1984-01-01

    Spaceborne radar imagery obtained from Seasat allows an unobscured large-scale view of Jamaica that can be used for geological interpretation. Lineaments and textures visible in these images were mapped and compared with the known geology of the Tertiary karst limestones covering the central and western parts of the island. Some of these radar textures correlate with lithological units, while others follow tectonically-controlled zones or structural blocks. Mapping of radar lineaments has led to the recognition of three new aspects of Jamaican faults: (1) a major through-going NE-SW fault system, termed here the Vere-Annotto lineament; (2) a series of curving scissor faults in the central part of the island; and (3) the related observation that the dominant NNW-SSE tectonic fabric of the central part of the island takes the form of an elongate sigmoid in plan view. During most of the Neogene Jamaica has been part of an active zone of left-lateral transform motion between the Caribbean and North American plates and is a region of anomalous uplift. The radar imagery is a sensitive recorder of the deformation undergone by the karst limestones in this tectonic regime. Some of the observations are explained with models for a complex, evolving shear zone.

  20. Metamorphism, Plate Tectonics, and the Supercontinent Cycle

    NASA Astrophysics Data System (ADS)

    Brown, Michael

    Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian; G-UHTM facies series rocks may be inferred at depth in younger, particularly Cenozoic orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the cyclic formation of supercontinents and their breakup, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those associated with the modern Pacific rim. Medium-temperature eclogite, high-pressure granulite metamorphism (E-HPGM), is also first recognized in the Neoarchean rock record and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E-HPGM belts are complementary to G-UHTM belts and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; they record the low thermal gradients associated with modern subduction. Lawsonite blueschists and eclogites (high-pressure metamorphism, HPM) and ultrahigh pressure metamorphism (UHPM) characterized by coesite (±lawsonite) or diamond are predominantly Phanerozoic phenomena. HPM-UHPM registers the low thermal gradients and deep subduction of continental crust during the early stage of the collision process in Phanerozoic subduction-to-collision orogens. Although perhaps counterintuitive, many HPM-UHPM belts appear to have developed by closure of small ocean basins in the process of accretion of a continental terrane during a period of supercontinent introversion (Wilson cycle ocean basin opening and closing). A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both G-UHTM and E-HPGM belts since the Neoarchean manifests the onset of a 'Proterozoic plate tectonics regime', although the style of tectonics likely involved differences. The 'Proterozoic plate tectonics regime' evolved during a Neoproterozoic transition to the 'modern plate tectonics regime' characterized by colder subduction and subduction of continental crust deep into the mantle and its (partial) return from depths of up to 300 km, as chronicled by the appearance of HPM-UHPM in the rock record. The age distribution of metamorphic belts that record extreme conditions of metamorphism is not uniform, and metamorphism occurs in periods that correspond to amalgamation of continental lithosphere into supercratons (e.g. Superia/Sclavia) or supercontinents (e.g. Nuna (Columbia), Rodinia, Gondwana, and Pangea).

  1. Structural and diagenetic evolution of deformation bands in contractional and extensional tectonic regimes

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; O'Brien, C. M.; Elliott, S. J.

    2016-12-01

    Mechanisms of brittle deformation of sediments and sedimentary rock change with burial because of increasing confining stress, change in pore fluid chemical and temperature conditions, and diagenetic state. In the field, these changes are observed in a transition from early non-cataclastic to later cataclastic deformation bands and to joint-based structures. Jurassic eolian sandstones in the San Rafael monocline and adjacent San Rafael Desert region, Utah, allow comparison of deformation band structures and their diagenetic attributes in contractional and extensional tectonic settings in close proximity. In the Entrada and Navajo Sandstones, we observe up to six generations of deformation bands, with earliest non-cataclastic bands having diffuse boundaries to host rock, and short and irregular traces. Later bands are cataclastic, more sharply defined, with long and straight traces. Cataclastic bands in the San Rafael monocline are interpreted to form as reverse faults during progressive rotation of the steeply dipping fold limb, resulting in an array of bands of varying dip. Bands in the San Rafael Desert form as normal faults with a narrower dip range. Although structural characteristics of bands differ in extensional and contractional tectonic regimes, cataclastic bands in either regime have comparable amount of porosity loss and quartz cementation indicating that tectonic regime does not influence band diagenesis. Abundance of quartz cement in bands, determined by point counting of SEM images, increases from earlier to later generations of bands and, within a single generation, with increasing slip along the band, reaching up to 24% of band volume. This trend is attributed to an increase in cataclasis with increasing host rock cementation and confining stress during burial, and, within the same generation, with increasing slip. Porosity loss by cementation tends to dominate over porosity loss by mechanical compaction. These findings demonstrate that quartz cementation and thus band permeability are primarily controlled by the degree of cataclasis in the bands, and highlight the interdependence of mechanical deformation and chemical diagenetic processes in deformation bands.

  2. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang

    2018-04-01

    This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.

  3. Magmatic versus tectonic influence in the Eolian arc: the case of Vulcano and Lipari islands revisited

    NASA Astrophysics Data System (ADS)

    Ruch, Joel; Di Lorenzo, Riccardo; Vezzoli, Luigina Maria; De Rosa, Rosanna; Acocella, Valerio; Catalano, Stefano; Romagnoli, Gino

    2014-05-01

    The prevalent influence of magma versus tectonics for the edification and the evolution of volcanic zones is matter of debate. Here we focus on Vulcano and Lipari, two active volcanic islands located in the central sector of the Eolian arc (North of Sicily). Both systems are influenced by regional tectonics and affected by historical magmatic events taking place along a NS oriented structure, connecting both islands. We revisit and implement previous structural studies performed during the 1980's considering several new geophysical, geochemical and geodynamical findings. Four extensive structural campaigns have been performed on both islands and along the shorelines in 2012-2013 covering about 80% of the possible accessible outcrops. We collected ~500 measurements (e.g. faults, fractures and dikes) at 40 sites. Overall, most of the observed structures are oriented N-S and NNW-SSE, confirming previous studies, however, almost all features are strikingly dominated by an EW-oriented extensive regime, which is a novelty. These findings are supported by kinematic indicators and suggest a predominant dip-slip component (pitch from 80 and 130°) with alternating left and right kinematics. Marginal faulting in most recent formations have been observed, suggesting that the deformation may occur preferentially during transient deformation related to periods of magmatic activity, instead of resulting from continuous regional tectonic processes. Overall, fault and dike planes are characterized by a dominant eastward immersion, suggesting an asymmetric graben-like structure of the entire area. This may be explained by the presence of a topographic gradient connecting both islands to the deep Gioia basin to the East, leading to a preferential ample gravitational collapse. Finally, we propose a model in which the stress field rotates northward. It transits from a pure right lateral strike-slip regime along the Tindari fault zone (tectonic-dominant) to an extensive regime explained by the presence of magma at depth inducing a local magmatic stress field affecting structures on Vulcano and Lipari islands (magmatic dominant).

  4. Tectonic evolution of the Troodos Ophiolite within the Tethyan Framework

    NASA Astrophysics Data System (ADS)

    Dilek, Yildirim; Thy, Peter; Moores, Eldridge M.; Ramsden, Todd W.

    1990-08-01

    A new tectonic model reconciles conflicting structural and geochemical evidence for the origin of the Troodos ophiolite, a well-preserved remnant of Neotethyan oceanic crust. Grabens and normal faults within the sheeted dike complex and the extrusive sequence of the Troodos ophiolite resemble those of oceanic spreading centers. Diverse intrusive and tectonic contact relationships between the sheeted dike complex and the underlying plutonic sequence indicate multiple and episodic intrusion of magma and along- and across-strike variation in volcanic and tectonic activity during development of oceanic crust. Coupled with the existence of the Arakapas transform fault to the south, these structural and intrusive relationships suggest origin at an intersection between a spreading center and a transform fault. The arclike chemistry of sheeted dikes and related extrusive rocks and the inferred highly depleted and hydrous nature of the mantle source of the late stage intrusive and extrusive rocks argue, however, for generation of part of the ophiolite within a subduction zone environment. Regional reconstructions suggest that the Mesozoic Neotethys may have evolved as a marginal basin both to the Afro-Arabian continent and the Paleotethyan ocean over an active or recently active south dipping subduction zone. The Troodos ophiolite and other eastern Mediterranean ophiolites, whose magma compositions were affected by the subducted Paleotethyan slab, may have formed along east-west trending spreading centers separated by north-south trending transform faults within this marginal basin. A rapid change in relative plate motion in late Cretaceous time between Eurasia and Afro-Arabia created a regional compressive regime that may have resulted in plate boundary reorganizations within the Neotethyan realm and in initiation of north dipping subduction zone(s) beneath the Troodos and other ophiolites in the region. The apparent forearc setting of the Troodos ophiolite is a consequence of this intraoceanic displacement after its formation and thus is unrelated to its generation.

  5. Alpine extensional detachment tectonics in the Grande Kabylie metamorphic core complex of the Maghrebides (northern Algeria)

    NASA Astrophysics Data System (ADS)

    Saadallah, A.; Caby, R.

    1996-12-01

    The Maghrebides are part of the peri-Mediterranean Alpine orogen. They expose in their inner zone inliers of high-grade crystalline rocks surrounded by Oligo-Miocene and younger Miocene cover. Detailed mapping coupled with structural and petrological investigations in the Grande Kabylie massif, and the reinterpretation of the available geochronological data, allow us to refute the traditional concept of rigid behaviour of this massif during Alpine events. We show that the dome geometry, the kinematic and metamorphic evolutions and the age pattern are typical of metamorphic core complexes exhumed by extension. A major low-angle detachment fault defined by mylonites and by younger cataclasites has been traced in the massif. The upper unit encompasses pre-Permian phyllites with Variscan {40Ar }/{39Ar } cooling ages, capped by unconformable Mesozoic to Tertiary cover of the Calcareous Range, both mainly affected by extensive Tertiary brittle deformation and normal faulting. The lower unit exposes in two half-domes a continuous tectonic pile, 6-8 km thick, of amphibolite facies rocks and orthogneisses affected by syndashmetamorphic ductile deformation, devoid of retrogression. The regular increase of paleotemperature downward and the {40Ar }/{39Ar } plateau ages around 80 Ma suggest that the high-temperature foliation and associated WNW-directed shear under a high geothermal gradient relate to extensional tectonics developed during Mesozoic lithospheric thinning of the Variscan south European margin. To the north, the Sidi Alli Bou Nab massif exposes another crustal section affected throughout by WNW-directed extensional shear during {HP }/{HT } syndashmetamorphic thinning and with overall {40Ar }/{39Ar } plateau ages of 25 Ma. The Eocene oblique collisional event responsible for crustal thickening was totally overprinted by this new extensional regime, synchronous with the beginning of the opening of the Western Mediterranean oceanic basin. This was also coeval with south-directed thrusting of foreland nappes to the south. Post-Miocene tectonic events cause significant overprinting.

  6. Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes

    NASA Astrophysics Data System (ADS)

    Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.

    2017-12-01

    Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures < 40-80% lithostatic in the Andersonian regime; and (2) sporadic hybrid extensional + shear (modes I + II/III) failure occurs at differential stresses < 20 MPa and anomalously high fluid pressures > 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses < 28 MPa and fluid pressures > 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.

  7. Seismotectonics of Northeastern Sicily and Southern Calabria (Italy): New constraints on the tectonic structures featuring in a crucial sector for the Central Mediterranean geodynamics

    NASA Astrophysics Data System (ADS)

    Scarfì, Luciano; Barberi, Graziella; Musumeci, Carla; Patanè, Domenico

    2016-04-01

    The purpose of this study is to gain a better understanding on the tectonic structures featuring in a crucial sector of central Mediterranean area, including the Aeolian Islands, southern Calabria and northeastern Sicily, where the convergence between Eurasian and African plates has given rise to a complicated collisional/subduction complex. A high quality dataset of about 3000 earthquakes has been exploited for local earthquake tomography and focal mechanisms computation. Results depict undiscovered details of a network of faults which enables the contemporary existence of adjacent compressional and extensional domains. In particular, tomographic images, seismic events distribution and focal mechanisms pinpoint the geometry and activity of a lithospheric-scale tear faults system which, with a NW-SE trend through Sicily and the Tyrrhenian and Ionian Seas, represents the southern edge of the Ionian subduction trench zone. At crustal depth, this tearing is well highlighted by a rotation of the maximum horizontal stress, moving across the area from west toward east. In addition, the shallow normal fault regime, characterising the northeastern Sicily mainland, south of the NW-SE lineament, changes in the deeper part of the crust. Indeed, a NE-SW earthquake distribution, NW gently dipping, and inverse fault solutions indicate a still active contractional deformation in the eastern Sicily, caused by the Africa-Eurasia convergence and well framed with the current compressive regime along the southern Tyrrhenian zone and at the front of the Sicilian Chain-Foreland.

  8. Geodynamic setting of mesothermal gold deposits: An association with accretionary tectonic regimes

    NASA Astrophysics Data System (ADS)

    Kerrich, Robert; Wyman, Derek

    1990-09-01

    Mesothermal gold provinces of Phanerozoic age are characteristically associated with regional structures along which allochthonous terranes have been accreted onto continental margins or arcs. A recurring sequence of transpressive deformation, uplift, late kinematic mineralization, and shoshonitic magmatism is consistent with thermal reequilibration of tectonically thickened crust. Mesothermal gold camps in the Superior province are spatially associated with large-scale structures that have been interpreted as zones of transpressive accretion of individual subprovinces or allochthonous terranes: these boundary structures are characterized by the sequence of significant horizontal shortening, uplift, late-kinematic mineralization, and shoshonitic lamprophyres and therefore may have the same geodynamic significance as Phanerozoic counterparts. In this model, thermal re-equilibration of underplated and subducted oceanic lithosphere and sediments in a transpressive regime, over time scales of 10 to 40 m.y., is a necessary precursor to gold mineralization. Hydrothermal fluids are released along boundary faults and their splays during uplift: the uniform temperature, low salinity and mole% CO2 signify uniform source conditions, whereas the variable O, C, Sr, and Pb isotopic compositions of fluids reflect lithological complexity of the source regions and conduits. Ou the basis of this model it is suggested that mesothermal lode gold deposits are the product of subduction-related crustal underplating and deep, late metamorphism, rather than magmatic or metamorphic events in the supracrustal rocks. Secular variations in the generation of Archean, Proterozoic, and Phanerozoic mesothermal Au provinces reflect the timing of collisional orogenies within terranes of these eras.

  9. Petrologic, tectonic, and metallogenic evolution of the southern segment of the ancestral Cascades magmatic arc, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Cousens, Brian L.

    2013-01-01

    Although rocks in the two arc segments have similar metal abundances, they are metallogenically distinct. Small porphyry copper deposits are characteristic of the northern segment whereas significant epithermal precious metal deposits are most commonly associated with the southern segment. These metallogenic differences are also fundamentally linked to the tectonic settings and crustal regimes within which these two arc segments evolved.

  10. Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Navabpour, Payman; Barrier, Eric

    2012-12-01

    The present-day Zagros fold-and-thrust belt of SW-Iran corresponds to the former Arabian passive continental margin of the southern Neo-Tethyan basin since the Permian-Triassic rifting, undergoing later collisional deformation in mid-late Cenozoic times. In this paper an overview of brittle tectonics and palaeostress reconstructions of the Zagros fold-and-thrust belt is presented, based on direct stress tensor inversion of fault slip data. The results indicate that, during the Neo-Tethyan oceanic opening, an extensional tectonic regime affectedthe sedimentary cover in Triassic-Jurassic times with an approximately N-S trend of the σ3 axis, oblique to the margin, which was followed by some local changes to a NE-SW trend during Jurassic-Cretaceous times. The stress state significantly changed to thrust setting, with a NE-SW trend of the σ1 axis, and a compressional tectonic regime prevailed during the continental collision and folding of the sedimentary cover in Oligocene-Miocene times. This compression was then followed by a strike-slip stress state with an approximately N-S trend of the σ1 axis, oblique to the belt, during inversion of the inherited extensional basement structures in Pliocene-Recent times. The brittle tectonic reconstructions, therefore, highlighted major changes of the stress state in conjunction with transitions between thin- and thick-skinned structures during different extensional and compressional stages of continental deformation within the oblique divergent and convergent settings, respectively.

  11. Initial Results from the New Stress Map of Texas Project

    NASA Astrophysics Data System (ADS)

    Lund Snee, J. E.; Zoback, M. D.

    2015-12-01

    Modern techniques for characterizing tectonic stress orientation and relative magnitude have been successfully used for more than 35 years. Nevertheless, large areas of North America lack high spatial resolution maps of stress orientation, magnitude, and faulting regime. In Texas, for example, <30 A-C-quality stress orientations are currently registered on the World Stress Map and only 7 of these points also describe the stress regime. Stress data are foundational elements of attempts to characterize tectonic driving forces, understand hazards associated with induced seismicity, and optimize production of oil, gas, and geothermal resources. This year, we launched the Texas Stress Map project to characterize tectonic stress patterns at higher spatial resolution across Texas and nearby areas. Following a successful effort just completed in Oklahoma, we will evaluate borehole breakouts, drilling-induced tensile fractures, shear wave anisotropy, and earthquake data. The principal data source will be FMI (fullbore formation microimager), UBI (ultrasonic borehole imager), cross-dipole sonic, density, and caliper logs provided by private industry. Earthquake moment tensor solutions from the U.S. Geological Survey, Saint Louis University and other sources will also be used. Our initial focus is on the Permian Basin and Barnett Shale petroleum plays due to the availability of data, but we will expand our analysis across the state as the project progresses. In addition, we hope to eventually apply the higher spatial resolution data coverage to understanding tectonic and geodynamic characteristics of the southwestern United States and northeastern Mexico. Here we present early results from our work to constrain stress orientations and faulting regime in and near Texas, and we also provide a roadmap for the ongoing research.

  12. Seismic evidence for change of the tectonic regime in Messinian, northern Marmara Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Alp, Hakan; Vardar, Denizhan; Alpar, Bedri; Ustaömer, Timur

    2018-01-01

    New Chirp seismic data collected from the northern margin of the Marmara Sea in June 2015 and previous Sparker seismic profiles recorded in 1999 suggest a change in tectonic regime in Messinian. New tectonic lineaments and fault segments were detected at offshore the Çekmece lagoons region that is located on one of the possible water corridors with the Paratethys. The faults only affect the older seismic unit (U1), which can be best outlined on the Chirp data. The E-W trending fault offshore Avcılar (OAF) borders the northern edge of a tightly folded sedimentary zone. The NNE-SSW trending fault, namely the Büyükçekmece Fault (BF), passing through the Büyükçekmece Bay, follows a buried valley. Its evolution must be related to the development of the Early Miocene - Early Pliocene Thrace-Eskişehir fault zone (TEFZ). BF and OAF indicate old tectonic activities in the region, which continued to the North Anatolian fault becoming the most dominant tectonic element in the region. The upper surface of the stratigraphic unit U1 and its terraces define the thickness of younger deposits (U2), which is thinner in the middle of the shelf. The morphology of the tightly folded zone controls those terraces, which correspond to the Bakırköy Formation and Kıraç member on land. The topmost parts of the terraces must have been eroded during sea level low-stands and cutting of the paleo-valleys. There is no evidence of any tectonic deformation or active fault in the younger seismic unit (U2).

  13. Crustal Seismic Structure beneath Portugal (Western Iberia) and the role of Variscan Inheritance

    NASA Astrophysics Data System (ADS)

    Veludo, Idalina; Afonso Dias, Nuno; Fonseca, Paulo; Matias, Luís; Carrilho, Fernando; Haberland, Christian; Villaseñor, Antonio

    2017-04-01

    Mainland Portugal comprises most of the Western portion of the Iberian Peninsula, in a geodynamic setting associated with the Africa-Eurasia plate boundary. The crustal structure in Portugal is the result of a complex assemblage history of continental collision and extension with most of the surface is covered by rocks dating to the Variscan orogeny, the coastal ranges dominated by Mesozoic structures and Mesocenozoic basins covering partially the mainland. The impact and extension of this complex tectonic in the structure of the Iberian Lithosphere is still a matter of discussion, especially in its western part beneath Portugal. The existing knowledge relating the observed surface geology and lithospheric structures is sparse and sometimes incoherent, the relation between shallow and deep structures and their lateral extension still widely undetermined. Some questions still pertinent are the role and influence of the several tectonic units and their contacts in the present tectonic regime and in the stress field observed today, and the relation between the anomalous seismicity and associated crustal deformation rates with the inherited structure from past orogenies. In this study we present the results of a local earthquake tomographic study, performed to image this complex crustal structure down to 20 km depth. The relocation of the onshore seismicity recorded in the period 2000-2014 with the new 3D model allows cleansing some of the alignments and their correlation with some of the main active structures in Portugal enabling for the first time to correlate a large number of tectonic features to the small magnitude seismicity pattern. The seismicity distribution also displays a complex pattern, mainly reflecting the interaction between inherited Variscan structures with more recent fault systems created during the rifting stages of the Atlantic and diapir magmatic intrusions. The complex history of the assemblage of the crust beneath Western Iberia is well-marked in the final models. The arcuate shape of the Ibero-Armorican Arc can be perceived over the general pattern of the Vp and Vp/Vs anomalies and the heterogeneity observed on the surface geology are clearly marked in the tomograms. Other significant features are the low Vp values associated with the Mesocenozoic rocks outcropping in the Lusitanian and Algarve basins, and the low Vp and high Vp/Vs values of the sedimentary cover of the Lower-Tagus and Sado Basin. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.

  14. GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements

    PubMed Central

    Erdoğan, Saffet; Şahin, Muhammed; Tiryakioğlu, İbrahim; Gülal, Engin; Telli, Ali Kazım

    2009-01-01

    Southwestern Turkey is a tectonically active area. To determine kinematics and strain distribution in this region, a GPS network of sixteen stations was established. We have used GPS velocity field data for southwest Anatolia from continuous measurements covering the period 2003 to 2006 to estimate current crustal deformation of this tectonically active region. GPS data were processed using GAMIT/GLOBK software and velocity and strain rate fields were estimated in the study area. The measurements showed velocities of 15–30 mm/yr toward the southwest and strain values up to 0.28–8.23×10−8. Results showed that extension has been determined in the Burdur-Isparta region. In this study, all of strain data reveal an extensional neotectonic regime through the northeast edge of the Isparta Angle despite the previously reported compressional neotectonic regime. Meanwhile, results showed some small differences relatively with the 2006 model of Reilinger et al. As a result, active tectonic movements, in agreement with earthquake fault plane solutions showed important activity. PMID:22573998

  15. The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia

    NASA Astrophysics Data System (ADS)

    Velandia, Francisco; Acosta, Jorge; Terraza, Roberto; Villegas, Henry

    2005-04-01

    Riedel, synthetic and antithetic type faults, principal displacement zones (PDZ), pull-apart basins (such as lazy-S shaped releasing bend, extensive and rhomboidal shaped and releasing sidestep basins) and minor folds located oblique to the main trace of the Algeciras Fault System (AFS) are interpreted from Landsat TM 5 images and geological mapping. These tectonic features are affecting Quaternary deposits and are related to major historical earthquakes and recent registered seismic events, indicating neotectonic activity of the structure. The AFS is classified as a right lateral wrench complex structure, with an important vertical component in which sedimentary cover and basement rocks are involved. In addition, the system represents a simple shear caused by the oblique convergence between the Nazca Plate and the northern Andes. The transpressive boundary in SW Colombia was previously located along the Eastern Frontal Fault System. However, this paper shows that the AFS constitutes the actual boundary of the current transpressive regime along the Northern Andes, which begins at the Gulf of Guayaquil in Ecuador and continues into Colombia and Venezuela.

  16. Tectonic and Magmatic Controls on Extension and Crustalaccretion in Backarc Basins, Insights from the Lau Basin and Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Sleeper, Jonathan D.

    This dissertation examines magmatic and tectonic processes in backarc basins, and how they are modulated by plate- and mantle-driven mechanisms. Backarc basins initiate by tectonic rifting near the arc volcanic front and transition to magmatic seafloor spreading. As at mid-ocean ridges (MORs), spreading can be focused in narrow plate boundary zones, but we also describe a diffuse spreading mode particular to backarc basins. At typical MORs away from hot spots and other melting anomalies, spreading rate is the primary control on the rate of mantle upwelling and decompression melting. At backarc spreading centers, water derived from the subducting slab creates an additional mantle-driven source of melt and buoyant upwelling. Furthermore, because basins open primarily in response to trench rollback, which is inherently a non-rigid process, backarc extensional systems often have to respond to a constantly evolving stress regime, generating complex tectonics and unusual plate boundaries not typically found at MORs. The interplay between these plate- and mantle-driven processes gives rise to the variety of tectonic and volcanic morphologies peculiar to backarc basins. Chapter 2 is focused on the Fonualei Rift and Spreading Center in the Lau Basin. The southern portion of the axis is spreading at ultraslow (<20 mm/yr) opening rates in close proximity to the arc volcanic front and axial morphology abruptly changes from a volcanic ridge to spaced volcanic cones resembling arc volcanoes. Spreading rate and arc proximity appear to control transitions between two-dimensional and three-dimensional mantle upwelling and volcanism. In the second study (Chapter 3), I develop a new model for the rollback-driven kinematic and tectonic evolution of the Lau Basin, where microplate tectonics creates rapidly changing plate boundary configurations. The third study (Chapter 4) focuses on the southern Mariana Trough and the transitions between arc rifting, seafloor spreading, and a new mode of "diffuse spreading," where new crust is accreted in broad zones rather than along a narrow spreading axis, apparently controlled by a balance between slab water addition and its extraction due to melting and crustal accretion.

  17. Bayesian inference and interpretation of centroid moment tensors of the 2016 Kumamoto earthquake sequence, Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František

    2017-09-01

    On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.

  18. New tectonic data constrain the mechanisms of breakup along the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bot, Anna; Geoffroy, Laurent; Authemayou, Christine; Graindorge, David

    2014-05-01

    The Gulf of California is resulting from an oblique-rift system due to the separation of the Pacific and the North American plates in the ~N110E to ~N125E trend. The age, nature and orientation of strain which ended with continental break-up and incipient oceanization at ~3.6 Ma, is largely misunderstood. It is generally proposed that early stages of extension began at around 12 Ma with strain partitioning into two components: a pure ENE directed extension in the Gulf Extensional Province (which includes Sonora and the eastern Baja California Peninsula in Mexico) and a dextral strike-slip displacement west of the Baja California Peninsula along the San Benito and Tosco-Abreojos faults. This evolution would have lasted ~5-6 Ma when a new transtensional strain regime took place. This regime, with extension trending ~N110E +/-10° , led to the final break-up and the subsequent individualization of a transform-fault system and subordoned short oceanic ridges. This two-steps interpretation has recently been challenged by authors suggesting a continuous transtensional extension from 12Ma in the trend of the PAC-NAM plates Kinematic. We question both of those models in term of timing and mode of accommodation basing ourselves on field investigations in Baja California Sur (Mexico). The volcano-sedimentary formations of the Comondù group dated 25 to 20 Ma exhibit clear examples of syn-sedimentary and syn-magmatic extensive deformations. This extension, oriented N65° E+/-15° , is proposed to initiate during the Magdalena Plate subduction. It would be related to the GOC initialization. In addition to this finding, we present tectonic and dating evidences of complex detachment-faulting tectonics varying in trend and kinematics with time and space for the development to the south of Baja California Sur. The extension associated with the early detachment-fault system trended ~N110E. From ~17 Ma to, probably, ~7-8 Ma, this extension controlled the early development of the San Jose del Cabo and the coeval footwall exhumation of large Cretaceous basement blocks (such as the Sierra Laguna). This detachment tectonics is overprinted by a more recent detachment-type tectonic evolution, localized alongshore the GOC, with coeval development of Pliocene basins. At this stage, extension was trending N75E +/-10° , i.e. close to GOC-normal. We discuss the geodynamical interpretation of all those new results in terms of forces driving the obliquity of rifts.

  19. Deformation history of the Neoproterozoic basement complex, Ain Shams area, Western Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Fakharani, Abdelhamid; Hamimi, Zakaria

    2013-04-01

    Ain Shams area, Western Arabian Shield, Saudi Arabia, is occupied by four main rock units; gneisses, metavolcanics, metasediments and syn- to post-tectonic granitoids. Field and structural studies reveal that the area was subjected to at least three phases of deformation (D1, D2 and D3). The structural features of the D1 are represented by tight to isoclinal and intrafolial folds (F1), axial plane foliation (S1) and stretching lineations (L1). This phase is believed to be resulted from an early NW-SE contractional phase due to the amalgamation between Asir and Jeddah tectonic terranes. D2 deformation phase progressively overprinted D1 structures and was dominated by thrusts, minor and major F2 thrust-related overturned folds. These structures indicate a top-to-the-NW movement direction and compressional regime during the D2 phase. Emplacement of the syn-tectonic granitoids is likely to have occurred during this phase. D3 structures are manifested F3 folds, which are open with steep to subvertical axial planes and axes moderately to steeply plunging towards the E, ENE and ESE directions, L3 is represented by crenulation lineations and kink bands. These structures attest NE-SW contractional phase, concurrent with the accretion of the Arabian-Nubian Shield (ANS) to the Saharan Metacraton (SM) and the final assembly between the continental blocks of East and West Gondwana.

  20. History and Evolution of Precambrian plate tectonics

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2014-05-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction continues but the plates are weakened enough to allow buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by pulling at and breaking the plate. References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370.

  1. Plio-Quaternary stress states in NE Iran: Kopeh Dagh and Allah Dagh-Binalud mountain ranges

    NASA Astrophysics Data System (ADS)

    Shabanian, Esmaeil; Bellier, Olivier; Abbassi, Mohammad R.; Siame, Lionel; Farbod, Yassaman

    2010-01-01

    NE Iran, including the Kopeh Dagh and Allah Dagh-Binalud deformation domains, comprises the northeastern boundary of the Arabia-Eurasia collision zone. This study focuses on the evolution of the Plio-Quaternary tectonic regimes of northeast Iran. We present evidence for drastic temporal changes in the stress state by inversion of both geologically and seismically determined fault slip vectors. The inversions of fault kinematics data reveal distinct temporal changes in states of stress during the Plio-Quaternary (since ˜ 5 Ma). The paleostress state is characterized by a regional transpressional tectonic regime with a mean N140 ± 10°E trending horizontal maximum stress axis ( σ1). The youngest (modern) state of stress shows two distinct strike-slip and compressional tectonic regimes with a regional mean of N030 ± 15°E trending horizontal σ1. The change from the paleostress to modern stress states has occurred through an intermediate stress field characterized by a mean regional N trending σ1. The inversion analysis of earthquake focal mechanisms reveals a homogeneous, transpressional tectonic regime with a regional N023 ± 5°E trending σ1. The modern stress state, deduced from the youngest fault kinematics data, is in close agreement with the present-day stress state given by the inversions of earthquake focal mechanisms. According to our data and the deduced results, in northeast Iran, the Arabia-Eurasia convergence is taken up by strike-slip faulting along NE trending left-lateral and NNW trending right-lateral faults, as well as reverse to oblique-slip reverse faulting along NW trending faults. Such a structural assemblage is involved in a mechanically compatible and homogeneous modern stress field. This implies that no strain and/or stress partitioning or systematic block rotations have occurred in the Kopeh Dagh and Allah Dagh-Binalud deformation domains. The Plio-Quaternary stress changes documented in this paper call into question the extrapolation of the present-day seismic and GPS-derived deformation rates over geological time intervals encompassing tens of millions of years.

  2. Seismotectonics of northeastern Sicily and southern Calabria (Italy): New constraints on the tectonic structures featuring in a crucial sector for the central Mediterranean geodynamics

    NASA Astrophysics Data System (ADS)

    Scarfı, L.; Barberi, G.; Musumeci, C.; Patanè, D.

    2016-03-01

    The purpose of this study is to gain a better understanding on the tectonic structures featuring in a crucial sector of central Mediterranean area, including the Aeolian Islands, southern Calabria, and northeastern Sicily, where the convergence between Eurasian and African Plates has given rise to a complicated collisional/subduction complex. A high-quality data set of about 3000 earthquakes has been exploited for local earthquake tomography and focal mechanisms computation together with available source mechanisms from published catalogues. The results depict new details of a network of faults which enables the concurrent existence of adjacent compressional and extensional domains. In particular, tomographic images, seismic events distribution, and focal mechanisms pinpoint the geometry and activity of a lithospheric-scale tear faults system which, with a NW-SE trend through Sicily and the Tyrrhenian and Ionian Seas, represents the southern edge of the Ionian subduction trench zone. At crustal depth, this tearing is well highlighted by a rotation of the maximum horizontal stress, moving across the area from west toward east. In addition, the shallow normal fault regime, characterizing the southern Calabria and northeastern Sicily mainland, south of the NW-SE lineament, changes in the deeper part of the crust. Indeed, a NE-SW earthquake distribution, gently dipping NW, and inverse fault solutions indicate a still active contractional deformation in eastern Sicily, caused by the Africa-Eurasia convergence and well framed with the current compressive regime along the southern Tyrrhenian zone and at the front of the Sicilian Chain-Foreland.

  3. Topographic signatures and a general transport law for deep-seated landslides in a landscape evolution model

    NASA Astrophysics Data System (ADS)

    Booth, Adam M.; Roering, Josh J.; Rempel, Alan W.

    2013-06-01

    A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, tectonics, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here we propose a transport law for deep-seated landslides in weathered bedrock and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand, and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of the horizontal landslide flux to the vertical tectonic flux, that characterizes three distinct landscape types. One is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates exceeding the long-term uplift rate. Another is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is greatest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, low angle hillslopes despite high uplift rates. The stochastic landsliding regime captures the frequent observation that deep-seated landslides produce large sediment fluxes from small areal extents while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and is useful for interpreting climate-driven changes in landslide behavior.

  4. The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska

    USGS Publications Warehouse

    Reece, Robert S.; Gulick, Sean P. S.; Christesen, Gail L.; Horton, Brian K.; VanAvendonk, Harm J.; Barth, Ginger

    2013-01-01

    An integration of geophysical data from the Pacific Plate reveals plate bending anomalies, massive intraplate shearing and deformation, and a lack of oceanic crust magnetic lineaments in different regions across the Gulf of Alaska. We argue that farfield stress from the Yakutat Terrane collision with North America is the major driver for these unusual features. Similar plate motion vectors indicate that the Pacific plate and Yakutat Terrane are largely coupled along their boundary, the Transition Fault, with minimal translation. Our study shows that the Pacific Plate subduction angle shallows toward the Yakutat Terrane and supports the theory that the Pacific Plate and Yakutat Terranemaintain coupling along the subducted region of the Transition Fault. We argue that the outboard transfer of collisional stress to the Pacific Plate could have resulted in significant strain in the NE corner of the Pacific Plate, which created pathways for igneous sill formation just above the Pacific Plate crust in the Surveyor Fan. A shift in Pacific Plate motion during the late Miocene altered the Yakutat collision with North America, changing the stress transfer regime and potentially terminating associated strain in the NE corner of the Pacific Plate. The collision further intensified as the thickest portion of the Yakutat Terrane began to subduct during the Pleistocene, possibly providing the impetus for the creation of the Gulf of Alaska Shear Zone, a>200 km zone of intraplate strike-slip faults that extend from the Transition Fault out into the Pacific Plate. This study highlights the importance of farfield stress from complex tectonic regimes in consideration of large-scale oceanic intraplate deformation.

  5. Study of cataclastic deformation in compressive tectonic regime of a sandstone from south central Pyrenees, Spain: Timing of deformation bands occurrence during burial history and comparison with geomechanical models.

    NASA Astrophysics Data System (ADS)

    Robert, Romain; Robion, Philippe; David, Christian; Souloumiac, Pauline; Saillet, Elodie

    2017-04-01

    In high porosity sandstone lithologies, deformation bands (DBs) are characterized by changes in micro-structural characteristics inducing a localized change in the petrophysical properties of the rock. These DBs, which are generally tabular structures from millimeters to few centimeters thick, can be used at the field scale to decipher extensional or compactional tectonic regime. However, numerous parameters in addition to the tectonic regime may affect development of DBs, and particularly the evolution of porosity during burial history. The aim of this work is to understand the relationship between the DBs occurrence in tectonic shortening regime and the timing of grain cementation that occurs during burial for an analogue to siliciclastic reservoir. For that purpose, we have focused our analysis on the Aren syn-tectonic sandstone formation, maastrichtian in age, localized on the front of the Boixols thrust, on the southern side of the Sant Corneli anticline, in the south central Pyrenees (Spain). The outcrops are localized in the Tremp-Graus basin, all along a 30 km East-West trend where 10 different sites, in which deformation bands are observable, have been investigated and sampled. The structural geometry of the basin is constrained with 3 serial N-S oriented cross sections showing an increase of the shortening from West to East. Our field work strategy was to, 1) measure the orientation of the DBs in each site, 2) take cores both within the DBs and the host rock to conduct systematic thin section investigations, and 3) take oriented cores in order to study the magnetic fabric giving informations on the internal deformation linked to a set of deformation band and regional N-S shortening. Field data show a minimum of two sets of DBs on each site with variation of orientations and densities. These DBs are perpendicular to the strata which prove their early occurrence, recording the initial stages of local deformation and evolution of the Boixols fold and thrust. At the microstructures scale, DBs are characterized by grain crushing with hertzian fractures associated with pore collapse. All these evidences allow us to define these structures as compaction bands. Further microscopical investigation, grain size distribution and initial porosity are determined by image analysis. These data are confronted to geomechanical models in order to investigate the relationship between the occurrences of DBs in the burial history and the diagenesis of the rock during the compressive event.

  6. Cenozoic landforms and post-orogenic landscape evolution of the Balkanide orogen: Evidence for alternatives to the tectonic denudation narrative in southern Bulgaria

    NASA Astrophysics Data System (ADS)

    Gunnell, Y.; Calvet, M.; Meyer, B.; Pinna-Jamme, R.; Bour, I.; Gautheron, C.; Carter, A.; Dimitrov, D.

    2017-01-01

    Continental denudation is the mass transfer of rock from source areas to sedimentary depocentres, and is typically the result of Earth surface processes. However, a process known as tectonic denudation is also understood to expose deep-seated rocks in short periods of geological time by displacing large masses of continental crust along shallow-angle faults, and without requiring major contributions from surface erosion. Some parts of the world, such as the Basin and Range in the USA or the Aegean province in Europe, have been showcased for their Cenozoic tectonic denudation features, commonly described as metamorphic core-complexes or as supradetachment faults. Based on 22 new apatite fission-track (AFT) and 21 helium (AHe) cooling ages among rock samples collected widely from plateau summits and their adjacent valley floors, and elaborating on inconsistencies between the regional stratigraphic, topographic and denudational records, this study frames a revised perspective on the prevailing tectonic denudation narrative for southern Bulgaria. We conclude that conspicuous landforms in this region, such as erosion surfaces on basement-cored mountain ranges, are not primarily the result of Paleogene to Neogene core-complex formation. They result instead from "ordinary" erosion-driven, subaerial denudation. Rock cooling, each time suggesting at least 2 km of crustal denudation, has exposed shallow Paleogene granitic plutons and documents a 3-stage wave of erosional denudation which progressed from north to south during the Middle Eocene, Oligocene, Early to Middle Miocene, and Late Miocene. Denudation initially prevailed during the Paleogene under a syn-orogenic compressional regime involving piggyback extensional basins (Phase 1), but subsequently migrated southward in response to post-orogenic upper-plate extension driven by trench rollback of the Hellenic subduction slab (Phase 2). Rare insight given by the denudation pattern indicates that trench rollback progressed at a mean velocity of 3 to 4 km/Ma. The Neogene horst-and-graben mosaic that defines the modern landscape (Phase 3) has completely overprinted the earlier fabrics of Phases 1 and 2, and has been the prime focus of tectonic geomorphologists working in the region. The new narrative proposed here for linking the geodynamic evolution of SE Europe with surface landform assemblages raises issues in favour of better documenting the regional sedimentary record of existing Paleogene basins, which constitute a poorly documented missing link to the thermochronological evidence presented here.

  7. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  8. Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Özden, Süha; Över, Semir; Poyraz, Selda Altuncu; Güneş, Yavuz; Pınar, Ali

    2018-04-01

    The west to southwestward motion of the Anatolian block results from the relative motions between the Eurasian, Arabian and African plates along the right-lateral North Anatolian Fault Zone in the north and left-lateral East Anatolian Fault Zone in the east. The Biga Peninsula is tectonically influenced by the Anatolian motion originating along the North Anatolian Fault Zone which splits into two main (northern and southern) branches in the east of Marmara region: the southern branch extends towards the Biga Peninsula which is characterized by strike-slip to oblique normal faulting stress regime in the central to northern part. The southernmost part of peninsula is characterized by a normal to oblique faulting stress regime. The analysis of both seismological and structural field data confirms the change of stress regime from strike-slip character in the center and north to normal faulting character in the south of peninsula where the earthquake swarm recently occurred. The earthquakes began on 14 January 2017 (Mw: 4.4) on Tuzla Fault and migrated southward along the Kocaköy and Babakale's stepped-normal faults of over three months. The inversion of focal mechanisms yields a normal faulting stress regime with an approximately N-S (N4°E) σ3 axis. The inversion of earthquakes occurring in central and northern Biga Peninsula and the north Aegean region gives a strike-slip stress regime with approximately WNW-ESE (N85°W) σ1 and NNE-SSW (N17°E) σ3 axis. The strike-slip stress regime is attributed to westward Anatolian motion, while the normal faulting stress regime is attributed to both the extrusion of Anatolian block and the slab-pull force of the subducting African plate along the Hellenic arc.

  9. Tectonic control of complex slope failures in the Ameka River Valley (Lower Gibe Area, central Ethiopia): Implications for landslide formation

    NASA Astrophysics Data System (ADS)

    Kycl, Petr; Rapprich, Vladislav; Verner, Kryštof; Novotný, Jan; Hroch, Tomáš; Mišurec, Jan; Eshetu, Habtamu; Tadesse Haile, Ezra; Alemayehu, Leta; Goslar, Tomasz

    2017-07-01

    Even though major faults represent important landslide controlling factors, the role the tectonic setting in actively spreading rifts plays in the development of large complex landslides is seldom discussed. The Ameka complex landslide area is located on the eastern scarp of the Gibe Gorge, approximately 45 km to the west of the Main Ethiopian Rift and 175 km to the southwest of Addis Ababa. Investigation of the complex landslide failures required a combination of satellite and airborne data-based geomorphology, geological field survey complemented with structural analysis, radiocarbon geochronology and vertical electric sounding. The obtained observations confirmed the multiphase evolution of the landslide area. We have documented that, apart from climatic and lithological conditions, the main triggering factor of the Ameka complex landslide is the tectonic development of this area. The E-W extension along the NNE-SSW trending Main Ethiopian Rift is associated with the formation of numerous parallel normal faults, such as the Gibe Gorge fault and the almost perpendicular scissor faults. The geometry of the slid blocks of coherent lithology have inherited the original tectonic framework, which suggests the crucial role tectonics play in the fragmentation of the compact rock-masses, and the origin and development of the Ameka complex landslide area. Similarly, the main scarps were also parallel to the principal tectonic features. The local tectonic framework is dominated by faults of the same orientation as the regional structures of the Main Ethiopian Rift. Such parallel tectonic frameworks display clear links between the extension of the Main Ethiopian Rift and the tectonic development of the landslide area. The Ameka complex landslide developed in several episodes over thousands of years. According to the radiocarbon data, the last of the larger displaced blocks (representing only 2% of the total area) most likely slid down in the seventh century AD. The main scarps, namely the high scarps in the western part, are unstable over the long term and toppling and falling-type slope movements can be expected here in the future.

  10. An intramontane pull-apart basin in tectonic escape deformation: Elbistan Basin, Eastern Taurides, Turkey

    NASA Astrophysics Data System (ADS)

    Yusufoğlu, H.

    2013-04-01

    The Elbistan Basin in the east-Central Anatolia is an intramontane structural depression in the interior part of the Anatolide-Tauride Platform. The Neogene fill in and around Elbistan Basin develops above the Upper Devonian to lower Tertiary basement and comprises two units separated by an angular unconformity: (1) intensely folded and faulted Miocene shallow marine to terrestrial and lacustrine sediments and (2) nearly flat-lying lignite-bearing lacustrine (lower unit) and fluvial (upper unit) deposits of Plio-Quaternary Ahmetçik Formation. The former is composed of Lower-Middle Miocene Salyan, Middle-upper Middle Miocene Gövdelidağ and Upper Miocene Karamağara formations whereas the latter one is the infill of the basin itself in the present configuration of the Elbistan Basin. The basin is bound by normal faults with a minor strike-slip component. It commenced as an intramontane pull-apart basin and developed as a natural response to Early Pliocene tectonic escape-related strike-slip faulting subsequent to post-collisional intracontinental compressional tectonics during which Miocene sediments were intensely deformed. The Early Pliocene time therefore marks a dramatic changeover in tectonic regime and is interpreted as the beginning of the ongoing last tectonic evolution and deformation style in the region unlike to previous views that it commenced before that time. Consequently, the Elbistan Basin is a unique structural depression that equates the extensional strike-slip regime in east-Central Anatolia throughout the context of the neotectonical framework of Turkey across progressive collision of Arabia with Eurasia. Its Pliocene and younger history differs from and contrasts with that of the surrounding pre-Pliocene basins such as Karamağara Basin, on which it has been structurally superimposed.

  11. Quaternary deformation in the central Neuquén basin (35°-37°S), Argentina: evidences for active strain partitioning.

    NASA Astrophysics Data System (ADS)

    Niviere, B.; Backé, G.

    2006-12-01

    The tectonic evolution of the Central Andes is a consequence of the relative convergence between the Nazca and the South American plates. The Neuquén basin is located in the southernmost part of the Central Andes, between latitudes 32°S and 40°S. The present day geometry of the basin has been inherited from different compressive pulses, separated by times of relative tectonic quiescence since the late Cretaceous. The complex tectonic evolution of the area has often been explained by changes in the geometry of the subducted plate. The last broad scale tectonic event in the Neuquén basin is the Miocene compressive stage referred to as the Quechua phase. The tectonic evolution of the outer part of the Neuquén Basin from the late Miocene onwards is still a matter of debate. For instance, strain partitioning has been described in the inner part of the basin, which corresponds to the modern arc area close to the Chile Argentina border. The strain regime in the foreland between 35°S and 37°S is more uncertain. Extensional tectonic features have been described in different areas of the basin, leading to the formulation of a possible orogenic collapse in response to the steepening of the oceanic slab that followed a late Miocene shallow subduction. This model accounts for the occurrence of large Pleistocene to Quaternary back-arc volcanism in the Neuquén basin. However, field structural data and borehole breakout analysis strongly support on-going compression in the basin. Our study is based on the morphostructural analysis of remote sensing data (satellite and digital elevation model images) complemented by field work. Here we show that strike-slip faulting and localized extension in the outer zone of the basin is coeval with active thrusting and folding. This can be explained by strain partitioning or segmentation processes due to the oblique convergence between the Nazca and the South American plates.

  12. The influence of tectonic inheritance on crustal extension style following failed subduction of continental crust: applications to metamorphic core complexes in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.

    2017-12-01

    The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.

  13. The Pan-African nappe tectonics in the Shackleton Range

    USGS Publications Warehouse

    Buggisch, W.; Kleinschmidt, G.

    2007-01-01

    In memory of Campbell Craddock: When J. Campbell Craddock (1972) published his famous 1:5 000 000 map of the Geology of Antarctica, he established major units such as the East Antarctic Craton, the early Palaeozoic Ross, the Mesozoic Ellsworth, and the Cenozoic Andean orogens. It is already evident from this map, that the strike of the Ellsworth Mountains and the Shackleton Range is perpendicular to palaeo-Pacific and modern Pacific margins. While the Ellsworth-Whitmore block is classified as a rotated terrane, the Ross-aged orogen of the Shackleton Range requires another interpretation. The discovery of extended tectonic nappes with south directed transport in the southern Shackleton Range and west transport in the north established a plate tectonic scenery with a subduction dominated Ross Orogen in the Transantarctic Mountains and a transpressive tectonic regime in the Shackleton Range during the final closing of the Mozambique Ocean.

  14. Steeply-dipping extension fractures in the Newark basin, New Jersey

    USGS Publications Warehouse

    Herman, G.C.

    2009-01-01

    Late Triassic and Early Jurassic bedrock in the Newark basin is pervasively fractured as a result of Mesozoic rifting of the east-central North American continental margin. Tectonic rifting imparted systematic sets of steeply-dipping, en ??chelon, Mode I, extension fractures in basin strata including ordinary joints and veins. These fractures are arranged in transitional-tensional arrays resembling normal dip-slip shear zones. They contributed to crustal stretching, sagging, and eventual faulting of basin rift deposits. Extension fractures display progressive linkage and spatial clustering that probably controlled incipient fault growth. They cluster into three prominent strike groups correlated to early, intermediate, and late-stage tectonic events reflecting about 50- 60?? of counterclockwise rotation of incremental stretching directions. Finite strain analyses show that extension fractures allowed the stretching of basin strata by a few percent, and these fractures impart stratigraphic dips up to a few degrees in directions opposing fracture dips. Fracture groups display three-dimensional spatial variability but consistent geometric relations. Younger fractures locally cut across and terminate against older fractures having more complex vein-cement morphologies and bed-normal folds from stratigraphic compaction. A fourth, youngest group of extension fractures occur sporadically and strike about E-W in obliquely inverted crustal blocks. A geometric analysis of overlapping fracture sets shows how fracture groups result from incremental rotation of an extending tectonic plate, and that old fractures can reactivate with oblique slip components in the contemporary, compressive stress regime. ?? 2008 Elsevier Ltd. All rights reserved.

  15. Crustal deformation: Earth vs Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.

  16. Garnet pyroxenite from Nilgiri Block, southern India: Vestiges of a Neoarchean volcanic arc

    NASA Astrophysics Data System (ADS)

    Samuel, Vinod O.; Kwon, Sanghoon; Santosh, M.; Sajeev, K.

    2018-06-01

    Southern peninsular India preserves records of Late Neoarchean-Early Paleoproterozoic continental building and cratonization. A transect from the Paleoarchean Dharwar Craton to the Neoarchean arc magmatic complex in the Nilgiri Block across the intervening Moyar Suture Zone reveals an arc-accretionary complex composed of banded iron formation (BIF), amphibolite, metatuff, garnet-kyanite schist, metagabbro, pyroxenite and charnockite. Here we investigate the petrology, geochronology and petrogenesis of the pyroxenite and garnet-clinopyroxenite. The pyroxenite is mainly composed of orthopyroxene and clinopyroxene with local domains/pockets enriched in a clinopyroxene-garnet assemblage. Thermobarometric calculations and phase equilibria modeling suggest that the orthopyroxene- and clinopyroxene-rich domains formed at 900-1000 °C, 1-1.2 GPa whereas the garnet- and clinopyroxene-rich domains record higher pressure of about 1.8-2 GPa at similar temperature conditions (900-1000 °C). Zircon U-Pb SHRIMP dating show weighted mean 207Pb-206Pb age of 2532 ± 22 Ma, with metamorphic overgrowth at 2520 ± 27 Ma and 2478 ± 27 Ma. We propose a tectonic model involving decoupling and break-off of the oceanic plate along the southern flanks of the Dharwar Craton, which initiated oceanic plate subduction. Slab melting eventually built the Nilgiri volcanic arc on top of the over-riding plate along the flanks of the Dharwar Craton. Our study supports an active plate tectonic regime at the end of the Archean Era, aiding in the growth of paleo-continents and their assembly into stable cratons.

  17. ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenardic, A.; Crowley, J. W., E-mail: ajns@rice.edu, E-mail: jwgcrowley@gmail.com

    2012-08-20

    A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees,more » for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ({sup s}uper-Earths{sup )}. The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.« less

  18. Petrology, thermobarometry and geochronology of Yelapa Complex: Implications in the tectonic history of the basement of Puerto Vallarta Batholith, Mexico

    NASA Astrophysics Data System (ADS)

    Gutiérrez Aguilar, F.; Schaaf, P. E. G.; Hernandez-Trevino, T.; Solis-Pichardo, G.; Vite-Sánchez, O.

    2017-12-01

    The Yelapa Complex (YC) is localizated in the north, central and western of Cabo Corrientes in Jalisco, México. Is constituted by metasedimentary, metaigneous and migmatites which are intruded by deformed plutons. The YC are part of the Puerto Vallarta Batholith a body of 9000 km2 exposed at the mid-western part of the Mexican Pacific margin. The para-gneis of YC in the region of Chimo, present a mineral assemblage of Sil + Bt + Pl ± Grt ± Fsp ± Ilm. The orto-gneis in the región of Cabo Corrientes are constituted by Pl + Amp ± Qz ± Ap ± Zrn. Phase equilibria modelling of two paragneis yield peak conditions of 7-8 kbar and 650-700ºC. The patterns of REE of the studied rocks suggest: 1) Enrichment of LREE and flat patterns in HREE with respect to chondrite and; 2) Negative Eu anomaly in all samples analyzed suggesting plagioclase fractionation. On the other hand, the study of individual zircons using LA-ICP-MS from 3 para-gneis and 1 orto-gneis yield following information: 1) A máximum depositional age of 223 Ma, which also show abundant zircón populations with ages between 241-273 Ma for para-gneis and 2) The protolith age crystallization of 127 Ma for orto-gneis. The results along with new Sr-Nd isotopic data from whole rock and Rb-Sr in micas, suggest a tectonic evolution for the Yelapa Complex as a transition from a passive continental margin regime ( 223-273 Ma) to a continental arc setting ( 127). Thus, regional metamorphism and multiple magmatic episodes were associated to the convergence of the Farallon and North America plates during the Middle Jurassic to the Late Cretaceous.

  19. Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides, Northern Turkey)

    NASA Astrophysics Data System (ADS)

    Çelik, Ömer Faruk; Chiaradia, Massimo; Marzoli, Andrea; Özkan, Mutlu; Billor, Zeki; Topuz, Gültekin

    2016-03-01

    The Kızılırmak accretionary complex near Kargı is tectonically bounded by the Jurassic and Early Cretaceous metamorphic massives of the Central Pontides. It consists mainly of serpentinite, serpentinized peridotite, gabbro, basalt, metabasite and deep-marine sedimentary rocks. The metabasites in the Kızılırmak accretionary complex are tectonically located within a serpentinite, radiolarian chert, spilitized basalt, gabbro association and commonly display a steep contact with serpentinites. Amphiboles from metabasites yielded robust 40Ar/39Ar plateau ages ranging between 159.4 ± 0.4 Ma and 163.5 ± 0.8 Ma. These are interpreted as cooling ages of the metabasites. The metabasites have 87Sr/86Sr(i) between 0.7035 and 0.7044 and 206Pb/204Pb(i) ranging between 18.18 and 18.92. The gabbros have higher 87Sr/86Sr(i) between 0.7044 and 0.7060 and 206Pb/204Pb(i) ranging between 17.98 and 18.43. Three basalt samples display 87Sr/86Sr(i) between 0.7040 and 0.7059. Their 206Pb/204Pb(i) are unrealistically low (15.42 and 15.62), suggesting, most likely, Pb loss which results in over-corrected values for decay through time. Pb-Sr-Nd isotopic compositions for all samples consistently plot between the fields of MORB or the Depleted MORB Mantle reservoirs and enriched mantle reservoirs (EMII rather than EMI). All the samples (except one dolerite dike) have negative ɛNdDM(t = 160 Ma) values, suggesting derivation from a reservoir more enriched than the depleted mantle. The protoliths of metabasites correspond to diverse sources (N-MORB, E-MORB, OIB and IAT) based on whole rock major and trace element composition. An IAT-like protolith for the metabasites indicates that the İzmir-Ankara-Erzincan ocean domain was subducting and the tectonic regime was compressional during Late Jurassic and before. The protoliths of these rocks were metamorphosed during the subduction/accretion processes, as observed in the metamorphic rocks located along the Balkan, Northern Turkey and Armenia/Iran ophiolites and/or accretionary complexes. IAT-like geochemistry for the gabbro/dolerites indicates that the non-metamorphosed basaltic rocks occurred in a supra-subduction tectonomagmatic environment and is in agreement with their radiogenic isotope compositions.

  20. A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Kazemi, Tahmineh; Asahara, Yoshihiro

    2017-07-01

    The Hasansalaran plutonic complex is one of the main intrusive bodies with a wide range of granite, monzonite, diorite and syenite that crop out in northwest Iran. This body includes Paleozoic granitoids that are surrounded and cut by Cretaceous granitoids. Zircon U-Pb age dating shows that the crystallization of this body occurred at 360 Ma ago in the Early Carboniferous. Whole rock compositions of the investigated intrusive body, show high contents of Ga (11.1-76.3 ppm), Zr (73.5-1280 ppm), Zn (43.7-358 ppm), Y(17.9-177 ppm), enrichment of rare earth elements (REEs) together with high Ga/Al ratios and a strong Eu negative anomaly, fairly consistent with typical A-type signature. The low εNd(t = 360 Ma) value (< + 3) and high variation of 87Sr/86Sr(initial) ratios are evidence of the role of the continental component for the evolution of A-type granitoids in the Hasansalaran area. Because of the high contents of Ta, Yb, Nb and Y, all samples are plotted in the within-plate tectonic regime without interfering oceanic released fluids in the subduction zone. These high Nb content rocks (37.2-342 ppm without one sample) are classified as A1-type granitoids. Based on the distribution of A1- and A2-type granitoids in the Late Paleozoic in northwest Iran, the existence of some gabbroic rocks with tholeiitic to alkali composition and a long gap for magmatic activities in the area from 550 to 360 Ma (approximately 180 my.a.) between the Zagros and Tabriz faults, we suggest a new thematic model for evolution of northwest Iran in the Late Paleozoic. Based on our model, the upwelling of a mantle plume, probably due to the proto-Tethys oceanic rollback activity beneath northern Gondwana, had a crucial role in the uplifting of the continental crust and resulted in the crystallization of A-type granitoids with some gabbroic rocks in northwest Iran.

  1. Beginning the Modern Regime of Subduction Tectonics in Neoproterozoic time: Inferences from Ophiolites of the Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Stern, R.

    2003-04-01

    It is now clear that the motive force for plate tectonics is provided by the sinking of dense lithosphere in subduction zones. Correspondingly, the modern tectonic regime is more aptly called ``subduction tectonics" than plate tectonics, which only describes the way Earth's thermal boundary layer adjusts to subduction. The absence of subduction tectonics on Mars and Venus implies that special circumstances are required for subduction to occur on a silicate planet. This begs the question: When did Earth's oceanic lithosphere cool sufficiently for subduction to began? This must be inferred from indirect lines of evidence; the focus here is on the temporal distribution of ophiolites. Well-preserved ophiolites with ``supra-subduction zone" (SSZ) affinities are increasingly regarded as forming when subduction initiates as a result of lithospheric collapse (± a nudge to get it started), and the formation of ophiolitic lithosphere in evolving forearcs favors their emplacement and preservation. The question now is what percentage of ophiolites with ``supra-subduction zone" (SSZ) chemical signatures formed in forearcs during subduction initiation events? Most of the large, well-preserved ophiolites (e.g., Oman, Cyprus, California, Newfoundland) may have this origin. If so, the distribution in space and time of such ophiolites can be used to identify ``subduction initiation" events, which are important events in the evolution of plate tectonics. Such events first occurred at the end of the Archean (˜2.5Ga) and again in the Paleoproterozoic (˜1.8 Ga), but ophiolites become uncommon after this. Well-preserved ophiolites become abundant in Neoproterozoic time, at about 800±50 Ma. Ophiolites of this age are common and well-preserved in the Arabian-Nubian Shield (ANS) of Egypt, Sudan, Ethiopia, Eritrea, and Saudi Arabia. ANS ophiolites mostly contain spinels with high Cr#, indicating SSZ affinities. Limited trace element data on pillowed lavas supports this interpretation. Boninites are unusual melts of harzburgite that result from asthenospheric upwelling interactng with slab-derived water. This environment is only common during subduction initiation events. Boninites associated with ophiolites have been reported from Egypt, Ethiopia and Eritrea, but most of the geochemical studies of ANS ophiolitic basalts are based on studies that are a decade or more old. The abundance of ANS ophiolites implies an episode of subduction initiation occurred in Neoproterozoic time.

  2. Compositional Heterogeneity and Spatial Segmentation of Suprasubduction (ssz-type) Ophiolites: Evidence From The Kamchatka Arc

    NASA Astrophysics Data System (ADS)

    Osipenko, A.; Krylov, K.

    In ophiolite complexes from the Eastern Asian accretion belts the spatial heterogeneity of geochemical parameters for different components of an ophiolite sequence is estab- lished: restite mantle-derived peridotites, cumulative layered complex and volcanics. This heterogeneity is displayed as at a regional level (tens - hundred km), and at a level of local structures (hundred i - first tens km). As a rule, distinction is observed on a complex of geochemical parameters (concentration and form of REE spectra, EPG distribution, isotope characteristics, Cr-spinel and pyroxene composition etc.). Revealed at once in several suprasubduction-type ophiolite belts (Kamuikotan, Philip- pines New Guinea etc.), the spatial variations of geochemical parameters have not gradual, and discrete character. For an explanation of the reasons of ophiolite com- positional heterogeneity several mechanisms are offered: (1) tectonical overlapping of various fragments of lithosphere; (2) different specify of deep processes, resulting to compositional heterogeneity of rocks from the same lithosphere level; 3) hetero- geneity of the upper mantle and/or mantle metasomatism; 4) evolution of ophiolites (Shervais, 2001) and/or center of magma generation (mixture of continuous series of melt portions, separated during different stages of progressive mantle source melting (Bazylev et al., 2001)); 5) preservations of relict blocks of low lithosphere and upper mantle from the previous stage in suprasubduction conditions. The authors consider regional geochemical heterogeneity and segmentation of suprasubduction ophiolites (SSZ-type) on an example of peridotites from the Eastern Kamchatka ophiolite belt (EKOB), where sublongitude zones, crossed the basic geological structures of a penin- sula (including EROB) were allocated earlier. For each of zones the complex of geo- chemical attributes, steady is established within the limits of a zone, but distinct from of the characteristics of other zones. Among the factors causing an unequal degree of partial melting of peridotites, a main role play a geothermal regime and composition of fluid phase (first of all, the role of water fluid is great). These parameters, in turn, are supervised by a geodynamic regime of magma generation (such characteristics as speed of subduction and geometry of a subducted plate) and finally determine speed of uplift from the diapir in mantle, depth of the termination of partial melting, amount of 1 extracted melt, form and capacity of the magma chamber etc. The local heterogeneity in SSZ-ophiolites is considered on an example of a complex of the Kamchatka Cape Peninsula - the largest ophiolite complex in EKOB. Isotope, geochemical and miner- alogical study have shown, that a part, prevailing on volume, of this complex consist suprasubduction-type magmatic rocks (restite high-depleted harzburgites and related layered cumulative complex), whereas peridotites of harzburgite-lherzolite series and high-grade metabasites (retrograde eclogites and garnet amphibolites) composition- ally correspond to series of N-MORB and Ò-MORB-type. The presence in ophiolite of the Kamchatka Cape Peninsula alongside with high-depleted harzburgites as well moderately- and low-depleted peridotites of harzburgite-lherzolite series allows to as- sume, that Late Mesozoic suprasubduction ophiolites were formed on peridotitic basis of abyssal type. Thus the transformation of "oceanic" substrate was not complete, that has allowed to be kept relict peridotites of lherzolitic type and high-pressure metamor- phics. Probably it reflects pulsing character of geodynamics of suprasubduction-type ophiolite formation, it is possible is connected with "jumping" of spreading axes in suprasubduction conditions. During followed multistage napping in a northeast direc- tion in the Upper Cretaceous time disintegrated fragments of both mantle complexes were tectonically concurrent. In the report the alternative versions of tectonic models of development are also discussed for the Eastern Kamchatka ophiolites. 2

  3. Geology Field Camp at Southern Illinois University: Six weeks exploring four tectonic regimes

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Conder, J. A.; Ferre, E. C.; Heij, G.

    2013-12-01

    Field Geology is typically the capstone course for an undergraduate Bachelor of Science degree in Geology. This type of course brings together the varied sub-disciplines and course topics students encounter in their undergraduate experience, and puts these in context of active Earth processes. At the same time, a significant fraction of Geology departments have dropped field geology from their offerings and students must choose from those programs still offering the course. Southern Illinois University has offered field geology for over 40 years, stationed in and around southwestern Montana. This field camp offers experiences with four distinct tectonic settings: thick-skin contractional, thin-skin contractional, extensional, and anorogenic. The most challenging projects of the course involve mapping and interpreting Laramide and Sevier compressionally deformed areas. The major difference between the two types of deformation is that Laramide ('thick-skinned') tectonics encompasses the mid-crust in deformation while Sevier ('thin-skinned') deformation is limited to the uppermost portion of the crust. This difference results in markedly different fold styles and other deformational structures encountered, requiring different approaches to understanding and constructing the deformational histories of the regions. Extensional tectonics are explored with a paleoseismology project at Hebgen Lake, in Grand Teton National Park where the students typically spend two days, and at the Bitterroot Shear Zone - the edge of a metamorphic core complex along the eastern boundary of the Idaho batholith. While recent work from EarthScope and elsewhere casts doubt on Yellowstone as a mantle plume, Yellowstone remains the classic example of a continental hotspot. During visits through the park, students distinguish between the recent volcanics and hydrothermal activity of Yellowstone and the nearby Eocene Absaroka volcanics. Expanding on the story of the Yellowstone hotspot, a visit is made to Craters of the Moon National Monument in the Snake River Plain to examine some of the youngest volcanics in North America. Not only does field camp give students an occasion to put their knowledge-base developed during their undergraduate years into action, but it is also an ideal opportunity to expose students to the varied approaches applicable to distinct tectonic problems and situations. At SIU, we are proud to offer a wide range of experiences drawing from several important tectonic provinces giving students a strong foundation for their future geological careers and continuing scientific development.

  4. Generation of felsic crust in the Archean: a geodynamic modeling perspective

    NASA Astrophysics Data System (ADS)

    Sizova, Elena; Gerya, Taras; Stüwe, Kurt; Brown, Michael

    2015-04-01

    The relevance of contemporary tectonics to the formation of the Archean terrains is a matter of vigorous debate. Higher mantle temperatures and higher radiogenic heat production in the past would have impacted on the thickness and composition of the oceanic and continental crust. As a consequence of secular cooling, there is generally no modern analog to assist in understanding the tectonic style that may have operated in the Archean. For this reason, well-constrained numerical modeling, based on the fragmentary evidence preserved in the geological record, is the most appropriate tool to evaluate hypotheses of Archean crust formation. The main lithology of Archean terrains is the sodic tonalite-trondhjemite-granodiorite (TTG) suite. Melting of hydrated basalt at garnet-amphibolite to eclogite facies conditions is considered to be the dominant process for the generation of the Archean TTG crust. Taking into account geochemical signatures of possible mantle contributions to some TTGs, models proposed for the formation of Archean crust include subduction, melting at the bottom of thickened continental crust and fractional crystallization of mantle-derived melts under water-saturated conditions. We evaluated these hypotheses using a 2D coupled petrological-thermomechanical numerical model with initial conditions appropriate to the Eoarchean-Mesoarchean. As a result, we identified three tectonic settings in which intermediate to felsic melts are generated by melting of hydrated primitive basaltic crust: 1) delamination and dripping of the lower primitive basaltic crust into the mantle; 2) local thickening of the primitive basaltic crust; and, 3) small-scale crustal overturns. In addition, we consider remelting of the fractionated products derived from underplated dry basalts as an alternative mechanism for the formation of some Archean granitoids. In the context of a stagnant lid tectonic regime which is intermittently terminated by short-lived subduction, we identified two distinct types of continent crust. The first type is a pristine granite-greenstone-like crust with dome-and-keel geometry formed over delaminating-upwelling mantle which is mostly subjected to vertical tectonics processes. By contrast, the second type is a reworked (accreted) crust comprising strongly deformed granite-greenstone and subduction-related sequences and subjected to both strong horizontal compression and vertical tectonics processes. Thus, our study has identified a possible spatial and temporal transition from the lower-grade granite-greenstone terrains to higher-grade gneiss terrains in the Archean as each tectonic cycle is terminated by short-lived subduction. We suggest that the contemporaneity of the proposed mechanisms for the generation of TTGs explains the variety and complexity of the Archean geological record.

  5. Growth of early continental crust by partial melting of eclogite.

    PubMed

    Rapp, Robert P; Shimizu, Nobumichi; Norman, Marc D

    2003-10-09

    The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues.

  6. Rotund versus skinny orogens: Well-nourished or malnourished gold?

    USGS Publications Warehouse

    Goldfarb, R.J.; Groves, D.I.; Gardoll, S.

    2001-01-01

    Orogenic gold vein deposits require a particular conjunction of processes to form and be preserved, and their global distribution can be related to broad-scale, evolving tectonic processes throughout Earth history. A heterogeneous distribution of formation ages for these mineral deposits is marked by two major Precambrian peaks (2800-2555 Ma and 2100-1800 Ma), a singular lack of deposits for 1200 m.y. (1800-600 Ma), and relatively continuous formation since then (after 600 Ma). The older parts of the distribution relate to major episodes of continental growth, perhaps controlled by plume-influenced mantle overturn events, in the hotter early Earth (ca. 1800 Ma or earlier). This worldwide process allowed preservation of gold deposits in cratons, roughly equidimensional, large masses of buoyant continental crust. Evolution to a less episodic, more continuous, modern-style plate tectonic regime led to the accretion of volcano-sedimentary complexes as progressively younger linear orogenic belts sorrounding the margins of the more buoyant cratons. The susceptibility of these linear belts to uplift and erosion can explain the overall lack of orogenic gold deposits at 1800-600 Ma, their exposure in 600-50 Ma orogens, the increasing importance of placer deposits back through the Phanerozoic since ca. 100 Ma, and the absence of gold deposits in orogenic belts younger than ca. 50 Ma.

  7. New Insights on Mt. Etna's Crust and Relationship with the Regional Tectonic Framework from Joint Active and Passive P-Wave Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Barberi, G.; Cocina, O.; Koulakov, I.; Scarfì, L.; Zuccarello, L.; Prudencio, J.; García-Yeguas, A.; Álvarez, I.; García, L.; Ibáñez, J. M.

    2018-01-01

    In the Central Mediterranean region, the production of chemically diverse volcanic products (e.g., those from Mt. Etna and the Aeolian Islands archipelago) testifies to the complexity of the tectonic and geodynamic setting. Despite the large number of studies that have focused on this area, the relationships among volcanism, tectonics, magma ascent, and geodynamic processes remain poorly understood. We present a tomographic inversion of P-wave velocity using active and passive sources. Seismic signals were recorded using both temporary on-land and ocean bottom seismometers and data from a permanent local seismic network consisting of 267 seismic stations. Active seismic signals were generated using air gun shots mounted on the Spanish Oceanographic Vessel `Sarmiento de Gamboa'. Passive seismic sources were obtained from 452 local earthquakes recorded over a 4-month period. In total, 184,797 active P-phase and 11,802 passive P-phase first arrivals were inverted to provide three different velocity models. Our results include the first crustal seismic active tomography for the northern Sicily area, including the Peloritan-southern Calabria region and both the Mt. Etna and Aeolian volcanic environments. The tomographic images provide a detailed and complete regional seismotectonic framework and highlight a spatially heterogeneous tectonic regime, which is consistent with and extends the findings of previous models. One of our most significant results was a tomographic map extending to 14 km depth showing a discontinuity striking roughly NW-SE, extending from the Gulf of Patti to the Ionian Sea, south-east of Capo Taormina, corresponding to the Aeolian-Tindari-Letojanni fault system, a regional deformation belt. Moreover, for the first time, we observed a high-velocity anomaly located in the south-eastern sector of the Mt. Etna region, offshore of the Timpe area, which is compatible with the plumbing system of an ancient shield volcano located offshore of Mt. Etna.

  8. The Thermal Evolution of the Southeast Baffin Island Continental Margin: An Integrated Apatite Fission Track and Apatite (U-Th)/He Study

    NASA Astrophysics Data System (ADS)

    Jess, S.; Stephenson, R.; Brown, R. W.

    2017-12-01

    The elevated continental margins of the North Atlantic continue to be a focus of considerable geological and geomorphological debate, as the timing of major tectonic events and the age of topographic relief remain controversial. The West Greenland margin, on the eastern flank of Baffin Bay, is believed by some authors to have experienced tectonic rejuvenation and uplift during the Neogene. However, the opposing flank, Baffin Island, is considered to have experienced a protracted erosional regime with little tectonic activity since the Cretaceous. This work examines the thermal evolution of the Cumberland Peninsula, SE Baffin Island, using published apatite fission track (AFT) data with the addition of 103 apatite (U-Th)/He (AHe) ages. This expansion of available thermochronological data introduces a higher resolution of thermal modelling, whilst the application of the newly developed `Broken Crystals' technique provides a greater number of thermal constraints for an area dominated by AHe age dispersion. Results of joint thermal modelling of the AFT and AHe data exhibit two significant periods of cooling across the Cumberland Peninsula: Devonian/Carboniferous to the Triassic and Late Cretaceous to present. The earliest phase of cooling is interpreted as the result of major fluvial systems present throughout the Paleozoic that flowed across the Canadian Shield to basins in the north and south. The later stage of cooling is believed to result from rift controlled fluvial systems that flowed into Baffin Bay during the Mesozoic and Cenozoic during the early stages and culmination of rifting along the Labrador-Baffin margins. Glaciation in the Late Cenozoic has likely overprinted these later river systems creating a complex fjordal distribution that has shaped the modern elevated topography. This work demonstrates how surface processes, and not tectonism, can explain the formation of elevated continental margins and that recent methodological developments in the field of low temperature thermochronology are improving our understanding of onshore passive margin development.

  9. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  10. Tectonic Plates of China

    DTIC Science & Technology

    1977-04-01

    C. Sun and Ta-iang Teng Contractor: University of Southern California Principal Investigator: Professor Ta-liang Teng (213) 746-6124 Contract Number...83 i" I. INTRODUCTION Over the vast Chinese mainland, one of the most interesting and dynamic regions of the world, complex tectonics, coupled with...west Pacific and the Alpine- Himalaya tectonic belts, the multitude of Chinese tectonic com- plexities is evident from its enormous topographic relief

  11. Focal mechanism and stress analyses for main tectonic zones in Albania

    NASA Astrophysics Data System (ADS)

    Dushi, Edmond; Koçi, Rexhep; Begu, Enkela; Bozo, Rrezart

    2017-04-01

    In this study, a number of 33 moderate earthquakes for the period 2013-2015, ranging in magnitude within 2.2 ≤ MW ≤ 4.9 and located within the Albanian territory, have been analyzed. As an earthquake prone country, situated at the frontal collision boundary between Adria microplate and Eurasian tectonic plate, Albania is characterized frequently by micro earthquakes, many moderate and seldom by strong ones. It is evidenced that the whole territory is divided in two different tectonic domains, correspondingly the outer and the inner domain, showing different stress regime as clearly evidenced based on earthquake focal mechanism and geodetic studies. Although strong earthquakes are clearly related to faults in tectonically active areas, moderate events are more frequent revealing valuable information on this purpose. All the studied events are selected to be well-recorded by a maximum possible number of the local broadband (BB) seismological stations of Albanian Seismological Network (ASN), although regional stations have been used as well to constrain the solution. Earthquakes are grouped according to their location, within three well-defined tectonic zones, namely: Adriatic-Ionian (AI), Lushnja-Elbasani-Dibra (LED) and Ohrid-Korça (OK). For each event, the seismic moment M0is determined, through spectral analyses. Moment values vary ranging 1012 - 1015 Nm, for the Adriatic-Ionian (AI) outer zone; 1013 - 1016 Nm, for the Lushnja-Elbasani-Dibra (LED) transversal zone, which cuts through both the outer and the inner domains and 1012 - 1014 Nm, for the Ohrid-Korça (OK), north-south trending inner zone. Focal mechanism solutions (FMS) have been determined for each earthquake, based on the robust first motion polarities method, as applied in the FOCMEC (Seisan 10.1) routine. Using the Michael's linear bootstrap invertion on FMS, a stress analysis is applied. Results show the minimum compressional stress directions variation: σ1 370/270, σ23030/80 and σ31980/620 (μ = 0.4) for AI zone; σ1830/90, σ22040/730and σ33500/140 (μ = 0.4) for LED zone and σ13060/430, σ21860/280 and σ3750/340 (μ = 0.65) for OK zone. Based on final results, according to Zoback (1992), the Adriatic-Ionian (AI) zone is characterized mainly by thrust (TF) faulting, although normal and oblique ones take place as well. This outer zone is under a compressive stress regime, where the maximum horizontal stress lies in the direction of P axes. Meanwhile, the Lushnja-Elbasani-Dibra (LED) transversal zone, is characterized by normal-oblique faulting (NF-NS), undergoing an oblique transform to extensional stress regime, where the maximum horizontal stress extends at the (T + 900) direction. The Ohrid-Korça (OK) zone is characterized by oblique-normal faults, undergoing and extensional stress regime, where the maximum horizontal stress lies in the of T axes direction. Keywords: moderate earthquakes, focal mechanism, stress

  12. New insights on stress rotations from a forward regional model of the San Andreas fault system near its Big Bend in southern California

    USGS Publications Warehouse

    Fitzenz, D.D.; Miller, S.A.

    2004-01-01

    Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.

  13. Seismicity of the Earth 1900-2013 offshore British Columbia-southeastern Alaska and vicinity

    USGS Publications Warehouse

    Hayes, Gavin P.; Smoczyk, Gregory M.; Ooms, Jonathan G.; McNamara, Daniel E.; Furlong, Kevin P.; Benz, Harley M.; Villaseñor, Antonio

    2014-01-01

    The tectonics of the Pacific margin of North America between Vancouver Island and south-central Alaska are dominated by the northwest motion of the Pacific plate with respect to the North America plate at a velocity of approximately 50 mm/yr. In the south of this mapped region, convergence between the northern extent of the Juan de Fuca plate (also known as the Explorer microplate) and North America plate dominate. North from the Explorer, Pacific, and North America plate triple junction, Pacific:North America motion is accommodated along the ~650-km-long Queen Charlotte fault system. Offshore of Haida Gwaii and to the southwest, the obliquity of the Pacific:North America plate motion vector creates a transpressional regime, and a complex mixture of strike-slip and convergent (underthrusting) tectonics. North of the Haida Gwaii islands, plate motion is roughly parallel to the plate boundary, resulting in almost pure dextral strike-slip motion along the Queen Charlotte fault. To the north, the Queen Charlotte fault splits into multiple structures, continuing offshore of southwestern Alaska as the Fairweather fault, and branching east into the Chatham Strait and Denali faults through the interior of Alaska. The plate boundary north and west of the Fairweather fault ultimately continues as the Alaska-Aleutians subduction zone, where Pacific plate lithosphere subducts beneath the North America plate at the Aleutians Trench. The transition is complex, and involves intraplate structures such as the Transition fault. The Pacific margin offshore British Columbia is one of the most active seismic zones in North America and has hosted a number of large earthquakes historically.

  14. Neogene ongoing tectonics in the Southern Ecuadorian Andes: analysis of the evolution of the stress field

    NASA Astrophysics Data System (ADS)

    Lavenu, A.; Noblet, C.; Winter, T. H.

    1995-01-01

    Microtectonic analysis of infilling deposits in South Ecuadorian Neogene basins brings to light a compressive stress field with σ1 along a NNE-SSW to NE-SW direction in the early Miocene, changing to an E-W direction in the Middle and Late Miocene. The syn-sedimentary deformations which affect the deposits of the basins suggest similar stress regimes due to a compressive ongoing tectonic system in the Miocene, for at least 15 Ma. There is a good correlation between rapid convergence in the Neogene and the time period during which the continental South Ecuadorian basins were deformed by compression (Quechua period).

  15. Melting-induced crustal production helps plate tectonics on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo L.; Rozel, Antoine; Tackley, Paul J.

    2016-04-01

    Within our Solar System, Earth is the only planet to be in a mobile-lid regime. It is generally accepted that the other terrestrial planets are currently in a stagnant-lid regime, with the possible exception of Venus that may be in an episodic-lid regime (Armann and Tackley, JGR 2012). Using plastic yielding to self-consistently generate plate tectonics on an Earth-like planet with strongly temperature-dependent viscosity is now well-established, but such models typically focus on purely thermal convection, whereas compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. For example, Rolf and Tackley (GRL, 2011) showed that the addition of a continent can reduce the critical yield stress for mobile-lid behaviour by a factor of around two. Moreover, it has been shown that the final tectonic state of the system can depend on the initial condition (Tackley, G3 2000 - part 2). Weller and Lenardic (GRL, 2012) found that the parameter range in which two solutions are obtained increases with viscosity contrast. We can also say that partial melting has a major role in the long-term evolution of rocky planets: (1) partial melting causes differentiation in both major elements and trace elements, which are generally incompatible (Hofmann, Nature 1997). Trace elements may contain heat-producing isotopes, which contribute to the heat loss from the interior; (2) melting and volcanism are an important heat loss mechanism at early times that act as a strong thermostat, buffering mantle temperatures and preventing it from getting too hot (Xie and Tackley, JGR 2004b); (3) mantle melting dehydrates and hardens the shallow part of the mantle (Hirth and Kohlstedt, EPSL 1996) and introduces viscosity and compositional stratifications in the shallow mantle due to viscosity variations with the loss of hydrogen upon melting (Faul and Jackson, JGR 2007; Korenaga and Karato, JGR 2008). We present a set of 2D spherical annulus simulations (Hernlund and Tackley, PEPI 2008) using StagYY (Tackley, PEPI 2008), which uses a finite-volume scheme for advection of temperature, a multigrid solver to obtain a velocity-pressure solution at each timestep, tracers to track composition, and a treatment of partial melting and crustal formation. We address the question of whether melting-induced crustal production changes the critical yield stress needed to obtain mobile-lid behaviour (plate tectonics). Our results show that melting-induced crustal production strongly influences plate tectonics on Earth-like planets by strongly enhancing the mobility of the lid, replacing a stagnant lid with an episodic lid, or greatly extending the time in which a smoothly evolving mobile lid is present in a planet. Finally, we show that our results are consistent with analytically predicted critical yield stress obtained with boundary layer theory, whether melting-induced crustal production is considered or not.

  16. An integrated profile of natural fractures in gas-bearing shale complex (Pomerania, Poland): based on structural profiling of oriented core and borehole logging data.

    NASA Astrophysics Data System (ADS)

    Bobek, Kinga; Jarosiński, Marek; Stadtmuller, Marek; Pachytel, Radomir; Lis-Śledziona, Anita

    2016-04-01

    Natural fractures in gas-bearing shales has significant impact on reservoir stimulation and increase of exploitation. Density of natural fractures and their orientation in respect to the maximum horizontal stress are crucial for propagation of technological hydraulic fractures. Having access to continuous borehole core profile and modern geophysical logging from several wells in the Pomeranian part of the Early Paleozoic Baltic Basin (Poland) we were able to compare the consistency of structural interpretation of several data sets. Although, final aim of our research is to optimize the method of fracture network reconstruction on a reservoir scale, at a recent stage we were focused on quantitative characterization of tectonic structures in a direct vicinity of boreholes. The data we have, cover several hundred meters long profiles of boreholes from the Ordovician and Silurian shale complexes. Combining different sets of data we broaden the scale of observation from borehole core (5 cm radius), through XRMI scan of a borehole wall (10 cm radius), up to penetration of a signal of an acoustic dipole logging (several tens of cm range). At the borehole core we examined the natural tectonic structures and mechanically significant features, like: mineral veins, fractured veins, bare fractures, slickensides, fault zones, stylolites, bedding plane and mechanically contrasting layers. We have also noticed drilling-induced features like centerline fractures and core disking, controlled by a recent tectonic stress. We have measured the orientation of fractures, their size, aperture and spacing and also describe the character of veins and tried to determine the stress regime responsible for fault slippage and fracture propagation. Wide range of analyzed features allowed us to discriminate fracture sets and reconstruct tectonic evolution of the complex. The most typical for analyzed shale complexes are steep and vertical strata-bound fractures that create an orthogonal joint system, which is locally disturbed by small-scale faults and fractures, associated with them. For regular joints, observed on borehole core, we have calculated variation of mean height and area and volume of mineralization for veins. Fracture density variation reveals good correlation with lithological shale formations which are comparable with Consistent Mechanical Units differentiated based on detailed lithological profiling and geophysical data (see Pachytel et al., this issue).We have also proposed a new method of a rose diagram construction presenting strike of fractures taking into account their size and angular error bar in strike determination. Each fracture was weighted with its length or aperture and an angular error was included by blurring the less credible records. This allowed for more precise adjustment of fracture sets direction in comparison to conventional diagrams without weighting procedure. Recently, we are processing acoustic dipole logs for anisotropy analyses aiming in comparison with density of fracture sets. Our study, which is conducted in the frame of ShaleMech Project (within Blue Gas Program) is in progress, thus the presented results should be considered as preliminary.

  17. The Role of Plate Tectonic-Climate Coupling and Exposed Land Area in the Development of Habitable Climates on Rocky Planets

    NASA Astrophysics Data System (ADS)

    Foley, Bradford J.

    2015-10-01

    The long-term carbon cycle is vital for maintaining liquid water oceans on rocky planets due to the negative climate feedbacks involved in silicate weathering. Plate tectonics plays a crucial role in driving the long-term carbon cycle because it is responsible for CO2 degassing at ridges and arcs, the return of CO2 to the mantle through subduction, and supplying fresh, weatherable rock to the surface via uplift and orogeny. However, the presence of plate tectonics itself may depend on climate according to recent geodynamical studies showing that cool surface temperatures are important for maintaining vigorous plate tectonics. Using a simple carbon cycle model, I show that the negative climate feedbacks inherent in the long-term carbon cycle are uninhibited by climate's effect on plate tectonics. Furthermore, initial atmospheric CO2 conditions do not impact the final climate state reached when the carbon cycle comes to equilibrium, as long as liquid water is present and silicate weathering can occur. Thus an initially hot, CO2 rich atmosphere does not prevent the development of a temperate climate and plate tectonics on a planet. However, globally supply limited weathering does prevent the development of temperate climates on planets with small subaerial land areas and large total CO2 budgets because supply limited weathering lacks stabilizing climate feedbacks. Planets in the supply limited regime may become inhospitable for life and could experience significant water loss. Supply limited weathering is less likely on plate tectonic planets because plate tectonics promotes high erosion rates and thus a greater supply of bedrock to the surface.

  18. Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation

    NASA Astrophysics Data System (ADS)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann; Faghih, Ali; Kusky, Timothy

    2012-09-01

    To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represents part of a deformation zone between the Arabian and Eurasian plates, and can be interpreted to result from the Central Iran intracontinental deformation acting as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveal that the metamorphic and igneous rocks suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. Comparison of deformation features in the mylonites and other structural features within the footwall unit leads to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching during Middle to Late Eocene extensional tectonics. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex was deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture.

  19. Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Bergner, A. G. N.; Strecker, M. R.; Trauth, M. H.; Deino, A.; Gasse, F.; Blisniuk, P.; Dühnforth, M.

    2009-12-01

    The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modern climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14C and 40Ar/ 39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.

  20. Tectonic stress pattern in the Chinese Mainland from the inversion of focal mechanism data

    NASA Astrophysics Data System (ADS)

    Wei, Ju; Weifeng, Sun; Xiaojing, Ma

    2017-04-01

    The tectonic stress pattern in the Chinese Mainland and kinematic models have been subjected to much debate. In the past several decades, several tectonic stress maps have been figured out; however, they generally suffer a poor time control. In the present study, 421 focal mechanism data up to January 2010 were compiled from the Global/Harvard CMT catalogue, and 396 of them were grouped into 23 distinct regions in function of geographic proximity. Reduced stress tensors were obtained from formal stress inversion for each region. The results indicated that, in the Chinese Mainland, the directions of maximum principal stress were ˜NE-SW-trending in the northeastern region, ˜NEE-SWW-trending in the North China region, ˜N-S-trending in western Xinjiang, southern Tibet and the southern Yunnan region, ˜NNE-SSW-trending in the northern Tibet and Qinghai region, ˜NW-SE-trending in Gansu region, and ˜E-W-trending in the western Sichuan region. The average tectonic stress regime was strike-slip faulting (SS) in the eastern Chinese Mainland and northern Tibet region, normal faulting (NF) in the southern Tibet, western Xinjiang and Yunnan region, and thrust faulting (TF) in most regions of Xinjiang, Qinghai and Gansu. The results of the present study combined with GPS velocities in the Chinese Mainland supported and could provide new insights into previous tectonic models (e.g., the extrusion model). From the perspective of tectonics, the mutual actions among the Eurasian plate, Pacific plate and Indian plate caused the present-day tectonic stress field in the Chinese Mainland.

  1. The Presence of Dense Material in the Deep Mantle: Implications for Plate Motion

    NASA Astrophysics Data System (ADS)

    Stein, C.; Hansen, U.

    2017-12-01

    The dense material in the deep mantle strongly interacts with the convective flow in the mantle. On the one hand, it has a restoring effect on rising plumes. On the other hand, the dense material is swept about by the flow forming dense piles. Consequently this affects the plate motion and, in particular, the onset time and the style of plate tectonics varies considerably for different model scenarios. In this study we apply a thermochemical mantle convection model combined with a rheological model (temperature- and stress-dependent viscosity) that allows for plate formation according to the convective flow. The model's starting condition is the post-magma ocean period. We analyse a large number of model scenarios ranging from variations in thickness, density and depth of a layer of dense material to different initial temperatures.Furthermore, we present a mechanism in which the dense layer at the core-mantle boundary forms without prescribing the thickness or the density contrast. Due to advection-assisted diffusion, long-lived piles can be established that act on the style of convection and therefore on plate motion. We distinguish between the subduction-triggered regime with early plate tectonics and the plume-triggered regime with a late onset of plate tectonics. The formation of piles by advection-assisted diffusion is a typical phenomenon that appears not only at the lower boundary, but also at internal boundaries that form in the layering phase during the evolution of the system.

  2. Venus tectonics - An overview of Magellan observations

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Smrekar, Suzanne E.; Bindschadler, Duane L.; Grimm, Robert E.; Kaula, William M.; Mcgill, George E.; Phillips, Roger J.; Saunders, R. S.; Schubert, Gerald; Squyres, Steven W.

    1992-01-01

    Magellan observations of the tectonic characteristics of highland regions on Venus are discussed with reference to competing theories for highland formation and evolution. Complex rigid terrain, or tessera, and the extent to which these elevated blocks of intensely deformed crust may be genetically related to highlands are then considered. Further, the tectonics of plains and lowland regions are examined, including deformation belts and coronae, and possible relations between such features and mantle dynamics. Implications of these observations for the global tectonics of Venus are discussed.

  3. Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies

    NASA Astrophysics Data System (ADS)

    Rangin, Claude

    2016-01-01

    Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.

  4. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    USGS Publications Warehouse

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  5. Tectono-Thermal History Modeling and Reservoir Simulation Study of the Nenana Basin, Central Alaska: Implications for Regional Tectonics and Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Dixit, Nilesh C.

    Central Interior Alaska is an active tectonic deformation zone highlighted by the complex interactions of active strike-slip fault systems with thrust faults and folds of the Alaska Range fold-and-thrust belt. This region includes the Nenana basin and the adjacent Tanana basin, both of which have significant Tertiary coal-bearing formations and are also promising areas (particularly the Nenana basin) with respect to hydrocarbon exploration and geologic carbon sequestration. I investigate the modern-day crustal architecture of the Nenana and Tanana basins using seismic reflection, aeromagnetic and gravity anomaly data and demonstrate that the basement of both basins shows strong crustal heterogeneity. The Nenana basin is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Flats fault zone. The Tanana basin has a fundamentally different geometry and is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. NE-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. Seismic refection data, well data, fracture data and apatite fission track data further constrain the tectonic evolution and thermal history of the Nenana basin. The Nenana basin experienced four distinct tectonic phases since Late Paleocene time. The basin initiated as a narrow half-graben structure in Late Paleocene with accumulation of greater than 6000 feet of sediments. The basin was then uplifted, resulting in the removal of up to 5000 feet of Late Paleocene sediments in Eocene to Oligocene time. During Middle to Late Miocene time, left lateral strike-slip faulting was superimposed on the existing half-graben system. Transtensional deformation of the basin began in the Pliocene. At present, Miocene and older strata are exposed to temperatures > 60°C in the deeper parts of the Nenana basin. Coals have significant capacity for sequestering anthropogenic CO 2 emissions and offer the benefit of enhanced coal bed methane production that can offset the costs associated with the sequestration processes. In order to do a preliminary assessment of the CO2 sequestration and coal bed methane production potential of the Nenana basin, I used available surface and subsurface data to build and simulate a reservoir model of subbituminous Healy Creek Formation coals. The petroleum exploration data were also used to estimate the state of subsurface stresses that are critical in modeling the orientation, distribution and flow behavior of natural coal fractures in the basin. The effect of uncertainties within major coal parameters on the total CO2 sequestration and coal bed methane capacity estimates were evaluated through a series of sensitivity analyses, experimental design methods and fluid flow simulations. Results suggest that the mature, unmineable Healy Creek Formation coals of the Nenana basin can sequester up to 0.41 TCF of CO2 while producing up to 0.36 TCF of CH4 at the end of 44-year forecast. However, these volumes are estimates and they are also sensitive to the well type, pattern and cap rock lithology. I used a similar workflow to evaluate the state of in situ stress in the northeastern North Slope province of Alaska. The results show two distinct stress regimes across the northeastern North Slope. The eastern Barrow Arch exhibits both strike-slip and normal stress regimes. Along the northeastern Brooks Range thrust front, an active thrust-fault regime is present at depths up to 6000 ft but changes to a strike-slip stress regime at depths greater than 6000 ft.

  6. Kinematic Evolution of the North-Tehran Fault (NTF), Alborz Mountains, Iran

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Ballato, P.; Strecker, M. R.; Shahpasandzadeh, M.; Friedrich, A.; Tabatabaei, S. H.

    2007-12-01

    The ENE-to NW-striking NTF is an active frontal thrust that delimits the Alborz Mountain range to the south with an up to 2000 m topographic break with respect to the adjacent Tehran plain. Eocene rocks of the Alborz range are thrusted over Neogene and Quaternary sediments of the alluvial Tehran embayment. The fault consists of right- stepping segments and merges to the east with the active Mosha-Fasham strike-slip fault (MFF). The complex tectonic history, involving changes in the direction of SHmax, has resulted in a composite tectonic landscape with inherited topographic and fault-kinematic fingerprints along the NTF. We therefore used a combination of fault-kinematic measurements and geomorphic observations to unravel the temporal tectonic evolution of this fault. Presently, the NTF is virtually inactive, although the tectonically overprinted landforms reflect tectonic activity on longer time scales during the Quaternary. Being located adjacent north of the Tehran megacity, there is thus considerable interest to decipher its youngest tectonic evolution and to better understand the relation with other fault systems. Our fault kinematic study has revealed an early dextral kinematic history for the NTF. Dextral strike-slip and oblique reverse faulting took place during NW-oriented shortening. The overall fault-geometry of the NTF suggests that it has evolved in relation to dextral transpression along the MFF. This early kinematic regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the fault segments. Fault linkage between the semi-independent ENE-striking NTF-segments and NW-striking thrusts (Emamzadeh Davud Fault [EDF], Purkan Vardij Thrust [PVT], NTF-prolongation) point towards an evolution into a nascent transpressional duplex. In this scenario the NTF segments constitute lateral ramps and the NW-striking faults act as frontal ramps. Topographic residuals, as an expression of high-uplift zones, indicate that the central segment of the NTF, incorporating the EDF was most effective in accommodating oblique convergence during this time. However, subtle knickpoints in the longitudinal river profiles crossing the PVT may indicate a relatively recent transfer of deformation onto this block. The youngest manifestations of deformation along the NTF, however, are left-lateral and normal faulting. This youngest phase of activity is documented by numerous striated and rotated conglomeratic clasts, meter-scale fault gouge zones with shear-sense indicators of oblique normal faulting, and multiple colluvial wedges with drag phenomena. Rupture traces and filled extensional cracks reaching the surface also document the seismogenic nature of these features. Since recent left-lateral transtension is also known from neighboring faults, e.g., the eastern MFF, our observations suggest that this youngest phase of tectonic activity of the NTF is a regional phenomenon, rather than the result of locally-determined geometries.

  7. Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, José Miguel; Booth-Rea, Guillermo; Azañón, José Miguel; Torcal, Federico

    2006-08-01

    Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest-southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa-Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.

  8. Transpressional Structure in Chiayi Area, Taiwan: Insight from the 2017 ML5.1 Zhongpu Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Feng, K. F.; Huang, H. H.

    2017-12-01

    The Chiayi area is located at the deformation front of active fold-and-thrust belt of Taiwan, where the fault system is composed primarily of a series of north-south-trending east-dipping thrusts and also an east-west-trending strike-slip fault (Meishan Fault, MSF) with right-lateral faulting. On 24th May 2017, a ML 5.1 earthquake occurred at Zhongpu, Chiayi (namely Zhongpu earthquake), however, shows a left-lateral strike-slip faulting distinct from the known structure in the area. The distribution of the reported aftershocks is difficult to distinguish the actual fault plane. To determine the fault plane of this abnormal earthquake and investigate its structural relationships to the regional tectonics, we relocate the earthquake sequence and estimate the rupture directivity of the mainshock by using the 3-D double difference hypocenter relocation method (Lin, 2013) and the 3-D directivity moment tensor inversion method (DMT, Huang et al., 2017, submitted). The DMT results show that the rupture directivity of the Zhongpu earthquake is west- and down-ward along the east-west fault plane, which also agrees with east-west-distributed aftershocks after relocation. As a result, the Zhongpu earthquake reveals an undiscovered east-west-trending structure which is sub-parallel with the MSF but with opposite faulting direction, exhibiting a complex transpressional tectonic regime in the Chiayi area.

  9. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  10. Oblique reactivation of lithosphere-scale lineaments controls rift physiography - the upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.

    2018-04-01

    Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of the lineament is reactivated in a range of tectonic styles, including both sinistral and dextral strike-slip motions, with the geometry and kinematics of these faults often inconsistent with what may otherwise be inferred from regional tectonics alone. Understanding these different styles of reactivation not only allows us to better understand the influence of sub-crustal lithospheric structure on rifting but also offers insights into the prevailing stress field during regional tectonic events.

  11. On the use of imaginary faults in palaeostress analysis

    NASA Astrophysics Data System (ADS)

    Shan, Yehua; Liang, Xinquan

    2017-11-01

    The imaginary fault refers to the counterpart of a certain given fault that has a similar expression about the Wallace-Bott hypothesis. It is included to further reduce the feasible fields for the principal stress directions using the right dihedra method. The given fault and its imaginary fault have a similar dip-slip sense under the extensional or compressional regime but, as proved in this paper, a different dip-slip sense under the strike-slip regime. Their relation in dip-slip sense does no change with the rotation of the coordinate system, thus making possible the general use in the reduction of the imaginary faults under any tectonic regime. A procedure for this use is proposed and applied to a real example to demonstrate the feasibility of this method.

  12. Evolution Process and Structural Analysis of Precambrian Jirisan Metamorphic and Sancheong Anorthosite Complexes in the Jirisan Province, Yeongnam Massif, Korea

    NASA Astrophysics Data System (ADS)

    Kang, J. H.; Lee, D. S.

    2016-12-01

    The Jirisan metamorphic complex consists mainly of schist, blastoporphyritic granite gneiss, granitic gneiss, leucocratic gneiss, biotite gneiss, banded gneiss, migmatitic gneiss and granite gneiss. The Paleoproterozoic (1.87 1.79 Ga) Sancheong anorthosite complex, which intrude it, is classified into massive-type and foliation-type Sancheong anorthosite, Fe-Ti ore body, and mafic granulite which were formed from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma. These complexes went at least through three times of ductile deformation during Early Proterozoic Late Paleozoic. The D1 deformation formed sheath or "A" type folds and its characteristic orientation was uncertain due to the intensive multi-deformation superimposed after that. The D2 deformation occurred under the EW- or WNW-directed tectonic compression, and formed a regional NS or NNE trend of isoclinal and intrafolial folds and an extensive ductile shear zone accompanied by mylonitization. The D3 deformation occurred under the NS- or NNW-directed tectonic compression environment, and formed an EW or ENE trend of open and tight folds and a partial semibrittle shear zone accompanied by mylonitization, and rearranged the NS-trend pre-D3 structural elements into (E)NE or (W)NW direction. The D2 deformation generally increases from the center toward the margin of Sancheong anorthosite complex but is more intensive in the eastern than western parts of Sancheong anorthosite complex. While the D3 deformation is inversely more intensive in the its western than eastern parts. The D2 and D3 deformations are closely related to the distribution features of Sancheong anorthosite complex. These three tectonic events are expected to give important information in understanding and reconstructing the tectonic movement after the formation of Columbia Supercontinent as well as the present NS-trend tectonic frame of the Jirisan province of the Yeongnam massif, the Korean Peninsula.

  13. Tectono-stratigraphy and low-grade metamorphism of Late Permian and Early Jurassic accretionary complexes within the Kurosegawa belt, Southwest Japan: Implications for mechanisms of crustal displacement within active continental margin

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kurihara, Toshiyuki; Mori, Hiroshi

    2013-04-01

    We characterize the tectono-stratigraphic architecture and low-grade metamorphism of the accretionary complex preserved in the Kurosegawa belt of the Kitagawa district in eastern Shikoku, Southwest Japan, in order to understand its internal structure, tectono-metamorphic evolution, and assessments of displacement of continental fragments within the complex. We report the first ever documented occurrence of an Early Jurassic radiolarian assemblage within the accretionary complex of the Kurosegawa belt that has been previously classified as the Late Permian accretionary complex, thus providing a revised age interpretation for these rocks. The accretionary complex is subdivided into four distinct tectono-stratigraphic units: Late Permian mélange and phyllite units, and Early Jurassic mélange and sandstone units. The stratigraphy of these four units is structurally repeated due to an E-W striking, steeply dipping regional fault. We characterized low-grade metamorphism of the accretionary complex via illite crystallinity and Raman spectroscopy of carbonaceous material. The estimated pattern of low-grade metamorphism showed pronounced variability within the complex and revealed no discernible spatial trends. The primary thermal structure in these rocks was overprinted by later tectonic events. Based on geological and thermal structure, we conclude that continental fragments within the Kurosegawa belt were structurally translated into both the Late Permian and Early Jurassic accretionary complexes, which comprise a highly deformed zone affected by strike-slip tectonics during the Early Cretaceous. Different models have been proposed to explain the initial structural evolution of the Kurosegawa belt (i.e., micro-continent collision and klippe tectonic models). Even if we presuppose either model, the available geological evidence requires a new interpretation, whereby primary geological structures are overprinted and reconfigured by later tectonic events.

  14. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs

    NASA Astrophysics Data System (ADS)

    de Saint Blanquat, Michel; Horsman, Eric; Habert, Guillaume; Morgan, Sven; Vanderhaeghe, Olivier; Law, Richard; Tikoff, Basil

    2011-03-01

    The close relationship between crustal magmatism, an expression of heat dissipation, and tectonics, an expression of stress dissipation, leads to the question of their mutual relationships. Indeed, the low viscosity of magmas and the large viscosity contrast between magmas and surrounding rocks favor strain localization in magmas, and then possible "magmatic" initiation of structures at a wide range of scales. However, new data about 3-d pluton shape and duration of pluton construction perturb this simple geological image, and indicate some independence between magmatism and tectonics. In some cases we observe a direct genetic link and strong arguments for physical interactions between magmas and tectonics. In other cases, we observe an absence of these interactions and it is unclear how magma transfer and emplacement are related to lithospheric-plate dynamics. A simple explanation of this complexity follows directly from the pulsed, incremental assembly of plutons and its spatial and temporal characteristics. The size of each pluton is related to a magmatic pulsation at a particular time scale, and each of these coupled time/space scales is related to a specific process: in small plutons, we can observe the incremental process, the building block of plutons; in larger plutons, the incremental process is lost, and the pulsation, which consists of a cycle of injections at different timescales, must be related to the composition and thermal regime of the source region, itself driving magmatic processes (melting, segregation, and transfer) that interact with tectonic boundary conditions. The dynamics of pulsed magmatism observed in plutonic systems is then a proxy for deep lithospheric and magmatic processes. From our data and a review of published work, we find a positive corelation between volume and duration of pluton construction. The larger a pluton, the longer its construction time. Large/fast or small/slow plutons have not been identified to date. One consequence of this observation is that plutonic magmatic fluxes seem to be comparable from one geodynamic setting to another and also over various geologic time spans. A second consequence of this correlation is that small plutons, which are constructed in a geologically short length of time, commonly record little about tectonic conditions, and result only from the interference between magma dynamics and the local geologic setting. The fast rate of magma transfer in the crust (on the order of cm/s) relative to tectonic rates (on the order of cm/yr) explain why the incremental process of pluton construction is independent of - but not insensitive to - the tectonic setting. However, in large plutonic bodies, which correspond to longer duration magmatic events, regional deformation has time to interact with the growing pluton and can be recorded within the pluton-wall rock structure. Magma transfer operates at a very short timescale (comparable to volcanic timescales), which can be sustained over variable periods, depending on the fertility of the magma source region and its ability to feed the system. The fast operation of magmatic processes relative to crustal tectonic processes ensures that the former control the system from below.

  15. The influence of water on mantle convection and plate tectonics

    NASA Astrophysics Data System (ADS)

    Brändli, S.; Tackley, P. J.

    2017-12-01

    Water has a significant influence to mantle rheology and therefore also to the convection of the mantle and the plate tectonics. The viscosity of the mantle can be decreased by up to two orders of magnitude when water is present in the mantle. Another effect of the water is the change in the solidus of the mantle and therefore the melting regime. This two effects of water in the mantle have a significant influence to mantle convection and plate tectonics. The influx of water to the mantle is driven by plate tectonics as wet oceanic lithosphere is subducted into the mantle and then brought back to the lithosphere and the surface by MOR-, arc- and hotspot volcanism. Studies show that the amount of water in the mantle is about three times bigger than the amount of water in the oceans. To model this water cycle multiple additions to StagYY are necessary. With the enhanced code we calculated multiple steady state models with a wide range of parameters to study the effect of water on the mantle rheology and the behavior of the lithosphere. The results will help us to understand the earths interior and its reaction and behavior under partially hydrated conditions.

  16. Plate-tectonic boundary formation by grain-damage and pinning

    NASA Astrophysics Data System (ADS)

    Bercovici, David

    2015-04-01

    Shear weakening in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. I present continued work on a theoretical model for lithospheric shear-localization and plate generation through damage, grain evolution and Zener pinning in two-phase (polycrystalline) lithospheric rocks. Grain size evolves through the competition between coarsening, which drives grain-growth, with damage, which drives grain reduction. The interface between phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary shear-localizing feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. This theory has been applied recently to the emergence of plate tectonics in the Archean by transient subduction and accumulation of plate boundaries over 1Gyr, as well as to rapid slab detachment and abrupt tectonic changes. New work explores the saturation of interface damage at low interface curvature (e.g., because it is associated with larger grains that take up more of the damage, and/or because interface area is reduced). This effect allows three possible equilibrium grain-sizes for a given stress; a small-grain-size high-shear state in diffusion creep, a large grain-size low shear state in dislocation creep, and an intermediate state (often near the deformation map phase-boundary). The low and high grain-size states are stable, while the intermediate one is unstable. This implies that a material deformed at a given stress can acquire two stable deformation regimes, a low- and high- shear state; these are indicative of plate-like flows, i.e, the coexistence of both slowly deforming plates and rapidly deforming plate boundaries.

  17. Philippine microplate tectonics and hydrocarbon exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, J.J. Jr.

    1986-07-01

    Hydrocarbon traps in the Philippine Islands developed during a long, complex history of microplate tectonics. Carbonate and clastic stratigraphic traps formed during Mesozoic and early Cenozoic rifting and drifting. Hydrocarbons, generated in deep rift basins, migrated to the traps during drifting. Later Cenozoic compressional tectonic activity and concomitant faulting enhanced some traps and destroyed others. Seismic data offshore from Palawan Island reveal the early trap histories. Later trap histories can be interpreted from seismic, outcrop, and remote-sensing data. Understanding the microplate tectonic history of the Philippines is the key to interpreting trap histories.

  18. Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China

    NASA Astrophysics Data System (ADS)

    Du, Qiuding; Wang, Zhengjiang; Wang, Jian; Deng, Qi; Yang, Fei

    2016-03-01

    Meso- to Neoproterozoic magmatic events are widespread in the Yangtze Block. The geochronology and tectonic significance of the Shennongjia Group in the Yangtze Block are still highly controversial. An integrated geochronology and geochemistry approach provides new insights into the geochronological framework, tectonic setting, magmatic events, and basin evolution of the northern Yangtze Block. Our new precise sensitive high-resolution ion microprobe U-Pb data indicate a deposition age of 1180 ± 15 Ma for the Shicaohe Formation subalkaline basaltic tuff that is geochemically similar to modern intracontinental rift volcanic rocks. The integration of available geochemical data together with our new U-Pb ages indicates the Shicaohe Formation subalkaline basaltic tuff formed ca. 1180 in a continental rift-related setting on a passive continental margin. The Shennongjia Group is topped by the Zhengjiaya Formation volcanic sequence, indicating arc-related igneous events at 1103 Ma. The transition of the late Mesoproterozoic tectonic regime from intracontinental extension to convergence occurred between ca. 1180 and 1103 Ma in the northern Yangtze Block. Tectonic evolution in the Neoproterozoic led to accretion along the northern margin of the Yangtze Block. These results provide geochronological evidence, which is of utmost importance for reconfiguration of the chronostratigraphic framework and for promoting research on Mesoproterozoic strata in China, thereby increasing understanding of magmatic events and basin evolutionary history in the northern Yangtze Block.

  19. Mid-tertiary volcano-tectonic development of the Southwestern Cordillera of North America

    NASA Technical Reports Server (NTRS)

    Nelson, Kerri L.

    1987-01-01

    In the Southwestern Cordillera (SC) of North America, volcanic style changed from dominantly calcalkaline stratovolcanoes to caldera-related magmatism during the mid-Tertiary. The dominant tectonic process affecting the region during this time was convergence of the Farallon and North American Plates. The change in style of volcanism indicates a change in the operative stress regime: compressional for the earlier calcalkaline volcanism and tensional for development of the calderas. The development of the centers were compared to evaluate the volcano-tectonic relationship of caldera development within and between centers and determine the relationships between the earlier calcalkaline and later caldera-style volcanisms. The calderas exhibit three distinct stages of development that are closely associated with the East Pacific Rise/trench collision. The spatial and temporal association of the calcalkaline and caldera-related volcanism argues for the SC representing a region of continued arc magnetism in which the style of volcanism varied in response to differences in regional stresses.

  20. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling

    DTIC Science & Technology

    2010-09-01

    crustal structures. But short periods are difficult to measure, especially in tectonically and geologically complex areas. On the other hand, gravity...East Africa Rift System Knowledge of crustal and upper mantle structure is of importance for understanding East Africa’s geodynamic evolution and for...area with less lateral heterogeneity but great tectonic complexity. To increase the effectiveness of the technique in this region, we explore gravity

  1. The Cadiz margin study off Spain: An introduction

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.

    1999-01-01

    The Cadiz continental margin of the northeastern Gulf of Cadiz off Spain was selected for a multidisciplinary project because of the interplay of complex tectonic history between the Iberian and African plates, sediment supply from multiple sources, and unique Mediterranean Gateway inflow and outflow currents. The nature of this complex margin, particularly during the last 5 million years, was investigated with emphasis on tectonic history, stratigraphic sequences, marine circulation, contourite depositional facies, geotechnical properties, geologic hazards, and human influences such as dispersal of river contaminants. This study provides an integrated view of the tectonic, sediment supply and oceanographic factors that control depositional processes and growth patterns of the Cadiz and similar modem and ancient continental margins.

  2. The influence of mantle refertilisation on the formation of TTGs in a plume-lid tectonics setting

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2017-12-01

    Higher amounts of radiogenic elements and leftover primordial heat in the early Earth both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Early Earth. The increased upper mantle temperature precludes the modern plate tectonics regime and stabilizes another type of global tectonics often called plume-lid tectonics (Fischer and Gerya, 2016) or 'plutonic squishy lid' tectonics(Rozel et al., 2017). Plume-lid tectonics is dominated by intrusive mantle-derived magmatism which results in a thickening of the overlaying crust. The overthickened basaltic crust is transformed into eclogite and episodically recycled back into the mantle. Melt extraction from hydrated partially molten basaltic crust leads to the production of primordial tonalite-trondhjemite-granodiorite (TTG) continental crust. TTGs make up over half of the Archean crust and can be classied into low-, medium- and high-pressure types (Moyen, 2011). Field studies show that the three different types (low-, medium- and high-pressure) appear in a ratio of 20%, 60% and 20% (Moyen, 2011). Numerical models of plume-lid tectonics generally agree very well with these values (Rozel et al., 2017) but also show that the ratio between the three different TTG types varies greatly during the two phases of the plume-lid tectonics cycle: growth phase and overturn phase. Melt productivity of the mantle decreases rapidly after removal of the garnet and clinopyroxene components. Addition of new garnet and clinopyroxene-rich material into the harzburgitic residue should lead to a refertilised lherzolite which could potentially yield new melt (Bédard, 2006). Mixing of eclogite drips back into the mantle can lead to the geochemical refertilisation of already depleted mantle and allow for further extraction of melt (Bédard, 2006). We will explore this process of mantle refertilisation in our 3D petrological-magmatic-thermomechanical numerical modelling experiments and study its influence on the three types of TTGs during different phases of the plume-lid tectonics cycle.

  3. An evaporite-bearing accretionary complex in the northern front of the Betic-Rif orogen

    NASA Astrophysics Data System (ADS)

    Pérez-Valera, Fernando; Sánchez-Gómez, Mario; Pérez-López, Alberto; Pérez-Valera, Luis Alfonso

    2017-06-01

    The Guadalquivir Accretionary Complex forms a largely oblique prism at the northern edge of the Betic-Rif orogen, where Miocene sediments plus allochthonous evaporite-bearing units were accreted during the displacement of the Alborán Domain toward the west. Traditional interpretations end the tectonic structuring of the Betic Cordillera at the present topographic front, beyond which gravitational and/or diapiric processes would predominate. However, this study shows pervasive tectonic deformation in the outer prism with coherent oblique shortening kinematics, which is achieved through an alternation of roughly N-S arcuate thrust systems connected by E-W transfer fault zones. These structures accord well with the geophysical models that propose westward rollback subduction. The main stage of tectonic activity occurred in the early-middle Miocene, but deformation lasted until the Quaternary with the same kinematics. Evaporite rocks played a leading role in the deformation as evidenced by the suite of ductile structures in gypsum distributed throughout the area. S- and L- gypsum tectonites, scaly clay fabrics, and brittle fabrics coexist and consistently indicate westward motion (top to 290°), with subordinate N-S contraction almost perpendicular to the transfer zones. This work reveals ductile tectonic fabrics in gypsum as a valuable tool to elucidate the structure and deformational history of complex tectonic mélanges involving evaporites above the décollement level of accretionary wedges.

  4. Identifying tectonic parameters that affect tsunamigenesis

    NASA Astrophysics Data System (ADS)

    van Zelst, I.; Brizzi, S.; Heuret, A.; Funiciello, F.; van Dinther, Y.

    2016-12-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact thatsome regions produce more tsunamis than others indicates that tectonics could influencetsunamigenesis. Here, we complement a global earthquake database that contains geometrical,mechanical, and seismicity parameters of subduction zones with tsunami data. We statisticallyanalyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson'sproduct-moment correlation coefficients reveal high positive correlations of 0.65 between,amongst others, the maximum water height of tsunamis and the seismic coupling in a subductionzone. However, these correlations are mainly caused by outliers. The Spearman's rank correlationcoefficient results in statistically significant correlations of 0.60 between the number of tsunamisin a subduction zone and subduction velocity (positive correlation) and the sediment thickness atthe trench (negative correlation). Interestingly, there is a positive correlation between the latter andtsunami magnitude. These bivariate statistical methods are extended to a binary decision tree(BDT) and multivariate analysis. Using the BDT, the tectonic parameters that distinguish betweensubduction zones with tsunamigenic and non-tsunamigenic earthquakes are identified. To assessphysical causality of the tectonic parameters with regard to tsunamigenesis, we complement ouranalysis by a numerical study of the most promising parameters using a geodynamic seismic cyclemodel. We show that the inclusion of sediments on the subducting plate results in an increase insplay fault activity, which could lead to larger vertical seafloor displacements due to their steeperdips and hence a larger tsunamigenic potential. We also show that the splay fault is the preferredrupture path for a strongly velocity strengthening friction regime in the shallow part of thesubduction zone, which again increases the tsunamigenic potential.

  5. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record

    USGS Publications Warehouse

    Weems, R.E.; Lewis, W.C.

    2002-01-01

    Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.

  6. Magmatic dyke swarms of the south shetland islands volcanic arc, west-antarctica - tracers of geodynamic history

    NASA Astrophysics Data System (ADS)

    Kraus, St.; Miller, H.

    2003-04-01

    Magmatic dykes are essential components of volcanic arcs, following joint systems and fracture zones. This work aims to reconstruct the deformational and intrusive history of the northern part of the Antarctic Peninsula by combining structural information with the geochemistry, isotopy and age of the dykes. On the South Shetland Islands volcanic activity began about 130 Ma ago. From Mid to Late Eocene (49-34 Ma) the northern Antarctic Peninsula and southern South America underwent extensional tectonics, which led to sea-floor spreading in the Drake Passage 28 Ma ago. Subsequent slab-rollback caused arc-extension and the opening of the Bransfield Rift as a backarc-basin between 4 and 1.3 Ma ago. Very slow subduction (1mm/a) at the South Shetland trench continues until the present day. Several changes of subduction direction caused crucial variations regarding the tectonic regime in the overlying South Shetland block, being the reason for the shifting strike of the dykes. Several dyke systems were mapped in areas of up to 100000m2, with the outcrop situation being good enough to observe plenty of relative age relationships. ICP-MS geochemical analysis on 132 dykes shows, as expected, that the majority of them correspond to a typical subduction-related calcalcalic suite, ranging from basalts to rhyolites. Nevertheless, some dykes show shoshonitic characteristics and are maybe related to an early stage extensional crustal regime. This is supported by the relative ages observed in the field, indicating, that these dykes belong to the oldest ones outcropping in the investigated area. In one case, the geochemical behaviour of the dyke corresponds clearly to adacitic conditions, being a hint on partially molten subducted oceanic crust. In several areas (e.g. Potter Peninsula, King George Island, and Hurd Peninsula, Livingston Island) a strong correlation between chemism and strike of the dykes - and therefore the tectonic regime at the time of intrusion - is observed. Ce/Pb, Zr/Hf and also some Ba/HFSE ratios have been used as a powerful means to distinguish the different intrusive events. Thus, combining the relative ages observed in the field with the geochemical information, on Hurd Peninsula (Livingston Island) 6 different intrusive events are traceable. In contrast to the subduction-related, mostly calcalcalic dykes outcropping on the rest of the South Shetland Islands, the quaternary dykes of Penguin Island are composed of Ol-bearing basalt of slightly more alcalic chemism. They are not related to the island arc part of subduction in that area but to the recent opening of the Bransfield Strait as a backarc-basin. The results prove the good suitability of magmatic dyke systems for tracing the change of the tectonic regime over time and space. Present work includes extensive isotope geochemical analysis (Sr, Nd, Pb) to get a hint on the magma sources and their possible changes as a result of changing geodynamic parameters.

  7. Thresholds for soil cover and weathering in mountainous landscapes

    NASA Astrophysics Data System (ADS)

    Dixon, Jean; Benjaram, Sarah

    2017-04-01

    The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.

  8. Seismo-stratigraphic evolution of the northern Austral Basin and its possible relation to the Andean tectonics, onshore Argentina.

    NASA Astrophysics Data System (ADS)

    Sachse, Victoria; Anka, Zahie; Pagan, Facundo; Kohler, Guillermina; Cagnolatti, Marcelo; di Primio, Rolando; Rodriguez, Jorge

    2013-04-01

    The Austral Basin is situated in a formerly and recently high active tectonic zone in southern Argentina. The opening of the South Atlantic to the east, the opening of the Drake Passage in the south, and the subduction related to the rise of the Andes to the west, had major influence on the study area. To identify the impact of the tectonic events on basin geometry, sediment thickness and depocenter migration through time, 2D seismic interpretation was performed for an area of approx. 180.000 km² covering the onshore northern Austral Basin. A total of 10 seismic horizons were mapped and tied to the stratigraphy from well reports, representing 9 syn- and post- rift sequences. The main units are: Basement (U1), Jurassic Tobifera Formation (U2), Early Cretaceous (U3), Late Cretaceous (U4), sub-unit Campanian (U4A), Paleocene (U5), Eocene (U6), Oligocene (U7), Miocene (U8), and Plio-Pleistocene (U9). Main tectonic events are identified representing the break-up phase forming graben systems and the evolution from the ancient backarc Rocas Verdes Basin to the foreland Austral Basin. Inversion and changes in the tectonic regime are concomitant with onlapping and thinning of the base of the Upper Cretaceous to Campanian sediments, while the Top of the Upper Cretaceous represents a Maastrichtian unconformity. Units depth maps show a triangular geometry since the Jurassic, tracing the north-eastern basement high and deepening to the south. Since the Campanian the former geometry of basin fill changed and deepening to the south stopped. Beginning of the foreland phase is assigned to this time as well as changes in the stress regime. Paleogene times are marked by a relatively high sedimentation rate coupled with enduring thermal subsidence, on-going rise of the Andes and changes in the convergence rates of the Nazca relative to the South American plate. Onset of sediment supply from the Andes (Incaic phase) resulted in enhanced sedimentation rates during the Paleocene, coupled with important basin subsidence at Andes foothills. An E-W transpressive deformation occurred during late Oligocene and Miocene, initiated by significant changes of plate motion between Nazca and South American plate, driving the Quechua phase of the Andean uplift. Hence, enhanced sedimentation from the rising Andes was renewed since a late Miocene unconformity.

  9. Fractal analysis of earthquake swarms of Vogtland/NW-Bohemia intraplate seismicity

    NASA Astrophysics Data System (ADS)

    Mittag, Reinhard J.

    2003-03-01

    The special type of intraplate microseismicity with swarm-like occurrence of earthquakes within the Vogtland/NW-Bohemian Region is analysed to reveal the nature and the origin of the seismogenic regime. The long-term data set of continuous seismic monitoring since 1962, including more than 26000 events within a range of about 5 units of local magnitude, provides an unique database for statistical investigations. Most earthquakes occur in narrow hypocentral volumes (clusters) within the lower part of the upper crust, but also single event occurrence outside of spatial clusters is observed. Temporal distribution of events is concentrated in clusters (swarms), which last some days until few month in dependence of intensity. Since 1962 three strong swarms occurred (1962, 1985/86, 2000), including two seismic cycles. Spatial clusters are distributed along a fault system of regional extension (Leipzig-Regensburger Störung), which is supposed to act as the joint tectonic fracture zone for the whole seismogenic region. Seismicity is analysed by fractal analysis, suggesting a unifractal behaviour of seismicity and uniform character of seismotectonic regime for the whole region. A tendency of decreasing fractal dimension values is observed for temporal distribution of earthquakes, indicating an increasing degree of temporal clustering from swarm to swarm. Following the idea of earthquake triggering by magma intrusions and related fluid and gas release into the tectonically pre-stressed parts of the crust, a steady increased intensity of intrusion and/or fluid and gas release might account for that observation. Additionally, seismic parameters for Vogtland/NW-Bohemia intraplate seismicity are compared with an adequate data set of mining-induced seismicity in a nearby mine of Lubin/Poland and with synthetic data sets to evaluate parameter estimation. Due to different seismogenic regime of tectonic and induced seismicity, significant differences between b-values and temporal dimension values are observed. Most significant for intraplate seismicity are relatively low fractal dimension values for temporal distribution. That observation reflects the strong degree of temporal earthquake clustering, which might explain the episodic character of earthquake swarms and support the idea of push-like triggering of earthquake avalanches by intruding magma.

  10. Petrogenesis and tectonic implications of an Early Jurassic magmatic arc from South to East China Seas

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Xu, C.

    2017-12-01

    Granite and diorite samples by drilling in northeastern South China Sea (SCS) and southwestern East China Sea (ECS) contribute key information to understanding tectonic regime of South China Block in Jurassic time. SIMS and LA-ICPMS U-Pb zircon analyses yield ages ranging from 195±2 Ma to 198±1 Ma for samples from well LF3511 in SCS, and an age of 187±1 Ma for the sample from well ESC635 in ECS. They are low temperature I-type granitoids with strongly enriched fluid-mobile elements and depleted Nb-Ta features, indicating subduction arc-related magmatism in their origin. Sr-Nd isotopic compositions for samples from SCS ((87Sr/86Sr)i=0.705494-0.706623, ɛNdt=-0.9 to +2.2) and sample from ECS ((87Sr/86Sr)i=0.705200, ɛNdt=1.1) suggest an affinity with evolved mantle-derived melts. The granitoids found from NE SCS, SE Taiwan to the SW ECS could spatially define an Early Jurassic NE-SW-trending Dongsha-Talun-Yandang low-temperature magmatic arc zone along the East Asian continental margin, paired with Jurassic accretionary complexes exposed in SW Japan, E Taiwan to the W Philippines. Its geodynamic context is associated with oblique subduction of the paleo-Pacific slab beneath Eurasia, as a mechanism responsible for early Jurassic lithospheric extension with magmatism in the South China Block.

  11. Fingerprinting stress: Stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding—The case of the Monte Nero anticline in the Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille

    2016-07-01

    In this study we show for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a fold-and-thrust belt. First, we present a new method that gives access to stress inversion using tectonic stylolites without access to the stylolite surface and compare results with calcite twin inversion. Second, we use our new approach to present a high-resolution deformation and stress history that affected Meso-Cenozoic limestone strata in the Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). In this area an extensive stylolite-joint/vein network developed during layer-parallel shortening (LPS), as well as during and after folding. Stress fingerprinting illustrates how stress in the sedimentary strata did build up prior to folding during LPS. The stress regime oscillated between strike slip and compressional during LPS before ultimately becoming strike slip again during late stage fold tightening. Our case study shows that high-resolution stress fingerprinting is possible and that this novel method can be used to unravel temporal relationships that relate to local variations of regional orogenic stresses. Beyond regional implications, this study validates our approach as a new powerful toolbox to high-resolution stress fingerprinting in basins and orogens combining joint and vein analysis with sedimentary and tectonic stylolite and calcite twin inversion techniques.

  12. MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Summeren, Joost; Conrad, Clinton P.; Gaidos, Eric, E-mail: summeren@hawaii.edu

    Recently discovered exoplanets on close-in orbits should have surface temperatures of hundreds to thousands of Kelvin. They are likely tidally locked and synchronously rotating around their parent stars and, if an atmosphere is absent, have surface temperature contrasts of many hundreds to thousands of Kelvin between permanent day and night sides. We investigated the effect of elevated surface temperature and strong surface temperature contrasts for Earth-mass planets on the (1) pattern of mantle convection, (2) tectonic regime, and (3) rate and distribution of partial melting, using numerical simulations of mantle convection with a composite viscous/pseudo-plastic rheology. Our simulations indicate thatmore » if a close-in rocky exoplanet lacks an atmosphere to redistribute heat, a {approx}>400 K surface temperature contrast can maintain an asymmetric degree 1 pattern of mantle convection in which the surface of the planet moves preferentially toward subduction zones on the cold night side. The planetary surface features a hemispheric dichotomy, with plate-like tectonics on the night side and a continuously evolving mobile lid on the day side with diffuse surface deformation and vigorous volcanism. If volcanic outgassing establishes an atmosphere and redistributes heat, plate tectonics is globally replaced by diffuse surface deformation and volcanism accelerates and becomes distributed more uniformly across the planetary surface.« less

  13. Formation of cratonic lithosphere during the initiation of plate tectonics

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Beall, A.; Cooper, C. M.

    2017-12-01

    The Earth's oldest near-surface material, the cratonic crust, is typically underlain by unusually thick Archean lithosphere (<300 km). This cratonic lithosphere likely thickened in a high compressional stress environment. Mantle convection in the hotter Archean Earth would have imparted relatively low stresses on the lithosphere, whether or not tectonics was operating, so a high stress signal from the early Earth is paradoxical. We propose that a rapid transition, from a stagnant lid Earth to the onset of plate tectonics, generated the high stresses required to thicken the cratonic lithosphere. Numerical calculations are used to demonstrate that an existing buoyant and strong layer, representing harzburgite and felsic crust, can thicken and stabilize during the lid-breaking event. The peak compressional stress experienced by lithosphere is 3-4 higher than for the stagnant lid or mobile lid regimes immediately before and after. It is plausible that the cratonic lithosphere has still not returned to this high stress-state, explaining its stability. The lid-breaking thickening event reproduces craton features previously attributed to subduction: thrust structures, assembled crustal fragments and transport of basaltic upper crust to depths required to generate felsic melt. Palaeoarchean `pre-tectonic' structures can also survive the lid-breaking event, acting as strong crustal rafts. Together, the results indicate that the signature of a catastrophic switch, from a stagnant lid Earth to the initiation of plate tectonics, has been captured and preserved in the unusual characteristics of cratonic crust and lithosphere.

  14. Viscoelastic Lithosphere Response and Stress Memory of Tectonic Force History (Invited)

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.

    2009-12-01

    While great attention is often paid to the details of creep deformation mechanisms, brittle failure and their compositional controls when predicting the response of lithosphere to tectonic forces, the lithosphere’s elastic properties are usually neglected; a viscous rheology alone is often used to predict the resulting distribution of stress with depth or to determine lithosphere strength. While this may simplify geodynamic modelling of lithosphere response to tectonic processes, the omission of the elastic properties can often give misleading or false predictions. The addition of the elastic properties of lithosphere material in the form of a visco-elastic rheology results is a fundamentally different lithosphere response. This difference can be illustrated by examining the application of horizontal tectonic force to a section of lithosphere incorporating the brittle-visco-elastic response of each infinitesimal lithosphere layer with temperature and stress dependent viscous rheology. The transient response of a visco-elastic lithosphere to a constant applied tectonic force and the resulting distribution of stress with depth are substantially different from that predicted by a viscous lithosphere model, with the same lithosphere composition and temperature structure, subjected to a constant lateral strain rate. For visco-elastic lithosphere subject to an applied horizontal tectonic force, viscous creep in the lower crust and mantle leads to stress decay in these regions and to stress amplification in the upper lithosphere through stress redistribution. Cooling of lithosphere with a visco-elastic rheology results in thermal stresses which, as a consequence of stress dissipation by creep and brittle failure, results in a complex and sometimes counter-intuitive distribution of stress with depth. This can be most clearly illustrated for the cooling of oceanic lithosphere, however similar or more complex behaviour can be expected to occur for continental lithosphere. The application of changes in applied tectonic force with time to a visco-elastic lithosphere model results in reversals in the sign of stress with depth as a consequence of the “memory” of past stress dissipation by creep and brittle deformation. Because of this “memory”, locally stress polarity may be opposite to that of the current applied tectonic force. A lithosphere with viscous rheology displays no such “memory” of the applied tectonic stress history. The stress “memory” of lithosphere with visco-elastic rheology to its history of applied tectonic force, heating and cooling adds to its effective rheological complexity, particularly for continental lithosphere.

  15. On the use of faults and background seismicity in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA)

    NASA Astrophysics Data System (ADS)

    Selva, Jacopo; Lorito, Stefano; Basili, Roberto; Tonini, Roberto; Tiberti, Mara Monica; Romano, Fabrizio; Perfetti, Paolo; Volpe, Manuela

    2017-04-01

    Most of the SPTHA studies and applications rely on several working assumptions: i) the - mostly offshore - tsunamigenic faults are sufficiently well known; ii) the subduction zone earthquakes dominate the hazard; iii) and their location and geometry is sufficiently well constrained. Hence, a probabilistic model is constructed as regards the magnitude-frequency distribution and sometimes the slip distribution of earthquakes occurring on assumed known faults. Then, tsunami scenarios are usually constructed for all earthquakes location, sizes, and slip distributions included in the probabilistic model, through deterministic numerical modelling of tsunami generation, propagation and impact on realistic bathymetries. Here, we adopt a different approach (Selva et al., GJI, 2016) that releases some of the above assumptions, considering that i) also non-subduction earthquakes may contribute significantly to SPTHA, depending on the local tectonic context; ii) that not all the offshore faults are known or sufficiently well constrained; iii) and that the faulting mechanism of future earthquakes cannot be considered strictly predictable. This approach uses as much as possible information from known faults which, depending on the amount of available information and on the local tectonic complexity, among other things, are either modelled as Predominant Seismicity (PS) or as Background Seismicity (BS). PS is used when it is possible to assume sufficiently known geometry and mechanism (e.g. for the main subduction zones). Conversely, within the BS approach information on faults is merged with that on past seismicity, dominant stress regime, and tectonic characterisation, to determine a probability density function for the faulting mechanism. To illustrate the methodology and its impact on the hazard estimates, we present an application in the NEAM region (Northeast Atlantic, Mediterranean and connected seas), initially designed during the ASTARTE project and now applied for the regional-scale SPTHA in the TSUMAPS-NEAM project funded by DG-ECHO.

  16. Frontal belt curvature and oblique ramp development at an obliquely collided irregular margin: Geometry and kinematics of the NW Taiwan fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Mouthereau, FréDéRic; Angelier, Jacques; Chu, Hao-Tsu; Lee, Jian-Cheng

    2003-06-01

    Combined structural and tectonic analyses demonstrate that the NW Foothills of the Taiwan collision belt constitute mainly an asymmetric "primary arc" type fold-thrust belt. The arcuate belt developed as a basin-controlled salient in the portion of the foreland basin that was initially thicker, due to the presence of a precollisional depocenter (the Taihsi basin). Additional but limited buttress effects at end points related to interaction with foreland basement highs (Kuanyin and Peikang highs) may have also slightly enhanced curvature. The complex structural pattern results from the interaction between low-angle thrusting related to shallow decollement tectonics and oblique inversion of extensional structures of the margin on the southern edge of the Kuanyin basement high. The tectonic regimes and mechanisms revealed by the pattern of paleostress indicators such as striated outcrop-scale faults are combined with the orientation and geometry of offshore and onshore regional faults in order to accurately define the Quaternary kinematics of the propagating units. The kinematics of this curved range is mainly controlled by distributed transpressional wrenching along the southern edge of the Kuanyin high, leading to the development of a regional-scale oblique ramp, the Kuanyin transfer fault zone, which is conjugate of the NW trending Pakua transfer fault zone north of the Peikang basement high. The divergence between the N120° regional transport direction and the maximum compressive trend that evolved from N120° to N150° (and even to N-S) in the northern part of the arc effectively supports distributed wrench deformation along its northern limb during the Pleistocene. The geometry and kinematics of the western Taiwan Foothills therefore appear to be highly influenced by both the preorogenic structural pattern of the irregularly shaped Chinese passive margin and the obliquity of its Plio-Quaternary collision with the Philippine Sea plate.

  17. Reexamining ultrafiltration and solute transport in groundwater

    NASA Astrophysics Data System (ADS)

    Neuzil, C. E.; Person, Mark

    2017-06-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  18. Reexamining ultrafiltration and solute transport in groundwater

    USGS Publications Warehouse

    Neuzil, Christopher E.; Person, Mark

    2017-01-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ∼3 g L−1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  19. Multi-scale characterization of topographic anisotropy

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Osti, B.; Upton, P.; Tucker, G. E.

    2016-05-01

    We present the every-direction variogram analysis (EVA) method for quantifying orientation and scale dependence of topographic anisotropy to aid in differentiation of the fluvial and tectonic contributions to surface evolution. Using multi-directional variogram statistics to track the spatial persistence of elevation values across a landscape, we calculate anisotropy as a multiscale, direction-sensitive variance in elevation between two points on a surface. Tectonically derived topographic anisotropy is associated with the three-dimensional kinematic field, which contributes (1) differential surface displacement and (2) crustal weakening along fault structures, both of which amplify processes of surface erosion. Based on our analysis, tectonic displacements dominate the topographic field at the orogenic scale, while a combination of the local displacement and strength fields are well represented at the ridge and valley scale. Drainage network patterns tend to reflect the geometry of underlying active or inactive tectonic structures due to the rapid erosion of faults and differential uplift associated with fault motion. Regions that have uniform environmental conditions and have been largely devoid of tectonic strain, such as passive coastal margins, have predominantly isotropic topography with typically dendritic drainage network patterns. Isolated features, such as stratovolcanoes, are nearly isotropic at their peaks but exhibit a concentric pattern of anisotropy along their flanks. The methods we provide can be used to successfully infer the settings of past or present tectonic regimes, and can be particularly useful in predicting the location and orientation of structural features that would otherwise be impossible to elude interpretation in the field. Though we limit the scope of this paper to elevation, EVA can be used to quantify the anisotropy of any spatially variable property.

  20. Morphotectonics of a high plateau on the northwestern flank of the Continental Rift of southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Modenesi-Gauttieri, May Christine; Takashi Hiruma, Silvio; Riccomini, Claudio

    2002-03-01

    Integration of landform and structural analysis allowed the identification of Late Pleistocene-Holocene pulses of tectonic activity in the Campos do Jordão Plateau with ages and regimes similar to the ones from the continental rift. Fault reactivation along Precambrian shear zones give rise to a series of conspicuous morphotectonic features, determine the formation of stream piracy phenomena, and divide the plateau into smaller blocks. Recognition of these tectonic pulses as well as of their effects in landform development—particularly clear on the Campos de São Francisco at the highest area of the SE edge of the plateau—show that besides the climate-related Quaternary environmental changes significant neotectonic instability should be considered in the geomorphic evolution of the Campos do Jordão Plateau.

  1. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 2. Magnetic Fabrics and Gravity Survey

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin; Chen, Yan; Chen, Ke; Wei, Wei; Faure, Michel; Lin, Wei

    2018-01-01

    The Late Mesozoic magmatic province is a prominent feature of the South China Block (SCB). However, the tectonic regimes associated with the magmatism are still elusive. A combined anisotropy of magnetic susceptibility and gravity study has been carried out to determine the fabric patterns and shape at depth of the Dayunshan-Mufushan composite batholith in the north-central SCB. This is a companion paper to Part 1 that presented the structural and geochronological data of this batholith. The magnetic fabrics in the batholith interior predominantly reflect magma flow structures. Two distinct patterns of the magnetic lineations are defined, around NNE-SSW and WNW-ESE trends for the early-stage and late-stage intrusions of the batholith, respectively. The gravity survey reveals that the early-stage intrusion has a main feeder zone located below its northern part, while several linear feeder zones trending NNE-SSW are inferred for the late-stage intrusion. Integrating all results, a two-stage construction of the batholith with distinct tectonic regimes has been established. It is concluded that the early-stage intrusion experienced a southward magma transport during its emplacement, partially assisted by far-field compression from the north at ca. 150 Ma. Conversely, the emplacement and exhumation of the late-stage intrusion was accommodated by a NW-SE crustal stretching involving a lateral magma expansion above the multiple feeder zones (likely corresponding to extensional fractures) and ductile shearing during 132-95 Ma localized mainly along the Dayunshan detachment fault. Finally, we discuss the geodynamic linkage between the paleo-Pacific subduction and the Late Mesozoic tectonomagmatism in the SCB.

  2. Post-Paleogene (post-Middle Eocene-pre-Miocene) Geodynamic evolution of the Upper Cretaceous-Paleogene Basins in Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Rojay, Bora

    2017-04-01

    Central Anatolia is one of the key areas on the evolution of Cretaceous-Paleogene Tethys where stratigraphy of the region is well studied. However not well linked with tectonics. The so-called "Ankara Mélange" belt (AOM) and the basins on top are important elements in the understanding of the İzmir-Ankara-Erzincan suture belt (İAES) evolution in Anatolia (Turkey) and in the evolution of Tethys in minor Asia (Turkey). Some of the basins are directly situated on top of the tectonic slices of the accretionary prism (IAES). However, some are not tectonically well explained as in the case of Haymana basin. The southern continental fragments (eg. Kütahya-Bolkardaǧ and Kırşehir blocks from Gondwana) are approaching to northern continents (Pontides of Lauriasia) where basins like Haymana, Alçı, Kırıkkale and Orhaniye extensional basins are evolved in between the closing margins of two continents. Haymana basin is an extensional basin developed under contractional regime on top of both northward subducting oceanic fragments and an approaching fragments of southern continents. Paleogene (end of Eocene) is the time where the Seas were retreated to S-SE Anatolia leaving a continental setting in Anatolia during Oligocene-Miocene. The slip data gathered from the faults cross-cutting the Paleogene Units and the fabric from Cretaceous mélanges depicts a NNW-SSE to NNE-SSW compressional stress regime operated during post-Eocene-pre-Miocene period. Lately the slip surfaces were overprinted by post-Pliocene normal faulting. Key words: fault slip data, Paleogene, NNW-SSE compression, Anatolia.

  3. A new insight into Pan-African tectonics in the East-West Gondwana collision zone by U-Pb zircon dating of granites from central Madagascar

    NASA Astrophysics Data System (ADS)

    Nédélec, A.; Paquette, J.-L.

    1998-02-01

    The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as ``stratoid'' granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ~570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.

  4. A new insight into Pan-African tectonics in the East-West Gondwana collision zone by U-Pb zircon dating of granites from central Madagascar

    NASA Astrophysics Data System (ADS)

    Paquette, Jean-Louis; Nédélec, Anne

    1998-02-01

    The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as "stratoid" granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ˜570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.

  5. Stress regimes in the northwest of Iran from stress inversion of earthquake focal mechanisms

    NASA Astrophysics Data System (ADS)

    Afra, Mahsa; Moradi, Ali; Pakzad, Mehrdad

    2017-11-01

    Northwestern Iran is one of the seismically active regions with a high seismic risk in the world. This area is a part of the complex tectonic system due to the interaction between Arabia, Anatolia and Eurasia. The purpose of this study is to deduce the stress regimes in the northwestern Iran and surrounding regions from stress inversion of earthquake focal mechanisms. We compile 92 focal mechanisms data from the Global CMT catalogue and other sources and also determine the focal mechanisms of 14 earthquakes applying the moment tensor inversion. We divide the studied region into 9 zones using similarity of the horizontal GPS velocities and existing focal mechanisms. We implement two stress inversion methods, Multiple Inverse Method and Iterative Joint Inversion Method, which provide comparable results in terms of orientations of maximum horizontal stress axes SHmax. The similar results of the two methods should make us more confident about the interpretations. We consider zones of exclusion surrounding all the earthquakes according to independent focal mechanisms hypothesis. The hypothesis says that the inversion should involve events that are far enough from each other in order that any previous event doesn't affect the stress field near the earthquake under consideration. Accordingly we deal with the matter by considering zones of exclusion around all the events. The result of exclusion is only significant for eastern Anatolia. The stress regime in this region changes from oblique to strike slip faulting because of the exclusion. In eastern Anatolia, the direction of maximum horizontal stress is nearly north-south. The direction alters to east-west in Talesh region. Errors of σ1 are lower in all zones comparing with errors of σ2 and σ3 and there is a trade-off between data resolution and covariance of the model. The results substantiate the strike-slip and thrust faulting stress regimes in the northwest of Iran.

  6. Tectonic meaning of anomalous fault-slip strain solutions in the Southern Volcanic Zone of the Andes: insights to assess the structural permeability of the Liquiñe-Ofqui Fault System and the Andean Transverse Faults (39°-40°S)

    NASA Astrophysics Data System (ADS)

    Sepúlveda, J.; Roquer, T.; Arancibia, G.; Veloso, E. A.; Morata, D.; Molina Piernas, E.

    2017-12-01

    Oblique subduction between the Nazca and South American plates produces the Southern Volcanic Zone (33-46°S) (SVZ), an active tectono-magmatic-hydrothermal setting. Tectonics of the SVZ is controlled by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). The LOFS is an active intra-arc 1200-km-long fault system, with dextral and dextral-normal faults that strike NS-NNE to NE-ENE. The ATF include a group of active NW-striking sinistral faults and morphotectonic lineaments. Here, deformation is partitioned into a margin-parallel and a margin-orthogonal components, accommodated along and across the arc and forearc, respectively. In the inter-seismic period, shortening in the arc is NE-trending, whereas in the co- and post-seismic periods shortening switches to NW-trending. In order to determine the kinematics and style of deformation in the northern termination of the LOFS and its interaction with the ATF, we measured 81 fault-slip data at the Liquiñe (39ºS) and Maihue (40ºS) areas. Here, hot springs occur above fractured granitic rocks, where structural permeability given by fracture meshes is the main hydraulic conductivity. Considering the high sensitivity of fault systems regarding the rupture under prevailing stress and/or fluid overpressure conditions, to stablish past and present strain conditions is critical to assess a potential fractured geothermal system. Results at Liquiñe display two strain regimes (P and T axes): 1) P=259/01, T=169/01; 2) P= 182/23, T= 275/07. Likewise, Maihue shows two regimes: 1) P= 143/12, T=235/07; 2) P=228/12, T= 136/07. In both areas, the first solutions agree with the regional regime within the SVZ, i.e. NE-trending shortening in the arc. However, the second solutions seem to be anomalous with respect to the regional strain regime. At Liquiñe, NS-trending shortening may be associated with a buttress effect at the northern termination of the LOFS. At Maihue, NW-trending shortening may be related to strain changes during the co-seismic period or it is a reminiscence of local strain switches. These anomalous strain solutions should be considered when constraining the tectonics of the SVZ and its role to enhance the subsurface hydraulic conductivity. ACKNOWLEDGEMENTS: FONDAP-CONICYT Project 15090013 (CEGA), VRI-PUENTE P1703/2017 Project.

  7. Lithospheric Models of the Middle East to Improve Seismic Source Parameter Determination/Event Location Accuracy

    DTIC Science & Technology

    2012-09-01

    State Award Nos. DE-AC52-07NA27344/24.2.3.2 and DOS_SIAA-11-AVC/NMA-1 ABSTRACT The Middle East is a tectonically complex and seismically...active region. The ability to accurately locate earthquakes and other seismic events in this region is complicated by tectonics , the uneven...and seismic source parameters show that this activity comes from tectonic events. This work is informed by continuous or event-based regional

  8. Venus as a laboratory for studying planetary surface, interior, and atmospheric evolution

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Hensley, S.; Helbert, J.

    2013-12-01

    As Earth's twin, Venus offers a laboratory for understanding what makes our home planet unique in our solar system. The Decadal Survey points to the role of Venus in answering questions such as the supply of water and its role in atmospheric evolution, its availability to support life, and the role of geology and dynamics in controlling volatiles and climate. On Earth, the mechanism of plate tectonics drives the deformation and volcanism that allows volatiles to escape from the interior to the atmosphere and be recycled into the interior. Magellan revealed that Venus lacks plate tectonics. The number and distribution of impact craters lead to the idea Venus resurfaced very rapidly, and inspired numerous models of lithospheric foundering and episodic plate tectonics. However we have no evidence that Venus ever experienced a plate tectonic regime. How is surface deformation affected if no volatiles are recycled into the interior? Although Venus is considered a ';stagnant' lid planet (lacking plate motion) today, we have evidence for recent volcanism. The VIRTIS instrument on Venus Express mapped the southern hemisphere at 1.02 microns, revealing areas likely to be unweathered, recent volcanic flows. Additionally, numerous studies have shown that the crater population is consistent with ongoing, regional resurfacing. How does deformation and volcanism occur in the absence of plates? At what rate is the planet resurfacing and thus outgassing? Does lithospheric recycling occur with plate tectonics? In the 25 years since Magellan, the design of Synthetic Aperture Radar has advanced tremendously, allowing order of magnitude improvements in altimetry and imaging. With these advanced tools, we can explore Venus' past and current tectonic states. Tesserae are highly deformed plateaus, thought to be possible remnants of Venus' earlier tectonic state. How did they form? Are they low in silica, like Earth's continents, indicating the presence of abundant water? Does the plains volcanism cover an earlier tectonic surface, or perhaps cover ancient impact basins? Was there an abrupt transition in tectonic style, perhaps due to degassing of the crust or a more gradual shift? What is the nature of Venus' modern tectonics? Is the lithosphere still deforming? Is there recent or active volcanism? Is volcanism confined to hotspots, areas above mantle plumes? Has plains volcanism ceased? What are the implications for volatile history? These questions can be addressed via a combination of high resolution altimetry, imaging, and surface emissivity mapping.

  9. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  10. Tectonic stress regime in the 2003-2004 and 2012-2015 earthquake swarms in the Ubaye Valley, French Alps

    NASA Astrophysics Data System (ADS)

    Fojtíková, Lucia; Vavryčuk, Václav

    2018-02-01

    We study two earthquake swarms that occurred in the Ubaye Valley, French Alps within the past decade: the 2003-2004 earthquake swarm with the strongest shock of magnitude ML = 2.7, and the 2012-2015 earthquake swarm with the strongest shock of magnitude ML = 4.8. The 2003-2004 seismic activity clustered along a 9-km-long rupture zone at depth between 3 and 8 km. The 2012-2015 activity occurred a few kilometres to the northwest from the previous one. We applied the iterative joint inversion for stress and fault orientations developed by Vavryčuk (2014) to focal mechanisms of 74 events of the 2003-2004 swarm and of 13 strongest events of the 2012-2015 swarm. The retrieved stress regime is consistent for both seismic activities. The σ 3 principal axis is nearly horizontal with azimuth of 103°. The σ 1 and σ 2 principal axes are inclined and their stress magnitudes are similar. The active faults are optimally oriented for shear faulting with respect to tectonic stress and differ from major fault systems known from geological mapping in the region. The estimated low value of friction coefficient at the faults 0.2-0.3 supports an idea of seismic activity triggered or strongly affected by presence of fluids.

  11. Crustal strength anisotropy influences landscape form and longevity

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Upton, P.; Tucker, G. E.

    2013-12-01

    Lithospheric deformation is increasingly recognized as integral to landscape evolution. Here we employ a coupled orogenic and landscape model to test the hypothesis that strain-induced crustal failure exerts the dominant control on rates and patterns of orogenic landscape evolution. We assume that erodibility is inversely proportional to cohesion for bedrock rivers host to bedload abrasion. Crustal failure can potentially reduce cohesion by several orders of magnitude along meter scale planar fault zones. The strain-induced cohesion field is generated by use of a strain softening upper crustal rheology in our orogenic model. Based on the results of our coupled model, we predict that topographic anisotropy found in natural orogens is largely a consequence of strain-induced anisotropy in the near surface strength field. The lifespan and geometry of mountain ranges are strongly sensitive to 1) the acute division in erodibility values between the damaged fault zones and the surrounding intact rock and 2) the fault zone orientations for a given tectonic regime. The large division in erodibility between damaged and intact rock combined with the dependence on fault zone orientation provides a spectrum of rates at which a landscape will respond to tectonic or climatic perturbations. Knickpoint migration is about an order of magnitude faster along the exposed cores of fault zones when compared to rates in intact rock, and migration rate increases with fault dip. The contrast in relative erosion rate confines much of the early stage fluvial erosion and establishes a major drainage network that reflects the orientations of exposed fault zones. Slower erosion into the surrounding intact rock typically creates small tributaries that link orthogonally to the structurally confined channels. The large divide in fluvial erosion rate permits the long term persistence of the tectonic signal in the landscape and partly contributes to orogen longevity. Landscape morphology and channel tortuosity together provide critical information on the orientation and spatial distribution of fault damage and the relevant tectonic regime. Our landscape evolution models express similar mechanisms and produce drainage network patterns analogous to those seen in the Southern Alps of New Zealand and the Himalayan Eastern Syntaxis, both centers of active lithospheric deformation.

  12. Tectonic and Climatic Implications of Late Miocene to Pleistocene (5.8-1.8 Ma) Paleo-Erosion Rates from the Rio Iruya Canyon, Northwest Argentina (23°S)

    NASA Astrophysics Data System (ADS)

    Fisher, G. B.; Amidon, W. H.; Luna, L. V.; Burbank, D. W.

    2015-12-01

    One fundamental hypothesis that underpins tectonic geomorphology is that climate can modify the pattern and magnitude of erosion in orogenic landscapes and in turn control deformation. While conceptually appealing, empirical evidence is often ambiguous owing to the inherent spatial coupling between present-day tectonic and precipitation maxima and/or the long-term blurring of climate signals by thermochronologic techniques. Although cosmogenic nuclides provide considerable insight into centennial to millennial scale tectonic-erosion-climate linkages, extracting long-term records of erosion from older sedimentary deposits has proved challenging. If successful, such records have the potential to reveal long-term relationships between erosion, uplift, and climate, which should integrate over time to match long term exhumation rates obtained from low temperature thermochronology. Here we utilize a unique field setting along a 100-m deep, young canyon (~100 years old) along the Rio Iruya in northwestern Argentina to create a high-resolution (~100 kyr) terrestrial record of paleo-erosion rates in the eastern Cordillera spanning the late Miocene to Pleistocene (5.8-1.8 Mya). In total, 49 cosmogenic 10Be samples were analyzed along with detailed magnetostratigraphy, U-Pb tephra ages, detrital zircon, and quartz trace elements to yield a detailed paleo-erosion rate, chronology, and provenance record for the Rio Iruya section. Apparent erosion rates occur in three different regimes: from 5.8-4.0 Ma rates are high with little variability, from 4.0- 2.3 Ma rates oscillate by a factor of 5 on a ~400 kyr timescale, and from 2.3-1.8 Ma they are again high without clear oscillations. These three regimes correspond to changes in provenance recorded by detrital zircons and quartz chemistry, and suggest that during the late Pliocene the eastern Cordillera was responding strongly to the 400 kyr eccentricity paced orbital frequency. This unique finding is both perplexing and encouraging as it argues for a coupling of sediment flux to broad-scale climate teleconnections and may evidence a frequency dependent response of the Andean orogen to climate oscillations, consistent with recent numerical and theoretical models.

  13. Flat-topped mountain ranges: Their global distribution and value for understanding the evolution of mountain topography

    NASA Astrophysics Data System (ADS)

    Calvet, Marc; Gunnell, Yanni; Farines, Bernard

    2015-07-01

    Extensive tracts of low-gradient topography in steep mountain ranges, either forming rangetop plateaus or terraced pediments on range flanks, are widely distributed in mountain belts around the world. Before the advent of plate tectonics, such populations of planar landforms were interpreted as vestiges of a post-orogenic raised peneplain, i.e., a low-gradient land surface resulting from the decay, during long intervals of base-level stability, of a previous mountain range that was subsequently raised once again to great elevations-thus forming a new mountain range. This two-stage model has been challenged by theories that advocate continuity in tectonic processes and more gradual changes in base level, and thus expect a more immediate and proportionate response of geomorphic systems. Here we present a global survey of erosion surfaces in mountain ranges and put existing theories and empirical evidence into a broad perspective calling for further research into the rates and regimes of long-term mountain evolution. The resulting library of case studies provides opportunities for comparative analysis and helps to classify the landform mosaics that are likely to arise from the interplay between (i) crustal regimes, which at convergent plate margins need be neither uniform nor steady at all times; (ii) radiation-driven and gravity-driven geomorphic regimes, which are mainly determined by crustal boundary conditions and climate; and (iii) paleogeography, through which clues about base-level changes can be obtained. We examine intracratonic and plate-margin settings, with examples from thin-skinned fold belts, thick-skinned fold belts, island-arc and other subduction-related settings, and bivergent collisional orogens. Results reveal that the existence of erosion surfaces is not a simple function of geodynamic setting. Although some erosion surfaces are pre-orogenic, evidence about their predominantly post-orogenic age is supported by apatite fission-track and helium rock-cooling signatures, stratigraphic age-bracketing, stream channel gradient patterns, and other direct or indirect dating criteria. It follows that many portions of mountain belts undergo unsteady, nonuniform post-orogenic landscape evolution trajectories, with intermittent opportunities for relief reduction. The resulting erosion surfaces remain preserved as signatures of transient landscape evolution regimes. We find that (i) occurrences of planar topography form populations of discrete, insular landscape units, only some of which could be interpreted as fragments of a fluvially dissected, and/or tectonically fragmented, regional peneplain. (ii) The post-orogenic time required for achieving advanced stages of relief reduction is variable, ranging from 3 to 70 Ma. (iii) Partly depending on whether the adjacent sedimentary basins were over- or underfilled, some erosion surfaces may have been controlled by raised base levels and may thus have formed at high elevations; however, in many cases they were disconnected from marine base levels by rapid surface uplift, thus acquiring their elevated positions in recent time. In some cases, subcrustal processes such as asthenospheric anomalies, and/or lithospheric slab tear or breakoff, explain extremely rapid, regional post-orogenic uplift. (iv) Overall, the conditions for achieving surface preservation in steep and tectonically active terrain are predictable but also quite varied and contingent on context.

  14. Significant Centers of Tectonic Activity as Identified by Wrinkle Ridges for the Western Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.

    2000-01-01

    The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.

  15. On the frictional (in) stability of clay-bearing faults

    NASA Astrophysics Data System (ADS)

    Violay, M.; Orellana, F.; Scuderi, M. M.; Collettini, C.

    2016-12-01

    Opalinus clay (OPA) is shale rock studied under the context of deep geological disposal by The Mont Terri Laboratory research program in Switzerland. Despite its favorable hydro-mechanical properties, the presence of a large tectonic fault system intersecting the rock formation arises questions over the long-term safety performance of a nuclear waste repository, in terms of possible leakages and the possibility of earthquakes triggered by fault instability. To study the frictional stability of OPA, we have performed velocity steps (1-300 μm/s) and slide-hold-slide tests (1-10000 s) on simulated gouge and intact samples - sheared parallel and perpendicular to foliation - at different normal stresses (4 - 30 MPa). To understand the deformation mechanisms, we have analyzed the microstructures of the sheared samples trough optical and SE microscopy. Results reported peak and steady state friction values ranging from 0.21 to 0.52 and from 0.14 to 0.39 respectively. Consistently, samples with well-developed layering showed lower friction values than gouge samples even though they have the same mineralogical composition. At all normal stresses, velocity dependence tests on gouge showed a velocity strengthening regime, whereas, intact samples developed both velocity-strengthening and velocity-weakening regimes. Finally, we have recorded near zero healing values for both intact and powdered samples at different normal stress. However, a complex evolution from negative to positive frictional healing rate, with an inflexion holding time of 300 s, has been observed. In conclusion, our data suggests that both the velocity strengthening regime and the near zero healing for the simulated gouge, are consistent with aseismic creep. We have also reported the possibility of unstable sliding outside the fault core accompanied by low capacity of contact regeneration, and low capacity to sustain future stress drops compared to evidence showed by experiments on simulated gouge. Moreover, microstructure analysis revealed different deformation patterns due to anisotropy of the material. Thus, the complex frictional behavior of OPA highlights the need for further experiments in order to better evaluate the seismic risk during long-term nuclear waste disposal within the OPA clay formation.

  16. Collisional Tectonics in the St. Elias Orogen, Alaska Observed by GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Larsen, C. F.

    2008-12-01

    The rugged topography of the St. Elias orogen of southern Alaska and the adjacent region of Canada is the result of the on-going collision of the Yakutat block with southern Alaska. Nearly 45 mm/yr of NW-SE directed convergence from the collision is currently accommodated within the St. Elias orogen. A key to understanding this complex collisional boundary is knowing the locations of the structures taking up the convergence. GPS provides a snapshot of the present-day strain field and helps to delineate active structures. As part of the St. Elias Erosion/Tectonics Project (STEEP), we re-surveyed 70 campaign GPS sites across the St. Elias orogen during the summer of 2008. Strain rates derived from our GPS data highlight several areas within the St. Elias orogen. The highest strain rates occur across Icy Bay and the western edge of the Malaspina Glacier. Rates there approach -1 microstrain/yr, a value higher than that observed in the Himalaya. Lower, but still significant, strain rates of about -0.2 microstrain/yr extend north from Icy Bay to the region surrounding Mt. St. Elias. The second major focus of compressive strain in the orogen is centered over the Yakataga fold-and-thrust belt. Strain rates there are in the range of -0.40 to -0.50 microstrain/yr. Little significant strain is seen across the Bagley icefield or to the north of that feature. These results suggest that most of the convergence across the St. Elias orogen is currently accommodated on structures located south of the Bagely icefield, specifically in the Icy Bay, upper Malaspina/Mt. St. Elias, and Yakataga fold-and-thrust belt regions. We use block modeling techniques to describe the tectonic elements of the St. Elias orogen and connect them with the tectonic regime in southeast Alaska. Our preliminary results indicate that a single thrust fault through Icy Bay cannot explain the data there; multiple NW and N directed thrust faults through Icy Bay, along the western edge of the Malaspina Glacier, and between Icy Bay and Mt. St. Elias are required. Over half of the relative convergence between the Yakutat block and southern Alaska may be accommodated by elastic strain accumulation on these faults.

  17. Mapping the Sedna-Lavinia Region of Venus

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Anderson, Ross F.

    2008-01-01

    Geologic mapping of Venus at 1:5 M scale has shown in great detail the flow complexes of volcanoes, coronae, and shield fields, and the varying structural patterns that differentiate tesserae from corona rims and isolated patches of densely lineated terrain. In most cases, however, the lower-elevation plains between the higher-standing landforms are discriminated only on the basis of potentially secondary features such as late-stage lava flooding or tectonic overprinting. This result, in which volcanoes and tesserae appear as "islands in the sea," places weak constraints on the relative age of large upland regions and the nature of the basement terrain. In this work, we focus on the spatial distribution and topography of densely lineated and tessera units over a large region of Venus, and their relationship to apparently later corona and shield flow complexes. The goal is to identify likely connections between patches of deformed terrain that suggest earlier features of regional extent, and to compare the topography of linked patches with other such clusters as a guide to whether they form larger tracts beneath the plains. Mapping Approach. We are mapping the region from 57S to 57N, 300E-60E. Since the 1:5 M quadrangles emphasize detail of tessera structure and corona/edifice flows, we simply adopt the outlines of these features as they relate to the outcrops of either "densely lineated terrain" or tessera (Fig. 1). The densely lineated material is mapped in many quadrangles based on pervasive structural deformation, typically with a single major axis (in contrast to the overlapping orthogonal patterns on tesserae). This unit definition is often extended to include material of corona rims. We do not at present differentiate between plains units, since earlier efforts show that their most defining attributes may be secondary to the original emplacement (e.g., lobate or sheet-like flooding by thin flow units, tectonic patterns related to regional and localized stress regimes) [1].

  18. Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes

    NASA Astrophysics Data System (ADS)

    Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin

    2018-03-01

    The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.

  19. Geochronology and geochemistry of the Huilvshan gabbro in west Junggar (NW China): Implications for magma process and tectonic regime

    NASA Astrophysics Data System (ADS)

    Zhang, Huichao; Zhu, Yongfeng

    2018-06-01

    Gabbro plutons, consisting of clinopyroxene and plagioclase with trace amounts of magnetite, titanite, and apatite, intruded into Early Carboniferous volcanic-sedimentary strata in the Huilvshan gold mining region (west Junggar, China). Samples collected from two gabbro bodies are tholeiitic in composition with low concentrations of Na2O + K2O, showing weak depletions of light rare earth elements with insignificant Eu, Nb, and Ti anomalies. Zircon U-Pb analyses yield a weighted average U-Pb age of 296.1 ± 2.7 Ma (MSWD = 0.98), which could represent the time corresponding to mafic magma emplacement in the Huilvshan region. Geochemical calculations suggest that this mafic magma was derived from a depleted mantle source in a post-collisional tectonic setting corresponding to 4% partial melting of spinel lherzolite.

  20. Geology and tectonics of the Archean Superior Province, Canadian Shield

    NASA Technical Reports Server (NTRS)

    Card, K. D.

    1986-01-01

    Superior Province consists mainly of Late Archean rocks with Middle Archean gneisses in the south, and possibly in the north. The Late Archean supracrustal sequences are of island arc and interarc affinity and are cut by abundant plutonic rocks, including early arc-related intrusions, late synorogenic intrusions, and post-orogenic plutons that are possibly the product of crustal melting caused by thermal blanketing of newly-thickened continental crust combined with high mantle heat flux. The contemporaneity of magmatic and deformational events along the lengths of the belts is consistent with a subduction-dominated tectonic regime for assembly of the Kenoran Orogen. Successive addition of volcanic arcs accompanied and followed by voluminous plutonism resulted in crustal thickening and stabilization of the Superior craton prior to uplift of Kapuskasing granulites, emplacement of the Matachewan diabase dykes, and Early Proterozoic marginal rifting.

  1. Integrated geophysical and geological study and petroleum appraisal of Cretaceous plays in the Western Gulf of Gabes, Tunisia

    NASA Astrophysics Data System (ADS)

    Dkhaili, Noomen; Bey, Saloua; El Abed, Mahmoud; Gasmi, Mohamed; Inoubli, Mohamed Hedi

    2015-09-01

    An integrated study of available seismic and calibrated wells has been conducted in order to ascertain the structural development and petroleum potential of the Cretaceous Formations of the Western Gulf of Gabes. This study has resulted in an understanding of the controls of deep seated Tethyan tectonic lineaments by analysis of the Cretaceous deposits distribution. Three main unconformities have been identified in this area, unconformity U1 between the Jurassic and Cretaceous series, unconformity U2 separating Early from Late Cretaceous and known as the Austrian unconformity and the major unconformity U3 separating Cretaceous from Tertiary series. The seismic analysis and interpretation have confirmed the existence of several features dominated by an NE-SW extensive tectonic regime evidenced by deep listric faults, asymmetric horst and graben and tilted blocks structures. Indeed, the structural mapping of these unconformities, displays the presence of dominant NW-SE fault system (N140 to N160) bounding a large number of moderate sized basins. A strong inversion event related to the unconformity U3 can be demonstrated by the mapping of the unconformities consequence of the succession of several tectonic manifestations during the Cretaceous and post-Cretaceous periods. These tectonic events have resulted in the development of structural and stratigraphic traps further to the porosity and permeability enhancement of Cretaceous reservoirs.

  2. Tectonic controls on the hydrocarbon habitats of the Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: major dissimilarities in adjoining basins

    NASA Astrophysics Data System (ADS)

    Satyana, Awang Harun; Nugroho, Djoko; Surantoko, Imanhardjo

    1999-04-01

    The Barito, Kutei, and Tarakan Basins are located in the eastern half of Kalimantan (Borneo) Island, Indonesia. The basins are distinguished by their different tectonic styles during Tertiary and Pleistocene times. In the Barito Basin, the deformation is a consequence of two distinct, separate, regimes. Firstly, an initial transtensional regime during which sinistral shear resulted in the formation of a series of wrench-related rifts, and secondly, a subsequent transpressional regime involving convergent uplift, reactivating old structures and resulting in wrenching, reverse faulting and folding within the basin. Presently, NNE-SSW and E-W trending structures are concentrated in the northeastern and northern parts of the basin, respectively. In the northeastern part, the structures become increasingly imbricated towards the Meratus Mountains and involve the basement. The western and southern parts of the Barito Basin are only weakly deformed. In the Kutei Basin, the present day dominant structural trend is a series of tightly folded, NNE-SSW trending anticlines and synclines forming the Samarinda Anticlinorium which is dominant in the eastern part of the basin. Deformation is less intense offshore. Middle Miocene to Recent structural growth is suggested by depositional thinning over the structures. The western basin area is uplifted, large structures are evident in several places. The origin of the Kutei structures is still in question and proposed mechanisms include vertical diapirism, gravitational gliding, inversion through regional wrenching, detachment folds over inverted structures, and inverted delta growth-fault system. In the Tarakan Basin, the present structural grain is typified by NNE-SSW normal faults which are mostly developed in the marginal and offshore areas. These structures formed on older NW-SE trending folds and are normal to the direction of the basin sedimentary thickening suggesting that they developed contemporaneously with deposition, as growth-faults, and may be the direct result of sedimentary loading by successive deltaic deposits. Older structures were formed in the onshore basin, characterized by the N-S trending folds resulting from the collision of the Central Range terranes to the west of the basin. Hydrocarbon accumulations in the three basins are strongly controlled by their tectonic styles. In the Barito Basin, all fields are located in west-verging faulted anticlines. The history of tectonic inversion and convergent uplift of the Meratus Mountains, isostatically, have caused the generation, migration, and trapping of hydrocarbons. In the Kutei Basin, the onshore Samarinda Anticlinorium and the offshore Mahakam Foldbelt are prolific petroleum provinces, within which most Indonesian giant fields are located. In the offshore, very gentle folds also play a role as hydrocarbon traps, in association with stratigraphic entrapment. These structures have recently become primary targets for exploratory drilling. In the Tarakan Basin, the prominent NW-SE anticlines, fragmented by NE-SW growth-faults, have proved to be petroleum traps. The main producing pools are located in the downthrown blocks of the faults. Diverse tectonic styles within the producing basins of Kalimantan compel separate exploration approaches to each basin. To discover new opportunities in exploration, it is important to understand the structural evolution of neighbouring basins.

  3. The integration of palaeogeography and tectonics in refining plate tectonic models: an example from SE Asia

    NASA Astrophysics Data System (ADS)

    Masterton, S. M.; Markwick, P.; Bailiff, R.; Campanile, D.; Edgecombe, E.; Eue, D.; Galsworthy, A.; Wilson, K.

    2012-04-01

    Our understanding of lithospheric evolution and global plate motions throughout the Earth's history is based largely upon detailed knowledge of plate boundary structures, inferences about tectonic regimes, ocean isochrons and palaeomagnetic data. Most currently available plate models are either regionally restricted or do not consider palaeogeographies in their construction. Here, we present an integrated methodology in which derived hypotheses have been further refined using global and regional palaeogeographic, palaeotopological and palaeobathymetric maps. Iteration between our self-consistent and structurally constrained global plate model and palaeogeographic interpretations which are built on these reconstructions, allows for greater testing and refinement of results. Our initial structural and tectonic interpretations are based largely on analysis of our extensive global database of gravity and magnetic potential field data, and are further constrained by seismic, SRTM and Landsat data. This has been used as the basis for detailed interpretations that have allowed us to compile a new global map and database of structures, crustal types, plate boundaries and basin definitions. Our structural database is used in the identification of major tectonic terranes and their relative motions, from which we have developed our global plate model. It is subject to an ongoing process of regional evaluation and revisions in an effort to incorporate and reflect new tectonic and geologic interpretations. A major element of this programme is the extension of our existing plate model (GETECH Global Plate Model V1) back to the Neoproterozic. Our plate model forms the critical framework upon which palaeogeographic and palaeotopographic reconstructions have been made for every time stage in the Cretaceous and Cenozoic. Generating palaeogeographies involves integration of a variety of data, such as regional geology, palaeoclimate analyses, lithology, sea-level estimates, thermo-mechanical events and regional tectonics. These data are interpreted to constrain depositional systems and tectonophysiographic terranes. Palaeotopography and palaeobathymetry are derived from these tectonophysiographic terranes and depositional systems, and are further constrained using geological relationships, thermochronometric data, palaeoaltimetry indicators and modern analogues. Throughout this process, our plate model is iteratively tested against our palaeogeographies and their environmental consequences. Both the plate model and the palaeogeographies are refined until we have obtained a consistent and scientifically robust result. In this presentation we show an example from Southeast Asia, where the plate model complexity and wide variation in hypotheses has huge implications for the palaeogeographic interpretation, which can then be tested using geological observations from well and seismic data. For example, the Khorat Plateau Basin, Northeastern Thailand, comprises a succession of fluvial clastics during the Cretaceous, which include the evaporites of the Maha Sarakham Formation. These have been variously interpreted as indicative of saline lake or marine incursion depositional environments. We show how the feasibility of these different hypotheses is dependent on the regional palaeogeography (whether a marine link is possible), which in turn depends on the underlying plate model. We show two models with widely different environmental consequences. A more robust model that takes into account all these consequences, as well as data, can be defined by iterating through the consequences of the plate model and geological observations.

  4. The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry data of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.

    2004-05-01

    The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.

  5. Plate Tectonics on Earth-like Planets: Implications for Habitability

    NASA Astrophysics Data System (ADS)

    Noack, L.; Breuer, D.

    2011-12-01

    Plate tectonics has been suggested to be essential for life (see e.g. [1]) due to the replenishment of nutrients and its role in the stabilization of the atmosphere temperature through the carbon-silicate cycle. Whether plate tectonics can prevail on a planet should depend on several factors, e.g. planetary mass, age of the planet, water content (at the surface and in the interior), surface temperature, mantle rheology, density variations in the mantle due to partial melting, and life itself by promoting erosion processes and perhaps even the production of continental rock [2]. In the present study, we have investigated how planetary mass, internal heating, surface temperature and water content in the mantle would factor for the probability of plate tectonics to occur on a planet. We allow the viscosity to be a function of pressure [3], an effect mostly neglected in previous discussions of plate tectonics on exoplanets [4, 5]. With the pressure-dependence of viscosity allowed for, the lower mantle may become too viscous in massive planets for convection to occur. When varying the planetary mass between 0.1 and 10 Earth masses, we find a maximum for the likelihood of plate tectonics to occur for planetary masses around a few Earth masses. For these masses the convective stresses acting at the base of the lithosphere are strongest and may become larger than the lithosphere yield strength. The optimum planetary mass varies slightly depending on the parameter values used (e.g. wet or dry rheology; initial mantle temperature). However, the peak in likelihood of plate tectonics remains roughly in the range of one to five Earth masses for reasonable parameter choices. Internal heating has a similar effect on the occurrence of plate tectonics as the planetary mass, i.e. there is a peak in the probability of plate tectonics depending on the internal heating rate. This result suggests that a planet may evolve as a consequence of radioactive decay into and out of the plate tectonics regime. References [1] Parnell, J. (2004): Plate tectonics, surface mineralogy, and the early evolution of life. Int. J. Astrobio. 3(2): 131-137. [2] Rosing, M.T.; D.K. Bird, N.H. Sleep, W. Glassley, and F. Albar (2006): The rise of continents - An essay on the geologic consequences of photosynthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 232 (2006) 99-11. [3] Stamenkovic, V.; D. Breuer and T. Spohn (2011): Thermal and transport properties of mantle rock at high pressure: Applications to super-Earths. Submitted to Icarus. [4] Valencia, D., R.J. O'Connell and D.D. Sasselov (2007): Inevitability of plate tectonics on super-Earths. Astrophys. J. Let. 670(1): 45-48. [5] O'Neill, C. and A. Lenardic (2007). Geological consequences of super-sized Earths. GRL 34: 1-41.

  6. Variations of stress fields in the Tunka Rift of the southwestern Baikal region

    NASA Astrophysics Data System (ADS)

    Lunina, O. V.; Gladkov, A. S.; Sherman, S. I.

    2007-05-01

    The stress fields in the Tunka Rift at the southwestern flank of the Baikal Rift Zone are reconstructed and analyzed on the basis of a detailed study of fracturing. The variation of these fields is of a systematic character and is caused by a complex morphological and fault-block structure of the studied territory. The rift was formed under conditions of oblique (relative to its axis) regional NW-SE extension against the background of three ancient tectonic boundaries (Sayan, Baikal, and Tuva-Mongolian) oriented in different directions. Such a geological history resulted in the development of several en echelon arranged local basins and interbasinal uplifted blocks, the strike-slip component of faulting, and the mosaic distribution of various stress fields with variable orientation of their principal vectors. The opening of basins was promoted by stress fields of a lower hierarchical rank with a near-meridional tension axis. The stress field in the western Tunka Rift near the Mondy and Turan basins is substantially complicated because the transform movements, which are responsible for the opening of the N-S-trending rift basins in Mongolia, become important as Lake Hövsgöl is approached. It is concluded that, for the most part, the Tunka Rift has not undergone multistage variation of its stress state since the Oligocene, the exception being a compression phase in the late Miocene and early Pliocene, which could be related to continental collision of the Eurasian and Indian plates. Later on, the Tunka Rift continued its tectonic evolution in the transtensional regime.

  7. Geology is the Key to Explain Igneous Activity in the Mediterranean Area

    NASA Astrophysics Data System (ADS)

    Lustrino, M.

    2014-12-01

    Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.

  8. Intermittent Granular Dynamics at a Seismogenic Plate Boundary.

    PubMed

    Meroz, Yasmine; Meade, Brendan J

    2017-09-29

    Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10^{-15}  s^{-1}, and released intermittently at intervals >100  yr, in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91±20  km, here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.

  9. Intermittent Granular Dynamics at a Seismogenic Plate Boundary

    NASA Astrophysics Data System (ADS)

    Meroz, Yasmine; Meade, Brendan J.

    2017-09-01

    Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10-15 s-1 , and released intermittently at intervals >100 yr , in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91 ±20 km , here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.

  10. From thrusting to transpressional tectonics in the Aghdarband Basin (NE Iran): evidence for Cimmerian oblique convergence

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Balini, Marco; Ghassemi, Mohammad Reza; Zanchetta, Stefano

    2010-05-01

    The Aghdarband Basin, consisting of a strongly deformed arc-related Triassic marine succession, is a key-area for the study of the Cimmerian events, as it is unconformably covered by mid-Jurassic gently folded sediments entirely sealing the Cimmerian compressive structures. The basin developed during part of the Triassic in a highly mobile tectonic context suggested by abrupt facies variations and local unconformities. In addition, syn-sedimentary tectonic activity is testified by the occurrence of carbonate olistholiths in the deepest parts of the basin. The marine succession, spanning from Olenekian to lowermost Carnian, shows at the base continental conglomerates andsandstones, as well as basaltic lava flows, possibly of Early Triassic age. They are followed by the shallow water Sefid Kuh Limestone, in which an intraformational unconformity has been now identified. This unit is locally covered by deep-water limestones of the Nazarkardeh Fm. which interfinger with slope facies of the Sefid Kuh Limestone. The volcaniclastic sandstone layers of the Sina Fm follow up-section with a deep unconformity, marked in several places by deep erosion and tilting of the underlying units. The Sina Fm. is in turn unconformably covered by the coal bearing shales of the Miankhui Fm., with a Norian-Rhaetian age testified by plant megafossils, marking the end of marine sedimentation and of volcanic-arc activity. The Triassic units are overthrusted to the south by Upper Palaeozoic siliciclastic successions showing in some cases a LG metamorphic imprint. They largely include the Qara Geithan Fm. consisting of granitic rocks, acidic to basic volcanics, and locally also large blocks of Permian bioclastic limestones derived from the erosion of the Palaeotethys accretionary wedge, exposed south of Aghdarband. The whole succession of the Aghdarband Basin, including the unconformable Miankhui Fm., is deeply involved in a north-verging thrust stack which interacts in the northern part of the area with an important strike-slip shear zone. Several tectonic units have been recognized within the Triassic succession, causing repetitions of the whole stratigraphic succession. Two main thrust sheets are exposed in the southern part of the basin under the Upper Palaeozoic thrust stack. Thrust faults and folds consistently show a N-directed tectonic transport, suggested by dip-slip motion along S-dipping reverse faults and axial plane geometry. Deformation occurred at shallow levels taking to the formation of cataclastic shear zones and to disjunctive and pencil cleavage in the shale layers of the succession. The thrust sheets comprise the Miankhui Fm. which shows a thick basal coal layer (up to 10 m) deeply excavated at the Aghdarband Mine. Nice examples of coal-related tectonics are exposed in open pits and tunnels of the mine. Intensive deformation of the coal, forming complex shear zones with s-c bands, causes the décollement of the Miankhui beds which show intensive tectonic thickening and repetitions mainly caused by polyphase thrust imbrications and disharmonic folding. The northernmost part of the Triassic basin shows a very complex setting, with traspressional structures given by vertical strike-slip faults and closed to tight folds with steeply plunging axes. According to our new data, up to four tectonic slices can be distinguished in this complex area. This structural zone is directly bounded to the north by severely deformed LG metamorphic rocks resulting from a volcaniclastic succession with Devonian and Carboniferous marble layers. Systematic asymmetry of major and parasitic folds, as well as rotation and torsion of axial surfaces indicate a general left-lateral transpressional regime, whereas kinematic indicators along the main fault planes show both left- and right-lateral motions. According to our relative chronology, dextral movements follow in time the sinistral ones reactivating previous Cimmerian structures and displacing also the surrounding Jurassic to Neogene succession of Kopeh Dagh in relatively recent times. Fold analyses along the area of interaction between thrust structure and the transpressional zone suggest an intricate interference pattern between thrust-related folds and strike-slip brittle shear zones, suggesting that the latter caused a strong reorientation of previously formed folds. The extension of the traspressional zone, which can be followed for some 20 km across the study area, indicates that important left-lateral movements, roughly parallel to the orientation of the convergence zone, were active during the last stages of the Late Triassic Cimmerian event, in contrast to what indicated by previous authors in the Mashhad area.

  11. Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Jercinovic, Michael J.; Terry, Michael P.

    1999-11-01

    High-resolution X-ray mapping and dating of monazite on the electron microprobe are powerful geochronological tools for structural, metamorphic, and tectonic analysis. X-ray maps commonly show complex Th, U, and Pb zoning that reflects monazite growth and overgrowth events. Age maps constructed from the X-ray maps simplify the zoning and highlight age domains. Microprobe dating offers a rapid, in situ method for estimating ages of mapped domains. Application of these techniques has placed new constraints on the tectonic history of three areas. In western Canada, age mapping has revealed multiphase monazite, with older cores and younger rims, included in syntectonic garnet. Microprobe ages show that tectonism occurred ca. 1.9 Ga, 700 m.y. later than mylonitization in the adjacent Snowbird tectonic zone. In New Mexico, age mapping and dating show that the dominant fabric and triple-point metamorphism occurred during a 1.4 Ga reactivation, not during the 1.7 Ga Yavapai-Mazatzal orogeny. In Norway, monazite inclusions in garnet constrain high-pressure metamorphism to ca. 405 Ma, and older cores indicate a previously unrecognized component of ca. 1.0 Ga monazite. In all three areas, microprobe dating and age mapping have provided a critical textural context for geochronologic data and a better understanding of the complex age spectra of these multistage orogenic belts.

  12. Estimation of subsurface formation temperature in the Yangtze area, South China: implications for shale gas generation and preservation

    NASA Astrophysics Data System (ADS)

    Liu, S.; Hao, C.; Li, X.; Xu, M.

    2015-12-01

    Temperature is one key parameter for hydrocarbon generation and preservation, also playing important role in geothermal energy assessment;however, accurate regional temperature pattern is still challenging, owing to a lack of data coverage and data quality as well. The Yangtze area, located in the South China, is considered as the most favorable target for shale gas resource exploration in China, and attracts more and more attention recently. Here we used the newly acquired steady-state temperature loggings, reliable Drilling Stem Test temperature data available and thermal properties, estimated the subsurface temperature-at-depth for the Yangtze area. Results show that the geothermal gradient ranges between 17 K/m and 74K/m, mainly falling into 20~30K/m, with a mean of 24 K/m; heat flow varies from 25 mW/m2 to 92 mW/m2, with a mean of 65 mW/m2. For the estimated temperature-at-depth, it is about 20~50 ℃ at the depth of 1000m, 50~80℃ for that at 2000m; while the highest temperature can be up to 110℃ at 3000m depth. Generally, the present-day geothermal regime of the Yangtze area is characterized by high in the northeast, low in the middle and localized high again in the southwest, and this pattern is well consistent with the tectono-thermal processes occurred in the area. Due to Cenozoic crustal extension in the northeastern Yangtze area, magmatism is prevailed, accounting for the high heat flow observed. Precambrian basement exists in the middle Yangtze area, such as the Xuefeng and Wuling Mountains, heat flow and subsurface temperature accordingly show relatively low as well. While for the southwestern Yangtze area, especially Yunnan and western Sichuan provinces, localized Cenozoic magmatism and tectonic activities are available, which is attributed to the high geothermal regime there. Considering the Paleozoic intensive tectonic deformation in the Yangtze area, tectonically stable area is prerequisite for shale gas preservation. Geothermal regime analysis presented here, indicates that the middle and northwestern Yangtze areas are favorable for shale gas preservation. In addition, the localized high temperature within the generally low geothermal background is also suggested here as a possible beneficial condition for shale gas generation.

  13. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    USGS Publications Warehouse

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  14. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    NASA Astrophysics Data System (ADS)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  15. Simulation of active tectonic processes for a convecting mantle with moving continents

    USGS Publications Warehouse

    Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.

    2006-01-01

    Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  16. Perogenesis of granites, Sharm El-Sheikh area, South Sinai, Egypt: petrological constrains and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Sherif, Mahmoud I.; Ghoneim, Mohamed F.; Heikal, Mohamed Th. S.; El Dosuky, Bothina T.

    2013-10-01

    Precambrian granites of the Sharm El-Sheikh area in south Sinai, Egypt belong to collisional and post-collisional Magmatism (610-580 Ma). The granites are widely distributed in the northern part of the Neoproterozoic Arabian-Nubian Shield. South Sinai includes important components of successive multiple stages of upper crust granitic rocks. The earliest stages include monzogranite and syenogranites while the later stages produced alkali feldspar granites and riebeckite-bearing granites. Numerous felsic, mafic dikes and quartz veins traverse the study granites. Petrographically, the granitic rocks consist mainly of perthite, plagioclase, quartz, biotite and riebeckite. Analysis results portray monzogranites displaying calc-alkaline characteristics and emplaced in island-arc tectonic settings, whereas the syenogranites, alkali-feldspar granites and the riebeckite bearing-granites exhibit an alkaline nature and are enriched in HFSEs similar to granites within an extensional regime. Multi-element variation diagrams and geochemical characteristics reinforce a post-collision tectonic setting. REEs geochemical modeling reveals that the rocks were generated as a result of partial melting and fractionation of lower crust basaltic magma giving rise to A1 and A2 subtype granites. They were subsequently emplaced within an intraplate environment at the end of the Pan-African Orogeny.

  17. The Eocene-Miocene tectonic evolution of the Rif chain (Morocco): new data from the Jebha area

    NASA Astrophysics Data System (ADS)

    D'Assisi Tramparulo, Francesco; Ciarcia, Sabatino; El Ouaragli, Bilal; Vitale, Stefano; Najib Zaghloul, Mohamed

    2016-04-01

    Keywords: structural analysis, tectonics, shear bands, Miocene, Jebha Fault The Jebha area, located in the Central Rif, is a key sector to understand the orogenic evolution of the Rif chain. Here, the left lateral Jebha-Chrafate transfer fault, allowed, in the Miocene time, the westward migration of the internal thrust front. The structural analysis of the area revealed a complex tectonic history. The Eocene orogenic pulse produced the tectonic stacking of the Ghomaride thrust sheets. During the late Aquitanian and Langhian, under a dominant ENE-WSW shortening, imbrication of several Internal Dorsale Calcaire slices occurred. The following orogenic stage, characterized by a main SE tectonic transport, allowed the External Dorsale Calcaire to overthrust the Maghrebian Flysch Basin Units by means of a dominant thin-skinned tectonics. Synchronously with the buttressing following the collision of the allochthonous wedge against the External Rif domain, an out-of-sequence thrusting stage involved the Ghomaride and Dorsale Calcaire Units and a general back-thrusting deformed the entire tectonic pile. A renewal of the NE-SW shortening produced strike-slip faults and SW-verging folds and finally a radial extension affected the whole chain.

  18. Geochemical signature variation of pre-, syn-, and post-shearing intrusives within the Najd Fault System of western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Abu-Alam, T. S.; Hauzenberger, C.; Stüwe, K.

    2016-10-01

    Late Precambrian intrusive rocks in the Arabian-Nubian Shield emplaced within and around the Najd Fault System of Saudi Arabia feature a great compositional diversity and a variety of degrees of deformation (i.e. pre-shearing deformed, sheared mylonitized, and post-shearing undeformed) that allows placing them into a relative time order. It is shown here that the degree of deformation is related to compositional variations where early, usually pre-shearing deformed rocks are of dioritic, tonalitic to granodioritic, and later, mainly post-shearing undeformed rocks are mostly of granitic composition. Correlation of the geochemical signature and time of emplacement is interpreted in terms of changes in the source region of the produced melts due to the change of the stress regime during the tectonic evolution of the Arabian-Nubian Shield. The magma of the pre-shearing rocks has tholeiitic and calc-alkaline affinity indicating island arc or continental arc affinity. In contrast, the syn- and post-shearing rocks are mainly potassium rich peraluminous granites which are typically associated with post-orogenic uplift and collapse. This variation in geochemical signature is interpreted to reflect the change of the tectonic regime from a compressional volcanic arc nature to extensional within-plate setting of the Arabian-Nubian Shield. Within the context of published geochronological data, this change is likely to have occurred around 605-580 Ma.

  19. Tectonic and climatic controls on fan systems: The Kohrud mountain belt, Central Iran

    NASA Astrophysics Data System (ADS)

    Jones, Stuart J.; Arzani, Nasser; Allen, Mark B.

    2014-04-01

    Late Pleistocene to Holocene fans of the Kohrud mountain belt (Central Iran) illustrate the problems of differentiating tectonic and climatic drivers for the sedimentary signatures of alluvial fan successions. It is widely recognised that tectonic processes create the topography that causes fan development. The existence and position of fans along the Kohrud mountain belt, NE of Esfahan, are controlled by faulting along the Qom-Zefreh fault system and associated fault zones. These faults display moderate amounts of historical and instrumental seismicity, and so may be considered to be tectonically active. However, fluvial systems on the fans are currently incising in response to low Gavkhoni playa lake levels since the mid-Holocene, producing incised gullies on the fans up to 30 m deep. These gullies expose an interdigitation of lake deposits (dominated by fine-grained silts and clays with evaporites) and coarse gravels that characterise the alluvial fan sediments. The boundaries of each facies are mostly sharp, with fan sediments superimposed on lake sediments with little to no evidence of reworking. In turn, anhydrite-glauberite, mirabilite and halite crusts drape over the gravels, recording a rapid return to still water, shallow ephemeral saline lake sedimentation. Neither transition can be explained by adjustment of the hinterland drainage system after tectonic uplift. The potential influence in Central Iran of enhanced monsoons, the northward drift of the Intertopical Convergence Zone (ITCZ) and Mediterranean climates for the early Holocene (~ 6-10 ka) point to episodic rainfall (during winter months) associated with discrete high magnitude floods on the fan surfaces. The fan sediments were deposited under the general influence of a highstand playa lake whose level was fluctuating in response to climate. This study demonstrates that although tectonism can induce fan development, it is the sensitive balance between aridity and humidity resulting from changes in the climate regime of Central Iran that influences the nature of fan sequences and how they interrelate to associated facies.

  20. Geological timing and duration of methane seepage in different sedimentary and tectonic settings in the Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Wenau, S.; Spiess, V.

    2016-12-01

    Methane seepage sites have been investigated in the Lower Congo Basin using seismo-acoustic methods in combination with geological and geochemical sampling. Pockmarks were observed in different areas of the Lower Congo Basin that are affected by different styles of salt-tectonic deformation and sedimentary input. At the salt front in the southern part of the basin, methane seepage shifts continuously westwards as previously undeformed sediments are affected by westward moving salt. Older seepage sites to the East are cut off from methane supply in the process of continuing salt-tectonic deformation. The initiation of gas accumulation and seepage directly at the deformation front is expected in the late Miocene due to salt-induced uplift. In the northern part of the basin on the lower slope, methane seepage is focused along salt-tectonic faults connecting Pliocene fan deposits to the seafloor, breaching the hemipelagic seal. These sites show indications for continuing seepage for the last 640 kyrs. Such long term seepage activity may be due to the lack of polygonal faults in the hemipelagic seal, focusing gas migration on fewer, salt-tectonic faults. Westward of the salt front, seepage features include the Regab pockmark where a potential reservoir in an Early Pleistocene channel flank is connected to the seafloor feature via a seismic chimney. Seepage activity in this area is also documented to be continuous over geologic time scales by seafloor and sub-seafloor seepage indications such as chimneys, pockmarks and buried seepage features. The Lower Congo Basin thus documents the longevity of seepage processes in the context of various tectonic and sedimentary regimes on a passive continental margin. Indications of the duration of seepage activity at individual sites may be used for methane budgeting in combination with emission rates estimated for typical seepage sites.

  1. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-03-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3° C km-1 with a mean of 27.7 ± 5.3° C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW/m2 with a mean of 64.7 ± 8.9 mW/m2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westward and northward. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  2. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-07-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3 °C km-1 with a mean of 27.7 ± 5.3 °C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW m-2 with a mean of 64.7 ± 8.9 mW m-2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westwards and northwards. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  3. Identification of new NE-trending deep-seated faults and tectonic pattern updating in northern Tunisia (Mogodos-Bizerte region), insights from field and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Essid, El Mabrouk; Kadri, Ali; Inoubli, Mohamed Hedi; Zargouni, Fouad

    2016-07-01

    The northern Tunisia is occupied by the Tellian domain constituent the eastern end of the Maghrebides, Alpine fold-thrust belt. Study area includes partially the Tellian domain (Mogodos belt) and its foreland (Bizerte region). Most of this region outcrops consist of Numidian thrust sheet flysch attributed to the lower Oligocene-Burdigalian. In the study area, the major fault systems are still subject of discussion. The Numidian nappe structure, the distribution of basalt and Triassic outcrops within and at the front of this Tellian domain deserve more explanation. In this work we intend to update the structural scheme and the tectonic evolution of the northern Tunisia, taking into account salt tectonics and magmatism. The updated tectonic evolution will be integrated in the geodynamic framework of the Central Mediterranean. For this purpose, we have analyzed morphologic, seismic and structural data. The compilation of the results has allowed the identification of new regional NE-trending faults dipping towards the NW: the Bled el Aouana-Bizerte, the Sejnane-Ras Enjla and the Oued el Harka faults. They correspond to the reactivation of deep-seated normal faults splaying on the Triassic evaporites. This fault system constitutes the main component of the northern Tunisia structural scheme and has influenced its tectonic evolution marked by the main following stages. The Tellian thrust-sheets were immobilized at the uppermost Langhian. During the major Tortonian NW-trending compressive phase, these faults were reactivated with reverse kinematics and controlled the distribution of the post-nappes Neogene continental deposits. At the early Pleistocene, a compressive NNW-trending event has reactivated again these faults with sinistral-reverse movements and deformed the post-nappes Neogene series. Late Quaternary to Actual, the tectonic regime continues to be compressive with a NNW-trending maximum horizontal stress.

  4. The initiation and tectonic regimes of the Cenozoic extension in the Bohai Bay Basin, North China revealed by numerical modelling

    NASA Astrophysics Data System (ADS)

    Li, Lu; Qiu, Nansheng

    2017-06-01

    In this study the dynamic aspects of the Cenozoic extension in the Bohai Bay Basin are considered in the context of initial thickness of the crust and lithosphere, tectonic force, strain rate and thermal rheology, which are directly or indirectly estimated from a pure shear extensional model. It is accordingly reasonable to expect that, in the Bohai Bay Basin, the thickness variation could be present prior to the initiation of extension. The extensional deformation is localized by a thickness variation of the crust and lithosphere and the heterogeneity of the initial thickness plays an important role in rifting dynamics. The onset of rifting requires a critical tectonic force (initial tectonic force) to be applied, which then immediately begins to decay gradually. Rifting will only occur when the total effective buoyancy force of the subducting slab reaches a critical level, after a certain amount of subduction taking place. The magnitude of the tectonic force decreases with time in the early phase of rifting, which indicates the weakening due to the increase in geothermal gradient. In order to deform the continental lithosphere within the currently accepted maximum magnitude of the force derived from subducted slab roll-back, the following conditions should be satisfied: (1) the thickness of the continental lithosphere is significantly thin and less than 125 km and (2) the lithosphere has a wet and hot rheology, which provides implications for rheological layering in continental lithosphere. Our results are strongly supported by the ;crème brûlée; model, in which the lower crust and mantle are relatively ductile.

  5. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 1. Structural Analysis and Geochronological Constraints

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin; Faure, Michel; Lin, Wei; Chen, Yan; Chu, Yang; Xue, Zhenhua

    2018-01-01

    The South China Block (SCB) experienced a polyphase reworking by the Phanerozoic tectonothermal events. To better understand its Late Mesozoic tectonics, an integrated multidisciplinary investigation has been conducted on the Dayunshan-Mufushan composite batholith in the north-central SCB. This batholith consists of two major intrusions that recorded distinct emplacement features. According to our structural analysis, two deformation events in relation to batholith emplacement and subsequent exhumation are identified. The early one (D1) was observed mostly at the southern border of the batholith, characterized by a top-to-the-SW ductile shearing in the early-stage intrusion and along its contact zone. This deformation, chiefly associated with the pluton emplacement at ca. 150 Ma, was probably assisted by farfield compression from the northern Yangtze foreland belt. The second but main event (D2) involved two phases: (1) ductile shearing (D2a) prominently expressed along the Dayunshan detachment fault at the western border of the batholith where the syntectonic late-stage intrusion and minor metasedimentary basement in the footwall suffered mylonitization with top-to-the-NW kinematics; and (2) subsequent brittle faulting (D2b) further exhumed the entire batholith that behaved as rift shoulder with half-graben basins developed on its both sides. Geochronological constraints show that the crustal ductile extension occurred during 132-95 Ma. Such a Cretaceous NW-SE extensional tectonic regime, as indicated by the D2 event, has been recognized in a vast area of East Asia. This tectonism was responsible not only for the destruction of the North China craton but also for the formation of the so-called "southeast China basin and range tectonics."

  6. Identifying tectonic parameters that influence tsunamigenesis

    NASA Astrophysics Data System (ADS)

    van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca

    2017-04-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.

  7. Old stories and lost pieces of the Eastern Mediterranean puzzle: a new approach to the tectonic evolution of the Western Anatolia and the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem

    2015-04-01

    During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200 km. Therefore the original NE-SW extension records on the core complexes rotated to the N-S orientation and replace 45o in reference to the core complexes in Greece, 6. During this stage, the left-lateral shear along the Burdur-Fethiye Shear Zone indicates the southern part of the counterclockwise rotation. 7. The North Anatolian Fault started to form as the result of the collision of the Arabian Microplate and the Eurasian Plate in the late Miocene. This continental transform fault propagated into the Marmara Region in the late Pliocene. Its late westward escape by cutting the Trakya-Eskişehir Fault Zone on three points generates its transportation through Trakya-Eskişehir Fault Zone splays. 8. During the Miocene, while Greece was rotating 20o clockwise and continuing to be shaped by the NW-SE normal faults, which were formed as a result of back-arc tectonic, the late westward escape of the Anatolia changed the orientation of the NEE-SWW striking oblique-extensional fault-controlled Miocene basins to NE-SW direction. The rotational E-W basins, which had developed by the North Anatolian Fault tectonics, superimposed with these Miocene basins .

  8. Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus: Evidence for Early Formation and Preservation of Regional Topography

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, James W.

    2008-01-01

    The area of the Meskhent Tessera quadrangle (V-3, 50-75degN, 60-120degE, Fig. 1) corresponds to a transition zone from the uplands of Ishtar Terra to the west to the lowlands of Atalanta Planitia to the east. The topographic configuration, gravity signature, and presence of large tesserae in Ishtar Terra are consistent with extensive areas of thickened crust and tectonically stabilized lithosphere representing ancient and now extinct regimes of mantle convection. The gravity and topographic characteristics of Atalanta Planitia have been cited as evidence for large-scale mantle downwelling. Thus, the region of Meskhent Tessera quadrangle represents an important sample for the study of the regional history of long-wavelength topography (highlands, midlands, and lowlands), interaction between the downwelling and areas of thickened crust/lithosphere, formation of associated tectonic features, and emplacement of volcanic plains.

  9. Thermicité et déformation de la marge continentale dans le Sud de la Tasmanie (Australie) : résultats préliminaires d'une analyse par traces de fission et d'une étude microstructuraleFission track reconnaissance of the thermal and tectonic settings of the South Tasman rise

    NASA Astrophysics Data System (ADS)

    Sélo, Madeleine; Benkhelil, Jean; Mascle, Jean; Storzer, Dieter; Exon, Neville

    2002-01-01

    We present and discuss a few fission track data, and microstructural observations, from rock samples dredged along the western and southwestern continental margin of Tasmania. The results allow assessing the thermal and tectonic regimes that were active prior to and during the margin creation. The different ages, as provided by fission tracks, and deformational styles, as evidenced from microstructures, are then tentatively correlated with the two main rifting episodes, in Late Jurassic-Cretaceous times and Eocene-Oligocene respectively, deduced from kinematical reconstructions, that have led to the present- day southern margin of Tasmania. To cite this article: M. Sélo et al., C. R. Geoscience 334 (2002) 59-66

  10. Tectonic context of the penetrative fracture system origin in the Early Paleozoic shale complex (Baltic Basin, Poland/Sweden).

    NASA Astrophysics Data System (ADS)

    Jarosiński, Marek; Gluszynski, Andrzej; Bobek, Kinga; Dyrka, Ireneusz

    2017-04-01

    Characterization of natural fracture and fault pattern play significant role for reservoir stimulation design and evaluation of its results. Having structural observations limited to immediate borehole surrounding it is a common need to build up a fracture model of reservoir in a range of stimulation reservoir volume or even beyond. To do this we need both a 3D seismic model and a consistent concept of the regional tectonic evolution. We present the result of integrated tectonic study in several deep boreholes target the Lower Paleozoic shale complex of Baltic Basin (BB), combined with analysis of 3D seismic survey and outcrop screening in Scania (Swedish part of the BB). During deposition of shale complex in the Ordovician and Silurian the research area was located 200-300 km away from the continental margin of Baltica involved in the Caledonian collision with the Eastern Avalonia. This distance allowed the shale complex to avoid significant tectonic deformation. Regional seismic cross section reveals the general pattern of the BB infill characteristic for the foreland basin underwent post-collisional isostatic rebound. Due to stress changes in collisional context the shale complex was cross-cut by steep, mostly inverse faults trending NW-SE and NE-SW. The fault zones oriented NW-SE are associated with an array of en echelon faults characteristic for strike-slip displacement. In our interpretation, these faults of Silurian (Wenlock) age create pattern of the regional pop-up structure, which is simultaneously involved in the plate flexure extension. Seismic attributes (e.g. curvature or ant tracking) highlight lineaments which mostly mimic the faults orientation. However, attributes show also some artefacts that come from regular array of seismic sources and receivers, which mimic the orthogonal joint system. Structural observations on borehole core lead us to conclusion that regular, orthogonal fracture system developed after maximum burial of the complex, triggered by mechanism of natural hydraulic fracturing due to hydrocarbon generation. These fractures create veins filled with calcite that growth was controlled by mechanical layering and the TOC content of the shale complex. The main joint fracture pattern is stable across at least 300 hundred kilometers, from the Polish to Swedish portion of Baltic Basin. Therefore a major tectonic event is expected to govern its origin. The Late Carboniferous thin-skinned compression exerted at the edge of the East European Craton, is preferred tectonic fracture triggering factor. This age of jointing is confirmed by the strike of principal joint set characteristic for Variscan compression. In addition, principal joint system is sensitive (=younger) to a presence of the Caledonian-age faults in Pomerania but insensitive (=older) to the Mesozoic faults in Scania. Above genetic considerations should be taken into account while building the self-consistent discrete fracture network of faults and fractures for the purpose of shale reservoir stimulation.

  11. Post-magmatic tectonic deformation of the outer Izu-Bonin-Mariana forearc system: initial results of IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Kurz, Walter; Ferré, Eric C.; Robertson, Alastair; Avery, Aaron; Christeson, Gail L.; Morgan, Sally; Kutterorf, Steffen; Sager, William W.; Carvallo, Claire; Shervais, John; Party IODP Expedition 352, Scientific

    2015-04-01

    IODP Expedition 352 was designed to drill through the entire volcanic sequence of the Bonin forearc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Post-magmatic extension resulted in the formation of asymmetric sedimentary basins such as, for example, the half-grabens at sites 352-U1439 and 352-U1442 located on the upper trench slope. Along their eastern margins these basins are bounded by west-dipping normal faults. Sedimentation was mainly syn-tectonic. The lowermost sequence of the sedimentary units was tilted eastward by ~20°. These tilted bedding planes were subsequently covered by sub-horizontally deposited sedimentary beds. Based on biostratigraphic constraints, the minimum age of the oldest sediments is ~ 35 Ma; the timing of the sedimentary unconformities lies between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441, located on the outer forearc, post-magmatic deformation resulted mainly in strike-slip faults possibly bounding the sedimentary basins. The sedimentary units within these basins were not significantly affected by post-sedimentary tectonic tilting. Biostratigraphic ages indicate that the minimum age of the basement-cover contact lies between ~29.5 and 32 Ma. Overall, the post-magmatic tectonic structures observed during Expedition 352 reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along distinct subhorizontal cataclastic shear zones as well as steeply dipping slickensides and shear fractures. These structures, forming within a contractional tectonic regime, were either re-activated as or cross-cut by normal-faults as well as strike-slip faults. Extension was also accommodated by steeply dipping to subvertical mineralized veins and extensional fractures. Faults observed at sites 352-U1440 and 352-U1441 show mainly strike-slip. The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  12. Seismotectonic zoning of Azerbaijan territory

    NASA Astrophysics Data System (ADS)

    Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad

    2017-04-01

    Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep structure of Greater and Lesser Caucasus, detailed description of the deep structure of Caspian zone, Kur and Caspian megadepressions, identification of nappe-folded structure of the Absheron Peninsula and the Absheron threshold at the border of Middle and South Caspian, justification of the possible hydrocarbon concentration at the tectonically stratified substantial complexes of mountain and foothill areas, etc. Based on the outcomes of implemented researches, some general conclusions and schemes were drawn for some parts of the project region within the plate tectonics conceptual frameworks, to include the territories of Lesser Caucasus and South Caspian. Analysis and comparison of these data with macroseismic and instrumental data allowed us to conduct seismotectonic studies in a region and develop a new scheme of seismotectonic map with outlined recent and forecasted seismic activity. There also correlated foci zones of earthquakes with subhorizontal and subvertical borders in earth crust, which shows their structure-dynamic relationship. In the one hand, the earthquake foci zones belong to the faults of the basement which extend to sedimentary cover and their intersection knots. On the other hand, there appearing inner-block seismogenic levels, namely, in seismic generation acts all the earth crust: tectonic stress results on movements along fault zones, as well as lateral displacements along non-stable contacts of the structure-substance complexes of different competency.

  13. Formation and tectonic evolution of the Cretaceous Jurassic Muslim Bagh ophiolitic complex, Pakistan: Implications for the composite tectonic setting of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Mehrab; Kerr, Andrew C.; Mahmood, Khalid

    2007-10-01

    The Muslim Bagh ophiolitic complex Balochistan, Pakistan is comprised of an upper and lower nappe and represents one of a number of ophiolites in this region which mark the boundary between the Indian and Eurasian plates. These ophiolites were obducted onto the Indian continental margin around the Late Cretaceous, prior to the main collision between the Indian and Eurasian plates. The upper nappe contains mantle sequence rocks with numerous isolated gabbro plutons which we show are fed by dolerite dykes. Each pluton has a transitional dunite-rich zone at its base, and new geochemical data suggest a similar mantle source region for both the plutons and dykes. In contrast, the lower nappe consists of pillow basalts, deep-marine sediments and a mélange of ophiolitic rocks. The rocks of the upper nappe have a geochemical signature consistent with formation in an island arc environment whereas the basalts of the lower nappe contain no subduction component and are most likely to have formed at a mid-ocean ridge. The basalts and sediments of the lower nappe have been intruded by oceanic alkaline igneous rocks during the northward drift of the Indian plate. The two nappes of the Muslim Bagh ophiolitic complex are thus distinctively different in terms of their age, lithology and tectonic setting. The recognition of composite ophiolites such as this has an important bearing on the identification and interpretation of ophiolites where the plate tectonic setting is less well resolved.

  14. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics

    NASA Astrophysics Data System (ADS)

    Sani, Federico; Bonini, Marco; Piccardi, Luigi; Vannucci, Gianfranco; Delle Donne, Dario; Benvenuti, Marco; Moratti, Giovanna; Corti, Giacomo; Montanari, Domenico; Sedda, Lorenzo; Tanini, Chiara

    2009-10-01

    We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-and-thrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.

  15. Fingerprinting stress: stylolite and calcite twinning paleopiezometry reveal the complexity of stress distribution during the growth of the Monte Nero anticline (Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille

    2016-04-01

    This contribution presents for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a structure part of a complex fold and thrust belts. We report a high-resolution deformation and stress history that was experienced by Meso-Cenozoic limestone strata in the overturned Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). New methodological development enables an easier use for the inversion technique of sedimentary and tectonic stylolite roughness. A stylolite-fracture network developed during layer-parallel shortening (LPS), as well as syn- and post-folding. Stress fingerprinting shows how stress builds up in the sedimentary strata during LPS with variations of differential stress before folding around a value of 50 MPa. The stress regime oscillated between strike-slip and compressional during LPS and became transiently extensional in limbs of developing fold due to a coeval increase of vertical stress related to local burial and decrease of maximum horizontal stress related to hinge development, before ultimately becoming strike-slip again during late stage fold tightening. Our case study shows that stress fingerprinting is possible and that this novel method can be used to unravel complex temporal relationships that relate to local variations within evolving regional orogenic stresses. Beyond regional implication, this study validates our approach as a new exciting toolbox to high-resolution stress fingerprinting in basins and orogens.

  16. The Juchatengo complex: an upper-level ophiolite assemblage of late Paleozoic age in Oaxaca, southern Mexico

    NASA Astrophysics Data System (ADS)

    Grajales-Nishimura, José Manuel; Ramos-Arias, Mario Alfredo; Solari, Luigi; Murillo-Muñetón, Gustavo; Centeno-García, Elena; Schaaf, Peter; Torres-Vargas, Ricardo

    2018-04-01

    The Juchatengo complex (JC) suite is located between the Proterozoic Oaxacan complex to the north and the Xolapa complex to the south, and was amalgamated by late Paleozoic magmatism. It consists of mafic and sedimentary rocks that have oceanic affinities, with internal pseudostratigraphic, structural and metamorphic characteristics, which resemble a typical upper-level ophiolite assemblage. New U-Pb zircon and previous hornblende K-Ar analyses yield ages of ca. 291-313 Ma (U-Pb) for plagiogranites and ca. 282-277 Ma for tonalites intruding the entire sequence, including pelagic sediments at the top, with a maximum deposition age of ca. 278 Ma and noteworthy local provenance. These data constrain the age of the JC to the Late Pennsylvanian-Early Permian period. Hf isotopic analyses obtained from zircons in the JC plagiogranite and tonalite show that they come from a similar primitive mantle source (176Hf/177Hf: 0.282539-0.283091; ƐHf(t): + 3.2 to + 15.0). ƐHf(t) values from near 0 to - 2.8 in the tonalites indicate a contribution from the continental crust. Trace elements and REE patterns in whole rock and zircons point to a primitive mantle source for differentiated mafic, plagiogranite dykes and tonalitic plutons. Geochronological and geochemical data address the generation of new oceanic crust above the subduction zone, probably in a backarc setting. In this tectonic scenario, the JC ophiolite originated due to the convergence of the paleo-Pacific plate below the already integrated Oaxacan and Acatlán complexes in western Pangea. The dextral displacement places the deformation in a transtensional regime during the late Paleozoic age.

  17. Evaluation of the deformation parameters of the northern part of Eg

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Monem S.; Radwan, Ali M.; Sharf, Mohamed; Hamimi, Zakaria; Hegazy, Esraa E.; Abou Aly, Nadia; Gomaa, Mahmoud

    2016-06-01

    The northern part of Egypt is a rapidly growing development accompanied by the increased levels of standard living particularly in its urban areas. From tectonic and seismic point of views, the northern part of Egypt is one of the interested regions. It shows an active geologic structure attributed to the tectonic movements of the African and Eurasian plates from one side and the Arabian plate from the other side. From historical point of view and recent instrumental records, the northern part of Egypt is one of the seismo-active regions in Egypt. The investigations of the seismic events and their interpretations had led to evaluate the seismic hazard for disaster mitigation, for the safety of the densely populated regions and the vital projects. In addition to the monitoring of the seismic events, the most powerful technique of Global Navigation Satellite System (GNSS) will be used in determining crustal deformation where a geodetic network covers the northern part of Egypt. Joining the GPS Permanent stations of the northern part of Egypt with the Southern part of Europe will give a clear picture about the recent crustal deformation and the African plate velocity. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. Final compiled output from the seismological and geodetic analysis will throw lights upon the geodynamical regime of these seismo-active regions. This work will throw lights upon the geodynamical regime and to delineate the crustal stress and strain fields in the study region. This also enables to evaluate the active tectonics and surface deformation with their directions from repeated geodetic observations. The results show that the area under study suffers from continuous seismic activity related to the crustal movements taken place along trends of major faults

  18. Sheet intrusions and deformation of Piton des Neiges, and their implication for the volcano-tectonics of La Réunion

    NASA Astrophysics Data System (ADS)

    Chaput, Marie; Famin, Vincent; Michon, Laurent

    2017-10-01

    To understand the volcano-tectonic history of Piton des Neiges (the dormant volcano of La Réunion), we measured in the field the orientation of sheeted intrusions and deformation structures, and interpreted the two datasets separately with a paleostress inversion. Results show that the multiple proposed rift zones may be simplified into three trends: (1) a N30°E, 5 km wide linear rift zone running to the south of the edifice, active in the shield building (≥ 2.48-0.43 Ma) and terminal stages (190-22 ka); (2) a curved N110 to N160°E rift zone, widening from 5 km to 10 km toward the NW flank, essentially active during the early emerged shield building (≥ 1.3 Ma); and (3) two sill zones, ≤ 1 km thick in total, in the most internal parts of the volcano, active in the shield building and terminal stages. In parallel, deformation structures reveal that the tectonics of the edifice consisted in three end-member stress regimes sharing common stress axes: (1) NW-SE extension affecting in priority the south of the edifice near the N30°E rift zone; (2) NNE-SSW extension on the northern half of the volcano near the N110-160°E rift zone; (3) compression occurring near the sill zones, with a NE-SW or NW-SE maximum principal stress. These three stress regimes are spatially correlated and mechanically compatible with the injection trends. Combined together, our data show that the emerged Piton des Neiges underwent sector spreading delimited by perpendicular rift zones, as observed on Piton de la Fournaise (the active volcano of La Réunion). Analogue experiments attribute such sector spreading to brittle edifices built on a weaker substratum. We therefore conclude that La Réunion volcanoes are both brittle, as opposed to Hawaiian volcanoes or Mount Etna whose radial spreading is usually attributed to a ductile body within the edifices.

  19. Evaluation of In-Situ Stress Assessment from Deep Borehole in the Middle Coastal Plain and Its implication for Taiwan Tectonics

    NASA Astrophysics Data System (ADS)

    Yeh, E. C.; Li, W. C.; Chiang, T. C.; Lin, W.; Wang, T. T.; Yu, C. W.; Chiao, C. H.; Yang, M. W.

    2014-12-01

    Scientific study in deep boreholes has paid more attention as the demand of natural resources and waste disposal and risk evaluation of seismic hazard dramatically increases, such as petroleum exploitation, geothermal energy, carbon sequestration, nuclear waste disposal and seismogenic faulting. In the deep borehole geoengineering, knowledge of in-situ stress is essential for the design of drilling-casing plan. Understanding the relationship between fracture and in-situ stress is the key information to evaluate the potential of fracture seal/conduit and fracture reactivity. Also, assessment of in-situ stress can provide crucial information to investigate mechanism of earthquake faulting and stress variationfor earthquake cycles. Formations under the Coastal Plain in Taiwan have evaluated as saline-water formations with gently west-dipping and no distinct fractures endured by regional tectonics of arc-continental collision with N35W compression. The situation is characterized as a suitable place for carbon sequestration. In this study, we will integrate results from different in-situ stress determinations such as anelastic strain recovery (ASR), borehore breakout, hydraulic fracturing from a 3000m borehole of carbon sequestration testing site and further evaluate the seal feasibility and tectonic implication. Results of 30 ASR experiments between the depth of 1500m and 3000m showed the consistent normal faulting stress regime. Stress gradient of vertical stress, horizontal maximum stress and horizontal minimum stress with depth is estimated. Borehole breakout is not existed throughout 1500-3000m. The mean orientation of breakout is about 175deg and mean width of breakout is 84 deg. Based on rock mechanical data, maximum injection pressure of carbon sequestration can be evaulated. Furthermore, normal faulting stress regime is consistent with core observations and image logging, the horizontal maximum stress of 85deg inferred from breakout suggested that this place has been affected by the compression of oblique collision. The comparison of stress magnitudes estimated from ASR, breakout and hydraulic fracturing cab further verified current results.

  20. Tectonics, recent geodynamics and seismicity of Azerbaijan part of the Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Aliyev, Fuad; Kangarli, Talat; Rahimov, Fuad; Murtuzov, Zaur; Aliyev, Ziya

    2016-04-01

    Transition area of the Eastern Caucasus - Caspian Megadepression corresponds to a periclinal submergence zone of the mountain folded structure of the Greater Caucasus under Pliocene-Holocenic sedimentary complex of Caspian megabasin. Being a part of Alpine-Himalayan folded belt, Greater Caucasus has formed during alpine stage of tectogenesis under geodynamic conditions of convergent interactions between Northern and Southern Caucasus continental microplates. This process has been accompanied by pseudosubduction of the first plate under the second with formation of allochtonous accretion prism above underthrust zone. Modern folding and napping structure of the orogeny has formed as a result of the horizontal movements of different phases and subphases of alpine tectogenesis, that are presented represented by Late Cimmerian - Wallachian tectonic phases within Azerbaijan territory. Limited by meridional fault-slip zones, Caspian megadepression present itself as a young structure that layered on sublatitudinal convergent zone and developed during Late Miocene (10 million years ago) as a flexure zone between two indenters which actively move northward provoking their separation from the African continent and Arabian plate in the west and secession from Central Iranian plate of the Lut block in the east. The acting movement of Arabian plate to the north results in accumulation of the horizontal stress at the current stage of tectogenesis. Current process reveals itself both in the fragmentation of Southern and Northern Caucasus continental microplates into various-size blocks along the general and anti-Caucasus trended faults, and in consideration horizontal and vertical movements within the convergence zone. All these factors define the complexity of geodynamic condition revealed here, in which seismic activity of a transition zone become apparent. There exist the seismic zones here that are confined both to a convergence line and to the fault zones that confine Caspian megadepression or complicate its' inner structure. Under lateral compression conditions, the small-size dynamic blocks that form the inner structure of the earth crust in a transition zone is standing as a reason of formation of the transpressive deformations, which combine moving along bordering of transversal dislocations with the compression structures like Main Caucasus strike faults in a trend of convergent (pseudosubduction) interaction of Southern and Northern Caucasus continental microplates. During such regime a multiple elastic stress accumulation zones are developing, that are confined to mentioned dislocations and their connection knots. Namely, exceeding of a breakage point of the rocks by accumulated elastic deformations, results in earthquakes and destructions in such tectonically vulnerable transition zones.

  1. High-resolution numerical modeling of tectonic underplating in circum-Pacific subduction zones: toward a better understanding of deformation in the episodic tremor and slip region?

    NASA Astrophysics Data System (ADS)

    Menant, A.; Angiboust, S.; Gerya, T.; Lacassin, R.; Simoes, M.; Grandin, R.

    2017-12-01

    Study of now-exhumed ancient subduction systems have evidenced km-scale tectonic units of marine sediments and oceanic crust that have been tectonically underplated (i.e. basally accreted) from the downgoing plate to the overriding plate at more than 30-km depth. Such huge mass transfers must have a major impact, both in term of long-term topographic variations and seismic/aseismic deformation in subduction zones. However, the quantification of such responses to the underplating process remains poorly constrained. Using high-resolution visco-elasto-plastic thermo-mechanical models, we present with unprecedented details the dynamics of formation and destruction of underplated complexes in subductions zones. Initial conditions in our experiments are defined in order to fit different subduction systems of the circum-Pacific region where underplating process is strongly suspected (e.g. the Cascadia, SW-Japan, New Zealand, and Chilean subduction zones). It appears that whatever the subduction system considered, underplating of sediments and oceanic crust always occur episodically forming a coherent nappe stacking at depths comprised between 10 and 50 km. At higher depth, a tectonic mélange with a serpentinized mantle wedge matrix developed along the plates interface. The size of these underplated complexes changes according to the subduction system considered. For instance, a 15-km thick nappe stacking is obtained for the N-Chilean subduction zone after a series of underplating events. Such an episodic event lasts 4-5 Myrs and can be responsible of a 2-km high uplift in the forearc region. Subsequent basal erosion of these underplated complexes results in their only partial preservation at crustal and mantle depth, suggesting that, after exhumation, only a tiny section of the overall underplated material can be observed nowadays in ancient subduction systems. Finally, tectonic underplating in our numerical models is systematically associated with (1) an increasing thickness of the high-strained subduction channel and (2) an accumulation of fluid-rich materials that serve as an environment for episodic tremor and slip events assisted by tectonic shearing and fluid release and percolation.

  2. Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge

    NASA Astrophysics Data System (ADS)

    Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo

    2017-10-01

    The Trinidad dome, Escambray complex, Cuba, forms part of an accretionary wedge built during intra-oceanic subduction in the Caribbean from the Late Cretaceous to Cenozoic. The structure reflects syn-subduction exhumation during thickening of the wedge, followed by extension. Field mapping, metamorphic and structural analysis constrain the tectonic evolution into five stages. Three ductile deformation events (D1, D2 and D3) are related to metamorphism in a compressional setting and formation of several nappes. D1 subduction fabrics are only preserved as relict S1 foliation and rootless isoclinal folds strongly overprinted by the main S2 foliation. The S2 foliation is parallel to sheared serpentinised lenses that define tectonic contacts, suggesting thrust stacks and underthrusting at mantle depths. Thrusting caused an inverted metamorphic structure with higher-grade on top of lower-grade nappes. Exhumation started during D2 when the units were incorporated into the growing accretionary wedge along NNE-directed thrust faults and was accompanied by substantial decompression and cooling. Folding and thrusting continued during D3 and marks the transition from ductile to brittle-ductile conditions at shallower crustal levels. The D4-5 events are related to extension and contributed to the final exhumation (likely as a core complex). D4 is associated with a regional spaced S4 cleavage, late open folds, and numerous extension veins, whereas D5 is recorded by normal and strike-slip faults affecting all nappes. The P-t path shows rapid exhumation during D2 and slower rates during D3 when the units were progressively incorporated into the accretionary prism. The domal shape formed in response to tectonic denudation assisted by normal faulting and erosion at the surface during the final stages of structural development. These results support tectonic models of SW subduction of the Proto-Caribbean crust under the Caribbean plate during the latest Cretaceous and provide insights into the tectonic evolution of accretionary wedges in an intra-arc setting.

  3. Tectonic Origin of Serpentinites on Syros, Greece: Geochemical Signatures of Seafloor Serpentinization Preserved in the HP/LT Subduction Complex

    NASA Astrophysics Data System (ADS)

    Raia, N. H.; Cooperdock, E. H. G.; Barnes, J.; Stockli, D. F.; Schwarzenbach, E. M.

    2016-12-01

    Serpentinized ultramafic rocks are commonly found in exhumed HP/LT subduction complexes, but their tectonic origins (i.e., setting of serpentinization) are difficult to decipher due to extensive alteration. Growing literature and geochemical datasets demonstrate that immobile elements (REE, HFSE) in serpentinites can retain magmatic signatures indicative of the tectonic setting of parent peridotite, while fluid-mobile elements and stable isotopic signatures shed light on the fluids causing serpentinization. This study combines whole-rock trace and major element geochemistry, stable isotope (δD and δO) analyses with petrographic observation to determine the tectonic origin of ultramafic rocks in the HP/LT Aegean subduction complex. The best-preserved HP rocks of the Cycladic Blueschist Unit (CBU) are found on Syros, Greece, where serpentinized ultramafic rocks within the CBU are closely associated with metamorphosed remnants of subducted oceanic crust. All samples are completely serpentinized, lacking relict pyroxene or spinel grains, with typical assemblages consisting of serpentine, talc, chlorite, magnetite, and minor carbonate. The serpentinizing fluid was characterized using stable isotopes. δD and δO values of bulk-rock serpentinite powders and chips, respectively, suggest seafloor serpentinites hydrated by seawater at low T, typical of alteration at mid-ocean ridges and hyper-extended margins (δD = -64 to -33‰ and δO = 5.2 to 9.0‰). To fingerprint a tectonic origin, whole rock serpentinite REE patterns are compared to a global database of whole rock serpentinite analyses from fore-arc mantle wedge, mid-ocean ridge, and hyper-extended margin tectonic settings. Whole rock major element, trace element, and REE analyses are consistent with limited melt extraction, flat REE patterns (LaN/SmN = 0.2-2.6, SmN/YbN = 0.3-3.5; N= C1 normalized), and do not show pronounced Eu anomalies. These data are consistent with abyssal peridotites derived from hyper-extended margin settings, although some overlap with mid-ocean ridge serpentinites makes it difficult to rule out. In any case, the geochemical signatures retained in these serpentinites indicate they are unlikely sourced from the mantle wedge, as has been historically speculated.

  4. Burial and thermal history simulation of the Abu Rudeis-Sidri oil field, Gulf of Suez-Egypt: A 1D basin modeling study

    NASA Astrophysics Data System (ADS)

    Awadalla, Ahmed; Hegab, Omar A.; Ahmed, Mohammed A.; Hassan, Saad

    2018-02-01

    An integrated 1D model on seven wells has been performed to simulate the multi-tectonic phases and multiple thermal regimes in the Abu Rudeis-Sidri oilfield. Concordance between measured and calculated present-day temperatures is achieved with present-day heat flows in the range of 42-55 mW/m2. Reconstruction of the thermal and burial histories provides information on the paleotemperature profiles, the timing of thermal activation as well as the effect of the Oligo-Miocene rifting phases and its associated magmatic activity. The burial histories show the pre-rift subsidence was progressive but modest, whereas the syn-rift was more rapid (contemporaneous with the main rifting phases and basin formation). Finally, the early post-rift thermal subsidence was slow to moderate in contrast to the late post-rift thermal subsidence which was moderate to rapid. The simulated paleo heat flow illustrates a steady state for the pre-rift phase and non-steady state (transient) for syn-rift and postrift phases. Three geothermal regimes are recognized, each of which is associated with a specific geological domain. 1) A lower geothermal regime reflects the impact of stable tectonics (pre-rift). 2) The higher temperature distribution reflects the syn-rift high depositional rate as well as the impact of stretching and thinning (rifting phases) of the lithosphere. 3) A local higher geothermal pulse owing to the magmatic activity during the Oligo-Miocene time (ARM-1 and Sidri-7 wells). Paleoheat flow values of 100mW/m2 (Oligo-Miocene rifting phase) increased to 120mW/m2 (Miocene rifting phase) and lesser magnitude of 80mW/m2 (Mio- Pliocene reactivation phase) have been specified. These affected the thermal regime and temperature distribution by causing perturbations in subsurface temperatures. A decline in the background value of 60mW/m2 owing to conductive cooling has been assigned. The blanketing effect caused by low thermal conductivity of the basin-fill sediments has been simulated as well.

  5. The Middlesex Fells Volcanic Complex: A Revised Tectonic Model based on Geochronology, Geochemistry, and Field Data

    NASA Astrophysics Data System (ADS)

    Hampton, R.

    2017-12-01

    The Boston Bay area is composed of several terranes originating on the paleocontinent of Avalonia, an arc terrane that accreted onto the continent of Laurentia during the Devonian. Included in these terranes is the Middlesex Fells Volcanic Complex, a bimodal complex composed of both intrusive and extrusive igneous rocks. Initial studies suggested that this volcanic complex formed during a rift event as the Avalonian continent separated from its parent continent 700-900 Ma. New geochemical and geochronological data and field relationships observed in this study establishes a new tectonic model. U-Pb laser ablation zircon data on four samples from different units within the complex reveal that the complex erupted 600 Ma. ICP-MS geochemical analysis of the metabasalt member of the complex yield a trace element signature enriched in Rb, Pb, and Sr and depleted in Th, indicating a subduction component to the melt and interpreted as an eruption into a back-arc basin. The felsic units similarly have an arc related signature when plotted on trace element spider diagrams and tectonic discrimination diagrams. Combined with the field relationships, including an erosional unconformity, stratigraphic and intrusional relationships and large faults from episodic extension events, this data suggests that the Middlesex Fells Volcanic Complex was erupted as part of the arc-sequence of Avalonia and as part of the formation of a back-arc basin well after Avalonia separated from its parent continent. This model presents a significantly younger eruption scenario for the Middlesex Fells Volcanics than previously hypothesized and may be used to study and compare to other volcanics from Avalon terranes in localities such as Newfoundland and the greater Boston area.

  6. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data for Mars from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible postflow tectonic subsidence on the Snake River Plain in Idaho.

  7. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region of Mars: Indications of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible post-flow tectonic subsidence on the Snake River Plain in Idaho.

  8. The Influence of the Ufimian Tectonic Concentric Structure on the Hydrocarbon Migration and Ore Genesis

    NASA Astrophysics Data System (ADS)

    Filippov, V. A.

    2018-01-01

    The Ufimian tectonic concentric structure (UTC) is a regional structure with concentric and zonal structure of the internal gravity field. In the Neoproterozoic this structure was at higher hypsometric level relative to the Bashkir Meganticlinorium. The most significant uplift of this tectonic concentric structure happened at the beginning of the Karatau time ( 825 Ma) and was accompanied by the formation of a ring fractured zone, favorable for hydrocarbon migration from the Lower Riphean black shales. Due to this, bitumens with higher Mo content in the Neoproterozoic and Paleozoic deposits are confined spatially to this zone. The bitumenosity of the Neoproterozoic deposits on the southern slope of the Ufimian tectonic concentric structure could have contributed to the formation of complex Cu-Ag-Mo-Re ores (copper sands) at the upper boundary of terrigenous red deposits of the Zilmerdak Formation. Positive structures identified in the Neoproterozoic deposits near the margin of the Ufimian tectonic concentric structure are considered to be promising for searching for hydrocarbon fields.

  9. Three-Dimensional Rheological Structure of North China Craton Determined by Integration of Multiple observations: Controlling Role for Lithospheric Rifting

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Shan, B.; Li, Y.

    2017-12-01

    The North China Craton (NCC) has undergone significant lithospheric rejuvenation in late Mesozoic and Cenozoic, one feature of which is the widespread extension and rifting. The extension is distinct between the two parts of NCC: widespread rifting in the eastern NCC and localized narrow rifting in the west. The mechanism being responsible for this difference is uncertain and highly debated. Since lithospheric deformation can be regarded as the response of lithosphere to various dynamic actions, the rheological properties of lithosphere must have a fundamental influence on its tectonics and deformation behavior. In this study, we investigated the 3D thermal and rheological structure of NCC by developing a model integrating several geophysical observables (such as surface heatflow, regional elevation, gravity and geoid anomalies, and seismic tomography models). The results exhibit obvious lateral variation in rheological structure between the eastern and western NCC. The overall lithospheric strength is higher in the western NCC than in the east. Despite of such difference in rheology, both parts of NCC are characterized by mantle dominated strength regime, which facilitates the development of narrow rifting. Using ancient heatflow derived from mantle xenoliths studies, and taking the subduction-related dehydration reactions during Mesozoic into account, we constructed the thermal and rheological structure of NCC in Ordovician, early Cretaceous and early Cenozoic. Combining the evidence from numerical simulations, we proposed an evolution path of the rifting in NCC. The lithosphere of NCC in Ordovician was characterized by a normal craton features: low geotherm, high strength and mantle dominated regime. During Jurassic and Cretaceous, the mantle lithosphere in the eastern NCC was hydrated by fluid released by the suduction of the Pacific plate, resulting in weakening of the lithosphere and a transition from mantle dominated to crust dominated regime, which facilitated the development of metamorphic core complex extension. The rifting in eastern NCC experienced a further transition to the wide rifting style under a low strain rate environment during early Cenozoic. In contrast, the western NNC has been kept mantle dominated regime, leading to a localized narrow rifting.

  10. Looking for Plate Tectonics in all the wrong fluids

    NASA Astrophysics Data System (ADS)

    Davaille, Anne

    2017-04-01

    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  11. Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives

    PubMed Central

    Badgley, Catherine; Smiley, Tara M.; Terry, Rebecca; Davis, Edward B.; DeSantis, Larisa R.G.; Fox, David L.; Hopkins, Samantha S.B.; Jezkova, Tereza; Matocq, Marjorie D.; Matzke, Nick; McGuire, Jenny L.; Mulch, Andreas; Riddle, Brett R.; Roth, V. Louise; Samuels, Joshua X.; Strömberg, Caroline A.E.; Yanites, Brian J.

    2018-01-01

    Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. PMID:28196688

  12. Venus - Complex Network of Narrow Fractures Near Hestia Rupes Region

    NASA Image and Video Library

    1996-10-23

    This image from NASA Magellan spacecraft covers region near Hestia Rupes on the northwestern corner of Aphrodite Terra. The complex network of narrow (<1 kilometer) fractures in the center of the image extends for approximately 50 kilometers (31 miles). This network exhibits tributary-like branches similar to those observed in river systems on Earth. However, the angular intersections of tributaries suggest tectonic control. These features appear to be due to drainage of lava along preexisting fractures and subsequent collapse of the surface. The underlying tectonic fabric can be observed in the northeast trending ridges which predate the plains. http://photojournal.jpl.nasa.gov/catalog/PIA00469

  13. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    USGS Publications Warehouse

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  14. History and evolution of Subduction in the Precambrium

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2013-12-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g. Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic subduction is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further subduction history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction changes to shallow underplating and buckling. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere starts to delaminate and drip-off. But the subduction style is not only a function of upper-mantle temperature but also strongly depends on the thickness of the subducting plate. If thinner present day oceanic plates are used in the Precambrian models, no shallow underplating is observed but steep subduction can be found up to an upper-mantle temperature of 200 K above present day values. Increasing oceanic plate thickness introduces a transition from steep to flat subduction at lower temperatures of around 150 K. Thicker oceanic plates in the Precambrium also agree with results from earlier studies, e.g. Abbott (1994). References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370. Subduction depends strongly on upper-mantle temperature. (a) Modern subduction with present day temperature gradients in upper-mantle and lithosphere. (b) Increase of temperature by 100 K at the lithosphere-asthenosphere boundary (LAB) leads to melting and drip-off of the of the slab-tip. (c) A temperature increase of 200 K leads to buckling of the subducting slab and Rayleigh-Taylor instabilities not only at the slab-tip but the whole LAB. At this stage subduction is no longer possible as the slab melts or breaks before it can be subducted into the mantle.

  15. Venus magmatic and tectonic evolution

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Hansen, V. L.

    1993-01-01

    Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.

  16. North-South contraction of the mojave block and strike-slip tectonics in southern california.

    PubMed

    Bartley, J M; Glazner, A F; Schermer, E R

    1990-06-15

    The Mojave block of southern California has undergone significant late Cenozoic north-south contraction. This previously unappreciated deformation may account for part of the discrepancy between neotectonic and plate-tectonic estimates of Pacific-North American plate motion, and for part of the Big Bend in the San Andreas fault. In the eastern Mojave block, contraction is superimposed on early Miocene crustal extension. In the western Mojave block, contractional folds and reverse faults have been mistaken for extensional structures. The three-dimensional complexity of the contractional structures may mean that rigid-block tectonic models of the region based primarily on paleomagnetic data are unreliable.

  17. Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus

    NASA Technical Reports Server (NTRS)

    Hurwitz, D. M.; Head, J. W.

    2009-01-01

    Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our progress in mapping the spatial and stratigraphic relationships of material units and our initial interpretations of the tectonic and volcanic history of the region surrounding the north pole of Venus

  18. Porphyry copper deposits distribution along the western Tethyan and Andean subductions: insights from a paleogeographic approach

    NASA Astrophysics Data System (ADS)

    Bertrand, G.

    2012-12-01

    The genesis of many types of mineral deposits is closely linked to tectonic and petrographic conditions resulting from specific geodynamic contexts. Porphyry deposits, for instance, are associated to calc-alkaline magmatism of subduction zones. In order to better understand the relationships between ore deposit distribution and their tectonic context, and help identifying geodynamic-related criteria of favorability that would, in turn, help mineral exploration, we propose a paleogeographic approach. Paleogeographic reconstructions, based on global or regional plate tectonic models, are crucial tools to assess tectonic and kinematic contexts of the past. We use this approach to study the distribution of porphyry copper deposits along the western Tethyan and Andean subductions since Lower Cretaceous and Paleocene, respectively. For both convergent contexts, databases of porphyry copper deposits, including, among other data, their age and location, were compiled. Spatial and temporal distribution of the deposits is not random and show that they were emplaced in distinct clusters. Five clusters are identified along the western Tethyan suture, from Lower Cretaceous to Pleistocene, and at least three along the Andes, from Paleocene to Miocene. Two clusters in the Aegean-Balkan-Carpathian area, that were emplaced in Upper Cretaceous and Oligo-Miocene, and two others in the Andes, that were emplaced in late Eocene and Miocene, are studied in details and correlated with the past kinematics of the Africa-Eurasia and Nazca-South America plate convergences, respectively. All these clusters are associated with a similar polyphased kinematic context that is closely related to the dynamics of the subductions. This context is characterized by 1) a relatively fast convergence rate, shortly followed by 2) a drastic decrease of this rate. To explain these results, we propose a polyphased genetic model for porphyry copper deposits with 1) a first stage of rapid subduction rate, favoring high melt production in the mantle wedge, by dehydration of the subducted oceanic crust, and increased influx of mafic magmas in the MASH (Melting, Assimilation, Storage, Homogenization) zone, and 2) a subsequent significant decrease in subduction rate, favoring extensional regime within the upper plate and easing upward migration of fertile magmas to the upper crust. This second effect seems to be confirmed in the Aegean-Balkan-Carpathian area where the two clusters are spatially and temporally correlated with known extensional regimes. Although preliminary, these results highlight the control of the geodynamic context, and especially the subduction kinematics, on the spatial and temporal distribution of porphyry copper deposits. This study also confirms that the paleogeographic approach is a promising tool that could help identifying geodynamic and tectonic criteria favoring the genesis of various ore deposit types. Correlatively, ore deposits may be considered, in future studies, as possible markers of past geodynamic contexts.

  19. Tectonic stratification and seismicity of the accretionary prism of the Azerbaijani part of Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Alizade, Akif; Kangarli, Talat; Aliyev, Fuad

    2013-04-01

    The Greater Caucasus has formed during last stage of the tectogenesis in a geodynamic condition of the lateral compression, peculiar to the zone pseudo-subduction interaction zone between Northern and Southern Caucasian continental microplates. Its present day structure formed as a result of horizontal movements of the different phases and sub-phases of Alpine tectogenesis (from late Cimmerian to Valakhian), and is generally regarded as zone where, along Zangi deformation, the insular arc formations of the Northern edge of South Caucasian microplate thrust under the Meso-Cenozoic substantial complex contained in the facials of marginal sea of Greater Caucasus. The last, in its turn, has been pushed beneath the North-Caucasus continental margin of the Scythian plate along Main Caucasus Thrust fault. Data collected from the territory of Azerbaijan and its' sector of the Caspian area stands for pseudo-subduction interaction of microplates which resulted in the tectonic stratification of the continental slope of Alpine formations, marginal sea and insular arc into different scale plates of south vergent combined into napping complexes. In the orogeny's present structure, tectonically stratified Alpine substantial complex of the marginal sea of Greater Caucasus bordered by Main Caucasus and Zangi thrusts, is represented by allochthonous south vergent accretionary prism in the front of first deformation with its' root buried under the southern border of Scythian plate. Allocated beneath mentioned prism, the autochthonous bedding is presented by Meso-Cenosoic complex of the Northern flank of the South-Caucasian miroplate, which is in its' turn crushed and lensed into southward shifted tectonic microplates gently overlapping the northern flank of Kura flexure along Ganykh-Ayrichay-Alyat thrust. Data of real-time GPS measurement of regional geodynamics indicates that pseudo-subduction of South Caucasian microplate under the North Caucasian microplate still continues during present stage of alpine tectogenesis. Among others, ongoing pseudo-subduction is indicated by data of regional seismicity which is irregularly distributed by depth (foci levels 2-6; 8-12; 17-22; 25-45 km). Horizontal and vertical seismic zoning is explained by Earth crust's block divisibility and tectonic stratification, within the structure of which the earthquake focuses are mainly confined to the crossing nodes of differently oriented ruptures, or to the planes of deep tectonic disruptions and lateral displacements along unstable contacts of the substantial complexes with various degree of competence. At present stage of tectogenesis, seismically most active are the structures of the northern flank of South Caucasian microplate, controlled by Ganyx-Ayrichay-Alyat deep thrust with "General Caucasus" spread in the west, and sub-meridian right-lateral strike slip zone of the Western Caspian fault in the east of Azerbaijani part of Greater Caucasus.

  20. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.

  1. Phase behavior and structure of stable complexes between a long polyanion and a branched polycation

    NASA Astrophysics Data System (ADS)

    Mengarelli, Valentina; Zeghal, Mehdi; Auvray, Loïc; Clemens, Daniel

    2011-08-01

    The association between oppositely charged branched polyethylenimine (BPEI) and polymethacrylic acid (PMA) in the dilute regime is investigated using turbidimetric titration and electrophoretic mobility measurements. The complexation is controlled by tuning continuously the pH-sensitive charge of the polyacid in acidic solution. The formation of soluble and stable positively charged complexes is a cooperative process characterized by the existence of two regimes of weak and strong complexation. In the regime of weak complexation, a long PMA chain overcharged by several BPEI molecules forms a binary complex. As the charge of the polyacid increases, these binary complexes condense at a well defined charge ratio of the mixture to form large positively charged aggregates. The overcharging and the existence of two regimes of complexation are analyzed in the light of recent theories. The structure of the polyelectrolytes is investigated at higher polymer concentration by small angle neutron scattering. Binary complexes of finite size present an open structure where the polyacid chains connecting a small number of BPEI molecules have shrunk slightly. In the condensed complexes, BPEI molecules, wrapped by polyacid chains, form networks of stretched necklaces.

  2. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele

    2015-12-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from E-W in the Patagonian Andes to N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled the Late Cretaceous to Cenozoic evolution of the Magallanes fold-and-thrust belt, yielding the observed deformation pattern.

  3. Provenance and tectonic setting of the supra-crustal succession of the Qinling Complex: Implications for the tectonic affinity of the North Qinling Belt, Central China

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Huang, Qianwen; Liu, Xijun; Krapež, Bryan; Yu, Jinhai; Bai, Zhian

    2018-06-01

    The Qinling Complex lies in the Qinling orogenic belt of Central China and holds the key to understanding the evolution of this feature. The Qinling Complex comprises a basement complex composed of amphibolite and ecologite, overlain by a supra-crustal succession that has been metamorphosed to the upper greenschist facies at approximately 516-509 Ma. The protoliths of the meta-sedimentary rocks are graywackes, which are divided into lower, middle and upper units. Detrital zircons from nine samples of the supra-crustal succession have ages ranging from 1182 to 1158 Ma for the lower unit, 957 to 955 Ma for the middle unit and 917 to 840 Ma for the upper unit. The lower unit is intruded by a ca. 960 Ma pluton. The bulk compositions of these meta-sedimentary rocks and their detrital zircon ages clearly indicate derivation from Meso- and Neo-proterozoic granites. Thus, we suggest that the sedimentary succession was derived from an arc-related tectonic setting and that none of the detritus was sourced from the southern margin of the North China Block or from the northern and western margins of the South China Block. We conclude that the North Qinling Belt was an independent micro-continental block during the Meso- to Neo-proterozoic.

  4. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    USGS Publications Warehouse

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  5. 3D Numerical Models of the Effect of Diking on the Faulting Pattern at Incipient Continental Rifts and Steady-State Spreading Centers

    NASA Astrophysics Data System (ADS)

    Tian, X.; Choi, E.; Buck, W. R.

    2015-12-01

    The offset of faults and related topographic relief varies hugely at both continental rifts and mid-ocean ridges (MORs). In some areas fault offset is measured in 10s of meters while in places marked by core complexes it is measured in 10s of kilometers. Variation in the magma supply is thought to control much of these differences. Magma supply is most usefully described by the ratio (M) between rates of lithospheric extension accommodated by magmatic dike intrusion and that occurring via faulting. 2D models with different values of M successfully explain much of the observed cross-sectional structure seen at rifts and ridges. However, magma supply varies along the axis of extension and the interactions between the tectonics and magmatism are inevitably three-dimensional. We investigate the consequences of this along-axis variation in diking in terms of faulting patterns and the associated structures using a 3D parallel geodynamic modeling code, SNAC. Many observed 3D structural features are reproduced: e.g., abyssal hill, oceanic core complex (OCC), inward fault jump, mass wasting, hourglass-shaped median valley, corrugation and mullion structure. An estimated average value of M = 0.65 is suggested as a boundary value for separating abyssal hills and OCCs formation. Previous inconsistency in the M range for OCC formation between 2D model results (M = 0.3˜0.5) and field observations (M < 0.3 or M > 0.5) is reconciled by the along-ridge coupling between different faulting regimes. We also propose asynchronous faulting-induced tensile failure as a new possibility for explaining corrugations seen on the surface of core complexes. For continental rifts, we will describe a suite of 2D and 3D model calculations with a range of initial lithospheric structures and values of M. In one set of the 2D models we limit the extensional tectonic force and show how this affects the maximum topographic relief produced across the rift. We are also interested in comparing models in which the value of M varies as the rift evolves with observations from real rifts and continental margins. Finally, we plan to show how the faulting pattern in 3D can depend on the distribution of dike opening rate along segments for incipient continental rifts.

  6. Half a Century of Oman Ophiolite Studies: SSZ or MOR, the Arc Disposal Problem

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.; Gray, D.

    2014-12-01

    The Samail Ophiolite, one of the largest and best exposed ophiolite complexes, is a Tethyan ophiolite obducted in the Late Cretaceous onto the formerly passive Arabian platform as Arabia began its most recent >1000 km northward migration towards a Miocene collision with Eurasia. The Oman Mountains, northeastern Arabian Peninsula have yet to collide with Eurasia; present uplift and form of the mountains also date to the Miocene. In addition to the scientific scrutiny of the ophiolite complex, the geologic constraints on the timing and emplacement of the ophiolite are abundant with no consensus on the obduction mechanism or its original tectonic setting. The crustal thickness of the ophiolite is comparable to thicknesses observed for "normal" mid-ocean ridges. Largely on the basis of structural and paleomagnetic arguments, some workers have attributed its origin to Pacific-type fast spreading ridges and complex micro plate geometries. Indeed the lower pillow lava sequences and much of the gabbroic crust have isotope and geochemical signatures consistent with a MORB source. However, because of the geochemistry of the upper pillow lavas, the ophiolite is most often characterized as a supra-subduction zone (SSZ) ophiolite, i.e. it sits in the hanging wall of some large tectonic structure for part of its history. In the absence of a preserved arc, the SSZ designation has little explanatory power only being a declaration of allochthony or about chemical properties of the mantle source. That associated continental shelf and oceanic crustal sections have suffered either clockwise or counterclockwise PT time trajectories requires some type of nascent subduction and hanging wall thrust transport of the young ridge crest. The widespread Late Cretaceous obduction of Tethyan oceanic crust and mantle over thousands of kilometers strike length is a problem for SSZ models (arc, forearc, back arc etc.) because arc initiation results in thick crust on short time scales, none of which is preserved. Similarly, fast spreading models require the subduction of >106 km2 without the initiation and preservation of a magmatic arc. Some Late Cretaceous major plate boundary reorganization that resulted in the current plate motion regime with NNE convergence between Afro-Arabia and Eurasia will be part of any final solution to the Oman problem.

  7. Tipping Points in Texas Rivers

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2016-04-01

    Anticipating geomorphic tipping points requires that we learn from the past. Major geomorphic changes in coastal plain rivers of Texas resulting in river metamorphosis or regime shifts were identified, and the major driving factors determined. Nine fluvial tipping points were identified from contemporary observations, historical records, and Quaternary reconstructions. Two of the tipping points (between general aggrading and degrading valley states) are associated with reversals in a fundamental system control (sea-level). One (stable or aggrading vs. degrading channels) is associated with an abrupt change in sediment supply due to dam construction, and two others (changes from meandering to anastomosing channel patterns, and different anastomosis styles) are similarly related to changes in sediment supply and/or transport capacity, but with additional elements of historical contingency. Three tipping points are related to avulsions. One, from a regime dominated to reoccupation of former channels to one dominated by progradation into flood basins, is driven by progressive long term filling of incised valleys. Another, nodal avulsions, are driven by disturbances associated with tectonics or listric faults. The third, avulsions and related valley metamorphosis in unfilled incised valleys, is due to fundamental dynamical instabilities within the fluvial system. This synthesis and analysis suggests that geomorphic tipping points are sometimes associated with general extrinsic or intrinsic (to the fluvial system) environmental change, independent of any disturbances or instabilities. Others are associated with natural (e.g., tectonic) or human (dams) disturbances, and still others with intrinsic geomorphic instabilities. This suggests that future tipping points will be equally diverse with respect to their drivers.

  8. Collision processes at the northern margin of the Black Sea

    NASA Astrophysics Data System (ADS)

    Gobarenko, V. S.; Murovskaya, A. V.; Yegorova, T. P.; Sheremet, E. E.

    2016-07-01

    Extended along the Crimea-Caucasus coast of the Black Sea, the Crimean Seismic Zone (CSZ) is an evidence of active tectonic processes at the junction of the Scythian Plate and Black Sea Microplate. A relocation procedure applied to weak earthquakes (mb ≤ 3) recorded by ten local stations during 1970-2013 helped to determine more accurately the parameters of hypocenters in the CSZ. The Kerch-Taman, Sudak, Yuzhnoberezhnaya (South Coast), and Sevastopol subzones have also been recognized. Generalization of the focal mechanisms of 31 strong earthquakes during 1927-2013 has demonstrated the predominance of reverse and reverse-normal-faulting deformation regimes. This ongoing tectonic process occurs under the settings of compression and transpression. The earthquake foci with strike-slip component mechanisms concentrate in the west of the CSZ. Comparison of deformation modes in the western and eastern Crimean Mountains according to tectonophysical data has demonstrated that the western part is dominated by strike-slip and normal- faulting, while in the eastern part, reverse-fault and strike-slip deformation regimes prevail. Comparison of the seismicity and gravity field and modes of deformation suggests underthusting of the East Black Sea Microplate with thin suboceanic crust under the Scythian Plate. In the Yuzhnoberezhnaya Subzone, this process is complicated by the East Black Sea Microplate frontal part wedging into the marginal part of the Scythian Plate crust. The indentation mechanism explains the strong gravity anomaly in the Crimean Mountains and their uplift.

  9. Neotectonic Deformation in Central Eurasia: A Geodynamic Model Approach

    NASA Astrophysics Data System (ADS)

    Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume; Bird, Peter

    2017-11-01

    Central Eurasia hosts wide orogenic belts of collision between India and Arabia with Eurasia, with diffuse or localized deformation occurring up to hundreds of kilometers from the primary plate boundaries. Although numerous studies have investigated the neotectonic deformation in central Eurasia, most of them have focused on limited segments of the orogenic systems. Here we explore the neotectonic deformation of all of central Eurasia, including both collision zones and the links between them. We use a thin-spherical sheet approach in which lithosphere strength is calculated from lithosphere structure and its thermal regime. We investigate the contributions of variations in lithospheric structure, rheology, boundary conditions, and fault friction coefficients on the predicted velocity and stress fields. Results (deformation pattern, surface velocities, tectonic stresses, and slip rates on faults) are constrained by independent observations of tectonic regime, GPS, and stress data. Our model predictions reproduce the counterclockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults in the Tibetan Plateau, a weaker lithosphere is required, provided by a change in the rheological parameters. The southward movement of the SE Tibetan Plateau can be explained by the combined effects of the Sumatra trench retreat, a thinner lithospheric mantle, and strik-slip faults in the region. This study offers a comprehensive model for regions with little or no data coverage, like the Arabia-India intercollision zone, where the surface velocity is northward showing no deflection related to Arabia and India indentations.

  10. Inherited structure and coupled crust-mantle lithosphere evolution: Numerical models of Central Australia

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.

    2016-05-01

    Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).

  11. The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data

    PubMed Central

    Doglioni, Carlo; Ligi, Marco; Scrocca, Davide; Bigi, Sabina; Bortoluzzi, Giovanni; Carminati, Eugenio; Cuffaro, Marco; D'Oriano, Filippo; Forleo, Vittoria; Muccini, Filippo; Riguzzi, Federica

    2012-01-01

    The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side. PMID:23240075

  12. Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Lotout, Caroline; Pitra, Pavel; Poujol, Marc; Van Den Driessche, Jean

    2017-03-01

    New U-Pb dating on zircon yielded ca. 470 Ma ages for the granitoids from the Lévézou massif in the southern French Massif Central. These new ages do not support the previous interpretation of these granitoids as syn-tectonic intrusions emplaced during the Late Devonian-Early Carboniferous thrusting. The geochemical and isotopic nature of this magmatism is linked to a major magmatic Ordovician event recorded throughout the European Variscan belt and related to extreme thinning of continental margins during a rifting event or a back-arc extension. The comparable isotopic signatures of these granitoids on each side of the eclogite-bearing leptyno-amphibolitic complex in the Lévézou massif, together with the fact that they were emplaced at the same time, strongly suggest that these granitoids were originally part of a single unit, tectonically duplicated by either isoclinal folding or thrusting during the Variscan tectonics.

  13. Tectonics of the Easter plate

    NASA Technical Reports Server (NTRS)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  14. The tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    NASA Technical Reports Server (NTRS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus.

  15. The tectonic puzzle of the Messina area (Southern Italy): insights from new seismic reflection data.

    PubMed

    Doglioni, Carlo; Ligi, Marco; Scrocca, Davide; Bigi, Sabina; Bortoluzzi, Giovanni; Carminati, Eugenio; Cuffaro, Marco; D'Oriano, Filippo; Forleo, Vittoria; Muccini, Filippo; Riguzzi, Federica

    2012-01-01

    The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side.

  16. Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching

    NASA Astrophysics Data System (ADS)

    Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus

    2018-03-01

    The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.

  17. Overview of Recent Coastal Tectonic Deformation in the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ramírez-Herrera, M. Teresa; Kostoglodov, Vladimir; Urrutia-Fucugauchi, Jaime

    2011-08-01

    Holocene and Pleistocene tectonic deformation of the coast in the Mexico subudction margin is recorded by geomorphic and stratigraphic markers. We document the spatial and temporal variability of active deformation on the coastal Mexican subduction margin. Pleistocene uplift rates are estimated using wave-cut platforms at ca. 0.7-0.9 m/ka on the Jalisco block coast, Rivera-North America tectonic plate boundary. We examine reported measurements from marine notches and shoreline angle elevations in conjunction with their radiocarbon ages that indicate surface uplift rates increasing during the Holocene up to ca. 3 ± 0.5 m/ka. In contrast, steady rates of uplift (ca. 0.5-1.0 m/ka) in the Pleistocene and Holocene characterize the Michoacan coastal sector, south of El Gordo graben and north of the Orozco Fracture Zone (OFZ), incorporated within the Cocos-North America plate boundary. Significantly higher rates of surface uplift (ca. 7 m/ka) across the OFZ subduction may reflect the roughness of subducting plate. Absence of preserved marine terraces on the coastal sector across El Gordo graben likely reflects slow uplift or coastal subsidence. Stratigraphic markers and their radiocarbon ages show late Holocene (ca. last 6 ka bp) coastal subsidence on the Guerrero gap sector in agreement with a landscape barren of marine terraces and with archeological evidence of coastal subsidence. Temporal and spatial variability in recent deformation rates on the Mexican Pacific coast may be due to differences in tectonic regimes and to localized processes related to subduction, such as crustal faults, subduction erosion and underplating of subducted materials under the southern Mexico continental margin.

  18. Catalog of earthquake hypocenters for Augustine, Redoubt, Iliamna, and Mount Spurr volcanoes, Alaska: January 1, 1991 - December 31, 1993

    USGS Publications Warehouse

    Jolly, Arthur D.; Power, John A.; Stihler, Scott D.; Rao, Lalitha N.; Davidson, Gail; Paskievitch, John F.; Estes, Steve; Lahr, John C.

    1996-01-01

    The 1992 eruptions at Mount Spurr's Crater Peak vent provided the highlight of the catalog period. The crisis included three sub-plinian eruptions, which occurred on June 27, August 18, and September 16-17, 1992. The three eruptions punctuated a complex seismic sequence which included volcano-tectonic (VT) earthquakes, tremor, and both deep and shallow long period (LP) earthquakes. The seismic sequence began on August 18, 1991, with a small swarm of volcano-tectonic events beneath Crater Peak, and spread throughout the volcanic complex by November of the same year. Elevated levels of seismicity persisted at Mount Spurr beyond the catalog time period.

  19. The QuakeSim Project: Numerical Simulations for Active Tectonic Processes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry

    2004-01-01

    In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.

  20. Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives.

    PubMed

    Badgley, Catherine; Smiley, Tara M; Terry, Rebecca; Davis, Edward B; DeSantis, Larisa R G; Fox, David L; Hopkins, Samantha S B; Jezkova, Tereza; Matocq, Marjorie D; Matzke, Nick; McGuire, Jenny L; Mulch, Andreas; Riddle, Brett R; Roth, V Louise; Samuels, Joshua X; Strömberg, Caroline A E; Yanites, Brian J

    2017-03-01

    Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. New Ages for Gorgona Island, Colombia: Implications for Previous Petrogenetic and Tectonic Models

    NASA Astrophysics Data System (ADS)

    Serrano Duran, L.; Lopez Martinez, M.; Ferrari, L.

    2007-05-01

    The Gorgona Island, located 50 km to the west of the Colombian Pacific coast, is the only known site with Phanerozoic komatiites in the world besides a key element in several reconstruction of the interaction between the Caribbean and the South America Plate. The Gorgona komatiites are part of an igneous complex that also includes picritic basalts and breccias, gabbros and peridotites (dunites and wherlites), and is covered by deformed mid-Eocene and younger underformed marine sediments. Datings of the igneous rocks were only performed on basalts and include an 86 Ma K-Ar age, an 88.9 ± 1.2 Ma weighted mean of four Ar-Ar ages and an 89.2 ± 5.2 Ma Re-Os isochron age from basalts. Gorgona rocks are affected by reverse faulting with a general eastward vergence. The island is the only subaerially exposed part of a NE elongated sliver accreted in a dextral transpressional regime to the South America continental margin between the Late Eocene and the Early Miocene. Petrologic studies found large spread in radiogenic isotopes and incompatible trace element ratios in Gorgona ultramafic rocks, which have been interpreted as requiring at least two different sources of: 1) a depleted mantle responsible for the generation of the komatiites and most basalts, and 2) an enriched mantle responsible for some rarer enriched basalts and picrites. Despite the large compositional and isotopic heterogeneity the most common interpretation is that the Gorgona ultramafic rocks are the product of a single mantle plume, although it has recently proposed that this would be a separate plume from that generating the bulk of the Caribbean plateau at ~90 Ma. Our new study focused on the geochronology of the Gorgona igneous suite as we consider that this tectonically and petrologically complex island is unlike to have such a narrow age range. We attempted to date eight samples of komatiites, basalts and gabbros by Ar-Ar laser step heating. For four of these samples we successfully obtain reliable plateau and/or isochron ages. Only one basaltic sample, located in the western coast, yielded an age comparable with those previously reported in the literature. For two basalts intercalated with komatiites and a gabbro exposed in the north-eastern coast of the island we obtained younger ages, similar to those reported for some mafic and ultramafic rocks along the Pacific coast of Colombia. The two sets of ages for the ultramafic suite of Gorgona also correspond to different petrologic types. The depleted rocks in the eastern coast are younger than the enriched basalts and picrites located in the southern and western part of the island with ages around 90 Ma, suggesting a more complex tectonic evolution with the accretion of at least two different blocks. This eventually questions the "single plume" model for the formation of the Gorgona Island plateau.

  2. Seafloor Tectonic Fabric from Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Smith, Walter H. F.

    Ocean floor structures with horizontal scales of 10 to a few hundred kilometers and vertical scales of 100 m or more generate sea surface gravity anomalies observable with satellite altimetry. Prior to 1990, altimeter data resolved only tectonic lineaments, some seamounts, and some aspects of mid-ocean ridge structure. New altimeter data available since mid-1995 resolve 10-km--scale structures over nearly all the world's oceans. These data are the basis of new global bathymetric maps and have been interpreted as exhibiting complexities in the sea floor spreading process including ridge jumps, propagating rifts, and variations in magma supply. This chapter reviews the satellite altimetry technique and its resolution of tectonic structures, gives examples of intriguing tectonic phenomena, and shows that structures as small as abyssal hills are partially resolved. A new result obtained here is that the amplitude of the fine-scale (10--80 km) roughness of old ocean floor is spreading-rate dependent in the same that it is at mid-ocean ridges, suggesting that fine-scale tectonic fabric is generated nearly exclusively by ridge-axis processes.

  3. Elemental and Sr-Nd isotopic geochemistry of the Uradzhongqi magmatic complex in western Inner Mongolia, China: A record of early Permian post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Qiao, Xueyuan; Li, Wenbo; Zhong, Richen; Hu, Chuansheng; Zhu, Feng; Li, Zhihua

    2017-08-01

    The magmatic complex in Uradzhongqi, Inner Mongolia, is located in the western segment of the northern margin of the North China Craton (NCC). The dominant components in the complex include syenogranite, monzogranite, granodiorite, diorite and gabbro. Mafic microgranular enclaves (MMEs) are common in syenogranite and granodiorite. Zircon U-Pb dating shows that the ages of these rocks range from 283 to 270 Ma, suggesting an early Permian emplacement. The syenogranite and monzogranite are peraluminous I-type granites, exhibiting conspicuous negative Eu anomaly, enrichment in large-ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in high field strength elements (HFSE). The granodiorites, diorites and MMEs are metaluminous in composition, show high Al2O3, MgO and Fe2O3T contents and weak negative Eu anomaly, as well as LREE and LILE enrichment and HFSE depletion. The gabbros show weak positive Eu anomaly and slight REE differentiation. The Sr-Nd isotope compositions show that the source of mafic magma was depleted mantle (DM) with possible involvement of enriched mantle II (EM II), whereas the felsic magma was derived from the Archean lower crust. Petrographic observation and analytical results of mineralogy, geochronology, geochemistry and Sr-Nd isotopes indicate that the main petrogenesis of these magmatic rocks is the mixing of underplating mafic magma and felsic magma. Tectonically, the complex pluton was formed within a post-collisional regime, and the underplating in this area provides another piece of evidence for the vertical growth of the western segment of the northern margin of the NCC.

  4. Holocene compression in the Acequión valley (Andes Precordillera, San Juan province, Argentina): Geomorphic, tectonic, and paleoseismic evidence

    NASA Astrophysics Data System (ADS)

    Audemard, M.; Franck, A.; Perucca, L.; Laura, P.; Pantano, Ana; Avila, Carlos R.; Onorato, M. Romina; Vargas, Horacio N.; Alvarado, Patricia; Viete, Hewart

    2016-04-01

    The Matagusanos-Maradona-Acequión Valley sits within the Andes Precordillera fold-thrust belt of western Argentina. It is an elongated topographic depression bounded by the roughly N-S trending Precordillera Central and Oriental in the San Juan Province. Moreover, it is not a piggy-back basin as we could have expected between two ranges belonging to a fold-thrust belt, but a very active tectonic corridor coinciding with a thick-skinned triangular zone, squeezed between two different tectonic domains. The two domains converge, where the Precordillera Oriental has been incorporated to the Sierras Pampeanas province, becoming the western leading edge of the west-verging broken foreland Sierras Pampeanas domain. This latter province has been in turn incorporated into the active deformation framework of the Andes back-arc at these latitudes as a result of enhanced coupling between the converging plates due to the subduction of the Juan Fernández ridge that flattens the Nazca slab under the South American continent. This study focuses on the neotectonics of the southern tip of this N-S elongated depression, known as Acequión (from the homonym river that crosses the area), between the Del Agua and Los Pozos rivers. This depression dies out against the transversely oriented Precordillera Sur, which exhibits a similar tectonic style as Precordillera Occidental and Central (east-verging fold-thrust belt). This contribution brings supporting evidence of the ongoing deformation during the Late Pleistocene and Holocene of the triangular zone bounded between the two leading and converging edges of Precordillera Central and Oriental thrust fronts, recorded in a multi-episodic lake sequence of the Acequión and Nikes rivers. The herein gathered evidence comprise Late Pleistocene-Holocene landforms of active thrusting, fault kinematics (micro-tectonic) data and outcrop-scale (meso-tectonic) faulting and folding of recent lake and alluvial sequences. In addition, seismically-induced effects already reported in the literature by this working team further support the tectonic activity of neighboring faults in the Holocene. As a concluding remark we could state that the ongoing deformation in the region under study is driven by a compressional regime whose maximum horizontal stress in the late Pleistocene-Holocene is roughly east-west oriented. This is further supported by focal mechanism solutions.

  5. The Tethys Sea and the Alpine-Himalayan orogenic belt; mega-elements in a new global tectonic system

    NASA Astrophysics Data System (ADS)

    Storetvedt, K. M.

    Analysis of Meso-Cainozoic palaeomagnetic data for Africa, India and Eurasia has led to the development of a new mobilistic Alpine plate tectonic model characterized by a hierarchical system of plates in relative rotation. The new model, which discounts seafloor spreading, implies that there have been no significant palaeogeographic changes in the overall distribution of continental and oceanic regions. The mid-oceanic ridges are interpreted as transpressive tectonic features caused by rotation of megaplates (containing both continental and oceanic crust), the isostatic uplift due to crustal/lithospheric thickening giving rise to the general ridge topography as well as to the ridge-parallel structural grain. The new plate tectonic theory gains strong support from a variety of geophysical, geological and palaeoclimatological evidence, and several observations that have remained enigmatic or awkward within the context of the orthodox model can be readily accounted for in the new tectonic framework. The model maintains the Tethys as a relatively narrow epicontinental sea which, during its maximum extent, stretched latitudinally from the Caribbean, across the Central Atlantic to SE Asia. The Alpine-Himalayan orogenic belt developed along the boundary of two megaplates in relative rotation, which provided a transpressive tectonic regime. The location of the plate boundary to the north of the Mediterranean has important implications for discussion of Mediterranean microplates. For example, it now seems that Italy has been subjected to 10-15° of clockwise microplate rotation; previous conclusions in favour of 30-40° of anticlockwise rotation are regarded as artefacts which arise from incorrectly linking the Mediterranean region to the European palaeomagnetic frame instead of to the African one. The model suggests further that the Indo-Pakistani plate was closely tied to Eurasia; this challenges the conventional view that the Peninsula was part of an alleged Gondwanaland. The new pre-drift configuration implies that the Indo-Pakistani plate rotated ˜ 135° clockwise at around the Cretaceous-Tertiary boundary before redocking with Asia in approximately its present relative orientation.

  6. Geohistory analysis of the Santa Maria basin, California, and its relationship to tectonic evolution of the continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.

    1991-02-01

    The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less

  7. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.

  8. Magnetic fabrics in tectonically inverted sedimentary basins: a review

    NASA Astrophysics Data System (ADS)

    García-Lasanta, Cristina; Román-Berdiel, Teresa; Casas-Sainz, Antonio; Oliva-Urcia, Belén; Soto, Ruth; Izquierdo-Llavall, Esther

    2017-04-01

    Magnetic fabric studies in sedimentary rocks were firstly focused on strongly deformed tectonic contexts, such as fold-and-thrust belts. As measurement techniques were improved by the introduction of high-resolution equipments (e.g. KLY3-S and more recent Kappabridge susceptometers from AGICO Inc., Czech Republic), more complex tectonic contexts could be subjected to anisotropy of magnetic susceptibility (AMS) analyses in order to describe the relationship between tectonic conditions and the orientation and shape of the resultant magnetic ellipsoids. One of the most common complex tectonic frames involving deformed sedimentary rocks are inverted extensional basins. In the last decade, multiple AMS studies revealed that the magnetic fabric associated with the extensional stage (i.e. a primary magnetic fabric) can be preserved despite the occurrence of subsequent deformational processes. In these cases, magnetic fabrics may provide valuable information about the geometry and kinematics of the extensional episode (i.e. magnetic ellipsoids with their minimum susceptibility axis oriented perpendicular to the deposit plane and magnetic lineation oriented parallel to the extension direction). On the other hand, several of these studies have also determined how the subsequent compressional stage can modify the primary extensional fabric in some cases, particularly in areas subjected to more intense deformation (with development of compression-related cleavage). In this contribution we present a compilation of AMS studies developed in sedimentary basins that underwent different degree of tectonic inversion during their history, in order to describe the relationship of this degree of deformation and the degree of imprint that tectonic conditions have in the previous magnetic ellipsoid (primary extension-related geometry). The inverted basins included in this synthesis are located in the Iberian Peninsula and show: i) weak deformation (W Castilian Branch and Maestrazgo basin, Iberian Range); ii) transport along the hangingwall of thrusts with very slight internal deformation (Organyà basin, Central Pyrenees); iii) record of incipient compressive strain and foliation development (Cabuerniga basin, Basque-Cantabrian Basin; Lusitanian basin, W Portugal); iv) complete inversion associated with a remarkable transport along the hangingwall of thrusts and relatively large internal deformation (Cameros basin, Iberian Range); and v) major folding and flattening linked to foliation (Mauléon basin, Northern Pyrenees; Nogueres unit, Pyrenean Axial Zone).

  9. Post-caldera faulting of the Late Quaternary Menengai caldera, Central Kenya Rift (0.20°S, 36.07°E)

    NASA Astrophysics Data System (ADS)

    Riedl, Simon; Melnick, Daniel; Mibei, Geoffrey K.; Njue, Lucy; Strecker, Manfred R.

    2015-04-01

    A structural geological analysis of young caldera volcanoes is necessary to characterize their volcanic activity, assess their geothermal potential, and decipher the spatio-temporal relationships of faults on a larger tectonic scale. Menengai caldera is one of several major Quaternary trachytic caldera volcanoes that are aligned along the volcano-tectonic axis of the Kenya Rift, the archetypal active magmatic rift and nascent plate boundary between the Nubia and Somalia plates. The caldera covers an area of approximately 80 km² and is among the youngest and also largest calderas in the East African Rift, situated close to Nakuru - a densely populated urban area. There is an increasing interest in caldera volcanoes in the Kenya Rift, because these are sites of relatively young volcanic and tectonic activity, and they are considered important sites for geothermal exploration and future use for the generation of geothermal power. Previous studies of Menengai showed that the caldera collapsed in a multi-event, multiple-block style, possibly as early as 29 ka. In an attempt to characterize the youngest tectonic activity along the volcano-tectonic axis in the transition between the Central and Northern Kenya rifts we first used a high-resolution digital surface model, which we derived by structure-from-motion from an unmanned aerial vehicle campaign. This enabled us to identify previously unrecognized normal faults, associated dyke intrusions and volcanic eruptive centers, and transfer faults with strike-slip kinematics in the caldera interior and its vicinity. In a second step we verified these structures at outcrop scale, assessed their relationship with known stratigraphic horizons and dated units, and performed detailed fault measurements, which we subsequently used for fault-kinematic analysis. The most important structures that we mapped are a series of north-northeast striking normal faults, which cross-cut both the caldera walls and early Holocene lake shorelines outside the caldera. These faults have similar strikes as Pleistocene faults that define the left-stepping, north-northeast oriented segments of the volcano-tectonic axis of the inner trough of the Central Kenya Rift. In the center of the caldera, these faults are kinematically linked with oblique-slip and strike-slip transfer faults, similar to other sectors in the Central Kenya Rift. The structural setup of Menengai and the faults to the north and south of the eruptive center is thus compatible with tectono-magmatic activity in an oblique extensional tectonic regime, which reflects the tectonic and seismic activity along a nascent plate boundary.

  10. Transposition of foliations and superposition of lineations during polyphase deformation in the Nevado-Filabride complex: tectonic implications

    NASA Astrophysics Data System (ADS)

    Ruiz-Fuentes, Alejandro; Aerden, Domingo G. A. M.

    2018-01-01

    Detailed structural analysis in a ca. 80 km2 area of the western Nevado-Filabride complex (Betic Cordillera) reveals a heterogeneous internal structure characterized by multiple cross-cutting foliations and lineations that locally transpose earlier ones. The large-scale geometry of these fabrics conflicts with continuous westward to south-westward tectonic transport related to thrusting or crustal extension, and mismatches a previously inferred extensional detachment in the area. Multiple crenulation lineations can be distinguished in the field and correlated with five foliation intersection axes (FIA1-5) preserved in garnet and plagioclase porphyroblasts of the western Sierra Nevada. These indicate crustal shortening in different directions associated with vertical foliation development and intermitted stages of gravitational collapse producing horizontal foliations. The large spread of lineation- and fold-axes trends in the Nevado-Filabride complex results from the mixed presence of multiple generations of these structures whose distinction is critical for tectonic models. The five principal FIA trends remarkably match successive vectors of relative Africa-Iberia plate motion since the Eocene, suggesting that deformation of the Nevado-Filabride took place during this period, although peak metamorphism in at least some of its parts was reached as late as the Middle Miocene.

  11. Influence of fluctuations of historic water bodies on fault stability and earthquake recurrence interval: The Dead Sea Rift as a case study

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben-Avraham, Zvi

    2017-04-01

    Despite the global, social and scientific impact of earthquakes, their triggering mechanisms remain often poorly defined. We suggest that dynamic changes in the levels of the historic water bodies occupying tectonic depressions at the Dead Sea Rift cause significant variations in the shallow crustal stress field and affect local fault systems in a way that may promote or suppress earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. We use analytical and numerical poroelastic models to simulate immediate and delayed seismic responses resulting from the observed historic water level changes. The role of variability in the poroelastic and the elastic properties of the rocks composing the upper crust in inducing or retarding deformations under a strike-slip faulting regime is studied. The solution allows estimating a possible reduction in a seismic recurrence interval. Considering the historic water level fluctuation, our preliminary simulations show a promising agreement with paleo-seismic rates identified in the field.

  12. Mineralogy and crystallization history of a highly differentiated REE-enriched hypabyssal rhyolite: Round Top laccolith, Trans-Pecos, Texas

    NASA Astrophysics Data System (ADS)

    O'Neill, L. Christine; Elliott, Brent A.; Kyle, J. Richard

    2017-09-01

    The Round Top hypabyssal rhyolite laccolith is a highly evolved magmatic system, enriched in incompatible elements including REE [Rare Earth Element(s)], U, Be, and F. The Round Top intrusion is part of a series of Paleogene intrusions emplaced as the Sierra Blanca Complex. These intrusions are situated within long-lived, complex tectonic regimes that have been subjected to regional compression and subduction, punctuated by extensional bimodal volcanism. The enrichment in the rhyolite that comprises Round Top is the result of the prolonged removal of compatible elements from the source magma chamber through the emplacement of earlier magmatic events. With the emplacement of each sequential laccolith, the F-rich source magma became more enriched in incompatible elements, with increasing HREE [Heavy Rare Earth Elements(s)] concentrations. The emplacement of Round Top as a laccolith (versus that of an extrusive rhyolitic flow) facilitated the retention of the volatile-rich vapor phase within the magma, forming ubiquitous REE-bearing minerals, mainly yttrofluorite and yttrocerite. The high temperature mineral-vapor phase alteration of the feldspar groundmass was essential to the formation of REE minerals, where the pervasive open pore space was occupied by the late-crystallizing minerals. These late-forming REE-bearing minerals also occur as crystals associated with other accessory and trace phases, as inclusions within other phases, along grain boundaries, and along fractures and within voids. The rhyolite at Round Top and other laccolith intrusions in the Sierra Blanca Complex represent a new sub-type of magmatic rare earth element hosting system.

  13. Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic-early Jurassic tectonics associated with the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Yixuan; Liang, Xiao; Wang, Genhou; Yuan, Guoli; Bons, Paul D.

    2018-03-01

    The Mesozoic orogeny in Central Qiangtang Metamorphic Belt, northern Tibet, provides important insights into the geological evolution of the Paleo-Tethys Ocean. However, the Triassic-early Jurassic tectonics, particularly those associated with the continental collisionstage, remains poorly constrained. Here we present results from geological mapping, structural analysis, P-T data, and Ar-Ar geochronology of the Mayer Kangri metamorphic complex. Our data reveal an E-W-trending, 2 km wide dome-like structure associated with four successive tectonic events during the Middle Triassic and Early Jurassic. Field observations indicate that amphibolite and phengite schist complexes in this complex are separated from the overlying lower greenschist mélange by normal faulting with an evident dextral shearing component. Open antiform-like S2 foliation of the footwall phengite schist truncates the approximately north-dipping structures of the overlying mélange. Microtextures and mineral chemistry of amphibole reveal three stages of growth: Geothermobarometric estimates yield temperatures and pressures of 524 °C and 0.88 GPa for pargasite cores, 386 °C and 0.34 GPa for actinolite mantles, and 404 °C and 0.76 GPa for winchite rims. Peak blueschist metamorphism in the phengite schist occurred at 0.7-1.1 GPa and 400 °C. Our Ar-Ar dating of amphibole reveals rim-ward decreasing in age bands, including 242.4-241.2 Ma, ≥202.6-196.8, and 192.9-189.8 Ma. The results provide evidence for four distinct phases of Mesozoic tectonic evolution in Central Qiangtang: (1) northward oceanic subduction beneath North Qiangtang ( 244-220 Ma); (2) syn-collisional slab-break off (223-202 Ma); (3) early collisional extension driven by buoyant extrusion flow from depth ( 202.6-197 Ma); and (4) post-collision contraction and reburial (195.6-188.7 Ma).

  14. Evaluation of the Interplate and Intraplate Deformations of the African Continent Using cGNSS Data

    NASA Astrophysics Data System (ADS)

    Apolinário, J. P.; Fernandes, R. M. S.; Bos, M. S.; Meghraoui, M.; Miranda, J. M. A.

    2014-12-01

    Two main plates, Nubia and Somalia, plus some few more tectonic blocks in the East African Rift System (EARS) delimit the African continent. The major part of the external plate boundaries of Africa is well defined by oceanic ridge systems with the exception of the Nubia-Eurasia complex convergence-collision tectonic zone. In addition, the number and distribution of the tectonic blocks along the EARS region is a major scientific issue that has not been completely answered so far. Nevertheless, the increased number of cGNSS (continuous Global Navigation Satellite Systems) stations in Africa with sufficient long data span is helping to better understand and constrain the complex sub-plate distribution in the EARS as well as in the other plate boundaries of Africa. This work is the geodetic contribution for the IGCP-Project 601 - "Seismotectonics and Seismic Hazards in Africa". It presents the current tectonic relative motions of the African continent based on the analysis of the estimated velocity field derived from the existing network of cGNSS stations in Africa and bordering plate tectonics. For the majority of the plate pairs, we present the most recent estimation of their relative velocity using a dedicated processing. The velocity solutions are computed using HECTOR, a software that takes into account the existing temporal correlations between the daily solutions of the stations. It allows to properly estimate the velocity uncertainties and to detect any artifacts in the time-series. For some of the plate pairs, we compare our solutions of the angular velocities with other geodetic and geophysical models. In addition, we also study the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) for tectonic units with few stations, and in particular for the Victoria and Rovuma blocks of the EARS. Finally, we compute estimates of velocity fields for several sub-regions correlated with the seismotectonic provinces and discuss the level of interplate and intraplate deformations in Africa.

  15. Geologic Map of the Big Delta B-1 Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O'Neill, J. Michael; Aleinikoff, John N.; Green, Gregory N.; Saltus, Richard W.; Gough, Larry P.

    2007-01-01

    Geologic mapping and U-Pb age dating of rocks from the Big Delta B-1 quadrangle, east-central Alaska, have yielded new insights into the geology and gold mineral resource for the headwater region of the Goodpaster River, northeast of Delta, Alaska. The area lies within the Yukon-Tanana Upland and is underlain by Paleozoic and Cretaceous crystalline bedrock and contains several gold mines and prospects. The Paleozoic units include biotite gneiss, quartzite interlayered with metapelite, and amphibolite gneiss. The Paleozoic units were intruded during the Devonian by tonalitic to granitic plutons, which, as a result of regional Mesozoic metamorphism and tectonism, are now augen gneiss and biotite orthogneiss. The Mesozoic regional metamorphism and ductile deformation of the entire Yukon-Tanana Upland culminated by the Late Cretaceous (about 116 Ma) as a result of northwest-directed regional transpression along the southern margin of the North American craton. This dynamothermal episode was followed by invasion of syn- to post-tectonic granodioritic to granitic batholiths during the Late Cretaceous (about 113-107 Ma), followed by a pulse of 100-95 Ma quartz feldspar porphyry intrusions. Gold mineralization is spatially associated with various post-tectonic Late Cretaceous granitic dikes and batholiths throughout the quadrangle. A northeast-trending structural corridor, described herein as the Black Mountain tectonic zone, both controlled the emplacement of some of the Cretaceous intrusive rocks, gold deposits, and prospects, as well as formed a deep-seated crustal conduit along which a subsequent rhyolite flow-dome complex erupted during the Paleocene. Tertiary uplift and erosion resulted in the development of extensive erosional pediments. Quaternary alpine glaciation carved beautiful, broad valleys in the eastern part of the quadrangle, leaving behind terminal moraines in the headwater region of the Goodpaster river drainage. Continued Holocene to Recent deformation along the Black Mountain tectonic zone has offset Tertiary terraces, as well as Quaternary fluvial and alluvial deposits, indicating that the area has a long, complex, and ongoing tectonic history.

  16. Seismicity of the Earth 1900–2010 Middle East and vicinity

    USGS Publications Warehouse

    Jenkins, Jennifer; Turner, Bethan; Turner, Rebecca; Hayes, Gavin P.; Davies, Sian; Dart, Richard L.; Tarr, Arthur C.; Villaseñor, Antonio; Benz, Harley M.

    2013-01-01

    No fewer than four major tectonic plates (Arabia, Eurasia, India, and Africa) and one smaller tectonic block (Anatolia) are responsible for seismicity and tectonics in the Middle East and surrounding region. Geologic development of the region is a consequence of a number of first-order plate tectonic processes that include subduction, large-scale transform faulting, compressional mountain building, and crustal extension. In the east, tectonics are dominated by the collision of the India plate with Eurasia, driving the uplift of the Himalaya, Karakorum, Pamir and Hindu Kush mountain ranges. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting, resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Off the south coasts of Pakistan and Iran, the Makran trench is the surface expression of active subduction of the Arabia plate beneath Eurasia. Northwest of this subduction zone, collision between the two plates forms the approximately 1,500-km-long fold and thrust belts of the Zagros Mountains, which cross the whole of western Iran and extend into northeastern Iraq. Tectonics in the eastern Mediterranean region are dominated by complex interactions between the Africa, Arabia, and Eurasia plates, and the Anatolia block. Dominant structures in this region include: the Red Sea Rift, the spreading center between the Africa and Arabia plates; the Dead Sea Transform, a major strike-slip fault, also accommodating Africa-Arabia relative motions; the North Anatolia Fault, a right-lateral strike-slip structure in northern Turkey accommodating much of the translational motion of the Anatolia block westwards with respect to Eurasia and Africa; and the Cyprian Arc, a convergent boundary between the Africa plate to the south, and Anatolia Block to the north.

  17. Triassic structural and stratigraphic evolution of the Central German North Sea sector

    NASA Astrophysics Data System (ADS)

    Wolf, Marco; Jähne-Klingberg, Fabian

    2017-04-01

    The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures along the major Upper Jurassic to Lower Cretaceous unconformity, which are related to erosion of Triassic evaporitic formations, will be shown.

  18. Pluton emplacement in a releasing bend in a transpressive regime: the arrozal granite in the Paraíba do Sul shear belt, Rio de Janeiro.

    PubMed

    Nummer, Alexis R; Machado, Rômulo; Dehler, Nolan M

    2007-06-01

    The Arrozal Granite, situated in the southwestern region of the State of Rio de Janeiro, has a granitic to granodioritic composition. It contains a strong mylonitic foliation along its border, passing gradually to a well-developed magmatic foliation towards its center. Structural analysis indicates that the Arrozal Granite was emplaced along the Além-Paraíba Shear Zone in a dextral transpressive tectonic regime. A regional shift of the trend along this shear zone from NE-SW to E-W, observed in the area, is interpreted to be casually related to the creation of space for the emplacement of the granite. Our data indicate that releasing bends may have played an important role for space generation during the emplacement of the Arrozal Granite and other plutons.

  19. The Modulation of Crustal Magmatic Systems by Tectonic Forcing

    NASA Astrophysics Data System (ADS)

    Karakas, O.; Dufek, J.

    2010-12-01

    The amount, location and residence time of melt in the crust significantly impacts crustal structure and influences the composition, frequency, and volume of eruptive products. In this study, we develop a two dimensional model that simulates the response of the crust to prolonged mantle-derived intrusions in arc environments. The domain includes the entire crustal section and upper mantle and focuses on the evolving thermal structure due to intrusions and external tectonic forcing. Magmatic intrusion into the crust can be accommodated by extension or thickening of the crust or some combination of both mechanisms. Additionally, external tectonic forcing can generate thicker crustal sections, while tectonic extension can significantly thin the crust. We monitor the thermal response, melt fraction and surface heat flux for different tectonic conditions and melt flux from the mantle. The amount of crustal melt versus fractionated primary mantle melts present in the crustal column helps determine crustal structure and growth through time. We express the amount of crustal melting in terms of an efficiency; we define the melting efficiency as the ratio of the melted volume of crustal material to the volume of melt expected from a strict enthalpy balance as explained by Dufek and Bergantz (2005). Melting efficiencies are less than 1 in real systems because heat diffuses to sections of the crust that never melt. In general, thick crust and crust experiencing extended compressional regimes results in an increased melting efficiency; and thin crust and crust with high extension rates have lower efficiency. In most settings, maximum efficiencies are less than 0.05-0.10. We also observe that with a geophysically estimated flux, the mantle-derived magma bodies build up isolated magma pods that are distributed in the crust. One of the aspects of this work is to monitor the location and size of these magma chambers in the crustal column. We further investigate the rheological, stress and pre-existing structure control on the longevity of the individual magmatic systems.

  20. Seismic stratigraphy, tectonics and depositional history in the Halk el Menzel region, NE Tunisia

    NASA Astrophysics Data System (ADS)

    Sebei, Kawthar; Inoubli, Mohamed Hédi; Boussiga, Haïfa; Tlig, Said; Alouani, Rabah; Boujamaoui, Mustapha

    2007-01-01

    In the Halk el Menzel area, the proximal- to pelagic platform transition and related tectonic events during the Upper Cretaceous-Lower Miocene have not been taken into adequate consideration. The integrated interpretation of outcrop and subsurface data help define a seismic stratigraphic model and clarify the geodynamic evolution of the Halk el Menzel block. The sedimentary column comprises marls and limestones of the Campanian to Upper Eocene, overlain by Oligocene to Lower Miocene aged siliciclastics and carbonates. Well to well correlations show sedimentary sequences vary considerably in lithofacies and thicknesses over short distances with remarkable gaps. The comparison of sedimentary sequences cut by borehole and seismic stratigraphic modelling as well help define ten third order depositional sequences (S1-S10). Sequences S1 through S6 (Campanian-Paleocene) are mainly characterized by oblique to sigmoid configurations with prograding sedimentary structures, whereas, sequences S7-S10 (Ypresian to Middle Miocene) are organized in shallow water deposits with marked clinoform ramp geometry. Sedimentary discontinuities developed at sequence boundaries are thought to indicate widespread fall in relative sea level. Angular unconformities record a transpressive tectonic regime that operated from the Campanian to Upper Eocene. The geometry of sequences with reduced thicknesses, differential dipping of internal seismic reflections and associated normal faulting located westerly in the area, draw attention to a depositional sedimentary system developed on a gentle slope evolving from a tectonically driven steepening towards the Northwest. The seismic profiles help delimit normal faulting control environments of deposition. In contrast, reef build-ups in the Eastern parts occupy paleohighs NE-SW in strike with bordering Upper Maastrichtian-Ypresian seismic facies onlapping Upper Cretaceous counterparts. During the Middle-Upper Eocene, transpressive stress caused reactivation of faults from normal to reverse play. This has culminated in propagation folds located to the west; whereas, the eastern part of the block has suffered progressive subsidence. Transgressive carbonate depositional sequences have predominated during the Middle Miocene and have sealed pre-existing tectonic structures.

  1. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Qi; Paszkiewicz, Mateusz; Du, Ping; Zhang, Liding; Lin, Tao; Chen, Zhi; Klyatskaya, Svetlana; Ruben, Mario; Seitsonen, Ari P.; Barth, Johannes V.; Klappenberger, Florian

    2018-03-01

    Interfacial supramolecular self-assembly represents a powerful tool for constructing regular and quasicrystalline materials. In particular, complex two-dimensional molecular tessellations, such as semi-regular Archimedean tilings with regular polygons, promise unique properties related to their nontrivial structures. However, their formation is challenging, because current methods are largely limited to the direct assembly of precursors, that is, where structure formation relies on molecular interactions without using chemical transformations. Here, we have chosen ethynyl-iodophenanthrene (which features dissymmetry in both geometry and reactivity) as a single starting precursor to generate the rare semi-regular (3.4.6.4) Archimedean tiling with long-range order on an atomically flat substrate through a multi-step reaction. Intriguingly, the individual chemical transformations converge to form a symmetric alkynyl-Ag-alkynyl complex as the new tecton in high yields. Using a combination of microscopy and X-ray spectroscopy tools, as well as computational modelling, we show that in situ generated catalytic Ag complexes mediate the tecton conversion.

  2. Optimal Planet Properties For Plate Tectonics Through Time And Space

    NASA Astrophysics Data System (ADS)

    Stamenkovic, Vlada; Seager, Sara

    2014-11-01

    Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up and regulation of gases relevant for life. This allows for the first time to discuss the tectonic mode of a rocky planet from a practical astrophysical perspective.

  3. Molecular tectonics: hierarchical organization of heterobimetallic coordination networks into heterotrimetallic core-shell crystals.

    PubMed

    Zhang, Fan; Adolf, Cyril R R; Zigon, Nicolas; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2017-03-23

    Combinations of a neutral Pt(ii) organometallic tecton bearing two triphenylphosphine and two 3-ethynylpyridyl coordinating moieties in trans positions with MX 2 complexes (M = Co(ii) and X = Cl - or Br - and M = Zn(ii) and X = Cl - ) lead to the formation of isostructural 1D heterobimetallic coordination compounds. By 3D epitaxial growth processes, using coordination bonding, heterotrimetallic core-shell crystals are generated by the growth of crystalline layers on seed crystals.

  4. Palaeomagnetic study of the Kepezdaǧ and Yamadaǧ volcanic complexes, central Turkey: Neogene tectonic escape and block definition in the central-east Anatolides

    NASA Astrophysics Data System (ADS)

    Gürsoy, H.; Tatar, O.; Piper, J. D. A.; Koçbulut, F.; Akpınar, Zafer; Huang, Baochun; Roberts, A. P.; Mesci, B. L.

    2011-05-01

    The Anatolian accretionary collage between Afro-Arabia and Eurasia is currently subject to two tectonic regimes. Ongoing slip of Arabia relative to Africa along the Dead Sea Fault Zone in the east is extruding crustal blocks away from the indenter by a combination of strike-slip and rotation. This zone of compression gives way to an extensional province in western Turkey, which also includes the eastern sector of Aegean Province. Although it is now well established that rotational deformation throughout Anatolia is distributed and differential, the sizes of the blocks involved are poorly understood. As a contribution towards evaluating this issue in central-east Turkey, we report palaeomagnetic study of the mid-Miocene Kepezdağ and Yamadağ volcanic complexes in central-south Anatolia (38-39.5°N, 37.5-39°E). A distributed sample through the Yamadağ complex identifies eruption during an interval of multiple geomagnetic field reversals (40 normal, 36 reversed, 8 intermediate sites) with a selected mean defined by 63 sites of D/ I = 335.4/51.1° ( α95 = 4.4°). The smaller Kepezdağ complex (8 reversed, 4 normal and 1 intermediate site) yields a comparable mean direction from 12 sites of 338.7/49.8° ( α95 = 14.1°). In the context of a range of radiometric age evidence, two thick normal polarity zones within the Yamadağ succession probably correlate with zones C5ACn and C5ADn of the Geomagnetic Polarity Time Scale and imply that the bulk of the volcanic activity took place between ˜15 and 13.5 Ma. Comparison of the palaeomagnetic results with the adjoining major plate indenters shows that the Yamadağ complex has rotated CCW by 29.3 ± 5.2° relative to Eurasia; the much smaller dataset from the Kepezdağ complex indicates a comparable CCW rotation of 26.0 ± 11.8° with respect to Eurasia. The Arabian Indenter has also been rotating CCW since mid Miocene times, and the block incorporating these two volcanic complexes north of the East Anatolian Fault Zone (EAFZ) is determined to have rotated 18.2 ± 6.0° CCW relative to the northern perimeter of Arabia. Comparison with data to the north identifies quasi-uniform rotation across a ˜200 km wide block extending from the Central Anatolian Fault Zone in the northwest to close to the East Anatolian transform fault zone in the south east. Although absence of suitable younger rocks does not permit the timing of this rotation to be determined in the study area, analogies with results from the Sivas Basin suggest that it is young, and followed establishment of the major transform faults. Rotation has evidently taken place around bounding arcuate faults and accompanied westward expulsion as the accretionary collage north of Arabia has been subject to ongoing post-collisional indentation.

  5. Mantle convection: concensus and queries (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Ricard, Y.

    2012-04-01

    Thermal convection driven by surface cooling and internal heat production is the cause of endogenic activity of all planets, expressed as tectonic activity and volcanism for solid planets. The sluggish convection of the silicated mantle also controls the activity of the metallic core and the possibility of an active dynamo. A glimpse of the internal structure of Earth's mantle is provided by seismic tomography. However, both the limited resolution of seismic methods and the complexity of the relations between seismic velocities and the thermo-mechanical parameters (mostly temperature and density), leave to the geodynamicist a large degree of interpretation. At first order, a very simple model of mantle heterogeneities, only built from the paleogeographic positions of Cenozoic and Mesozoic slabs, explains the pattern and amplitude of Earth's plate motions and gravity field, while being in agreement with long wavelength tomography. This indicates that the mantle dynamics is mostly controlled by thermal anomalies and by the dynamics of the top boundary layer, the lithosphere. However, the presence of various complexities due to variations in elemental composition and to phase transitions is required by seismology, mineralogy and geochemistry. I will review how these complexities affect the dynamics of the transition zone and of the deep mantle and discuss the hypothesis on their origins, either primordial or as a consequence of plate tectonics. The rheologies that are used in global geodynamic models for the mantle and the lithosphere remain very simplistic. Some aspects of plate tectonics (e.g., the very existence of plates, their evolution, the dynamics of one-sided subductions...) are now reproduced by numerical simulations. However the rheologies implemented and their complexities remain only remotely related to that of solid minerals as observed in laboratories. The connections between the quantities measured at microscopic scale (e.g., mineralogy, grainsize, mechanisms of creeping, anisotropy, preferential shape orientations, water content...), their macroscopic averages, and the retroaction between them, are still unclear. The understanding of these relations would explain why Earth has plate tectonics while the other planets of the solar system, including her sister planet Venus, do not. As plate tectonics can be advocated to be a major ingredient for life to developp, we can speculate that a better understanding of the interaction between rheology and geodynamics would help us to estimate on what extrasolar planets including super earths, life might be expected.

  6. Modeling the poroelastic response to megathrust earthquakes: A look at the 2012 Mw 7.6 Costa Rican event

    NASA Astrophysics Data System (ADS)

    McCormack, Kimberly A.; Hesse, Marc A.

    2018-04-01

    We model the subsurface hydrologic response to the 7.6 Mw subduction zone earthquake that occurred on the plate interface beneath the Nicoya peninsula in Costa Rica on September 5, 2012. The regional-scale poroelastic model of the overlying plate integrates seismologic, geodetic and hydrologic data sets to predict the post-seismic poroelastic response. A representative two-dimensional model shows that thrust earthquakes with a slip width less than a third of their depth produce complex multi-lobed pressure perturbations in the shallow subsurface. This leads to multiple poroelastic relaxation timescales that may overlap with the longer viscoelastic timescales. In the three-dimensional model, the complex slip distribution of 2012 Nicoya event and its small width to depth ratio lead to a pore pressure distribution comprising multiple trench parallel ridges of high and low pressure. This leads to complex groundwater flow patterns, non-monotonic variations in predicted well water levels, and poroelastic relaxation on multiple time scales. The model also predicts significant tectonically driven submarine groundwater discharge off-shore. In the weeks following the earthquake, the predicted net submarine groundwater discharge in the study area increases, creating a 100 fold increase in net discharge relative to topography-driven flow over the first 30 days. Our model suggests the hydrological response on land is more complex than typically acknowledged in tectonic studies. This may complicate the interpretation of transient post-seismic surface deformations. Combined tectonic-hydrological observation networks have the potential to reduce such ambiguities.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallmeyer, R.D.; Gee, D.G.; Beckholmen, M.

    In central portions of the Scandinavian Caledonides, greenschist facies volcanosedimentary successions within the Koeli Nappe Complex have been thrust several hundred kilometers eastward onto the Baltoscandian platform. These were derived from eugeoclinal terranes situated outboard (west) of the Baltica continent during the early Paleozoic. The Koeli Nappe Complex is tectonically underlain by higher grade units within the Seve Nappe Complex. These are composed of amphibolite and granulite facies rocks and locally contain eclogites. The Seve Nappes tectonically separate Koeli units from structurally lower allochthons derived from more inboard environments along the Baltoscandian miogeocline. Previous mineral isotopic age-determinations from Seve andmore » Koeli units have been in the 430 to 390 Ma range and have been interpreted to presumably date cooling following Scandian (Middle Silurian to Early Devonian) metamorphism. However, incremental-release /sup 40/Ar//sup 39/Ar dates recorded by minerals within some of the Koeli and Seve Nappes exposed in Jaemtland, Sweden (Taennforsen and Are districts) provide evidence of earlier tectonothermal activity. Hornblendes from the Seve and Koeli Nappe Complexes display variably discordant age spectra as a result of low-temperature, experimental evolution of loosely bound extraneous argon components. However, in most analyses plateau ages of 510 to 475 Ma (Koeli) and 465 to 455 Ma (Seve) are defined. In contrast, muscovite and biotite from all tectonic units record Scandian cooling ages between 245 and 410 Ma. The older events recorded by hornblende within these Seve and Koeli units are evidence of early Caledonian tectonothermal activity and subsequent diachronous cooling during the Early-Middle Ordovician.« less

  8. Linking the southern West Junggar terrane to the Yili Block: Insights from the oldest accretionary complexes in West Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Ren, Rong; Han, Bao-Fu; Guan, Shu-Wei; Liu, Bo; Wang, Zeng-Zhen

    2018-06-01

    West Junggar is known to tectonically correlate with East Kazakhstan; however, the tectonic link of the southern West Junggar terrane to adjacent regions still remains uncertain. Here, we examined the oldest accretionary complexes, thus constraining its tectonic evolution and link during the Early-Middle Paleozoic. They have contrasting lithologic, geochemical, and geochronological features and thus, provenances and tectonic settings. The Laba Unit was derived from the Late Ordovician-Early Devonian continental arc system (peaking at 450-420 Ma) with Precambrian substrate, which formed as early as the Early Devonian and metamorphosed during the Permian; however, the Kekeshayi Unit was accumulated in an intra-oceanic arc setting, and includes the pre-Late Silurian and Late Silurian subunits with or without Precambrian sources. Integrated with the regional data, the southern West Junggar terrane revealed a tectonic link to the northern Yili Block during the Late Silurian to Early Devonian, as suggested by the comparable Precambrian zircon age spectra between the southern West Junggar terrane and the micro-continents in the southern Kazakhstan Orocline, the proximal accumulation of the Laba Unit in the continental arc atop the Yili Block, and the sudden appearance of Precambrian zircons in the Kekeshayi Unit during the Late Silurian. This link rejects the proposals of the southern West Junggar terrane as an extension of the northern Kazakhstan Orocline and the Middle Paleozoic amalgamation of West Junggar. A new linking model is thus proposed, in which the southern West Junggar terrane first evolved individually, and then collided with the Yili Block to constitute the Kazakhstan continent during the Late Silurian. The independent and contrasting intra-oceanic and continental arcs also support the Paleozoic archipelago-type evolution of the Central Asian Orogenic Belt.

  9. New seismo-stratigraphic and marine magnetic data of the Gulf of Pozzuoli (Naples Bay, Tyrrhenian Sea, Italy): inferences for the tectonic and magmatic events of the Phlegrean Fields volcanic complex (Campania)

    NASA Astrophysics Data System (ADS)

    Aiello, Gemma; Marsella, Ennio; Fiore, Vincenzo Di

    2012-06-01

    A detailed reconstruction of the stratigraphic and tectonic setting of the Gulf of Pozzuoli (Naples Bay) is provided on the basis of newly acquired single channel seismic profiles coupled with already recorded marine magnetics gathering the volcanic nature of some seismic units. Inferences for the tectonic and magmatic setting of the Phlegrean Fields volcanic complex, a volcanic district surrounding the western part of the Gulf of Naples, where volcanism has been active since at least 50 ka, are also discussed. The Gulf of Pozzuoli represents the submerged border of the Phlegrean caldera, resulting from the volcano-tectonic collapse induced from the pyroclastic flow deposits of the Campanian Ignimbrite (35 ka). Several morpho-depositional units have been identified, i.e., the inner continental shelf, the central basin, the submerged volcanic banks and the outer continental shelf. The stratigraphic relationships between the Quaternary volcanic units related to the offshore caldera border and the overlying deposits of the Late Quaternary depositional sequence in the Gulf of Pozzuoli have been highlighted. Fourteen main seismic units, both volcanic and sedimentary, tectonically controlled due to contemporaneous folding and normal faulting have been revealed by geological interpretation. Volcanic dykes, characterized by acoustically transparent sub-vertical bodies, locally bounded by normal faults, testify to the magma uprising in correspondence with extensional structures. A large field of tuff cones interlayered with marine deposits off the island of Nisida, on the western rim of the gulf, is related to the emplacement of the Neapolitan Yellow Tuff deposits. A thick volcanic unit, exposed over a large area off the Capo Miseno volcanic edifice is connected with the Bacoli-Isola Pennata-Capo Miseno yellow tuffs, cropping out in the northern Phlegrean Fields.

  10. The Portland Basin: A (big) river runs through it

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  11. Expanding Evolutionary Theory beyond Darwinism with Elaborating, Self-Organizing, and Fractionating Complex Evolutionary Systems

    ERIC Educational Resources Information Center

    Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.

    2010-01-01

    Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…

  12. Complex deformation in the Caucasus region revealed by ambient noise seismic tomography

    NASA Astrophysics Data System (ADS)

    Legendre, Cédric P.; Tseng, Tai-Lin; Chen, Ying-Nien; Huang, Tzu-Ying; Gung, Yuan-Cheng; Karakhanyan, Arkadiy; Huang, Bor-Shouh

    2017-08-01

    Cross-correlation of 3years of ambient seismic noise recorded at 35 seismic stations deployed in Caucasus region yields hundreds of short-period surface-wave phase-speed dispersion curves on inter-station paths. We inverted these measurements using two techniques to construct tomographic images of the principal geological units of Caucasus. High-resolution isotropic and azimuthally anisotropic phase-velocity maps (at periods between 5 and 20s) and shear-velocity tomographic maps between 5 and 30km are generated. The resulting maps show a velocity dichotomy between the Caucasus region and the surrounding that is interpreted in term of changes in crustal thickness. There is also a strong dichotomy in the anisotropic pattern between the eastern part and the western part of the Caucasus. This difference in both amplitudes and directions of the 2ψ anisotropy is linked to the tectonic regime changes in the region. These observations suggest a good correlation between the tomographic models and the geology of the region. It was also possible to identify the early stage of the indentation of the Arabian Plate into the Eurasian plate, as well as to detect the possible magma chamber responsible for the Javakheti highland.

  13. Mantle convection on modern supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter

    2015-04-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.

  14. Potential Flooding area for local Tsunami in Nayarit Region (Western Coast of Mexico).

    NASA Astrophysics Data System (ADS)

    Trejo-Gomez, E.; Ortiz, M.; Nuñez-Cornu, F. J.

    2016-12-01

    The western coast of Mexico in the region of Jalisco and Nayarit states has a complex tectonics and a high seismic activity. In the last century, four big tsunamis occurred in this area, (three of them in 1932 and one in 1995, that hit the coast of Colima, Jalisco and Nayarit. Three of these tsunamis were generated by earthquakes and one more (22 June 1932) by an underwater landslide. Currently, there is a seismic Gap on the north coast of Jalisco and southern Nayarit. Recent published papers (Urías-Espinosa et al, 2016) and the first results of TsuJal Project (Núñez- Cornú et al, 2016) suggest that subduction regime to the north of Cabo Corrientes changes and the Rivera plate subducts with a very low angle and this structure remains until Maria Madre Island at north of the Marias Islands. The hypothesis of this work is the estimation of the tsunami run up and the flooding zone after a great magnitude earthquake generated by the rupture of the hypothetical subduction structure north of Cabo Corrientes. The possible effects on the coasts of Nayarit, Islas Marias and Banderas Bay (Puerto Vallarta) are proposed in this study.

  15. Calcareous nannoplankton and foraminiferal response to global Oligocene and Miocene climatic oscillations: a case study from the Western Carpathian segment of the Central Paratethys

    NASA Astrophysics Data System (ADS)

    Holcová, Katarína

    2017-06-01

    The reactions of foraminiferal and calcareous nannoplankton assemblages to global warming and cooling events in the time intervals of ca. 27 to 19 Ma and 13.5 to 15 Ma (Oligocene and Miocene) were studied in subtropical epicontinental seas influenced by local tectonic and palaeogeographic events (the Central Paratethys). Regardless of these local events, global climatic processes significantly influenced the palaeoenvironment within the marine basin. Warm intervals are characterized by a stable, humid climate and a high-nutrient regime, due primarily to increased continental input of phytodetritus and also locally due to seasonal upwelling. Coarse clastics deposited in a hyposaline environment characterize the marginal part of the basin. Aridification events causing decreased riverine input and consequent nutrient decreases, characterized cold intervals. Apparent seasonality, as well as catastrophic climatic events, induced stress conditions and the expansion of opportunistic taxa. Carbonate production and hypersaline facies characterize the marginal part of the basins. Hypersaline surface water triggered downwelling circulation and mixing of water masses. Decreased abundance or extinction of K-specialists during each cold interval accelerated their speciation in the subsequent warm interval. Local tectonic events led to discordances between local and global sea-level changes (tectonically triggered uplift or subsidence) or to local salt formation (in the rain shadows of newly-created mountains).

  16. Evaluation of Ground-Motion Modeling Techniques for Use in Global ShakeMap - A Critique of Instrumental Ground-Motion Prediction Equations, Peak Ground Motion to Macroseismic Intensity Conversions, and Macroseismic Intensity Predictions in Different Tectonic Settings

    USGS Publications Warehouse

    Allen, Trevor I.; Wald, David J.

    2009-01-01

    Regional differences in ground-motion attenuation have long been thought to add uncertainty in the prediction of ground motion. However, a growing body of evidence suggests that regional differences in ground-motion attenuation may not be as significant as previously thought and that the key differences between regions may be a consequence of limitations in ground-motion datasets over incomplete magnitude and distance ranges. Undoubtedly, regional differences in attenuation can exist owing to differences in crustal structure and tectonic setting, and these can contribute to differences in ground-motion attenuation at larger source-receiver distances. Herein, we examine the use of a variety of techniques for the prediction of several ground-motion metrics (peak ground acceleration and velocity, response spectral ordinates, and macroseismic intensity) and compare them against a global dataset of instrumental ground-motion recordings and intensity assignments. The primary goal of this study is to determine whether existing ground-motion prediction techniques are applicable for use in the U.S. Geological Survey's Global ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER). We seek the most appropriate ground-motion predictive technique, or techniques, for each of the tectonic regimes considered: shallow active crust, subduction zone, and stable continental region.

  17. Increased sedimentation following the Neolithic Revolution in the Southern Levant

    NASA Astrophysics Data System (ADS)

    Lu, Yin; Waldmann, Nicolas; Nadel, Dani; Marco, Shmuel

    2017-05-01

    The Dead Sea drainage basin offers a rare combination of well-documented substantial climate change, intense tectonics and abundant archaeological evidence for past human activity in the Southern Levant. It serves as a natural laboratory for understanding how sedimentation rates in a deep basin are related to climate change, tectonics, and anthropogenic impacts on the landscape. Here we show how basin-wide erosion rates are recorded by thicknesses of rhythmic detritus laminae and clastic sediment accumulation rates in a long core retrieved by the Dead Sea Deep Drilling Project in the Dead Sea depocenter. During the last 11.5 kyr the average detrital accumulation rate is 3-4 times that during the last two glacial cycles (MIS 7c-2), and the average thickness of detritus laminae in the last 11.6 kyr is 4.5 times that between 21.7 and 11.6 ka, implying an increased erosion rate on the surrounding slopes during the Holocene. We estimate that this intensified erosion is incompatible with tectonic and climatic regimes during the corresponding time interval and further propose a close association with the Neolithic Revolution in the Levant (beginning at 11.5 ka). We thus suggest that human impact on the landscape was the primary driver causing the intensified erosion and that the Dead Sea sedimentary record serves as a reliable recorder of this impact since the Neolithic Revolution.

  18. Modern Geodynamics of South Yenisei Ridge to Result of the GPS/GLONASS Observations

    NASA Astrophysics Data System (ADS)

    Tatarinov, Viktor; Kaftan, Vladimir; Tatarinova, Tatiana; Manevich, Alexander

    2017-12-01

    Yenisei Ridge is located at the junction of major tectonic structures - Siberian Platform and West Siberian Plate. Its southern part is characterized by stable tectonic regime, the average speed of uplift according to geological data is 0.2-0.3 mm per year with the total amplitude of 400-500 m. However, the speed of modern movements of the Earth’s crust is by more than an order of magnitude higher due to the temporary effect of large-scale geodynamic movements. The Yenisei river divides the area into two parts. The left bank is characterized by predominantly negative vertical movements and the right bank by positive ones. The major tectonic disturbances occur in the areas of the Muratovsky, Atamanovsky, Pravoberezhny and Bolshetelsky submeridional faults. It was investigated the dynamics of changes in the lengths of ΔL baselines for separate epochs of observations. In 2010-2013 the absolute values of ΔL were significantly lower than for the periods 2013-2014 and 2014-2015. For the entire observation period the average value of the differences of the line lengths is 3.8 mm. This suggests that in general the area experienced strain during the period 2010-2015. Maps of the Earth’s surface dilatation zones (deformation rate) showed that the maximum deformations were recorded in the area of Muratovsky and Atamanovsky faults located at the junction of Siberian Platform and West Siberian plate.

  19. Late Quaternary uplift along the North America-Caribbean plate boundary: Evidence from the sea level record of Guantanamo Bay, Cuba

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Schweig, Eugene S.; Simmons, Kathleen R.; Halley, Robert B.

    2017-12-01

    The tectonic setting of the North America-Caribbean plate boundary has been studied intensively, but some aspects are still poorly understood, particularly along the Oriente fault zone. Guantanamo Bay, southern Cuba, is considered to be on a coastline that is under a transpressive tectonic regime along this zone, and is hypothesized to have a low uplift rate. We tested this by studying emergent reef terrace deposits around the bay. Reef elevations in the protected, inner part of the bay are ∼11-12 m and outer-coast, wave-cut benches are as high as ∼14 m. Uranium-series analyses of corals yield ages ranging from ∼133 ka to ∼119 ka, correlating this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Assuming a span of possible paleo-sea levels at the time of the last interglacial period yields long-term tectonic uplift rates of 0.02-0.11 m/ka, supporting the hypothesis that the tectonic uplift rate is low. Nevertheless, on the eastern and southern coasts of Cuba, east and west of Guantanamo Bay, there are flights of multiple marine terraces, at higher elevations, that could record a higher rate of uplift, implying that Guantanamo Bay may be anomalous. Southern Cuba is considered to have experienced a measurable but modest effect from glacial isostatic adjustment (GIA) processes. Thus, with a low uplift rate, Guantanamo Bay should show no evidence of emergent marine terraces dating to the ∼100 ka (MIS 5.3) or ∼80 ka (MIS 5.1) sea stands and results of the present study support this.

  20. Late Quaternary uplift along the North America-Caribbean plate boundary: Evidence from the sea level record of Guantanamo Bay, Cuba

    USGS Publications Warehouse

    Muhs, Daniel; Schweig, Eugene S.; Simmons, Kathleen; Halley, Robert B.

    2017-01-01

    The tectonic setting of the North America-Caribbean plate boundary has been studied intensively, but some aspects are still poorly understood, particularly along the Oriente fault zone. Guantanamo Bay, southern Cuba, is considered to be on a coastline that is under a transpressive tectonic regime along this zone, and is hypothesized to have a low uplift rate. We tested this by studying emergent reef terrace deposits around the bay. Reef elevations in the protected, inner part of the bay are ∼11–12 m and outer-coast, wave-cut benches are as high as ∼14 m. Uranium-series analyses of corals yield ages ranging from ∼133 ka to ∼119 ka, correlating this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Assuming a span of possible paleo-sea levels at the time of the last interglacial period yields long-term tectonic uplift rates of 0.02–0.11 m/ka, supporting the hypothesis that the tectonic uplift rate is low. Nevertheless, on the eastern and southern coasts of Cuba, east and west of Guantanamo Bay, there are flights of multiple marine terraces, at higher elevations, that could record a higher rate of uplift, implying that Guantanamo Bay may be anomalous. Southern Cuba is considered to have experienced a measurable but modest effect from glacial isostatic adjustment (GIA) processes. Thus, with a low uplift rate, Guantanamo Bay should show no evidence of emergent marine terraces dating to the ∼100 ka (MIS 5.3) or ∼80 ka (MIS 5.1) sea stands and results of the present study support this.

  1. Anthropogenic-enhanced erosion following the Neolithic Revolution in the Southern Levant: Records from the Dead Sea deep drilling core

    NASA Astrophysics Data System (ADS)

    Lu, Yin; Waldmann, Nicolas; Nadel, Dani; Marco, Shmuel

    2017-04-01

    In addition to tectonics and climatic changes, humans have exerted a significant impact on surface erosion over timescales ranging from years to centuries. However, such kind of impact over millennial timescales remains unsubstantiated. The Dead Sea drainage basin offers a rare combination of well-documented substantial climate change, intense tectonics and abundant archaeological evidence for past human activity in the Southern Levant. It serves as a natural laboratory for understanding how sedimentation rates in a deep basin are related to climate change, tectonics, and anthropogenic impacts on the landscape. Here we show how basin-wide erosion rates are recorded by thicknesses of rhythmic detritus laminae and clastic sediment accumulation rates in a long core retrieved by the Dead Sea Deep Drilling Project in the Dead Sea depocenter. During the last 11.5 kyr the average detrital accumulation rate is 3-4 times that during the last two glacial cycles (MIS 7c-2), and the average thickness of detritus laminae in the last 11.6 kyr is 4.5 times that between 21.7 and 11.6 ka, implying an increased erosion rate on the surrounding slopes during the Holocene. We estimate that this intensified erosion is incompatible with tectonic and climatic regimes during the corresponding time interval and further propose a close association with the Neolithic Revolution in the Levant (beginning at 11.5 ka). We thus suggest that human impact on the landscape was the primary driver causing the intensified erosion and that the Dead Sea sedimentary record serves as a reliable recorder of this impact since the Neolithic Revolution.

  2. Geologic drivers of late ordovician faunal change in laurentia: investigating links between tectonics, speciation, and biotic invasions.

    PubMed

    Wright, David F; Stigall, Alycia L

    2013-01-01

    Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode-from a vicariance to dispersal dominated macroevolutionary regime-across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive) species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior.

  3. Spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron

    2015-04-01

    Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.

  4. Red Sea rift-related Quseir basalts, central Eastern Desert, Egypt: Petrogenesis and tectonic processes

    NASA Astrophysics Data System (ADS)

    Farahat, Esam S.; Ali, Shehata; Hauzenberger, Christoph

    2017-01-01

    Mineral and whole-rock chemistry of Red Sea rift-related Tertiary basalts from south Quseir city, central Eastern Desert of Egypt is presented to investigate their petrogenesis and relationship to tectonic processes. The south Quseir basalts (SQB) are classified as high-Ti (TiO2 >2 wt.%) subalkaline transitional lava emplaced in an anorogenic tectonic setting. Their Mg# varies from 48 to 53 indicating the evolved nature of the SQB. Pearce element ratios suggest that the SQB magmas evolved via fractional crystallization of olivine + clinopyroxene ± plagioclase, but the absence of Eu anomalies argues against significant plagioclase fractionation. Clinopyroxene compositions provide evidence for polybaric fractionation of the parental mafic magmas. Estimated temperatures of crystallization are 1015 to 1207 °C for clinopyroxene and 1076 to 1155 °C for plagioclase. These values are interpreted to result from early stage crystallization of clinopyroxene followed by concurrent crystallization of clinopyroxene and plagioclase. The incompatible trace element signatures of the SQB (La/Ba = 0.08-0.10 and La/Nb = 0.89-1.04) are comparable to those of ocean island basalts (OIB) generated from an asthenospheric mantle source unaffected by subduction components. Modeling calculations indicate that the SQB primary magmas were derived from 4-5% partial melting of a garnet-bearing lherzolite mantle source. The NE Egyptian basaltic volcanism is spatially and temporally related to Red Sea rifting and to the local E-W striking faults, confirming a relationship to tectonic activity. Our results suggest that the extensional regime associated with Red Sea rifting controlled the generation of the Egyptian basalts, likely as a result of passive upwelling of asthenospheric mantle.

  5. Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: Implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan

    2016-04-01

    On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.

  6. Rotation and strain rate of Sulawesi from geometrical velocity field

    NASA Astrophysics Data System (ADS)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    One of methods that can be used to determine the tectonic deformation status is rate estimation from geometric rotation and strain using quantitative velocity data from GPS observations. Microplate Sulawesi region located in the zone of triple junction (Eurasia, Australia and Philippine Sea Plates) has very complex tectonic and seismic condition, which is why become very important to know its recent deformation status in order to study neo-tectonic and disaster mitigation. Deformation rate quantification is estimated in two parameters: rotation and geodetic strain rate of each GPS station Delaunay triangle in the study area. The analysis in this study is not done using the grids since there is no rheological information at location that can be used as the interpolation-extrapolation constraints. Our analysis reveals that Sulawesi is characterized by rapid rotation in several different domains and compression-strain pattern that varies depending on the type and boundary conditions of microplate. This information is useful for studying neo tectonic deformation status and earthquake disaster mitigation.

  7. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate

    PubMed Central

    Finarelli, John A.; Badgley, Catherine

    2010-01-01

    Continental biodiversity gradients result not only from ecological processes, but also from evolutionary and geohistorical processes involving biotic turnover in landscape and climatic history over millions of years. Here, we investigate the evolutionary and historical contributions to the gradient of increasing species richness with topographic complexity. We analysed a dataset of 418 fossil rodent species from western North America spanning 25 to 5 Ma. We compared diversification histories between tectonically active (Intermontane West) and quiescent (Great Plains) regions. Although diversification histories differed between the two regions, species richness, origination rate and extinction rate per million years were not systematically different over the 20 Myr interval. In the tectonically active region, the greatest increase in originations coincided with a Middle Miocene episode of intensified tectonic activity and global warming. During subsequent global cooling, species richness declined in the montane region and increased on the Great Plains. These results suggest that interactions between tectonic activity and climate change stimulate diversification in mammals. The elevational diversity gradient characteristic of modern mammalian faunas was not a persistent feature over geologic time. Rather, the Miocene rodent record suggests that the elevational diversity gradient is a transient feature arising during particular episodes of Earth's history. PMID:20427339

  8. Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining.

    PubMed

    Hero, Alfred O; Rajaratnam, Bala

    2016-01-01

    When can reliable inference be drawn in fue "Big Data" context? This paper presents a framework for answering this fundamental question in the context of correlation mining, wifu implications for general large scale inference. In large scale data applications like genomics, connectomics, and eco-informatics fue dataset is often variable-rich but sample-starved: a regime where the number n of acquired samples (statistical replicates) is far fewer than fue number p of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for "Big Data". Sample complexity however has received relatively less attention, especially in the setting when the sample size n is fixed, and the dimension p grows without bound. To address fuis gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where fue variable dimension is fixed and fue sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa cale data dimension. We illustrate this high dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables fua t are of interest. Correlation mining arises in numerous applications and subsumes the regression context as a special case. we demonstrate various regimes of correlation mining based on the unifying perspective of high dimensional learning rates and sample complexity for different structured covariance models and different inference tasks.

  9. Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamimi, Zakaria; El-Sawy, El-Sawy K.; El-Fakharani, Abdelhamid; Matsah, Mohamed; Shujoon, Abdulrahman; El-Shafei, Mohamed K.

    2014-11-01

    The Ad-Damm Shear Zone (AdSZ) is a major NE- (to NNE-) trending fault zone separating Jiddah and Asir tectonic terranes in the Neoproterozoic Juvenile Arabian Shield (AS). AdSZ is characterized by the development of dextral transcurrent shear-sense indicators and moderately to steeply NW plunging stretching lineations. It is mainly developed under high amphibolite-to greenschist-facies conditions and extends ∼380 km, with an average width ∼2-4 km, from the conspicuous Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW-trending sinistral Najd Shear System. This assumption is, based on the noteworthy dextral shear criteria recorded within the 620 Ma mylonitic granite of No'man Complex. A total shear-zone strike length exceeding 117 km is carefully investigated during this study to reconstruct its structural evolution. Shear-sense indicators and other field observations including overprinting relations clearly demonstrate a complicated Neoproterozoic history of AdSZ, involving at least three phases of deformations (D1-D3). Both D1 and D2 phases were of contractional regime. During D1 phase a NW-SE compression led to the formation of NE-oriented low-angle thrusts and tight-overturned folds. D2 is represented by a NE-SW stress oriented that led to the development of an open folding. D3 is expressed by the NE-SW intensive dextral transcurrent brittle-ductile shearing. It is overprinting the early formed fabrics and played a significant role in the creation of AdSZ and the mega-scale related folds. Such deformation history reflects the same Neoproterozoic deformation regime recognized in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  10. Present-day Horizontal Mobility in the Serbian Part of the Pannonian Basin; Inferences from the Geometric Analysis of Deformations

    NASA Astrophysics Data System (ADS)

    Sušić, Zoran; Toljić, Marinko; Bulatović, Vladimir; Ninkov, Toša; Stojadinović, Uroš

    2016-10-01

    In tectonically complex environments, such as the Pannonian Basin surrounded by the Alps-Dinarides and Carpathians orogens, monitoring of recent deformations represents very challenging matter. Efficient quantification of active continental deformations demands the use of a multidisciplinary approach, including neotectonic, seismotectonic and geodetic methods. The present-day tectonic mobility in the Pannonian Basin is predominantly controlled by the northward movement of the Adria micro-plate, which has produced compressional stresses that were party accommodated by the Alps-Dinarides thrust belt and partly transferred towards its hinterland. Influence of thus induced stresses on the recent strain field, deformations and tectonic mobility in the southern segment of the Pannonian Basin has been investigated using GPS measurements of the horizontal mobility in the Vojvodina area (northern Serbia).

  11. Sedimentary petrography of the Early Proterozoic Pretoria Group, Transvaal Sequence, South Africa: implications for tectonic setting

    NASA Astrophysics Data System (ADS)

    Schreiber, U. M.; Eriksson, P. G.; van der Neut, M.; Snyman, C. P.

    1992-11-01

    Sandstone petrography, geochemistry and petrotectonic assemblages of the predominantly clastic sedimentary rocks of the Early Proterozoic Pretoria Group, Transvaal Sequence, point to relatively stable cratonic conditions at the beginning of sedimentation, interrupted by minor rifting events. Basement uplift and a second period of rifting occurred towards the end of Pretoria Group deposition, which was followed by the intrusion of mafic sill swarms and the emplacement of the Bushveld Complex in the Kaapvaal Craton at about 2050 Ma, the latter indicating increased extensional tectonism, and incipient continental rifting. An overall intracratonic lacustrine tectonic setting for the Pretoria Group is supported by periods of subaerial volcanic activity and palaeosol formation, rapid sedimentary facies changes, significant arkosic sandstones, the presence of non-glacial varves and a highly variable mudrock geochemistry.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramdhan, Mohamad; Nugraha, Andri Dian

    Toba area has complex tectonic setting attracting many earth scientists to study and understand tectonic and geological process or setting. The area is affected by oblique subduction zone, Renun Sumatran fault sub segment and some volcanoes that are near it. The earthquake catalogue provided by BMKG from April, 2009 to December, 2011 must be relocated firstly to get the precise hypocenter. We used catalogue data of P and S phase or P phase only and double-difference method to relocate the earthquakes. The results show hypocenter position enhancement that can be interpreted tectonically. The earthquakes after relocation relating to the Sumatranmore » fault, subduction zone, volcanoes and seismic activities beneath Toba caldera can be mapped clearly. The relocated hypocenters in this study are very important to provide information for seismic hazard assessment and disaster mitigation study.« less

  13. Fault source modeling of October 28, 2008 earthquake sequence in Baluchistan, Pakistan, on the basis of ALOS/PALSAR InSAR data

    NASA Astrophysics Data System (ADS)

    Usman, M.; Furuya, M.

    2014-12-01

    The Quetta Syntaxis in the western Baluchistan, Pakistan, serves as a junction for different thrust faults. As this area also lays close to the left lateral strike slip Chaman fault, which is supposed to be marking the boundary between Indian and Eurasian plate, thus the resulting seismological behavior of this regime becomes much more complex. In the region of Quetta Syntaxis, below the fold and thrust belt of Suleiman and Kirthar ranges and on 28 October 2008, there stroke an earthquake of magnitude 6.4 (Mw) which was followed by a doublet on the very next day. In association with these major events, there have been four more shocks, one foreshock and three aftershocks that have moment magnitude greater than 5. On the basis of seismological, GPS and ENVISAT/ASAR InSAR data many researchers tried to explain the source of this sequence. The latest source modeling results, on the basis of ENVISAT/ASAR data has provided an insight about the complexity of tectonics in the study area. However, in comparison to ALOS/PALSAR InSAR data, ENVISAT/ASAR has lacked signals near the epicentral area because of the low coherence. Probably, it has led to different interpretations by different researchers even on the basis of same satellite data. By using ALOS/PALSAR data, we have suggested a four faults model, two left laterals and two right laterals, which also retains the most desirable features of previous models.

  14. Tectonic and metallogenic model for northeast Asia

    USGS Publications Warehouse

    Parfenov, Leonid M.; Nokleberg, Warren J.; Berzin, Nikolai A.; Badarch, Gombosuren; Dril, Sergy I.; Gerel, Ochir; Goryachev, Nikolai A.; Khanchuk, Alexander I.; Kuz'min, Mikhail I.; Prokopiev, Andrei V.; Ratkin, Vladimir V.; Rodionov, Sergey M.; Scotese, Christopher R.; Shpikerman, Vladimir I.; Timofeev, Vladimir F.; Tomurtogoo, Onongin; Yan, Hongquan; Nokleberg, Warren J.

    2011-01-01

    This document describes the digital files in this report that contains a tectonic and metallogenic model for Northeast Asia. The report also contains background materials. This tectonic and metallogenic model and other materials on this report are derived from (1) an extensive USGS Professional Paper, 1765, on the metallogenesis and tectonics of Northeast Asia that is available on the Internet at http://pubs.usgs.gov/pp/1765/; and (2) the Russian Far East parts of an extensive USGS Professional Paper, 1697, on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera that is available on the Internet at http://pubs.usgs.gov/pp/pp1697/. The major purpose of the tectonic and metallogenic model is to provide, in movie format, a colorful summary of the complex geology, tectonics, and metallogenesis of the region. To accomplish this goal four steps were taken: (1) 13 time-stage diagrams, from the late Neoproterozoic (850 Ma) through the present (0 Ma), were adapted, generalized, and transformed into color static time-stage diagrams; (2) the 13 time-stage diagrams were placed in a computer morphing program to produce the model; (3) the model was examined and each diagram was successively adapted to preceding and subsequent diagrams to match the size and surface expression of major geologic units; and (4) the final version of the model was produced in successive iterations of steps 2 and 3. The tectonic and metallogenic model and associated materials in this report are derived from a project on the major mineral deposits, metallogenesis, and tectonics of the Northeast Asia and from a preceding project on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. Both projects provide critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major scientific goals and benefits of the projects are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between North America and eastern Asia.

  15. Boninites: Characteristics and tectonic constraints, northeastern Appalachians

    USGS Publications Warehouse

    Kim, J.; Jacobi, R.D.

    2002-01-01

    Boninites are high Mg andesites that are thought to form in suprasubduction zone tectonic environments as primary melts from refractory mantle. Boninites provide a potential constraint on tectonic models for ancient terranes that contain boninites because the only unequivocal tectonic setting in which "modern" boninites have been recognized is a fore-arc setting. Tectonic models for "modern" boninite genesis include subduction initiation ("infant arc"), fore-arc spreading, and the forearc side of intra-arc rifting (spreading). These models can be differentiated by the relative age of the boninites and to a lesser degree, geochemistry. The distinctive geochemistry of boninites promotes their recognition in ancient terranes. As detailed in this report, several mafic terranes in the northeastern Appalachians contain boninites; these terranes were situated on both sides of Iapetus. The characteristics of these boninites can be used to constrain tectonic models of the evolution of the northeastern Appalachians. On the Laurentian side of Iapetus, "infant arc" boninites were not produced ubiquitously during the Cambrian subduction initiation, unless sampling problems or minimum age dates obscure a more widespread boninite "infant arc". The Cambrian subduction initiation on the Laurentian side was probably characterized by both "infant arc" boninitic arc construction (perhaps the >496 Ma Hawley Formation and the >488 Ma Betts Cove Ophiolite) and "normal" arc construction (Mt. Orford). This duality is consistent with the suggestion that the pre-collisional geometry of the Laurentian margin was complex. The Bay of Islands Complex and Thetford Mines ophiolite boninites are likely associated with forearc/intra-arc spreading during the protracted evolution of the Cambrian arc system. The relatively young boninites in the Bronson Hill Arc suggest that the Taconic continuous eastward subduction tectonic model is less tenable than other models. On the Gondwana side of Iapetus, the Tea Arm boninites of the Exploits Group stratigraphically rest on arc and MORB volcanics. This stratigraphy, and the relatively young age of the boninites (486 Ma), compared to assumed subduction initiation age (>513 Ma), suggest that the boninites may be more consistent with fore-arc spreading/intra-arc spreading. However, an "infant arc" model cannot be dismissed, and is commonly proposed for the nearby boninites in the Wild Bight Group. ?? 2002 Elsevier Science Ltd. All rights reserved.

  16. "Tectonic Petrameter," An Alternative Method to Teaching the Geologic Time Scale

    NASA Astrophysics Data System (ADS)

    Posner, E. S.

    2011-12-01

    I have over a decade of experience as a performance poet and am now a graduate student in the geosciences. I have created a performance poem / play script, "Tectonic Petrameter," as an alternative method of teaching the geologic time scale. "The Archean came next and it was a blast. Tectonic plates were smaller and they moved pretty fast. In an enthusiastic flash of ash, volcanic islands smashed together." The use of rhyme and rhythm presents a different and interdisciplinary approach to teaching Earth history that appeals to a wide range of learning styles and makes science fun, while clearly describing important concepts in geology and events in Earth history. "Now it's time to get down with the Coal Swamp Stomp! Tap your feet to the beat of the formation of peat like a plant plantation soaking up the bright heat." "Tectonic Petrameter" by itself is an illustrated spoken-word poem that leads audiences from all levels of scientific background on an excitingly educational journey through geologic time. I will perform my 10-minute memorized poem and present results from my ongoing study to assess the effectiveness of "Tectonic Petrameter" as a teaching tool in K-12 and introductory undergraduate classroom curricula. I propose that using "Tectonic Petrameter" as a performance piece and theatrical play script in K-12 and introductory undergraduate classrooms, as well as in broader community venues, may be an avenue for breaking down barriers related to teaching about Earth's long and complex history. Digital copies of "Tectonic Petrameter" will be made available to interested parties.

  17. A new plate tectonic concept for the eastern-most Mediterranean

    NASA Astrophysics Data System (ADS)

    Huebscher, C.; McGrandle, A.; Scaife, G.; Spoors, R.; Stieglitz, T.

    2012-04-01

    Owing to the seismogenic faults bordering the Levant-Sinai realm and the discovery of giant gas reservoirs in the marine Levant Basin the scientific interest in this tectonically complex setting increased in recent years. Here we provide a new model for the Levant Basin architecture and adjacent plate boundaries emphasizing the importance of industrial seismic data for frontier research in earth science. PSDM seismics, residual gravity and depth to basement maps give a clear line of evidence that the Levant Basin, formerly considered as a single tectonic entity, is divided into two different domains. Highly stretched continental crust in the southern domain is separated from deeper and presumably Tethyan oceanic crust in the north. A transform continuing from southwest Cyprus to the Carmel Fault in northern Israel is considered as the boundary. If this interpretation holds, the Carmel-Cyprus Transform represents a yet unknown continent-ocean boundary in the eastern Mediterranean, thus adding new constrains for the Mediterranean plate tectonic puzzle. The Eratosthenes Seamount, considered as the spearhead of incipient continental collision in the eastern Mediterranean, is interpreted as a carbonate platform that developed above a volcanic basement. NW-SE trending strike-slip faults are abundant in the entire Levant region. Since this trend also shapes the topography of the Levant hinterland including Quaternary deposits their recent tectonic activity is quite likely. Thus, our study supports previous studies which attributed the evolution of submarine canyons and Holocene triggering of mass failures not only to salt tectonics or depositional processes, but also to active plate-tectonics.

  18. Unraveling tectonics and climate forcing in the late-Neogene exhumation history of South Alaska

    NASA Astrophysics Data System (ADS)

    Valla, Pierre; Champagnac, Jean-Daniel; Shuster, David; Herman, Frédéric; Giuditta Fellin, Maria

    2015-04-01

    The southern Alaska range presents an ideal setting to study the complex interactions between tectonics, climate and surface processes in landscape evolution. It exhibits active tectonics with the ongoing subduction/collision between Pacific and North America, and major active seismogenic reverse and strike-slip faults. The alpine landscape, rugged topography and the important ice-coverage at present reveal a strong glacial imprint associated with high erosion and sediment transport rates. Therefore, the relative importance of climatically-driven glacial erosion and tectonics for the observed late-exhumation history appears to be quite complex to decipher. Here, we first perform a formal inversion of an extensive bedrock thermochronological dataset from the literature to quantify the large-scale 20-Myr exhumation history over the entire southern Alaska. We show that almost half of the variability within the thermochronological record can be explained by modern annual precipitations spatial distribution, the residuals clearly evidencing localized exhumation along major tectonic structures of the frontal fold and thrust belt. Our results confirm high exhumation rates in the St Elias "syntaxis" and frontal zones for the last 0-2 Myr, where major ice fields and high precipitation rates likely sustained high exhumation rates; however the impact of late Cenozoic glaciations is difficult to constrain because of the low resolution on the exhumation history older than ~2 Myr. On the contrary, our inversion outcomes highlight that north of the Bagley Icefield the long-term exhumation has remained quite slow and continuous over the last ~20 Myr, with no late-stage signal of exhumation change since the onset of glaciations despite a clear glacial imprint on the landscape. We thus focus on the Granite Range (Wrangell-St Elias National Park, Alaska), an area presenting a strong glacial imprint but minor tectonic activity with only localized brittle deformation. We sampled four elevation profiles over an East-West transect for low-temperature thermochrometry. Apatite (U-Th-Sm)/He dating provides ages between ~10 and 30 Ma, in agreement with published data, and shows apparent low long-term exhumation rates (~0.1 km/Myr). 4He/3He thermochronometry on a subset of samples reveals a more complex exhumation history, with a significant increase in exhumation since ~6-4 Ma that we relate to the early onset of glaciations and associated glacial erosion processes. Our results, in agreement with offshore sediment records, thus confirm an early glacial activity and associated erosion response in Alaska, well before the onset of Pliocene-Pleistocene Northern Hemisphere glaciations.

  19. Petrogenesis of two Triassic A-type intrusions in the interior of South China and their implications for tectonic transition

    NASA Astrophysics Data System (ADS)

    Sun, Li-Qiang; Ling, Hong-Fei; Shen, Wei-Zhou; Wang, Kai-Xing; Huang, Guo-Long

    2017-07-01

    The evolution of the tectonic regime that was responsible for the Indosinian granitoids in the South China Block (SCB) is still controversial. Investigations on A-type granites can provide important information regarding this tectonic evolution. A detailed study that utilizes whole-rock elemental, Sr-Nd isotopic, in situ zircon U-Pb and Lu-Hf isotopic geochemistry is conducted on the Miantuwo biotite granite in northern Guangdong Province and the Pingtian biotite monzogranite in southern Jiangxi Province, South China. The new data indicate that both the Miantuwo and Pingtian granites were emplaced at 233 ± 2 Ma and show metaluminous to slightly peraluminous A-type granite affinity. The two granites are characterized by high amounts of rare earth elements (total REEs = 247 ppm-557 ppm and 251 ppm-342 ppm) and high field strength elements (Zr + Nb + Ce + Y = 325 ppm-605 ppm and 343 ppm-496 ppm) and high Ga/Al ratios (10,000 × Ga/Al = 2.50-2.98 and 2.62-2.70). Calculations from a zircon saturation thermometer and apatite saturation thermometer indicate that the magmatic temperatures were 800 °C-980 °C for both granites. Both the Miantuwo and Pingtian granites show relatively high initial 87Sr/86Sr ratios (0.7151-0.7185 and 0.7170-0.7189), low εNd(t) values (- 9.8 to - 8.6 and - 9.7 to - 9.1) and low to moderate zircon εHf(t) values (- 10.4 to - 6.6 and - 9.5 to - 4.6). Based on these data, we suggest that these two A-type granites were derived from the partial melting of existing mafic to intermediate rocks in the lower crust in response to the underplating and/or intraplating of mantle-derived magma. Our study on the Miantuwo and Pingtian granites, alongside previous studies on other Triassic A-type granites in South China, indicates an extensional tectonic environment during the Late Triassic in the interior of the Cathaysia Block. Alongside existing geological observations and the tectonic evolution in the SCB, we suggest that the interior of the SCB was dominated by a compressional tectonic environment during the Late Permian-Middle Triassic in response to the collisions between the SCB and ambient blocks, and then a tectonic transition from this compressional environment to a post-collisional extension environment began at approximately 233 Ma.

  20. Modified unified kinetic scheme for all flow regimes.

    PubMed

    Liu, Sha; Zhong, Chengwen

    2012-06-01

    A modified unified kinetic scheme for the prediction of fluid flow behaviors in all flow regimes is described. The time evolution of macrovariables at the cell interface is calculated with the idea that both free transport and collision mechanisms should be considered. The time evolution of macrovariables is obtained through the conservation constraints. The time evolution of local Maxwellian distribution is obtained directly through the one-to-one mapping from the evolution of macrovariables. These improvements provide more physical realities in flow behaviors and more accurate numerical results in all flow regimes especially in the complex transition flow regime. In addition, the improvement steps introduce no extra computational complexity.

  1. Brittle strength of basaltic rock masses with applications to Venus

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.

    1993-06-01

    Spacecraft images of surfaces with known or suspected basaltic composition on Venus (as well as on moon and Mars) indicate that these rocks have been deformed in the brittle regime to form faults and perhaps joints, in addition to folding and more distributed types of deformation. This paper presents results of detailed examinations and interpretations of Venus surface materials which show that the strengths of basaltic rocks on planetary surfaces and in the shallow subsurface are significantly different from strength values commonly used in tectonic modeling studies which assume properties of either intact rock samples or single planar shear surface.

  2. Geophysical-geological studies of possible extensions of the New Madrid Fault Zone. Annual report, 1982. Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinze, W.J.; Braile, L.W.; Keller, G.R.

    1983-05-01

    An integrated geophysical/geologic program is being conducted to evaluate the rift complex hypothesis as an explanation for the earthquake activity in the New Madrid Seismic Zone and its extensions, to refine our knowledge of the rift complex, and to investigate the possible northern extensions of the New Madrid Fault Zone, especially its possible connection to the Anna, Ohio seismogenic region. Drillhole basement lithologies are being investigated to aid in tectonic analysis and geophysical interpretation, particularly in the Anna, Ohio area. Gravity and magnetic modeling combined with limited seismic reflection studies in southwest Indiana are interpreted as confirming speculation that anmore » arm of the New Madrid Rift Complex extends northeasterly into Indiana. The geologic and geophysical evidence confirm that the basement lithology in the Anna, Ohio area is highly variable reflecting a complex geologic history. The data indicate that as many as three major Late Precambrian tectonic features intersect within the basement of the Anna area suggesting that the seismicity may be related to basement zones of weakness.« less

  3. Reconstruction of the strain pattern in the Somma-Vesuvius area: field and remote sensing analyses

    NASA Astrophysics Data System (ADS)

    D'Assisi Tramparulo, Francesco; Bisson, Marina; Isaia, Roberto; Tadini, Alessandro; Vitale, Stefano

    2016-04-01

    Keywords: Somma-Vesuvio, structural analysis, volcano-tectonics. This study present a detailed structural analysis of the Somma-Vesuvio (SV) volcanic complex that couples field data about faults, fractures and dykes with the analysis of lineaments identified from high-resolution (1m) DTM deriving from LiDAR data. Field data were collected within the SV caldera,in some quarries along the volcano flanks, and in few outcrops along the carbonate reliefs bounding the southern sector of the Campania plain. A total of 8,500 orientation data have been analyzed through rose diagrams and inversion methods while a total of more than 4,000 lineaments were identified after the analyses of multiple hill shades obtained by applying different pseudo-illuminations (from NW, NE, SE and SW) and appropriate filters to the original DTM. Results indicate a complex interaction between volcanic (local) and tectonic (regional) stress fields. The preliminary analysis of lineaments indicate that most of them are radial with respect to the center of the caldera, however a "tectonic" component is present, mainly represented by the NNE-SSW, ENE-WSW and the well-known Apenninic (NW-SE) direction.

  4. Hydrocarbon gas seeps of the convergent Hikurangi margin, North Island, New Zealand

    USGS Publications Warehouse

    Kvenvolden, K.A.; Pettinga, J.R.

    1989-01-01

    Two hydrocarbon gas seeps, located about 13 km apart, have distinctive molecular and isotopic compositions. These seeps occur within separate tectonic melange units of narrow parallel trending and structurally complex zones with incorporated upper Cretaceous and Palaeogene passive continental margin deposits which are now compressively deformed and imbricated along the convergent Hikurangi margin of North Island, New Zealand. At Brookby Station within the Coastal High, the seeping hydrocarbon gas has a methane/ethane ratio of 48 and ??13C and ??D values of methane of -45.7 and -188???, respectively (relative to the PDB and SMOW standards). Within the complex core of the Elsthorpe Anticline at Campbell Station seep, gas has a methane/ethane ratio of about 12000, and the methane has ??13C and ??D values of -37.4 and -170???, respectively. The source of the gases cannot be positively identified, but the gases probably originate from the thermal decomposition of organic matter in tectonically disturbed upper Cretaceous and/or lower Tertiary sedimentary rocks of passive margin affinity and reach the surface by migration along thrust faults associated with tectonic melange. The geochemical differences between the two gases may result from differences in burial depths of similar source sediment. ?? 1989.

  5. Structure of Franciscan complex in the Stanley Mountain window, Southern Coast ranges, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, R.J.

    1982-11-01

    Three sets of deformational events are recognized in the Franciscan Complex of the Stanley Mt. area, S. Coast ranges, California. First, in pre-melange time, shortening of the relatively cohesive sequence of interbedded graywacke and mudstone formed isoclinal folds and an axial-plane slaty cleavage. Second, fragmentation of the once cohesive sequence, probably over a considerable period of time, produced the configuration now considered a melange. Third, after the melange developed, the Franciscan Complex was deformed along with the surrounding upper Mesozoic Great Valley sequence into the Stanley Mt. antiform. In the cohesive Upper Cretaceous Carrie Creek Formation, macroscopic and mesoscopic foldsmore » have 2 predominant orientations. The less cohesive Franciscan Complex attempted to fold, as shown by the distribution of shear foliations on stereographic projections, but lack of lithologic continuity and slip along previously formed shear fractures prevents the recognition of macroscopic folds. Hence, in the Franciscan Complex of the Stanley Mt. window, several lines of evidence show that the melange structure is tectonic in origin, not just a tectonic imprint superimposed upon already chaotic rocks of sedimentary origin (olistostromes). 43 references.« less

  6. Revisit of Criteria and Evidence for the Tectonic Erosion vs Accretion in East Asian Margin

    NASA Astrophysics Data System (ADS)

    Kimura, G.; Hamahashi, M.

    2015-12-01

    Accretionary and erosive margins provide tectonic end-members in subduction zone and how these tectonic processes might be recorded and recognizable in ancient subduction complexes remains a challenging issue. Tectonic erosion includes sediment subduction and basal erosion along the plate boundary megathrust and drags down the crust of the upper plate into the mantle. Geologic evidence for the erosion is commonly based on lost geological tectono-stratigraphic data, i.e. gaps in the record and indirect phenomena such as subsidence of the forearc slopes. A topographically rough surface such as seamount has been suggested to work like an erosive saw carving the upper plate. Another mechanism of basal erosion has been suggested to be hydrofracturing of upper plate materials due to dehydration-induced fluid pressures, resulting in entrainment of upper plate materials into the basal décollement. Considering the interaction between the ~30 km thick crust of the upper plate and subducting oceanic plate, a subduction dip angle of ~15°, and convergent rate of ~10 cm/year, at least ~1 Ma of continuous basal erosion is necessary to induce clear subsidence of the forearc because the width of plate interface between the upper crustal and subducting plates is about 115 km (30/cos15°). In several examples of subduction zones, for example the Japan Trench and the Middle America Trench off Costa Rica, the subsidence of a few thousand metres of the forearc, combined with a lack of accretionary prism over a period of several million years, suggest that the erosive condition needs to be maintained for several to tens of million years.Such age gaps in the accretionary complex, however, do not automatically imply that tectonic erosion has taken place, as other interpretations such as no accretion, cessation of subduction, and/or later tectonic modification, are also possible. Recent drilling in the forearc of the Nankai Trough suggests that the accretion was ceased between ~12 Ma to ~8 Ma due to the transference of subduction from the Pacific Plate to the Philippine Sea Plate, as opposed to the continuous subduction of the Phillipine Sea Plate with subduction erosion.

  7. Geostatistical analysis of the power-law exponents of the size distribution of earthquakes, Quaternary faults and monogenetic volcanoes in the Central Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Mendoza-Ponce, A.; Perez Lopez, R.; Guardiola-Albert, C.; Garduño-Monroy, V. H.; Figueroa-Soto, Á.

    2017-12-01

    The Trans Mexican Volcanic Belt (TMVB) is related to the convergence between the Cocos and Rivera plates beneath the North American plate by the Middle America Trench (MAT). Moreover, there is also intraplate faulting within the TMVB, which is responsible of important earthquakes like the Acambay in 1912 (Mw 7.0) and Maravatío in 1979 (Mb 5.3). In this tectonic scheme, monogenetic volcanoes, active faulting and earthquakes configure a complex tectonic frame where different spatial anisotropy featured this activity. This complexity can be characterized by the power-law of the frequency-size distribution of the monogenetic volcanoes, the faults and the earthquakes. This power-law is determined by the b-value of the Gutenberg-Richter law in case of the earthquakes. The novelty of this work is the application of geostatistics techniques (variograms) for the analysis of spatial distribution of the b-values obtained from the size distribution of the basal diameter for monogenetic volcanoes in the Michoacán-Guanajuato Volcanic Field (bmv), surface area for faults in the Morelia-Acambay fault system (bf) and the seismicity in the Central TMVB (beq). Therefore, the anisotropy in each case was compared and a geometric tectonic model was proposed. The evaluation of the spatial distribution of the b-value maps gives us a general interpretation of the tectonic stress field and the seismic hazard in the zone. Hence, the beq-value map for the seismic catalog shows anomalously low and high values, reveling two different processes, one related to a typical tectonic rupture (low b-values) and the other one related to hydraulic fracturing (high b-values). The resulting bmv-map for the diameter basal cones indicates us the locations of the ages of the monogenetic volcanoes, giving important information about the volcanic hazard. High bmv-values are correlated with the presence of young cinder cones and an increasing probability of a new volcano. For the Morelia-Acambay fault system, the bf-map shows the strongest locations along the system where tectonic stress accumulates.

  8. Generation and Initiation of Plate Tectonics on Terrestrail Planets

    NASA Astrophysics Data System (ADS)

    Foley, Bradford J.

    The question of why plate tectonics occurs on Earth, but not on the other planets of our solar system, is one of the most fundamental issues in geophysics and planetary science. I study this problem using numerical simulations of mantle convection with a damage-grainsize feedback (grain-damage) to constrain the conditions necessary for plate tectonics to occur on a terrestrial planet, and how plate tectonics initiates. In Chapter 2, I use numerical simulations to determine how large a viscosity ratio, between pristine lithosphere and mantle, damage can offset to allow mobile (plate-like) convection. I then use the numerical results to formulate a new scaling law to describe the boundary between stagnant lid and plate-like regimes of mantle convection. I hypothesize that damage must reduce the viscosity of shear zones in the lithosphere to a critical value, equivalent to the underlying mantle viscosity, in order for plate tectonics to occur, and demonstrate that a scaling law based on this hypothesis reproduces the numerical results. For the Earth, damage is efficient in the lithosphere and provides a viable mechanism for the operation of plate tectonics. I apply my theory to super-Earths and map out the transition between plate-like and stagnant lid convection with a "planetary plate-tectonic phase" diagram in planet size-surface temperature space. Both size and surface temperature are important, with plate tectonics being favored for larger, cooler planets. This gives a natural explanation for Earth, Venus, and Mars, and implies that plate tectonics on exoplanets should correlate with size, incident solar radiation, and atmospheric composition. In Chapters 3 and 4 I focus on the initiation of plate tectonics. In Chapter 3, I develop detailed scaling laws describing plate speed and heat flow for mantle convection with grain-damage across a wide parameter range, with the intention of applying these scaling laws to the early Earth in Chapter 4. Convection with grain-damage scales differently than Newtonian convection; whereas the Nusselt number, Nu, typically scales with the Rayleigh number, Ra, to the 1/3 power, for grain-damage this exponent is larger because increasing Ra also enhances damage. In addition, Nu and plate velocity are also functions of the damage to healing ratio, (D/H); increasing D/H increases Nu (or plate speed) because more damage leads to more vigorous convection. In Chapter 4, I demonstrate that subduction can be sustained on the early Earth, that the style of subduction at this time was different than modern day plate tectonics, and that such subduction (or proto-subduction) can initiate rapidly after magma ocean solidification. The scaling laws from Chapter 3 show that, though either higher interior mantle temperatures or higher surface temperatures lead to slower plates, proto-subduction, with plate speeds of at least 1.5 cm/yr, can still be maintained in the Hadean, even if the primordial atmosphere was CO2 rich. Furthermore, when the interior mantle temperature is high (e.g. above ≈ 2000 K), the mode of subduction switches to a "sluggish subduction" style, where downwellings are more drip-like than slab-like and plate boundaries are more diffuse. Numerical models of post-magma ocean mantle convection, and a scaling analysis based on the results of these models, demonstrate that proto-plate tectonics likely initiates within ˜100 Myrs of magma ocean solidification. Combined with the conclusion that proto-subduction could be maintained on the early Earth, my results are consistent with evidence for Hadean subduction from zircon data, and indicate that the subduction inferred from zircons may have been distinct from modern day plate tectonics. After the initiation of proto-subduction, which occurs as a rapid overturn of the whole lithosphere, mobile lid convection takes place as non-plate tectonic "sluggish subduction" As both the mantle interior and climate cool, modern style plate tectonics develops. The rapid, initial subduction event may help hasten the onset of modern style plate tectonics by drawing excess CO 2 out of the atmosphere and cooling the climate.

  9. Inheritance, Variscan tectonometamorphic evolution and Permian to Mesozoic rejuvenations in the metamorphic basement complexes of the Romanian Carpathians revealed by monazite microprobe geochronology

    NASA Astrophysics Data System (ADS)

    Săbău, Gavril; Negulescu, Elena

    2014-05-01

    Monazite U-Th-Pb chemical dating reaches an acceptable compromise between precision and accuracy on one side, and spatial resolution and textural constraints on the other side. Thus it has a powerful potential in testing the coherence of individual metamorphic basement units, and enabling correlations among them. Yet, sensitivity and specificity issues in monazite response to thermotectonic events, especially in the case of superposed effects, remain still unclear. Monazite dating at informative to detailed scale in the main metamorphic basement units of the Carpathians resulted in complex age spectra. In the main, the spectra are dominated by the most pervasive thermal and structural overprint, as checked against independent geochronological data. Post-peak age resetting is mostly present, but statistically subordinate. Resetting in case of superposed events is correlated with the degree of textural and paragenetic overprinting, inheritances being always indicated by more or less well-defined age clusters. The lack of relict ages correlating with prograde structural and porphyroblast zonation patterns is indicative for juvenile formations. Age data distribution in the Carpathians allowed distinction of pre-Variscan events, syn-metamorphic Variscan tectonic stacking of juvenile and reworked basement, post-Variscan differential tectonic uplift, as well as prograde metamorphic units ranging down to Upper Cretaceous ages. In the South Carpathians, the Alpine Danubian domain consists of several Variscan and Alpine thrust sheets containing a metamorphic complex dominated by Upper Proterozoic to Lower Cambrian metamorphic and magmatic ages (Lainici-Păiuş), and several complexes with metamorphic overprints ranging from Carboniferous to Lower Permian. Any correlation among these units, as well as geotectonic models placing a Lower Paleozoic oceanic domain between pre-existing Lainici-Păiuş and Drăgşan terranes are precluded by the age data. Other basement of the South Carpathians contain lower Paleozoic or older units intruded by Ordovician granitoids, imbricated with juvenile Variscan slivers, the structural sequence differing in individual basement complexes. So, in the Leaota Massif the lowermost term of the sequence is prograde Variscan, tectonically overlain by reworked lower Paleozoic gneisses, supporting thrust sheets with very low- to low-grade Variscan schists. In the Făgăraş Massif a lower Paleozoic (Cumpăna) complex bearing a strong Variscan overprint, straddles Variscan juvenile rocks, and the lowermost visible structural level is assumed by upper Carboniferous to Permian juvenile medium-grade metamorphic schists. In the Lotru Metamorphic Suite of the Alpine Getic Nappe, the Variscan stacking is overprinted by post-orogenic differential uplift, documented by the correlation among younging ages, structural and metamorphic low-pressure overprints, recording often higher metamorphic temperatures. The most spectacular structure is Upper Jurassic in age, contains high-grade metamorphic rocks and peraluminous anatectic granitoids, is outlined by a deformed boundary evolving from ductile to brittle regime during cooling, and induces a thermal overprint in the neighbouring rocks. In the basement units thrust over the Getic Nappe, the Sibişel unit yielded Permian prograde peak metamorphic ages and Triassic post-peak overprints, while an adjacent gneissic unit (Laz) delivered an exclusively Cretaceous age pattern. Unexpectedly young metamorphic ages resulted also for the East Carpathians and the Apuseni Mountains. While most of the ages obtained so far correspond to Variscan retrogression of older basement units, the lowermost structural unit of the infra-Bucovinian nappe system in the East Carpathians yielded Upper Cretaceous metamorphic ages in apparently monometamorphic medium-grade schists. In the Apuseni Mountains, schists of the Baia de Arieş Unit display an Upper Jurassic age spectrum, corresponding to a clearly prograde medium-grade event. The ages recorded not only question some of the currently accepted correlations among basement units, but urge to reconsideration of the way in which the basement-cover relationships are interpreted and extrapolated.

  10. Management of complex dynamical systems

    NASA Astrophysics Data System (ADS)

    MacKay, R. S.

    2018-02-01

    Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.

  11. Cathodoluminescence, fluid inclusion and stable C-O isotope study of tectonic breccias from thrusting plane of a thin-skinned calcareous nappe

    NASA Astrophysics Data System (ADS)

    Milovský, Rastislav; van den Kerkhof, Alfons; Hoefs, Jochen; Hurai, Vratislav; Prochaska, Walter

    2012-03-01

    Basal hydraulic breccias of alpine thin-skinned Muráň nappe were investigated by means of cathodoluminescence petrography, stable isotope geochemistry and fluid inclusions analysis. Our study reveals an unusual dynamic fluid regime along basal thrust plane during final episode of the nappe emplacement over its metamorphic substratum. Basal thrusting fluids enriched in 18O, silica, alumina, alkalies and phosphates were generated in the underlying metamorphosed basement at epizonal conditions corresponding to the temperatures of 400-450°C. The fluids fluxed the tectonized nappe base, leached evaporite-bearing formations in hangingwall, whereby becoming oversaturated with sulphates and chlorides. The fluids further modified their composition by dedolomitization and isotopic exchange with the host carbonatic cataclasites. Newly formed mineral assemblage of quartz, phlogopite, albite, potassium feldspar, apatite, dravite tourmaline and anhydrite precipitated from these fluids on cooling down to 180-200°C. Finally, the cataclastic mush was cemented by calcite at ambient anchizonal conditions. Recurrent fluid injections as described above probably enhanced the final motion of the Muráň nappe.

  12. Lithological Influences on Occurrence of High-Fluoride Waters in The Central Kenya Rift

    NASA Astrophysics Data System (ADS)

    Olaka, L. A.; Musolff, A.; Mulch, A.; Olago, D.; Odada, E. O.

    2013-12-01

    Within the East African rift, groundwater recharge results from the complex interplay of geology, land cover, geomorphology, climate and on going volcano-tectonic processes across a broad range of spatial and temporal scales. The interrelationships between these factors create complex patterns of water availability, reliability and quality. The hydrochemical evolution of the waters is further complex due to the different climatic regimes and geothermal processes going on in this area. High fluoridic waters within the rift have been reported by few studies, while dental fluorosis is high among the inhabitants of the rift. The natural sources of fluoride in waters can be from weathering of fluorine bearing minerals in rocks, volcanic or fumarolic activities. Fluoride concentration in water depends on a number of factors including pH, temperature, time of water-rock formation contact and geochemical processes. Knowledge of the sources and dispersion of fluoride in both surface and groundwaters within the central Kenya rift and seasonal variations between wet and dry seasons is still poor. The Central Kenya rift is marked by active tectonics, volcanic activity and fumarolic activity, the rocks are majorly volcanics: rhyolites, tuffs, basalts, phonolites, ashes and agglomerates some are highly fractured. Major NW-SE faults bound the rift escarpment while the rift floor is marked by N-S striking faults We combine petrographic, hydrochemistry and structural information to determine the sources and enrichment pathways of high fluoridic waters within the Naivasha catchment. A total of 120 water samples for both the dry season (January-February2012) and after wet season (June-July 2013) from springs, rivers, lakes, hand dug wells, fumaroles and boreholes within the Naivasha catchment are collected and analysed for fluoride, physicochemical parameters and stable isotopes (δ2 H, δ18 O) in order to determine the origin and evolution of the waters. Additionally, 30 soil and rock samples were also collected and analysed for fluoride, and rock samples were subjected to petrographic investigations and X-ray diffraction. The fluoride levels in surface and groundwater for the dry season range from 0.019 - 50.14 mg/L, on average above the WHO permissible limit. The high fluoride occurs both in the lake and groundwater. Preliminary petrographic studies show considerable fluoride in micas. The study is on-going and plans to present the relative abundances of fluoride in the lithology as the sources and the fluoride enrichment pathways of the groundwater within the Central Kenya rift.

  13. Tethys and the evolution in Afghanistan: tectonics and mineral resources

    NASA Astrophysics Data System (ADS)

    Okaya, N.; Onishi, C. T.; Mooney, W. D.

    2009-12-01

    The tectonic history and mineral resources of Afghanistan are related to the closing of the Paleo-Tethys Ocean and the opening of the Neo-Tethys Ocean. As part of this process, oceanic sediments and continental fragments were accreted onto northern Afghanistan during the Mesozoic Cimmerian orogeny. Deposits in the Paleo-Tethys Ocean iare presently represented by a thick sequence of Paleozoic sedimentary rocks within the Tajik/Turan block, part of the Eurasian continent in northern Afghanistan. The accreted micro-continents of the Cimmerian orogeny include: (1) the Farah block, (2) the Helmand block and (3) the exotic Kabul block. Later, during the Cretaceous, the East Nuristan island arc and the intra-oceanic island arc of Kohistan were sutured. Major faults in Afghanistan include: (1) the Herat fault, an E-W suture zone between the Eurasia continent and the terrains of the Cimmerian orogeny; (2) the N-S Punjao suture located between the Farah and Helmand blocks; and (3) the NE-SW oriented Chaman fault, part of a transpressional plate boundary located near the border with Pakistan. Such a complex blend of geology and tectonics gives host to abundant mineral resources. We summarize the tectonic evolution of Afghanistan in a series of lithospheric cross-sections, beginning at about 400 Ma., and identify the mineral resources in the context of the regional tectonics.

  14. Fluid evolution of Au-Cu zones in Um Balad area, North Eastern Desert of Egypt: Implications from mineral chemistry and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, Mohamed; Salem, Ibrahim; Slobodník, Marek; Ragab, Ahmed

    2018-07-01

    Scanning electron microscope (SEM), Electron microprobe (EMPA) and fluid inclusion studies of the ore body, as well as geochemical analyses of country rocks were performed to determine the nature and characteristics of the mineralizing fluid responsible for Au-Cu deposits in Um Balad area, Northern Eastern Desert of Egypt. The Um Balad Au-Cu deposits are confined to well developed-quartz veins and veinlets cutting through the hosting country rocks. Petrographic and geochemical investigations of the hosting rocks distinguished between two main rock units; 1) metagabbro-diorite rocks with tholeiitic nature derived in island arc/continental margin tectonic regime, and 2) granodiorite rocks formed from calc-alkaline magma in continental margin regime. Wallrock alterations are represented by propylitic and argillic types. The mineralized quartz veins are striking in NE-SW direction and dipping between (35°-45°) in SE direction, other mineralized mafic dykes enriched with auriferous quartz veinlets are trending NE-SW and dipping 70°/SE. The main ore minerals are represented by gold, chalcopyrite, pyrite, sphalerite, malachite, covellite and goethite. While, geffroyite, cuprite, chrysocolla, pseudomalachite, britholite, wolframite, scheelite, hematite and rutile are detected as minor constituents. Fluid inclusions microthermometry and isochore calculations combined with chlorite geothermometry revealed that the Um Balad deposits were formed at temperature ranging from 305 °C to 325 °C and pressure between (100-500 bar). The mineralization had been developed in the shallow levels, beneath the water table at depth of 350-1760 m, rather than common mesothermal vein-type deposits in Egypt. Magmatic water have been suggested as the main source for the mineralized fluid. The transportation of the gold metal seems to be happen as bisulfide complexes in moderately acidic environment. The deposition was resulted from combination of changes in physico-chemical parameters, temperature and pressure plus the instability of the reduced sulfur complexes. A contamination with metamorphic and/or meteoric water was also proposed that has strong influence during the depositional process.

  15. Interactions of tectonic, igneous, and hydraulic processes in the North Tharsis Region of Mars

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.; Plescia, J. B.

    1991-01-01

    Recent work on the north Tharsis of Mars has revealed a complex geologic history involving volcanism, tectonism, flooding, and mass wasting. Our detailed photogeologic analysis of this region found many previously unreported volcanic vents, volcaniclastic flows, irregular cracks, and minor pit chains; additional evidence that volcanic tectonic processes dominated this region throughout Martian geologic time; and the local involvement of these processes with surface and near surface water. Also, photoclinometric profiles were obtained within the region of troughs, simple grabens, and pit chains, as well as average spacings of pits along pit chains. These data were used together with techniques to estimate depths of crustal mechanical discontinuities that may have controlled the development of these features. In turn, such discontinuities may be controlled by stratigraphy, presence of water or ice, or chemical cementation.

  16. Survey explores active tectonics in northeastern Caribbean

    USGS Publications Warehouse

    Carbó, A.; Córdoba, D.; Muñoz-Martín, A.; Granja, J.L.; Martín-Dávila, J.; Pazos, A.; Catalán, M.; Gómez, M.; ten Brink, Uri S.; von Hillebrandt, Christa; Payero, J.

    2005-01-01

    There is renewed interest in studying the active and complex northeastern Caribbean plate boundary to better understand subduction zone processes and for earthquake and tsunami hazard assessments [e.g., ten Brink and Lin, 2004; ten Brink et al., 2004; Grindlay et al., 2005]. To study the active tectonics of this plate boundary, the GEOPRICO-DO (Geological, Puerto Rico-Dominican) marine geophysical cruise, carried out between 28 March and 17 April 2005 (Figure 1), studied the active tectonics of this plate boundary.Initial findings from the cruise have revealed a large underwater landslide, and active faults on the seafloor (Figures 2a and 2c). These findings indicate that the islands within this region face a high risk from tsunami hazards, and that local governments should be alerted in order to develop and coordinate possible mitigation strategies.

  17. Complex Tectonism on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Complex tectonism is evident in these images of Ganymede's surface. The solid state imaging camera on NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. The 80 kilometer (50 mile) wide lens-shaped feature in the center of the image is located at 32 degrees latitude and 188 degrees longitude along the border of a region of ancient dark terrain known as Marius Regio, and is near an area of younger bright terrain named Nippur Sulcus. The tectonism that created the structures in the bright terrain nearby has strongly affected the local dark terrain to form unusual structures such as the one shown here. The lens-like appearance of this feature is probably due to shearing of the surface, where areas have slid past each other and also rotated slightly. Note that in several places in these images, especially around the border of the lens-shaped feature, bright ridges appear to turn into dark grooves. Analysis of the geologic structures in areas like this are helping scientists to understand the complex tectonic history of Ganymede.

    North is to the top-left of the image, and the sun illuminates the surface from the southeast. The image covers an area about 63 kilometers (39 miles) by 120 kilometers (75 miles) across at a resolution of 188 meters (627 feet) per picture element. The images were taken on September 6, 1996 at a range of 18,522 kilometers (11,576 miles) by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  18. An Integrated Geophysical and Tectonic Study of the Structure and Evolution of the Crust in the Snake River Plain Region, Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Khatiwada, M.

    2016-12-01

    The Snake River Plain region in the Pacific Northwest of North America has been the target of a number of recent studies that have revealed further complexities in its structure and tectonic evolution. Based on surface morphology and Late Cenozoic volcanic activity, the Snake River Plain consists of an eastern and western arm (ESRP and WSRP) that are similar in many respects but also quite different in other respects. Thus, its origin, evolution, structural complexities, the role of extension and magmatism in its formation, and the tectonic drivers are still subjects of debate. Numerous seismic studies have specifically focused on the structure of the ESRP and Yellowstone area. However, crustal-scale studies of the WSRP are limited. We added new gravity data to the existing coverage in the WSRP region and undertook a regional, integrated analysis approach that included magnetic, seismic reflection and refraction profiling, receiver function results, geological and geospatial data, and interpreted well logs. Our integrated geophysical modeling focused on the structure of the WSRP. We generated two crustal models across it at locations where the most existing geophysical and geological constraints were available. We observed both differences and similarities in the structure of the WSRP and ESRP. Although, the shallow crustal structures are different, a mid-crustal mafic intrusion is a major source of the high gravity anomaly values. Within the context of recent studies in the surrounding region, the intersection of the two arms of the Snake River Plain emerges as a major element of a complex tectonic intersection that includes the High Lava Plains of eastern Oregon, the Northern Nevada Rift, a southwestern extension of the ESRP into northern Nevada, as well as, faulting and volcanism extending northwestward to connect with the Columbia River Basalts region.

  19. Emplacement of the La Peña alkaline igneous complex, Mendoza, Argentina (33° S): Implications for the early Miocene tectonic regime in the retroarc of the Andes

    NASA Astrophysics Data System (ADS)

    Pagano, D. S.; Galliski, M. A.; Márquez-Zavalía, M. F.

    2014-03-01

    The La Peña alkaline complex (LPC) of Miocene age (18-19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400-2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW-SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N-S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R‧), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW-SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by dikes cross-cutting the clinopyroxenite, (3) a malignite facies that causes a small breccia in the clinopyroxenite, (4) a central syenite facies that develops breccias at the contact with the clinopyroxenite and, finally, (5) porphyry necks and a system of radial dikes intruding all units. At the moment of the emplacement different mechanisms would have acted, they summarized in: 1) opening of discontinuities synchronous to the magma circulation as the principal mechanism for formation of dikes and conduits; 2) stoping processes, that play an important role in the development of the breccia zone and enabling an efficient transference of material during the emplacement of the syenitic magma and 3) shear-related deformation (regional stress), affected the internal fabric of the facies, causing intracrystalline deformation and submagmatic flow, which is very evident in the central syenite intrusive. The kinematic analysis of shear planes allows proposing that emplacement of the LPC took place in a transtensive regime, which would have occurred in the back-arc of the Andes orogen, during a long period spanning from Miocene to the present, of the compressive deformation responsible, westward and at the same latitude, for the development of the Aconcagua fold and thrust belt.

  20. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India

    NASA Astrophysics Data System (ADS)

    Nair, Nisha; Pandey, Dhananjai K.

    2018-02-01

    Interpretation of multichannel seismic reflection data along the Mumbai Offshore Basin (MOB) revealed the tectonic processes that led to the development of sedimentary basins during Cenozoic evolution. Structural interpretation along three selected MCS profiles from MOB revealed seven major sedimentary sequences (∼3.0 s TWT, thick) and the associated complex fault patterns. These stratigraphic sequences are interpreted to host detritus of syn- to post rift events during rift-drift process. The acoustic basement appeared to be faulted with interspaced intrusive bodies. The sections also depicted the presence of slumping of sediments, subsidence, marginal basins, rollover anticlines, mud diapirs etc accompanied by normal to thrust faults related to recent tectonics. Presence of upthrusts in the slope region marks the locations of local compression during collision. Forward gravity modeling constrained with results from seismic and drill results, revealed that the crustal structure beneath the MOB has undergone an extensional type tectonics intruded with intrusive bodies. Results from the seismo-gravity modeling in association with litholog data from drilled wells from the western continental margin of India (WCMI) are presented here.

  1. Mimas: Tectonic structure and geologic history

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Mimas, the innermost of the major saturnian satellites, occupies an important place in comparative studies of icy satellites. It is the smallest icy satellite known to have a mostly spherical shape. Smaller icy objects like Hyperion and Puck are generally irregular in shape, while larger ones like Miranda and Enceladus are spherical. Thus Mimas is near the diameter where the combination of increasing surface gravity and internal heating begin to have a significant effect on global structure. The nature and extent of endogenic surface features provide important constraints on the interior structure and history of this transitional body. The major landforms on Mimas are impact craters. Mimas has one of the most heavily cratered surfaces in the solar system. The most prominent single feature on Mimas is Herschel, an unrelaxed complex crater 130 km in diameter. The only other recognized landforms on Mimas are tectonic grooves and lineaments. Groove locations were mapped by Schenk, but without analysis of groove structures or superposition relationships. Mimas' tectonic structures are remapped here in more detail than previously has been done, as part of a general study of tectonic features on icy satellites.

  2. Tectonic map of Indonesia: A progress report

    USGS Publications Warehouse

    Hamilton, Warren Bell

    1970-01-01

    Orogeny, volcanism, and seismicity are now intensely active in Indonesia. Many Dutch tectonists--Brouwer, Umbgrove, van Bemifielen, Smit4Sibinga, Vening Meinesz, Westerveld, and others--recognized that this complex cluster of islands represents an early stage in the evolution of orogenic belts. Not until Indonesia is understood can we comprehend the Alps. This report summarizes some aspects of work to date on the Tectonic Map of Indonesia. The preparation of this map is a joint project of the Geological Survey of Indonesia and the United States Geological Survey, sponsored by the Government of Indonesia and the United States Agency for International Development. The Tectonic Map of Indonesia will be published at a scale of 1:5,000,000. Adjacent regions in other countries will be included to provide a broader context. The map limits presently envisaged are the parallels of 12° N. and 15° S., and the meridians of 91° and 148° E. Tectonic features will be shown in many colors and patterns. Bathymetry is being newly compiled, and will be shown with contours and shades of blue. Figure 1 shows the islands of Indonesia.

  3. The Hissar–Alay and the Pamirs: Deep-Seated Structure, Geodynamic Model, and Experimental Evidence

    NASA Astrophysics Data System (ADS)

    Leonov, M. G.; Rybin, A. K.; Batalev, V. Yu.; Matyukov, V. E.; Shchelochkov, G. G.

    2018-03-01

    The structural and geodynamic features of the Pamirs and the Hissar-Alay have been revealed based on geological and geophysical evidence supplemented by experimental data. It has been shown that both the Pamirs and the Hissar-Alay are geodynamic systems, the formation of which is related to interference of two geodynamic regimes: (i) global orogeny covering extensive territories of Eurasia and determining their similarity and (ii) regional regimes differing for the Pamirs and the Alay, which act independently within Central Asian and Apline-Himalayan mobile belts, respectively. The Pamirs do not act as an indentor during the formation of structure of the Hissar-Alay and areas to the north. It is stated that the Pamir-Alay segment of Asia is a reflection of the geodynamic countermotion setting (3D flow of mountain masses) of several distinct segments of the continental lithosphere, while the Pamirs are an intracontinental subduction domain at the surface, which represents a special tectonic-geodynamic type of structures.

  4. Drainage Evolution during the Uplift of the Central Anatolia Plateau

    NASA Astrophysics Data System (ADS)

    Brocard, G. Y.; Meijers, M. J.; Willenbring, J. K.; Kaymakci, N.; Whitney, D. L.

    2015-12-01

    The Central Anatolian plateau formed in the past 8-6 Myrs, associated to a change in tectonic regime, from contraction to extensional escape tectonics. We have examined the response of the river drainage of Central Anatolia to the rise of the plateau uplift and to the formation of the Anatolian microplate, tracking changes in drainage organization. Anatolia experienced widespread rock uplift and erosion in the Late Oligocene, generating a narrow, steep, and quickly eroding mountain range above the future southern plateau margin. A regionally widespread marine transgression resulted from wholesale foundering of this orogen in Early Miocene time. Widespread planation surfaces overlapped by Miocene marine carbonates bevel this topography, indicating that relief had been reduced to a low elevation pedimented landscape by the end of the Middle Miocene. Plateau uplift initiated around 11 My ago in Eastern Anatolia; it was echoed in Central Anatolia by a short-lived phase of contraction and localized uplifts that predate escape tectonics and mark the beginning of the current topographic differentiation of the southern plateau margin. The through-going drainage network inherited disintegrated, and a vast zone of inward drainage formed at the location of the future plateau interior. Between 8 and 6 My, the southern plateau margin (i.e. the Tauride Mountains) emerged. δ18O analyses on lacustrine and pedogenic carbonates show that the southern plateau margin, if not the plateau interior, had experienced enough uplift by 5 My to generate a substantial rain shadow over the plateau interior. Being disconnected from the regional base level from the start, the plateau interior was able to rise without experiencing substantial dissection. It reconnected to all surrounding sediment sinks (Mediterranean Sea, Black Sea and Persian Gulf) over the past 5 My. We discuss the mechanisms that have driven this reconnection. Bottom-up processes of integration such as drainage divide retreat did not produce any major changes. Top-down processes such as lake overflow and avulsion achieved most of the re-integration. They result from more positive precipitation/evaporation balances, either due to elevation change during plateau uplift or due to tectonic fragmentation of depocenters during the development of escape tectonics.

  5. Looking Backwards in Time to the Early Earth Using the Lens of Stable Isotope Geodynamic Cycles

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.

    2016-12-01

    The stable isotope ratios of hydrogen, carbon, oxygen and sulfur provide of means of tracing interactions between the major reservoirs of the Earth. The oceans and the dichotomy between continental and oceanic crust are key differences between the Earth and other terrestrial bodies. The existence of plate tectonics and the recognition that no primary crust survives at the Earth's surface sets this planet apart from the smaller terrestrial bodies. The thermostatic control of carbonate-silicate cycle works because of the hydrosphere and plate tectonics. Additionally, the contrast between the carbon isotope ratios for reduced and oxidized species appear to also be invariant over geologic time with evidence of old recycled carbon in the form of diamond inclusions in mantle-derived igneous rocks. Lessons from comparative planetology suggest that early differentiation of the Earth would have likely resulted in the rapid formation of the oceans, a water world over the primary crust. Plate tectonics provides a mechanism for buffering the oxygen isotope fractionation between the oceans and the mantle. The set point for hydrosphere's oxygen isotope composition is a result of the geometry of mid-ocean ridge accretion that is stable over an order magnitude change in spreading rates with time constants much younger shorter than the age of the Earth. The recognition that the "normal" ranges for hydrogen isotope ratios of igneous, metamorphic and sedimentary rocks of any age generally overlap with similar ranges, with the exception of rocks that have interacted with D- and 18O-depleted meteoric waters (generally at high latitudes), is an argument for a constant volume ocean over geologic time. Plate tectonics with a constant volume ocean constrains the thickness of the continental crust because of the rapidity of the mechanical weathering cycle (characteristic times of 10's of millions of years; freeboard of the continents argument). In a plate tectonic regime, chemical weathering and the subduction of abyssal plain sediments represents true continental recycling and characteristic times for the age of the continents are consistent with modern chemical weathering rates. Two records, zircon and quartz oxygen isotopes, may be recording the transition from the water-world to the modern earth.

  6. Influence of heat-piping on the initiation and evolution of plate tectonics

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Baumeister, P. A.

    2017-12-01

    The onset of plate tectonics on Earth is believed to be caused by local weakening of the lithosphere. If the convective stress locally exceeds a critical value, a plate-breaking event may occur and initiate plate tectonics. Heat-piping is a heat transport process in which a large amount of melt produced at depth migrates either to the surface (extrusive volcanism) or the base of the crust and lithosphere (intrusive volcanism) due to positive buoyancy and over-pressure in the melting region. As a result of melt being extruded and compacted at the surface or within the crust and lithosphere, cold, near surface material is advected downwards. This mechanism, which effectively cools the mantle, has been proposed to dominate the early phases of the Earth's evolution preventing the onset of plate tectonics by leveling the slope of the lithosphere (e.g. Moore & Webb, 2013, Kankanamge & Moore, 2016). This in turn prevents the formation of lithospheric undulations that are necessary to locally build up sufficient stress to initiate a plate-breaking event. In this work we explore the effects of both extrusive and intrusive heat-piping on the critical yield stress needed to start a plate-breaking event and maintain a regime of surface mobilization over long timescales. We use a two-dimensional cylindrical model of compressible thermal convection. The melt generated at depth is extracted instantaneously according to a defined ratio between extrusive and intrusive volcanism. Extrusive melt is deposited at the surface, whereas intrusive melt is assumed to migrate to a depth dependent on the pressure distribution in the column above the melt region. Considering heat piping tends to increase the episodicity in the mobilization of the surface due to the additional local cooling caused by melt extraction but does not affect significantly the critical yield stress necessary to induce lid failure. Our models indicate that the evolution of plate mobility is a stochastic process, strongly dependent on the choice of the initial conditions. Heat-piping does not seem to be a controlling factor for the onset of plate tectonics.

  7. More Olympica Fossae

    NASA Image and Video Library

    2016-02-22

    This image from NASA 2001 Mars Odyssey spacecraft shows a different part of Olympica Fossae. In this region lava channels dominate. The complex interaction of volcanic and tectonic processes is illustrated by the central feature in this image.

  8. Global evaluation of erosion rates in relation to tectonics

    NASA Astrophysics Data System (ADS)

    Hecht, Hagar; Oguchi, Takashi

    2017-12-01

    Understanding the mechanisms and controlling factors of erosion rates is essential in order to sufficiently comprehend bigger processes such as landscape evolution. For decades, scientists have been researching erosion rates where one of the main objectives was to find the controlling factors. A variety of parameters have been suggested ranging from climate-related, basin morphometry and the tectonic setting of an area. This study focuses on the latter. We use previously published erosion rate data obtained mainly using 10Be and sediment yield and sediment yield data published by the United States Geological Survey. We correlate these data to tectonic-related factors, i.e., distance to tectonic plate boundary, peak ground acceleration ( PGA), and fault distribution. We also examine the relationship between erosion rate and mean basin slope and find significant correlations of erosion rates with distance to tectonic plate boundary, PGA, and slope. The data are binned into high, medium, and low values of each of these parameters and grouped in all combinations. We find that groups with a combination of high PGA (> 0.2.86 g) and long distance (> 1118.69 km) or low PGA (< 0.68 g) and short distance (< 94.34 km) are almost inexistent suggesting a strong coupling between PGA and distance to tectonic plate boundary. Groups with low erosion rates include long distance and/or low PGA, and groups with high erosion rates include neither of these. These observations indicate that tectonics plays a major role in determining erosion rates, which is partly ascribable to steeper slopes produced by active crustal movements. However, our results show no apparent correlation of slope with erosion rates, pointing to problems with using mean basin-wide slope as a slope indicator because it does not represent the complex slope distribution within a basin.

  9. A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin

    USGS Publications Warehouse

    Poag, C.W.; Sevon, W.D.

    1989-01-01

    The complex interplay between source-terrain uplift, basin subsidence, paleoclimatic shifts, and sea-level change, left an extensive sedimentary record in the contiguous offshore basins of the U.S. middle Atlantic margin (Salisbury Embayment, Baltimore Canyon Trough, and Hatteras Basin). Isopach maps of 23 postrift (Lower Jurassic to Quaternary) a allostratigraphic units, coupled with a revised stratigraphic framework, reveal that tectonism, by regulating sediment supply (accumulation rate), dominated the interplay of forcing mechanisms. Tectonic pulses are evidenced by abruptly accelerated sediment accumulation, marked latitudinal shifts in the location of depocenters, and regional changes in lithofacies. Relatively rapid tectonic subsidence during the Early and Middle Jurassic history of the basins may have enhanced sediment accumulation rates. Beginning in the Late Jurassic, however, subsidence rates decreased significantly, though occasional short pulses of subsidence may have effected relative sea-level rises. Sea-level change heavily influenced the distribution and redistribution of sediments one they reached the basins, and paleoclimate regulated the relative abundance of carbonates and evaporites in the basins. We conclude that source terrains of the central Appalachian Highlands were tectonically uplifted, intensely weathered, and rapidly eroded three times since the Late Triassic: (1) Early to Middle Jurassic (Aalenian to Callovian); (2) mid-Early Cretaceous (Barremian); and (3) Late Cenozoic (Middle Miocene). Intervals of tectonic quiescence following these three tectonic pulses provided conditions suitable for the formation of regional erosion surfaces, geomorphic features commonly reported to characterize the central Appalachian Highlands. This series of three, irregularly spaced, tectonic/quiescent cycles does not, however, match the traditional four-cycle concept of post-Triassic Appalachian "peneplanation". ?? 1989.

  10. Plate tectonics, damage and inheritance.

    PubMed

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  11. Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Ji, C.; Helmberger, D.V.; Song, T.-R.A.; Ma, K.-F.; Wald, D.J.

    2001-01-01

    We report on the fault complexity of the large (Mw = 7.6) Chi-Chi earthquake obtained by inverting densely and well-distributed static measurements consisting of 119 GPS and 23 doubly integrated strong motion records. We show that the slip of the Chi-Chi earthquake was concentrated on the surface of a "wedge shaped" block. The inferred geometric complexity explains the difference between the strike of the fault plane determined by long period seismic data and surface break observations. When combined with other geophysical and geological observations, the result provides a unique snapshot of tectonic deformation taking place in the form of very large (>10m) displacements of a massive wedge-shaped crustal block which may relate to the changeover from over-thrusting to subducting motion between the Philippine Sea and the Eurasian plates.

  12. Bark beetles (Scolytidae, Coleoptera) in Slovenia with special regard to species in burnt pine forests

    Treesearch

    Maja Jurc

    2003-01-01

    Ecological conditions in Slovenia are very complex and heterogeneous due to the influence and interaction among the various climatic, tectonic, edaphic, orographic, lithologic - transitional (ecotonic) regions. Slovenia is a meeting-point of the Alps, the Mediterranean, the Dinaric Mountain Region and the Pannonian Lowland. This complexity of ecological factors has...

  13. FISHER INFORMATION AS A METRIC FOR SUSTAINABLE REGIMES

    EPA Science Inventory

    The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. We propose Fisher Information as a metric for the sustainability of dynamic regimes in complex systems. The quantity now known ...

  14. Contrasting Holocene sedimentary geologies of lower Daly River, northern Australia, and lower Sepik-Ramu, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Chappell, John

    1993-03-01

    The estuarine plain of the macrotidal Daly River, in monsoonal northern Australia, is underlain by extensive mid-Holocene mangrove swamp sediments which accumulated during the last stages of Post-glacial sea-level rise. Sediment yield from the catchment is too low to account for the volume which accumulated during sea-level rise, and onshore transport is invoked. This is supported by radiocarbon ages and facies analysis of the transgressive sediment tract beneath the maximum flooding surface (MFS), and of the tract of vertical sedimentation which extends from the MFS to the surface of estuarine/fluvial transition (the EFT). The EFT occurred about 5000 to 6000 BP throughout the estuarine plain. A contrasting situation exists in the lowland Holocene basin of the microtidal Sepik and Ramu rivers in Papua New Guinea, which derive sediment from highly tectonic catchments. A tectonic basin, which was a shallow brackish inland sea after Post-glacial transgression, is separated by a low divide from a deltaic plain. Progradation of the deltaic plain commenced about 3500 BP after regressive sedimentation eclipsed the inland sea in the tectonic basin. Contrasting organic facies, mangrove in the Daly and freshwater swamp deposits in the Sepik-Ramu, highlight differences between facies models of the two systems. Differences between fluvio-tidal regimes are reflected by the EFT, which is synchronous in the Daly and diachronous in the Sepik-Ramu, and possibly by the MFS which is diachronous in the Daly and may be synchronous in the Sepik-Ramu.

  15. A giant submarine slope failure on the insular slope north of Puerto Rico: A response of Arecibo basin strata to tectonic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwab, W.C.; Danforth, W.W.; Scanlon, K.M.

    1990-06-01

    An amphitheater-shaped scarp, approximately 55 km across in water depths from about 3,000 m to 6,700 m was imaged on the northern insular slope of Puerto Rico (southern slope of the Puerto Rico Trench) using the GLORIA side-scan sonar system. This scarp represents the removal of more than 1,500 m{sup 3} of Tertiary Arecibo basin strata. The head of the scarp coincides with the location of a fault zone observed on nearby seismic-reflection profiles. Interpretation of the GLORIA imagery, and a review of available bathymetric, geophysical, and stratigraphic data and tectonic-framework models suggest that the scarp formed as a consequencemore » of slope failure induced by tectonic oversteepening of the insular slope. The oversteepening may be a result of the most recent episode of convergence of the Caribbean and North American plates, which began approximately 4 million years ago. The Arecibo basin strata have been tilted approximately 4{degree} to the north and are apparently gravitationally unstable under the present seismic regime. The volume of material involved in this slope failure is comparable to the material displaced in tsunamogenic submarine landslides along the Peru Trench and Hawaiian Ridge. Therefore, if the slope failure north of Puerto Rico was catastrophic, it was large enough to have generated a tsunami that would have flooded the low ground of northern Puerto Rico.« less

  16. Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range

    USGS Publications Warehouse

    Binnie, S.A.; Phillips, W.M.; Summerfield, M.A.; Fifield, L.K.

    2007-01-01

    Studies across a broad range of drainage basins have established a positive correlation between mean slope gradient and denudation rates. It has been suggested, however, that this relationship breaks down for catchments where slopes are at their threshold angle of stability because, in such cases, denudation is controlled by the rate of tectonic uplift through the rate of channel incision and frequency of slope failure. This mechanism is evaluated for the San Bernardino Mountains, California, a nascent range that incorporates both threshold hill-slopes and remnants of pre-uplift topography. Concentrations of in situ-produced cosmogenic 10Be in alluvial sediments are used to quantify catchment-wide denudation rates and show a broadly linear relationship with mean slope gradient up to ???30??: above this value denudation rates vary substantially for similar mean slope gradients. We propose that this decoupling in the slope gradient-denudation rate relationship marks the emergence of threshold topography and coincides with the transition from transport-limited to detachment-limited denudation. The survival in the San Bernardino Mountains of surfaces formed prior to uplift provides information on the topographic evolution of the range, in particular the transition from slope-gradient-dependent rates of denudation to a regime where denudation rates are controlled by rates of tectonic uplift. This type of transition may represent a general model for the denudational response to orogenic uplift and topographic evolution during the early stages of mountain building. ?? 2007 The Geological Society of America.

  17. Phylogeographic heterogeneity of the brown macroalga Sargassum horneri (Fucaceae) in the northwestern Pacific in relation to late Pleistocene glaciation and tectonic configurations.

    PubMed

    Hu, Zi-Min; Uwai, Shinya; Yu, Shen-Hui; Komatsu, Teruhisa; Ajisaka, Tetsuro; Duan, De-Lin

    2011-09-01

    Pleistocene glacial oscillations and associated tectonic processes are believed to have influenced the historical abundances and distribution of organisms in the Asia Northwest Pacific (ANP). Accumulating evidence indicates that factors shaping tempospatial population dynamics and distribution patterns of marine taxa vary with biogeographical latitude, pelagic behaviour and oceanographic regimes. To detect what kinds of historical and contemporary factors affected genetic connectivity, phylogeographic profiles of littoral macroalga Sargassum horneri in the ANP were analysed based on mitochondrial (Cox3) and chloroplast (rbcL) data sets. Five distinct clades were recovered. A strong signature of biogeographical structure was revealed (Φ(CT) = 0.487, P < 0.0001) derived from remarkable differentiation in clade distribution, as clade I is restricted to Chinese marginal seas (Yellow-Bohai Sea, East China Sea and South China Sea), whereas clades II-V are discontinuously scattered around the main Islands of Japan. Furthermore, two secondary contact regions were identified along the south Japan-Pacific coastline. This significant differentiation between the two basins may reflect historical glacial isolation in the northwestern Pacific, which is congruent with the estimates of clade divergence and demographic expansion during the late Quaternary low sea levels. Analysis of molecular variance and the population-pair statistic F(ST) also revealed significant genetic structural differences between Chinese marginal seas and the Japanese basin. This exceptional phylogeographic architecture in S. horneri, initially shaped by historical geographic isolation during the late Pleistocene ice age and physical biogeographical barriers, can be complicated by oceanographic regimes (ocean surface currents) and relocating behaviour such as oceanic drifting. © 2011 Blackwell Publishing Ltd.

  18. Active stress field and seismotectonic features in Intra-Carpathian region of Romania

    NASA Astrophysics Data System (ADS)

    Oros, Eugen; Popa, Mihaela; Diaconescu, Mihai; Radulian, Mircea

    2017-04-01

    The Romanian Intra-Carpathian Region is located on the eastern half of Tisa-Dacia geodynamic block from the Neogene Carpathian-Pannonian Basin. The distribution of seismicity displays clear clusters and narrower zones with seismogenic potential confirmed by the damaging earthquakes recoded in the region, e.g. July 01, 1829 (Mw=6.2), October 10, 1834 (Mw=5.6), January 26, 1916 (Mw=6.4), July 12, 1991 (Mw=5.7), December 2, 1991 (Mw=5.5). The state of recent stress and deformation appears to be controlled by the interaction of plate-boundary and intraplate forces, which include the counterclockwise rotation and N-NE-directed indentation of the Adria microplate and buoyancy forces associated with differential topography and lithospheric heterogeneities. The stress field and tectonic regime are investigated at regional and local scales by the formal inversion of focal mechamisms. There can be observed short-scale lateral changes of i) tectonic regimes from compressive (reverse and strike-slip faultings) to pure extensive (normal faultings) and ii) variation of stress directions (SHmax) from NE-SW to EW and WNW-ESE towards Southern Carpathians and NS within Easter Carpathians. The changes in stress directions occur over a distance that is comparable to or smaller than the thickness of the lithosphere. A comparative analysis of stress tensor with GPS velocity/displacememt vectors shows variations from paralellism to orthogonality, suggesting different mechanisms of crustal deformations.The major seismic activity (Mw≥5.0) appears to be generally concentrated along the faults systems bordering de Tisa-Dacia Block, intersections of faults of different ages, internal shear zones and with the border of the former structural terrains, old rifts and neostructures.

  19. Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Zafarmand, Bahareh

    2017-08-01

    The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.

  20. Plume-induced subduction and accretion on present-day Venus and Archean Earth

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Smrekar, S. E.; Sibrant, A.; Mittelstaedt, E. L.

    2017-12-01

    Plate tectonics is responsible for the majority of Earth's heat loss, cycling of volatiles between the atmosphere and interior, recycling in the mantle of most of the surface plates, and possibly even for maintaining habitability. Despite its similarity in size and bulk density to Earth, Venus lacks plate tectonics today, and its mode of operation remains debated. Using laboratory experiments in colloidal dispersion which brittle viscosity-elasto-plastic rheology, we recently showed that plume-induced subduction could be operating nowadays on Venus. The experimental fluids were heated from below to produce upwelling plumes, which in turn produced tensile fractures in the lithosphere-like skin that formed on the upper surface. Plume material upwelling through the fractures then spread above the skin, analogous to volcanic flooding, and lead to bending and eventual subduction of the skin along arcuate segments. These segments are analogous to the semi-circular trenches seen on large coronae. Scaling analysis suggests that this regime with limited, plume-induced subduction is favored by a hot lithosphere, such as that found on early Earth or present-day Venus. Moreover, in this regime, subduction proceeds primarily by roll-back and the coronae expands through time at velocity that could reach 10 cm/yr. A second set of experiments focusing on accretion processes suggests that accretion dynamics depends on the strength of the lithosphere, as well as the spreading velocity. Venus hot surface temperature would act to decrease the lithosphere strength, and therefore weaken the ridge axis, that would become highly unstable, showing large sinuosity and producing a number of micro-plates. These plume, subduction, and accretion characteristics explain well the features seen in Artemis coronae, the largest coronae on Venus.

  1. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Eisses, A.; Kell, A. M.; Kent, G.; Driscoll, N. W.; Karlin, R. E.; Baskin, R. L.; Louie, J. N.; Smith, K. D.; Pullammanappallil, S.

    2011-12-01

    Preliminary slip rates measured across the East Pyramid Lake fault, or the Lake Range fault, help provide new estimates of extension across the Pyramid Lake basin. Multiple stratigraphic horizons spanning 48 ka were tracked throughout the lake, with layer offsets measured across all significant faults in the basin. A chronstratigraphic framework acquired from four sediment cores allows slip rates of the Lake Range and other faults to be calculated accurately. This region of the northern Walker Lake, strategically placed between the right-lateral strike-slip faults of Honey and Eagle Lakes to the north, and the normal fault bounded basins to the southwest (e.g., Tahoe, Carson), is critical in understanding the underlying structural complexity that is not only necessary for geothermal exploration, but also earthquake hazard assessment due to the proximity of the Reno-Sparks metropolitan area. In addition, our seismic CHIRP imaging with submeter resolution allows the construction of the first fault map of Pyramid Lake. The Lake Range fault can be obviously traced west of Anahoe Island extending north along the east end of the lake in numerous CHIRP lines. Initial drafts of the fault map reveal active transtension through a series of numerous, small, northwest striking, oblique-slip faults in the north end of the lake. A previously field mapped northwest striking fault near Sutcliff can be extended into the west end of Pyramid Lake. This fault map, along with the calculated slip rate of the Lake Range, and potentially multiple other faults, gives a clearer picture into understanding the geothermal potential, tectonic regime and earthquake hazards in the Pyramid Lake basin and the northern Walker Lane. These new results have also been merged with seismicity maps, along with focal mechanisms for the larger events to begin to extend our fault map in depth.

  2. The divergent fates of primitive hydrospheric water on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Wade, Jon; Dyck, Brendan; Palin, Richard M.; Moore, James D. P.; Smye, Andrew J.

    2017-12-01

    Despite active transport into Earth’s mantle, water has been present on our planet’s surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet’s magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet’s surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth’s mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.

  3. Depths of Intraplate Indian Ocean Earthquakes from Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Baca, A. J.; Polet, J.

    2014-12-01

    The Indian Ocean is a region of complex tectonics and anomalous seismicity. The ocean floor in this region exhibits many bathymetric features, most notably the multiple inactive fracture zones within the Wharton Basin and the Ninetyeast Ridge. The 11 April 2012 MW 8.7 and 8.2 strike-slip events that took place in this area are unique because their rupture appears to have extended to a depth where brittle failure, and thus seismic activity, was considered to be impossible. We analyze multiple intraplate earthquakes that have occurred throughout the Indian Ocean to better constrain their focal depths in order to enhance our understanding of how deep intraplate events are occurring and more importantly determine if the ruptures are originating within a ductile regime. Selected events are located within the Indian Ocean away from major plate boundaries. A majority are within the deforming Indo-Australian tectonic plate. Events primarily display thrust mechanisms with some strike-slip or a combination of the two. All events are between MW5.5-6.5. Event selections were handled this way in order to facilitate the analysis of teleseismic waveforms using a point source approximation. From these criteria we gathered a suite of 15 intraplate events. Synthetic seismograms of direct P-waves and depth phases are computed using a 1-D propagator matrix approach and compared with global teleseismic waveform data to determine a best depth for each event. To generate our synthetic seismograms we utilized the CRUST1.0 software, a global crustal model that generates velocity values at the hypocenter of our events. Our waveform analysis results reveal that our depths diverge from the Global Centroid Moment Tensor (GCMT) depths, which underestimate our deep lithosphere events and overestimate our shallow depths by as much as 17 km. We determined a depth of 45km for our deepest event. We will show a comparison of our final earthquake depths with the lithospheric thickness based on halfspace cooling models and the local plate age.

  4. The divergent fates of primitive hydrospheric water on Earth and Mars.

    PubMed

    Wade, Jon; Dyck, Brendan; Palin, Richard M; Moore, James D P; Smye, Andrew J

    2017-12-20

    Despite active transport into Earth's mantle, water has been present on our planet's surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet's magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet's surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth's mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.

  5. Tectonic Evolution of the Central Andes during Mesozoic-Cenozoic times: Insights from the Salar de Atacama Basin

    NASA Astrophysics Data System (ADS)

    Peña Gomez, M. A.; Bascunan, S. A.; Becerra, J.; Rubilar, J. F.; Gómez, I.; Narea, K.; Martínez, F.; Arriagada, C.; Le Roux, J.; Deckart, K.

    2015-12-01

    The classic Salar de Atacama Basin, located in the Central Andes of northern Chile, holds a remarkable yet not fully understood record of tectonic events since mid-Cretaceous times. Based on the growing amount of data collected over the last years, such as high-detail maps and U-Pb geochronology, we present an updated model for the development of this area after the Triassic. A major compressional event is recorded around the mid-Late Cretaceous (ca. 107 Ma) with the deposition of synorogenic continental successions reflecting the uplift of the Coastal Cordillera area farther to the west, and effectively initiating the foreland basin. The deformation front migrated eastwards during the Late Campanian (ca. 79 Ma), where it exhumed and deformed the Late Cretaceous magmatic arc and the crystalline basement of Cordillera de Domeyko. The K-T Event (ca. 65 Ma), recently identified in the basin, involved the same source areas, though the facies indicate a closer proximity to the source. The compressional record of the basin is continued by the Eocene Incaic Event (ca. 45 Ma), with deep exhumation of the Cordillera de Domeyko and the cannibalization of previous deposits. A change to an extensional regime during the Oligocene (ca. 28 Ma) is shown by the deposition of more than 4 km of evaporitic and clastic successions. A partial inversion of the basin occurred during the Miocene (ca.10 Ma-present), as shown by the deformation seen in the Cordillera de la Sal. As such, the basin shows that the uplift of the Cordillera de Domeyko was not one isolated episode, but a prolonged and complex event, punctuated by episodes of major deformation. It also highlights the need to take into account the Mesozoic-Cenozoic deformation events for any model trying to explain the building of the modern-day Andes.

  6. The Intraplate Earthquakes of SE Africa

    NASA Astrophysics Data System (ADS)

    Fonseca, J. F. B. D.; Domingues, A.

    2014-12-01

    Southeast Africa is a region of complex tectonic inheritance, combining early Archean cratonic blocks - the Zimbabwe and Kaapvaal cratons - and several collision belts ranging in age from ~2.6Ga (Limpopo Belt) to the Pan-African Orogeny, 800-500 Ma ago (Zambezi Belt, Mozambique Belt). Mesozoic rifting was the last tectonic event to leave an imprint in the lithosphere of the region. Tertiary deformation is mild and related to the extensional regime of the East African Rift System (EARS) further north. Instrumental seismology started in Johannesburg in 1910 (Saunders et al., 2008). Ambraseys and Adams (1991) conducted a reappraisal of the seismicity of Sub-Saharan Africa from 1900 to 1930, and the compilations by Krige and Maree (1948) and Gutenberg and F. Richter (1949) are main sources for the two subsequent decades. The available data can be considered complete since 1900 for magnitudes above M6 (Ambraseys and Adams, 1991), although major epicentral errors are likely to affect the early decades. Earthquakes above this threshold in the region to the south of Lake Malawi and to the east of the Okavango Rift are reported in 1919 (MS6.5, NE South Africa), 1932 (MS6.8, Natal Bay), 1940 (MS6.2, SE Mozambique), 1951 (MS6.0, Central Mozambique), 1957 (M6.0, Central Mozambique), again in 1957 (M6.2, Central Mozambique), 1958 (M6.0, Southern Zimbabwe), 1959 (M6.1, Southern Zambia) and 2006 (M7.0, Central Mozambique). The four M>6 earthquakes from 1957 to 1959 configure a cluster in time, followed by a shutdown (at M>6) that was to last nearly five decades. While a coincidence is unlikely, a causal link is challenged by the large spatial scatter of about 500 km. However, the fact that the four earthquakes occurred on the border of the Zimbabwe craton may provide a clue to the mechanism promoting the clustering. We combine these data with recent seismicity results (Fonseca et al., 2014) to discuss possible factors controlling the seismotectonics of the region.

  7. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.

    2015-11-01

    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West Greenland and the Mesozoic Sulu orogenic belt of eastern China are similar, consistent with the formation of Archean continental crust by subduction zone processes.

  8. Problems of the active tectonics of the Eastern Black Sea

    NASA Astrophysics Data System (ADS)

    Javakhishvili, Z.; Godoladze, T.; Dreger, D. S.; Mikava, D.; Tvaliashvili, A.

    2016-12-01

    The Black Sea Basin is the part of the Arabian Eurasian Collision zone and important unit for understanding the tectonic process of the region. This complex basin comprises two deep basins, separated by the mid-Black Sea Ridge. The basement of the Black Sea includes areas with oceanic and continental crust. It was formed as a "back-arc" basin over the subduction zone during the closing of the Tethys Ocean. In the past decades the Black Sea has been the subject of intense geological and geophysical studies. Several papers were published about the geological history, tectonics, basement relief and crustal and upper mantle structure of the basin. New tectonic schemes were suggested (e. g. Nikishin et al 2014, Shillington et al. 2008, Starostenko et al. 2004 etc.). Nevertheless, seismicity of the Black Sea is poorly studied due to the lack of seismic network in the coastal area. It is considered, that the eastern basin currently lies in a compressional setting associated with the uplift of the Caucasus and structural development of the Caucasus was closely related to the evolution of the Eastern Black Sea Basin. Analyses of recent sequence of earthquakes in 2012 can provide useful information to understand complex tectonic structure of the Eastern Black Sea region. Right after the earthquake of 2012/12/23, National Seismic monitoring center of Georgia deployed additional 4 stations in the coastal area of the country, close to the epicenter area, to monitor aftershock sequence. Seismic activity in the epicentral area is continuing until now. We have relocated approximately 1200 aftershocks to delineate fault scarf using data from Georgian, Turkish and Russian datacenters. Waveforms of the major events and the aftershocks were inverted for the fault plane solutions of the events. For the inversion were used green's functions, computed using new 1D velocity model of the region. Strike-slip mechanism of the major events of the earthquake sequence indicates extensional features in the Eastern Black Sea Region as well.

  9. The Role of Crustal Tectonics in Volcano Dynamics (ROCTEVODY) along the Southern Andes: seismological study with emphasis on Villarrica Volcano

    NASA Astrophysics Data System (ADS)

    Mora-Stock, Cindy; Tassara, Andrés

    2016-04-01

    The Southern Andean margin is intrinsically related to the Liquiñe-Ofqui Fault Zone (LOFZ), a 1000 km-long dextral strike-slip arc-parallel fault on which most of the volcanic centers of the Southern Volcanic Zone (SCVZ) of the Andes are emplaced. At large spatial (102 - 103 km) and temporal (105 - 107 yr) scales, regional tectonics linked to partitioning of the oblique convergence controls the distribution of magma reservoirs, eruption rates and style, as well as the magma evolution. At small scales in space (< 102 km) and time (10-1 - 102 yr), stress transfer mechanisms between magma reservoirs and seismically-active faults are though to transiently change the regional stress field, thus leading to eruptions and fault (re)activation. However, the mechanisms by which the interaction between (megathrust and crustal) earthquakes and volcanic eruptions actually occur, in terms of generating the relationships and characteristics verified at the long term, are still poorly understood. Since 2007, the Southern Andean margin has presented an increase of its tectonic and eruptive activity with several volcanic crisis and eruptions taking place in association with significant seismicity clusters and earthquakes both in the megathrust and the LOFZ. This increased activity offers a unique opportunity to improve our understanding of the physical relation between contemporary tectono-volcanic processes and the long-term construction of the LOFZ-SVZ system. Taking advantage of this opportunity by means of an integrated analysis of geodetic and seismological data through finite element numerical modeling at the scale of the entire margin and for selected cases is the main goal of project Active Tectonics and Volcanism at the Southern Andes (ACT&VO-SA, see Tassara et al. this meeting). Into the framework of the ACT&VO-SA project, the complementary ROCTEVODY-Villarrica project concentrates on the role that inherited crustal structures have in the volcano dynamics. The focus is on Villarrica volcano, which is emplaced at the intersection of the main NNE-branch of the LOFZ and the NW-SE inherited Mocha-Villarrica Fault (MVF). The extensional characteristics of previous eruptions at Villarrica contrasts with the dextral strike-slip motion of LOFZ and the compressive regime dominated by the subduction. Then, this projects aims to understand how the NW-SE inherited structures interacts with their intra-arc counterpart to allow the emplacement of volcanic edifices under the present day compressive stress regime. This goal will be achieved through the analysis of a seismic database for Villarrica volcano that combines data from a dense local network and the network of the Chilean volcanic observatory. These data will allow us to identify long period events and tremor signals from which we plan to perform a wave field characterization to extract information about fluid flow and seismic source, together with a precise location of tectonic crustal events. We will present preliminary results and a conceptual model to explain the role of the different structures at interplay in the region and their relation with volcano dynamics.

  10. Tectonic Evolution of Jabal Tays Ophiolite Complex, Eastern Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    AlHumidan, Saad; Kassem, Osama; Almutairi, Majed; Al-Faifi, Hussain; Kahal, Ali

    2017-04-01

    Microstructural analysis is important for investigation of tectonic evaluation of Jable Tays area. Furthermore, the Jable Tays ophiolite complex is effected by Al Amar -Idsas fault. The nature of the Al Amar-Idsas fault is a part of the Eastern Arabian Shield, which was subjected to multiple interpretations. Through fieldwork investigation, microscopic examination, and microstructural analysis, we aim to understand the evolution and tectonic setting of the Jable Tays area. Finite-strain data displays that the Abt schist, the metavolcanics and the metagranites are highly to moderately deformed. The axial ratios in the XZ section range from 1.40 to 2.20. The long axes of the finite-strain ellipsoids trend NW- SE and W-E in the Jable Tays area while, their short axes are subvertical to subhorizontal foliations. The strain magnitude does not increase towards the tectonic contacts between the Abt schist and metavolcano-sedimentary. While majority of the obtained data indicate a dominant oblate with minor prolate strain symmetries in the Abt schist, metavolcano-sedimentary and metagranites. The strain data also indicate flattening with some constriction. We assume that the Abt schist and the metavolcano-sedimentry rocks have similar deformation behavior. The finite strain in the studied rocks accumulated during the metamorphism that effected by thrusting activity. Based on these results, we finally concluded that the contact between Abt schist and metavolcano-sedimentary rocks were formed during the progressive thrusting under brittle to semi-ductile deformation conditions by simple shear that also involved a component of vertical shortening, causing subhorizontal foliation in Jable Tays area.

  11. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    USGS Publications Warehouse

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  12. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  13. Tectonic map of Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Oyhantcabal, P.

    2008-05-01

    A compilation of available data about the geology of Uruguay allowed the definition of its main events and tectonic units. Based on a critical revision of different tectonic hypothesis found in the literature, a parsimonious tectonic evolution schema is presented, in the context of Western Gondwana. The tectonic map illustrates the general features of the structure and main tectonic units of Uruguay. The Precambrian shield, cropping out in the South and Southeast of the country is an Archean to Paleoprtoerozoic basement divided in three main tectonostratigraphic terrranes: the Piedra Alta (PAT) a juvenile Paleoproterozoic unit not reworked by later events; the Nico Pérez (NPT) a complex unit composed of several blocks where Archean to Mesoproterozoic events are recognised. The NPT was strongly reworked by Neoproterozoic (Brasiliano) orogeny. The Dom Feliciano Belt cropping out in eastern Uruguay is related to Western Gondwana amalgamation. Different tectonic settings are considered: pre-Brasiliano Basement inliers; supracrustal successions representing the evolution from a back- arc to a foreland basin; a magmatic arc; and post-collisional basins and related magmatism. In lower Paleozoic the Paraná foreland basin was generated as a consequence of orogenic events. The sedimentary successions in Uruguay include continental to shallow marine deposits where the influence of carboniferous to Permian glacial episode is recorded. The Mesozoic record is characterised by the influence of extension related to the break-up of Gondwana and the formation of the Atlantic Ocean: huge amounts of tholeiitic basalt were erupted (near 30.000 km3 in Uruguay), followed by cretaceous sediments in the northern area of the country while in the south-east, bimodal magmatism and sediments of the same age are associated to rift basins. The Cenozoic is characterised by tectonic quiescence. Subsidence is only observed in the western region (Chaco-Paraná Basin) and in the east (Laguna Merín Basin).

  14. Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hero, Alfred O.; Rajaratnam, Bala

    When can reliable inference be drawn in the ‘‘Big Data’’ context? This article presents a framework for answering this fundamental question in the context of correlation mining, with implications for general large-scale inference. In large-scale data applications like genomics, connectomics, and eco-informatics, the data set is often variable rich but sample starved: a regime where the number n of acquired samples (statistical replicates) is far fewer than the number p of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for ‘‘Big Data.’’ Sample complexity, however, hasmore » received relatively less attention, especially in the setting when the sample size n is fixed, and the dimension p grows without bound. To address this gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; and 3) the purely high-dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa-scale data dimension. We illustrate this high-dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables that are of interest. Correlation mining arises in numerous applications and subsumes the regression context as a special case. We demonstrate various regimes of correlation mining based on the unifying perspective of high-dimensional learning rates and sample complexity for different structured covariance models and different inference tasks.« less

  15. Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining

    PubMed Central

    Hero, Alfred O.; Rajaratnam, Bala

    2015-01-01

    When can reliable inference be drawn in fue “Big Data” context? This paper presents a framework for answering this fundamental question in the context of correlation mining, wifu implications for general large scale inference. In large scale data applications like genomics, connectomics, and eco-informatics fue dataset is often variable-rich but sample-starved: a regime where the number n of acquired samples (statistical replicates) is far fewer than fue number p of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for “Big Data”. Sample complexity however has received relatively less attention, especially in the setting when the sample size n is fixed, and the dimension p grows without bound. To address fuis gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where fue variable dimension is fixed and fue sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa cale data dimension. We illustrate this high dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables fua t are of interest. Correlation mining arises in numerous applications and subsumes the regression context as a special case. we demonstrate various regimes of correlation mining based on the unifying perspective of high dimensional learning rates and sample complexity for different structured covariance models and different inference tasks. PMID:27087700

  16. Foundational Principles for Large-Scale Inference: Illustrations Through Correlation Mining

    DOE PAGES

    Hero, Alfred O.; Rajaratnam, Bala

    2015-12-09

    When can reliable inference be drawn in the ‘‘Big Data’’ context? This article presents a framework for answering this fundamental question in the context of correlation mining, with implications for general large-scale inference. In large-scale data applications like genomics, connectomics, and eco-informatics, the data set is often variable rich but sample starved: a regime where the number n of acquired samples (statistical replicates) is far fewer than the number p of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for ‘‘Big Data.’’ Sample complexity, however, hasmore » received relatively less attention, especially in the setting when the sample size n is fixed, and the dimension p grows without bound. To address this gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; and 3) the purely high-dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa-scale data dimension. We illustrate this high-dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables that are of interest. Correlation mining arises in numerous applications and subsumes the regression context as a special case. We demonstrate various regimes of correlation mining based on the unifying perspective of high-dimensional learning rates and sample complexity for different structured covariance models and different inference tasks.« less

  17. The Role of Wrench Tectonics In The Neogene-quaternary Evolution of The Western Hyblean Plateau (sicily)

    NASA Astrophysics Data System (ADS)

    Mattina, D.

    This study focussed on the kinematics and temporal variations of neotectonic-to-active structures on the margin of the Southern Apennines thrust front. The border between the thrustbelt contractional terranes and continental plateau hosts a number of strike- slip and, secondarily, normal structures of still disputed geometry. Based on newly- acquired data, this research opened new issues with respect to present-day kinematics of these fault systems, suggesting a new interpretation for the tectonic mechanisms underpinning the Hyblean plateau. Given its geodynamic environs, the present-day structural configuration of this plateau reflects a long tectonic history involving both intraplate extension and plate margin deformation. As a consequence, the platform area has been dominated by a complex interplay between extensional, compressional and strike-slip tectonics, expressed by subvertical faults that can be brokendown into two main trends: NE-SW and NNE- SSW. Fieldwork, integrated by interpretation of aerial photos and SPOT images, con- tributed to constrain and enhance a structural model of the region. The main NNE- SSW fault system (Scicli - Ragusa - Giarratana) is well exposed in the western part of the Hyblean plateau, called Ragusa Platform. This is an important structural feature which affects all domains present here and is characterised by vertical slip rates with a lateral component of motion. Structural analysis was primarily concentrated in this zone. Notably, a large set of structural elements, associated with a principal rigth-lateral NNE-SSW and NE-SW fault zone, was documented in the area and local transpressive elements, associated with these faults, are shown on the basis of their morphological evidence. A large bending and elevated area characterises the northern edge of the Ragusa platform and unveils the presence of several N-S striking reverse faults, with dextral lateral component of movement, and anticlinal folds. The detailed meso-structural analysis conducted on the Ragusa platform revealed the presence of non-coaxial compressive deformations, which in turn generated folds, re- verse faults and rare thrusts, involving the Upper Miocene - Lower Pleistocene de- posits. The structural analysis was conducted at the 1:25.000 scale, using the dis- persion of bedding data to define the orientation of the main structures. These data display a certain scattering but nevertheless allow to recognise a common trend; the 1 main fold system is characterised by structures trending~N-S. Subordinately, another set of folds is present; these are less developed and continuous than the previous sys- tem, forming fold with an average trend of about N 140E. The scattering of these structures is summarized in the structural model developed, including diagrams of some meso-folds recognized in the field. The presence of reverse faults is interpreted as flower structures and push-up systems which developed in a transpressive stress regime. In order to devise a tectonic model of the Hyblean plateau, the structural dataset was supplemented with a comparative morphological analysis, as revealed by fieldwork, satellite images, aerial photos and topographic data. Drainage network has been thor- oughly ascertained. In the case that the preferential directions of rivers were statisti- cally significant and different from those expected from non-structural controls (e.g. topographic and geographic trend), they were deemed to be a diagnostic tool to iden- tify the deformation system. This is based on the assumption of a strict structural control on the local hydrographic network and its evolution. The close relationship between the structural and morphological features underline the recent activity of the main fault trends. This study indicates that widespread occurrence of folds and reverse faulting can be ascribed to the transpressive regime, as a consequence of regional active wrenching capable of generating push-up and positive flower structures. Consequently, transform systems and brittle/ductile deformation is herewith envisaged to pertain to a single ma- jor deformation event. Within the central Mediterranean framework, the Scicli shear zone represents the on-shore strand of a major dextral transform system, documented off-shore to be the triggering mechanism responsible for the opening of the Sicily Strait. Such system also splits the western and eastern sectors of the Hyblean plateau, as indicated by differing kinematic evolutions. Present-day opening of the Pantelleria Rift, connected to a NE-SW extensional axis (Illies etl., 1981; Finetti et al., 1982; Boccaletti et al., 1987), activated the NNE trans- form system, whose on-shore expressions are highlighted by Scicli and Chiaramonte structures. Inception of activity for these fault systems is synchronous with the one characterizing the Rift (5 Ma; Ben-Avraham et al., 1991). Such line of evidence would enable to substantiate the Plio-Pleistocene shear mechanisms documented along these faults, indicating its viability within a regional stress field. Its likely s1, triggering con- traction at the plate boundary and causative of the rifting transtensional regime, would therefore be oriented NW-SE. 2

  18. FISHER INFORMATION AS A METRIC FOR SUSTAINABLE SYSTEM REGIMES

    EPA Science Inventory

    The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. We propose Fisher Information as a metric for the sustainability of dynamic regimes in complex systems. The quantity now known ...

  19. Managing for resilience: early detection of regime shifts in complex systems

    EPA Science Inventory

    The goal of sustainability is to maintain a condition or regime of the Earth, which supports human existence from generation to generation. Hence, the ability to detect, characterize, and manage regime shifts, particularly catastrophic ones, is critical to maintaining human sust...

  20. A 3-Dimensional Numerical Modelling Study on the Effects of Different Stress Regimes on the Magnitude of Induced Seismic Events

    NASA Astrophysics Data System (ADS)

    Amini, A.; Eberhardt, E.

    2016-12-01

    Producing oil and gas from shale reservoirs requires permeability enhancement treatments. This is achieved by injecting fluid under pressure to either propagate cracks through the rock (hydraulic fracture) or to stimulate slip across pre-existing fractures (hydroshear), which allows gas or oil to flow more readily into the well bore. After treatment is performed, the fluid is disposed of by injecting it back into the ground. The injection of these fluids, whether related to permeability enhancement or waste water disposal , into deep formations serves to create localized increases in pore pressures and reductions in the effective normal stresses acting on critically stressed faults, resulting in induced earthquakes. There have been numerous reports of anomalous seismic events with high magnitudes felt on surface that have given rise to public concerns. However, it must be recognized that different producing fields in Canada and the U.S. are situated in different tectonic regimes that favour different fault slip mechanisms. This study will explore the importance of stress regime, comparing the generation of induced seismicity under thrust versus strike slip conditions, with focus on their respective magnitudes distributions. To do so, we will first study empirical data pertaining to recorded seismicity related to hydraulic fracture operations with respect to source mechanisms and magnitude distributions. These will be analyzed in parallel with a series of advanced 3-dimensional numerical models using the distinct element code 3DEC to simulate fault slip under different stress regimes.

  1. Subduction Thermal Regime, Slab Dehydration, and Seismicity Distribution Beneath Hikurangi Based on 3-D Simulations

    NASA Astrophysics Data System (ADS)

    Suenaga, Nobuaki; Ji, Yingfeng; Yoshioka, Shoichi; Feng, Deshan

    2018-04-01

    The downdip limit of seismogenic interfaces inferred from the subduction thermal regime by thermal models has been suggested to relate to the faulting instability caused by the brittle failure regime in various plate convergent systems. However, the featured three-dimensional thermal state, especially along the horizontal (trench-parallel) direction of a subducted oceanic plate, remains poorly constrained. To robustly investigate and further map the horizontal (trench-parallel) distribution of the subduction regime and subsequently induced slab dewatering in a descending plate beneath a convergent margin, we construct a regional thermal model that incorporates an up-to-date three-dimensional slab geometry and the MORVEL plate velocity to simulate the plate subduction history in Hikurangi. Our calculations suggest an identified thrust zone featuring remarkable slab dehydration near the Taupo volcanic arc in the North Island distributed in the Kapiti, Manawatu, and Raukumara region. The calculated average subduction-associated slab dehydration of 0.09 to 0.12 wt%/km is greater than the dehydration in other portions of the descending slab and possibly contributes to an along-arc variation in the interplate pore fluid pressure. A large-scale slab dehydration (>0.05 wt%/km) and a high thermal gradient (>4 °C/km) are also identified in the Kapiti, Manawatu, and Raukumara region and are associated with frequent deep slow slip events. An intraslab dehydration that exceeds 0.2 wt%/km beneath Manawatu near the source region of tectonic tremors suggests an unknown relationship in the genesis of slow earthquakes.

  2. A new subdivision of the central Sesia Zone (Aosta Valley, Italy)

    NASA Astrophysics Data System (ADS)

    Giuntoli, Francesco; Engi, Martin; Manzotti, Paola; Ballèvre, Michel

    2015-04-01

    The Sesia Zone in the Western Alps is a continental terrane probably derived from the NW-Adriatic margin and polydeformed at HP conditions during Alpine convergence. Subdivisions of the Sesia Zone classically have been based on the dominant lithotypes: Eclogitic Micaschist Complex, Seconda Zona Diorito-Kinzigitica, and Gneiss Minuti Complex. However, recent work (Regis et al., 2014) on what was considered a single internal unit has revealed that it comprises two or more tectonic slices that experienced substantially different PTDt-evolutions. Therefore, detailed regional petrographic and structural mapping (1:3k to 1:10k) was undertaken and combined with extensive sampling for petrochronological analysis. Results allow us to propose a first tectonic scheme for the Sesia Zone between the Aosta Valley and Val d'Ayas. A set of field criteria was developed and applied, aiming to recognize and delimit the first order tectonic units in this complex structural and metamorphic context. The approach rests on three criteria used in the field: (1) Discontinuously visible metasedimentary trails (mostly carbonates) considered to be monocyclic (Permo-Mesozoic protoliths); (2) mappable high-strain zones; and (3) visible differences in the metamorphic imprint. None of these key features used are sufficient by themselves, but in combination they allow us to propose a new map that delimits main units. We propose an Internal Complex with three eclogitic sheets, each 0.5-3 km thick. Dominant lithotypes include micaschists associated with mafic rocks and minor orthogneiss. The main foliation is of HP, dipping moderately NW. Each of these sheets is bounded by (most likely monometamorphic) sediments, <10-50 m thick. HP-relics (of eclogite facies) are widespread, but a greenschist facies overprint locally is strong close to the tectonic contact to neighbouring sheets. An Intermediate Complex lies NW of the Internal Complex and comprises two thinner, wedge-shaped units termed slices. These are composed of siliceous dolomite marbles, meta-granites and -diorites with few mafic boudins. The main foliation dips SE and is of greenschist facies, but omphacite, glaucophane, and garnet occur as relics. Towards the SW, the width of the Intermediate Complex is reduced from 0.5 km to a few meters. In the External Complex several discontinuous lenses occur; these comprise 2DK-lithotypes and are aligned with greenschist facies shear zones mapped within Gneiss Minuti. By combining these features, three main sheets were delimited in the External Complex, with the main foliation being of greenschist facies and dipping moderately SE. Petrological work and in situ U-Th-Pb dating of accessory phases is underway in several of these subunits of the Sesia Zone to constrain their PTDt-history and thus their Alpine assembly. REFERENCE Regis, D., Rubatto, D., Darling, J., Cenki-Tok, B., Zucali, M., Engi, M., 2014. Multiple metamorphic stages within an eclogite-facies terrane (Sesia Zone, Western Alps) revealed by Th-U-Pb petrochronology. J.Petrol. 55, 1429-1456.

  3. Static Stress Changes Inverted from Microseismicity in Eastern Aegean Sea

    NASA Astrophysics Data System (ADS)

    Leptokaropoulos, Konstantinos; Papadimitriou, Eleftheria; Orlecka-Sikora, Beata; Karakostas, Vassilios

    2014-05-01

    In this study we attempted to derive static stress field variations from the changes of earthquake production rates in Kusadasi bay and Samos island (eastern Aegean), by applying the Dieterich et al. (2000) Rate/State formulation. The calculation of stress changes from earthquake occurrence rates fluctuations should be obtained from catalogues which achieve adequate spatial and temporal resolution and well determined hypocenter coordinates. For this reason we took advantage of the data from a regional network operating since July of 2007, providing continuous monitoring of microseismicity, along with data available from seismological stations of the permanent Hellenic Unified Seismological Network (HUSN). The high accuracy and large sized regional catalogue is utilized for inverting seismicity rate changes into stress variation through a Rate/State dependent friction model. After explicitly determining the physical parameters incorporating in the modeling (reference seismicity rates, characteristic relaxation time, constitutive properties of fault zones) we investigated stress changes in both space and time regime and their possible connection with earthquake clustering and fault interactions. The main interest is focused on the June 2009 Samos Mw=5.1 event, which was followed by an intense seismic activity for several days. We attempt to reproduce and interpret stress changes both before and after the initiation of this seismic burst. The differences between the earthquake occurrence rates before and after the main shock are used as input data in a stress inversion algorithm based upon the Rate/State dependent friction concept in order to provide an estimation of stress changes. Diverse assumptions and combinations of the parameters values are tested for the model performance and sensitivity to be evaluated. The approach followed here could provide evidence of the robustness of the seismicity rate changes usage as a stress meter for both positive and negative stress steps in an actively tectonic region accommodating complex fault systems. Acknowledgements: Support from the bilateral agreement between Aristotle University of Thessaloniki and Institute of Geophysics of Polish Academy of Sciences during August 2013 and the research project titled as 'Seismotectonic properties of the eastern Aegean: Implications on the stress field evolution and seismic hazard assessment in a tectonically complex area', GSRT 10 T UR/1-3-9, Joint Research and Technology Programmes 2010-2011, financed by the Ministry of Education of Greece and the Scientific and Technological Research Council of Turkey (TUBITAK 109Y401) are acknowledged.

  4. Building a Bridge to Deep Time: Sedimentary Systems Across Timescales

    NASA Astrophysics Data System (ADS)

    Romans, B.; Castelltort, S.; Covault, J. A.; Walsh, J. P.

    2013-12-01

    It is increasingly important to understand the complex and interdependent processes associated with sediment production, transport, and deposition at timescales relevant to civilization (annual to millennial). However, predicting the response of sedimentary systems to global environmental change across a range of timescales remains a significant challenge. For example, a significant increase in global average temperature at the Paleocene-Eocene boundary (55.8 Ma) is interpreted to have occurred over millennial timescales; however, the specific response of sedimentary systems (e.g., timing and magnitude of sediment flux variability in river systems) to that forcing is debated. Thus, using such environmental perturbations recorded in sedimentary archives as analogs for ongoing/future global change requires improved approaches to bridging across time. Additionally, the ability to bridge timescales is critical for addressing other questions about sedimentary system behavior, including signal propagation and signal versus ';noise' in the record. The geologic record provides information that can be used to develop a comprehensive understanding of process-response behavior at multiple timescales. The geomorphic ';snapshot' of present-day erosional and depositional landscapes can be examined to reconstruct the history of processes that created the observable configurations. Direct measurement and monitoring of active processes are used to constrain conceptual and numerical models and develop sedimentary system theory. But real-time observations of active Earth-surface processes are limited to the very recent, and how such processes integrate over longer timescales to transform into strata remains unknown. At longer timescales (>106 yr), the stratigraphic record is the only vestige of ancient sedimentary systems. Stratigraphic successions contain a complex record of sediment deposition and preservation, as well as the detrital material that originated in long since denuded orogenic belts. Moreover, as the timescale of the duration of the process-response behavior and/or system age increase, additional aspects must be considered (e.g., significant tectonic regime change, rare but significant events, non-periodic global change, etc.). In this presentation we discuss several examples of sedimentary system analysis at different timescales with the goal of highlighting various approaches at one timescale and how they can (or cannot) be applied for questions at different timescales. Examples include: (1) brief review of decadal to centennial sediment budgets; (2) land-to-sea sediment budget reconstructions from southern California at millennial to multi-millennial timescales, and (3) sedimentary system response to climatic and tectonic forcings at ≥105 yr timescales.

  5. Whole Planet Coupling from Climate to Core: Implications for the Evolution of Rocky Planets and their Prospects for Habitability

    NASA Astrophysics Data System (ADS)

    Foley, B. J.; Driscoll, P. E.

    2015-12-01

    Many factors have conspired to make Earth a home to complex life. Earth has abundant water due to a combination of factors, including orbital distance and the climate regulating feedbacks of the long-term carbon cycle. Earth has plate tectonics, which is crucial for maintaining long-term carbon cycling and may have been an important energy source for the origin of life in seafloor hydrothermal systems. Earth also has a strong magnetic field that shields the atmosphere from the solar wind and the surface from high-energy particles. Synthesizing recent work on these topics shows that water, a temperate climate, plate tectonics, and a strong magnetic field are linked together through a series of negative feedbacks that stabilize the system over geologic timescales. Although the physical mechanism behind plate tectonics on Earth is still poorly understood, climate is thought to be important. In particular, temperate surface temperatures are likely necessary for plate tectonics because they allow for liquid water that may be capable of significantly lowering lithospheric strength, increase convective stresses in the lithosphere, and enhance the effectiveness of "damage" processes such as grainsize reduction. Likewise, plate tectonics is probably crucial for maintaining a temperate climate on Earth through its role in facilitating the long-term carbon cycle, which regulates atmospheric CO2 levels. Therefore, the coupling between plate tectonics and climate is a feedback that is likely of first order importance for the evolution of rocky planets. Finally, plate tectonics is thought to be important for driving the geodynamo. Plate tectonics efficiently cools the mantle, leading to vigorous thermo-chemical convection in the outer core and dynamo action; without plate tectonics inefficient mantle cooling beneath a stagnant lid may prevent a long-lived magnetic field. As the magnetic field shields a planet's atmosphere from the solar wind, the magnetic field may be important for preserving hydrogen, and therefore water, on the surface. Thus whole planet coupling between the magnetic field, atmosphere, mantle, and core is possible. We lay out the basic physics governing whole planet coupling, and discuss the implications this coupling has for the evolution of rocky planets and their prospects for hosting life.

  6. Complex Dynamics of Droplet Traffic in a Bifurcating Microfluidic Channel: Periodicity, Multistability, and Selection Rules

    NASA Astrophysics Data System (ADS)

    Sessoms, D. A.; Amon, A.; Courbin, L.; Panizza, P.

    2010-10-01

    The binary path selection of droplets reaching a T junction is regulated by time-delayed feedback and nonlinear couplings. Such mechanisms result in complex dynamics of droplet partitioning: numerous discrete bifurcations between periodic regimes are observed. We introduce a model based on an approximation that makes this problem tractable. This allows us to derive analytical formulae that predict the occurrence of the bifurcations between consecutive regimes, establish selection rules for the period of a regime, and describe the evolutions of the period and complexity of droplet pattern in a cycle with the key parameters of the system. We discuss the validity and limitations of our model which describes semiquantitatively both numerical simulations and microfluidic experiments.

  7. Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime.

    PubMed

    Ishida, Tadashi; Sato, Takaaki; Ishikawa, Takahiro; Oguma, Masatsugu; Itamura, Noriaki; Goda, Keisuke; Sasaki, Naruo; Fujita, Hiroyuki

    2015-03-11

    Originally discovered by Leonard da Vinci in the 15th century, the force of friction is directly proportional to the applied load (known as Amontons' first law of friction). Furthermore, kinetic friction is independent of the sliding speed (known as Coulomb's law of friction). These empirical laws break down at high normal pressure (due to plastic deformation) and low sliding speed (in the transition regime between static friction and kinetic friction). An important example of this phenomenon is friction between the asperities of tectonic plates on the Earth. Despite its significance, little is known about the detailed mechanism of friction in this regime due to the lack of experimental methods. Here we demonstrate in situ time-lapse nanoscopy of friction between asperities sliding at ultralow speed (∼0.01 nm/s) under high normal pressure (∼GPa). This is made possible by compressing and rubbing a pair of nanometer-scale crystalline silicon anvils with electrostatic microactuators and monitoring its dynamical evolution with a transmission electron microscope. Our analysis of the time-lapse movie indicates that superplastic behavior is induced by decrystallization, plastic deformation, and atomic diffusion at the asperity-asperity interface. The results hold great promise for a better understanding of quasi-static friction under high pressure for geoscience, materials science, and nanotechnology.

  8. Sand fairway mapping as a tool for tectonic restoration in orogenic belts

    NASA Astrophysics Data System (ADS)

    Butler, Rob

    2016-04-01

    The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.

  9. Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu)

    NASA Astrophysics Data System (ADS)

    Beier, Christoph; Brandl, Philipp A.; Lima, Selma M.; Haase, Karsten M.

    2018-07-01

    We present here new bathymetric, petrological and geochemical whole rock, glass and mineral data from the submarine Epi volcano in the New Hebrides (Vanuatu) island arc. The structure has previously been interpreted to be part of a larger caldera structure but new bathymetric data reveal that the volcanic cones are aligned along shear zones controlled by the local tectonic stress field parallel to the recent direction of subduction. We aim to test if there is an interaction between local tectonics and magmatism and to what extent the compositions of island arc volcanoes may be influenced by their tectonic setting. Primitive submarine Epi lavas and those from the neighbouring Lopevi and Ambrym islands originate from a depleted mantle wedge modified by addition of subduction zone components. Incompatible element ratios sensitive to fluid input (e.g., Th/Nb, Ce/Yb) in the lavas are positively correlated with those more sensitive to mantle wedge depletion (e.g., Nb/Yb, Zr/Nb) amongst the arc volcanoes suggesting that fluids or melts from the subducting sediments have a stronger impact on the more depleted compositions of the mantle wedge. The whole rock, glass and mineral major and trace element compositions and the occurrence of exclusively normally zoned clinopyroxene and plagioclase crystals combined with the absence of inversely zoned crystals and water-bearing phases in both mafic and evolved lavas suggest that the erupted melt was relatively dry compared to other subduction zone melts and has experienced little disequilibrium modification by melt mixing or assimilation. Our data also imply that differentiation of amphibole is not required to explain the incompatible element patterns but may rather result from extensive clinopyroxene fractionation in agreement with petrographic observations. Thermobarometric calculations indicate that the melts fractionated continuously during ascent, contrasting with fractionation during stagnation in an established crustal magma reservoir. We interpret the occurrence of this fractional crystallisation end-member in a relatively thick island arc crust ( 30 km thickness) to result from isolated and relatively rapid ascent of melts, most likely through a complex system of dykes and sills that developed due to the tectonic positioning of Epi in a complex tectonic zone between a compressional environment in the north and an extensional setting in the south. We can show that the alignment of the cones largely depends on the local tectonic stress field at Epi that is especially influenced by a large dextral strike-slip zone, indicating that structural features have a significant impact on the location and composition of volcanic edifices.

  10. Paleozoic intrusive rocks from the Dunhuang tectonic belt, NW China: Constraints on the tectonic evolution of the southernmost Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Sun, Yong; Diwu, Chunrong; Zhu, Tao; Ao, Wenhao; Zhang, Hong; Yan, Jianghao

    2017-05-01

    The Dunhuang tectonic belt (DTB) is of great importance for understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt (CAOB). In this study, the temporal-spatial distribution, petrogenesis and tectonic setting of the Paleozoic representative intrusive rocks from the DTB were systematically investigated to discuss crustal evolution history and tectonic regime of the DTB during Paleozoic. Our results reveal that the Paleozoic magmatism within the DTB can be broadly divided into two distinct episodes of early Paleozoic and late Paleozoic. The early Paleozoic intrusive rocks, represented by a suite metaluminous-slight peraluminous and medium- to high-K calc-alkaline I-type granitoids crystallized at Silurian (ca. 430-410 Ma), are predominantly distributed along the northern part of the DTB. They were probably produced with mineral assemblage of eclogite or garnet + amphibole + rutile in the residue, and were derived from magma mixing source of depleted mantle materials with various proportions of Archean-Mesoproterozoic continental crust. The late Paleozoic intrusive rocks can be further subdivided into two stages of late Devonian stage (ca. 370-360 Ma) and middle Carboniferous stage (ca. 335-315 Ma). The former stage is predominated by metaluminous to slight peraluminous and low-K tholeiite to high-K calc-alkaline I-type granitic rocks distributed in the central part of the DTB. They were also generated with mineral assemblage of amphibolite- to eclogite-facies in the residue, and originated from magma source of depleted mantle materials mixed with different degrees of old continental crust. The later stage is represented by adakite and alkali-rich granite exposed in the southern part of the DTB. The alkali-rich granites studied in this paper were possibly produced with mineral assemblage of granulite-facies in the residue and were generated by partial melting of thickened lower continental crust. Zircon Hf isotopes and field distribution of those Paleozoic intrusive rocks reveal that both the Silurian and the late Devonian magmatic activities predominantly represent crustal growth processes in the DTB, accompanied by different degrees of reworking of pre-existing continental crust. However, the middle Carboniferous (ca. 335-315 Ma) magmatic activity reflects a crustal reworking process. The Silurian and late Devonian intrusive rocks were most likely formed in the arc-related subduction zones, whereas, the middle Carboniferous intrusive rocks were possibly formed in a transitional tectonic setting from compression to extension, representing the final stage of Paleozoic orogeny in the DTB. These Paleozoic magmatic rocks further suggest that the DTB has reactivated from a stable block to an orogen and undergone two episodes (the early Paleozoic and the late Paleozoic) of orogeny during Paleozoic. It represents a Paleozoic accretionary orogen of the southernmost margin of the CAOB between the Tarim Craton and North China Craton, and tectonically extends northward to the Beishan orogen and westward to the eastern South Tianshan Belt.

  11. Geothermal potential on Kirtland Air Force Base lands, Bernalillo County, New Mexico

    NASA Astrophysics Data System (ADS)

    Grant, P. R., Jr.

    1981-10-01

    Public policy expressed in a number of national directives in recent years stresses the conservation of conventional fuel supplies, a switch to alternative fuels, and the application of advanced energy technologies at federal installations. Natural gas currently furnishes 85 to 95 percent of the average 94 x 1,000,000 Btu/hr energy requirements for space heating and cooling at Kirtland Air Force Base. Studies of alternatives to the use of natural gas at the base include examination of the geothermal option. Four of North America's major physiographic provinces coalesce in central New Mexico on or near Kirtland AFB. Their junction is identified throughout much of this region by a tectonic depression occupied by the Rio Grande that is structurally complex, stratigraphically and hydrologically unique, and coincides with geologically recent volcanic centers. This trough, the Rio Grande rift, has been identified as a major geothermal resource area. The western part of Kirtland AFB is in the Albuquerque Basin segment of the Rio Grande rift. Extensive sampling and geochemical analysis of groundwater in and near the base disclosed no significant geothermal parameters. However, structural conditions and current hydrologics regimes strongly suggest that thermal waters would be masked by near surface, low temperature meteoric water originating as rain and snowfall in the nearby mountains.

  12. In situ stress magnitude and rock strength in the Nankai accretionary complex: a novel approach using paired constraints from downhole data in two wells

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Saffer, D. M.; Dugan, B.

    2016-07-01

    We present a method to simultaneously constrain both far-field horizontal stress magnitudes ( S hmin and S Hmax) and in situ rock unconfined compressive strength (UCS), using geophysical logging data from two boreholes located 70 m apart that access the uppermost accretionary prism of the Nankai subduction zone . The boreholes sample the same sediments and are affected by the same tectonic stress field, but were drilled with different annular pressures, thus providing a unique opportunity to refine estimates of both in situ stress magnitudes and rock strength. We develop a forward model to predict the angular width of compressional wellbore failures (borehole breakouts), and identify combinations of S Hmax and UCS that best match breakout widths observed in resistivity images from the two boreholes. The method requires knowledge of S hmin, which is defined by leak-off tests conducted during drilling. Our results define a normal to strike-slip stress regime from 900 to 1386 m below seafloor, consistent with observations from seismic and core data. Our analysis also suggests that in situ values of UCS are generally slightly lower that commonly assumed on the basis of published empirical relations between UCS and P-wave velocity.

  13. Stratigraphy of the Martian northern plains

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.

    1993-01-01

    The northern plains of Mars are roughly defined as the large continuous region of lowlands that lies below Martian datum, plus higher areas within the region that were built up by volcanism, sedimentation, tectonism, and impacts. These northern lowlands span about 50 x 10(exp 6) km(sup 2) or 35 percent of the planet's surface. The age and origin of the lowlands continue to be debated by proponents of impact and tectonic explanations. Geologic mapping and topical studies indicate that volcanic, fluvial, and eolian deposition have played major roles in the infilling of this vast depression. Periglacial, glacial, fluvial, eolian, tectonic, and impact processes have locally modified the surface. Because of the northern plains' complex history of sedimentation and modification, much of their stratigraphy was obscured. Thus the stratigraphy developed is necessarily vague and provisional: it is based on various clues from within the lowlands as well as from highland areas within and bordering the plains. The results are summarized.

  14. Coseismic Contortion and Coupled Nocturnal Ionospheric Perturbations During 2016 Kaikoura, Mw 7.8 New Zealand Earthquake

    NASA Astrophysics Data System (ADS)

    Bagiya, Mala S.; Sunil, P. S.; Sunil, A. S.; Ramesh, D. S.

    2018-02-01

    The oblique-thrust Kaikoura earthquake of Mw 7.8 that struck New Zealand on 13 November 2016 at 11:02:56 UTC (local time at 00:02:56 a.m. on 14 November 2016) was one of the most geometrically and tectonically complex earthquakes recorded onshore in modern seismology. The event ruptured in the region of multisegmented faults and propagated unilaterally northeastward for more than 170 km from the epicenter. The GPS derived coseismic surface displacements reveal a larger widespread horizontal and vertical coseismic surface offsets of 6 m and 2 m, respectively, with two distinct tectonic thrust zones. We study the characteristics of coseismic ionospheric perturbations based on tectonic and nontectonic forcing mechanisms and demonstrate that these perturbations are linked to two distinct surface thrust zones with rotating horizontal reinforcement trending the rupture, rather than merely to the displacements oriented along the rupture propagation direction.

  15. New maps of Lakshmi Planum and eastern Aphrodite, Venus

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.

    1984-01-01

    Interest on Venus has centered on three regions; (1) Aphrodite Terra, especially east of the main uplant portion, (2) Ishtar Terra, especially Lakshmi Planum and its bounding scarp and massifs, and (3) Beta Regio-Phoebe Regio. The last region is topographically similar to the East African rift system, and has been inferred to have a similar tectonic origin. The Aphrodite region is part of a 21,000 km long tectonic zone that seems best explained as due to extension, and that may represent hot spots clustered along an incipient divergent plate boundary. The most interesting and complex portion of this tectonic zone is that part of eastern Aphrodite between Thetis Regio and Atla Regio. In contrast, the Lakshmi Planum region has many topographic characteristics suggesting that it is a true continent, and thus indicative of convergence and a thick crust. Detailed topographic contour maps of eastern Aphrodite Terra and of Lakshmi Planum are included.

  16. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    NASA Technical Reports Server (NTRS)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  17. Tectonic analysis of folds in the Colorado plateau of Arizona

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1975-01-01

    Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.

  18. Europa: Initial Galileo Geological Observations

    USGS Publications Warehouse

    Greeley, R.; Sullivan, R.; Klemaszewski, J.; Homan, K.; Head, J. W.; Pappalardo, R.T.; Veverka, J.; Clark, B.E.; Johnson, T.V.; Klaasen, K.P.; Belton, M.; Moore, J.; Asphaug, E.; Carr, M.H.; Neukum, G.; Denk, T.; Chapman, C.R.; Pilcher, C.B.; Geissler, P.E.; Greenberg, R.; Tufts, R.

    1998-01-01

    Images of Europa from the Galileo spacecraft show a surface with a complex history involving tectonic deformation, impact cratering, and possible emplacement of ice-rich materials and perhaps liquids on the surface. Differences in impact crater distributions suggest that some areas have been resurfaced more recently than others; Europa could experience current cryovolcanic and tectonic activity. Global-scale patterns of tectonic features suggest deformation resulting from non-synchronous rotation of Europa around Jupiter. Some regions of the lithosphere have been fractured, with icy plates separated and rotated into new positions. The dimensions of these plates suggest that the depth to liquid or mobile ice was only a few kilometers at the time of disruption. Some surfaces have also been upwarped, possibly by diapirs, cryomagmatic intrusions, or convective upwelling. In some places, this deformation has led to the development of chaotic terrain in which surface material has collapsed and/or been eroded. ?? 1998 Academic Press.

  19. Tectonic reversal of the western Doruneh Fault System: Implications for Central Asian tectonics

    NASA Astrophysics Data System (ADS)

    Javadi, Hamid Reza; Esterabi Ashtiani, Marzieh; Guest, Bernard; Yassaghi, Ali; Ghassemi, Mohammad Reza; Shahpasandzadeh, Majid; Naeimi, Amir

    2015-10-01

    The left-lateral Doruneh Fault System (DFS) bounds the north margin of the Central Iranian microplate and has played an important role in the structural evolution of the Turkish-Iranian plateau. The western termination of the DFS is a sinistral synthetic branch fault array that shows clear kinematic evidence of having undergone recent slip sense inversion from a dextral array to a sinistral array in the latest Neogene or earliest Quaternary. Similarly, kinematic evidence from the Anarak Metamorphic complex suggests that this complex initially developed at a transpressive left-stepping termination of the DFS and that it was inverted in the latest Neogene to a transtensional fault termination. The recognition that the DFS and other faults in NE Iran were inverted from dextral to sinistral strike slip in the latest Neogene and the likely connection between the DFS and the Herat Fault of Afghanistan suggests that prior to the latest Miocene, all of the north Iranian and northern Afghan ranges were part of a distributed dextral fault network that extended from the west Himalayan syntaxes to the western Alborz. Also, the recognition that regional slip sense inversion occurred across northern and northeastern Iran after the latest Miocene invalidates tectonic models that extrapolate Pleistocene to recent fault slip kinematics and rates back beyond this time.

  20. Consistent Top-to-the-foreland Directed Deformation from Floor to Roof in the Seve Nappe Complex (SNC), Jämtland, Sweden

    NASA Astrophysics Data System (ADS)

    Bender, H.; Ring, U.; Almqvist, B. S. G.; Glodny, J.; Grasemann, B.; Stephens, M. B.

    2016-12-01

    The recent COSC-1 drilling programme (Lorenz et al., 2015), discovery of microdiamonds (Majka et al., 2014) and discussion of extrusion-wedge tectonics (Grimmer et al., 2015) outline the importance of the Seve Nappe Complex (SNC) and its key role during the Caledonian orogeny. The kinematic evolution of the SNC is crucial for better understanding the entire mountain belt. Thorough structural mapping of the SNC and adjacent units was conducted in western and northern Jämtland, central Sweden. Complementary microstructural investigations strengthen the field observations and show consistent top-to-the-SE directed movement through all studied tectonic units. Amphibolite-facies deformation can be inferred from fabrics in the SNC, which are overprinted by greenschist-facies structures showing the same kinematics throughout the studied section of the nappe stack. These data indicate persistence of the same foreland-directed kinematics over a wide range of pressure-temperature conditions in space and time. Currently proposed models for exhuming high-grade metamorphic rocks in collisional orogens fail to explain these observations and highlight the need for discussing new tectonic concepts for the Scandinavian Caledonides. References: Grimmer et al., 2015, Geology 43 (4); Lorenz et al., 2015, Scientific Drilling 19; Majka et al. 2014, Geology 42 (12).

  1. From an active continental plate margin to continental collision: New constraints from the petrological, structural and geochronological record of the (ultra) high-P metamorphic Rhodope domain (N-Greece)

    NASA Astrophysics Data System (ADS)

    Mposkos, E.; Krohe, A.; Wawrzenitz, N.; Romer, R. L.

    2012-04-01

    The Rhodope domain occupies a key area along the suture between the European and the Apulian/Adriatic plate (Schmid et al., 2008), which collided in the early Tertiary (closure of the Vardar/Axios ocean, cf. Mposkos & Krohe, 2006). An integrated study of the geochronological, tectonic and petrological data of the Rhodope domain provides the unique opportunity resolving a 160 my lasting metamorphic evolution (Jurassic to Miocene) of an active plate margin to a high degree. The Greek Rhodope consists of several composite metamorphic complexes bounded by the Nestos thrust and several normal detachment systems. The PT- and structural records of the complexes constrain metamorphic, magmatic and tectonic processes, associated with subduction along a convergent plate margin including UHP metamorphism, MP to HP metamorphism associated with continental collision, and core complex formation linked to Aegean back arc extension. We focus on the Sidironero Complex that shows a polymetamorphic history. This is documented by SHRIMP and LA-ICP-MS U-Pb zircon ages of ca. 150 Ma from garnet-kyanite gneisses that are interpreted to record the HP/UHP metamorphism (Liati, 2005; Krenn et al., 2010). SHRIMP zircon ages of ca. 51 Ma from an amphibolitized eclogite is interpreted by Liati (2005) to record a second Eocene HP metamorphic event. We present new data from an integrated petrological, geochronological and tectonic study. Granulite facies and upper amphibolite facies metamorphic conditions are recorded by the mineral assemblage Grt-Ky-Bt-Pl-Kfs-Qtz-Rt and Grt-Ky-Bt-Ms-Pl-Qtz-Rt, respectively, in deformed migmatitic metapelites. Deformation occurred under granulite facies conditions. Monazites from the matrix, that formed during the granulite facies deformation, lack core/rim structures and are only locally patchy zoned. Monazite chemical compositions are related to varying reaction partners. Single grains and fractions of few grains yield ID-TIMS U-Pb ages that plot along the concordia between 64 to 60 Ma. One date of 55 Ma might represent Pb-loss during later fluid-induced dissolution-reprecipitation. We discuss the following questions: What is the history of the high-P metamorphic rocks in the Sidironero Complex? Were high-P rocks that have been already exhumed again dragged into the subduction channel? Which rocks from the upper plate are affected by high-P metamorphism evincing that subduction erosion is an important mechanism? We reconsider the significance of the P-T-t evolution in the light of the tectonic processes that took place along the depth extension of a convergent plate interface and during subsequent continental collision along the European/Apulian Suture zone. Krenn et al., 2010. Tectonics 29, TC4001. Liati, A., 2005. Contribution to Mineralogy and Petrology 150, 608-630. Mposkos, E. & Krohe, A. 2006. Canadian Journal of Earth Sciences 43, 1755-1776. Schmid S.M., et al. 2008. Swiss Journal of Geoscience 101, 139-183.

  2. Volcano spacings and lithospheric attenuation in the Eastern Rift of Africa

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.; Wood, C. A.

    1976-01-01

    The Eastern Rift of Africa runs the gamut of crustal and lithospheric attenuation from undeformed shield through attenuated rift margin to active neo-oceanic spreading zones. It is therefore peculiarly well suited to an examination of relationships between volcano spacings and crust/lithosphere thickness. Although lithospheric thickness is not well known in Eastern Africa, it appears to have direct expression in the surface spacing of volcanoes for any given tectonic regime. This applies whether the volcanoes are essentially basaltic, silicic, or alkaline-carbonatitic. No evidence is found for control of volcano sites by a pre-existing fracture grid in the crust.

  3. Soft sediment deformation associated with the East Patna Fault south of the Ganga River, northern India: Influence of the Himalayan tectonics on the southern Ganga plain

    NASA Astrophysics Data System (ADS)

    Verma, Aditya K.; Pati, Pitambar; Sharma, Vijay

    2017-08-01

    The geomorphic, tectonic and seismic aspects of the Ganga plain have been studied by several workers in the recent decades. However, the northern part of this tectonically active plain has been the prime focus in most of the studies. The region to the south of the Ganga River requires necessary attention, especially, regarding the seismic activities. The region lying immediately south of the Outer Himalayas (i.e. the Ganga plain) responds to the stress regime of the Himalayan Frontal Thrust Zone by movement along the existing basement faults (extending from the Indian Peninsula) and creating new surface faults within the sediment cover as well. As a result, several earthquakes have been recorded along these basement faults, such as the great earthquakes of 1934 and 1988 associated with the East Patna Fault. Large zones of ground failure and liquefaction in north Bihar (close to the Himalayan front), have been recorded associated with these earthquakes. The present study reports the soft sediment deformation structures from the south Bihar associated with the prehistoric earthquakes near the East Patna Fault for the first time. The seismites have been observed in the riverine sand bed of the Dardha River close to the East Patna Fault. Several types of liquefaction-induced deformation structures such as pillar and pocket structure, thixotropic wedge, liquefaction cusps and other water escape structures have been identified. The location of the observed seismites within the deformed zone of the East Patna Fault clearly indicates their formation due to activities along this fault. However, the distance of the liquefaction site from the recorded epicenters suggests its dissociation with the recorded earthquakes so far and hence possibly relates to any prehistoric seismic event. The occurrence of the earthquakes of a magnitude capable of forming liquefaction structure in the southern Ganga plain indicates the transfer of stress regime far from the Himalayan front into the peninsular region through these basement faults. Northward extension of the East Patna Fault coincides with the region of the Himalayan front, which corresponds to a less slip potential. Therefore, an association of frequent earthquakes in this region indicates strain release along the East Patna Fault.

  4. Pacific tectonics: Eastern-Pacific "stationarity" of EPR and causative association with Equator

    NASA Astrophysics Data System (ADS)

    Bostrom, R. C.

    2003-04-01

    The fundamentals of present-day Pacific tectonics are observed to be: its N/S mirror-symmetry about the Equator, displayed by the major transforms; its E/W asymmetry, represented by the western motion of the world's largest plate, originating in the eastern Equatorial Pacific; and correspondingly, development of the globally most voluminous subduction, at the western Pacific margin. The configuration seen at present is maintained at a fundamental level. The maximum in convective upwelling develops as coalescing plumes in the Galapagos region in the eastern Pacific. This has been found (Lonsdale 1988; McGuire and Hilde 2002; Chen and Lin 2002) to produce steady westward propagation of the Nazca/Cocos axis. Continually renewed, it determines the orientation and locus of a quasi-stationary EPR, centered on the Equator. Magnetic dating of boundaries in satellite gravity images records the Cenozoic history of the EPR, namely re-orientation in consequence of slow counter-clockwise re-orientation of the Equator. Relative to the present, during Maastrichtian times both Equator and plate motion were aligned WNW, recorded paleomagnetically and by features in the western, older part of the Pacific crust. Material subducted at that time accumulated principally beneath the SE Asia margin. Its slow heating is believed to play a role in the deep-seated activity and back-arc spreading associated with latter-day convergence in that region. The mechanism primarily responsible for the Pacific regime may be that mantle convection is not immune, as is generally tacitly supposed, to the minute westward tilt (c. 0.36°) under which it takes place. The latter, now astronomically quantifiable without tidal identification, represents the attraction component of water and solid-Earth masses which averaged over unit day lags the direction of purely geocentric g. Under gravity minutely E/W asymmetric, convection as always promoting the most efficient dissipative configuration, favors disproportionately large surface-west displacement, maximum at the contemporary Equator (=west limb of EPR upwelling). Some conclusions are a), that it is no longer adequate to model global convection assuming that angular momentum is conserved internally; in reality a considerable part is exported, here measured by expansion of the lunar orbit; and b), that the tectonics of an Earth simultaneously under vigorous convection and in asynchronous rotation relative to the mass center of Kuiper's Earth-Moon double planet, differs fundamentally from the regime developing within a fictitious isolated planet.

  5. Cleats and their relation to geologic lineaments and coalbed methane potential in Pennsylvanian coals in Indiana

    USGS Publications Warehouse

    Solano-Acosta, W.; Mastalerz, Maria; Schimmelmann, A.

    2007-01-01

    Cleats and fractures in Pennsylvanian coals in southwestern Indiana were described, statistically analyzed, and subsequently interpreted in terms of their origin, relation to geologic lineaments, and significance for coal permeability and coalbed gas generation and storage. These cleats can be interpreted as the result of superimposed endogenic and exogenic processes. Endogenic processes are associated with coalification (i.e., matrix dehydration and shrinkage), while exogenic processes are mainly associated with larger-scale phenomena, such as tectonic stress. At least two distinct generations of cleats were identified on the basis of field reconnaissance and microscopic study: a first generation of cleats that developed early on during coalification and a second generation that cuts through the previous one at an angle that mimics the orientation of the present-day stress field. The observed parallelism between early-formed cleats and mapped lineaments suggests a well-established tectonic control during early cleat formation. Authigenic minerals filling early cleats represent the vestiges of once open hydrologic regimes. The second generation of cleats is characterized by less prominent features (i.e., smaller apertures) with a much less pronounced occurrence of authigenic mineralization. Our findings suggest a multistage development of cleats that resulted from tectonic stress regimes that changed orientation during coalification and basin evolution. The coals studied are characterized by a macrocleat distribution similar to that of well-developed coalbed methane basins (e.g., Black Warrior Basin, Alabama). Scatter plots and regression analyses of meso- and microcleats reveal a power-law distribution between spacing and cleat aperture. The same distribution was observed for fractures at microscopic scale. Our observations suggest that microcleats enhance permeability by providing additional paths for migration of gas out of the coal matrix, in addition to providing access for methanogenic bacteria. The abundance, distribution, and orientation of cleats control coal fabric and are crucial features in all stages of coalbed gas operations (i.e., exploration and production). Understanding coal fabric is important for coal gas exploration as it may be related to groundwater migration and the occurrence of methanogenic bacteria, prerequisite to biogenic gas accumulations. Likewise, the distribution of cleats in coal also determines pathways for migration and accumulation of thermogenic gas generated during coalification. ?? 2007 Elsevier B.V. All rights reserved.

  6. Wet Tectonics: A New Planetary Synthesis

    NASA Astrophysics Data System (ADS)

    Grimm, K. A.

    2005-12-01

    Most geoscientists (and geoscience textbooks) describe plate tectonics as a `solid-Earth' phenomenon, with fluids playing an important role in discrete geodynamic processes. As a community of diverse research specialists, the critical role of water is being widely elucidated, however these diverse studies do not address the fundamental origin and operation of the global plate tectonic phenomenon, and its expressions in planetary geodynamics and geomorphology. The Wet Tectonics hypothesis extends well beyond the plate tectonics paradigm, to constitute a new synthesis of diverse geoscience specializations and self-organizing complexity into a simple, internally consistent and explicitly testable model. The Wet Tectonics hypothesis asserts that Earth's plate tectonic system arose from and is the explicit and dynamic result of water interacting with the hot silicate mantle. The tectosphere is defined as an interactive functional (rather than structural, compositional or rheological) entity, a planetary-scale dynamic system of plate formation, plate motion, and rock/volatile recycling. Earth's tectosphere extends from the base of the asthenosphere to the top of the crust, arising and evolving as a dynamic pattern of organization that creates, orders and perpetuates itself. Earth's tectosphere is energetically-open, materially ajar (steady-state operation may not require sub-asthenospheric inputs; shifts between distinct tectonic modes may result from changes in coupling between the tectosphere and subasthenospheric reservoirs) and chemically-closed (i.e. the tectosphere recycles its own wastes). Water is a fundamental requirement in all of the constituent processes of Earth's tectosphere, including seafloor spreading, slab cooling/subsidence, plate motion, asthenosphere rheology, and subduction (where crustal and volatile recycling occur). As a working hypothesis, we suggest that the dynamic and persistent hydrosphere and tectosphere on planet Earth are fully interdependent and co-evolving phenomena. The concept of autocatalytic hypercycles has been adapted from molecular biology to resolve the apparent paradox of circular causality amongst the coupled phenomena of liquid water oceans and `plate tectonics'. This new planetary synthesis presents fundamental implications for geological, geophysical, Earth system and planetary sciences, as well as novel hypotheses concerning plate drive (gravity sliding ± slab pull), origin of plate tectonics (Hadean, >=4.4Ga), biogeochemical cycling (balanced global fluxes of water into and out of the tectosphere; is the asthenosphere continuously rehydrated via lateral advection) and planetary geomorphology (simple contrasts between Mars, Earth and Venus).

  7. Drainage basin and topographic analysis of a tropical landscape: Insights into surface and tectonic processes in northern Borneo

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad

    2016-07-01

    We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.

  8. Thermal evolution and exhumation of deep-level batholithic exposures, southernmost Sierra Nevada, California

    USGS Publications Warehouse

    Saleeby, J.; Farley, K.A.; Kistler, R.W.; Fleck, R.J.

    2007-01-01

    The Tehachapi complex lies at the southern end of the Sierra Nevada batholith adjacent to the Neogene-Quaternary Garlock fault. The complex is composed principally of high-pressure (8-10 kbar) Cretaceous batholithic rocks, and it represents the deepest exposed levels of a continuous oblique crustal section through the southern Sierra Nevada batholith. Over the southern ???100 km of this section, structural/petrologic continuity and geochronological data indicate that ???35 km of felsic to intermediate-composition crust was generated by copious arc magmatism primarily between 105 and 99 Ma. In the Tehachapi complex, these batholithic rocks intrude and are bounded to the west by similar-composition gneissic-textured high-pressure batholithic rocks emplaced at ca. 115-110 Ma. This lower crustal complex is bounded below by a regional thrust system, which in Late Cretaceous time tectonically eroded the underlying mantle lithosphere, and in series displaced and underplated the Rand Schist subduction assemblage by low-angle slip from the outboard Franciscan trench. Geophysical and mantle xenolith studies indicate that the remnants of this shallow subduction thrust descend northward through the crust and into the mantle, leaving the mantle lithosphere intact beneath the greater Sierra Nevada batholith. This north-dipping regional structure records an inflection in the Farallon plate, which was segmented into a shallow subduc-tion trajectory to the south and a normal steeper trajectory to the north. We combine new and published data from a broad spectrum of thermochronom-eters that together form a coherent data array constraining the thermal evolution of the complex. Integration of these data with published thermobarometric and petro-genetic data also constrains the tectonically driven decompression and exhumation history of the complex. The timing of arc magmatic construction of the complex, as denoted above, is resolved by a large body of U/Pb zircon ages. High-confidence thermochronometric data track a single retrogressing path commencing from widely established solidus conditions at ca. 100 Ma, and traversing through time-temperature space as follows: (1) Sm/Nd garnet ???770-680 ??C at ca. 102-95 Ma, (2) U/Pb titanite ???750-600 ??C at ca. 102-95 Ma, (3) Ar/Ar hornblende ???570-490 ??C at ca. 94-91 Ma, (4) Rb/Sr biotite ???390-260 ??C at ca. 90-86 Ma, (5) Ar/Ar biotite ???320-240 ??C at ca. 88-85 Ma, and (6) (U-Th)/He zircon ???230-170 ??C at ca. 88-83 Ma. Additional stratigraphic constraints place the complex at surface conditions in Paleocene-early Eocene time (ca. 66-55 Ma). Integration of these results with thermobarometric and structural data, including published data on the underlying Rand Schist, reveals a profound tectonic event whereby rapid cooling and exhumation at rates potentially as high as 100s ??C/m.y. and >5 mm/yr initiated at ca. 98 Ma and peaked between 96 and 94 Ma. Between 93 and 85 Ma, cooling rates remained high, but decelerated with or without significant exhumation. Subsequent cooling and exhumation rates are poorly constrained but were much slower and ultimately resulted in Paleocene-Eocene surface exposure. Initial rapid exhumation and cooling are hypothesized to have been driven by abrupt flattening in the corresponding segment of the Farallon plate and the resulting tectonic erosion of the underlying mantle lithosphere. Protolith as well as meta-morphic pressure-temperature and age constraints on the Rand Schist indicate its rapid low-angle subduction between 93 and 88 Ma. Comparison of the Rand Schist and Tehachapi complex pressure-temperature-time paths in conjunction with structural relations strongly suggest that the schist ascended the equivalent of ???4 kbar relative to the Tehachapi complex by low-angle normal displacement along the Rand fault between 88 and 80 Ma to attain its current underplated structural position. Such extensional tectonism is hypothesized to have been driven by slab rollback

  9. Claritas Fossae Enhanced Color

    NASA Image and Video Library

    1998-06-04

    Mars Syria Planum-centered volcanism and tectonism produced fractures, narrow to broad grabens, large scarps, and broad fold and thrust ridges that deformed a basement complex captured by NASA's Viking Orbiter 2. http://photojournal.jpl.nasa.gov/catalog/PIA00154

  10. Geochemical characteristics of charnockite and high grade gneisses from Southern Peninsular Shield and their significance in crustal evolution

    NASA Technical Reports Server (NTRS)

    Sugavanam, E. B.; Vidyadharan, K. T.

    1988-01-01

    Presented here are the results of detailed investigations encompassing externsive structural mapping in the charnockite-high grade gneiss terrain of North Arcot district and the type area in Pallavaram in Tamil Nadu supported by petrography, mineral chemistry, major, minor and REE distribution patterns in various lithounits. This has helped in understanding the evolutionary history of the southern peninsular shield. A possible tectonic model is also suggested. The results of these studies are compared with similar rock types from parts of Andhra Pradesh, Kerala, Sri Lanka, Lapland and Nigeria which has brought about a well defined correlation in geochemical characteristics. The area investigated has an interbanded sequence of thick pile of charnockite and a supracrustal succession of shelf type sediments, layered igneous complex, basic and ultrabasic rocks involved in a complex structural, tectonic, igneous and metamorphic events.

  11. Structural characteristics and tectonics of northeastern Tellus Regio and Meni Tessera

    NASA Technical Reports Server (NTRS)

    Toermaenen, T.

    1992-01-01

    The Tellus Regio-Meni Tessera region is an interesting highland area characterized by large areas of complex ridged terrain or tessera terrain. The area was previously studied from the Venera 15/16 data, typical characteristics of complex tessera terrain of Tellus Regio were analyzed, and a formation mechanism was proposed. Apparent depths of compensation of approximately 30-50 km were calculated from Pioneer Venus gravity and topography data. These values indicate predominant Airy compensation for the area. Regional stresses and lithospheric structures were defined from analysis of surface structures, topography, and gravity data. In this work we concentrate on northeastern Tellus Regio and Meni Tessera, which are situated north and west of Tellus Regio. Structural features and relationships are analyzed in order to interpret tectonic history of the area. Study area was divided into three subareas: northeastern Tellus Regio, Meni Tessera, and the deformed plain between them.

  12. Major Element Geochemistry of Peridotites from Santa Elena Ophiolite Complex, NW Costa Rica and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Wright, S.; Snow, J. E.; Gazel, E.; Sisson, V.

    2010-12-01

    The Santa Elena Ophiolite Complex (SEOC) is located on the west coast of Northern Costa Rica, near the Nicaraguan border. It consists primarily of preserved oceanic crustal rocks and underlying upper mantle thrust onto an accretionary complex. The petrogenesis and tectonic origin of this complex have widely been interpreted to be either a preserved mantle portion of the Caribbean Large Igneous Province (CLIP) as it drifted between North and South America from the Galapagos hotpot into the present day Caribbean Ocean around 80 Ma or as the mantle section to the nearby Nicoya complex. Previous structural work suggests that SEOC is a supra-subduction complex, not related to the CLIP or Nicoya. Our preliminary results agree. Mantle peridotites collected from the Santa Elena Ophiolite Complex consist primarily of spinel lherzolite (61 %) with minor amounts of harzburgite and dunite (22 % and 16 % respectively). Spinel Cr# [molar Cr / (Cr+Al)*100] is widely accepted to constrain mantle partial melting and lithospheric melt stagnation. Cr# of spinels within Santa Elena lherzolites fall between 12 and 35, suggesting an extent of 3 % to 13 % partial melting. Cr# of harzburgites range from 35 to 39, suggesting 13 % to 14 % partial melting. This range of partial melting suggests only modest depletion of this exposed portion of the ancient uppermost mantle. TiO2 concentrations of the lherzolite and harzburgite range from 0.004% to 0.128%, with the exception of one sample, SE10 - 17 (0.258%), and fall within the normal melting trend for mantle peridotites. The presence of dunite indicates that melt flow and associated melt - rock reaction with the surrounding peridotite took place within this portion of the mantle. A Cr# of 84.5 from one of these dunite samples indicate that significant melt rock reaction with refractory melts took place. Such results are rarely found in mid-ocean ridge abyssal peridotite settings, and are currently found primarily in forearc tectonic settings. However, due to the overall "normal" TiO2 concentrations in all but one spinel peridotite requires that if melt flow did occur, that the melt be nearly depleted in titanium. The relatively low Cr#'s and TiO2 concentrations of spinel in these peridotites that suggest low degrees of partial melting along with the paleo presence of melt flow and melt-rock reaction by low titanium melts, such as boninites, point toward a young fore-arc model for the tectonic origin of this ophiolite body rather than a preserved mantle portion of the CLIP. Additionally, two lines of evidence suggest SEOC was emplaced prior to the collision of the CLIP with North and South America. The SEOC is 1) capped by a Campanian (83.5 - 70.6 Ma) rudist limestone and 2) lies uncomformably atop Cenomanian (93.6 - 99.6 Ma) radiolarite beds. This suggests that the mantle portion of the SEOC was emplaced and exposed at the Caribbean ocean floor prior to the Late Cretaceous (Campanian), but no earlier than the Cenomanian. This combined tectonic and geochemical evidence suggests SEOC may be a portion of the proto-arc that existed between the Americas in the Cretaceous prior to assault by the CLIP.

  13. From Extension to Transcurrence: Regime Transition as a new key to Interpret Seismogenesis in the Southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Fracassi, U.; Vannoli, P.; Burrato, P.; Basili, R.; Tiberti, M. M.; di Bucci, D.; Valensise, G.

    2006-12-01

    The backbone of the Southern Apennines is perhaps the largest seismic moment release area in Italy. The region is dominated by an extensional regime dating back to the Middle Pleistocene, with maximum extension striking SW-NE (i.e. orthogonal to the mountain belt). The full length (~ 200 km) of the mountain range has been the locus of several destructive earthquakes occurring in the uppermost 10-12 km of the crust. This seismicity is due to a well documented normal faulting mechanism. Instrumental earthquakes (e.g. 5 May 1990, 31 Oct 2002, 1 Nov 2002; all M 5.8) that have occurred in the foreland, east of the Southern Apennines, have posed new questions concerning seismogenic processes in southern Italy. Although of moderate magnitude, these events unveiled the presence of E-W striking, deeper (13-25 km) strike-slip faults. Recent studies suggest that these less known faults belong to inherited shear zones with a multi-phase tectonic history, the most recent phase being a right-lateral reactivation. The direction of the maximum horizontal extension of these faults (in a transcurrent regime) coincides with the maximum horizontal extension in the core of the Southern Apennines (in an extensional regime) and both are compatible with the general framework provided by the Africa-Europe convergence. However, the regional extent along strike of the E-W shear zones poses the issue of their continuity from the foreland towards the thrust-belt. The 1456 (M 6.9) and 1930 (M 6.7) earthquakes, that occurred just east of the main extensional axis, were caused by faults having a strike intermediate between the E-W, deeper strike-slip faults in the foreland and the NW-SE-trending, shallower normal faults in the extensional belt. Hence, the location and geometry of these seismogenic sources suggests that there could be a transition zone between the crustal volumes affected by the extensional and transcurrent regimes. To image such transition, we built a 3D model that incorporates data available from surface and subsurface geology (published and unpublished), seismogenic faults, seismicity, focal mechanisms, and gravity anomalies. We explored the mechanisms of fault interaction in the Southern Apennines between the extensional upper portion and the transcurrent deeper portion of the seismogenic layer. In particular, we studied (a) how the reactivation of regional shear zones interacts with an adjacent, although structurally independent, extensional belt; (b) at what depth range the interaction occurs; and (c1) whether oblique slip in earthquakes like the 1930 event is merely due to the geometry of the causative fault, or (c2) such geometry and kinematics are the result of oblique slip due to fault interaction. We propose that (a) the 1456 and 1930 earthquakes are the expression of the transition between the two tectonic regimes, and that (b) these events can be seen as templates of the seismogenic oblique-slip faulting that occurs at intermediate depths between the shallower extensional faults and the deeper strike-slip faults. These findings suggest that a transtensional faulting mechanism governs the release of major earthquakes in the transition zone between extensional and transcurrent domains.

  14. Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Doğan, Uğur; Koçyiğit, Ali

    2018-04-01

    This study focuses on the morphotectonic evolutionary history of two significant geomorphic features, Suğla structural-border polje and Maviboğaz canyon, located within the Suğla-Seydişehir, Akören-Kavakköy, and Bozkır grabens in the central Taurides. Data were obtained by detailed field mapping of faults, rocks, and geomorphic features. Three phases of tectonic deformation were determined. The three erosional surfaces developed, especially in the form of tectonically controlled steps, during Oligocene-early Miocene, middle Miocene, and late Miocene-early Pliocene, sequentially. Southwest- to northeast-trending karstified hanging paleovalleys are present on the high erosional surfaces, which have been attributed to the end of early Miocene and late Miocene. Faulting-induced tectonic movements enabled the formation of Suğla-Seydişehir paleograben in early Miocene. We suggest that the Maviboğaz canyon was formed by captures at the beginning of late Miocene and late Pliocene and by incision in Late Pliocene-Quaternary, depending on the headward erosion of Çarşamba River. Starting from the beginning of Quaternary, a tensional neotectonic regime became prominent and then a series of modern graben-horst structures formed along the reactivated older grabens. One of these is the Suğla-Seydişehir reactivated graben. Suğla structural-border polje developed within the graben. Total visible tectonic subsidence of the polje is 134 m. Underground capture of surface water occurred on the southern slopes of the graben. Waters of Suğla polje are transported intermittently into Konya basin on the surface and into the Mediterranean basin via natural swallow holes. Beach deposits, water marks, cliffs, and notches marking the late Pleistocene lake level (10 m) and two perched corrosion surfaces ( 50 and 22 m) were detected around the polje.

  15. Unzipping of the volcano arc, Japan

    USGS Publications Warehouse

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  16. Exhumation and stress history in the sedimentary cover during Laramide thick-skinned tectonics assessed by stylolite roughness analysis.

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Lacombe, Olivier; David, Marie-Eléonore; Koehn, Daniel; Coltier, Robin

    2017-04-01

    Basement-involvement in shortening in forelands has a strong impact on the overlying sedimentary cover. The basement influences namely the geometry of folds and structures, the stress evolution and the nature and pathways for fluid migrations. However, these influences are poorly documented in context where the basement/cover interface is shallow (<6 km). This contribution presents the reconstruction of paleostress and vertical burial history of the Palaeozoic sedimentary strata affected by the Sevier-Laramide deformation at the front of the Rocky Mountains, in the Bighorn Basin (Wyoming, USA). Stylolite populations have been considered as part of an extensive microstructure investigation including also fractures, striated microfaults and calcite twins in key major structures such as the Sheep Mountain Anticline, the Rattlesnake Mountain Anticline, and the Bighorn Mountains Arch. Stylolite recognized in the field are clearly related to successive stages of deformation of the sedimentary cover, including fold development. We further apply a newly developed roughness analysis of pressure-solution stylolites which grant access (1) to the magnitude of the vertical principal stress, hence the maximum burial depth of the strata based on sedimentary stylolites, (2) to the principal stress orientations and regimes based on tectonic stylolites and (3) ultimately to the complete stress tensor when sedimentary and tectonic stylolites can be considered coeval. This approach was then coupled to mechanical properties of main competent formations exposed in the basin. Results of stylolite paleopiezometry, compared and combined to existing paleostress estimates from calcite twins and to exhumation reconstruction from low-temperature thermochronology, unravel the potential of the method to refine the structural history at the structure- and basin-scale. On top of the advances this case study adds to the methodology, the quantified reconstruction of stress-exhumation evolution in such a broken-foreland context offers a unique opportunity to discuss how thick-skinned tectonics impacts stress distribution in the sedimentary cover.

  17. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany)

    PubMed Central

    Berberich, Gabriele; Schreiber, Ulrich

    2013-01-01

    Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel. PMID:26487413

  18. Active stress along the ne external margin of the Apennines: the Ferrara arc, northern Italy

    NASA Astrophysics Data System (ADS)

    Montone, Paola; Mariucci, M. Teresa

    1999-09-01

    We have analysed borehole breakout data from 12 deep wells in order to constrain the direction of the minimum and maximum horizontal stress in a part of the Po Plain, northern Italy, characterised by a ˜N-S prevailing compressional stress regime, and in order to shed light on the regional state of stress and on the correlation between the active stress field and the orientation of tectonic structures. The results have been compared with seismological data relating to 1988-1995 crustal seismicity (2.5< Md<4.8) and to the 1983 Parma ( Ms=5.0) and the 1996 Reggio Emilia ( Ms=5.1) events. Plio-Pleistocene mesostructural data are also described in order to better define the present-day stress field and to understand the active tectonic processes in particular stress provinces. The borehole breakout analysis, in accordance with the seismicity and mesostructural data, shows the presence of a predominant compression area, characterised by approximately N-S maximum horizontal stress, along the outer thrust of the Ferrara arc. Particularly, the breakout analysis indicates a minimum horizontal stress, N81W±22° relative to a total of eleven analysed wells, with 3746 m cumulative total length of breakout zones. Among these, nine wells are located in the same tectonic structure, consisting of an arc of asymmetric folds overthrust towards the NE. The breakout results for these wells are quite similar in terms of minimum horizontal stress direction (˜E-W oriented). The other two wells are located in the outside sector of the arc and one of them shows a different minimum horizontal stress direction, probably distinctive of another tectonic unit. On the basis of these new reliable stress indicators, the active compressive front in this area is located along the termination of the external northern Apenninic arc.

  19. Weathering processes and the composition of inorganic material transported through the orinoco river system, Venezuela and Colombia

    USGS Publications Warehouse

    Stallard, R.F.; Koehnken, L.; Johnsson, M.J.

    1991-01-01

    The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos to the main stem of the Orinoco. After mixing into the main stem, there seems to be little subsequent alteration of sediment. ?? 1991.

  20. Mars Geological Province Designations for the Interpretation of GRS Data

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Kerry, K.; Baker, V. R.; Boynton, W.; Maruyama, Shige; Anderson, R. C.

    2005-01-01

    Introduction: An overarching geologic theory, GEOMARS, coherently explains many otherwise anomalous aspects of the geological history of Mars. Premises for a theory of martian geologic evolution include: (1) Mars is a water-rich terrestrial planet, (2) terrestrial planets should evolve through progressive stages of dynamical history (accretion, differentiation, tectonism) and mantle convection (magma ocean, plate tectonism, stagnant lid), and (3) the early history of Earth affords an analogue to the evolution of Mars. The theory describes the following major stages of evolution for Mars (from oldest to youngest): Stage 1 - shortly after accretion, Mars differentiates to a liquid metallic core, a mantle boundary (MBL) of high-pressure silicate mineral phases, upper mantle, magma ocean, thin komatiic crust, and convecting steam atmosphere; Stage 2- Mars cools to condense its steam atmosphere and transform its mode of mantle convection to plate tectonism; subduction of waterrich oceanic crust initiates arc volcanism and transfers water, carbonates and sulfates to the mantle; Stage 3 - the core dynamo initiates, and the associated magnetosphere leads to conditions conducive to the development of near-surface life and photosynthetic production of oxygen; Stage 4 - accretion of thickened, continental crust and subduction of hydrated oceanic crust to the mantle boundary layer and lower mantle of Mars occurs; Stage 5 - the core dynamo stops during Noachian heavy bombardment while plate tectonism continues; Stage 6 - initiation of the Tharsis superplume (approx. between 4.0 and 3.8Ga) occurs, and Stage 7 - the superlume phase (stagnant-lid regime) of martian planetary evolution with episodic phases of volcanism and water outflows continues into the present. The GEOMARS Theory is testable through a multidisciplinary approach, including utilizing GRS-based information. Based on a synthesis of published geologic, paleohydrologic, topographic, geophysical, spectral, and elemental information, we have defined geologic provinces that represent significant windows into the geological evolution of Mars, unfolding the GEOMARS Theory and forming the basis for interpreting GRS data.

  1. Tectonic study of the extension of the New Madrid fault zone near its intersection with the 38th parallel lineament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braile, L.W.; Hinze, W.J.; Sexton, J.L.

    1982-06-01

    Gravity, magnetic, geologic, and seismicity data have been combined in a seismotectonic analysis of the New Madrid seismic zone. Previous studies have presented evidence for several rift zones in this area (Upper Mississippi enmbayment), including the Reelfoot rift, a late precambrian-early Paleozoic failed arm which extends north-northeast from the ancient continental margin. We suggest that the northern terminus of the Reelfoot rift forms a rift complex, with arms extending northeast into southwestern Indiana, northwest along the Mississippi River, and east into western Kentucky, which appears to correlate well with the seismicity in the area. This correlation suggests that faults associatedmore » with this rift complex are being reactivated in the contemporary stress field (east-northeast compression). If this interpretation is valid, it represents a seismotectonic model which can be used to predict the extent of future seismicity in the New Madrid seismic zone. The proposed rift complex also provides a coherent model for the tectonic development of this region of the North American midcontinent.« less

  2. Interaction between fault systems in a complex tectonic setting: Insights from InSAR and Teleseismic analysis of the 2015 Lake Saurez and 2016 Muji fault earthquake sequence

    NASA Astrophysics Data System (ADS)

    Nanjundiah, P.; Barbot, S.; Wei, S.; Tapponnier, P.; Feng, W.; Wang, T.

    2017-12-01

    The Pamir Plateau is a complex and important component of the India-Eurasia Collision zone. Despite being similar to the Tibetan plateau in elevation and collision processes, quite a bit is still unknown about the structure and the tectonic processes occurring in this region. We aim to better understand the structure, stress and deformation patterns in the northern and central Pamir plateau by analysing InSAR, teleseismic, and optical data for two large earthquakes that occurred in this region between December 2015 (Mw 7.2, Lake Saurez) and November 2016 (Mw 6.6 Muji Fault). We constrain the fault geometry by precisely relocating aftershocks using the double difference technique implemented in HypoDD (Waldhauser & Ellsworth 2000). We used Okada's (1992) Green Functions to invert for slip on the fault with a rectangular dislocation and edgreen to numerically invert for the slip in a layered medium (Wang et al. 2005). The combined datasets highlight the existence of an oblique fault between two major thrust fault systems i.e. the Darwas & the Karakoram faults. The December 2015 event highlights complexity in this fault system. The combination of data sets used in this study highlights the existence of a seismic gap south of Lake Karakul as well as coupling between the Muji and Darwas-Karakoram fault systems. We emphasise the role of smaller faults and their interactions in accommodating the overall strain and tectonics in the Pamir region and their effect on estimating local seismic hazard.

  3. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-01-01

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic [open quotes]lowstand[close quotes] systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less

  4. Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.

    1996-12-31

    Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic {open_quotes}lowstand{close_quotes} systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less

  5. Eclogite nappe-stack in the Grivola-Urtier Ophiolites (Southern Aosta Valley, Western Alps)

    NASA Astrophysics Data System (ADS)

    Tartarotti, Paola

    2013-04-01

    In the Western Alpine chain, ophiolites represent a section of the Mesozoic Tethys oceanic lithosphere, involved in subduction during the convergence between the paleo-Africa and paelo-Europe continents during the Cretaceous - Eocene. The Western Alpine ophiolites consist of several tectonic units, the most famous being the Zermatt-Saas and Combin nappes, and other major ophiolite bodies as the Voltri, Monviso, and Rocciavrè that show different rock assemblages and contrasting metamorphic imprints. The Grivola-Urtier (GU) unit is exposed in the southern Aosta Valley, covering an area of about 100 km2; it is tectonically sandwiched between the continentally-derived Pennidic Gran Paradiso Nappe below, and the Austroalpine Mount Emilius klippe above. This unit has been so far considered as part of the Zermatt-Saas nappe extending from the Saas-Fee area (Switzerland) to the Aosta Valley (Italy). The GU unit consists of serpentinized peridotites that include pods and boudinaged layers of eclogitic Fe-metagabbro and trondhjemite, rodingites and chloriteschists transposed in the main foliation together with calcschists and micaschists. All rocks preserve particularly fresh eclogitic mineral assemblages. The contact between the serpentinites and calcshists is marked by a tectonic mélange consisting of mylonitic marble and calcschist with stretched and boudinaged serpentinite blocks. Continentally-derived allochthonous blocks ranging in size from100 meters to meters are also included within the ophiolites. New field, petrographic and geochemical data reveal the complex nature of the fossil Tethyan oceanic lithosphere exposed in the southern Aosta Valley, as well as the extent and size of the continental-oceanic tectonic mélange. The geological setting of the GU unit is here inferred as a key tool for understanding the complex architecture of the ophiolites in the Western Alps.

  6. Three-dimensional Gravity Modeling of Ocean Core Complexes at the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Chandler, M. T.; Pak, S. J.; Son, S. K.

    2017-12-01

    The spatial distribution of ocean core complexes (OCCs) on mid-ocean ridge flanks can indicate the variation of magmatism and tectonic extension at a given spreading center. A recent study revealed 11 prominent OCCs developed along the middle portion of the Central Indian Ridge (CIR) based on the high-resolution shipboard bathymetry. The CIR is located between the Carlsberg Ridge and the Indian Ocean triple junction. The detailed morphotectonic interpretations from the recent study suggested that the middle ridge segments of the CIR were mainly developed through tectonic extension with little magmatism. Furthermore, the OCCs exposed by detachment faults appear to the main host for active off-axis hydrothermal circulations. Here we form a three-dimensional gravity model to investigate the crustal structures of OCCs developed between 12oS and 14oS at the CIR. These OCCs exhibit domal topographic highs with corrugated surface. The rock samples from these areas include deep-seated rocks such as serpentinized harzburgite and gabbro. A typical gravity study on mid-ocean ridges assumes a constant density contrast along the water-crust interface and constant crustal thickness and removes its gravitational contributions and thermal effects of lithospheric cooling from the free-air gravity anomaly. This approach is effective to distinguish anomalous regions that deviate from the applied crustal and thermal models. The oceanic crust around the OCCs, however, tends to be thinned due to detachment faulting and tectonic extension. In this study, we include multi-layers with different density contrast and variable thickness to approximate gravity anomalies resulting from the OCCs. In addition, we aim to differentiate the geophysical characteristics of the OCCs from the nearby ridge segments and infer tectonic relationship between the OCCs and ridges.

  7. An Integrated View of Tectonics in the North Pacific Derived from GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J.; Marechal, A.; Larsen, C.; Perea Barreto, M. A.

    2015-12-01

    Textbooks show a simple picture of the tectonics of the North Pacific, with discrete deformation along the boundary between the Pacific and North American plates along the Aleutian megathrust and Fairweather/Queen Charlotte fault system. Reality is much more complex, with a pattern of broadly distributed deformation. This is in part due to a number of studies and initiatives (such as PBO) in recent years that have greatly expanded the density of GPS data throughout the region. We present an overview of the GPS data acquired and various tectonic interpretations developed over the past decade and discuss a current effort to integrate the available data into a regional tectonic model for Alaska and northwestern Canada. Rather than discrete plate boundaries, we observe zones of concentrated deformation where the majority of the relative plate motion is accommodated. Within these zones, there are major fault systems, such as the Fairweather-Queen Charlotte transform and the Aleutian megathrust, where most of the deformation occurs along a main structure, but often motion is instead partitioned across multiple faults, such as the fold-and-thrust belt of the eastern St. Elias orogen. In zones of particular complexity, such as the eastern syntaxis of the St. Elias orogen, the deformation is better described by continuum deformation than localized strain along crustal structures. Strain is transferred far inboard, either by diffuse deformation or along fault system such as the Denali fault, and outboard of the main zones of deformation. The upper plate, if it can be called such, consists of a number of blocks and deforming zones while the lower plate is segmented between the Yakutat block and Pacific plate and is also likely undergoing internal deformation.

  8. Structural complexity at and around the Triassic-Jurassic GSSP at Kuhjoch, Northern Calcareous Alps, Austria

    NASA Astrophysics Data System (ADS)

    Palotai, M.; Pálfy, J.; Sasvári, Á.

    2017-10-01

    One of the key requirements for a Global Stratotype Section and Point (GSSP) is the absence of tectonic disturbance. The GSSP for the Triassic-Jurassic system boundary was recently defined at Kuhjoch, Northern Calcareous Alps, Austria. New field observations in the area of the Triassic-Jurassic boundary GSSP site demonstrate that the overturned, tight, and almost upright Karwendel syncline was formed at semibrittle deformation conditions, confirmed by axial planar foliation. Tight to isoclinal folds at various scales were related to a tectonic transport to the north. Brittle faulting occurred before and after folding as confirmed by tilt tests (the rotation of structural data by the average bedding). Foliation is ubiquitous in the incompetent units, including the Kendlbach Formation at the GSSP. A reverse fault (inferred to be formed as a normal fault before folding) crosscuts the GSSP sections, results in the partial tectonic omission of the Schattwald Beds, and thus makes it impossible to measure a complete and continuous stratigraphic section across the whole Kendlbach Formation. Based on these observations, the Kuhjoch sections do not fulfil the specific requirement for a GSSP regarding the absence of tectonic disturbances near boundary level.

  9. Paleomagnetic and Tectonic studies in Uruguay: a brief synthesis of the last decade

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.

    2013-05-01

    The paleomagnetic studies in Uruguay have been applied as a complementary tool to geological studies. Paleomagnetic data can be very useful for geodynamic reconstructions, fundamentally for determine the latitudinal tectonic transport, rotations of crustal blocks. This technique has been applied to Paleoproterozoic, Neoproterozoic and Paleozoic units. The geology of the Uruguayan territory is divided into four tectonic units of Uruguay that include a) the Piedra Alta tectonostratigraphic terrane (PATT) and b) Nico Pérez tectonostratigraphic terrane (NPTT), separated by the Sarandí del Yí high-strain zone. Both terranes are well exposed in the Río de La Plata craton (RPC) and have paleoproterozoic ages, the last was reworked in Neoproterozoic times (metacraton). The most thoroughly investigated Neoproterozoic sections are located in the eastern and southeastern regions of Uruguay. The c) Dom Feliciano Belt shows a tectonic evolution from back-arc to foreland basin characterized by fold-and-thrust, thick-skinned belts developed during the Brasiliano/Pan-African orogenic cycle. And finally d) The high metamorphic grade Punta del Este terrane where its most notable feature is their African affinity. There is a significant shortage of geochemical and geochronological data for the existing geological complexity.

  10. Geomorphological approach in karstic domain: importance of underground water in the Jura mountains.

    NASA Astrophysics Data System (ADS)

    Rabin, Mickael; Sue, Christian; Champagnac, Jean Daniel; Bichet, Vincent; Carry, Nicolas; Eichenberger, Urs; Mudry, Jacques; Valla, Pierre

    2014-05-01

    The Jura mountain belt is the north-westernmost and one of the most recent expressions of the Alpine orogeny (i.e. Mio-Pliocene times). The Jura has been well studied from a structural framework, but still remains the source of scientific debates, especially regarding its current and recent tectonic activity [Laubscher, 1992; Burkhard and Sommaruga, 1998]. It is deemed to be always in a shortening state, according to leveling data [Jouanne et al., 1998] and neotectonic observations [Madritsch et al., 2010]. However, the few GPS data available on the Jura do not show evidence of shortening, but rather a low-magnitude extension parallel to the arc [Walpersdorf et al., 2006]. Moreover, the traditionally accepted assumption of a collisional activity of the Jura raises the question of its geodynamic origin. The Western Alps are themselves in a post-collisional regime and characterized by a noticeable isostatic-related extension, due to the interaction between buoyancy forces and external dynamics [Sue et al., 2007]. Quantitative morphotectonic approaches have been increasingly used in active mountain belts to infer relationship between climates and tectonics in landscape evolution [Whipple, 2009]. In this study, we propose to apply morphometric tools to calcareous bedrock, in a slowly deformed mountain belt. In particular, we have used watersheds metrics determination and associated river profiles analysis to allow quantifying the degree and nature of the equilibrium between the tectonic forcing and the fluvial erosional agent [Kirby and Whipple, 2001]. Indeed, long-term river profiles evolution is controlled by climatic and tectonic forcing through the following expression [Whipple and Tucker, 1999]: S = (U / K) 1/n Am/n (with U: uplift rate, K: empirical erodibility factor, function of hydrological and geological settings; A: drained area, m, n: empirical parameters). We present here a systematic analysis of river profiles applied to the main drainage system of the Jura. The objective is to assess to what extent this powerful landscape analysis tool will be applicable to limestone bedrock settings where groundwater flow might be an important component of the hydrological system. First results show that river slopes and knickpoints are poorly controlled by lithological variation within the Jura mountains. Quantitative analyses reveal abnormal longitudinal profiles, which are controlled by either tectonic and/or karstic processes. Evaluating the contribution of both tectonics and karst influence in the destabilization of river profiles is challenging and appears still unresolved. However these morphometrics signals seem to be in accordance with the presence of active N-S to NW-SE strike-slip faults, controlling both surface runoff and groundwater flow.

  11. Oceanic Remnants In The Caribbean Plate: Origin And Loss Of Related LIPs.

    NASA Astrophysics Data System (ADS)

    Giunta, G.

    2005-12-01

    The modern Caribbean Plate is an independent lithospheric entity, occupying more than 4 Mkm2 and consisting of the remnants of little deformed Cretaceous oceanic plateau of the Colombia and Venezuela Basins (almost 1 Mkm2) and the Palaeozoic-Mesozoic Chortis continental block (about 700,000 km2), both bounded by deformed marginal belts. The northern (Guatemala and Greater Antilles) and the southern (northern Venezuela) plate margins are marked by collisional zones, whereas the western (Central America Isthmus) and the eastern (Lesser Antilles) margins are represented by convergent boundaries and their magmatic arcs, all involving ophiolitic terranes. The evolutionary history of the Caribbean Plate since the Jurassic-Early Cretaceous encompasses plume, accretionary, and collisional tectonics, the evidence of which has been recorded in the oceanic remnants of lost LIPs, as revealed in: i) the MORB to OIB thickened crust of the oceanic plateau, including its un-deformed or little deformed main portion, and scattered deformed tectonic units; ii) ophiolitic tectonic units of MORB affinity and the rock blocks in ophiolitic melanges; iii) intra-oceanic, supra subduction magmatic sequences with IAT and CA affinities. The Mesozoic oceanic LIPs, from which the remnants of the Caribbean Plate have been derived, have been poorly preserved during various episodes of the intra-oceanic convergence, either those related to the original proto-Caribbean oceanic realm or those connected with two eo-Caribbean stages of subduction. The trapped oceanic plateau of the Colombia and Venezuela Basins is likely to be an unknown portion of a bigger crustal element of a LIP, similar to the Ontong-Java plateau. The Jurassic-Early Cretaceous proto-Caribbean oceanic domain consists of oceanic crust generated at multiple spreading centres; during the Cretaceous, part of this crust was thickened to form an oceanic plateau with MORB and OIB affinities. At the same time, both South and North American continental margins, inferred to be close to the oceanic realm, were affected by rifting and within-plate tholeiitic magmatism (WPT); this interpretation supports a near mid-America original location of the "proto-Caribbean" LIP. The MORB magmatic sections and rock blocks in the ophiolitic melanges are interpreted as exhumed tectonic sheets of the normal proto-Caribbean oceanic lithosphere, or part of a back-arc crust, both deformed in the eo-Caribbean stages. The SSZ complexes, considered as Cordilleran-type deformed ophiolites, were derived from a LIP that experienced two superimposed eo-Caribbean stages of intra-oceanic subduction. The older (Mid-Cretaceous) stage involved the eastward subduction of the un-thickened proto-Caribbean lithosphere, resulting in IAT and CA magmatism accompanied by HP-LT metamorphism and melange formation. The second, Late Cretaceous stage involved a westward dipping intra-oceanic subduction, which generated tonalitic arc magmatism. The eastward wedging of the Caribbean Plateau between the North and South American plates progressively trapped remnants of the Colombia and Venezuela Basins between the Atlantic and Pacific subduction zones and their new volcanic arcs (Aves-Lesser Antilles and Central American Isthmus). Unlike the proto-Caribbean, it appears that this LIP did not involve the main continental margins, even though the northern and southern Caribbean borders experienced different evolutionary paths. It was largely lost by superimposed accretionary and collisional events producing the marginal belts of the Caribbean Plate; its evolution has been dominated by a strongly oblique tectonic regime, constraining seafloor spreading, subduction, crustal exhumation, emplacement, and dismembering processes.

  12. Fluid-Enhanced Annealing in the Subcontinental Lithospheric Mantle Beneath the Westernmost Margin of the Carpathian-Pannonian Extensional Basin System

    NASA Astrophysics Data System (ADS)

    Aradi, L. E.; Hidas, K.; Kovács, I. J.; Tommasi, A.; Klébesz, R.; Garrido, C. J.; Szabó, C.

    2017-12-01

    Mantle xenoliths from the Styrian Basin Volcanic Field (Western Pannonian Basin, Austria) are mostly coarse granular amphibole-bearing spinel lherzolites with microstructures attesting for extensive annealing. Olivine and pyroxene CPO (crystal-preferred orientation) preserve nevertheless the record of coeval deformation during a preannealing tectonic event. Olivine shows transitional CPO symmetry from [010]-fiber to orthogonal type. In most samples with [010]-fiber olivine CPO symmetry, the [001] axes of the pyroxenes are also dispersed in the foliation plane. This CPO patterns are consistent with lithospheric deformation accommodated by dislocation creep in a transpressional tectonic regime. The lithospheric mantle deformed most probably during the transpressional phase after the Penninic slab breakoff in the Eastern Alps. The calculated seismic properties of the xenoliths indicate that a significant portion of shear wave splitting delay times in the Styrian Basin (0.5 s out of approximately 1.3 s) may originate in a highly annealed subcontinental lithospheric mantle. Hydroxyl content in olivine is correlated to the degree of annealing, with higher concentrations in the more annealed textures. Based on the correlation between microstructures and hydroxyl content in olivine, we propose that annealing was triggered by percolation of hydrous fluids/melts in the shallow subcontinental lithospheric mantle. A possible source of these fluids/melts is the dehydration of the subducted Penninic slab beneath the Styrian Basin. The studied xenoliths did not record the latest large-scale geodynamic events in the region—the Miocene extension then tectonic inversion of the Pannonian Basin.

  13. The new Central American seismic hazard zonation: Mutual consensus based on up to day seismotectonic framework

    NASA Astrophysics Data System (ADS)

    Alvarado, Guillermo E.; Benito, Belén; Staller, Alejandra; Climent, Álvaro; Camacho, Eduardo; Rojas, Wilfredo; Marroquín, Griselda; Molina, Enrique; Talavera, J. Emilio; Martínez-Cuevas, Sandra; Lindholm, Conrad

    2017-11-01

    Central America is one of the most active seismic zones in the World, due to the interaction of five tectonic plates (North America, Caribbean, Coco, Nazca and South America), and its internal deformation, which generates almost one destructive earthquakes (5.4 ≤ Mw ≤ 8.1) every year. A new seismological zonation for Central America is proposed based on seismotectonic framework, a geological context (tectonic and geological maps), geophysical and geodetic evidence (gravimetric maps, magnetometric, GPS observations), and previous works. As a main source of data a depurated earthquake catalog was collected covering the period from 1522 to 2015. This catalog was homogenized to a moment magnitude scale (Mw). After a careful analysis of all the integrated geological and seismological information, the seismogenic zones were established into seismic areas defined by similar patterns of faulting, seismicity, and rupture mechanism. The tectonic environment has required considering seismic zones in two particular seismological regimes: a) crustal faulting (including local faults, major fracture zones of plate boundary limits, and thrust fault of deformed belts) and b) subduction, taking into account the change in the subduction angle along the trench, and the type and location of the rupture. The seismicity in the subduction zone is divided into interplate and intraplate inslab seismicity. The regional seismic zonation proposed for the whole of Central America, include local seismic zonations, avoiding discontinuities at the national boundaries, because of a consensus between the 7 countries, based on the cooperative work of specialists on Central American seismotectonics and related topics.

  14. The Investigation of Active Tectonism Offshore Cide-Sinop, Southern Black Sea by Seismic Reflection and Bathymetric Data

    NASA Astrophysics Data System (ADS)

    Alp, Y. I.; Ocakoglu, N.; Kılıc, F.; Ozel, A. O.

    2017-12-01

    The active tectonism offshore Cide-Sinop at the Southern Black Sea shelf area was first time investigated by multi-beam bathymetric and multi-channel seismic reflection data under the Research Project of The Scientific and Technological Research Council of Turkey (TUBİTAK-ÇAYDAG-114Y057). The multi-channel seismic reflection data of about 700 km length were acquired in 1991 by Turkish Petroleum Company (TP). Multibeam bathymetric data were collected between 2002-2008 by the Turkish Navy, Department of Navigation, Hydrography and Oceanography (TN-DNHO). Conventional data processing steps were applied as follows: in-line geometry definition, shot-receiver static correction, editing, shot muting, gain correction, CDP sorting, velocity analysis, NMO correction, muting, stacking, predictive deconvolution, band-pass filtering, finite-difference time migration, and automatic gain correction. Offshore area is represented by a quite smooth and large shelf plain with an approx. 25 km wide and the water depth of about -100 m. The shelf gently deepens and it is limited by the shelf break with average of -120 m contour. The seafloor morphology is charasterised by an erosional surface. Structurally, E-W trending strike-slip faults with generally compression components and reverse/thrust faults have been regionally mapped for the first time. Most of these faults deform all seismic units and reach the seafloor delimiting the morphological highs and submarine plains. Thus, these faults are intepreted as active faults. These results support the idea that the area is under the active compressional tectonic regime

  15. Analysis of seismicity in the region off the southeastern Korean Peninsula after the 2011 M9.0 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, T. K.; Kim, W.; Hong, T. K.

    2017-12-01

    The Korean Peninsula is located in a stable intraplate regime with relatively low seismicity. The seismicity in the Korean Peninsula was, however, changed significantly after the 11 March 2011 M9.0 Tohoku-Oki megathrust earthquake. An M5.0 earthquake occurred in 2016 at the region off the southeastern Korean Peninsula. The M5.0 earthquake was the largest event in the region since 1978 when the national seismic monitoring began. Several nuclear power plants are placed near the region. It is requested to understand the seismo-tectonic structures of the region, which may be crucial for mitigation of seismic hazards. Analysis of seismicity may be useful for illumination of fault structures. We investigate the focal mechanism solutions, ambient stress field, and spatial distribution of earthquakes. It is intriguing to note that the number of earthquakes increased since the 2011 Tohoku-Oki earthquake. We refined the hypocenters of 52 events using a velocity-searching hypocentral inversion method (VELHYPO). We determined the focal mechanism solutions of 25 events using a P polarity analysis and long period waveform inversion. The ambient stress field was inferred from the focal mechanism solutions. Strike-slip events occurred dominantly although the paleo-tectonic structures suggest the presence of thrust faults in the region. We observe that the compressional stress field is applied in ENE-WSW, which may be a combination of lateral compressions from the Pacific and Philippine Sea plates. The active strike-slip events and compressional stress field suggest reactivation of paleo-tectonic structures.

  16. Detrital zircon U-Pb geochronology and stratigraphy of the Cretaceous Sanjiang Basin in NE China: Provenance record of an abrupt tectonic switch in the mode and nature of the NE Asian continental margin evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Qi; Chen, Han-Lin; Batt, Geoffrey E.; Dilek, Yildirim; A, Min-Na; Sun, Ming-Dao; Yang, Shu-Feng; Meng, Qi-An; Zhao, Xue-Qin

    2015-12-01

    The age spectra obtained from 505 spots of detrital zircon U-Pb ages of five representative sandstone samples from the Sanjiang Basin in NE China point to a significant change in its provenance during the Coniacian-Santonian. The predominant detrital source for the Sanjiang Basin during the early Cretaceous was the Zhangguangcai Range magmatic belt and Jiamusi Block along its western and southern periphery, whereas it changed in the late Cretaceous to its eastern periphery. The timing of these inferred changes in the detrital source regions and drainage patterns nearly coincide with the age of a regional unconformity in and across the basin. The time interval of non-deposition and unconformity development was coeval with a transitional period between an extensional tectonic regime in the early Cretaceous and a contractional deformation episode in the late Cretaceous. The Sanjiang Basin evolved during this time window from a backarc to a foreland basin. The migration of the coastal orogenic belt and the fold and thrust belt development farther inland during the late Cretaceous marked the onset of regional-scale shortening and surface uplift in the upper plate of a flat (or very shallow-dipping) subduction zone. The stratigraphic record, the detrital source and geochronology of the basinal strata, and the internal structure of the Sanjiang Basin present, therefore, an important record of a tectonic switch in the nature of continental margin evolution of Northeast Asia during the late Mesozoic.

  17. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  18. LiDAR-Assisted identification of an active fault near Truckee, California

    USGS Publications Warehouse

    Hunter, L.E.; Howle, J.F.; Rose, R.S.; Bawden, G.W.

    2011-01-01

    We use high-resolution (1.5-2.4 points/m2) bare-earth airborne Light Detection and Ranging (LiDAR) imagery to identify, map, constrain, and visualize fault-related geomorphology in densely vegetated terrain surrounding Martis Creek Dam near Truckee, California. Bare-earth LiDAR imagery reveals a previously unrecognized and apparently youthful right-lateral strike-slip fault that exhibits laterally continuous tectonic geomorphic features over a 35-km-long zone. If these interpretations are correct, the fault, herein named the Polaris fault, may represent a significant seismic hazard to the greater Truckee-Lake Tahoe and Reno-Carson City regions. Three-dimensional modeling of an offset late Quaternary terrace riser indicates a minimum tectonic slip rate of 0.4 ?? 0.1 mm/yr.Mapped fault patterns are fairly typical of regional patterns elsewhere in the northern Walker Lane and are in strong coherence with moderate magnitude historical seismicity of the immediate area, as well as the current regional stress regime. Based on a range of surface-rupture lengths and depths to the base of the seismogenic zone, we estimate a maximum earthquake magnitude (M) for the Polaris fault to be between 6.4 and 6.9.

  19. Active Deformation along the Southern End of the Tosco-Abreojos Fault System: New Insights from Multibeam Swath Bathymetry

    NASA Astrophysics Data System (ADS)

    Michaud, François; Calmus, Thierry; Ratzov, Gueorgui; Royer, Jean-Yves; Sosson, Marc; Bigot-Cormier, Florence; Bandy, William; Mortera Gutiérrez, Carlos

    2011-08-01

    The relative motion of the Pacific plate with respect to the North America plate is partitioned between transcurrent faults located along the western margin of Baja California and transform faults and spreading ridges in the Gulf of California. However, the amount of right lateral offset along the Baja California western margin is still debated. We revisited multibeam swath bathymetry data along the southern end of the Tosco-Abreojos fault system. In this area the depths are less than 1,000 m and allow a finer gridding at 60 m cell spacing. This improved resolution unveils several transcurrent right lateral faults offsetting the seafloor and canyons, which can be used as markers to quantify local offsets. The seafloor of the southern end of the Tosco-Abreojos fault system (south of 24°N) displays NW-SE elongated bathymetric highs and lows, suggesting a transtensional tectonic regime associated with the formation of pull-apart basins. In such an active tectonic context, submarine canyon networks are unstable. Using the deformation rate inferred from kinematic predictions and pull-apart geometry, we suggest a minimum age for the reorganization of the canyon network.

  20. Diapirs of the Mediterranean ridge: The tectonic regime of an incipient accreted terrane

    NASA Technical Reports Server (NTRS)

    Mart, Y.

    1988-01-01

    The occurrence of diapirs in the Mediterranean ridge stems mostly from the massive deposition of salt and gypsum in the Mediterranean basin during the late Miocean. The diapiric emplacement of the evaporitic sequence is not obvious, because the mobilization of the salt beds and the initiation of the diapiric upward flow are constrained by the relatively shallow thickness of the Plio-Pleistocene sedimentary overburden and by the low heat flow that prevails in the eastern Mediterranean. The diapirs consist also of early Cretaceous shales as well as other gravitationally metastable strata which are less mobile than salt. Studies of subduction trenches and their surroundings show that shallow ridges occur seaward of the trenches in many places. The collisional motion between the African and the Eurasian plates would further enhance accretion of sediments in the Mediterranean ridge, which would attain subaerial exposure, and eventually would become a mountain range accreted to southern Europe. The numerous diapirs of salt and shales that occur in the ridge would be common features in the future accreted terrane, indicating an intermediate extensional phase in the tectonic history of the development of crustal growth.

  1. The Mobile Margin of (Far) North America: GPS Constraints on Active Deformation in Alaska and the Role of the Yakutat Block

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Larsen, C. F.; Motyka, R. J.

    2010-12-01

    GPS data from southern Alaska and the northern Canadian Cordillera have helped redefine the region’s tectonic landscape. Instead of a comparatively simple interaction between the Pacific and North American plates, with relative motion accommodated on a single boundary fault, we find a margin made up of a number of small blocks and deformation zones with relative motion distributed across a variety of structures. Much of this complexity can be attributed to the Yakutat block, an allochthonous terrane that has been colliding with southern Alaska since the Miocene. We present a GPS-derived tectonic model for the Yakutat block collision and its effects on southern Alaska and eastern Canada. The Yakutat block moves NNW at a rate of 50 mm/a, resulting in ~ 45 mm/a of NW-directed convergence with southern Alaska. Along its eastern edge, the Yakutat block is deforming, represented in our model by two small northwesterly moving blocks outboard of the Fairweather fault. Part of the strain from the collision is transferred east of the Fairweather - Queen Charlotte fault system, causing the region inboard of the Fairweather fault to undergo a distinct clockwise rotation into the northern Canadian Cordillera. Further south, the region directly east of the Queen Charlotte fault displays a much slower clockwise rotation, suggesting that it is at least partially pulled along by the northern block motion. About 5% of the relative motion is transferred even further east, causing small northeasterly motions well into the northern Cordillera. The northwestern edge of the Yakutat block marks the main deformation front between that block and southern Alaska. Multiple narrow, northwesterly moving blocks bounded by N- to NW-dipping thrust faults are required to explain the GPS data between the Malaspina Glacier and the Bagley Ice Valley. These “blocks” may be more aptly termed crustal slivers or deformation zones due to their size and because their bounding faults may sole out into a main thrust instead of cutting through the lithosphere. In contrast with the region to the east, relative convergence is accommodated over a fairly short distance across the St. Elias Mountains. West of the deformation front, the en echelon blocks and faults continue until the vicinity of the Bering Glacier, where the GPS data reveal a rotation towards the north as the tectonic regime transitions from the collision and accretion of the Yakutat block to subduction along the Aleutian Megathrust. North of the Chugach and St. Elias Ranges, the Southern Alaska block rotates counterclockwise.

  2. Interactions between tectonics, silicate weathering, and climate explored with carbon cycle modeling

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Caves Rugenstein, J. K.; Ibarra, D. E.; Winnick, M.

    2017-12-01

    Earth's long-term carbon cycle is thought to benefit from a stabilizing negative feedback in the form of CO2 consumption by the chemical weathering of silicate minerals: during periods of elevated atmospheric pCO2, chemical weathering rates increase, thus consuming more atmospheric CO2 and cooling global climate, whereas during periods of low pCO2, weathering rates decrease, allowing buildup of CO2 in the atmosphere and warming. At equilibrium, CO2 consumption by silicate weathering balances volcanic CO2 degassing at a specific atmospheric pCO2 dictated by the relationship between total silicate weathering rate and pCO2: Earth's "weathering curve." We use numerical carbon cycle modeling to demonstrate that the shape and slope of the weathering curve is crucial to understanding proposed tectonic controls on pCO2 and climate. First, the shape of the weathering curve dictates the equilibrium response of the carbon cycle to changes in the rate of background volcanic/solid Earth CO2 degassing, which has been suggested to vary significantly with plate tectonic reorganizations over geologic timescales. Second, we demonstrate that if tectonic events can significantly change the weathering curve, this can act as an effective driver of pCO2 and climate on tectonic timescales by changing the atmospheric pCO2 at which silicate weathering balances a constant volcanic/solid Earth degassing rate. Finally, we review the complex interplay of environmental factors that affect modern weathering rates in the field and highlight how the resulting uncertainty surrounding the shape of Earth's weathering curve significantly hampers our ability to quantitatively predict the response of pCO2 and climate to tectonic forcing, and thus represents a substantial knowledge gap in Earth science. We conclude with strategies for closing this knowledge gap by using precise paleoclimatic reconstructions of intervals with known tectonic forcings.

  3. Interaction between active tectonics, erosion and diapirism, a case study from Habble-Rud in Southern Central Alborz (Northern Iran)

    NASA Astrophysics Data System (ADS)

    Jaberi, Maryam; Ghassemi, Mohammad R.; Shayan, Siavosh; Yamani, Mojtaba; Zamanzadeh, Seyed Mohammad

    2018-01-01

    The Alborz mountain chain is a region of active deformation within the Arabia-Eurasia continental collision zone. The southern part of central Alborz Mountains, in the north of Iran, represents complex tectonics because it is located at the border of two developing continental sedimentary basins between southern central Alborz and Central Iran. An arid and semi-arid climate, a large extent of Quaternary sediments, rugged topography, salt domes and faults with historical seismicity influence the Habble-Rud River catchment. In the present research, a number of tectonic geomorphologic indices were extracted from satellite imagery and 10 m DEM (digital elevation model) data in order to identify relative tectonic activity within the basin. The indices include: stream length-gradient index (Sl), drainage basin asymmetry (Af), index of mountain front sinuosity (Smf), hypsometric integral (Hi), index of drainage basin shape (Bs), ratio of valley-floor width to valley height (Vf), and fault density (Fd). Due to the presence of heterogeneous indices for all sections of the catchment causing large extension of Habble-Rud (3260 km2), all of the variables such as extremely erodible formations, faults and folds and salt tectonics on the Southern part; were put into a matrix table. As a new approach, the variables were put into the SAW (simple additive model) model as one of MADM (multi-attribute decision-making models) techniques. The study area was divided into four regions according to the values of SAW. These classes include very high (%11), high (48.3%), moderate (34.7%), and low activity (3.4%). The result of the model suggests that the study area is located on a changing tectonic trend in central Alborz from NW-SE to NE-SW. The regions with high relative tectonic activity in HR catchment correspond to the active Garmsar and Sorkhe-Kalout faults and diapirs.

  4. Post-Paleogene Deformation in central Anatolia, South of Ankara (Turkey)

    NASA Astrophysics Data System (ADS)

    Rojay, Bora

    2014-05-01

    The closure of the northern Neo-Tethys took place between Eurasia in the north and northern edge of Afro- Arabian plate in the south since the Early Cretaceous is documented in central Anatolia. It is mated by Cretaceous ophiolitic mélanges thrusted over southwards on to the upper Cretaceous-Paleogene fore-arc and foreland sequences along the northern margins of Haymana and Tuzgölü basins, respectively. Two main deformation episodes are recognized in the region. These include post-Cretaceous-pre Miocene compressional regime and Miocene to mid-Pliocene transcurrent regime dominated extensional deformation. The first regime is characterize by NW-SE directed compressional and contractional deformation dominated by south vergent, large wave length, asymmetric to overturned folds and associated thrust/reverse faults. Some of these reverse faults were reactivated as strike-slip faults with reverse components as evidenced by cross-cutting relationships and overprinting slickensides observed extensively in the field. Along these reactivated faults, echelon calcite veins, fault parallel meter thick silica walls with repeated phases of deformation are very common. Following the Miocene, the region is affected by a NNE-SSW to NE-SW directed extension, possibly resulted from the interaction of Tuzgölü Fault with the northwards convex splays of dextral North Anatolian Fault extending into the region. As a conclusion, the Paleogene sequences with ophiolitic mélanges are deformed under NNE-SSW directed compression related to the development of dextral strike slip tectonics during post-Paleogene-pre-Miocene period. Keywords:fault plane slip data, transcurrent regime, post-Paleogene, central Anatolia.

  5. Italy: Mt. Etna

    Atmospheric Science Data Center

    2013-04-17

    article title:  Eruption of Mt. Etna     View ... repeated caldera collapse, and partially buried by younger volcanic structures. Eruptions are related to a complex tectonic situation, ... available at JPL . July 22, 2001 - Eruption of the volcano in true-color and stereo. project:  ...

  6. Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery. [copper/molybdenum porphyrys

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Three major tectonic provinces have been mapped by geologic photointerpretation of ERTS-1 imagery over the Ok Tedi test site. These areas can be characterized as follows: (1) A broad area of low relief and mature topography suggesting a history of relative tectonic stability. (2) A narrow belt of moderate to high relief, broad open folds and prominent linear features. The Mount Fubilan-type porphyry copper deposits and recent volcanic effusive centers occur in this province. (3) A heterogeneous zone of high relief and high drainage density suggestive of relative structural complexity.

  7. The Myszkow porphyry copper-molybdenum deposit, Poland

    USGS Publications Warehouse

    Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.

    1994-01-01

    The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors

  8. Oxygen Atom Exchange between H2O and Non-Heme Oxoiron(IV) Complexes: Ligand Dependence and Mechanism.

    PubMed

    Puri, Mayank; Company, Anna; Sabenya, Gerard; Costas, Miquel; Que, Lawrence

    2016-06-20

    Detailed studies of oxygen atom exchange (OAE) between H2(18)O and synthetic non-heme oxoiron(IV) complexes supported by tetradentate and pentadentate ligands provide evidence that they proceed by a common mechanism but within two different kinetic regimes, with OAE rates that span 2 orders of magnitude. The first kinetic regime involves initial reversible water association to the Fe(IV) complex, which is evidenced by OAE rates that are linearly dependent on [H2(18)O] and H2O/D2O KIEs of 1.6, while the second kinetic regime involves a subsequent rate determining proton-transfer step between the bound aqua and oxo ligands that is associated with saturation behavior with [H2(18)O] and much larger H2O/D2O KIEs of 5-6. [Fe(IV)(O)(TMC)(MeCN)](2+) (1) and [Fe(IV)(O)(MePy2TACN)](2+) (9) are examples of complexes that exhibit kinetic behavior in the first regime, while [Fe(IV)(O)(N4Py)](2+) (3), [Fe(IV)(O)(BnTPEN)](2+) (4), [Fe(IV)(O)(1Py-BnTPEN)](2+) (5), [Fe(IV)(O)(3Py-BnTPEN)](2+) (6), and [Fe(IV)(O)(Me2Py2TACN)](2+) (8) represent complexes that fall in the second kinetic regime. Interestingly, [Fe(IV)(O)(PyTACN)(MeCN)](2+) (7) exhibits a linear [H2(18)O] dependence below 0.6 M and saturation above 0.6 M. Analysis of the temperature dependence of the OAE rates shows that most of these complexes exhibit large and negative activation entropies, consistent with the proposed mechanism. One exception is complex 9, which has a near-zero activation entropy and is proposed to undergo ligand-arm dissociation during the RDS to accommodate H2(18)O binding. These results show that the observed OAE kinetic behavior is highly dependent on the nature of the supporting ligand and are of relevance to studies of non-heme oxoiron(IV) complexes in water or acetonitrile/water mixtures for applications in photocatalysis and water oxidation chemistry.

  9. In search of transient subduction interfaces in the Dent Blanche-Sesia Tectonic System (W. Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian

    2014-09-01

    In this paper we study the Alpine metamorphic history of a major tectonic zone which formed during Alpine orogeny, the Dent Blanche Thrust (DBT). This contact, located in the Northern Western Alps, juxtaposes some ophiolitic metasediment-rich remnants of the Liguro-Piemontese ocean (Tsaté Complex) with a composite continental, km-sized complex (Dent Blanche Tectonic System, DBTS) of Adriatic affinity thrusted over the ophiolite. In order to better understand the geodynamic meaning of the DBT region and adjacent units, we have reconstructed the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr geochronology, and field relationships. We show that the Tsaté Complex is formed by a stack of km-thick calcschists-bearing tectonic slices having experienced variable maximum burial temperatures between 360 °C and 490 °C at depths of ca. 25-40 km. Associated deformation ages span a range between 37 Ma and 41 Ma. The Arolla gneissic mylonites at the base of the DBTS experienced high-pressure (12-14 kbar), top-to-NW deformation at ca. 450 °C between 43 and 48 Ma. A first age of ca. 58 Ma has been obtained for high-pressure ductile deformation in the Valpelline shear zone, atop Arolla gneisses. Some of the primary, peak metamorphic fabrics have been reworked and later backfolded during exhumation and collisional overprint (ca. 20 km depth, 37-40 Ma) leading to the regional greenschist-facies retrogression which is particularly prominent within Tsaté metasediments. We interpret the Dent Blanche Thrust, at the base of the Arolla unit, as a fossilized subduction interface active between 43 and 48 Ma. Our geochronological results on the shear zone lining the top of the Arolla unit, together with previous P-T-t estimates on equivalent blueschist-facies shear zones cutting the Sesia unit, indicate an older tectonic activity between 58 and 65 Ma. We demonstrate here that observed younger ages towards lowermost structural levels are witness of the transient, downwards migration of the Alpine early Cenozoic blueschist-facies subduction interface. This down-stepping is interpreted to reflect the progressive underplating acting between 30 and 40 km depth in the Alpine subduction zone between late Cretaceous and late Eocene. Underplating involved first continental material derived from the stretched Adriatic margin followed by underplating of ocean-derived rocks in the Eocene. These results shed light on subduction-zone accretion processes and therefore provide a new perspective for the understanding of geophysical results imaging the plate-interface region in active subduction zones.

  10. Coexistence of alkaline-carbonatite complexes and high-MgO CFB in the Paranà-Etendeka province: Insights on plume-lithosphere interactions in the Gondwana realm

    NASA Astrophysics Data System (ADS)

    Natali, Claudio; Beccaluva, Luigi; Bianchini, Gianluca; Siena, Franca

    2018-01-01

    A careful review of petrological and geochemical data on the Paranà-Etendeka igneous province is reported, with particular attention being devoted to the relationships between high-MgO CFB (tholeiitic basalts-picrites) and nearly coeval alkaline-carbonatite complexes linked to the same extensional tectonics on a regional scale. At 135-130 Ma, the tectonomagmatic activity was focused in Etendeka, the centre of the restored province, and characterised by an exclusive occurrence of the hottest and deepest high-MgO CFB (potential temperature Tp up to 1590 °C and pressure up to 5 GPa) possessing the same Sr-Nd-Pb isotopic composition of the "Gough" geochemical component, a marker of the initial Tristan plume activity. Etendeka high-MgO CFB thus represent the most genuine proxies of sublithospheric melts generated at the plume axis and are relatively unaffected by lithospheric contamination. Nearly coeval (133-128 Ma) alkaline‑carbonatite complexes cluster around the extensional structures of the Ponta Grossa Arch (e.g., Jacupiranga and Juquia in Brazil) and the Damara Belt (e.g., Erongo, Okurusu, Okenyenya and Paresis in Namibia), both of which intersect the early track of the south Atlantic opening. Compared to high-MgO CFB, alkaline magmas display distinctive isotopic signatures and an incompatible element distribution consistent with their generation from lithospheric mantle sources, which were variably metasomatised (veined?) by amphibole and phlogopite. Metasomes of alkaline mantle sources have a HIMU affinity and are dominated by amphibole in Namibia, whereas they display EM1 tendency and a more relevant role of phlogopite in Brazil, which implies important lithospheric differences at a regional scale. The tectonomagmatic features of Paranà-Etendeka -also shared by other Gondwana LIPs, such as Deccan and Karoo- can be reconciled by a generalized model where a hot plume impinging on a relatively thick lithosphere caused, in the axial zone, the contemporaneous generation and rise of high-MgO CFB and alkaline magmas from distinct asthenospheric and lithospheric mantle sources, respectively. In the asthenosphere, the volatile-poor solidus was crossed under an adiabatic thermal regime, mostly in the range of 4 to 5 GPa and Tp 1500 to 1600 °C with the development of high-MgO CFB. In the overlying metasomatised lithosphere, the plume effects caused a perturbation of the conductive thermal regime and a crossing of volatile-rich solidus (mostly P 2-3 GPa, Tp 1300-1400 °C) with the generation of alkaline melts from the most fusible (hydrated and carbonated) mantle domains.

  11. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Qi, X.; Zheng, M.

    2015-12-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows. Tacheng Basin, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.

  12. The effects of tectonic deformation and sediment allocation on shelf habitats and megabenthic distribution and diversity in southern California

    NASA Astrophysics Data System (ADS)

    Switzer, Ryan D.; Parnell, P. Ed; Leichter, James L.; Driscoll, Neal W.

    2016-02-01

    Landscape and seascape structures are typically complex and manifest as patch mosaics within characteristic biomes, bordering one another in gradual or abrupt ecotones. The underlying patch structure in coastal shelf ecosystems is driven by the interaction of tectonic, sedimentary, and sea level dynamic processes. Animals and plants occupy and interact within these mosaics. Terrestrial landscape ecological studies have shown that patch structure is important for ecological processes such as foraging, connectivity, predation, and species dynamics. The importance of patch structure for marine systems is less clear because far fewer pattern-process studies have been conducted in these systems. For many coastal shelf systems, there is a paucity of information on how species occupy shelf seascapes, particularly for seascapes imbued with complex patch structure and ecotones that are common globally due to tectonic activity. Here, we present the results of a study conducted along a myriameter-scale gradient of bottom and sub-bottom geological forcing altered by tectonic deformation, sea level transgression and sediment allocation. The resulting seascape is dominated by unconsolidated sediments throughout, but also exhibits increasing density and size of outcropping patches along a habitat patch gradient forced by the erosion of a sea level transgressive surface that has been deformed and tilted by tectonic forcing. A combination of sub-bottom profiling, multibeam bathymetry, and ROV surveys of the habitats and the demersal megafauna occupying the habitats indicate (1) significant beta diversity along this gradient, (2) biological diversity does not scale with habitat diversity, and (3) species occupy the patches disproportionately (non-linearly) with regard to the proportional availability of their preferred habitats. These results indicate that shelf habitat patch structure modulates species specific processes and interactions with other species. Further studies are needed to examine experimentally the mechanics of how patch structure modulates ecological processes in shelf systems. Our results also provide further support for including multiple spatial scales of patch structure for the application of remote habitat sensing as a surrogate for biological community structure.

  13. Cenozoic mountain building on the northeastern Tibetan Plateau

    USGS Publications Warehouse

    Lease, Richard O.

    2014-01-01

    Northeastern Tibetan Plateau growth illuminates the kinematics, geodynamics, and climatic consequences of large-scale orogenesis, yet only recently have data become available to outline the spatiotemporal pattern and rates of this growth. I review the tectonic history of range growth across the plateau margin north of the Kunlun fault (35°–40°N) and east of the Qaidam basin (98°–107°E), synthesizing records from fault-bounded mountain ranges and adjacent sedimentary basins. Deformation began in Eocene time shortly after India-Asia collision, but the northeastern orogen boundary has largely remained stationary since this time. Widespread middle Miocene–Holocene range growth is portrayed by accelerated deformation, uplift, erosion, and deposition across northeastern Tibet. The extent of deformation, however, only expanded ~150 km outward to the north and east and ~150 km laterally to the west. A middle Miocene reorganization of deformation characterized by shortening at various orientations heralds the onset of the modern kinematic regime where shortening is coupled to strike slip. This regime is responsible for the majority of Cenozoic crustal shortening and thickening and the development of the northeastern Tibetan Plateau.

  14. Are triggering rates of labquakes universal? Inferring triggering rates from incomplete information

    NASA Astrophysics Data System (ADS)

    Baró, Jordi; Davidsen, Jörn

    2017-12-01

    The acoustic emission activity associated with recent rock fracture experiments under different conditions has indicated that some features of event-event triggering are independent of the details of the experiment and the materials used and are often even indistinguishable from tectonic earthquakes. While the event-event triggering rates or aftershock rates behave pretty much identical for all rock fracture experiments at short times, this is not the case for later times. Here, we discuss how these differences can be a consequence of the aftershock identification method used and show that the true aftershock rates might have two distinct regimes. Specifically, tests on a modified Epidemic-Type Aftershock Sequence model show that the model rates cannot be correctly inferred at late times based on temporal information only if the activity rates or the branching ratio are high. We also discuss both the effect of the two distinct regimes in the aftershock rates and the effect of the background rate on the inter-event time distribution. Our findings should be applicable for inferring event-event triggering rates for many other types of triggering and branching processes as well.

  15. Multi-phase structural and tectonic evolution of the Andaman Sea Region

    NASA Astrophysics Data System (ADS)

    Masterton, Sheona; Hill, Catherine; Sagi, David Adam; Webb, Peter; Sevastjanova, Inga

    2017-04-01

    We present a new regional tectonic interpretation for Myanmar and the Andaman Sea, built within the framework of global plate motions. In our model the Present Day Andaman Sea region has been subjected to multiple phases of extension, culminating in its mid-Miocene to Present Day opening as a rhomboidal pull-apart basin. The Andaman Sea region is historically thought to have developed as a consequence of back-arc opening associated with plate convergence at the Andaman-Nicobar subduction system. We have undertaken detailed structural interpretation of potential field, Landsat and SRTM data, supported by 2-D crustal models of the Andaman Sea. From this analysis we identified several major north-south striking faults and a series of northeast-southwest striking structures across the region. We have also mapped the extent of the Andaman-Nicobar Accretionary Prism, a fore arc trough and volcanic arc, which we associate with a phase of traditional trench-parallel back-arc extension from the Paleocene to the middle Miocene. A regional tectonic event occurred during the middle Miocene that caused the cessation of back-arc extension in the Present Day Andaman Sea and an eastward shift in the locus of arc-related volcanism. At that time, N-S striking faults onshore and offshore Myanmar were reactivated with widespread right-lateral motion. This motion, accompanied by extension along new NE-SW striking faults, facilitated the opening of the Central Andaman Basin as a pull-apart basin (rhombochasm) in which a strike-slip tectonic regime has a greater impact on the mode of opening than the subduction process. The integration of our plate model solution within a global framework allows identification of major plate reorganisation events and their impact on a regional scale. We therefore attribute the onset of pull-apart opening in the Andaman Sea to ongoing clockwise rotation of the western Sundaland margin throughout the late Paleogene and early Miocene, possibly driven by the opening of the South China Sea to the east. Consequently, the obliquity of plate convergence along this margin increased, ultimately resulting in a change from minor strain partitioning to hyper oblique convergence and full strain partitioning by the mid-Miocene. Investigation into the effects of slab-steepening and dynamic subsidence in the Indochina region could be used as further tests of our proposed tectonic evolution of the Andaman Sea.

  16. Palaeozoic and Mesozoic tectonic implications of Central Afghanistan

    NASA Astrophysics Data System (ADS)

    Sliaupa, Saulius; Motuza, Gediminas

    2017-04-01

    The field and laboratory studies were carried out in Ghor Province situated in the central part of Afghanistan. It straddles juxtaposition of the Tajik (alternatively, North Afghanistan) and Farah Rod blocks separated by Band-e-Bayan zone. The recent studies indicate that Band-e-Bayan zone represents highly tectonised margin of the Tajik block (Motuza, Sliaupa, 2016). The Band-e-Bayan zone is the most representative in terms of sedimentary record. The subsidence trends and sediment lithologies suggest the passive margin setting during (Cambrian?) Ordovician to earliest Carboniferous times. A change to the foredeep setting is implied in middle Carboniferous through Early Permian; the large-thickness flysh-type sediments were derived from continental island arc provenance, as suggested by chemical composition of mudtstones. This stage can be correlated to the amalgamation of the Gondwana supercontinent. The new passive-margin stage can be inferred in the Band-e-Bayan zone and Tajik blocks in the Late Permian throughout the early Late Triassic that is likely related to breaking apart of Gondwana continent. A collisional event is suggested in latest Triassic, as seen in high-rate subsidence associating with dramatic change in litholgies, occurrence of volcanic rocks and granidoid intrusions. The continental volcanic island arc derived (based on geochemical indices) terrigens prevail at the base of Jurassic that were gradually replaced by carbonate platform in the Middle Jurassic pointing to cessation of the tectonic activity. A new tectonic episode (no deposition; and folding?) took place in the Tajik and Band-e-Bayan zone in Late Jurassic. The geological section of the Farah Rod block, situated to the south, is represented by Jurassic and Cretaceous sediments overlain by sporadic Cenozoic volcanic-sedimentary succession. The lower part of the Mesozoic succession is composed of terrigenic sediments giving way to upper Lower Cretaceous shallow water carbonates implying low tectonic regime. There was a break in sedimentation during the upper Cretaceous that is likely related to the Alpine orogenic event. It associated with some Upper Cretaceous magmatic activity (Debon et al., 1987). This event is reflected in the sedimentation pattern in the adjacent Band-e-Bayan zone and Tadjick block. The lower part of the Upper Cretaceous succession is composed of reddish terrigenic sediments. They are overlain by uppermost Cretaceous (and Danian) shallow marine sediments implying establishment of quiet tectonic conditions.

  17. Arctic-Asian Mobile Belt - Global Structure in the North, Central, and East Asia

    NASA Astrophysics Data System (ADS)

    Shokalsky, Sergey; Petrov, Oleg; Pospelov, Igor; Kashubin, Sergey; Sobolev, Nikolay; Petrov, Evgeny

    2014-05-01

    Over the last decade under the international project of five countries, the geological surveys of Russia, China, Kazakhstan, Mongolia, and the Republic of Korea, with the participation of national academies of sciences in these countries compiled a set of digital maps at 1:2.5 M scale. It includes geological, tectonic, metallogenic maps and map of energy resources with databases for North, Central, and East Asia, area of more than 30 million km2. Map compilation was supervised by the Subcommission for Northern Eurasia and Subcommission for Tectonic Maps of the Commission for the Geological Map of the World under the auspices of UNESCO (CGMW). The set of maps was displayed at the 33rd IGC (Oslo, 2008) and 34th IGC (Brisbane, 2012). One of the largest accretion collages of orogenic belts of different ages on the planet (from the Neoproterozoic to Early Mesozoic) is clearly shown in the tectonic map compiled under the joint project. Extended polychronous mobile belt is bounded in the west by the East European Craton, in the east, by the Siberian Craton, in the south, by a chain of Gondwana cratonic blocks - North China, Tarim, Tajik. In the north it can be traced as a broad band within the Circumpolar Region, where it is limited by the North American Craton. The central part of the accretionary belt is hidden under the Meso-Cenozoic sediments of Western Siberia. Analysis of vast geological material shows that the Arctic-Asian mobile belt was formed on place of an extensive paleo-ocean, which closed with a successive rejuvenation of suture ophiolite zones from the marginal to axial zone and along strike to the north and east of the South Siberian segment towards Paleopacific. Arctic-Asian mobile belt is characterized by a complex combination of accretionary and riftogenic tectonic-magmatic processes. At its early stages, accretionary tectonics with a wide development of volcanic belts dominated; at the late ones (in the Late Paleozoic, Mesozoic, and Cenozoic) stretching, rifting and postrift subsidence were widely shown with the formation of oil and gas sedimentary basins with a thick sedimentary cover (West Siberian, Turan, Caspian, Middle Amur, Songliao), large igneous provinces (South Urals, West and East Siberian, Central Kazakhstan, Trans-Baikal, etc.) and rift systems (Mongol-Transbaikal, Baikal, etc.). The aim of further research under the existing joint projects should be identifying and tracing the boundaries of the Arctic-Asian mobile belt, study and correlation of geological complexes-indicators of major tectonic events, reconstruction of the history of the accretionary belt with superimposed oil and gas bearing sedimentary basins as a tectonic structure of the global level.

  18. A new approach to formulating and appraising drug policy: A multi-criterion decision analysis applied to alcohol and cannabis regulation.

    PubMed

    Rogeberg, Ole; Bergsvik, Daniel; Phillips, Lawrence D; van Amsterdam, Jan; Eastwood, Niamh; Henderson, Graeme; Lynskey, Micheal; Measham, Fiona; Ponton, Rhys; Rolles, Steve; Schlag, Anne Katrin; Taylor, Polly; Nutt, David

    2018-02-16

    Drug policy, whether for legal or illegal substances, is a controversial field that encompasses many complex issues. Policies can have effects on a myriad of outcomes and stakeholders differ in the outcomes they consider and value, while relevant knowledge on policy effects is dispersed across multiple research disciplines making integrated judgements difficult. Experts on drug harms, addiction, criminology and drug policy were invited to a decision conference to develop a multi-criterion decision analysis (MCDA) model for appraising alternative regulatory regimes. Participants collectively defined regulatory regimes and identified outcome criteria reflecting ethical and normative concerns. For cannabis and alcohol separately, participants evaluated each regulatory regime on each criterion and weighted the criteria to provide summary scores for comparing different regimes. Four generic regulatory regimes were defined: absolute prohibition, decriminalisation, state control and free market. Participants also identified 27 relevant criteria which were organised into seven thematically related clusters. State control was the preferred regime for both alcohol and cannabis. The ranking of the regimes was robust to variations in the criterion-specific weights. The MCDA process allowed the participants to deconstruct complex drug policy issues into a set of simpler judgements that led to consensus about the results. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Towards modelling of water inflow into the mantle

    NASA Astrophysics Data System (ADS)

    Thielmann, M.; Eichheimer, P.; Golabek, G.

    2017-12-01

    The transport and storage of water in the mantle significantly affects various material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.) Geological and seismological observations suggest different inflow mechanisms of water via the subducting slab like slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017). Most of the previous numerical models do not take different dip angles of the subduction slab and subduction velocities into account, while nature provides two different types of subduction regimes i.e. shallow and deep subduction (Li et al., 2011). To which extent both parameters influence the inflow and outflow of water in the mantle still remains unclear. For the investigation of the inflow and outflow of fluids e.g. water in the mantle, we use high resolution 2D finite element simulations, which allow us to resolve subducted sediments and crustal layers. For this purpose the finite element code MVEP2 (Kaus, 2010), is tested against benchmark results (van Keken et al., 2008). In a first step we reproduced the analytical cornerflow model (Batchelor, 1967) used in the benchmark of van Keken et al.(2008) as well as the steady state temperature field. Further steps consist of successively increasing model complexity, such as the incorporation of hydrogen diffusion, water transport and dehydration reactions. ReferencesBatchelor, G. K. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, UK (1967) van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Li, Z. H., Xu, Z. Q., and T.V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011). Kaus, B. J. P. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophys. 484, 36-47 (2010). The transport and storage of water in the mantle significantly affects various material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.) Geological and seismological observations suggest different inflow mechanisms of water via the subducting slab like slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017). Most of the previous numerical models do not take different dip angles of the subduction slab and subduction velocities into account, while nature provides two different types of subduction regimes i.e. shallow and deep subduction (Li et al., 2011). To which extent both parameters influence the inflow and outflow of water in the mantle still remains unclear. For the investigation of the inflow and outflow of fluids e.g. water in the mantle, we use high resolution 2D finite element simulations, which allow us to resolve subducted sediments and crustal layers. For this purpose the finite element code MVEP2 (Kaus, 2010), is tested against benchmark results (van Keken et al., 2008). In a first step we reproduced the analytical cornerflow model (Batchelor, 1967) used in the benchmark of van Keken et al.(2008) as well as the steady state temperature field.Further steps consist of successively increasing model complexity, such as the incorporation of hydrogen diffusion, water transport and dehydration reactions. Systematic simulations are performed to assess the influence of different model parameters on various target parameters such as dehydration depth, volcanic line position etc., the ultimate goal being the derivation of scaling laws for water transport in the mantleReferencesBatchelor, G. K. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, UK (1967)van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Li, Z. H., Xu, Z. Q., and T.V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011). Kaus, B. J. P. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophys. 484, 36-47 (2010).

  20. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    NASA Astrophysics Data System (ADS)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These predictions have been compared with InSAR imagery of surface uplift, used as an indicator of fluid pressure and movement in the sub-surface, around the CO2 injection wells. The analysis shows that the permeability tensor with the greatest anisotropy, that for the DFN sub-set of open fractures, matches well with the anisotropy in surface uplift imaged by InSAR. We demonstrate that predicting fracture networks alone does not predict fluid movement in the sub-surface, and that fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our results show that a workflow of fracture network prediction combined with present day stress analysis can be used to successfully predict CO2 movement in the sub-surface at an active injection site.

  1. The role of Late Veneer impacts in the evolution of Venus

    NASA Astrophysics Data System (ADS)

    Gillmann, C.; Golabek, G.; Tackley, P.; Raymond, S.

    2017-09-01

    We study how different mechanisms contribute to changes in long term evolution. In particular, the primitive history (the first Gy) of terrestrial planets is heavily influenced by collisions. We investigate how the coupled evolution of Venus' atmosphere and mantle is modified by those impacts. We focus on volatile fluxes: atmospheric escape and mantle degassing. We observe that large impacts are unlikely to erode the atmosphere significantly. They are, on the contrary, an important source of volatiles for the primitive planet. Collisions also generate a lot of melting and rapidly dries the mantle through degassing. Without recycling of volatiles into the mantle (like in plate tectonics regime), the mantle is efficiently depleted.

  2. Tectonic stress orientations and magnitudes, and friction of faults, deduced from earthquake focal mechanism inversions over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Soh, Inho; Chang, Chandong; Lee, Junhyung; Hong, Tae-Kyung; Park, Eui-Seob

    2018-05-01

    We characterize the present-day stress state in and around the Korean Peninsula using formal inversions of earthquake focal mechanisms. Two different methods are used to select preferred fault planes in the double-couple focal mechanism solutions: one that minimizes average misfit angle and the other choosing faults with higher instability. We invert selected sets of fault planes for estimating the principal stresses at regularly spaced grid points, using a circular-area data-binning method, where the bin radius is optimized to yield the best possible stress inversion results based on the World Stress Map quality ranking scheme. The inversions using the two methods yield well constrained and fairly comparable results, which indicate that the prevailing stress regime is strike-slip, and the maximum horizontal principal stress (SHmax) is oriented ENE-WSW throughout the study region. Although the orientation of the stresses is consistent across the peninsula, the relative stress magnitude parameter (R-value) varies significantly, from 0.22 in the northwest to 0.89 in the southeast. Based on our knowledge of the R-values and stress regime, and using a value for vertical stress (Sv) estimated from the overburden weight of rock, together with a value for the maximum differential stress (based on the Coulomb friction of faults optimally oriented for slip), we estimate the magnitudes of the two horizontal principal stresses. The horizontal stress magnitudes increase from west to east such that SHmax/Sv ratio rises from 1.5 to 2.4, and the Shmin/Sv ratio from 0.6 to 0.8. The variation in the magnitudes of the tectonic stresses appears to be related to differences in the rigidity of crustal rocks. Using the complete stress tensors, including both orientations and magnitudes, we assess the possible ranges of frictional coefficients for different types of faults. We show that normal and reverse faults have lower frictional coefficients than strike-slip faults, suggesting that the former types of faults can be activated under a strike-slip stress regime. Our observations of the seismicity, with normal faulting concentrated offshore to the northwest and reverse faulting focused offshore to the east, are compatible with the results of our estimates of stress magnitudes.

  3. Isosbestics in Infrared Aerosol Spectra: Proposed Applications for Remote Sensing.

    DTIC Science & Technology

    1989-04-01

    droplet solutions and chemical reactions if the complex indices of refraction are known. The technique seems most applicable in the Rayleigh regime. Remote ... sensing , Isosbestics, Infrared, Infrared spectra, Atmosphere, Water, Aerosols, Rayleigh regime.

  4. Forced folding and complex overburden deformation associated with magmatic intrusion in the Vøring Basin, offshore Norway

    NASA Astrophysics Data System (ADS)

    Omosanya, Kamaldeen Olakunle; Johansen, Ståle E.; Eruteya, Ovie Emmanuel; Waldmann, Nicolas

    2017-06-01

    In this study, three-dimensional seismic reflection and borehole data from the Vøring Basin, offshore Norway have been used to characterize a supra-sill related forced fold to understand its evolution and relevance in the context of regional tectonics. Magmatic sills were recognised to be positive high-amplitude anomalies with similar polarity to the seabed reflection. The seismic dataset reveals two groups of sills in the study area comprising interconnected sills beneath the regional forced fold, and those intruded into the overburden. Magmatic sills forming the interconnected sill complex are emplaced at a depth of about 5.5 s TWTT below the modern seafloor. Aspect ratio (length/width), A for the sills ranges from 1.63-6.90. The regional forced fold is interpreted based on its bathymetric and seismic-stratigraphic expression on horizon H7, which is part of the Palaeocene to Eocene Tang Formation. Amplitude of the accommodation fold is about 780 km2. Hydrothermal vent complexes and fluid-flow conduits in the study area develop above the sill edges and on the flanks of the interconnected sill complex extending from the lower part of the Tang Formation to the uppermost section of the Brygge Formation evidencing vertically focussed fluid flow in the study area. The overlying overburden is in turn deformed and structurally compartmentalized through forced folding and Late Cenozoic tectonics. We demonstrate that accommodation folding is formed in response to the emplacement of several interconnected sills during the opening of the Norwegian-Greenland Seas. Sill emplacement in the study area causes uplift of the Cretaceous to Palaeocene depocentre prior to further restructuration during Cenozoic tectonic inversion. Magmatic intrusions documented in this study have wider implications for understanding supra-sill deformations along volcanic margins with well-developed emplaced sills at depth and likewise hydrocarbon prospectivity in the study area.

  5. Multiple tectonic mode switches indicate short-duration heat pulses in a Mio-Pliocene metamorphic core complex, West Papua, Indonesia

    NASA Astrophysics Data System (ADS)

    White, L. T.; Hall, R.; Gunawan, I.

    2017-12-01

    The Wandaman Peninsula is a narrow (<20 km), but mountainous (>2 km) promontory in remote western New Guinea. The peninsula is almost entirely composed of medium- to high-grade metamorphic rocks considered to be associated with a Mio-Pliocene metamorphic core complex. Previous work has shown that the uplift and exhumation of the core complex has potentially brought some extremely young eclogite to the surface. These might be comparable to the world's youngest (4.3 Ma) eclogites found in the D'Entrecasteaux Islands at the opposite end of New Guinea. We show that tectonic history of this region is complex. This is because the metamorphic sequences in the Wandaman Peninsula record multiple phases of deformation, all within the last few million years. This is demonstrated through methodical collation of cross-cutting relations from field and microstructural studies across the peninsula. The first phase of deformation and metamorphism is associated with crustal extension and partial melting that took place at 5-7 Ma according to new U-Pb data from metamorphic zircons. This extensional phase ceased after a tectonic mode switch and the region was shortened. This is demonstrated by two phases of folding (1. recumbent and 2. open) that overprint the earlier extensional fabrics. All previous structures were later overprinted by brittle extensional faults and uplift. This extensional phase is still taking place today, as is indicated by submerged forests exposed along the coastline associated with recent earthquakes and hot springs. The sequence of metamorphic rocks that are exposed in the Wandaman Peninsula show that stress and thermal conditions can change rapidly. If we consider that the present is a key to the past, then such results can identify the duration of deformation and metamorphic events more accurately than in much older orogenic systems.

  6. Geochemistry of siliciclastic rocks in the Peninsular, Chugach, and Prince William terranes: Implications for the tectonic evolution of south central Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, S.A.; Casey, J.F.; Bradley, D.

    1992-01-01

    According to some interpretations, south-central Alaska consists of a series of unrelated terranes juxtaposed by dominantly strike-slip motions some time after formation. Alternatively, these so-called terranes may be related components of a seaward-facing arc, forearc, and accretionary prism. To shed new light on the tectonic history of this area, 150 samples of siliciclastic rocks were analyzed for major, trace, and rare earth elements (REE). Shales were sampled from the Upper Cretaceous Matanuska and Paleogene Chickaloon Fms. of the Peninsular Terrane (forearc basin); argillaceous melange matrix from the Mesozoic McHugh Complex and slate from turbidites of the Upper Cretaceous Valdez Groupmore » of the Chugach Terrane (landward part of accretionary prism); and slate from turbidites of the Paleogene Orea Group of the Prince William Terrane (seaward part of accretionary prism). One tectonic model that may fit these geochemical data requires an early linkage between the Peninsular and Chugach-Prince William composite terranes. The geochemical signatures suggest that the McHugh Complex was derived from a mafic volcanic source and may represent an early accretionary stage of sediments derived from an oceanic arc. The progressive continental enrichment of the Valdez and Orca Groups may reflect later accretionary processes during and/or after the collision of the Talkectna arc with the North American continent. The similar increasingly continental source documented in the geochemistry of the forearc basin shales of the Matanuska and Chickaloon Fms. may suggest: that the presently defined Peninsular, Chugach, and Prince William terranes collectively represent one continuously evolving, seaward facing arc, forearc, and accretionary prism complex.« less

  7. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    NASA Astrophysics Data System (ADS)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  8. Complex brittle deformation pattern along the Southern Patagonian Andes (Argentina)

    NASA Astrophysics Data System (ADS)

    Barberón, Vanesa; Sue, Christian; Ronda, Gonzalo; Ghiglione, Matías

    2016-04-01

    The Southern Patagonian Andes is located in the southern extreme of the Pacific subduction zone, where the Antartic oceanic plate sinks underneath South America. The history of the area begins with compression during Paleozoic, Jurassic extension associated to the rift and opening of the South Atlantic Ocean, then a sag stage in the Lower Cretaceous followed by a foreland phase as a result of plate tectonics (Ghiglione et al., 2016). The kinematic study is concentrated in the Argentinean foothills, between 46°40' and 48° SL. We measured around 800 fault planes and their striaes with the sense of movement in order to characterize the stress field. The software used to make the stress inversion were Tensor (Delvaux, 2011) and Multiple Inverse Method MIM (Yamaji et al., 2011). The stress field map was built with the results of the MIM. We present new data from 48 sites located in the northern sector of the Southern Patagonian Andes. The measurements were made in several rocks from Paleozoic to Lower Cretaceous, even though most were taken in pyroclastic jurassic rocks from El Quemado Complex. Paleostress tensors obtained are mostly strike-slip, although a 25% is normal and there are a few compresional. The pattern of faults found is complex. In some sites the tensor can be locally linked to satellite images and observations from the field or be related to a major thrust front. There is no clear correlation between the age and/or lithology with the tensor since the youngest rocks measured are Lower Cretaceous. Probably there are several generations of family faults connected to different and recent tectonic phases then the paleostress tensors might correspond to the latest tectonic events.

  9. Fire scars reveal variability and dynamics of eastern fire regimes

    Treesearch

    Richard P. Guyette; Daniel C. Dey; Michael C. Stambaugh; Rose-Marie Muzika

    2006-01-01

    Fire scar evidence in eastern North America is sparse and complex but shows promise in defining the dynamics of these fire regimes and their influence on ecosystems. We review fire scar data, methods, and limitations, and use this information to identify and examine the factors influencing fire regimes. Fire scar data from studies at more than 40 sites in Eastern North...

  10. Atomic switch networks as complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2018-03-01

    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  11. Polyphase tertiary fold-and-thrust tectonics in the Belluno Dolomites: new mapping, kinematic analysis, and 3D modelling

    NASA Astrophysics Data System (ADS)

    Chistolini, Filippo; Bistacchi, Andrea; Massironi, Matteo; Consonni, Davide; Cortinovis, Silvia

    2014-05-01

    The Belluno Dolomites are comprised in the eastern sector of the Southern Alps, which corresponds to the fold-and-thrust belt at the retro-wedge of the Alpine collisional orogen. They are characterized by a complex and polyphase fold-and-thrust tectonics, highlighted by multiple thrust sheets and thrust-related folding. We have studied this tectonics in the Vajont area where a sequence of Jurassic, Cretaceous and Tertiary units have been involved in multiple deformations. The onset of contractional tectonics in this part of the Alps is constrained to be Tertiary (likely Post-Eocene) by structural relationships with the Erto Flysch, whilst in the Mesozoic tectonics was extensional. We have recognized two contractional deformation phases (D1 and D2 in the following), of which only the second was mentioned in previous studies of the area and attributed to the Miocene Neoalpine event. D1 and D2 are characterized by roughly top-to-WSW (possibly Dinaric) and top-to-S (Alpine) transport directions respectively, implying a 90° rotation of the regional-scale shortening axis, and resulting in complex thrust and fold interference and reactivation patterns. Geological mapping and detailed outcrop-scale kinematic analysis allowed us to characterize the kinematics and chronology of deformations. Particularly, relative chronology was unravelled thanks to (1) diagnostic fold interference patterns and (2) crosscutting relationships between thrust faults and thrust-related folds. A km-scale D1 syncline, filled with the Eocene Erto Flysch and "decapitated" by a D2 thrust fault, provides the best map-scale example of crosscutting relationships allowing to reconstruct the faulting history. Due to the strong competence contrast between Jurassic carbonates and Tertiary flysch, in this syncline spectacular duplexes were also developed during D2. In order to quantitatively characterize the complex interference pattern resulting from two orthogonal thrusting and folding events, we performed a dip-domain analysis that allowed to categorize the different fold limbs and reduce the uncertainty in the reconstruction of the fault network topology in map view. This enabled us to reconstruct a high-quality, low-uncertainty 3D structural and geological model, which unambiguously proves that deformations with a top-to-WSW Dinaric transport direction propagate farther to the west than previously supposed in this part of the Southern Alps. Our new structural reconstruction of the Vajont valley have also clarified the structural control on the 1963 catastrophic landslide (which caused over 2000 losses). Besides being a challenging natural laboratory for testing analysis and modelling methodologies to be used when reconstructing in 3D this kind of complex interference structures, the Vajont area also provides useful clues on the still-enigmatic structures in the frontal part of the Friuli-Venetian Southern Alps, buried in the Venetian Plain foredeep. These include active seismogenic thrust-faults and, at the same time, represent a growing interest for the oil industry.

  12. Andean tectonics: Implications for Satellite Geodesy

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.

    1984-01-01

    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocharova, N.Yu.; Scotese, C.R.; Pristavakina, E.I.

    A digital geographic database for the former USSR was compiled using published geologic and geodynamic maps and the unpublished suture map of Lev Zonenshain (1991). The database includes more than 900 tectonic features: strike-slip faults, sutures, thrusts, fossil and active rifts, fossil and active subduction zones, boundaries of the major and minor Precambrian blocks, ophiolites, and various volcanic complexes. The attributes of each structural unit include type of structure, name, age, tectonic setting and geographical coordinates. Paleozoic and Early Mesozoic reconstructions of the former USSR and adjacent regions were constructed using this tectonic database together with paleomagnetic data and themore » motions of continent over fixed hot spots. Global apparent polar wander paths in European and Siberian coordinates were calculated back to Cambrian time, using the paleomagnetic pole summaries of Van der Voo (1992) and Khramov (1992) and the global plate tectonic model of the Paleomap Project (Scotese and Becker, 1992). Trajectories of intraplate volcanics in South Siberia, Mongolia, Scandinavia and data on the White Mountain plutons and Karoo flood basalts were also taken into account. Using new data, the authors recalculated the stage and finite poles for the rotation of the Siberia and Europe with respect to the hot spot reference frame for the time interval 160 to 450 Ma.« less

  14. Claritas rise, Mars: Pre-Tharsis magmatism?

    USGS Publications Warehouse

    Dohm, J.M.; Anderson, R.C.; Williams, J.-P.; Ruiz, J.; McGuire, P.C.; Buczkowski, D.L.; Wang, R.; Scharenbroich, L.; Hare, T.M.; Connerney, J.E.P.; Baker, V.R.; Wheelock, S.J.; Ferris, J.C.; Miyamoto, H.

    2009-01-01

    Claritas rise is a prominent ancient (Noachian) center of tectonism identified through investigation of comprehensive paleotectonic information of the western hemisphere of Mars. This center is interpreted to be the result of magmatic-driven activity, including uplift and associated tectonism, as well as possible hydrothermal activity. Coupled with its ancient stratigraphy, high density of impact craters, and complex structure, a possible magnetic signature may indicate that it formed during an ancient period of Mars' evolution, such as when the dynamo was in operation. As Tharsis lacks magnetic signatures, Claritas rise may pre-date the development of Tharsis or mark incipient development, since some of the crustal materials underlying Tharsis and older parts of the magmatic complex, respectively, could have been highly resurfaced, destroying any remanent magnetism. Here, we detail the significant characteristics of the Claritas rise, and present a case for why it should be targeted by the Mars Odyssey, Mars Reconnaissance Orbiter, and Mars Express spacecrafts, as well as be considered as a prime target for future tier-scalable robotic reconnaissance. ?? 2009 Elsevier B.V.

  15. Making a report of a short trip in an ophiolitic complex with Google Earth

    NASA Astrophysics Data System (ADS)

    Aubret, Marianne

    2017-04-01

    Plate tectonics is taught in French secondary school (lower and upper-sixth). According to the curriculum, the comprehension of plate-tectonic processes and concepts should be based on field data. For example, the Alpine's ocean history is studied to understand how mountain ranges are formed. In this context, Corsica is a great open-air laboratory, but unfortunately, the traffic conditions are very difficult in the island and despite the short distances, it's almost impossible for teachers to take their students to the remarkable geologic spots. The «défilé de l'Inzecca» is one of them: there you can see a part of the alpine's ophiolitic complex. The aim of this activity is to elaborate a « KMZ folder » in Google Earth as a report of a short trip thanks to the students' data field; it is also the occasion to enrich the Google Earth KMZ folder already available for our teaching.

  16. An archean suture zone in the Tobacco Root Mountains? (1984) Evolution of Archean Continental Crust, SW Montana (1985)

    NASA Technical Reports Server (NTRS)

    Mogk, D. W.; Kain, L.

    1985-01-01

    The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.

  17. The mafic-ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Venkatasivappa, V.; Koizumi, T.; Chetty, T. R. K.; Santosh, M.; Tsunogae, T.

    2014-12-01

    Several Precambrian mafic-ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic-Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.

  18. Deformation in the hanging wall of Cretaceous HP rocks (Austroalpine Ötztal-Stubai Complex, European Eastern Alps): constraints on timing, conditions and kinematics

    NASA Astrophysics Data System (ADS)

    Habler, Gerlinde; Thöni, Martin; Grasemann, Bernhard; Sölva, Helmuth; Cotza, Gianluca

    2010-05-01

    The position and nature of the tectonic boundary between the Cretaceous eclogite facies metamorphic Texel Complex (Sölva et al. 2005, TC) and the Ötztal-Stubai Complex sensu stricto (OSC) with predominantly pre-Cretaceous tectonometamorphic imprint remained a matter of discussion (Fügenschuh et al. 2009). Sölva et al (2005) described the Cretaceous Schneeberg Normal Fault Zone (SNFZ) as the major tectonic boundary between the exhuming TC and the OSC, where the major portion of ductile deformation was partitioned into the rheologically weak Schneeberg/Monteneve Unit (SMU). In contrast, other authors proposed a model of a coherent vertical crustal section in the southern OSC (Schmid and Haas 1989), which was rotated and exhumed by erosion due to Oligocene large scale refolding (Fügenschuh et al. 2009). Here, new Rb-Sr data of muscovite and biotite from para- and orthogneisses from the Ferwalltal and Timmelsjoch areas (Austria/Italy) were correlated with mineral chemical and structural data in order to constrain the age and kinematics of the predominant deformational imprint in the OSC representing the hanging wall of the SNFZ. In the Ferwalltal the undisturbed OSC/SMU boundary is exposed. Above that boundary an amphibolite facies mylonitic foliation (Sc1) represented by the compositional layering of coarse grained Qtz, Bt and dynamically recrystallized Pl interferes with an overprinting mylonitic foliation (Sc2) with spatially heterogeneous intensity. Sc1-planes were syn-tectonically overgrown by euhedral Grt with single phase continuous prograde chemical zoning and Bt-porphyroblasts. Dc2 postdated garnet growth and caused the formation of SCC' fabrics in Bt-Pl gneisses. Still Qtz recrystallized dynamically, whereas Ms and Bt newly crystallized during Dc2. In the study area, the lithological boundaries in the OSC mainly are subparallel to the predominant foliation Sc1. These planes dip with 45-50° to the NW-NNW and show a WNW-plunging stretching lineation (LSc1) of dynamically recrystallized plagioclase and quartz. Shear kinematics of Dc1 alternate between Top to WNW or ESE. Sc2 foliation planes and the lithological-tectonic OSC/SMU boundary dip with intermediate angles towards N - NNW but also bear a W-plunging stretching lineation (LSc2). Dc2 structures consistently indicate W-directed shear kinematics. Due to the angular relationship of Sc1 and Sc2 the lithological boundaries of the OSC are truncated at the boundary with the SMU. Cretaceous Rb-Sr isochrons were obtained from Bt-granite-gneiss about 400m structurally above the OSC/SMU boundary. Fine-grained muscovite forming part of the major foliation Sc1 yielded a Rb-Sr Ms-WR age of 86.1 ± 0.9 Ma interpreted as a crystallization age constraining the timing of Dc1. The evidence of isotopic equilibration was supported by the homogeneous major element Ms composition. Rb-Sr Bt-WR data from the same material yielded 80.8±0.8 Ma interpreted to reflect cooling below c. 300°C. Several Rb-Sr Bt-WR data obtained from the Ferwalltal area gave age-results between 80.0 and 84.7 Ma and thus range among numerous Bt-WR Rb-Sr ages available from the wider study area (Thöni and Hoinkes 1987). Both deformation stages Dc1 and Dc2 predate this cooling period, as the Qtz-mica-fabrics demand significantly higher T-conditions. Subsequent deformation covers strongly partitioned brittle-ductile shear zones dipping with 50 - 60° to NW, as well as ultra-cataclasites bearing pseudotachylites, which reactivated Sc1- or Sc2 planes about 50 - 70 meters above the OSC/SMU boundary. Both brittle-ductile and brittle structures showed W-directed kinematics of normal faulting. The continuation of consistent shear kinematics to the brittle regime, as well as the extensive database of mica ages indicating cooling to below c. 300°C in the OSC adjacent to the SMU between 85 - 80 Ma (Thöni and Hoinkes 1987, with references) contradict a model of Oligocene ductile refolding. References: Fügenschuh B, Flöss D, Speckbacher R (2009) In Alpine Workshop Cogne. Schmid SM, Haas R (1989) Tectonics 8: 697-718. Sölva H, Grasemann B, Thöni M, Thiede RC, Habler G (2005) Tectonophysics 401: 143-166. Thöni M, Hoinkes G (1987) In Geodynamics of the Eastern Alps, pp. 200-213. Edited by Flügel HW and Faupl P. Vienna: Deuticke.

  19. State of the dam at the Zeya hydroelectric station with consideration of the geodynamic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchuk, A.N.; Dudchenko, L.N.; Bolgov, V.V.

    1995-11-01

    The buttress dam of the Zeya hydroelectric station has already been operating successfully for 20 years under complex climatic, geological, and seismological conditions. Additional difficulties are created by some uncertainty of the interaction of the structure with the geological environment subjected to tectonic movements. The seismotectonic conditions of the region of the Zeya reservoir are determined by proximity to the boundary of two large structural zones with a different character of tectonic movements: regions of the uplift of the Tukuringra-Soktokhan Range and the downwarping Amur-Zeya Plateau. This boundary is represented by the Pkan fault located about 1 km from themore » dam on the downstream side.« less

  20. Template Synthesis, Metalation, and Self-Assembly of Protic Gold(I)/(NHC)2 Tectons Driven by Metallophilic Interactions.

    PubMed

    Ruiz, Javier; García, Lucía; Sol, Daniel; Vivanco, Marilín

    2016-07-11

    A new protocol for the synthesis of protic bis(N-heterocyclic carbene) complexes of Au(I) by a stepwise metal-controlled coupling of isocyanide and propargylamine is described. They are used as tectons for the construction of supramolecular architectures through metalation and self-assembly. Notably a unique polymeric chain of Cu(I) with alternate Au(I) /bis(imidazolate) bridging scaffolds and strong unsupported Cu(I) -Cu(I) interactions has been generated, as well as a 28-metal-atoms cluster containing a nanopiece of Cu2 O trapped by peripheral Au(I) /bis(imidazolate) moieties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stand-replacing patches within a ‘mixed severity’ fire regime: quantitative characterization using recent fires in a long-established natural fire area

    Treesearch

    B.M. Collins; S.L. Stephens

    2010-01-01

    The complexity inherent in variable, or mixed-severity fire regimes makes quantitative characterization of important fire regime attributes (e.g., proportion of landscape burned at different severities, size and distribution of stand-replacing patches) difficult. As a result, there is ambiguity associated with the term ‘mixed-severity’. We address...

  2. Conditions of Fissuring in a Pumped-Faulted Aquifer System

    NASA Astrophysics Data System (ADS)

    Hernandez-Marin, M.; Burbey, T. J.

    2007-12-01

    Earth fissuring associated with subsidence from groundwater pumping is problematic in many arid-zone heavily pumped basins such as Las Vegas Valley. Long-term pumping at rates considerably greater than the natural recharge rate has stressed the heterogeneous aquifer system resulting in a complex stress-strain regime. A rigorous artificial recharge program coupled with increased surface-water importation has allowed water levels to appreciably recover, which has led to surface rebound in some localities. Nonetheless, new fissures continue to appear, particularly near basin-fill faults that behave as barriers to subsidence bowls. The purpose of this research is to develop a series of computational models to better understand the influence that structure (faults), pumping, and hydrostratigraphy has in the generation and propagation of fissures. The hydrostratigraphy of Las Vegas Valley consists of aquifers, aquitards and a relatively dry vadoze zone that may be as thick as 100m in much of the valley. Quaternary faults are typically depicted as scarps resulting from pre- pumping extensional tectonic events and are probably not responsible for the observed strain. The models developed to simulate the stress-strain and deformation processes in a faulted pumped aquifer-aquitard system of Las Vegas use the ABAQUS CAE (Complete ABAQUS Environment) software system. ABAQUS is a sophisticated engineering industry finite-element modeling package capable of simulating the complex fault- fissure system described here. A brittle failure criteria based on the tensile strength of the materials and the acting stresses (from previous models) are being used to understand how and where fissures are likely to form. , Hypothetical simulations include the role that faults and the vadose zone may play in fissure formation

  3. New perspectives on the transition between discrete fracture, fragmentation, and pulverization during brittle failure of rocks

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.

    2015-12-01

    The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a function of lithology and loading pulse characteristics.

  4. Applying the Multiple Inverse Method to the analysis of earthquake focal mechanism data: New insights into the active stress field of Italy and surrounding regions

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Chiara; Mazzoli, Stefano; Megna, Antonella; Saggese, Ferdinando; Santini, Stefano; Vitale, Stefano

    2012-12-01

    In order to obtain new insights into the active tectonic setting of the Italian territory and surrounding regions, the Multiple Inverse Method (MIM) has been applied to the analysis of fault plane solutions from more than 700 earthquakes with Mw ≥ 4. The active stress field in the top 40 km of the lithosphere has been defined for four 10 km-thick layers, each including 810 square cells of 1.5° side. The obtained stress field maps point out that most of the upper crustal seismicity of the Western and Central Alps is controlled by a strike-slip regime, which is dominant also in part of the Dinarides, Albanides and Hellenides and in a large sector encompassing eastern Sicily and the Malta area to the eastern Tunisia offshore. On the other hand, the well-known extensional belt occurring in the interior of the Apennines appears to extend well beyond the backbone of Italy, potentially reaching the outer foothills of the northern Marche region, while the adjacent Adria block (extending to the eastern Po Plain and the outer Dinarides) sticks out as a major area characterised by dominant thrust faulting in the upper crust. A similar regime characterises also a large sector of the western Tyrrhenian Sea, from NE Tunisia through western Sicily and the west coast of Sardinia, to the Provence coast. Besides lateral variations, our analysis also points out a significant vertical heterogeneity of the stress field, the deeper levels (20 to 40 km) investigated in this study being characterised by dominant horizontal maximum compression even in areas of upper crustal extension. The application of the MIM to a large seismological dataset, providing basic information for the compilation of active stress maps, contributes to a better understanding of active tectonic processes and may be used for improving seismotectonic zoning and reservoir management.

  5. Observational Constraints on Lithospheric Rheology and Their Implications for Lithospheric Dynamics and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2014-12-01

    Lithospheric rheology and strength are important for understanding crust and lithosphere dynamics, and the conditions for plate tectonics. Laboratory studies suggest that lithospheric rheology is controlled by frictional sliding, semi-brittle, low-temperature plasticity, and high-temperature creep deformation mechanisms as pressure and temperature increase from shallow to large depths. Although rheological equations for these deformation mechanisms have been determined in laboratory settings, it is necessary to validate them using field observations. Here we present an overview of lithospheric rheology constrained by observations of seismic structure and load-induced flexure. Together with mantle dynamic modeling, rheological equations for high-temperature creep derived from laboratory studies (Hirth and Kohlstedt, 2003; Karato and Jung, 2003) satisfactorily explain the seismic structure of the Pacific upper mantle (Hunen et al., 2005) and Hawaiian swell topography (Asaadi et al., 2011). In a recent study that compared modeled surface flexure and stress induced by volcano loads in the Hawaiian Islands region with the observed flexure and seismicity, Zhong and Watts (2013) showed that the coefficient of friction is between 0.25 and 0.7, and is consistent with laboratory studies and also in-situ borehole measurements. However, this study indicated that the rheological equation for the low-temperature plasticity from laboratory studies (e.g., Mei et al., 2010) significantly over-predicts lithospheric strength and viscosity. Zhong and Watts (2013) also showed that the maximum lithospheric stress beneath Hawaiian volcano loads is about 100-200 MPa, which may be viewed as the largest lithospheric stress in the Earth's lithosphere. We show that the relatively weak lithospheric strength in the low-temperature plasticity regime is consistent with seismic observation of reactivated mantle lithosphere in the western US and the eastern North China. We discuss here the causes of this weakening in the context of the potential effects on laboratory studies of reduced grain size and Peierls stress on the low-temperature deformation regime.

  6. When do glaciated landscapes form?

    NASA Astrophysics Data System (ADS)

    Koppes, M. N.

    2015-12-01

    Glacial erosion is a fundamental link between climate and the tectonic and surface processes that create topography. Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice masses, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, from the modern to orogenic. Recent numerical modeling efforts have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple index that relates erosion rate to ice dynamics. To provide a quantitative test of the links between glacial erosion, sliding and ice discharge, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes, from Patagonia to the Antarctic Peninsula. We find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 in Patagonia to 0.01-<0.1 mm yr-1 in the AP, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theories of glacial erosion. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold decrease in long-term relative to modern erosion rates may in part reflect the temporal averaging of temperate and polar conditions over the lifecycle of these glaciers. Hence, climatic variation, more than the extent of ice cover or tectonic changes, controls the pace at which glaciers shape mountains.

  7. Sedimentologic and paleoclimatic reconstructions of carbonate factory evolution in the Alborz Basin (northern Iran) indicate a global response to Early Carboniferous (Tournaisian) glaciations

    NASA Astrophysics Data System (ADS)

    Sardar Abadi, Mehrdad; Kulagina, Elena I.; Voeten, Dennis F. A. E.; Boulvain, Frédéric; Da Silva, Anne-Christine

    2017-03-01

    The Lower Carboniferous Mobarak Formation records the development of a storm-sensitive pervasive carbonate factory on the southern Paleo-Tethyan passive margin following the opening of the Paleo-Tethys Ocean into the Alborz Basin along the northern margin of Gondwana. Its depositional facies encompass inner ramp peritidal environments, peloidal to crinoidal shoals, storm to fair-weather influenced mid-ramps, proximal to distal shell beds and low energy outer ramps. Sedimentological analyses and foraminiferal biostratigraphy reveal four events affecting carbonate platform evolution in the Alborz Basin during the Lower Carboniferous: (1) A transgression following global temperature rise in the Early Tournaisian (middle Hastarian) caused the formation of thick-bedded argillaceous limestones. This interval correlates with Early Tournaisian nodular to argillaceous limestones in the Moravia Basin (Lisen Formation, Czech Republic), the Dinant Basin (Pont d'Arcole Formation, Belgium), and at the Rhenish Slate Mountains (Lower Alum shale, Germany). (2) Late Hastarian-early Ivorian glaciations previously identified in Southern Gondwana but had not yet recognized in Northern Gondwana were recorded through a sequence boundary. (3) During the Late Tournaisian-Early Visean?, a differential block faulting regime along the basin's margin caused uplift of the westernmost parts of the Alborz Basin and resulted in subsidence in the eastern part of the central basin. This tectonically controlled shift in depositional regime caused vast sub-aerial exposure and brecciation preserved in the top of the Mobarak Formation in the western portion of the Central Alborz Basin. (4) Tectonic activity coinciding with a progressive, multiphase sea level drop caused indirectly by the Viséan and Serpukhovian glaciations phases ultimately led to the stagnation of the carbonate factory. Paleothermometry proxies, the presence of foraminiferal taxa with a northern Paleo-Tethyan affinity and evidence for arid conditions in the terrestrial hinterland place the Alborz Basin at lower latitudes than the approximately 45ο-50ο southern paleolatitude reported thus far.

  8. Syn-convergence extension in the southern Lhasa terrane: Evidence from late Cretaceous adakitic granodiorite and coeval gabbroic-dioritic dykes

    NASA Astrophysics Data System (ADS)

    Ma, Xuxuan; Xu, Zhiqin; Meert, Joseph G.

    2017-10-01

    Late Cretaceous (∼100-80 Ma) magmatism in the Gangdese magmatic belt plays a pivotal role in understanding the evolutionary history and tectonic regime of the southern Lhasa terrane. The geodynamic process for the formation of the early Late Cretaceous magmatism has long been an issue of hot debates. Here, petrology, geochronology and geochemistry of early Late Cretaceous granodiorite and coeval gabbroic-dioritic dykes in the Caina region, southern Lhasa, were investigated in an effort to ascertain their petrogenesis, age of intrusion, magma mixing and tectonic setting. Zircon U-Pb dating of granodiorite yields 206Pb/238U ages of 85.8 ± 1.7 and 86.4 ± 1.1 Ma, whilst that of the E-W trending dykes yields ages of 82.7 ± 2.6 and 83.5 ± 3.5 Ma. Within error, the crystallization ages of the dykes and the granodiorite are indistinguishable. Field observations and mineralogical microstructures are suggestive of a magma mixing process during the formation of the dykes and the granodiorite. The granodiorite exhibits geochemical features that are in agreement with those of subduction-related high-SiO2 adakites. The granodiorite and dykes have relatively constant εNd(t) values of +2.2 to +4.9 and initial 87Sr/86Sr ratios (0.7045-0.7047). These similar characteristics are herein interpreted as an evolutionary series from the dykes to granodiorite, consistent with magma mixing process. Ti-in-zircon thermometer and Al-in-hornblende barometer indicate that the granodiorite and the dioritic dyke crystallized at temperatures of ca. 750 and 800 °C, depths of ca. 6-10 and 5-9 km, respectively. Taking into account the synchronous magmatic rocks in the Gangdese Belt and the coeval rifted basin within the Lhasa terrane, the granodiorite and dykes reveal an early Late Cretaceous syn-convergence extensional regime in the southern Lhasa terrane, triggered by slab rollback of the Neotethyan oceanic lithosphere.

  9. Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng

    2017-08-01

    We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.

  10. Successive post-Variscan stress fields in the French Massif Central and its borders (Western European plate): comparison with geodynamic data

    NASA Astrophysics Data System (ADS)

    Blés, J. L.; Bonijoly, D.; Castaing, C.; Gros, Y.

    1989-11-01

    Structural analysis and particularly microtectonic methods have made it possible to define the different stages of brittle deformation of the Massif Central basement and the surrounding sedimentary cover from the end of the Hercynian orogeny to the end of the Tertiary. During the Stephanian a compressional tectonic regime prevailed: regional faults appeared or were react vated reactivation as a result of initial N-S compression, becoming NW then E-W. These regional strike-slip faults caused local extension which led to the formation of small coal-bearing basins. This compressional regime, which marked the end of the formation of Pangea. was followed by a series of extension episodes: Permian-Triassic extension oscillating around N-S. E-W to NW-SE extension in the Early and Middle Jurassic and finally N-S to NE-SW extension in the Late Jurassic to Cretaceous. The normal faults formed during these episodes strongly influenced the distribution of emerging continents and sedimentary basins. From the Campanian (75 Ma) to the Present, the convergence of Africa and Eurasia involved the distribut on of stresses in the West European plate. Several tectonic episodes are distinguished in the Massif Central. During the Eocene approximately N-S compression predominated. General E-W extension in the Late Eocene-Oligocene resulted in grabens with general northerly strike, mainly in the centre of the Massif Central and on its east and southeast borders. Lastly, compression, varying from NW-SE to E-W, in the north and south of the Massif Central, prevailed during the Alpine orogenic phase at the end of the Miocene. These successive stages of brittle deformation are interpreted in the context of the evolution of the West European plate and its displacement in relation to the African plate. The correspondences between the major geodynamic periods and the distribution of stresses over the West European continent are noted as well as the problems which remair to be resolved.

  11. Mechanical stratification of autochthonous salt: Implications from basin-scale numerical models of rifted margin salt tectonics

    NASA Astrophysics Data System (ADS)

    Ings, Steven; Albertz, Markus

    2014-05-01

    Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in autochthonous salt basins and thick packages of pure halite in allochthonous salt sheets.

  12. Source properties of earthquakes near the Salton Sea triggered by the 16 October 1999 M 7.1 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Hough, S.E.; Kanamori, H.

    2002-01-01

    We analyze the source properties of a sequence of triggered earthquakes that occurred near the Salton Sea in southern California in the immediate aftermath of the M 7.1 Hector Mine earthquake of 16 October 1999. The sequence produced a number of early events that were not initially located by the regional network, including two moderate earthquakes: the first within 30 sec of the P-wave arrival and a second approximately 10 minutes after the mainshock. We use available amplitude and waveform data from these events to estimate magnitudes to be approximately 4.7 and 4.4, respectively, and to obtain crude estimates of their locations. The sequence of small events following the initial M 4.7 earthquake is clustered and suggestive of a local aftershock sequence. Using both broadband TriNet data and analog data from the Southern California Seismic Network (SCSN), we also investigate the spectral characteristics of the M 4.4 event and other triggered earthquakes using empirical Green's function (EGF) analysis. We find that the source spectra of the events are consistent with expectations for tectonic (brittle shear failure) earthquakes, and infer stress drop values of 0.1 to 6 MPa for six M 2.1 to M 4.4 events. The estimated stress drop values are within the range observed for tectonic earthquakes elsewhere. They are relatively low compared to typically observed stress drop values, which is consistent with expectations for faulting in an extensional, high heat flow regime. The results therefore suggest that, at least in this case, triggered earthquakes are associated with a brittle shear failure mechanism. This further suggests that triggered earthquakes may tend to occur in geothermal-volcanic regions because shear failure occurs at, and can be triggered by, relatively low stresses in extensional regimes.

  13. Focal mechanisms of earthquakes in Mongolia

    NASA Astrophysics Data System (ADS)

    Sodnomsambuu, D.; Natalia, R.; Gangaadorj, B.; Munkhuu, U.; Davaasuren, G.; Danzansan, E.; Yan, R.; Valentina, M.; Battsetseg, B.

    2011-12-01

    Focal mechanism data provide information on the relative magnitudes of the principal stresses, so that a tectonic regime can be assigned. Especially such information is useful for the study of intraplate seismic active regions. A study of earthquake focal mechanisms in the territory of Mongolia as landlocked and intraplate region was conducted. We present map of focal mechanisms of earthquakes with M4.5 which occurred in Mongolia and neighboring regions. Focal mechanisms solutions were constrained by the first motion solutions, as well as by waveform modeling, particularly CMT solutions. Four earthquakes have been recorded in Mongolia in XX century with magnitude more than 8, the 1905 M7.9 Tsetserleg and M8.4 Bolnai earthquakes, the 1931 M8.0 Fu Yun earthquake, the 1957 M8.1 Gobi-Altai earthquake. However the map of focal mechanisms of earthquakes in Mongolia allows seeing all seismic active structures: Gobi Altay, Mongolian Altay, active fringe of Hangay dome, Hentii range etc. Earthquakes in the most of Mongolian territory and neighboring China regions are characterized by strike-slip and reverse movements. Strike-slip movements also are typical for earthquakes in Altay Range in Russia. The north of Mongolia and south part of the Baikal area is a region where have been occurred earthquakes with different focal mechanisms. This region is a zone of the transition between compressive regime associated to India-Eurasian collision and extensive structures localized in north of the country as Huvsgul area and Baykal rift. Earthquakes in the Baikal basin itself are characterized by normal movements. Earthquakes in Trans-Baikal zone and NW of Mongolia are characterized dominantly by strike-slip movements. Analysis of stress-axis orientations, the tectonic stress tensor is presented. The map of focal mechanisms of earthquakes in Mongolia could be useful tool for researchers in their study on Geodynamics of Central Asia, particularly of Mongolian and Baikal regions.

  14. Faulting and erosion in the Argentine Precordillera during changes in subduction regime: Reconciling bedrock cooling and detrital records

    NASA Astrophysics Data System (ADS)

    Fosdick, Julie C.; Carrapa, Barbara; Ortíz, Gustavo

    2015-12-01

    The Argentine Precordillera is an archetypal retroarc fold-and-thrust belt that records tectonics associated with changing subduction regimes. The interactions between exhumation and faulting in the Precordillera were investigated using apatite and zircon (U-Th-Sm)/He and apatite fission track thermochronometry from the Precordillera and adjacent geologic domains. Inverse modeling of thermal histories constrains eastward in-sequence rock cooling associated with deformation and erosion from 18 to 2 Ma across the Central Precordillera tracking thrusting during this time. The youngest AHe ages (5-2 Ma) and highest erosion rates are located in the eastern and western extremities of the Precordillera and indicate that recent denudation is concentrated at its structural boundaries. Moreover, synchronous rapid Pliocene cooling of the Frontal Cordillera, Eastern Precordillera, and Sierra del Valle Fértil was coeval with initiation of basement-involved faulting in the foreland. Detrital zircon U-Pb geochronology from the ca. 16-8.1 Ma Bermejo foreland basin strata suggests fluvial connectivity westward beyond the Frontal Cordillera to the Main Cordillera and Coast Range followed by an important shift in sediment provenance at ca. 10 Ma. At this time, we suggest that a substantial decrease in Permo-Triassic igneous sources in the Frontal Cordillera and concurrent increase in recycled zircons signatures of Paleozoic strata are best explained by uplift and erosion of the Precordillera during widening of the thrust-belt. Bedrock thermochronology and modeling indicate a 2-6 Myr lag time between faulting-related cooling in the hinterland and the detrital record of deformation in the foreland basin, suggesting that for tectonically active semi-arid settings, bedrock cooling may be more sensitive to onset of faulting. We suggest that high erosion rates in the Frontal Cordillera and Eastern Precordillera are associated with increased interplate coupling during shallowing of the subducting Nazca plate that may concentrate stress along weak structural boundaries of the Precordillera.

  15. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: Geothermal Resources Council Transactions, 35, 7 pp. Preprint at http://crack.seismo.unr.edu/geothermal/Eisses-GRCpaper-sm.pdf The Pyramid Lake fault zone lies within a vitally important area of the northern Walker Lane where not only can transtension can be studied through a complex arrangement of strike-slip and normal faults but also geothermal activity can be examined in the extensional regime for productivity. This study used advanced and economical seismic methodsmore » in attempt to develop the Paiute Tribe’s geothermal reservoir and to expand upon the tectonics and earthquake hazard knowledge of the area. 500 line-kilometers of marine CHIRP data were collected on Pyramid Lake combined with 27 kilometers of vibrator seismic on-land data from the northwest side of the basin were collected in 2010 that highlighted two distinct phases of faulting. Preliminary results suggest that the geothermal fluids in the area are controlled by the late Pleistoceneto Holocene-aged faults and not through the mid-Miocene-aged conduits as originally hypothesized.« less

  16. Emergence and evolution of Santa Maria Island (Azores)—The conundrum of uplifted islands revisited

    USGS Publications Warehouse

    Ramalho, Ricardo; Helffrich, George; Madeira, Jose; Cosca, Michael A.; Thomas, Christine; Quartau, Rui; Hipolito, Ana; Rovere, Alessio; Hearty, Paul; Avila, Sergio

    2017-01-01

    The growth and decay of ocean-island volcanoes are intrinsically linked to vertical movements. While the causes for subsidence are better understood, uplift mechanisms remain enigmatic. Santa Maria Island in the Azores Archipelago is an ocean-island volcano resting on top of young lithosphere, barely 480 km away from the Mid-Atlantic Ridge. Like most other Azorean islands, Santa Maria should be experiencing subsidence. Yet, several features indicate an uplift trend instead. In this paper, we reconstruct the evolutionary history of Santa Maria with respect to the timing and magnitude of its vertical movements, using detailed field work and 40Ar/39Ar geochronology. Our investigations revealed a complex evolutionary history spanning ∼6 m.y., with subsidence up to ca. 3.5 Ma followed by uplift extending to the present day. The fact that an island located in young lithosphere experienced a pronounced uplift trend is remarkable and raises important questions concerning possible uplift mechanisms. Localized uplift in response to the tectonic regime affecting the southeastern tip of the Azores Plateau is unlikely, since the area is under transtension. Our analysis shows that the only viable mechanism able to explain the uplift is crustal thickening by basal intrusions, suggesting that intrusive processes play a significant role even on islands standing on young lithosphere, such as in the Azores.

  17. Mantle Convection on Modern Supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  18. Ductile to Brittle Shear Localization in the Upper Crust During Thermal Anomaly: the Calamita Complex (Elba Island, Italy)

    NASA Astrophysics Data System (ADS)

    Papeschi, S.

    2016-12-01

    A field and microstructural study of contemporaneous pluton-related thermal anomaly and thrust faulting highlights the mutual interaction between active regional tectonics, magma emplacement and contact metamorphism. The Calamita Complex is composed of highly strained HT/LP schists, metarenites and metacarbonates. HT metamorphism was caused by the emplacement of the buried Porto Azzurro intrusion occurred at pressures below 0.2 GPa. Thermal anomaly was associated to top-to-NE shearing that produced multiple mylonitic shear zones, a HT/LP W-dipping foliation and E-W trending lineations. Strain markers provided by metaconglomerates suggest that deformation occurred in a constrictional regime, independent from the geometry of the magmatic system. Pluton emplacement and shearing were not caused by each other but they interacted producing an entirely new fabric that transposed the previous regional features. Deformation outlasted cooling causing the progressive localization of shearing along a main cataclastic zone localized at the contact between mylonitic metacarbonates and schists. The interaction between shearing and the emplacement of late leucogranitic sills caused also the development of mylonitic to cataclastic fabrics within the sills, depending on temperature and strain rate at the time of emplacement. At the microscale synkinematic blastesis of andalusite plus cordierite and the progressive switch from GBM- to SGR- to BLG- microstructures of quartz, locally overprinted by cataclastic fabrics. The analysis of microstructures suggest that in the Calamita Complex regional deformation affected the host rocks and the late magmatic products of the pluton that registered the switch from ductile to brittle conditions. This switch was generally due to the progressive cooling of the system; however multiple microstructures suggest that deformation in the Calamita was heterogeneous in time and space and possibly subject to different strain rates in different portions that may have produced coeval ductile and brittle deformation.

  19. Quaternary Morphodynamics of Fluvial Dispersal Systems Revealed: The Fly River, PNG, and the Sunda Shelf, SE Asia, simulated with the Massively Parallel GPU-based Model 'GULLEM'

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.; Lauer, J. W.; Darby, S. E.; Best, J.; Dietrich, W. E.

    2015-12-01

    During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling these processes would illuminate system morphodynamics, fluxes, and 'complexity' in response to base level change, yet such problems are computationally formidable. Environmental systems are characterized by strong interconnectivity, yet traditional supercomputers have slow inter-node communication -- whereas rapidly advancing Graphics Processing Unit (GPU) technology offers vastly higher (>100x) bandwidths. GULLEM (GpU-accelerated Lowland Landscape Evolution Model) employs massively parallel code to simulate coupled fluvial-landscape evolution for complex lowland river systems over large temporal and spatial scales. GULLEM models the accommodation space carved/infilled by representing a range of geomorphic processes, including: river & tributary incision within a multi-directional flow regime, non-linear diffusion, glacial-isostatic flexure, hydraulic geometry, tectonic deformation, sediment production, transport & deposition, and full 3D tracking of all resulting stratigraphy. Model results concur with the Holocene dynamics of the Fly River, PNG -- as documented with dated cores, sonar imaging of floodbasin stratigraphy, and the observations of topographic remnants from LGM conditions. Other supporting research was conducted along the Mekong River, the largest fluvial system of the Sunda Shelf. These and other field data provide tantalizing empirical glimpses into the lowland landscapes of large rivers during glacial-interglacial transitions, observations that can be explored with this powerful numerical model. GULLEM affords estimates for the timing and flux budgets within the Fly and Sunda Systems, illustrating complex internal system responses to the external forcing of sea level and climate. Furthermore, GULLEM can be applied to most ANY fluvial system to explore processes across a wide range of temporal and spatial scales. The presentation will provide insights (& many animations) illustrating river morphodynamics & resulting landscapes formed as a result of sea level oscillations. [Image: The incised 3.2e6 km^2 Sundaland domain @ 431ka

  20. A Geothermochronologic Investigation of the Coyote Mountains Metamorphic Core Complex (AZ)

    NASA Astrophysics Data System (ADS)

    Borel, M.; Gottardi, R.; Casale, G.

    2017-12-01

    The Coyote Mountains metamorphic core complex (CM-MCC) makes up the northern end of the Baboquivari Mountain complex, which is composed of Mesozoic rocks, Tertiary granites, pegmatites, and metasediments. The CM-MCC expose the Pan Tak granite, a 58 Ma intrusive muscovite-biotite-garnet peraluminous granite. The Pan Tak and other intrusions within the Baboquivari Mountains have been interpreted as anatectic melts representing the culmination of a Laramide crustal shortening orogenic event started in the Late Cretaceous ( 70 Ma). Evidence of this magmatic episode includes polysynthetic twinning in plagioclase, myrmekitic texture in alkali feldspars, and garnet, mica and feldspar assemblages. The magmatic fabric is overprinted by a Tertiary tectonic fabric, associated with the exhumation of the CM-MCC along the Ajo road décollement and associated shear zone. In the shear zone, the Pan Tak mylonite display N-dipping foliation defined by gneissic layering and aligned muscovite, and N-trending mineral stretching lineation. Various shear sense indicators are all consistent with a top-to the-N shear sense. Preliminary argon geochronology results suggest that the shear zone was exhumed 29 Ma ago, an age similar to the onset of detachment faulting in other nearby MCCs (Catalina, Rincon, Pinaleño). In the Pan Tak mylonite, quartz grains display regime 2 to 3 microstructures and shows extensive recrystallization by subgrain rotation and grain boundary migration. The recrystallized grain size ranges between 20 and 50 µm in all samples. Quartz crystallographic preferred orientation measured using electron backscatter diffraction (EBSD) shows that recrystallization was accommodated by dominant prism and minor rhomb slip, suggesting deformation temperature ranging from 450°C to 550°C. These preliminary results constrain the timing of uplift and exhumation, and thermomechanical evolution of the CM-MCC, and improve our understanding of recycling of the continental crust in southern Arizona.

Top