NASA Astrophysics Data System (ADS)
Roongthumskul, Yuttana; Fredrickson-Hemsing, Lea; Kao, Albert; Bozovic, Dolores
2011-11-01
Hair bundles of the bullfrog sacculus display spontaneous oscillations that show complex temporal profiles. Quiescent intervals are typically interspersed with oscillations, analogous to bursting behavior observed in neural systems. By introducing slow calcium dynamics into the theoretical model of bundle mechanics, we reproduce numerically the multi-mode oscillations and explore the effects of internal parameters on the temporal profiles and the frequency tuning of their linear response functions. We also study the effects of mechanical overstimulation on the oscillatory behavior.
Consciousness and epilepsy: why are complex-partial seizures complex?
Englot, Dario J.; Blumenfeld, Hal
2010-01-01
Why do complex-partial seizures in temporal lobe epilepsy (TLE) cause a loss of consciousness? Abnormal function of the medial temporal lobe is expected to cause memory loss, but it is unclear why profoundly impaired consciousness is so common in temporal lobe seizures. Recent exciting advances in behavioral, electrophysiological, and neuroimaging techniques spanning both human patients and animal models may allow new insights into this old question. While behavioral automatisms are often associated with diminished consciousness during temporal lobe seizures, impaired consciousness without ictal motor activity has also been described. Some have argued that electrographic lateralization of seizure activity to the left temporal lobe is most likely to cause impaired consciousness, but the evidence remains equivocal. Other data correlates ictal consciousness in TLE with bilateral temporal lobe involvement of seizure spiking. Nevertheless, it remains unclear why bilateral temporal seizures should impair responsiveness. Recent evidence has shown that impaired consciousness during temporal lobe seizures is correlated with large-amplitude slow EEG activity and neuroimaging signal decreases in the frontal and parietal association cortices. This abnormal decreased function in the neocortex contrasts with fast polyspike activity and elevated cerebral blood flow in limbic and other subcortical structures ictally. Our laboratory has thus proposed the “network inhibition hypothesis,” in which seizure activity propagates to subcortical regions necessary for cortical activation, allowing the cortex to descend into an inhibited state of unconsciousness during complex-partial temporal lobe seizures. Supporting this hypothesis, recent rat studies during partial limbic seizures have shown that behavioral arrest is associated with frontal cortical slow waves, decreased neuronal firing, and hypometabolism. Animal studies further demonstrate that cortical deactivation and behavioral changes depend on seizure spread to subcortical structures including the lateral septum. Understanding the contributions of network inhibition to impaired consciousness in TLE is an important goal, as recurrent limbic seizures often result in cortical dysfunction during and between epileptic events that adversely affects patients’ quality of life. PMID:19818900
Mahoney, J. Matthew; Titiz, Ali S.; Hernan, Amanda E.; Scott, Rod C.
2016-01-01
Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597
Bertti, Poliana; Tejada, Julian; Martins, Ana Paula Pinheiro; Dal-Cól, Maria Luiza Cleto; Terra, Vera Cristina; de Oliveira, José Antônio Cortes; Velasco, Tonicarlo Rodrigues; Sakamoto, Américo Ceiki; Garcia-Cairasco, Norberto
2014-09-01
Epileptic syndromes and seizures are the expression of complex brain systems. Because no analysis of complexity has been applied to epileptic seizure semiology, our goal was to apply neuroethology and graph analysis to the study of the complexity of behavioral manifestations of epileptic seizures in human frontal lobe epilepsy (FLE) and temporal lobe epilepsy (TLE). We analyzed the video recordings of 120 seizures of 18 patients with FLE and 28 seizures of 28 patients with TLE. All patients were seizure-free >1 year after surgery (Engel Class I). All patients' behavioral sequences were analyzed by means of a glossary containing all behaviors and analyzed for neuroethology (Ethomatic software). The same series were used for graph analysis (CYTOSCAPE). Behaviors, displayed as nodes, were connected by edges to other nodes according to their temporal sequence of appearance. Using neuroethology analysis, we confirmed data in the literature such as in FLE: brief/frequent seizures, complex motor behaviors, head and eye version, unilateral/bilateral tonic posturing, speech arrest, vocalization, and rapid postictal recovery and in the case of TLE: presence of epigastric aura, lateralized dystonias, impairment of consciousness/speech during ictal and postictal periods, and development of secondary generalization. Using graph analysis metrics of FLE and TLE confirmed data from flowcharts. However, because of the algorithms we used, they highlighted more powerfully the connectivity and complex associations among behaviors in a quite selective manner, depending on the origin of the seizures. The algorithms we used are commonly employed to track brain connectivity from EEG and MRI sources, which makes our study very promising for future studies of complexity in this field. Copyright © 2014 Elsevier Inc. All rights reserved.
Behaviors induced or disrupted by complex partial seizures.
Leung, L S; Ma, J; McLachlan, R S
2000-09-01
We reviewed the neural mechanisms underlying some postictal behaviors that are induced or disrupted by temporal lobe seizures in humans and animals. It is proposed that the psychomotor behaviors and automatisms induced by temporal lobe seizures are mediated by the nucleus accumbens. A non-convulsive hippocampal afterdischarge in rats induced an increase in locomotor activity, which was suppressed by the injection of dopamine D(2) receptor antagonist in the nucleus accumbens, and blocked by inactivation of the medial septum. In contrast, a convulsive hippocampal or amygdala seizure induced behavioral hypoactivity, perhaps by the spread of the seizure into the frontal cortex and opiate-mediated postictal depression. Mechanisms underlying postictal psychosis, memory disruption and other long-term behavioral alterations after temporal lobe seizures, are discussed. In conclusion, many of the changes of postictal behaviors observed after temporal lobe seizures in humans may be found in animals, and the basis of the behavioral change may be explained as a change in neural processing in the temporal lobe and the connecting subcortical structures.
Predictability and hierarchy in Drosophila behavior.
Berman, Gordon J; Bialek, William; Shaevitz, Joshua W
2016-10-18
Even the simplest of animals exhibit behavioral sequences with complex temporal dynamics. Prominent among the proposed organizing principles for these dynamics has been the idea of a hierarchy, wherein the movements an animal makes can be understood as a set of nested subclusters. Although this type of organization holds potential advantages in terms of motion control and neural circuitry, measurements demonstrating this for an animal's entire behavioral repertoire have been limited in scope and temporal complexity. Here, we use a recently developed unsupervised technique to discover and track the occurrence of all stereotyped behaviors performed by fruit flies moving in a shallow arena. Calculating the optimally predictive representation of the fly's future behaviors, we show that fly behavior exhibits multiple time scales and is organized into a hierarchical structure that is indicative of its underlying behavioral programs and its changing internal states.
Navigational strategies underlying phototaxis in larval zebrafish.
Chen, Xiuye; Engert, Florian
2014-01-01
Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel "Virtual Circle" assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms.
Synchronization in Random Pulse Oscillator Networks
NASA Astrophysics Data System (ADS)
Brown, Kevin; Hermundstad, Ann
Motivated by synchronization phenomena in neural systems, we study synchronization of random networks of coupled pulse oscillators. We begin by considering binomial random networks whose nodes have intrinsic linear dynamics. We quantify order in the network spiking dynamics using a new measure: the normalized Lev-Zimpel complexity (LZC) of the nodes' spike trains. Starting from a globally-synchronized state, we see two broad classes of behaviors. In one (''temporally random''), the LZC is high and nodes spike independently with no coherent pattern. In another (''temporally regular''), the network does not globally synchronize but instead forms coherent, repeating population firing patterns with low LZC. No topological feature of the network reliably predicts whether an individual network will show temporally random or regular behavior; however, we find evidence that degree heterogeneity in binomial networks has a strong effect on the resulting state. To confirm these findings, we generate random networks with independently-adjustable degree mean and variance. We find that the likelihood of temporally-random behavior increases as degree variance increases. Our results indicate the subtle and complex relationship between network structure and dynamics.
Navigational strategies underlying phototaxis in larval zebrafish
Chen, Xiuye; Engert, Florian
2014-01-01
Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel “Virtual Circle” assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms. PMID:24723859
Bohn, Kirsten M.; Schmidt-French, Barbara; Ma, Sean T.; Pollak, George D.
2008-01-01
Recent research has shown that some bat species have rich vocal repertoires with diverse syllable acoustics. Few studies, however, have compared vocalizations across different behavioral contexts or examined the temporal emission patterns of vocalizations. In this paper, a comprehensive examination of the vocal repertoire of Mexican free-tailed bats, T. brasiliensis, is presented. Syllable acoustics and temporal emission patterns for 16 types of vocalizations including courtship song revealed three main findings. First, although in some cases syllables are unique to specific calls, other syllables are shared among different calls. Second, entire calls associated with one behavior can be embedded into more complex vocalizations used in entirely different behavioral contexts. Third, when different calls are composed of similar syllables, distinctive temporal emission patterns may facilitate call recognition. These results indicate that syllable acoustics alone do not likely provide enough information for call recognition; rather, the acoustic context and temporal emission patterns of vocalizations may affect meaning. PMID:19045674
Abney, Drew H; Dale, Rick; Louwerse, Max M; Kello, Christopher T
2018-04-06
Recent studies of naturalistic face-to-face communication have demonstrated coordination patterns such as the temporal matching of verbal and non-verbal behavior, which provides evidence for the proposal that verbal and non-verbal communicative control derives from one system. In this study, we argue that the observed relationship between verbal and non-verbal behaviors depends on the level of analysis. In a reanalysis of a corpus of naturalistic multimodal communication (Louwerse, Dale, Bard, & Jeuniaux, ), we focus on measuring the temporal patterns of specific communicative behaviors in terms of their burstiness. We examined burstiness estimates across different roles of the speaker and different communicative modalities. We observed more burstiness for verbal versus non-verbal channels, and for more versus less informative language subchannels. Using this new method for analyzing temporal patterns in communicative behaviors, we show that there is a complex relationship between verbal and non-verbal channels. We propose a "temporal heterogeneity" hypothesis to explain how the language system adapts to the demands of dialog. Copyright © 2018 Cognitive Science Society, Inc.
Chad M. Hoffman; Rodman Linn; Russell Parsons; Carolyn Sieg; Judith Winterkamp
2015-01-01
Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and...
A multi-scale conceptual model of fire and disease interactions in North American forests
NASA Astrophysics Data System (ADS)
Varner, J. M.; Kreye, J. K.; Sherriff, R.; Metz, M.
2013-12-01
One aspect of global change with increasing attention is the interactions between irruptive pests and diseases and wildland fire behavior and effects. These pests and diseases affect fire behavior and effects in spatially and temporally complex ways. Models of fire and pathogen interactions have been constructed for individual pests or diseases, but to date, no synthesis of this complexity has been attempted. Here we synthesize North American fire-pathogen interactions into syndromes with similarities in spatial extent and temporal duration. We base our models on fire interactions with three examples: sudden oak death (caused by the pathogen Phytopthora ramorum) and the native tree tanoak (Notholithocarpus densiflorus); mountain pine beetle (Dendroctonus ponderosae) and western Pinus spp.; and hemlock woolly adelgid (Adelges tsugae) on Tsuga spp. We evaluate each across spatial (severity of attack from branch to landscape scale) and temporal scales (from attack to decades after) and link each change to its coincident effects on fuels and potential fire behavior. These syndromes differ in their spatial and temporal severity, differentially affecting windows of increased or decreased community flammability. We evaluate these models with two examples: the recently emergent ambrosia beetle-vectored laurel wilt (caused by the pathogen Raffaelea lauricola) in native members of the Lauraceae and the early 20th century chestnut blight (caused by the pathogen Cryphonectria parasitica) that led to the decline of American chestnut (Castanea dentata). Some changes (e.g., reduced foliar moisture content) have short-term consequences for potential fire behavior while others (functional extirpation) have more complex indirect effects on community flammability. As non-native emergent diseases and pests continue, synthetic models that aid in prediction of fire behavior and effects will enable the research and management community to prioritize mitigation efforts to realized effects.
Human Behavior from a Chronobiological Perspective.
ERIC Educational Resources Information Center
Hoskins, Carol Noll
1980-01-01
The rhythmic patterning of man's biochemical, physiological, and psychological behavior and the temporal relationships among various functions are the province of chronobiology. Citing animal and human studies, the author documents the progress of this new science and poses complex questions that it may answer about human behavior. (Editor/SJL)
A SIMPLE HYDROLOGICAL MODEL FOR WATERSHED CHARACTERIZATION
Catchment behavior is characterized with a variety of metrics - discharge, chemical export, biological activity, to name a few. Catchments have complex temporal behavior, e.g., summer and winter storm recessions and nutrient export may look nothing alike. Further, catchment res...
TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics.
Hou, Yue; Konen, Jessica; Brat, Daniel J; Marcus, Adam I; Cooper, Lee A D
2018-05-08
Spheroid cultures derived from explanted cancer specimens are an increasingly utilized resource for studying complex biological processes like tumor cell invasion and metastasis, representing an important bridge between the simplicity and practicality of 2-dimensional monolayer cultures and the complexity and realism of in vivo animal models. Temporal imaging of spheroids can capture the dynamics of cell behaviors and microenvironments, and when combined with quantitative image analysis methods, enables deep interrogation of biological mechanisms. This paper presents a comprehensive open-source software framework for Temporal Analysis of Spheroid Imaging (TASI) that allows investigators to objectively characterize spheroid growth and invasion dynamics. TASI performs spatiotemporal segmentation of spheroid cultures, extraction of features describing spheroid morpho-phenotypes, mathematical modeling of spheroid dynamics, and statistical comparisons of experimental conditions. We demonstrate the utility of this tool in an analysis of non-small cell lung cancer spheroids that exhibit variability in metastatic and proliferative behaviors.
Discrimination theory of rule-governed behavior
Cerutti, Daniel T.
1989-01-01
In rule-governed behavior, previously established elementary discriminations are combined in complex instructions and thus result in complex behavior. Discriminative combining and recombining of responses produce behavior with characteristics differing from those of behavior that is established through the effects of its direct consequences. For example, responding in instructed discrimination may be occasioned by discriminative stimuli that are temporally and situationally removed from the circumstances under which the discrimination is instructed. The present account illustrates properties of rule-governed behavior with examples from research in instructional control and imitation learning. Units of instructed behavior, circumstances controlling compliance with instructions, and rule-governed problem solving are considered. PMID:16812579
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.
Becker, Sara J.; Nargiso, Jessica E.; Wolff, Jennifer C.; Uhl, Kristen M.; Simon, Valerie A.; Spirito, Anthony; Prinstein, Mitchell J.
2012-01-01
There is considerable evidence linking substance use and delinquent behavior among adolescents. However, the nature and temporal ordering of this relationship remains uncertain, particularly among early adolescents and those with significant psychopathology. This study examined the temporal ordering of substance use and delinquent behavior in a sample of psychiatrically hospitalized early adolescents. Youth (n = 108) between the ages of 12 and 15 years completed three assessments over 18 months following hospitalization. Separate cross-lagged panel models examined the reciprocal relationship between delinquent behavior and two types of substance use (e.g., alcohol and marijuana). Results provided evidence of cross-lagged effects for marijuana: delinquent behavior at 9 months predicted marijuana use at 18 months. No predictive effects were found between alcohol use and delinquent behavior over time. Findings demonstrate the stability of delinquent behavior and substance use among young adolescents with psychiatric concerns. Furthermore, results highlight the value of examining alcohol and marijuana use outcomes separately in order to better understand the complex pathways between substance use and delinquent behavior among early adolescents. PMID:22197300
Complex behavior in chains of nonlinear oscillators.
Alonso, Leandro M
2017-06-01
This article outlines sufficient conditions under which a one-dimensional chain of identical nonlinear oscillators can display complex spatio-temporal behavior. The units are described by phase equations and consist of excitable oscillators. The interactions are local and the network is poised to a critical state by balancing excitation and inhibition locally. The results presented here suggest that in networks composed of many oscillatory units with local interactions, excitability together with balanced interactions is sufficient to give rise to complex emergent features. For values of the parameters where complex behavior occurs, the system also displays a high-dimensional bifurcation where an exponentially large number of equilibria are borne in pairs out of multiple saddle-node bifurcations.
Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm
NASA Astrophysics Data System (ADS)
Conlin, William; Yu, Paulo; Durgesh, Vibhav
2017-11-01
An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.
Effects of Spatial Scale on Cognitive Play in Preschool Children.
ERIC Educational Resources Information Center
Delong, Alton J.; And Others
1994-01-01
Examined effects of a reduced-scale play environment on the temporal aspects of complex play behavior. Children playing with playdough in a 7 x 5 x 5-foot structure began complex play more quickly, played in longer segments, and spent slightly more time in complex play than when in full-size conditions, suggesting that scale-reduced environments…
Transformation of temporal sequences in the zebra finch auditory system
Lim, Yoonseob; Lagoy, Ryan; Shinn-Cunningham, Barbara G; Gardner, Timothy J
2016-01-01
This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamorecipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11 ms to 40 ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or ‘spatial codes', and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds. DOI: http://dx.doi.org/10.7554/eLife.18205.001 PMID:27897971
Temporal variations in early developmental decisions: an engine of forebrain evolution.
Bielen, H; Pal, S; Tole, S; Houart, C
2017-02-01
Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments. PMID:29867383
Space and time in ecology: Noise or fundamental driver? [chapter 2
Samuel A. Cushman
2010-01-01
In this chapter I frame the central issue of the book, namely is spatial and temporal complexity in ecological systems merely noise around the predictions of non-spatial, equilibrium processes? Or, alternatively, do spatial and temporal variability in the environment and autogenic spaceÂtime processes in populations fundamentally alter system behavior such that ideal...
Temporal and spatial complexity of maternal thermoregulation in tropical pythons.
Stahlschmidt, Zachary Ross; Shine, Richard; Denardo, Dale F
2012-01-01
Parental care is a widespread adaptation that evolved independently in a broad range of taxa. Although the dynamics by which two parents meet the developmental needs of offspring are well studied in birds, we lack understanding about the temporal and spatial complexity of parental care in taxa exhibiting female-only care, the predominant mode of parental care. Thus, we examined the behavioral and physiological mechanisms by which female water pythons Liasis fuscus meet a widespread developmental need (thermoregulation) in a natural setting. Although female L. fuscus were not facultatively thermogenic, they did use behaviors on multiple spatial scales (e.g., shifts in egg-brooding postures and surface activity patterns) to balance the thermal needs of their offspring throughout reproduction (gravidity and egg brooding). Maternal behaviors in L. fuscus varied by stage within reproduction and were mediated by interindividual variation in body size and fecundity. Female pythons with relatively larger clutch sizes were cooler during egg brooding, suggesting a trade-off between reproductive quantity (size of clutch) and quality (developmental temperature). In nature, caregiving parents of all taxa must navigate both extrinsic factors (temporal and spatial complexity) and intrinsic factors (body size and fecundity) to meet the needs of their offspring. Our study used a comprehensive approach that can be used as a general template for future research examining the dynamics by which parents meet other developmental needs (e.g., predation risk or energy balance).
Xiang, Juanjuan; Simon, Jonathan; Elhilali, Mounya
2010-01-01
Processing of complex acoustic scenes depends critically on the temporal integration of sensory information as sounds evolve naturally over time. It has been previously speculated that this process is guided by both innate mechanisms of temporal processing in the auditory system, as well as top-down mechanisms of attention, and possibly other schema-based processes. In an effort to unravel the neural underpinnings of these processes and their role in scene analysis, we combine Magnetoencephalography (MEG) with behavioral measures in humans in the context of polyrhythmic tone sequences. While maintaining unchanged sensory input, we manipulate subjects’ attention to one of two competing rhythmic streams in the same sequence. The results reveal that the neural representation of the attended rhythm is significantly enhanced both in its steady-state power and spatial phase coherence relative to its unattended state, closely correlating with its perceptual detectability for each listener. Interestingly, the data reveals a differential efficiency of rhythmic rates of the order of few hertz during the streaming process, closely following known neural and behavioral measures of temporal modulation sensitivity in the auditory system. These findings establish a direct link between known temporal modulation tuning in the auditory system (particularly at the level of auditory cortex) and the temporal integration of perceptual features in a complex acoustic scene, while mediated by processes of attention. PMID:20826671
Fire danger and fire behavior modeling systems in Australia, Europe, and North America
Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton
2009-01-01
Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...
It's about time: Presentation in honor of Ira Hirsh
NASA Astrophysics Data System (ADS)
Grant, Ken
2002-05-01
Over his long and illustrious career, Ira Hirsh has returned time and time again to his interest in the temporal aspects of pattern perception. Although Hirsh has studied and published articles and books pertaining to many aspects of the auditory system, such as sound conduction in the ear, cochlear mechanics, masking, auditory localization, psychoacoustic behavior in animals, speech perception, medical and audiological applications, coupling between psychophysics and physiology, and ecological acoustics, it is his work on auditory timing of simple and complex rhythmic patterns, the backbone of speech and music, that are at the heart of his more recent work. Here, we will focus on several aspects of temporal processing of simple and complex signals, both within and across sensory systems. Data will be reviewed on temporal order judgments of simple tones, and simultaneity judgments and intelligibility of unimodal and bimodal complex stimuli where stimulus components are presented either synchronously or asynchronously. Differences in the symmetry and shape of ``temporal windows'' derived from these data sets will be highlighted.
Neural basis of processing threatening voices in a crowded auditory world
Mothes-Lasch, Martin; Becker, Michael P. I.; Miltner, Wolfgang H. R.
2016-01-01
In real world situations, we typically listen to voice prosody against a background crowded with auditory stimuli. Voices and background can both contain behaviorally relevant features and both can be selectively in the focus of attention. Adequate responses to threat-related voices under such conditions require that the brain unmixes reciprocally masked features depending on variable cognitive resources. It is unknown which brain systems instantiate the extraction of behaviorally relevant prosodic features under varying combinations of prosody valence, auditory background complexity and attentional focus. Here, we used event-related functional magnetic resonance imaging to investigate the effects of high background sound complexity and attentional focus on brain activation to angry and neutral prosody in humans. Results show that prosody effects in mid superior temporal cortex were gated by background complexity but not attention, while prosody effects in the amygdala and anterior superior temporal cortex were gated by attention but not background complexity, suggesting distinct emotional prosody processing limitations in different regions. Crucially, if attention was focused on the highly complex background, the differential processing of emotional prosody was prevented in all brain regions, suggesting that in a distracting, complex auditory world even threatening voices may go unnoticed. PMID:26884543
Using Ultrasonic Speckle Velocimetry to Detect Fluid Instabilities in a Surfactant Solution
NASA Astrophysics Data System (ADS)
Bice, Jason E.
Rheometry is a leading technology used to define material properties of multi-phase viscoelastic fluid-like materials, such as the shear modulus and viscosity. However, traditional rheometry relies on a mechanical response from a rotating or oscillating rotor of various geometries which does not allow for any spatial or temporal quantification of the material characteristics. Further, the setup operates under the assumption of a uniform and homogeneous flow. Thus, only qualitative deductions can be realized when a complex fluid displays inhomogeneous behavior, such as wall slip or shear banding. Due to this lack of capability, non-intrusive imaging is required to define and quantify behavior that occurs in a complex fluid under shear conditions. This thesis outlines the design, fabrication, and experimental examples of an adapted ultrasonic speckle velocimetry device, which enables spatial and temporal resolution of inhomogeneous fluid behavior using ultrasound acoustics. For the experimental example, a commercial surfactant mixture (hair shampoo) was tested to show the utility and precision that ultrasonic speckle velocimetry possesses.
Temporality of couple conflict and relationship perceptions.
Johnson, Matthew D; Horne, Rebecca M; Hardy, Nathan R; Anderson, Jared R
2018-05-03
Using 5 waves of longitudinal survey data gathered from 3,405 couples, the present study investigates the temporal associations between self-reported couple conflict (frequency and each partner's constructive and withdrawing behaviors) and relationship perceptions (satisfaction and perceived instability). Autoregressive cross-lagged model results revealed couple conflict consistently predicted future relationship perceptions: More frequent conflict and withdrawing behaviors and fewer constructive behaviors foretold reduced satisfaction and conflict frequency and withdrawal heightened perceived instability. Relationship perceptions also shaped future conflict, but in surprising ways: Perceptions of instability were linked with less frequent conflict, and male partner instability predicted fewer withdrawing behaviors for female partners. Higher satisfaction from male partners also predicted more frequent and less constructive conflict behavior in the future. These findings illustrate complex bidirectional linkages between relationship perceptions and couple conflict behaviors in the development of couple relations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Hush sign: a new clinical sign in temporal lobe epilepsy.
Kutlu, Gulnihal; Bilir, Erhan; Erdem, Atilla; Gomceli, Yasemin B; Kurt, G Semiha; Serdaroglu, Ayse
2005-05-01
Neurologists have been analyzing the clinical behaviors that occur during seizures for many years. Several ictal behaviors have been defined in temporal lobe epilepsy (TLE). Ictal behaviors are especially important in the evaluation of epilepsy surgery candidates. We propose a new lateralizing sign in TLE originating from the nondominant hemisphere-the "hush" sign. Our patients were 30- and 21-year old women (Cases 1 and 2, respectively). Their epileptogenic foci were localized to the right mesial temporal region after noninvasive presurgical investigations. Case 1 had no cranial MRI abnormality, whereas cranial MRI revealed right hippocampal atrophy in Case 2. These women repeatedly moved their right index fingers to their mouth while puckering their lips during complex partial seizures. We have named this ictal behavior the "hush" sign. Anterior temporal lobectomy with amygdalohippocampectomy was performed in both patients, and pathological examinations revealed hippocampal sclerosis. The "hush" sign no longer occurred after seizures were controlled. They were seizure free as of 30 and 31 months of follow-up, respectively. We believe that the "hush" sign may be supportive of a diagnosis of TLE originating from the nondominant hemisphere. This sign may occur as a result of ictal activation of a specific brain region in this hemisphere.
Learning Predictive Statistics: Strategies and Brain Mechanisms.
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe
2017-08-30
When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to changes in the environment's statistics. We provide evidence for an alternate route for learning complex temporal statistics: extracting the most probable outcome in a given context is implemented by interactions between executive and motor corticostriatal mechanisms compared with visual corticostriatal circuits (including hippocampal cortex) that support learning of the exact temporal statistics. Copyright © 2017 Wang et al.
Supervised Learning Based on Temporal Coding in Spiking Neural Networks.
Mostafa, Hesham
2017-08-01
Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.
Possible Explanation of the Different Temporal Behaviors of Various Classes of Sunspot Groups
NASA Astrophysics Data System (ADS)
Gao, Peng-Xin; Li, Ke-Jun; Li, Fu-Yu
2017-09-01
In order to investigate the periodicity and long-term trends of various classes of sunspot groups (SGs), we separated SGs into two categories: simple SGs (A/U ≤ 4.5, where A represents the total corrected whole spot area of the group in millionths of the solar hemisphere (msh), and U represents the total corrected umbral area of the group in msh); and complex SGs (A/U > 6.2). Based on the revised version of the Greenwich Photoheliographic Results sunspot catalogue, we investigated the periodic behaviors and long-term trends of simple and complex SGs from 1875 to 1976 using the Hilbert-Huang Transform method, and we confirm that the temporal behaviors of simple and complex SGs are quite different. Our main findings are as follows. i) For simple and complex SGs, the values of the Schwabe cycle wax and wane, following the solar activity cycle. ii) There are significant phase differences (almost antiphase) between the periodicity of 53.50 ± 3.79 years extracted from yearly simple SG numbers and the periodicity of 56.21 ± 2.92 years extracted from yearly complex SG numbers. iii) The adaptive trends of yearly simple and complex SG numbers are also quite different: for simple SGs, the values of the adaptive trend gradually increase during the time period of 1875 - 1949, then they decrease gradually from 1949 to 1976, similar to the rise and the maximum phase of a sine curve; for complex SGs, the values of the adaptive trend first slowly increase and then quickly increase, similar to the minimum and rise phase of a sine curve.
Temporal complexity in emission from Anderson localized lasers
NASA Astrophysics Data System (ADS)
Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil
2017-12-01
Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.
Ongoing behavior predicts perceptual report of interval duration
Gouvêa, Thiago S.; Monteiro, Tiago; Soares, Sofia; Atallah, Bassam V.; Paton, Joseph J.
2014-01-01
The ability to estimate the passage of time is essential for adaptive behavior in complex environments. Yet, it is not known how the brain encodes time over the durations necessary to explain animal behavior. Under temporally structured reinforcement schedules, animals tend to develop temporally structured behavior, and interval timing has been suggested to be accomplished by learning sequences of behavioral states. If this is true, trial to trial fluctuations in behavioral sequences should be predictive of fluctuations in time estimation. We trained rodents in an duration categorization task while continuously monitoring their behavior with a high speed camera. Animals developed highly reproducible behavioral sequences during the interval being timed. Moreover, those sequences were often predictive of perceptual report from early in the trial, providing support to the idea that animals may use learned behavioral patterns to estimate the duration of time intervals. To better resolve the issue, we propose that continuous and simultaneous behavioral and neural monitoring will enable identification of neural activity related to time perception that is not explained by ongoing behavior. PMID:24672473
NASA Astrophysics Data System (ADS)
McCaskill, John
There can be large spatial and temporal separation of cause and effect in policy making. Determining the correct linkage between policy inputs and outcomes can be highly impractical in the complex environments faced by policy makers. In attempting to see and plan for the probable outcomes, standard linear models often overlook, ignore, or are unable to predict catastrophic events that only seem improbable due to the issue of multiple feedback loops. There are several issues with the makeup and behaviors of complex systems that explain the difficulty many mathematical models (factor analysis/structural equation modeling) have in dealing with non-linear effects in complex systems. This chapter highlights those problem issues and offers insights to the usefulness of ABM in dealing with non-linear effects in complex policy making environments.
Unraveling dynamics of human physical activity patterns in chronic pain conditions
NASA Astrophysics Data System (ADS)
Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar
2013-06-01
Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.
Noel, Jean-Paul; Kurela, LeAnne; Baum, Sarah H; Yu, Hong; Neimat, Joseph S; Gallagher, Martin J; Wallace, Mark
2017-05-01
Cognitive and perceptual comorbidities frequently accompany epilepsy and psychogenic nonepileptic events (PNEE). However, and despite the fact that perceptual function is built upon a multisensory foundation, little knowledge exists concerning multisensory function in these populations. Here, we characterized facets of multisensory processing abilities in patients with epilepsy and PNEE, and probed the relationship between individual resting-state EEG complexity and these psychophysical measures in each patient. We prospectively studied a cohort of patients with epilepsy (N=18) and PNEE (N=20) patients who were admitted to Vanderbilt's Epilepsy Monitoring Unit (EMU) and weaned off of anticonvulsant drugs. Unaffected age-matched persons staying with the patients in the EMU (N=15) were also recruited as controls. All participants performed two tests of multisensory function: an audio-visual simultaneity judgment and an audio-visual redundant target task. Further, in the cohort of patients with epilepsy and PNEE we quantified resting state EEG gamma power and complexity. Compared with both patients with epilepsy and control subjects, patients with PNEE exhibited significantly poorer acuity in audiovisual temporal function as evidenced in significantly larger temporal binding windows (i.e., they perceived larger stimulus asynchronies as being presented simultaneously). These differences appeared to be specific for temporal function, as there was no difference among the three groups in a non-temporally based measure of multisensory function - the redundant target task. Further, patients with PNEE exhibited more complex resting state EEG patterns as compared to their patients with epilepsy, and EEG complexity correlated with multisensory temporal performance on a subject-by-subject manner. Taken together, findings seem to indicate that patients with PNEE bind information from audition and vision over larger temporal intervals when compared with control subjects as well as patients with epilepsy. This difference in multisensory function appears to be specific to the temporal domain, and may be a contributing factor to the behavioral and perceptual alterations seen in this population. Published by Elsevier Inc.
Complexity matching in dyadic conversation.
Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T
2014-12-01
Recent studies of dyadic interaction have examined phenomena of synchronization, entrainment, alignment, and convergence. All these forms of behavioral matching have been hypothesized to play a supportive role in establishing coordination and common ground between interlocutors. In the present study, evidence is found for a new kind of coordination termed complexity matching. Temporal dynamics in conversational speech signals were analyzed through time series of acoustic onset events. Timing in periods of acoustic energy was found to exhibit behavioral matching that reflects complementary timing in turn-taking. In addition, acoustic onset times were found to exhibit power law clustering across a range of timescales, and these power law functions were found to exhibit complexity matching that is distinct from behavioral matching. Complexity matching is discussed in terms of interactive alignment and other theoretical principles that lead to new hypotheses about information exchange in dyadic conversation and interaction in general. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex
Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo
2015-01-01
The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537
Learning predictive statistics from temporal sequences: Dynamics and strategies
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E.; Kourtzi, Zoe
2017-01-01
Human behavior is guided by our expectations about the future. Often, we make predictions by monitoring how event sequences unfold, even though such sequences may appear incomprehensible. Event structures in the natural environment typically vary in complexity, from simple repetition to complex probabilistic combinations. How do we learn these structures? Here we investigate the dynamics of structure learning by tracking human responses to temporal sequences that change in structure unbeknownst to the participants. Participants were asked to predict the upcoming item following a probabilistic sequence of symbols. Using a Markov process, we created a family of sequences, from simple frequency statistics (e.g., some symbols are more probable than others) to context-based statistics (e.g., symbol probability is contingent on preceding symbols). We demonstrate the dynamics with which individuals adapt to changes in the environment's statistics—that is, they extract the behaviorally relevant structures to make predictions about upcoming events. Further, we show that this structure learning relates to individual decision strategy; faster learning of complex structures relates to selection of the most probable outcome in a given context (maximizing) rather than matching of the exact sequence statistics. Our findings provide evidence for alternate routes to learning of behaviorally relevant statistics that facilitate our ability to predict future events in variable environments. PMID:28973111
Learning predictive statistics from temporal sequences: Dynamics and strategies.
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe
2017-10-01
Human behavior is guided by our expectations about the future. Often, we make predictions by monitoring how event sequences unfold, even though such sequences may appear incomprehensible. Event structures in the natural environment typically vary in complexity, from simple repetition to complex probabilistic combinations. How do we learn these structures? Here we investigate the dynamics of structure learning by tracking human responses to temporal sequences that change in structure unbeknownst to the participants. Participants were asked to predict the upcoming item following a probabilistic sequence of symbols. Using a Markov process, we created a family of sequences, from simple frequency statistics (e.g., some symbols are more probable than others) to context-based statistics (e.g., symbol probability is contingent on preceding symbols). We demonstrate the dynamics with which individuals adapt to changes in the environment's statistics-that is, they extract the behaviorally relevant structures to make predictions about upcoming events. Further, we show that this structure learning relates to individual decision strategy; faster learning of complex structures relates to selection of the most probable outcome in a given context (maximizing) rather than matching of the exact sequence statistics. Our findings provide evidence for alternate routes to learning of behaviorally relevant statistics that facilitate our ability to predict future events in variable environments.
The impact of therapists' words on the adolescent brain: In the context of addiction treatment.
Feldstein Ewing, Sarah W; Houck, Jon M; Yezhuvath, Uma; Shokri-Kojori, Ehsan; Truitt, Dustin; Filbey, Francesca M
2016-01-15
At this time, we still do not know how therapist behaviors influence adolescent brain response and related treatment outcomes. Therefore, we examined this question with 17 binge drinking youth (mean age=16.62 years; 64.3% female; 42.9% Hispanic; 28.6% bi-/multi-racial). In this within-subjects design, all youth completed a baseline assessment, two therapy sessions, an fMRI scan, and were re-evaluated for behavior change at one-month post-treatment. During the fMRI session, youth were presented with two types of responses from their treating therapist: higher-skill statements prescribed in an empirically-supported addiction treatment (complex reflections) vs. language standard within addiction treatment more broadly (closed questions). In terms of behavior change, at the one-month follow-up, youth showed significant reductions in number of drinking days and binge drinking days. Further, we found main effects for complex reflections and closed questions across the superior middle temporal gyrus and middle temporal gyrus (FWE-corrected, p<.05). Greater brain response was observed for complex reflections versus closed questions within the bilateral anterior cingulate gyrus. Greater BOLD response in the parietal lobe during closed questions was significantly associated with less post-treatment drinking. Lower BOLD response during complex reflections and closed questions in the precuneus were associated with greater post-treatment ratings of importance of changing. This study represents a first step in understanding how therapist behaviors influence the developing adolescent brain and how that neural response may be associated with youth treatment outcomes. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hramov, Alexander E.; Saratov State Technical University, Politechnicheskaja str., 77, Saratov 410054; Koronovskii, Alexey A.
2012-08-15
The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum ofmore » the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.« less
Utashiro, Nao; Williams, Claire R; Parrish, Jay Z; Emoto, Kazuo
2018-06-05
Animal responses to their environment rely on activation of sensory neurons by external stimuli. In many sensory systems, however, neurons display basal activity prior to the external stimuli. This prior activity is thought to modulate neural functions, yet its impact on animal behavior remains elusive. Here, we reveal a potential role for prior activity in olfactory receptor neurons (ORNs) in shaping larval olfactory behavior. We show that prior activity in larval ORNs is mediated by the olfactory receptor complex (OR complex). Mutations of Orco, an odorant co-receptor required for OR complex function, cause reduced attractive behavior in response to optogenetic activation of ORNs. Calcium imaging reveals that Orco mutant ORNs fully respond to optogenetic stimulation but exhibit altered temporal patterns of neural responses. These findings together suggest a critical role for prior activity in information processing upon ORN activation in Drosophila larvae, which in turn contributes to olfactory behavior control.
Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium.
Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan
2017-09-01
Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.
Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium
NASA Astrophysics Data System (ADS)
Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan
2017-09-01
Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.
Temporal eye movement strategies during naturalistic viewing
Wang, Helena X.; Freeman, Jeremy; Merriam, Elisha P.; Hasson, Uri; Heeger, David J.
2011-01-01
The deployment of eye movements to complex spatiotemporal stimuli likely involves a variety of cognitive factors. However, eye movements to movies are surprisingly reliable both within and across observers. We exploited and manipulated that reliability to characterize observers’ temporal viewing strategies. Introducing cuts and scrambling the temporal order of the resulting clips systematically changed eye movement reliability. We developed a computational model that exhibited this behavior and provided an excellent fit to the measured eye movement reliability. The model assumed that observers searched for, found, and tracked a point-of-interest, and that this process reset when there was a cut. The model did not require that eye movements depend on temporal context in any other way, and it managed to describe eye movements consistently across different observers and two movie sequences. Thus, we found no evidence for the integration of information over long time scales (greater than a second). The results are consistent with the idea that observers employ a simple tracking strategy even while viewing complex, engaging naturalistic stimuli. PMID:22262911
Cross-talk between the epigenome and neural circuits in drug addiction.
Mews, Philipp; Calipari, Erin S
2017-01-01
Drug addiction is a behavioral disorder characterized by dysregulated learning about drugs and associated cues that result in compulsive drug seeking and relapse. Learning about drug rewards and predictive cues is a complex process controlled by a computational network of neural connections interacting with transcriptional and molecular mechanisms within each cell to precisely guide behavior. The interplay between rapid, temporally specific neuronal activation, and longer-term changes in transcription is of critical importance in the expression of appropriate, or in the case of drug addiction, inappropriate behaviors. Thus, these factors and their interactions must be considered together, especially in the context of treatment. Understanding the complex interplay between epigenetic gene regulation and circuit connectivity will allow us to formulate novel therapies to normalize maladaptive reward behaviors, with a goal of modulating addictive behaviors, while leaving natural reward-associated behavior unaffected. © 2017 Elsevier B.V. All rights reserved.
New approaches in agent-based modeling of complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei
2017-12-01
Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.
Units of analysis and kinetic structure of behavioral repertoires
Thompson, Travis; Lubinski, David
1986-01-01
It is suggested that molar streams of behavior are constructed of various arrangements of three elementary constituents (elicited, evoked, and emitted response classes). An eight-cell taxonomy is elaborated as a framework for analyzing and synthesizing complex behavioral repertoires based on these functional units. It is proposed that the local force binding functional units into a smoothly articulated kinetic sequence arises from temporally arranged relative response probability relationships. Behavioral integration is thought to reflect the joint influence of the organism's hierarchy of relative response probabilities, fluctuating biological states, and the arrangement of environmental and behavioral events in time. PMID:16812461
Lottig, Noah R.; Tan, Pang-Ning; Wagner, Tyler; Cheruvelil, Kendra Spence; Soranno, Patricia A.; Stanley, Emily H.; Scott, Caren E.; Stow, Craig A.; Yuan, Shuai
2017-01-01
Ecology has a rich history of studying ecosystem dynamics across time and space that has been motivated by both practical management needs and the need to develop basic ideas about pattern and process in nature. In situations in which both spatial and temporal observations are available, similarities in temporal behavior among sites (i.e., synchrony) provide a means of understanding underlying processes that create patterns over space and time. We used pattern analysis algorithms and data spanning 22–25 yr from 601 lakes to ask three questions: What are the temporal patterns of lake water clarity at sub‐continental scales? What are the spatial patterns (i.e., geography) of synchrony for lake water clarity? And, what are the drivers of spatial and temporal patterns in lake water clarity? We found that the synchrony of water clarity among lakes is not spatially structured at sub‐continental scales. Our results also provide strong evidence that the drivers related to spatial patterns in water clarity are not related to the temporal patterns of water clarity. This analysis of long‐term patterns of water clarity and possible drivers contributes to understanding of broad‐scale spatial patterns in the geography of synchrony and complex relationships between spatial and temporal patterns across ecosystems.
Spatio-temporal error growth in the multi-scale Lorenz'96 model
NASA Astrophysics Data System (ADS)
Herrera, S.; Fernández, J.; Rodríguez, M. A.; Gutiérrez, J. M.
2010-07-01
The influence of multiple spatio-temporal scales on the error growth and predictability of atmospheric flows is analyzed throughout the paper. To this aim, we consider the two-scale Lorenz'96 model and study the interplay of the slow and fast variables on the error growth dynamics. It is shown that when the coupling between slow and fast variables is weak the slow variables dominate the evolution of fluctuations whereas in the case of strong coupling the fast variables impose a non-trivial complex error growth pattern on the slow variables with two different regimes, before and after saturation of fast variables. This complex behavior is analyzed using the recently introduced Mean-Variance Logarithmic (MVL) diagram.
ERIC Educational Resources Information Center
Sinclair, Michael; Dauerty, Helene; Alber, Mark
2016-01-01
Biomodeling is the study of the structures and behaviors of interacting biological entities such as molecules, cells, or organisms. While physical and chemical processes give rise to various spatial and temporal structures, even the simplest biological phenomenon is infinitely more complex (Kling 2004). Over the past decade, much of biomodeling…
Omori's law in the Internet traffic
NASA Astrophysics Data System (ADS)
Abe, S.; Suzuki, N.
2003-03-01
The Internet is a complex system, whose temporal behavior is highly nonstationary and exhibits sudden drastic changes regarded as main shocks or catastrophes. Here, analyzing a set of time series data of round-trip time measured in echo experiment with the Ping Command, the property of "aftershocks" (i.e., catastrophes of smaller scales) after a main shock is studied. It is found that the aftershocks obey Omori's law. Thus, the Internet shares with earthquakes and financial-market crashes a common scale-invariant feature in the temporal patterns of aftershocks.
The impact of therapists’ words on the adolescent brain: In the context of addiction treatment
Feldstein Ewing, Sarah W.; Houck, Jon M.; Yezhuvath, Uma; Kojori, Ehsan Shokri; Truitt, Dustin; Filbey, Francesca M.
2015-01-01
Despite foundational work, we still do not know how therapist behaviors influence brain response and related treatment outcomes for alcohol-using adolescents. Therefore, we examined this question with 17 binge drinking youth (mean age = 16.62 years; 64.3% female; 42.9% Hispanic; 28.6% bi-/multi-racial). In this within-subjects design, all youth completed a baseline assessment, two therapy sessions, an fMRI scan, and were re-evaluated for behavior change at one-month post-treatment. During the fMRI session, youth were presented with two types of therapist responses from their treating therapist: higher-skill therapeutic statements prescribed in an empirically-supported addiction treatment (complex reflections) versus language standard within addiction treatment more broadly (closed questions). In terms of behavior change, at the one-month follow-up, youth showed significant reductions in their number of drinking days and binge drinking days post-treatment. Further, we found main effects for complex reflections and closed questions across the superior middle temporal gyrus and middle temporal gyrus (FWE-corrected, p<.05). Complex questions showed a relatively stronger response than closed questions within the bilateral anterior cingulate gyrus. Additionally, greater BOLD response in the parietal lobe during closed questions was significantly associated with less post-treatment drinking. Finally, lower BOLD responses during both complex reflections and closed questions in the precuneus were associated with greater post-treatment ratings of importance of changing drinking. This study represents a first step in understanding how certain therapist behaviors influence the developing adolescent brain and how that neural response may be associated with youth treatment outcomes in the context of addiction treatment. PMID:26455873
NASA Astrophysics Data System (ADS)
Zhu, Liang; Wang, Youguo
2018-07-01
In this paper, a rumor diffusion model with uncertainty of human behavior under spatio-temporal diffusion framework is established. Take physical significance of spatial diffusion into account, a diffusion threshold is set under which the rumor is not a trend topic and only spreads along determined physical connections. Heterogeneity of degree distribution and distance distribution has also been considered in theoretical model at the same time. The global existence and uniqueness of classical solution are proved with a Lyapunov function and an approximate classical solution in form of infinite series is constructed with a system of eigenfunction. Simulations and numerical solutions both on Watts-Strogatz (WS) network and Barabási-Albert (BA) network display the variation of density of infected connections from spatial and temporal dimensions. Relevant results show that the density of infected connections is dominated by network topology and uncertainty of human behavior at threshold time. With increase of social capability, rumor diffuses to the steady state in a higher speed. And the variation trends of diffusion size with uncertainty are diverse on different artificial networks.
[The contribution of neuroscience to the understanding of moral behavior].
Slachevsky, Andrea; Silva, Jaime R; Prenafeta, María Luisa; Novoa, Fernando
2009-03-01
The neuro-scientific study of moral actions and judgments is particularly relevant to medicine, especially when assessing behavior disorders secondary to brain diseases. In this paper, moral behavior is reviewed from an evolutionary and neuro-scientific perspective. We discuss the role of emotions in moral decisions, the role of brain development in moral development and the cerebral basis of moral behavior. Empirical evidence shows a relationship between brain and moral development: changes in cerebral architecture are related to changes in moral decision complexity. Moral development takes a long time, achieving its maturity during adulthood. It is suggested that moral cognition depends on cerebral regions and neural networks related to emotional and cognitive processing (i.e. prefrontal and temporal cortex) and that moral judgments are complex affective and cognitive phenomena. This paper concludes with the suggestion that a satisfactory clinical/legal evaluation of a patient requires that the neural basis of moral behavior should be taken into account.
The Internet As a Large-Scale Complex System
NASA Astrophysics Data System (ADS)
Park, Kihong; Willinger, Walter
2005-06-01
The Internet may be viewed as a "complex system" with diverse features and many components that can give rise to unexpected emergent phenomena, revealing much about its own engineering. This book brings together chapter contributions from a workshop held at the Santa Fe Institute in March 2001. This volume captures a snapshot of some features of the Internet that may be fruitfully approached using a complex systems perspective, meaning using interdisciplinary tools and methods to tackle the subject area. The Internet penetrates the socioeconomic fabric of everyday life; a broader and deeper grasp of the Internet may be needed to meet the challenges facing the future. The resulting empirical data have already proven to be invaluable for gaining novel insights into the network's spatio-temporal dynamics, and can be expected to become even more important when tryin to explain the Internet's complex and emergent behavior in terms of elementary networking-based mechanisms. The discoveries of fractal or self-similar network traffic traces, power-law behavior in network topology and World Wide Web connectivity are instances of unsuspected, emergent system traits. Another important factor at the heart of fair, efficient, and stable sharing of network resources is user behavior. Network systems, when habited by selfish or greedy users, take on the traits of a noncooperative multi-party game, and their stability and efficiency are integral to understanding the overall system and its dynamics. Lastly, fault-tolerance and robustness of large-scale network systems can exhibit spatial and temporal correlations whose effective analysis and management may benefit from rescaling techniques applied in certain physical and biological systems. The present book will bring together several of the leading workers involved in the analysis of complex systems with the future development of the Internet.
DOT National Transportation Integrated Search
2017-11-30
Trip purpose is crucial to travel behavior modeling and travel demand estimation for transportation planning and investment decisions. However, the spatial-temporal complexity of human activities makes the prediction of trip purpose a challenging pro...
Mesoscale behavior study of collector aggregations in a wet dust scrubber.
Li, Xiaochuan; Wu, Xiang; Hu, Haibin; Jiang, Shuguang; Wei, Tao; Wang, Dongxue
2018-01-01
In order to address the bottleneck problem of low fine-particle removal efficiency of self-excited dust scrubbers, this paper is focused on the influence of the intermittent gas-liquid two-phase flow on the mesoscale behavior of collector aggregations. The latter is investigated by the application of high-speed dynamic image technology to the self-excited dust scrubber experimental setup. The real-time-scale monitoring of the dust removal process is provided to clarify its operating mechanism at the mesoscale level. The results obtained show that particulate capturing in self-excited dust scrubber is provided by liquid droplets, liquid films/curtains, bubbles, and their aggregations. Complex spatial and temporal structures are intrinsic to each kind of collector morphology, and these are considered as the major factors controlling the dust removal mechanism of self-excited dust scrubbers. For the specific parameters of gas-liquid two-phase flow under study, the evolution patterns of particular collectors reflect the intrinsic, intermittent, and complex characteristics of the temporal structure. The intermittent initiation of the collector and the air hole formation-collapse cyclic processes provide time and space for the fine dust to escape from being trapped by the collectors. The above mesoscale experimental data provide more insight into the factors reducing the dust removal efficiency of self-excited dust scrubbers. This paper focuses on the reconsideration of the capturer aggregations of self-excited dust scrubbers from the mesoscale. Complex structures in time and space scales exist in each kind of capturer morphology. With changes of operating parameters, the morphology and spatial distributions of capturers diversely change. The change of the capturer over time presents remarkable, intermittent, and complex characteristics of the temporal structure.
He, Shuman; McFayden, Tyler C; Shahsavarani, Bahar S; Teagle, Holly F B; Ewend, Matthew; Henderson, Lillian; Buchman, Craig A
This study aimed to (1) establish the feasibility of measuring the electrically evoked auditory change complex (eACC) in response to temporal gaps in children with cochlear nerve deficiency (CND) who are using cochlear implants (CIs) and/or auditory brainstem implants (ABIs); and (2) explore the association between neural encoding of, and perceptual sensitivity to, temporal gaps in these patients. Study participants included 5 children (S1 to S5) ranging in age from 3.8 to 8.2 years (mean: 6.3 years) at the time of testing. All subjects were unilaterally implanted with a Nucleus 24M ABI due to CND. For each subject, two or more stimulating electrodes of the ABI were tested. S2, S3, and S5 previously received a CI in the contralateral ear. For these 3 subjects, at least two stimulating electrodes of their CIs were also tested. For electrophysiological measures, the stimulus was an 800-msec biphasic pulse train delivered to individual electrodes at the maximum comfortable level (C level). The electrically evoked responses, including the onset response and the eACC, were measured for two stimulation conditions. In the standard condition, the 800-msec pulse train was delivered uninterrupted to individual stimulating electrodes. In the gapped condition, a temporal gap was inserted into the pulse train after 400 msec of stimulation. Gap durations tested in this study ranged from 2 up to 128 msec. The shortest gap that could reliably evoke the eACC was defined as the objective gap detection threshold (GDT). For behavioral GDT measures, the stimulus was a 500-msec biphasic pulse train presented at the C level. The behavioral GDT was measured for individual stimulating electrodes using a one-interval, two-alternative forced-choice procedure. The eACCs to temporal gaps were recorded successfully in all subjects for at least one stimulating electrode using either the ABI or the CI. Objective GDTs showed intersubject variations, as well as variations across stimulating electrodes of the ABI or the CI within each subject. Behavioral GDTs were measured for one ABI electrode in S2 and for multiple ABI and CI electrodes in S5. All other subjects could not complete the task. S5 showed smaller behavioral GDTs for CI electrodes than those measured for ABI electrodes. One CI and two ABI electrodes in S5 showed comparable objective and behavioral GDTs. In contrast, one CI and two ABI electrodes in S5 and one ABI electrode in S2 showed measurable behavioral GDTs but no identifiable eACCs. The eACCs to temporal gaps were recorded in children with CND using either ABIs or CIs. Both objective and behavioral GDTs showed inter- and intrasubject variations. Consistency between results of eACC recordings and psychophysical measures of GDT was observed for some but not all ABI or CI electrodes in these subjects.
Measurement and Statistics of Application Business in Complex Internet
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Yang; Li, Yipeng; Wu, Shuhang; Song, Shiji; Ren, Yong
Owing to independent topologies and autonomic routing mechanism, the logical networks formed by Internet application business behavior cause the significant influence on the physical networks. In this paper, the backbone traffic of TUNET (Tsinghua University Networks) is measured, further more, the two most important application business: HTTP and P2P are analyzed at IP-packet level. It is shown that uplink HTTP and P2P packets behavior presents spatio-temporal power-law characteristics with exponents 1.25 and 1.53 respectively. Downlink HTTP packets behavior also presents power-law characteristics, but has more little exponents γ = 0.82 which differs from traditional complex networks research result. Moreover, downlink P2P packets distribution presents an approximate power-law which means that flow equilibrium profits little from distributed peer-to peer mechanism actually.
Team Learning: New Insights Through a Temporal Lens.
Lehmann-Willenbrock, Nale
2017-04-01
Team learning is a complex social phenomenon that develops and changes over time. Hence, to promote understanding of the fine-grained dynamics of team learning, research should account for the temporal patterns of team learning behavior. Taking important steps in this direction, this special issue offers novel insights into the dynamics of team learning by advocating a temporal perspective. Based on a symposium presented at the 2016 Interdisciplinary Network for Group Research (INGRoup) Conference in Helsinki, the four empirical articles in this special issue showcase four different and innovative approaches to implementing a temporal perspective in team learning research. Specifically, the contributions highlight team learning dynamics in student teams, self-managing teams, teacher teams, and command and control teams. The articles cover a broad range of methods and designs, including both qualitative and quantitative methodologies, and longitudinal as well as micro-temporal approaches. The contributors represent four countries and five different disciplines in group research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C. S.; Gaensler, B. M.; Feain, I. J., E-mail: craiga@physics.usyd.edu.au
We present a broadband polarization analysis of 36 discrete polarized radio sources over a very broad, densely sampled frequency band. Our sample was selected on the basis of polarization behavior apparent in narrowband archival data at 1.4 GHz: half the sample shows complicated frequency-dependent polarization behavior (i.e., Faraday complexity) at these frequencies, while half shows comparatively simple behavior (i.e., they appear Faraday simple ). We re-observed the sample using the Australia Telescope Compact Array in full polarization, with 6 GHz of densely sampled frequency coverage spanning 1.3–10 GHz. We have devised a general polarization modeling technique that allows us tomore » identify multiple polarized emission components in a source, and to characterize their properties. We detect Faraday complex behavior in almost every source in our sample. Several sources exhibit particularly remarkable polarization behavior. By comparing our new and archival data, we have identified temporal variability in the broadband integrated polarization spectra of some sources. In a number of cases, the characteristics of the polarized emission components, including the range of Faraday depths over which they emit, their temporal variability, spectral index, and the linear extent of the source, allow us to argue that the spectropolarimetric data encode information about the magneto-ionic environment of active galactic nuclei themselves. Furthermore, the data place direct constraints on the geometry and magneto-ionic structure of this material. We discuss the consequences of restricted frequency bands on the detection and interpretation of polarization structures, and the implications for upcoming spectropolarimetric surveys.« less
Turbulent chimeras in large semiconductor laser arrays
Shena, J.; Hizanidis, J.; Kovanis, V.; Tsironis, G. P.
2017-01-01
Semiconductor laser arrays have been investigated experimentally and theoretically from the viewpoint of temporal and spatial coherence for the past forty years. In this work, we are focusing on a rather novel complex collective behavior, namely chimera states, where synchronized clusters of emitters coexist with unsynchronized ones. For the first time, we find such states exist in large diode arrays based on quantum well gain media with nearest-neighbor interactions. The crucial parameters are the evanescent coupling strength and the relative optical frequency detuning between the emitters of the array. By employing a recently proposed figure of merit for classifying chimera states, we provide quantitative and qualitative evidence for the observed dynamics. The corresponding chimeras are identified as turbulent according to the irregular temporal behavior of the classification measure. PMID:28165053
Turbulent chimeras in large semiconductor laser arrays
NASA Astrophysics Data System (ADS)
Shena, J.; Hizanidis, J.; Kovanis, V.; Tsironis, G. P.
2017-02-01
Semiconductor laser arrays have been investigated experimentally and theoretically from the viewpoint of temporal and spatial coherence for the past forty years. In this work, we are focusing on a rather novel complex collective behavior, namely chimera states, where synchronized clusters of emitters coexist with unsynchronized ones. For the first time, we find such states exist in large diode arrays based on quantum well gain media with nearest-neighbor interactions. The crucial parameters are the evanescent coupling strength and the relative optical frequency detuning between the emitters of the array. By employing a recently proposed figure of merit for classifying chimera states, we provide quantitative and qualitative evidence for the observed dynamics. The corresponding chimeras are identified as turbulent according to the irregular temporal behavior of the classification measure.
Short temporal asynchrony disrupts visual object recognition
Singer, Jedediah M.; Kreiman, Gabriel
2014-01-01
Humans can recognize objects and scenes in a small fraction of a second. The cascade of signals underlying rapid recognition might be disrupted by temporally jittering different parts of complex objects. Here we investigated the time course over which shape information can be integrated to allow for recognition of complex objects. We presented fragments of object images in an asynchronous fashion and behaviorally evaluated categorization performance. We observed that visual recognition was significantly disrupted by asynchronies of approximately 30 ms, suggesting that spatiotemporal integration begins to break down with even small deviations from simultaneity. However, moderate temporal asynchrony did not completely obliterate recognition; in fact, integration of visual shape information persisted even with an asynchrony of 100 ms. We describe the data with a concise model based on the dynamic reduction of uncertainty about what image was presented. These results emphasize the importance of timing in visual processing and provide strong constraints for the development of dynamical models of visual shape recognition. PMID:24819738
Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting
Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart
2015-02-14
Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less
Faugeras, Frédéric; Naccache, Lionel
2016-01-01
Engagement of various forms of attention and response preparation determines behavioral performance during stimulus-response tasks. Many studies explored the respective properties and neural signatures of each of these processes. However, very few experiments were conceived to explore their interaction. In the present work we used an auditory target detection task during which both temporal attention on the one side, and spatial attention and motor response preparation on the other side could be explicitly cued. Both cueing effects speeded response times, and showed strictly additive effects. Target ERP analysis revealed modulations of N1 and P3 responses by these two forms of cueing. Cue-target interval analysis revealed two main effects paralleling behavior. First, a typical contingent negative variation (CNV), induced by the cue and resolved immediately after target onset, was found larger for temporal attention cueing than for spatial and motor response cueing. Second, a posterior and late cue-P3 complex showed the reverse profile. Analyses of lateralized readiness potentials (LRP) revealed both patterns of motor response inhibition and activation. Taken together these results help to clarify and disentangle the respective effects of temporal attention on the one hand, and of the combination of spatial attention and motor response preparation on the other hand on brain activity and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Social Insects: A Model System for Network Dynamics
NASA Astrophysics Data System (ADS)
Charbonneau, Daniel; Blonder, Benjamin; Dornhaus, Anna
Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.
Cortical Specializations Underlying Fast Computations
Volgushev, Maxim
2016-01-01
The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints. PMID:25689988
SEARCH: Spatially Explicit Animal Response to Composition of Habitat.
Pauli, Benjamin P; McCann, Nicholas P; Zollner, Patrick A; Cummings, Robert; Gilbert, Jonathan H; Gustafson, Eric J
2013-01-01
Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement. SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate SEARCH's capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American martens (Martes americana). These simulations highlight the relevance of SEARCH for a variety of applications and illustrate benefits it can provide for conservation planning.
Effects of burstiness on the air transportation system
NASA Astrophysics Data System (ADS)
Ito, Hidetaka; Nishinari, Katsuhiro
2017-01-01
The effects of burstiness in complex networks have received considerable attention. In particular, the effects on temporal distance and delays in the air transportation system are significant owing to their huge impact on our society. Therefore, in this paper, the temporal distance of empirical U.S. flight schedule data is compared with that of regularized data without burstiness to analyze the effects of burstiness. The temporal distance is calculated by a graph analysis method considering flight delays, missed connections, flight cancellations, and congestion. In addition, we propose two temporal distance indexes based on passengers' behavior to quantify the effects. As a result, we find that burstiness reduces both the scheduled and the actual temporal distances for business travelers, while delays caused by missed connections and congestion are increased. We also find that the decrease of the scheduled temporal distance by burstiness is offset by an increase of the delays for leisure passengers. Moreover, we discover that the positive effect of burstiness is lost when flight schedules are overcrowded.
Effects of burstiness on the air transportation system.
Ito, Hidetaka; Nishinari, Katsuhiro
2017-01-01
The effects of burstiness in complex networks have received considerable attention. In particular, the effects on temporal distance and delays in the air transportation system are significant owing to their huge impact on our society. Therefore, in this paper, the temporal distance of empirical U.S. flight schedule data is compared with that of regularized data without burstiness to analyze the effects of burstiness. The temporal distance is calculated by a graph analysis method considering flight delays, missed connections, flight cancellations, and congestion. In addition, we propose two temporal distance indexes based on passengers' behavior to quantify the effects. As a result, we find that burstiness reduces both the scheduled and the actual temporal distances for business travelers, while delays caused by missed connections and congestion are increased. We also find that the decrease of the scheduled temporal distance by burstiness is offset by an increase of the delays for leisure passengers. Moreover, we discover that the positive effect of burstiness is lost when flight schedules are overcrowded.
Temporal motifs reveal collaboration patterns in online task-oriented networks
NASA Astrophysics Data System (ADS)
Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir
2015-05-01
Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.
Temporal motifs reveal collaboration patterns in online task-oriented networks.
Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir
2015-05-01
Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.
Intermittency of intermittencies
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Koronovskii, Alexey A.; Moskalenko, Olga I.; Zhuravlev, Maxim O.; Ponomarenko, Vladimir I.; Prokhorov, Mikhail D.
2013-09-01
A phenomenon of intermittency of intermittencies is discovered in the temporal behavior of two coupled complex systems. We observe for the first time the coexistence of two types of intermittent behavior taking place simultaneously near the boundary of the synchronization regime of coupled chaotic oscillators. This phenomenon is found both in the numerical and physiological experiments. The laws for both the distribution and mean length of laminar phases versus the control parameter values are analytically deduced. A very good agreement between the theoretical results and simulation is shown.
Complex network analysis of brain functional connectivity under a multi-step cognitive task
NASA Astrophysics Data System (ADS)
Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun
2017-01-01
Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.
Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation
NASA Astrophysics Data System (ADS)
Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.
2016-11-01
Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.
Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.
Ballard, Christopher C; Esty, C Clark; Egolf, David A
2016-11-01
Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.
Spatio-temporal Event Classification using Time-series Kernel based Structured Sparsity
Jeni, László A.; Lőrincz, András; Szabó, Zoltán; Cohn, Jeffrey F.; Kanade, Takeo
2016-01-01
In many behavioral domains, such as facial expression and gesture, sparse structure is prevalent. This sparsity would be well suited for event detection but for one problem. Features typically are confounded by alignment error in space and time. As a consequence, high-dimensional representations such as SIFT and Gabor features have been favored despite their much greater computational cost and potential loss of information. We propose a Kernel Structured Sparsity (KSS) method that can handle both the temporal alignment problem and the structured sparse reconstruction within a common framework, and it can rely on simple features. We characterize spatio-temporal events as time-series of motion patterns and by utilizing time-series kernels we apply standard structured-sparse coding techniques to tackle this important problem. We evaluated the KSS method using both gesture and facial expression datasets that include spontaneous behavior and differ in degree of difficulty and type of ground truth coding. KSS outperformed both sparse and non-sparse methods that utilize complex image features and their temporal extensions. In the case of early facial event classification KSS had 10% higher accuracy as measured by F1 score over kernel SVM methods1. PMID:27830214
Goldberger, Ary L.
2006-01-01
Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107
Xiao, Yaqiong; Friederici, Angela D; Margulies, Daniel S; Brauer, Jens
2016-03-01
The development of language comprehension abilities in childhood is closely related to the maturation of the brain, especially the ability to process syntactically complex sentences. Recent studies proposed that the fronto-temporal connection within left perisylvian regions, supporting the processing of syntactically complex sentences, is still immature at preschool age. In the current study, resting state functional magnetic resonance imaging data were acquired from typically developing 5-year-old children and adults to shed further light on the brain functional development. Children additionally performed a behavioral syntactic comprehension test outside the scanner. The amplitude of low-frequency fluctuations was analyzed in order to identify the functional correlation networks of language-relevant brain regions. Results showed an intrahemispheric correlation between left inferior frontal gyrus (IFG) and left posterior superior temporal sulcus (pSTS) in adults, whereas an interhemispheric correlation between left IFG and its right-hemispheric homolog was predominant in children. Correlation analysis between resting-state functional connectivity and sentence processing performance in 5-year-olds revealed that local connectivity within the left IFG is associated with competence of processing syntactically simple canonical sentences, while long-range connectivity between IFG and pSTS in left hemisphere is associated with competence of processing syntactically relatively more complex non-canonical sentences. The present developmental data suggest that a selective left fronto-temporal connectivity network for processing complex syntax is already in functional connection at the age of 5 years when measured in a non-task situation. The correlational findings provide new insight into the relationship between intrinsic functional connectivity and syntactic language abilities in preschool children. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R
2014-09-10
Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.
Social Vocalizations of Big Brown Bats Vary with Behavioral Context
Gadziola, Marie A.; Grimsley, Jasmine M. S.; Faure, Paul A.; Wenstrup, Jeffrey J.
2012-01-01
Bats are among the most gregarious and vocal mammals, with some species demonstrating a diverse repertoire of syllables under a variety of behavioral contexts. Despite extensive characterization of big brown bat (Eptesicus fuscus) biosonar signals, there have been no detailed studies of adult social vocalizations. We recorded and analyzed social vocalizations and associated behaviors of captive big brown bats under four behavioral contexts: low aggression, medium aggression, high aggression, and appeasement. Even limited to these contexts, big brown bats possess a rich repertoire of social vocalizations, with 18 distinct syllable types automatically classified using a spectrogram cross-correlation procedure. For each behavioral context, we describe vocalizations in terms of syllable acoustics, temporal emission patterns, and typical syllable sequences. Emotion-related acoustic cues are evident within the call structure by context-specific syllable types or variations in the temporal emission pattern. We designed a paradigm that could evoke aggressive vocalizations while monitoring heart rate as an objective measure of internal physiological state. Changes in the magnitude and duration of elevated heart rate scaled to the level of evoked aggression, confirming the behavioral state classifications assessed by vocalizations and behavioral displays. These results reveal a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a caller. PMID:22970247
Evaluating crown fire rate of spread predictions from physics-based models
C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont
2015-01-01
Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-01-01
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users’ spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last. PMID:27999398
Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media.
Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang
2016-12-20
Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users' spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last.
Jannuzzi, Fernanda Freire; Rodrigues, Roberta Cunha Matheus; Cornélio, Marilia Estevam; São-João, Thaís Moreira; Gallani, Maria Cecília Bueno Jayme
2014-01-01
OBJECTIVE: to identify salient behavioral, normative, control and self-efficacy beliefs related to the behavior of adherence to oral antidiabetic agents, using the Theory of Planned Behavior. METHOD: cross-sectional, exploratory study with 17 diabetic patients in chronic use of oral antidiabetic medication and in outpatient follow-up. Individual interviews were recorded, transcribed and content-analyzed using pre-established categories. RESULTS: behavioral beliefs concerning advantages and disadvantages of adhering to medication emerged, such as the possibility of avoiding complications from diabetes, preventing or delaying the use of insulin, and a perception of side effects. The children of patients and physicians are seen as important social references who influence medication adherence. The factors that facilitate adherence include access to free-of-cost medication and taking medications associated with temporal markers. On the other hand, a complex therapeutic regimen was considered a factor that hinders adherence. Understanding how to use medication and forgetfulness impact the perception of patients regarding their ability to adhere to oral antidiabetic agents. CONCLUSION: medication adherence is a complex behavior permeated by behavioral, normative, control and self-efficacy beliefs that should be taken into account when assessing determinants of behavior. PMID:25296135
Jannuzzi, Fernanda Freire; Rodrigues, Roberta Cunha Matheus; Cornélio, Marilia Estevam; São-João, Thaís Moreira; Gallani, Maria Cecília Bueno Jayme
2014-01-01
to identify salient behavioral, normative, control and self-efficacy beliefs related to the behavior of adherence to oral antidiabetic agents, using the Theory of Planned Behavior. cross-sectional, exploratory study with 17 diabetic patients in chronic use of oral antidiabetic medication and in outpatient follow-up. Individual interviews were recorded, transcribed and content-analyzed using pre-established categories. behavioral beliefs concerning advantages and disadvantages of adhering to medication emerged, such as the possibility of avoiding complications from diabetes, preventing or delaying the use of insulin, and a perception of side effects. The children of patients and physicians are seen as important social references who influence medication adherence. The factors that facilitate adherence include access to free-of-cost medication and taking medications associated with temporal markers. On the other hand, a complex therapeutic regimen was considered a factor that hinders adherence. Understanding how to use medication and forgetfulness impact the perception of patients regarding their ability to adhere to oral antidiabetic agents. medication adherence is a complex behavior permeated by behavioral, normative, control and self-efficacy beliefs that should be taken into account when assessing determinants of behavior.
Tupal, Srinivasan; Huang, Wei-Hsiang; Picardo, Maria Cristina D; Ling, Guang-Yi; Del Negro, Christopher A; Zoghbi, Huda Y; Gray, Paul A
2014-01-01
All motor behaviors require precise temporal coordination of different muscle groups. Breathing, for example, involves the sequential activation of numerous muscles hypothesized to be driven by a primary respiratory oscillator, the preBötzinger Complex, and at least one other as-yet unidentified rhythmogenic population. We tested the roles of Atoh1-, Phox2b-, and Dbx1-derived neurons (three groups that have known roles in respiration) in the generation and coordination of respiratory output. We found that Dbx1-derived neurons are necessary for all respiratory behaviors, whereas independent but coupled respiratory rhythms persist from at least three different motor pools after eliminating or silencing Phox2b- or Atoh1-expressing hindbrain neurons. Without Atoh1 neurons, however, the motor pools become temporally disorganized and coupling between independent respiratory oscillators decreases. We propose Atoh1 neurons tune the sequential activation of independent oscillators essential for the fine control of different muscles during breathing. DOI: http://dx.doi.org/10.7554/eLife.02265.001 PMID:24842997
Thermodynamics of complexity and pattern manipulation.
Garner, Andrew J P; Thompson, Jayne; Vedral, Vlatko; Gu, Mile
2017-04-01
Many organisms capitalize on their ability to predict the environment to maximize available free energy and reinvest this energy to create new complex structures. This functionality relies on the manipulation of patterns-temporally ordered sequences of data. Here, we propose a framework to describe pattern manipulators-devices that convert thermodynamic work to patterns or vice versa-and use them to build a "pattern engine" that facilitates a thermodynamic cycle of pattern creation and consumption. We show that the least heat dissipation is achieved by the provably simplest devices, the ones that exhibit desired operational behavior while maintaining the least internal memory. We derive the ultimate limits of this heat dissipation and show that it is generally nonzero and connected with the pattern's intrinsic crypticity-a complexity theoretic quantity that captures the puzzling difference between the amount of information the pattern's past behavior reveals about its future and the amount one needs to communicate about this past to optimally predict the future.
Thermodynamics of complexity and pattern manipulation
NASA Astrophysics Data System (ADS)
Garner, Andrew J. P.; Thompson, Jayne; Vedral, Vlatko; Gu, Mile
2017-04-01
Many organisms capitalize on their ability to predict the environment to maximize available free energy and reinvest this energy to create new complex structures. This functionality relies on the manipulation of patterns—temporally ordered sequences of data. Here, we propose a framework to describe pattern manipulators—devices that convert thermodynamic work to patterns or vice versa—and use them to build a "pattern engine" that facilitates a thermodynamic cycle of pattern creation and consumption. We show that the least heat dissipation is achieved by the provably simplest devices, the ones that exhibit desired operational behavior while maintaining the least internal memory. We derive the ultimate limits of this heat dissipation and show that it is generally nonzero and connected with the pattern's intrinsic crypticity—a complexity theoretic quantity that captures the puzzling difference between the amount of information the pattern's past behavior reveals about its future and the amount one needs to communicate about this past to optimally predict the future.
Active listening for spatial orientation in a complex auditory scene.
Moss, Cynthia F; Bohn, Kari; Gilkenson, Hannah; Surlykke, Annemarie
2006-04-01
To successfully negotiate a complex environment, an animal must control the timing of motor behaviors in coordination with dynamic sensory information. Here, we report on adaptive temporal control of vocal-motor behavior in an echolocating bat, Eptesicus fuscus, as it captured tethered insects close to background vegetation. Recordings of the bat's sonar vocalizations were synchronized with high-speed video images that were used to reconstruct the bat's three-dimensional flight path and the positions of target and vegetation. When the bat encountered the difficult task of taking insects as close as 10-20 cm from the vegetation, its behavior changed significantly from that under open room conditions. Its success rate decreased by about 50%, its time to initiate interception increased by a factor of ten, and its high repetition rate "terminal buzz" decreased in duration by a factor of three. Under all conditions, the bat produced prominent sonar "strobe groups," clusters of echolocation pulses with stable intervals. In the final stages of insect capture, the bat produced strobe groups at a higher incidence when the insect was positioned near clutter. Strobe groups occurred at all phases of the wingbeat (and inferred respiration) cycle, challenging the hypothesis of strict synchronization between respiration and sound production in echolocating bats. The results of this study provide a clear demonstration of temporal vocal-motor control that directly impacts the signals used for perception.
Active Listening for Spatial Orientation in a Complex Auditory Scene
Bohn, Kari; Gilkenson, Hannah; Surlykke, Annemarie
2006-01-01
To successfully negotiate a complex environment, an animal must control the timing of motor behaviors in coordination with dynamic sensory information. Here, we report on adaptive temporal control of vocal–motor behavior in an echolocating bat, Eptesicus fuscus, as it captured tethered insects close to background vegetation. Recordings of the bat's sonar vocalizations were synchronized with high-speed video images that were used to reconstruct the bat's three-dimensional flight path and the positions of target and vegetation. When the bat encountered the difficult task of taking insects as close as 10–20 cm from the vegetation, its behavior changed significantly from that under open room conditions. Its success rate decreased by about 50%, its time to initiate interception increased by a factor of ten, and its high repetition rate “terminal buzz” decreased in duration by a factor of three. Under all conditions, the bat produced prominent sonar “strobe groups,” clusters of echolocation pulses with stable intervals. In the final stages of insect capture, the bat produced strobe groups at a higher incidence when the insect was positioned near clutter. Strobe groups occurred at all phases of the wingbeat (and inferred respiration) cycle, challenging the hypothesis of strict synchronization between respiration and sound production in echolocating bats. The results of this study provide a clear demonstration of temporal vocal–motor control that directly impacts the signals used for perception. PMID:16509770
Visual Data Mining: An Exploratory Approach to Analyzing Temporal Patterns of Eye Movements
ERIC Educational Resources Information Center
Yu, Chen; Yurovsky, Daniel; Xu, Tian
2012-01-01
Infant eye movements are an important behavioral resource to understand early human development and learning. But the complexity and amount of gaze data recorded from state-of-the-art eye-tracking systems also pose a challenge: how does one make sense of such dense data? Toward this goal, this article describes an interactive approach based on…
Interdisciplinary Team Science in Cell Biology.
Horwitz, Rick
2016-11-01
The cell is complex. With its multitude of components, spatial-temporal character, and gene expression diversity, it is challenging to comprehend the cell as an integrated system and to develop models that predict its behaviors. I suggest an approach to address this issue, involving system level data analysis, large scale team science, and philanthropy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods
NASA Astrophysics Data System (ADS)
Hora, Heinrich; Aydin, Meral
1992-04-01
The control of the very complex behavior of a plasma with laser interaction by smoothing with induced spatial incoherence or other methods was related to improving the lateral uniformity of the irradiation. While this is important, it is shown from numerical hydrodynamic studies that the very strong temporal pulsation (stuttering) will mostly be suppressed by these smoothing methods too.
Haas, Brian W; Anderson, Ian W; Smith, Jessica M
2013-11-28
Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin (OT) system, the OT reception gene (OXTR). In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and cooperation may in part be due to how the OXTR gene affects brain systems involved in emotion recognition, empathy/theory of mind, social communication and social reward seeking. There is evidence that the OXTR gene is associated with the functional anatomy of the amygdala, visual cortex (VC), anterior cingulate and superior temporal gyrus (STG). However, it is currently unknown how the OXTR gene may be linked to the functional anatomy of other relevant brain regions that include the fusiform gyrus (FG), superior temporal sulcus (STS), ventromedial prefrontal cortex (VMPFC), temporoparietal junction (TPJ) and nucleus accumbens (NAcc). We conclude by highlighting potential future research directions that may elucidate the path between OXTR and complex behaviors such as cooperation.
Haas, Brian W.; Anderson, Ian W.; Smith, Jessica M.
2013-01-01
Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin (OT) system, the OT reception gene (OXTR). In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and cooperation may in part be due to how the OXTR gene affects brain systems involved in emotion recognition, empathy/theory of mind, social communication and social reward seeking. There is evidence that the OXTR gene is associated with the functional anatomy of the amygdala, visual cortex (VC), anterior cingulate and superior temporal gyrus (STG). However, it is currently unknown how the OXTR gene may be linked to the functional anatomy of other relevant brain regions that include the fusiform gyrus (FG), superior temporal sulcus (STS), ventromedial prefrontal cortex (VMPFC), temporoparietal junction (TPJ) and nucleus accumbens (NAcc). We conclude by highlighting potential future research directions that may elucidate the path between OXTR and complex behaviors such as cooperation. PMID:24348360
Tanaka, Masashi; Singh Alvarado, Jonnathan; Murugan, Malavika; Mooney, Richard
2016-01-01
The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington’s disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements. PMID:26951661
Effects of temporal correlations in social multiplex networks.
Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo
2017-08-17
Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.
NASA Astrophysics Data System (ADS)
Lebiedz, Dirk; Brandt-Pollmann, Ulrich
2004-09-01
Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.
Self Organized Criticality as a new paradigm of sleep regulation
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.; Bartsch, Ronny P.
2012-02-01
Humans and animals often exhibit brief awakenings from sleep (arousals), which are traditionally viewed as random disruptions of sleep caused by external stimuli or pathologic perturbations. However, our recent findings show that arousals exhibit complex temporal organization and scale-invariant behavior, characterized by a power-law probability distribution for their durations, while sleep stage durations exhibit exponential behavior. The co-existence of both scale-invariant and exponential processes generated by a single regulatory mechanism has not been observed in physiological systems until now. Such co-existence resembles the dynamical features of non-equilibrium systems exhibiting self-organized criticality (SOC). Our empirical analysis and modeling approaches based on modern concepts from statistical physics indicate that arousals are an integral part of sleep regulation and may be necessary to maintain and regulate healthy sleep by releasing accumulated excitations in the regulatory neuronal networks, following a SOC-type temporal organization.
Temporal lobe epileptic signs and correlative behaviors displayed by normal populations.
Persinger, M A; Makarec, K
1987-04-01
With regard to epileptic signs and correlative behaviors, one hypothesis is that the experiences and nonconvulsive behaviors of patients with electrical foci within the temporal lobe are also displayed, but with less intensity, by normal people. If this is correct, then there should be quantitative relationships between the numbers of major complex partial epileptic signs (CPES) and the occurrence of other frequent clinical experiences and behaviors. An inventory to answer this question was developed. Over a 3-year period, 414 (6 groups) university students were administered an inventory that included themes of CPES as well as control and information items. Strong correlations were consistently found between CPES scores and reports of paranormal (mystical, with religious overtones) experiences and "a sense of presence." Results from three personality (CPI, MMPI, and IPAT anxiety) inventories clearly demonstrated similar profiles. In addition to being more anxious, people who displayed higher CPES scores were more suspicious, aloof, stereotyped in their behavior, ruminative (overthinking), intellectually inefficient, and overly judgmental. CPES scores were significantly (p less than .001) correlated with the schizophrenia and mania subscales of the MMPI. The results suggest that functional hyperconnectionism of cortical-limbic systems within the brain may be more prevalent in the normal population than previously suspected.
Poganiatz, I; Wagner, H
2001-04-01
Interaural level differences play an important role for elevational sound localization in barn owls. The changes of this cue with sound location are complex and frequency dependent. We exploited the opportunities offered by the virtual space technique to investigate the behavioral relevance of the overall interaural level difference by fixing this parameter in virtual stimuli to a constant value or introducing additional broadband level differences to normal virtual stimuli. Frequency-specific monaural cues in the stimuli were not manipulated. We observed an influence of the broadband interaural level differences on elevational, but not on azimuthal sound localization. Since results obtained with our manipulations explained only part of the variance in elevational turning angle, we conclude that frequency-specific cues are also important. The behavioral consequences of changes of the overall interaural level difference in a virtual sound depended on the combined interaural time difference contained in the stimulus, indicating an indirect influence of temporal cues on elevational sound localization as well. Thus, elevational sound localization is influenced by a combination of many spatial cues including frequency-dependent and temporal features.
Bergeron, Normand E.; Constantin, Pierre-Marc; Goerig, Elsa; Castro-Santos, Theodore R.
2016-01-01
We used video recording and near-infrared illumination to document the spatial behavior of brook trout of various sizes attempting to pass corrugated culverts under different hydraulic conditions. Semi-automated image analysis was used to digitize fish position at high temporal resolution inside the culvert, which allowed calculation of various spatial behavior metrics, including instantaneous ground and swimming speed, path complexity, distance from side walls, velocity preference ratio (mean velocity at fish lateral position/mean crosssectional velocity) as well as number and duration of stops in forward progression. The presentation summarizes the main results and discusses how they could be used to improve fish passage performance in culverts.
Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Sweby, Peter K.
1997-01-01
The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.
Turbulent pipe flow at extreme Reynolds numbers.
Hultmark, M; Vallikivi, M; Bailey, S C C; Smits, A J
2012-03-02
Both the inherent intractability and complex beauty of turbulence reside in its large range of physical and temporal scales. This range of scales is captured by the Reynolds number, which in nature and in many engineering applications can be as large as 10(5)-10(6). Here, we report turbulence measurements over an unprecedented range of Reynolds numbers using a unique combination of a high-pressure air facility and a new nanoscale anemometry probe. The results reveal previously unknown universal scaling behavior for the turbulent velocity fluctuations, which is remarkably similar to the well-known scaling behavior of the mean velocity distribution.
Felix II, Richard A.; Gourévitch, Boris; Gómez-Álvarez, Marcelo; Leijon, Sara C. M.; Saldaña, Enrique; Magnusson, Anna K.
2017-01-01
Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds. PMID:28620283
Laufs, Helmut; Hamandi, Khalid; Salek-Haddadi, Afraim; Kleinschmidt, Andreas K; Duncan, John S; Lemieux, Louis
2007-01-01
A cerebral network comprising precuneus, medial frontal, and temporoparietal cortices is less active both during goal-directed behavior and states of reduced consciousness than during conscious rest. We tested the hypothesis that the interictal epileptic discharges affect activity in these brain regions in patients with temporal lobe epilepsy who have complex partial seizures. At the group level, using electroencephalography-correlated functional magnetic resonance imaging in 19 consecutive patients with focal epilepsy, we found common decreases of resting state activity in 9 patients with temporal lobe epilepsy (TLE) but not in 10 patients with extra-TLE. We infer that the functional consequences of TLE interictal epileptic discharges are different from those in extra-TLE and affect ongoing brain function. Activity increases were detected in the ipsilateral hippocampus in patients with TLE, and in subthalamic, bilateral superior temporal and medial frontal brain regions in patients with extra-TLE, possibly indicating effects of different interictal epileptic discharge propagation. PMID:17133385
Identification of complex flows in Taylor-Couette counter-rotating cavities
NASA Technical Reports Server (NTRS)
Czarny, O.; Serre, E.; Bontoux, P.; Lueptow, R. M.
2001-01-01
The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor-Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available. c2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
Alcohol Dose Effects on Brain Circuits During Simulated Driving: An fMRI Study
Meda, Shashwath A.; Calhoun, Vince D.; Astur, Robert S.; Turner, Beth M.; Ruopp, Kathryn; Pearlson, Godfrey D.
2009-01-01
Driving while intoxicated remains a major public health hazard. Driving is a complex task involving simultaneous recruitment of multiple cognitive functions. The investigators studied the neural substrates of driving and their response to different blood alcohol concentrations (BACs), using functional magnetic resonance imaging (fMRI) and a virtual reality driving simulator. We used independent component analysis (ICA) to isolate spatially independent and temporally correlated driving-related brain circuits in 40 healthy, adult moderate social drinkers. Each subject received three individualized, separate single-blind doses of beverage alcohol to produce BACs of 0.05% (moderate), 0.10% (high), or 0% (placebo). 3 T fMRI scanning and continuous behavioral measurement occurred during simulated driving. Brain function was assessed and compared using both ICA and a conventional general linear model (GLM) analysis. ICA results replicated and significantly extended our previous 1.5T study (Calhoun et al. [2004a]: Neuropsychopharmacology 29:2097–2017). GLM analysis revealed significant dose-related functional differences, complementing ICA data. Driving behaviors including opposite white line crossings and mean speed independently demonstrated significant dose-dependent changes. Behavior-based factors also predicted a frontal-basal-temporal circuit to be functionally impaired with alcohol dosage across baseline scaled, good versus poorly performing drivers. We report neural correlates of driving behavior and found dose-related spatio-temporal disruptions in critical driving-associated regions including the superior, middle and orbito frontal gyri, anterior cingulate, primary/supplementary motor areas, basal ganglia, and cerebellum. Overall, results suggest that alcohol (especially at high doses) causes significant impairment of both driving behavior and brain functionality related to motor planning and control, goal directedness, error monitoring, and memory. PMID:18571794
Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.
Wirtssohn, Sarah; Ronacher, Bernhard
2015-04-01
Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. Copyright © 2015 the American Physiological Society.
High-performance execution of psychophysical tasks with complex visual stimuli in MATLAB
Asaad, Wael F.; Santhanam, Navaneethan; McClellan, Steven
2013-01-01
Behavioral, psychological, and physiological experiments often require the ability to present sensory stimuli, monitor and record subjects' responses, interface with a wide range of devices, and precisely control the timing of events within a behavioral task. Here, we describe our recent progress developing an accessible and full-featured software system for controlling such studies using the MATLAB environment. Compared with earlier reports on this software, key new features have been implemented to allow the presentation of more complex visual stimuli, increase temporal precision, and enhance user interaction. These features greatly improve the performance of the system and broaden its applicability to a wider range of possible experiments. This report describes these new features and improvements, current limitations, and quantifies the performance of the system in a real-world experimental setting. PMID:23034363
James, Clara E.; Oechslin, Mathias S.; Michel, Christoph M.; De Pretto, Michael
2017-01-01
This original research focused on the effect of musical training intensity on cerebral and behavioral processing of complex music using high-density event-related potential (ERP) approaches. Recently we have been able to show progressive changes with training in gray and white matter, and higher order brain functioning using (f)MRI [(functional) Magnetic Resonance Imaging], as well as changes in musical and general cognitive functioning. The current study investigated the same population of non-musicians, amateur pianists and expert pianists using spatio-temporal ERP analysis, by means of microstate analysis, and ERP source imaging. The stimuli consisted of complex musical compositions containing three levels of transgression of musical syntax at closure that participants appraised. ERP waveforms, microstates and underlying brain sources revealed gradual differences according to musical expertise in a 300–500 ms window after the onset of the terminal chords of the pieces. Within this time-window, processing seemed to concern context-based memory updating, indicated by a P3b-like component or microstate for which underlying sources were localized in the right middle temporal gyrus, anterior cingulate and right parahippocampal areas. Given that the 3 expertise groups were carefully matched for demographic factors, these results provide evidence of the progressive impact of training on brain and behavior. PMID:29163017
James, Clara E; Oechslin, Mathias S; Michel, Christoph M; De Pretto, Michael
2017-01-01
This original research focused on the effect of musical training intensity on cerebral and behavioral processing of complex music using high-density event-related potential (ERP) approaches. Recently we have been able to show progressive changes with training in gray and white matter, and higher order brain functioning using (f)MRI [(functional) Magnetic Resonance Imaging], as well as changes in musical and general cognitive functioning. The current study investigated the same population of non-musicians, amateur pianists and expert pianists using spatio-temporal ERP analysis, by means of microstate analysis, and ERP source imaging. The stimuli consisted of complex musical compositions containing three levels of transgression of musical syntax at closure that participants appraised. ERP waveforms, microstates and underlying brain sources revealed gradual differences according to musical expertise in a 300-500 ms window after the onset of the terminal chords of the pieces. Within this time-window, processing seemed to concern context-based memory updating, indicated by a P3b-like component or microstate for which underlying sources were localized in the right middle temporal gyrus, anterior cingulate and right parahippocampal areas. Given that the 3 expertise groups were carefully matched for demographic factors, these results provide evidence of the progressive impact of training on brain and behavior.
Evolution of weighted complex bus transit networks with flow
NASA Astrophysics Data System (ADS)
Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei
2016-02-01
Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.
Mining Temporal Patterns to Improve Agents Behavior: Two Case Studies
NASA Astrophysics Data System (ADS)
Fournier-Viger, Philippe; Nkambou, Roger; Faghihi, Usef; Nguifo, Engelbert Mephu
We propose two mechanisms for agent learning based on the idea of mining temporal patterns from agent behavior. The first one consists of extracting temporal patterns from the perceived behavior of other agents accomplishing a task, to learn the task. The second learning mechanism consists in extracting temporal patterns from an agent's own behavior. In this case, the agent then reuses patterns that brought self-satisfaction. In both cases, no assumption is made on how the observed agents' behavior is internally generated. A case study with a real application is presented to illustrate each learning mechanism.
Selective attention to temporal features on nested time scales.
Henry, Molly J; Herrmann, Björn; Obleser, Jonas
2015-02-01
Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Uncovering Oscillations, Complexity, and Chaos in Chemical Kinetics Using Mathematica
NASA Astrophysics Data System (ADS)
Ferreira, M. M. C.; Ferreira, W. C., Jr.; Lino, A. C. S.; Porto, M. E. G.
1999-06-01
Unlike reactions with no peculiar temporal behavior, in oscillatory reactions concentrations can rise and fall spontaneously in a cyclic or disorganized fashion. In this article, the software Mathematica is used for a theoretical study of kinetic mechanisms of oscillating and chaotic reactions. A first simple example is introduced through a three-step reaction, called the Lotka model, which exhibits a temporal behavior characterized by damped oscillations. The phase plane method of dynamic systems theory is introduced for a geometric interpretation of the reaction kinetics without solving the differential rate equations. The equations are later numerically solved using the built-in routine NDSolve and the results are plotted. The next example, still with a very simple mechanism, is the Lotka-Volterra model reaction, which oscillates indefinitely. The kinetic process and rate equations are also represented by a three-step reaction mechanism. The most important difference between this and the former reaction is that the undamped oscillation has two autocatalytic steps instead of one. The periods of oscillations are obtained by using the discrete Fourier transform (DFT)-a well-known tool in spectroscopy, although not so common in this context. In the last section, it is shown how a simple model of biochemical interactions can be useful to understand the complex behavior of important biological systems. The model consists of two allosteric enzymes coupled in series and activated by its own products. This reaction scheme is important for explaining many metabolic mechanisms, such as the glycolytic oscillations in muscles, yeast glycolysis, and the periodic synthesis of cyclic AMP. A few of many possible dynamic behaviors are exemplified through a prototype glycolytic enzymatic reaction proposed by Decroly and Goldbeter. By simply modifying the initial concentrations, limit cycles, chaos, and birhythmicity are computationally obtained and visualized.
Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.
2016-01-01
In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594
Pedestrian temporal and spatial gap acceptance at mid-block street crossing in developing world.
Pawar, Digvijay S; Patil, Gopal R
2015-02-01
Most of the midblock pedestrian crossings on urban roads in India are uncontrolled; wherein the high degree of discretion in pedestrians' behavior while crossing the traffic stream, has made the situation complex to analyze. Vehicles do not yield to pedestrians, even though the traffic laws give priority to pedestrians over motorized vehicles at unsignalized pedestrian crossings. Therefore, a pedestrian has to decide if an available gap is safe or not for crossing. This paper aims to investigate pedestrian temporal and spatial gap acceptance for midblock street crossings. Field data were collected using video camera at two midblock pedestrian crossings. The data extraction in laboratory resulted in 1107 pedestrian gaps. Available gaps, pedestrians' decision, traffic volume, etc. were extracted from the videos. While crossing a road with multiple lanes, rolling gap acceptance behavior was observed. Using binary logit analysis, six utility models were developed, three each for temporal and spatial gaps. The 50th percentile temporal and spatial gaps ranged from 4.1 to 4.8s and 67 to 79 m respectively, whereas the 85th percentile temporal and spatial gaps ranged from 5 to 5.8s and 82 to 95 m respectively. These gap values were smaller than that reported in the studies in developed countries. The speed of conflicting vehicle was found to be significant in spatial gap but not in temporal gap acceptance. The gap acceptance decision was also found to be affected by the type of conflicting vehicles. The insights from this study can be used for the safety and performance evaluation of uncontrolled midblock street crossings in developing countries. Copyright © 2014 Elsevier Ltd and National Safety Council. All rights reserved.
Stevenson, Ryan A; Fister, Juliane Krueger; Barnett, Zachary P; Nidiffer, Aaron R; Wallace, Mark T
2012-05-01
In natural environments, human sensory systems work in a coordinated and integrated manner to perceive and respond to external events. Previous research has shown that the spatial and temporal relationships of sensory signals are paramount in determining how information is integrated across sensory modalities, but in ecologically plausible settings, these factors are not independent. In the current study, we provide a novel exploration of the impact on behavioral performance for systematic manipulations of the spatial location and temporal synchrony of a visual-auditory stimulus pair. Simple auditory and visual stimuli were presented across a range of spatial locations and stimulus onset asynchronies (SOAs), and participants performed both a spatial localization and simultaneity judgment task. Response times in localizing paired visual-auditory stimuli were slower in the periphery and at larger SOAs, but most importantly, an interaction was found between the two factors, in which the effect of SOA was greater in peripheral as opposed to central locations. Simultaneity judgments also revealed a novel interaction between space and time: individuals were more likely to judge stimuli as synchronous when occurring in the periphery at large SOAs. The results of this study provide novel insights into (a) how the speed of spatial localization of an audiovisual stimulus is affected by location and temporal coincidence and the interaction between these two factors and (b) how the location of a multisensory stimulus impacts judgments concerning the temporal relationship of the paired stimuli. These findings provide strong evidence for a complex interdependency between spatial location and temporal structure in determining the ultimate behavioral and perceptual outcome associated with a paired multisensory (i.e., visual-auditory) stimulus.
Ronzitti, Emiliano; Conti, Rossella; Zampini, Valeria; Tanese, Dimitrii; Klapoetke, Nathan; Boyden, Edward S.; Papagiakoumou, Eirini
2017-01-01
Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both in vitro and in vivo, but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity. SIGNIFICANCE STATEMENT To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns. PMID:28972125
Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription
Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo
2015-01-01
Circadian rhythms drive the temporal organization of a wide variety of physiological and behavioral functions in ∼24-h cycles. This control is achieved through a complex program of gene expression. In mammals, the molecular clock machinery consists of interconnected transcriptional–translational feedback loops that ultimately ensure the proper oscillation of thousands of genes in a tissue-specific manner. To achieve circadian transcriptional control, chromatin remodelers serve the clock machinery by providing appropriate oscillations to the epigenome. Recent findings have revealed the presence of circadian interactomes, nuclear “hubs” of genome topology where coordinately expressed circadian genes physically interact in a spatial and temporal-specific manner. Thus, a circadian nuclear landscape seems to exist, whose interplay with metabolic pathways and clock regulators translates into specific transcriptional programs. Deciphering the molecular mechanisms that connect the circadian clock machinery with the nuclear landscape will reveal yet unexplored pathways that link cellular metabolism to epigenetic control. PMID:25378702
Transition Characteristic Analysis of Traffic Evolution Process for Urban Traffic Network
Chen, Hong; Li, Yang
2014-01-01
The characterization of the dynamics of traffic states remains fundamental to seeking for the solutions of diverse traffic problems. To gain more insights into traffic dynamics in the temporal domain, this paper explored temporal characteristics and distinct regularity in the traffic evolution process of urban traffic network. We defined traffic state pattern through clustering multidimensional traffic time series using self-organizing maps and construct a pattern transition network model that is appropriate for representing and analyzing the evolution progress. The methodology is illustrated by an application to data flow rate of multiple road sections from Network of Shenzhen's Nanshan District, China. Analysis and numerical results demonstrated that the methodology permits extracting many useful traffic transition characteristics including stability, preference, activity, and attractiveness. In addition, more information about the relationships between these characteristics was extracted, which should be helpful in understanding the complex behavior of the temporal evolution features of traffic patterns. PMID:24982969
Bashwiner, David M.; Wertz, Christopher J.; Flores, Ranee A.; Jung, Rex E.
2016-01-01
Creative behaviors are among the most complex that humans engage in, involving not only highly intricate, domain-specific knowledge and skill, but also domain-general processing styles and the affective drive to create. This study presents structural imaging data indicating that musically creative people (as indicated by self-report) have greater cortical surface area or volume in a) regions associated with domain-specific higher-cognitive motor activity and sound processing (dorsal premotor cortex, supplementary and pre-supplementary motor areas, and planum temporale), b) domain-general creative-ideation regions associated with the default mode network (dorsomedial prefrontal cortex, middle temporal gyrus, and temporal pole), and c) emotion-related regions (orbitofrontal cortex, temporal pole, and amygdala). These findings suggest that domain-specific musical expertise, default-mode cognitive processing style, and intensity of emotional experience might all coordinate to motivate and facilitate the drive to create music. PMID:26888383
A low-cost programmable pulse generator for physiology and behavior
Sanders, Joshua I.; Kepecs, Adam
2014-01-01
Precisely timed experimental manipulations of the brain and its sensory environment are often employed to reveal principles of brain function. While complex and reliable pulse trains for temporal stimulus control can be generated with commercial instruments, contemporary options remain expensive and proprietary. We have developed Pulse Pal, an open source device that allows users to create and trigger software-defined trains of voltage pulses with high temporal precision. Here we describe Pulse Pal’s circuitry and firmware, and characterize its precision and reliability. In addition, we supply online documentation with instructions for assembling, testing and installing Pulse Pal. While the device can be operated as a stand-alone instrument, we also provide application programming interfaces in several programming languages. As an inexpensive, flexible and open solution for temporal control, we anticipate that Pulse Pal will be used to address a wide range of instrumentation timing challenges in neuroscience research. PMID:25566051
Coexistence of intermittencies in the neuronal network of the epileptic brain
NASA Astrophysics Data System (ADS)
Koronovskii, Alexey A.; Hramov, Alexander E.; Grubov, Vadim V.; Moskalenko, Olga I.; Sitnikova, Evgenia; Pavlov, Alexey N.
2016-03-01
Intermittent behavior occurs widely in nature. At present, several types of intermittencies are known and well-studied. However, consideration of intermittency has usually been limited to the analysis of cases when only one certain type of intermittency takes place. In this paper, we report on the temporal behavior of the complex neuronal network in the epileptic brain, when two types of intermittent behavior coexist and alternate with each other. We prove the presence of this phenomenon in physiological experiments with WAG/Rij rats being the model living system of absence epilepsy. In our paper, the deduced theoretical law for distributions of the lengths of laminar phases prescribing the power law with a degree of -2 agrees well with the experimental neurophysiological data.
Visibility graphlet approach to chaotic time series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutua, Stephen; Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega; Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn
Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems.more » Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.« less
The missing link between neurobiology and behavior in Aplysia conditioning.
Arvanitogiannis, A
1997-01-01
Over the past decades, a wealth of findings has led to a substantial change in the assumed complexity of classical conditioning. The combined evidence indicates that temporal pairing is neither necessary nor sufficient for the formation of an associative connection. At the same time, studies of model invertebrate nervous systems have allowed us to ask a series of questions about the molecular basis of associative conditioning. The discovery of a pairing-sensitive mechanism in the gill-withdrawal circuitry of Aplysia is regarded as the hallmark of the reductionist approach. This review outlines the insights gathered from behavioral and neurobiological studies. Furthermore, the conceptual frameworks guiding research at the 'what' and 'how' levels of analysis are compared and contrasted. I argue that a rich cognitive view of conditioning has emerged at the 'what' level, whereas the traditional notion of temporal pairing still drives research at the 'how' level. A complete account of classical conditioning has to await the resolving of this discordance.
Hawes, Samuel W.; Mulvey, Edward P.; Schubert, Carol A.; Pardini, Dustin A.
2015-01-01
Psychopathy is a complex personality disorder characterized by affective, interpersonal, and behavioral dimensions. Although features of psychopathy have been extended downwardly to earlier developmental periods, there is a discerning lack of studies that have focused on critically important issues such as longitudinal invariance and stability/change in these features across time. The current study examines these issues using a large sample of male adolescent offenders (N = 1,170) assessed across 7 annual time points during the transition into emerging adulthood (ages ~ 17 to 24 years). Findings demonstrated that features of psychopathy remained longitudinally invariant across this developmental period, and showed temporally consistent and theoretically coherent associations with other measures of personality, psychopathology, and criminal behaviors. Results also demonstrated that mean levels of psychopathic personality features tended to decrease into emerging adulthood and showed relatively modest rank-order stability across assessments with 7-year lags. These findings suggest that reductions in maladaptive personality features seem to parallel the well-documented decreases in offending that occur during the early 20s. PMID:24978692
Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes
Costa, Tommaso; Cauda, Franco; Crini, Manuella; Tatu, Mona-Karina; Celeghin, Alessia; de Gelder, Beatrice
2014-01-01
The different temporal dynamics of emotions are critical to understand their evolutionary role in the regulation of interactions with the surrounding environment. Here, we investigated the temporal dynamics underlying the perception of four basic emotions from complex scenes varying in valence and arousal (fear, disgust, happiness and sadness) with the millisecond time resolution of Electroencephalography (EEG). Event-related potentials were computed and each emotion showed a specific temporal profile, as revealed by distinct time segments of significant differences from the neutral scenes. Fear perception elicited significant activity at the earliest time segments, followed by disgust, happiness and sadness. Moreover, fear, disgust and happiness were characterized by two time segments of significant activity, whereas sadness showed only one long-latency time segment of activity. Multidimensional scaling was used to assess the correspondence between neural temporal dynamics and the subjective experience elicited by the four emotions in a subsequent behavioral task. We found a high coherence between these two classes of data, indicating that psychological categories defining emotions have a close correspondence at the brain level in terms of neural temporal dynamics. Finally, we localized the brain regions of time-dependent activity for each emotion and time segment with the low-resolution brain electromagnetic tomography. Fear and disgust showed widely distributed activations, predominantly in the right hemisphere. Happiness activated a number of areas mostly in the left hemisphere, whereas sadness showed a limited number of active areas at late latency. The present findings indicate that the neural signature of basic emotions can emerge as the byproduct of dynamic spatiotemporal brain networks as investigated with millisecond-range resolution, rather than in time-independent areas involved uniquely in the processing one specific emotion. PMID:24214921
Global Genetic Response in a Cancer Cell: Self-Organized Coherent Expression Dynamics
Tsuchiya, Masa; Hashimoto, Midori; Takenaka, Yoshiko; Motoike, Ikuko N.; Yoshikawa, Kenichi
2014-01-01
Understanding the basic mechanism of the spatio-temporal self-control of genome-wide gene expression engaged with the complex epigenetic molecular assembly is one of major challenges in current biological science. In this study, the genome-wide dynamical profile of gene expression was analyzed for MCF-7 breast cancer cells induced by two distinct ErbB receptor ligands: epidermal growth factor (EGF) and heregulin (HRG), which drive cell proliferation and differentiation, respectively. We focused our attention to elucidate how global genetic responses emerge and to decipher what is an underlying principle for dynamic self-control of genome-wide gene expression. The whole mRNA expression was classified into about a hundred groups according to the root mean square fluctuation (rmsf). These expression groups showed characteristic time-dependent correlations, indicating the existence of collective behaviors on the ensemble of genes with respect to mRNA expression and also to temporal changes in expression. All-or-none responses were observed for HRG and EGF (biphasic statistics) at around 10–20 min. The emergence of time-dependent collective behaviors of expression occurred through bifurcation of a coherent expression state (CES). In the ensemble of mRNA expression, the self-organized CESs reveals distinct characteristic expression domains for biphasic statistics, which exhibits notably the presence of criticality in the expression profile as a route for genomic transition. In time-dependent changes in the expression domains, the dynamics of CES reveals that the temporal development of the characteristic domains is characterized as autonomous bistable switch, which exhibits dynamic criticality (the temporal development of criticality) in the genome-wide coherent expression dynamics. It is expected that elucidation of the biophysical origin for such critical behavior sheds light on the underlying mechanism of the control of whole genome. PMID:24831017
High resolution modeling of a small urban catchment
NASA Astrophysics Data System (ADS)
Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2016-04-01
Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with respect to real flow measurements. First Results coming out show improvements obtained in terms of the model performance at high spatio-temporal resolution.
Abnormal behavior in children with temporal lobe epilepsy and ganglioglioma.
Guimarães, Catarina A; Franzon, Renata C; Souza, Elisabete A P; Schmutzler, Kátia M R S; Montenegro, Maria Augusta; Queiroz, Luciano de S; Cendes, Fernando; Guerreiro, Marilisa M
2004-10-01
Temporal lobe epilepsy in childhood is characterized by great clinical, electroencephalographic, and etiological diversity. The prognosis after temporal lobe epilepsy surgery in childhood is usually good, with most patients achieving complete seizure control. However, in some children behavior deteriorates postoperatively. We report two girls (2 and 6 years of age) with refractory seizures due to temporal lobe ganglioglioma. They exhibited aggression and hyperactivity since the beginning of their epilepsy. In both patients, behavioral disturbances worsened postoperatively, despite complete seizure control. Patients and parents should be advised about possible behavioral disturbances after epilepsy surgery, especially in the presence of a temporal lobe developmental tumor, even when seizure control is achieved postoperatively.
Transient visual pathway critical for normal development of primate grasping behavior.
Mundinano, Inaki-Carril; Fox, Dylan M; Kwan, William C; Vidaurre, Diego; Teo, Leon; Homman-Ludiye, Jihane; Goodale, Melvyn A; Leopold, David A; Bourne, James A
2018-02-06
An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.
Epilepsy, Mental Health Disorder, or Both?
Beletsky, Vadim; Mirsattari, Seyed M.
2012-01-01
Temporal lobe epilepsy (TLE), a subset of the seizure disorder family, represents a complex neuropsychiatric illness, where the neurological presentation may be complemented by varying severity of affective, behavioral, psychotic, or personality abnormalities, which, in turn, may not only lead to misdiagnosis, but also affect the management. This paper outlines a spectrum of mental health presentations, including psychosis, mood, anxiety, panic, and dissociative states, associated with epilepsy that make the correct diagnosis a challenge. PMID:22934158
Behavioral training enhances cortical temporal processing in neonatally deafened juvenile cats
Vollmer, Maike; Raggio, Marcia W.; Schreiner, Christoph E.
2011-01-01
Deaf humans implanted with a cochlear prosthesis depend largely on temporal cues for speech recognition because spectral information processing is severely impaired. Training with a cochlear prosthesis is typically required before speech perception shows improvement, suggesting that relevant experience modifies temporal processing in the central auditory system. We tested this hypothesis in neonatally deafened cats by comparing temporal processing in the primary auditory cortex (AI) of cats that received only chronic passive intracochlear electric stimulation (ICES) with cats that were also trained with ICES to detect temporally challenging trains of electric pulses. After months of chronic passive stimulation and several weeks of detection training in behaviorally trained cats, multineuronal AI responses evoked by temporally modulated ICES were recorded in anesthetized animals. The stimulus repetition rates that produced the maximum number of phase-locked spikes (best repetition rate) and 50% cutoff rate were significantly higher in behaviorally trained cats than the corresponding rates in cats that received only chronic passive ICES. Behavioral training restored neuronal temporal following ability to levels comparable with those recorded in naïve prior normal-hearing adult deafened animals. Importantly, best repetitition rates and cutoff rates were highest for neuronal clusters activated by the electrode configuration used in behavioral training. These results suggest that neuroplasticity in the AI is induced by behavioral training and perceptual learning in animals deprived of ordinary auditory experience during development and indicate that behavioral training can ameliorate or restore temporal processing in the AI of profoundly deaf animals. PMID:21543753
Wright, P A
1995-07-01
This paper examines possible interconnections between mind, brain, and behavior in the area of shamanism and altered states of consciousness. It offers a neurophysiological theory of shamanic altered states of consciousness that integrates theories by Mandell, Persinger, Prince, Winkelman, and Wright. Topics include the shamanic call and temporal lobe phenomena, possible neurological correlates of shamanic ecstasy, and the neurophysiological roles of endorphins, plant substances, and genetic factors in shamanic altered states of consciousness. The difficulty of developing such a theory because of the complexity of human physiology and psychological experience and because of the paucity of neurophysiological data from the field is acknowledged.
Kembro, J M; Satterlee, D G; Schmidt, J B; Perillo, M A; Marin, R H
2008-11-01
Japanese quail selected for a low-stress (LS), rather than a high-stress (HS), plasma corticosterone response to brief restraint have been shown to possess lower fearfulness and a nonspecific reduction in stress responsiveness. Detrended fluctuation analysis provides information on the organization and complexity of temporal patterns of behavior. The present study evaluated the temporal pattern of ambulation of LS and HS quail in an open field that represented a novel environment. Time series of 4,200 data points were collected for each bird by registering the distance ambulated every 0.5 s during a 35-min test period. Consistent with their known reduced fearfulness, the LS quail initiated ambulation significantly sooner (P < 0.02) and tended to ambulate more (P < 0.09) than did their HS counterparts. Detrended fluctuation analyses showed a monofractal series (i.e., a series with similar complexity at different temporal scales) in 72% of the birds. These birds initiated their ambulatory activity in less than 600 s. Among these birds, a lower (P < 0.03) autosimilarity coefficient (alpha) was found in the LS quail than in their HS counterparts (alpha = 0.76 +/- 0.03 and 0.87 +/- 0.03, respectively), suggesting a more complex (less regular) ambulatory pattern in the LS quail. However, when the patterns of ambulation were reexamined by considering only the active period of the time series (i.e., after the birds had initiated their ambulatory activity), monofractal patterns were observed in 97% of the birds, and no differences were found between the lines. Collectively, the results suggest that during the active period of open-field testing, during which fear responses are likely less strong and other motivations are the driving forces of ambulation, the LS and HS lines have similar ambulatory organization.
Double dynamic scaling in human communication dynamics
NASA Astrophysics Data System (ADS)
Wang, Shengfeng; Feng, Xin; Wu, Ye; Xiao, Jinhua
2017-05-01
In the last decades, human behavior has been deeply understanding owing to the huge quantities data of human behavior available for study. The main finding in human dynamics shows that temporal processes consist of high-activity bursty intervals alternating with long low-activity periods. A model, assuming the initiator of bursty follow a Poisson process, is widely used in the modeling of human behavior. Here, we provide further evidence for the hypothesis that different bursty intervals are independent. Furthermore, we introduce a special threshold to quantitatively distinguish the time scales of complex dynamics based on the hypothesis. Our results suggest that human communication behavior is a composite process of double dynamics with midrange memory length. The method for calculating memory length would enhance the performance of many sequence-dependent systems, such as server operation and topic identification.
Selective alignment of brain responses by task demands during semantic processing.
Baggio, Giosuè
2012-04-01
The way the brain binds together words to form sentences may depend on whether and how the arising cognitive representation is to be used in behavior. The amplitude of the N400 effect in event-related brain potentials is inversely correlated with the degree of fit of a word's meaning into a semantic representation of the preceding discourse. This study reports a double dissociation in the latency characteristics of the N400 effect depending on task demands. When participants silently read words in a sentence context, without issuing a relevant overt response, greater temporal alignment over recording sites occurs for N400 onsets than peaks. If however a behavior is produced - here pressing a button in a binary probe selection task - exactly the opposite pattern is observed, with stronger alignment of N400 peaks than onsets. The peak amplitude of the N400 effect correlates best with the latency characteristic showing less temporal dispersion. These findings suggest that meaning construction in the brain is subtly affected by task demands, and that there is complex functional integration between semantic combinatorics and control systems handling behavioral goals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Using Wavelets to Evaluate Persistence of High Frequency Hydrologic and Hydrochemistry Signals
NASA Astrophysics Data System (ADS)
Koirala, S. R.; Gentry, R. W.
2009-12-01
In the area of sustainability science, it is becoming increasingly important to understand the basal condition of a natural system, and its long-term behavior. Research is needed to better understand the temporal scaling of hydrochemistry in streams and watersheds and its relationship to the hydrologic factors that influence its behavior. Persistence of dissolved chemicals in streams has been demonstrated to be linked to certain hydrologic processes, such as interactions between hydrologic units and storage in surface or sub-surface systems. In this study, wavelet analyses provided a novel theoretical basis for insights into long-term hydrochemistry behavior in an east Tennessee watershed. Temporal analyses were conducted on weekly time series data of hydrochemistry (nitrate, chloride, sulfate and calcium concentrations) collected from November 1995 to December 2005 at the West Fork of Walker Branch in Oak Ridge, Tennessee. Hydrochemistry plays an important role in ecosystem services, particularly nitrate, and in general the signal responses can be complex. The signals in this study were modeled using a wavelet approach as a mechanism for evaluating short-and long term temporal effects. The Walker Branch conceptual hydrology model is augmented by these results that show characteristic periodicities or structures for flowpath lengths in the vadose zone (< 20 week period), saturated zone (20 to 50 week period) and bedrock zone (> 50 week period) with implications for hydrochemistry within the watershed. In general, time series signals of watershed hydrochemistry may provide clues as to broad environmental, ecological and economic impacts at the basin scale.
Qualitative and temporal reasoning in engine behavior analysis
NASA Technical Reports Server (NTRS)
Dietz, W. E.; Stamps, M. E.; Ali, M.
1987-01-01
Numerical simulation models, engine experts, and experimental data are used to generate qualitative and temporal representations of abnormal engine behavior. Engine parameters monitored during operation are used to generate qualitative and temporal representations of actual engine behavior. Similarities between the representations of failure scenarios and the actual engine behavior are used to diagnose fault conditions which have already occurred, or are about to occur; to increase the surveillance by the monitoring system of relevant engine parameters; and to predict likely future engine behavior.
Do endothelial cells dream of eclectic shape?
Bentley, Katie; Philippides, Andrew; Ravasz Regan, Erzsébet
2014-04-28
Endothelial cells (ECs) exhibit dramatic plasticity of form at the single- and collective-cell level during new vessel growth, adult vascular homeostasis, and pathology. Understanding how, when, and why individual ECs coordinate decisions to change shape, in relation to the myriad of dynamic environmental signals, is key to understanding normal and pathological blood vessel behavior. However, this is a complex spatial and temporal problem. In this review we show that the multidisciplinary field of Adaptive Systems offers a refreshing perspective, common biological language, and straightforward toolkit that cell biologists can use to untangle the complexity of dynamic, morphogenetic systems. Copyright © 2014 Elsevier Inc. All rights reserved.
Baker, Christa A.; Ma, Lisa; Casareale, Chelsea R.
2016-01-01
In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8–12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. SIGNIFICANCE STATEMENT The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. PMID:27559179
Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A
2016-08-24
In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. Copyright © 2016 the authors 0270-6474/16/368985-16$15.00/0.
Mediator of moderators: temporal stability of intention and the intention-behavior relation.
Sheeran, Paschal; Abraham, Charles
2003-02-01
Intention certainty, past behavior, self-schema, anticipated regret, and attitudinal versus normative control all have been found to moderate intention-behavior relations. It is argued that moderation occurs because these variables produce "strong" intentions. Stability of intention over time is a key index of intention strength. Consequently, it was hypothesized that temporal stability of intention would mediate moderation by these other moderators. Participants (N = 185) completed questionnaire measures of theory of planned behavior constructs and moderator variables at two time points and subsequently reported their exercise behavior. Findings showed that all of the moderators, including temporal stability, were associated with significant improvements in consistency between intention and behavior. Temporal stability also mediated the effects of the other moderators, supporting the study hypothesis. Copyright 2003 Society for Personality and Social Psychology, Inc.
Termination Patterns of Complex Partial Seizures: An Intracranial EEG Study
Afra, Pegah; Jouny, Christopher C.; Bergey, Gregory K.
2015-01-01
Purpose While seizure onset patterns have been the subject of many reports, there have been few studies of seizure termination. In this study we report the incidence of synchronous and asynchronous termination patterns of partial seizures recorded with intracranial arrays. Methods Data were collected from patients with intractable complex partial seizures undergoing presurgical evaluations with intracranial electrodes. Patients with seizures originating from mesial temporal and neocortical regions were grouped into three groups based on patterns of seizure termination: synchronous only (So), asynchronous only (Ao), or mixed (S/A, with both synchronous and asynchronous termination patterns). Results 88% of the patients in the MT group had seizures with a synchronous pattern of termination exclusively (38%) or mixed (50%). 82% of the NC group had seizures with synchronous pattern of termination exclusively (52%) or mixed (30%). In the NC group, there was a significant difference of the range of seizure durations between So and Ao groups, with Ao exhibiting higher variability. Seizures with synchronous termination had low variability in both groups. Conclusions Synchronous seizure termination is a common pattern for complex partial seizures of both mesial temporal or neocortical onset. This may reflect stereotyped network behavior or dynamics at the seizure focus. PMID:26552555
Mórocz, István Akos; Janoos, Firdaus; van Gelderen, Peter; Manor, David; Karni, Avi; Breznitz, Zvia; von Aster, Michael; Kushnir, Tammar; Shalev, Ruth
2012-01-01
The aim of this article is to report on the importance and challenges of a time-resolved and spatio-temporal analysis of fMRI data from complex cognitive processes and associated disorders using a study on developmental dyscalculia (DD). Participants underwent fMRI while judging the incorrectness of multiplication results, and the data were analyzed using a sequence of methods, each of which progressively provided more a detailed picture of the spatio-temporal aspect of this disease. Healthy subjects and subjects with DD performed alike behaviorally though they exhibited parietal disparities using traditional voxel-based group analyses. Further and more detailed differences, however, surfaced with a time-resolved examination of the neural responses during the experiment. While performing inter-group comparisons, a third group of subjects with dyslexia (DL) but with no arithmetic difficulties was included to test the specificity of the analysis and strengthen the statistical base with overall fifty-eight subjects. Surprisingly, the analysis showed a functional dissimilarity during an initial reading phase for the group of dyslexic but otherwise normal subjects, with respect to controls, even though only numerical digits and no alphabetic characters were presented. Thus our results suggest that time-resolved multi-variate analysis of complex experimental paradigms has the ability to yield powerful new clinical insights about abnormal brain function. Similarly, a detailed compilation of aberrations in the functional cascade may have much greater potential to delineate the core processing problems in mental disorders. PMID:22368322
NASA Astrophysics Data System (ADS)
McManamay, R.; Allen, M. R.; Piburn, J.; Sanyal, J.; Stewart, R.; Bhaduri, B. L.
2017-12-01
Characterizing interdependencies among land-energy-water sectors, their vulnerabilities, and tipping points, is challenging, especially if all sectors are simultaneously considered. Because such holistic system behavior is uncertain, largely unmodeled, and in need of testable hypotheses of system drivers, these dynamics are conducive to exploratory analytics of spatiotemporal patterns, powered by tools, such as Dynamic Time Warping (DTW). Here, we conduct a retrospective analysis (1950 - 2010) of temporal trends in land use, energy use, and water use within US counties to identify commonalities in resource consumption and adaptation strategies to resource limitations. We combine existing and derived data from statistical downscaling to synthesize a temporally comprehensive land-energy-water dataset at the US county level and apply DTW and subsequent hierarchical clustering to examine similar temporal trends in resource typologies for land, energy, and water sectors. As expected, we observed tradeoffs among water uses (e.g., public supply vs irrigation) and land uses (e.g., urban vs ag). Strong associations between clusters amongst sectors reveal tight system interdependencies, whereas weak associations suggest unique behaviors and potential for human adaptations towards disruptive technologies and less resource-dependent population growth. Our framework is useful for exploring complex human-environmental system dynamics and generating hypotheses to guide subsequent energy-water-nexus research.
Acquisition of neural learning in cerebellum and cerebral cortex for smooth pursuit eye movements
Li, Jennifer X.; Medina, Javier F.; Frank, Loren M.; Lisberger, Stephen G.
2011-01-01
We have evaluated the emergence of neural learning in the frontal eye fields (FEFSEM) and the floccular complex of the cerebellum while monkeys learned a precisely-timed change in the direction of pursuit eye movement. For each neuron, we measured the time course of changes in neural response across a learning session that comprised at least 100 repetitions of an instructive change in target direction. In both areas, the average population learning curves tracked the behavioral changes with high fidelity, consistent with possible roles in driving learning. However, the learning curves of individual neurons sometimes bore little relation to the smooth, monotonic progression of behavioral learning. In the FEFSEM, neural learning was episodic. For individual neurons, learning appeared at different times during the learning session and sometimes disappeared by the end of the session. Different FEFSEM neurons expressed maximal learning at different times relative to the acquisition of behavioral learning. In the floccular complex, many Purkinje cells acquired learned simple-spike responses according to the same time course as behavioral learning and retained their learned responses throughout the learning session. A minority of Purkinje cells acquired learned responses late in the learning session, after behavioral learning had reached an asymptote. We conclude that learning in single neurons can follow a very different time course from behavioral learning. Both the FEFSEM and the floccular complex contain representations of multiple temporal components of learning, with different neurons contributing to learning at different times during the acquisition of a learned movement. PMID:21900551
Weber, Alexander M; Soreni, Noam; Noseworthy, Michael D
2014-08-01
To study the effect of acute alcohol intoxication on the functional connectivity of the default mode network (DMN) and temporal fractal properties of the healthy adult brain. Eleven healthy male volunteers were asked to drink 0.59 g/kg of ethanol. Resting state blood oxygen level dependent (rsBOLD) MRI scans were obtained before consumption, 60 min post-consumption and 90 min post-consumption. Before each rsBOLD scan, pointed-resolved spectroscopy (PRESS) (1)H-MRS (magnetic resonance spectroscopy) scans were acquired to measure ethanol levels in the right basal ganglia. Significant changes in DMN connectivity were found following alcohol consumption (p < 0.01). Both increased and decreased regional connectivity were found after 60 min, whereas mostly decreased connectivity was found after 90 min. The fractal behaviour of the rsBOLD signal, which is believed to help reveal complexity of small-scale neuronal circuitry, became more ordered after both 60 and 90 min of alcohol consumption (p < 0.01). The DMN has been linked to personal identity and social behavior. As such, our preliminary findings may provide insight into the neuro-functional underpinnings of the cognitive and behavioral changes observed during acute alcohol intoxication. The reduced fractal dimension implies a change in function of small-scale neural networks towards less complex signaling.
Very high elevation water ice clouds on Mars: Their morphology and temporal behavior
NASA Technical Reports Server (NTRS)
Jaquin, Fred
1988-01-01
Quantitative analysis of Viking images of the martian planetary limb has uncovered the existence and temporal behavior of water ice clouds that form between 50 and 90 km elevation. These clouds show a seasonal behavior that may be correlated with lower atmosphere dynamics. Enhanced vertical mixing of the atmosphere as Mars nears perihelion is hypothesized as the cause of the seasonal dependence, and the diurnal dependence is explained by the temporal behavior of the martian diurnal thermal tide. Viking images also provide a data set of the vertical distribution of aerosols in the martian atmosphere. The temporal and spatial distribution of aerosols are characterized.
Effects of brain lesions on moral agency: ethical dilemmas in investigating moral behavior.
Christen, Markus; Müller, Sabine
2015-01-01
Understanding how the "brain produces behavior" is a guiding idea in neuroscience. It is thus of no surprise that establishing an interrelation between brain pathology and antisocial behavior has a long history in brain research. However, interrelating the brain with moral agency--the ability to act in reference to right and wrong--is tricky with respect to therapy and rehabilitation of patients affected by brain lesions. In this contribution, we outline the complexity of the relationship between the brain and moral behavior, and we discuss ethical issues of the neuroscience of ethics and of its clinical consequences. First, we introduce a theory of moral agency and apply it to the issue of behavioral changes caused by brain lesions. Second, we present a typology of brain lesions both with respect to their cause, their temporal development, and the potential for neural plasticity allowing for rehabilitation. We exemplify this scheme with case studies and outline major knowledge gaps that are relevant for clinical practice. Third, we analyze ethical pitfalls when trying to understand the brain-morality relation. In this way, our contribution addresses both researchers in neuroscience of ethics and clinicians who treat patients affected by brain lesions to better understand the complex ethical questions, which are raised by research and therapy of brain lesion patients.
Modeling lahar behavior and hazards
Manville, Vernon; Major, Jon J.; Fagents, Sarah A.
2013-01-01
Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, R; Gallagher, B; Neville, J
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less
3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila
NASA Astrophysics Data System (ADS)
Kumar, S. Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong
2016-09-01
Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila.
Assar, Rodrigo; Montecino, Martín A; Maass, Alejandro; Sherman, David J
2014-07-01
In order to describe the dynamic behavior of a complex biological system, it is useful to combine models integrating processes at different levels and with temporal dependencies. Such combinations are necessary for modeling acclimatization, a phenomenon where changes in environmental conditions can induce drastic changes in the behavior of a biological system. In this article we formalize the use of hybrid systems as a tool to model this kind of biological behavior. A modeling scheme called strong switches is proposed. It allows one to take into account both minor adjustments to the coefficients of a continuous model, and, more interestingly, large-scale changes to the structure of the model. We illustrate the proposed methodology with two applications: acclimatization in wine fermentation kinetics, and acclimatization of osteo-adipo differentiation system linking stimulus signals to bone mass. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Rand, Troy J.; Myers, Sara A.; Kyvelidou, Anastasia; Mukherjee, Mukul
2015-01-01
A healthy biological system is characterized by a temporal structure that exhibits fractal properties and is highly complex. Unhealthy systems demonstrate lowered complexity and either greater or less predictability in the temporal structure of a time series. The purpose of this research was to determine if support surface translations with different temporal structures would affect the temporal structure of the center of pressure (COP) signal. Eight healthy young participants stood on a force platform that was translated in the anteroposterior direction for input conditions of varying complexity: white noise, pink noise, brown noise, and sine wave. Detrended fluctuation analysis was used to characterize the long-range correlations of the COP time series in the AP direction. Repeated measures ANOVA revealed differences among conditions (P < .001). The less complex support surface translations resulted in a less complex COP compared to normal standing. A quadratic trend analysis demonstrated an inverted-u shape across an increasing order of predictability of the conditions (P < .001). The ability to influence the complexity of postural control through support surface translations can have important implications for rehabilitation. PMID:25994281
Temporal prediction errors modulate task-switching performance
Limongi, Roberto; Silva, Angélica M.; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as “executive control” is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568
Temporal prediction errors modulate task-switching performance.
Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Timmermans, Harry
2011-06-01
Models of geographical choice behavior have been dominantly based on rational choice models, which assume that decision makers are utility-maximizers. Rational choice models may be less appropriate as behavioral models when modeling decisions in complex environments in which decision makers may simplify the decision problem using heuristics. Pedestrian behavior in shopping streets is an example. We therefore propose a modeling framework for pedestrian shopping behavior incorporating principles of bounded rationality. We extend three classical heuristic rules (conjunctive, disjunctive and lexicographic rule) by introducing threshold heterogeneity. The proposed models are implemented using data on pedestrian behavior in Wang Fujing Street, the city center of Beijing, China. The models are estimated and compared with multinomial logit models and mixed logit models. Results show that the heuristic models are the best for all the decisions that are modeled. Validation tests are carried out through multi-agent simulation by comparing simulated spatio-temporal agent behavior with the observed pedestrian behavior. The predictions of heuristic models are slightly better than those of the multinomial logit models.
Voyvodic, James T.; Glover, Gary H.; Greve, Douglas; Gadde, Syam
2011-01-01
Functional magnetic resonance imaging (fMRI) is based on correlating blood oxygen-level dependent (BOLD) signal fluctuations in the brain with other time-varying signals. Although the most common reference for correlation is the timing of a behavioral task performed during the scan, many other behavioral and physiological variables can also influence fMRI signals. Variations in cardiac and respiratory functions in particular are known to contribute significant BOLD signal fluctuations. Variables such as skin conduction, eye movements, and other measures that may be relevant to task performance can also be correlated with BOLD signals and can therefore be used in image analysis to differentiate multiple components in complex brain activity signals. Combining real-time recording and data management of multiple behavioral and physiological signals in a way that can be routinely used with any task stimulus paradigm is a non-trivial software design problem. Here we discuss software methods that allow users control of paradigm-specific audio–visual or other task stimuli combined with automated simultaneous recording of multi-channel behavioral and physiological response variables, all synchronized with sub-millisecond temporal accuracy. We also discuss the implementation and importance of real-time display feedback to ensure data quality of all recorded variables. Finally, we discuss standards and formats for storage of temporal covariate data and its integration into fMRI image analysis. These neuroinformatics methods have been adopted for behavioral task control at all sites in the Functional Biomedical Informatics Research Network (FBIRN) multi-center fMRI study. PMID:22232596
Temporal Relatedness: Personality and Behavioral Correlates
ERIC Educational Resources Information Center
Getsinger, Stephen H.
1975-01-01
Two studies explored the relationship of temporal relatedness to self actualization, sex, and certain temporal behaviors. Subjects who obtained higher time-relatedness scores demonstrated greater self-actualization, evaluated the present time mode more positively, overestimated time intervals in an estimation task, and performed less accurately in…
Migrating Myeloid Cells Sense Temporal Dynamics of Chemoattractant Concentrations.
Petrie Aronin, Caren E; Zhao, Yun M; Yoon, Justine S; Morgan, Nicole Y; Prüstel, Thorsten; Germain, Ronald N; Meier-Schellersheim, Martin
2017-11-21
Chemoattractant-mediated recruitment of hematopoietic cells to sites of pathogen growth or tissue damage is critical to host defense and organ homeostasis. Chemotaxis is typically considered to rely on spatial sensing, with cells following concentration gradients as long as these are present. Utilizing a microfluidic approach, we found that stable gradients of intermediate chemokines (CCL19 and CXCL12) failed to promote persistent directional migration of dendritic cells or neutrophils. Instead, rising chemokine concentrations were needed, implying that temporal sensing mechanisms controlled prolonged responses to these ligands. This behavior was found to depend on G-coupled receptor kinase-mediated negative regulation of receptor signaling and contrasted with responses to an end agonist chemoattractant (C5a), for which a stable gradient led to persistent migration. These findings identify temporal sensing as a key requirement for long-range myeloid cell migration to intermediate chemokines and provide insights into the mechanisms controlling immune cell motility in complex tissue environments. Published by Elsevier Inc.
Temporal trade-offs in psychophysics.
Barack, David L; Gold, Joshua I
2016-04-01
Psychophysical techniques typically assume straightforward relationships between manipulations of real-world events, their effects on the brain, and behavioral reports of those effects. However, these relationships can be influenced by many complex, strategic factors that contribute to task performance. Here we discuss several of these factors that share two key features. First, they involve subjects making flexible use of time to process information. Second, this flexibility can reflect the rational regulation of information-processing trade-offs that can play prominent roles in particular temporal epochs: sensitivity to stability versus change for past information, speed versus accuracy for current information, and exploitation versus exploration for future goals. Understanding how subjects manage these trade-offs can be used to help design and interpret psychophysical studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection
Denison, Rachel N.; Driver, Jon; Ruff, Christian C.
2013-01-01
Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067
Novel Flood Detection and Analysis Method Using Recurrence Property
NASA Astrophysics Data System (ADS)
Wendi, Dadiyorto; Merz, Bruno; Marwan, Norbert
2016-04-01
Temporal changes in flood hazard are known to be difficult to detect and attribute due to multiple drivers that include processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defence, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time. This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic behavior to certain flood situations.
Temporal discounting: basic research and the analysis of socially important behavior.
Critchfield, T S; Kollins, S H
2001-01-01
Recent basic research on human temporal discounting is reviewed to illustrate procedures, summarize key findings, and draw parallels with both nonhuman animal research and conceptual writings on self-control. Lessons derived from this research are then applied to the challenge of analyzing socially important behaviors such as drug abuse, eating and exercise, and impulsiveness associated with attention deficit hyperactivity disorder. Attending to the broader temporal context in which behavior occurs may aid in the analysis of socially important behavior. Applying this perspective to the study of behavior in natural environments also highlights the importance of combining methodological flexibility with conceptual rigor to promote the extension of applied behavior analysis to a broader array of socially important behaviors. PMID:11317983
Detection of Ludic Patterns in Two Triadic Motor Games and Differences in Decision Complexity
Aguilar, Miguel Pic; Navarro-Adelantado, Vicente; Jonsson, Gudberg K.
2018-01-01
The triad is a particular structure in which an ambivalent social relationship takes place. This work is focused on the search of behavioral regularities in the practice of motor games in triad, which is a little known field. For the detection of behavioral patterns not visible to the naked eye, we use Theme. A chasing games model was followed, with rules, and in two different structures (A↔B↔C↔A and A → B → C → A) on four class groups (two for each structure), for a total of 84, 12, and 13 year old secondary school students, 37 girls (44%) and 47 boys (56%). The aim was to examine if the players' behavior, in relation to the triad structure, matches with any ludic behavior patterns. An observational methodology was applied, with a nomothetic, punctual and multidimensional design. The intra and inter-evaluative correlation coefficients and the generalizability theory ensured the quality of the data. A mixed behavioral role system was used (four criteria and 15 categories), and the pattern detection software Theme was applied to detect temporal regularities in the order of event occurrences. The results show that time location of motor responses in triad games was not random. In the “maze” game we detected more complex ludic patterns than the “three fields” game, which might be explained by means of structural determinants such as circulation. This research points out the decisional complexity in motor games, and it confirms the differences among triads from the point of view of motor communication. PMID:29354084
Tabuchi, Masashi; Sakurai, Takeshi; Mitsuno, Hidefumi; Namiki, Shigehiro; Minegishi, Ryo; Shiotsuki, Takahiro; Uchino, Keiro; Sezutsu, Hideki; Tamura, Toshiki; Haupt, Stephan Shuichi; Nakatani, Kei; Kanzaki, Ryohei
2013-01-01
The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory receptor neurons (ORNs) is relayed through the brain to generate high behavioral responsiveness. Here, we show that ORN activity that is subthreshold in terms of behavior can be amplified to suprathreshold levels by temporal integration in antennal lobe projection neurons (PNs) if occurring within a specific time window. To control ORN inputs with high temporal resolution, channelrhodopsin-2 was genetically introduced into bombykol-responsive ORNs. Temporal integration in PNs was only observed for weak inputs, but not for strong inputs. Pharmacological dissection revealed that GABAergic mechanisms inhibit temporal integration of strong inputs, showing that GABA signaling regulates PN responses in a stimulus-dependent fashion. Our results show that boosting of the PNs’ responses by temporal integration of olfactory information occurs specifically near the behavioral threshold, effectively defining the lower bound for behavioral responsiveness. PMID:24006366
Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms
Atger, Florian; Mauvoisin, Daniel; Weger, Benjamin; Gobet, Cédric; Gachon, Frédéric
2017-01-01
Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases. PMID:28337174
Classification of Animal Movement Behavior through Residence in Space and Time.
Torres, Leigh G; Orben, Rachael A; Tolkova, Irina; Thompson, David R
2017-01-01
Identification and classification of behavior states in animal movement data can be complex, temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. Large movement datasets are increasingly common and there is a need for efficient methods of data exploration that adjust to the individual variability of each track. We present the Residence in Space and Time (RST) method to classify behavior patterns in movement data based on the concept that behavior states can be partitioned by the amount of space and time occupied in an area of constant scale. Using normalized values of Residence Time and Residence Distance within a constant search radius, RST is able to differentiate behavior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area restricted search), and transit (short time and distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate RST's ability to classify behavior patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate RST's ability to discriminate between behavior states relative to other classical movement metrics. We then temporally sub-sample albatross track data to illustrate RST's response to less resolved data. Finally, we evaluate RST's performance using datasets from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses of behavioral states in animal movement data based on its ability to integrate distance and time measurements into one descriptive metric of behavior groupings. Given the increasing amount of animal movement data collected, it is timely and useful to implement a consistent metric of behavior classification to enable efficient and comparative analyses. Overall, the application of RST to objectively explore and compare behavior patterns in movement data can enhance our fine- and broad- scale understanding of animal movement ecology.
Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J
2010-12-01
The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.
Wang, Sheng; Ding, Miao; Chen, Xuanze; Chang, Lei; Sun, Yujie
2017-01-01
Direct visualization of protein-protein interactions (PPIs) at high spatial and temporal resolution in live cells is crucial for understanding the intricate and dynamic behaviors of signaling protein complexes. Recently, bimolecular fluorescence complementation (BiFC) assays have been combined with super-resolution imaging techniques including PALM and SOFI to visualize PPIs at the nanometer spatial resolution. RESOLFT nanoscopy has been proven as a powerful live-cell super-resolution imaging technique. With regard to the detection and visualization of PPIs in live cells with high temporal and spatial resolution, here we developed a BiFC assay using split rsEGFP2, a highly photostable and reversibly photoswitchable fluorescent protein previously developed for RESOLFT nanoscopy. Combined with parallelized RESOLFT microscopy, we demonstrated the high spatiotemporal resolving capability of a rsEGFP2-based BiFC assay by detecting and visualizing specifically the heterodimerization interactions between Bcl-xL and Bak as well as the dynamics of the complex on mitochondria membrane in live cells. PMID:28663931
Carricarte Naranjo, Claudia; Sanchez-Rodriguez, Lazaro M; Brown Martínez, Marta; Estévez Báez, Mario; Machado García, Andrés
2017-07-01
Heart rate variability (HRV) analysis is a relevant tool for the diagnosis of cardiovascular autonomic neuropathy (CAN). To our knowledge, no previous investigation on CAN has assessed the complexity of HRV from an ordinal perspective. Therefore, the aim of this work is to explore the potential of permutation entropy (PE) analysis of HRV complexity for the assessment of CAN. For this purpose, we performed a short-term PE analysis of HRV in healthy subjects and type 1 diabetes mellitus patients, including patients with CAN. Standard HRV indicators were also calculated in the control group. A discriminant analysis was used to select the variables combination with best discriminative power between control and CAN patients groups, as well as for classifying cases. We found that for some specific temporal scales, PE indicators were significantly lower in CAN patients than those calculated for controls. In such cases, there were ordinal patterns with high probabilities of occurrence, while others were hardly found. We posit this behavior occurs due to a decrease of HRV complexity in the diseased system. Discriminant functions based on PE measures or probabilities of occurrence of ordinal patterns provided an average of 75% and 96% classification accuracy. Correlations of PE and HRV measures showed to depend only on temporal scale, regardless of pattern length. PE analysis at some specific temporal scales, seem to provide additional information to that obtained with traditional HRV methods. We concluded that PE analysis of HRV is a promising method for the assessment of CAN. Copyright © 2017 Elsevier Ltd. All rights reserved.
So, Nina; Franks, Becca; Lim, Sean; Curley, James P
2015-01-01
Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David's Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg's Hub Centrality and Bonacich's Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive behavioral characterization of group-living animals with the utilization of novel statistical methods to further our understanding of the neurobiological basis of social behavior at the individual, relationship and group levels.
So, Nina; Franks, Becca; Lim, Sean; Curley, James P.
2015-01-01
Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive behavioral characterization of group-living animals with the utilization of novel statistical methods to further our understanding of the neurobiological basis of social behavior at the individual, relationship and group levels. PMID:26226265
Critical Phenomena of Rainfall in Ecuador
NASA Astrophysics Data System (ADS)
Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.
2014-02-01
Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).
Iverson, R.M.; ,
2003-01-01
Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks
Vestergaard, Christian L.; Génois, Mathieu
2015-01-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.
Vestergaard, Christian L; Génois, Mathieu
2015-10-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.
NASA Astrophysics Data System (ADS)
Racoviteanu, A.
2014-12-01
High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m on average over the last four decades, similar to other studies in the same climatic area. However, at small scales, the behavior of glaciers is highly heterogenous, with contrasting patterns of thickening glacier termini versus retreating nad thinning glacier tongues.
The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun
NASA Astrophysics Data System (ADS)
Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T. L.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.
2017-11-01
The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite.
Transcript, protein and metabolite temporal dynamics in the CAM plant Agave
Abraham, Paul E.; Yin, Hengfu; Borland, Anne M.; ...
2016-11-21
Already a proven mechanism for drought resilience, crassulacean acid metabolism (CAM) is a specialized type of photosynthesis that maximizes water-use efficiency (WUE) via an inverse (compared to C 3 and C 4 photosynthesis-performing species) day/night pattern of stomatal closure/opening to shift CO 2 uptake to the night, when evapotranspiration rates are low. A systems-level understanding of temporal molecular and metabolic controls is needed to define the cellular behavior that underpins CAM. Here, we report high-resolution temporal behaviors of transcript, protein and metabolite abundances across a CAM diel cycle and, where applicable, compare those observations to the well-established C 3 modelmore » plant, Arabidopsis thaliana. A mechanistic finding that emerged is that CAM operates with a diel redox poise that is shifted relative to that in Arabidopsis thaliana. Moreover, we identified widespread rescheduled expression of genes associated with signal transduction mechanisms that regulate stomatal opening/closing. Controlled production and degradation of transcripts and proteins represents a timing mechanism by which to regulate cellular function, yet how this molecular timekeeping regulates CAM physiology remains unclear. In this paper, we provide new insights into complex post-transcriptional and -translational hierarchies that govern CAM in Agave. These data sets together provide a resource to inform efforts to engineer more water-use efficient CAM pathway traits into economically valuable C 3 crops.« less
Transcript, protein and metabolite temporal dynamics in the CAM plant Agave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, Paul E.; Yin, Hengfu; Borland, Anne M.
Already a proven mechanism for drought resilience, crassulacean acid metabolism (CAM) is a specialized type of photosynthesis that maximizes water-use efficiency (WUE) via an inverse (compared to C 3 and C 4 photosynthesis-performing species) day/night pattern of stomatal closure/opening to shift CO 2 uptake to the night, when evapotranspiration rates are low. A systems-level understanding of temporal molecular and metabolic controls is needed to define the cellular behavior that underpins CAM. Here, we report high-resolution temporal behaviors of transcript, protein and metabolite abundances across a CAM diel cycle and, where applicable, compare those observations to the well-established C 3 modelmore » plant, Arabidopsis thaliana. A mechanistic finding that emerged is that CAM operates with a diel redox poise that is shifted relative to that in Arabidopsis thaliana. Moreover, we identified widespread rescheduled expression of genes associated with signal transduction mechanisms that regulate stomatal opening/closing. Controlled production and degradation of transcripts and proteins represents a timing mechanism by which to regulate cellular function, yet how this molecular timekeeping regulates CAM physiology remains unclear. In this paper, we provide new insights into complex post-transcriptional and -translational hierarchies that govern CAM in Agave. These data sets together provide a resource to inform efforts to engineer more water-use efficient CAM pathway traits into economically valuable C 3 crops.« less
Pluviometric characterization of the Coca river basin by using a stochastic rainfall model
NASA Astrophysics Data System (ADS)
González-Zeas, Dunia; Chávez-Jiménez, Adriadna; Coello-Rubio, Xavier; Correa, Ángel; Martínez-Codina, Ángela
2014-05-01
An adequate design of the hydraulic infrastructures, as well as, the prediction and simulation of a river basin require historical records with a greater temporal and spatial resolution. However, the lack of an extensive network of precipitation data, the short time scale data and the incomplete information provided by the available rainfall stations limit the analysis and design of complex hydraulic engineering systems. As a consequence, it is necessary to develop new quantitative tools in order to face this obstacle imposed by ungauged or poorly gauged basins. In this context, the use of a spatial-temporal rainfall model allows to simulate the historical behavior of the precipitation and at the same time, to obtain long-term synthetic series that preserve the extremal behavior. This paper provides a characterization of the precipitation in the Coca river basin located in Ecuador by using RainSim V3, a robust and well tested stochastic rainfall model based on a spatial-temporal Neyman-Scott rectangular pulses process. A preliminary consistency analysis of the historical rainfall data available has been done in order to identify climatic regions with similar precipitation behavior patterns. Mean and maximum yearly and monthly fields of precipitation of high resolution spaced grids have been obtained through the use of interpolation techniques. According to the climatological similarity, long time series of daily temporal resolution of precipitation have been generated in order to evaluate the model skill in capturing the structure of daily observed precipitation. The results show a good performance of the model in reproducing very well the gross statistics, including the extreme values of rainfall at daily scale. The spatial pattern represented by the observed and simulated precipitation fields highlights the existence of two important regions characterized by different pluviometric comportment, with lower precipitation in the upper part of the basin and higher precipitation in the lower part of the basin.
Acute stress influences the discrimination of complex scenes and complex faces in young healthy men.
Paul, M; Lech, R K; Scheil, J; Dierolf, A M; Suchan, B; Wolf, O T
2016-04-01
The stress-induced release of glucocorticoids has been demonstrated to influence hippocampal functions via the modulation of specific receptors. At the behavioral level stress is known to influence hippocampus dependent long-term memory. In recent years, studies have consistently associated the hippocampus with the non-mnemonic perception of scenes, while adjacent regions in the medial temporal lobe were associated with the perception of objects, and faces. So far it is not known whether and how stress influences non-mnemonic perceptual processes. In a behavioral study, fifty male participants were subjected either to the stressful socially evaluated cold-pressor test or to a non-stressful control procedure, before they completed a visual discrimination task, comprising scenes and faces. The complexity of the face and scene stimuli was manipulated in easy and difficult conditions. A significant three way interaction between stress, stimulus type and complexity was found. Stressed participants tended to commit more errors in the complex scenes condition. For complex faces a descriptive tendency in the opposite direction (fewer errors under stress) was observed. As a result the difference between the number of errors for scenes and errors for faces was significantly larger in the stress group. These results indicate that, beyond the effects of stress on long-term memory, stress influences the discrimination of spatial information, especially when the perception is characterized by a high complexity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Termination patterns of complex partial seizures: An intracranial EEG study.
Afra, Pegah; Jouny, Christopher C; Bergey, Gregory K
2015-11-01
While seizure onset patterns have been the subject of many reports, there have been few studies of seizure termination. In this study we report the incidence of synchronous and asynchronous termination patterns of partial seizures recorded with intracranial arrays. Data were collected from patients with intractable complex partial seizures undergoing presurgical evaluations with intracranial electrodes. Patients with seizures originating from mesial temporal and neocortical regions were grouped into three groups based on patterns of seizure termination: synchronous only (So), asynchronous only (Ao), or mixed (S/A, with both synchronous and asynchronous termination patterns). 88% of the patients in the MT group had seizures with a synchronous pattern of termination exclusively (38%) or mixed (50%). 82% of the NC group had seizures with synchronous pattern of termination exclusively (52%) or mixed (30%). In the NC group, there was a significant difference of the range of seizure durations between So and Ao groups, with Ao exhibiting higher variability. Seizures with synchronous termination had low variability in both groups. Synchronous seizure termination is a common pattern for complex partials seizures of both mesial temporal or neocortical onset. This may reflect stereotyped network behavior or dynamics at the seizure focus. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Barcoding Human Physical Activity to Assess Chronic Pain Conditions
Paraschiv-Ionescu, Anisoara; Perruchoud, Christophe; Buchser, Eric; Aminian, Kamiar
2012-01-01
Background Modern theories define chronic pain as a multidimensional experience – the result of complex interplay between physiological and psychological factors with significant impact on patients' physical, emotional and social functioning. The development of reliable assessment tools capable of capturing the multidimensional impact of chronic pain has challenged the medical community for decades. A number of validated tools are currently used in clinical practice however they all rely on self-reporting and are therefore inherently subjective. In this study we show that a comprehensive analysis of physical activity (PA) under real life conditions may capture behavioral aspects that may reflect physical and emotional functioning. Methodology PA was monitored during five consecutive days in 60 chronic pain patients and 15 pain-free healthy subjects. To analyze the various aspects of pain-related activity behaviors we defined the concept of PA ‘barcoding’. The main idea was to combine different features of PA (type, intensity, duration) to define various PA states. The temporal sequence of different states was visualized as a ‘barcode’ which indicated that significant information about daily activity can be contained in the amount and variety of PA states, and in the temporal structure of sequence. This information was quantified using complementary measures such as structural complexity metrics (information and sample entropy, Lempel-Ziv complexity), time spent in PA states, and two composite scores, which integrate all measures. The reliability of these measures to characterize chronic pain conditions was assessed by comparing groups of subjects with clinically different pain intensity. Conclusion The defined measures of PA showed good discriminative features. The results suggest that significant information about pain-related functional limitations is captured by the structural complexity of PA barcodes, which decreases when the intensity of pain increases. We conclude that a comprehensive analysis of daily-life PA can provide an objective appraisal of the intensity of pain. PMID:22384191
The Insula: A ‘Hub of Activity’ in Migraine
Borsook, David; Veggeberg, Rosanna; Erpelding, Nathalie; Borra, Ronald; Linnman, Clas; Burstein, Rami; Becerra, Lino
2017-01-01
The insula, a ‘cortical hub’ buried within the lateral sulcus, is involved in a number of processes including goal-directed cognition, conscious awareness, autonomic regulation, interoception and somatosensation. While some of these processes are well known in the clinical presentation of migraine (i.e., autonomic and somatosensory alterations), other more complex behaviors in migraine, such as conscious awareness and error detection, are less well described. Since the insula processes and relays afferent inputs from brain areas involved in these functions to areas involved in higher cortical function such as frontal, temporal and parietal regions, it may be implicated as a brain region that translates the signals of altered internal milieu in migraine, along with other chronic pain conditions, through the insula into complex behaviors. Here we review how the insula function and structure is altered in migraine. As a brain region of a number of brain functions, it may serve as a model to study new potential clinical perspectives for migraine treatment. PMID:26290446
Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans.
Caminiti, Roberto; Innocenti, Giorgio M; Battaglia-Mayer, Alexandra
2015-09-01
The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brown, Austin; Mehta, Nisarg; Vujovic, Mark; Amina, Tasneem; Fixsen, Bethany
2017-01-01
Differing results in olfactory-based decision-making research regarding the amount of time that rats and mice use to identify odors have led to some disagreements about odor-processing mechanics, including whether or not rodents use temporal integration (i.e., sniffing longer to identify odors better). Reported differences in behavioral strategies may be due to the different types of tasks used in different laboratories. Some researchers have reported that animals performing two-alternative choice (TAC) tasks need only 1–2 sniffs and do not increase performance with longer sampling. Others have reported that animals performing go/no-go (GNG) tasks increase sampling times and performance for difficult discriminations, arguing for temporal integration. We present results from four experiments comparing GNG and TAC tasks over several behavioral variables (e.g., performance, sampling duration). When rats know only one task, they perform better in GNG than in TAC. However, performance was not statistically different when rats learned and were tested in both tasks. Rats sample odors longer in GNG than in TAC, even when they know both tasks and perform them in the same or different sessions. Longer sampling is associated with better performance for both tasks in difficult discriminations, which supports the case for temporal integration over ≥2–6 sniffs in both tasks. These results illustrate that generalizations from a single task about behavioral or cognitive abilities (e.g., processing, perception) do not capture the full range of complexity and can significantly impact inferences about general abilities in sensory perception. SIGNIFICANCE STATEMENT Behavioral tasks and training and testing history affect measured outcomes in cognitive tests. Rats sample odors longer in a go/no-go (GNG) than in a two-alternative choice (TAC) task, performing better in GNG unless they know both tasks. Odor-sampling time is extended in both tasks when the odors to be discriminated are very similar. Rats may extend sampling time to integrate odor information up to ∼0.5 s (2–6 sniffs). Such factors as task, task parameters, and training history affect decision times and performance, making it important to use multiple tasks when making inferences about sensory or cognitive processing. PMID:28336570
Multi-Agent Strategic Modeling in a Specific Environment
NASA Astrophysics Data System (ADS)
Gams, Matjaz; Bezek, Andraz
Multi-agent modeling in ambient intelligence (AmI) is concerned with the following task [19]: How can external observations of multi-agent systems in the ambient be used to analyze, model, and direct agent behavior? The main purpose is to obtain knowledge about acts in the environment thus enabling proper actions of the AmI systems [1]. Analysis of such systems must thus capture complex world state representation and asynchronous agent activities. Instead of studying basic numerical data, researchers often use more complex data structures, such as rules and decision trees. Some methods are extremely useful when characterizing state space, but lack the ability to clearly represent temporal state changes occurred by agent actions. To comprehend simultaneous agent actions and complex changes of state space, most often a combination of graphical and symbolical representation performs better in terms of human understanding and performance.
Simulating the Interactions Among Land Use, Transportation ...
In most transportation studies, computer models that forecast travel behavior statistics for a future year use static projections of the spatial distribution of future population and employment growth as inputs. As a result, they are unable to account for the temporally dynamic and non-linear interactions among transportation, land use, and socioeconomic systems. System dynamics (SD) provides a common framework for modeling the complex interactions among transportation and other related systems. This study uses a SD model to simulate the cascading impacts of a proposed light rail transit (LRT) system in central North Carolina, USA. The Durham-Orange Light Rail Project (D-O LRP) SD model incorporates relationships among the land use, transportation, and economy sectors to simulate the complex feedbacks that give rise to the travel behavior changes forecasted by the region’s transportation model. This paper demonstrates the sensitivity of changes in travel behavior to the proposed LRT system and the assumptions that went into the transportation modeling, and compares those results to the impacts of an alternative fare-free transit system. SD models such as the D-O LRP SD model can complement transportation studies by providing valuable insight into the interdependent community systems that collectively contribute to travel behavior changes. Presented at the 35th International Conference of the System Dynamics Society in Cambridge, MA, July 18th, 2017
Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Crutchfield, James P.
2018-03-01
The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.
NASA Astrophysics Data System (ADS)
Goodwell, Allison E.; Kumar, Praveen
2017-07-01
In an ecohydrologic system, components of atmospheric, vegetation, and root-soil subsystems participate in forcing and feedback interactions at varying time scales and intensities. The structure of this network of complex interactions varies in terms of connectivity, strength, and time scale due to perturbations or changing conditions such as rainfall, drought, or land use. However, characterization of these interactions is difficult due to multivariate and weak dependencies in the presence of noise, nonlinearities, and limited data. We introduce a framework for Temporal Information Partitioning Networks (TIPNets), in which time-series variables are viewed as nodes, and lagged multivariate mutual information measures are links. These links are partitioned into synergistic, unique, and redundant information components, where synergy is information provided only jointly, unique information is only provided by a single source, and redundancy is overlapping information. We construct TIPNets from 1 min weather station data over several hour time windows. From a comparison of dry, wet, and rainy conditions, we find that information strengths increase when solar radiation and surface moisture are present, and surface moisture and wind variability are redundant and synergistic influences, respectively. Over a growing season, network trends reveal patterns that vary with vegetation and rainfall patterns. The framework presented here enables us to interpret process connectivity in a multivariate context, which can lead to better inference of behavioral shifts due to perturbations in ecohydrologic systems. This work contributes to more holistic characterizations of system behavior, and can benefit a wide variety of studies of complex systems.
Task-Based Core-Periphery Organization of Human Brain Dynamics
Bassett, Danielle S.; Wymbs, Nicholas F.; Rombach, M. Puck; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.
2013-01-01
As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain's putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior. PMID:24086116
Temporal Tuning of Word- and Face-selective Cortex.
Yeatman, Jason D; Norcia, Anthony M
2016-11-01
Sensitivity to temporal change places fundamental limits on object processing in the visual system. An emerging consensus from the behavioral and neuroimaging literature suggests that temporal resolution differs substantially for stimuli of different complexity and for brain areas at different levels of the cortical hierarchy. Here, we used steady-state visually evoked potentials to directly measure three fundamental parameters that characterize the underlying neural response to text and face images: temporal resolution, peak temporal frequency, and response latency. We presented full-screen images of text or a human face, alternated with a scrambled image, at temporal frequencies between 1 and 12 Hz. These images elicited a robust response at the first harmonic that showed differential tuning, scalp topography, and delay for the text and face images. Face-selective responses were maximal at 4 Hz, but text-selective responses, by contrast, were maximal at 1 Hz. The topography of the text image response was strongly left-lateralized at higher stimulation rates, whereas the response to the face image was slightly right-lateralized but nearly bilateral at all frequencies. Both text and face images elicited steady-state activity at more than one apparent latency; we observed early (141-160 msec) and late (>250 msec) text- and face-selective responses. These differences in temporal tuning profiles are likely to reflect differences in the nature of the computations performed by word- and face-selective cortex. Despite the close proximity of word- and face-selective regions on the cortical surface, our measurements demonstrate substantial differences in the temporal dynamics of word- versus face-selective responses.
Light, John M; Jason, Leonard A; Stevens, Edward B; Callahan, Sarah; Stone, Ariel
2016-03-01
The complex system conception of group social dynamics often involves not only changing individual characteristics, but also changing within-group relationships. Recent advances in stochastic dynamic network modeling allow these interdependencies to be modeled from data. This methodology is discussed within a context of other mathematical and statistical approaches that have been or could be applied to study the temporal evolution of relationships and behaviors within small- to medium-sized groups. An example model is presented, based on a pilot study of five Oxford House recovery homes, sober living environments for individuals following release from acute substance abuse treatment. This model demonstrates how dynamic network modeling can be applied to such systems, examines and discusses several options for pooling, and shows how results are interpreted in line with complex system concepts. Results suggest that this approach (a) is a credible modeling framework for studying group dynamics even with limited data, (b) improves upon the most common alternatives, and (c) is especially well-suited to complex system conceptions. Continuing improvements in stochastic models and associated software may finally lead to mainstream use of these techniques for the study of group dynamics, a shift already occurring in related fields of behavioral science.
Amat, Fernando; Keller, Philipp J
2013-05-01
Understanding the development of complex multicellular organisms as a function of the underlying cell behavior is one of the most fundamental goals of developmental biology. The ability to quantitatively follow cell dynamics in entire developing embryos is an indispensable step towards such a system-level understanding. In recent years, light-sheet fluorescence microscopy has emerged as a particularly promising strategy for recording the in vivo data required to realize this goal. Using light-sheet fluorescence microscopy, entire complex organisms can be rapidly imaged in three dimensions at sub-cellular resolution, achieving high temporal sampling and excellent signal-to-noise ratio without damaging the living specimen or bleaching fluorescent markers. The resulting datasets allow following individual cells in vertebrate and higher invertebrate embryos over up to several days of development. However, the complexity and size of these multi-terabyte recordings typically preclude comprehensive manual analyses. Thus, new computational approaches are required to automatically segment cell morphologies, accurately track cell identities and systematically analyze cell behavior throughout embryonic development. We review current efforts in light-sheet microscopy and bioimage informatics towards this goal, and argue that comprehensive cell lineage reconstructions are finally within reach for many key model organisms, including fruit fly, zebrafish and mouse. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Test and Evaluation of Architecture-Aware Compiler Environment
2011-11-01
biology, medicine, social sciences , and security applications. Challenges include extremely large graphs (the Facebook friend network has over...Operations with Temporal Binning ....................................................................... 32 4.12 Memory behavior and Energy per...five challenge problems empirically, exploring their scaling properties, computation and datatype needs, memory behavior , and temporal behavior
Maggi, Silvia; Balzani, Edoardo; Lassi, Glenda; Garcia-Garcia, Celina; Plano, Andrea; Espinoza, Stefano; Mus, Liudmila; Tinarelli, Federico; Nolan, Patrick M; Gainetdinov, Raul R; Balci, Fuat; Nieus, Thierry; Tucci, Valter
2017-12-19
Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.
Modification of medullary respiratory-related discharge patterns by behaviors and states of arousal.
Chang, F C
1992-02-07
The modulatory influences of behaviors and states of arousal on bulbar respiratory-related unit (RRU) discharge patterns were studied in an unanesthetized, freely behaving guinea pig respiratory model system. When fully instrumented, this model system permits concurrent monitoring and recording of (i) single units from either Bötzinger complex or nucleus para-ambiguus; (ii) electrocorticogram; and, (iii) diaphragmatic EMG. In addition to being used in surveys of RRU discharge patterns in freely behaving states, the model system also offered a unique opportunity in investigating the effects of pentobarbital on RRU discharge patterns before, throughout the course of, and during recovery from anesthesia. In anesthetized preparations, a particular RRU discharge pattern (such as tonic, incrementing or decrementing) typically displayed little, if any notable variation. The most striking development following pentobarbital was a state of progressive bradypnea attributable to a significantly augmented RRU cycle duration, burst duration and an increase in the RRU spike frequencies during anesthesia. In freely behaving states, medullary RRU activities rarely adhered to a fixed, immutable discharge pattern. More specifically, the temporal organization (such as burst duration, cycle duration, and the extent of modulation of within-burst spike frequencies) of RRU discharge patterns regularly showed complex and striking variations, not only with states of arousal (sleep/wakefulness, anesthesia) but also with discrete alterations in electrocorticogram (ECoG) activities and a multitude of on-going behavioral repertoires such as volitional movement, postural modification, phonation, mastication, deglutition, sniffing/exploratory behavior, alerting/startle reflexes. Only during sleep, and on occasions when the animal assumed a motionless, resting posture, could burst patterns of relatively invariable periodicity and uniform temporal attributes be observed. RRU activities during sniffing reflex is worthy of further note in that, based on power spectrum analyses of concurrently recorded ECoG activities, this particular discharge pattern was clearly associated with the activation of a 6-10 Hz theta rhythm. These findings indicated that bulbar RRU activity patterns are subject to change by not only behaviors and sleep/wakefulness cycles, but also a variety of modulatory influences and feedback/feedforward biases from other central and peripheral physiological control mechanisms.
Temporal Immediacy: A Two-System Theory of Mind for Understanding and Changing Health Behaviors.
Cook, Paul F; Schmiege, Sarah J; Reeder, Blaine; Horton-Deutsch, Sara; Lowe, Nancy K; Meek, Paula
Health promotion and chronic disease management both require behavior change, but people find it hard to change behavior despite having good intentions. The problem arises because patients' narratives about experiences and intentions are filtered through memory and language. These narratives inaccurately reflect intuitive decision-making or actual behaviors. We propose a principle-temporal immediacy-as a moderator variable that explains which of two mental systems (narrative or intuitive) will be activated in any given situation. We reviewed multiple scientific areas to test temporal immediacy as an explanation for findings. In an iterative process, we used evidence from philosophy, cognitive neuroscience, behavioral economics, symptom science, and ecological momentary assessment to develop our theoretical perspective. These perspectives each suggest two cognitive systems that differ in their level of temporal immediacy: an intuitive system that produces behavior in response to everyday states and a narrative system that interprets and explains these experiences after the fact. Writers from Plato onward describe two competing influences on behavior-often with moral overtones. People tend to identify with the language-based narrative system and blame unhelpful results on the less accessible intuitive system, but neither is completely rational, and the intuitive system has strengths based on speed and serial processing. The systems differ based on temporal immediacy-the description of an experience as either "now" or "usually"-with the intuitive system generating behaviors automatically in real time and the narrative system producing beliefs about the past or future. The principle of temporal immediacy is a tool to integrate nursing science with other disciplinary traditions and to improve research and practice. Interventions should build on each system's strengths, rather than treating the intuitive system as a barrier for the narrative system to overcome. Nursing researchers need to study the roles and effects of both systems.
Kolb, Bryan
2010-12-01
The article by Malkova, Mishkin, Suomo, and Bachevalier (2010, this issue) adds an important piece to our understanding of the role of the medial versus lateral temporal regions in socioemotional behavior. In their paper, they evaluate the effect of infant and adult amygdala lesions and infant inferotemporal cortex lesions on the social interactions of monkeys in infancy and adulthood. The results show that medial temporal lesions performed in infants produce greater effects on socioaffective behavior than similar lesions in adulthood and that infant monkeys with inferotemporal lesions exhibit social deficits that are resolved by adulthood. These results are relevant to three significant issues: (1) the role of the medial temporal and lateral temporal cortex in the symptoms of the Kluver-Bucy syndrome; (2) the role of age at injury in behavioral change after cerebral injuries; and (3) the importance of lesion locus and behavioral measure for recovery from infant and adult cerebral injury. © 2010 APA, all rights reserved.
Temporal Stability and Convergent Validity of the Behavior Assessment System for Children.
ERIC Educational Resources Information Center
Merydith, Scott P.
2001-01-01
Assesses the temporal stability and convergent validity of the Behavioral Assessment System for Children (BASC). Teachers and parents rated kindergarten and first-grade students using BASC. Teachers were more stable in rating children's externalizing behaviors and attention problems. Discusses results in terms of the accuracy of information…
Temporal Patterns of Behavior from the Scheduling of Psychology Quizzes
ERIC Educational Resources Information Center
Jarmolowicz, David P.; Hayashi, Yusuke; St. Peter Pipkin, Claire
2010-01-01
Temporal patterns of behavior have been observed in real-life performances such as bill passing in the U.S. Congress, in-class studying, and quiz taking. However, the practical utility of understanding these patterns has not been evaluated. The current study demonstrated the presence of temporal patterns of quiz taking in a university-level…
Integrating DNA strand-displacement circuitry with DNA tile self-assembly
Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik
2013-01-01
DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381
Chen, I-Wen; Papagiakoumou, Eirini; Emiliani, Valentina
2018-06-01
Optogenetics neuronal targeting combined with single-photon wide-field illumination has already proved its enormous potential in neuroscience, enabling the optical control of entire neuronal networks and disentangling their role in the control of specific behaviors. However, establishing how a single or a sub-set of neurons controls a specific behavior, or how functionally identical neurons are connected in a particular task, or yet how behaviors can be modified in real-time by the complex wiring diagram of neuronal connections requires more sophisticated approaches enabling to drive neuronal circuits activity with single-cell precision and millisecond temporal resolution. This has motivated on one side the development of flexible optical methods for two-photon (2P) optogenetic activation using either, or a hybrid of two approaches: scanning and parallel illumination. On the other side, it has stimulated the engineering of new opsins with modified spectral characteristics, channel kinetics and spatial distribution of expression, offering the necessary flexibility of choosing the appropriate opsin for each application. The need for optical manipulation of multiple targets with millisecond temporal resolution has imposed three-dimension (3D) parallel holographic illumination as the technique of choice for optical control of neuronal circuits organized in 3D. Today 3D parallel illumination exists in several complementary variants, each with a different degree of simplicity, light uniformity, temporal precision and axial resolution. In parallel, the possibility to reach hundreds of targets in 3D volumes has prompted the development of low-repetition rate amplified laser sources enabling high peak power, while keeping low average power for stimulating each cell. All together those progresses open the way for a precise optical manipulation of neuronal circuits with unprecedented precision and flexibility. Copyright © 2018 Elsevier Ltd. All rights reserved.
Petersson, Karl Magnus; Sandblom, Johan; Elfgren, Christina; Ingvar, Martin
2003-11-01
In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.
Spatiotemporal Detection of Unusual Human Population Behavior Using Mobile Phone Data
Dobra, Adrian; Williams, Nathalie E.; Eagle, Nathan
2015-01-01
With the aim to contribute to humanitarian response to disasters and violent events, scientists have proposed the development of analytical tools that could identify emergency events in real-time, using mobile phone data. The assumption is that dramatic and discrete changes in behavior, measured with mobile phone data, will indicate extreme events. In this study, we propose an efficient system for spatiotemporal detection of behavioral anomalies from mobile phone data and compare sites with behavioral anomalies to an extensive database of emergency and non-emergency events in Rwanda. Our methodology successfully captures anomalous behavioral patterns associated with a broad range of events, from religious and official holidays to earthquakes, floods, violence against civilians and protests. Our results suggest that human behavioral responses to extreme events are complex and multi-dimensional, including extreme increases and decreases in both calling and movement behaviors. We also find significant temporal and spatial variance in responses to extreme events. Our behavioral anomaly detection system and extensive discussion of results are a significant contribution to the long-term project of creating an effective real-time event detection system with mobile phone data and we discuss the implications of our findings for future research to this end. PMID:25806954
Development of the Neurochemical Architecture of the Central Complex
Boyan, George S.; Liu, Yu
2016-01-01
The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors. PMID:27630548
High-resolution behavioral mapping of electric fishes in Amazonian habitats.
Madhav, Manu S; Jayakumar, Ravikrishnan P; Demir, Alican; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J
2018-04-11
The study of animal behavior has been revolutionized by sophisticated methodologies that identify and track individuals in video recordings. Video recording of behavior, however, is challenging for many species and habitats including fishes that live in turbid water. Here we present a methodology for identifying and localizing weakly electric fishes on the centimeter scale with subsecond temporal resolution based solely on the electric signals generated by each individual. These signals are recorded with a grid of electrodes and analyzed using a two-part algorithm that identifies the signals from each individual fish and then estimates the position and orientation of each fish using Bayesian inference. Interestingly, because this system involves eavesdropping on electrocommunication signals, it permits monitoring of complex social and physical interactions in the wild. This approach has potential for large-scale non-invasive monitoring of aquatic habitats in the Amazon basin and other tropical freshwater systems.
A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction.
Kiehl, Kent A
2006-06-15
Psychopathy is a complex personality disorder that includes interpersonal and affective traits such as glibness, lack of empathy, guilt or remorse, shallow affect, and irresponsibility, and behavioral characteristics such as impulsivity, poor behavioral control, and promiscuity. Much is known about the assessment of psychopathy; however, relatively little is understood about the relevant brain disturbances. The present review integrates data from studies of behavioral and cognitive changes associated with focal brain lesions or insults and results from psychophysiology, cognitive psychology and cognitive and affective neuroscience in health and psychopathy. The review illustrates that the brain regions implicated in psychopathy include the orbital frontal cortex, insula, anterior and posterior cingulate, amygdala, parahippocampal gyrus, and anterior superior temporal gyrus. The relevant functional neuroanatomy of psychopathy thus includes limbic and paralimbic structures that may be collectively termed 'the paralimbic system'. The paralimbic system dysfunction model of psychopathy is discussed as it relates to the extant literature on psychopathy.
Brain abnormalities in antisocial individuals: implications for the law.
Yang, Yaling; Glenn, Andrea L; Raine, Adrian
2008-01-01
With the increasing popularity in the use of brain imaging on antisocial individuals, an increasing number of brain imaging studies have revealed structural and functional impairments in antisocial, psychopathic, and violent individuals. This review summarizes key findings from brain imaging studies on antisocial/aggressive behavior. Key regions commonly found to be impaired in antisocial populations include the prefrontal cortex (particularly orbitofrontal and dorsolateral prefrontal cortex), superior temporal gyrus, amygdala-hippocampal complex, and anterior cingulate cortex. Key functions of these regions are reviewed to provide a better understanding on how deficits in these regions may predispose to antisocial behavior. Objections to the use of imaging findings in a legal context are outlined, and alternative perspectives raised. It is argued that brain dysfunction is a risk factor for antisocial behavior and that it is likely that imaging will play an increasing (albeit limited) role in legal decision-making. (c) 2008 John Wiley & Sons, Ltd.
Graph distance for complex networks
NASA Astrophysics Data System (ADS)
Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki
2016-10-01
Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.
Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Evidence for a distributed hierarchy of action representation in the brain
Grafton, Scott T.; de C. Hamilton, Antonia F.
2007-01-01
Complex human behavior is organized around temporally distal outcomes. Behavioral studies based on tasks such as normal prehension, multi-step object use and imitation establish the existence of relative hierarchies of motor control. The retrieval errors in apraxia also support the notion of a hierarchical model for representing action in the brain. In this review, three functional brain imaging studies of action observation using the method of repetition suppression are used to identify a putative neural architecture that supports action understanding at the level of kinematics, object centered goals and ultimately, motor outcomes. These results, based on observation, may match a similar functional anatomic hierarchy for action planning and execution. If this is true, then the findings support a functional anatomic model that is distributed across a set of interconnected brain areas that are differentially recruited for different aspects of goal oriented behavior, rather than a homogeneous mirror neuron system for organizing and understanding all behavior. PMID:17706312
Karayanidis, Frini; Jamadar, Sharna; Ruge, Hannes; Phillips, Natalie; Heathcote, Andrew; Forstmann, Birte U.
2010-01-01
Recent research has taken advantage of the temporal and spatial resolution of event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI) to identify the time course and neural circuitry of preparatory processes required to switch between different tasks. Here we overview some key findings contributing to understanding strategic processes in advance preparation. Findings from these methodologies are compatible with advance preparation conceptualized as a set of processes activated for both switch and repeat trials, but with substantial variability as a function of individual differences and task requirements. We then highlight new approaches that attempt to capitalize on this variability to link behavior and brain activation patterns. One approach examines correlations among behavioral, ERP and fMRI measures. A second “model-based” approach accounts for differences in preparatory processes by estimating quantitative model parameters that reflect latent psychological processes. We argue that integration of behavioral and neuroscientific methodologies is key to understanding the complex nature of advance preparation in task-switching. PMID:21833196
Exploring a strongly non-Markovian behavior
NASA Astrophysics Data System (ADS)
Alba, Vasyl; Berman, Gordon; Bialek, William; Shaevitz, Joshua
Is there some simplicity or universality underlying the complexities of natural animal behavior? Using the walking fruit fly as a model system, we have shown that unconstrained behaviors can be categorized into roughly one hundred discrete states, which all individuals from a single species visit repeatedly. In each state, the fly executes stereotyped movements, and the transitions between states are organized hierarchically. The sequences of states, however, are strongly non-Markovian: correlations persist for orders of magnitude longer than expected from the state-to-state transition probabilities, and there are hints of power law decay. But with 100 states, further analysis is difficult. Here we develop a generalization of the information bottleneck method to compress these states into a more compact description that preserves as much of the temporal correlations as possible. We find that, even on compressing down to just two states, this coarse grained description of behavior captures the long ranged correlations. Power law decays are clearer in this reduced representation, which opens the way for more quantitative analysis.
The Emergence of Temporal Structures in Dynamical Systems
NASA Astrophysics Data System (ADS)
Mainzer, Klaus
2010-10-01
Dynamical systems in classical, relativistic and quantum physics are ruled by laws with time reversibility. Complex dynamical systems with time-irreversibility are known from thermodynamics, biological evolution, growth of organisms, brain research, aging of people, and historical processes in social sciences. Complex systems are systems that compromise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous emergence of distinctive temporal, spatial or functional structures. But, emergence is no mystery. In a general meaning, the emergence of macroscopic features results from the nonlinear interactions of the elements in a complex system. Mathematically, the emergence of irreversible structures is modelled by phase transitions in non-equilibrium dynamics of complex systems. These methods have been modified even for chemical, biological, economic and societal applications (e.g., econophysics). Emergence of irreversible structures can also be simulated by computational systems. The question arises how the emergence of irreversible structures is compatible with the reversibility of fundamental physical laws. It is argued that, according to quantum cosmology, cosmic evolution leads from symmetry to complexity of irreversible structures by symmetry breaking and phase transitions. Thus, arrows of time and aging processes are not only subjective experiences or even contradictions to natural laws, but they can be explained by quantum cosmology and the nonlinear dynamics of complex systems. Human experiences and religious concepts of arrows of time are considered in a modern scientific framework. Platonic ideas of eternity are at least understandable with respect to mathematical invariance and symmetry of physical laws. Heraclit’s world of change and dynamics can be mapped onto our daily real-life experiences of arrows of time.
Sakurai, Y
2002-01-01
This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.
Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy
Gore, John C.; Xu, Junzhong; Colvin, Daniel C.; Yankeelov, Thomas E.; Parsons, Edward C.; Does, Mark D.
2011-01-01
The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained by using oscillating gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or hinder free movements. Measurements made at different gradient frequencies reveal information on the scale of restrictions or hindrances to free diffusion, and the shape of a spectrum reveals the relative contributions of spatial restrictions at different distance scales. Such spectra differ from other so-called diffusion spectra which depict spatial frequencies and are defined at a fixed diffusion time. Experimentally, oscillating gradients at moderate frequency are more feasible for exploring restrictions at very short distances, which in tissues correspond to structures smaller than cells. We describe the underlying concepts of temporal diffusion spectra and provide analytical expressions for the behavior of the diffusion coefficient as a function of gradient frequency in simple geometries with different dimensions. Diffusion in more complex model media that mimic tissues has been simulated using numerical methods. Experimental measurements of diffusion spectra have been obtained in suspensions of particles and cells, as well as in vivo in intact animals. An observation of particular interest is the increased contrast and heterogeneity observed in tumors using oscillating gradients at moderate frequency compared to conventional pulse gradient methods, and the potential for detecting changes in tumors early in their response to treatment. Computer simulations suggest that diffusion spectral measurements may be sensitive to intracellular structures such as nuclear size, and that changes in tissue diffusion properties may be measured before there are changes in cell density. PMID:20677208
Neural Correlates of Temporal Complexity and Synchrony during Audiovisual Correspondence Detection.
Baumann, Oliver; Vromen, Joyce M G; Cheung, Allen; McFadyen, Jessica; Ren, Yudan; Guo, Christine C
2018-01-01
We often perceive real-life objects as multisensory cues through space and time. A key challenge for audiovisual integration is to match neural signals that not only originate from different sensory modalities but also that typically reach the observer at slightly different times. In humans, complex, unpredictable audiovisual streams lead to higher levels of perceptual coherence than predictable, rhythmic streams. In addition, perceptual coherence for complex signals seems less affected by increased asynchrony between visual and auditory modalities than for simple signals. Here, we used functional magnetic resonance imaging to determine the human neural correlates of audiovisual signals with different levels of temporal complexity and synchrony. Our study demonstrated that greater perceptual asynchrony and lower signal complexity impaired performance in an audiovisual coherence-matching task. Differences in asynchrony and complexity were also underpinned by a partially different set of brain regions. In particular, our results suggest that, while regions in the dorsolateral prefrontal cortex (DLPFC) were modulated by differences in memory load due to stimulus asynchrony, areas traditionally thought to be involved in speech production and recognition, such as the inferior frontal and superior temporal cortex, were modulated by the temporal complexity of the audiovisual signals. Our results, therefore, indicate specific processing roles for different subregions of the fronto-temporal cortex during audiovisual coherence detection.
Neural Correlates of Temporal Complexity and Synchrony during Audiovisual Correspondence Detection
Ren, Yudan
2018-01-01
Abstract We often perceive real-life objects as multisensory cues through space and time. A key challenge for audiovisual integration is to match neural signals that not only originate from different sensory modalities but also that typically reach the observer at slightly different times. In humans, complex, unpredictable audiovisual streams lead to higher levels of perceptual coherence than predictable, rhythmic streams. In addition, perceptual coherence for complex signals seems less affected by increased asynchrony between visual and auditory modalities than for simple signals. Here, we used functional magnetic resonance imaging to determine the human neural correlates of audiovisual signals with different levels of temporal complexity and synchrony. Our study demonstrated that greater perceptual asynchrony and lower signal complexity impaired performance in an audiovisual coherence-matching task. Differences in asynchrony and complexity were also underpinned by a partially different set of brain regions. In particular, our results suggest that, while regions in the dorsolateral prefrontal cortex (DLPFC) were modulated by differences in memory load due to stimulus asynchrony, areas traditionally thought to be involved in speech production and recognition, such as the inferior frontal and superior temporal cortex, were modulated by the temporal complexity of the audiovisual signals. Our results, therefore, indicate specific processing roles for different subregions of the fronto-temporal cortex during audiovisual coherence detection. PMID:29354682
Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.
García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G
2017-08-01
The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.
Timing matters: sonar call groups facilitate target localization in bats.
Kothari, Ninad B; Wohlgemuth, Melville J; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F
2014-01-01
To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment.
Timing matters: sonar call groups facilitate target localization in bats
Kothari, Ninad B.; Wohlgemuth, Melville J.; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F.
2014-01-01
To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment. PMID:24860509
Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel
2015-10-01
Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Spacetime representation of topological phononics
NASA Astrophysics Data System (ADS)
Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.
2018-05-01
Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.
A Computational Method to Quantify Fly Circadian Activity.
Lazopulo, Andrey; Syed, Sheyum
2017-10-28
In most animals and plants, circadian clocks orchestrate behavioral and molecular processes and synchronize them to the daily light-dark cycle. Fundamental mechanisms that underlie this temporal control are widely studied using the fruit fly Drosophila melanogaster as a model organism. In flies, the clock is typically studied by analyzing multiday locomotor recording. Such a recording shows a complex bimodal pattern with two peaks of activity: a morning peak that happens around dawn, and an evening peak that happens around dusk. These two peaks together form a waveform that is very different from sinusoidal oscillations observed in clock genes, suggesting that mechanisms in addition to the clock have profound effects in producing the observed patterns in behavioral data. Here we provide instructions on using a recently developed computational method that mathematically describes temporal patterns in fly activity. The method fits activity data with a model waveform that consists of four exponential terms and nine independent parameters that fully describe the shape and size of the morning and evening peaks of activity. The extracted parameters can help elucidate the kinetic mechanisms of substrates that underlie the commonly observed bimodal activity patterns in fly locomotor rhythms.
Autobiographical memory and patterns of brain atrophy in frontotemporal lobar degeneration.
McKinnon, Margaret C; Nica, Elena I; Sengdy, Pheth; Kovacevic, Natasa; Moscovitch, Morris; Freedman, Morris; Miller, Bruce L; Black, Sandra E; Levine, Brian
2008-10-01
Autobiographical memory paradigms have been increasingly used to study the behavioral and neuroanatomical correlates of human remote memory. Although there are numerous functional neuroimaging studies on this topic, relatively few studies of patient samples exist, with heterogeneity of results owing to methodological variability. In this study, fronto-temporal lobar degeneration (FTLD), a form of dementia affecting regions crucial to autobiographical memory, was used as a model of autobiographical memory loss. We emphasized the separation of episodic (recollection of specific event, perceptual, and mental state information) from semantic (factual information unspecific in time and place) autobiographical memory, derived from a reliable method for scoring transcribed autobiographical protocols, the Autobiographical Interview [Levine, B., Svoboda, E., Hay, J., Winocur, G., & Moscovitch, M. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689, 2002]. Patients with the fronto-temporal dementia (FTD) and mixed fronto-temporal and semantic dementia (FTD/SD) variants of FTLD were impaired at reconstructing episodically rich autobiographical memories across the lifespan, with FTD/SD patients generating an excess of generic semantic autobiographical information. Patients with progressive nonfluent aphasia were mildly impaired for episodic autobiographical memory, but this impairment was eliminated with the provision of structured cueing, likely reflecting relatively intact medial-temporal lobe function, whereas the same cueing failed to bolster the FTD and FTD/SD patients' performance relative to that of matched comparison subjects. The pattern of episodic, but not semantic, autobiographical impairment was enhanced with disease progression on 1- to 2-year follow-up testing in a subset of patients, supplementing the cross-sectional evidence for specificity of episodic autobiographical impairment with longitudinal data. This behavioral pattern covaried with volume loss in a distributed left-lateralized posterior network centered on the temporal lobe, consistent with evidence from other patient and functional neuroimaging studies of autobiographical memory. Frontal lobe volumes, however, did not significantly contribute to this network, suggesting that frontal contributions to autobiographical episodic memory may be more complex than previously appreciated.
Virally mediated gene manipulation in the adult CNS
Edry, Efrat; Lamprecht, Raphael; Wagner, Shlomo; Rosenblum, Kobi
2011-01-01
Understanding how the CNS functions poses one of the greatest challenges in modern life science and medicine. Studying the brain is especially challenging because of its complexity, the heterogeneity of its cellular composition, and the substantial changes it undergoes throughout its life-span. The complexity of adult brain neural networks results also from the diversity of properties and functions of neuronal cells, governed, inter alia, by temporally and spatially differential expression of proteins in mammalian brain cell populations. Hence, research into the biology of CNS activity and its implications to human and animal behavior must use novel scientific tools. One source of such tools is the field of molecular genetics—recently utilized more and more frequently in neuroscience research. Transgenic approaches in general, and gene targeting in rodents have become fundamental tools for elucidating gene function in the CNS. Although spectacular progress has been achieved over recent decades by using these approaches, it is important to note that they face a number of restrictions. One of the main challenges is presented by the temporal and spatial regulation of introduced genetic manipulations. Viral vectors provide an alternative approach to temporally regulated, localized delivery of genetic modifications into neurons. In this review we describe available technologies for gene transfer into the adult mammalian CNS that use both viral and non-viral tools. We discuss viral vectors frequently used in neuroscience, with emphasis on lentiviral vector (LV) systems. We consider adverse effects of LVs, and the use of LVs for temporally and spatially controllable manipulations. Especially, we highlight the significance of viral vector-mediated genetic manipulations in studying learning and memory processes, and how they may be effectively used to separate out the various phases of learning: acquisition, consolidation, retrieval, and maintenance. PMID:22207836
Sagl, Günther; Blaschke, Thomas; Beinat, Euro; Resch, Bernd
2012-01-01
Ubiquitous geo-sensing enables context-aware analyses of physical and social phenomena, i.e., analyzing one phenomenon in the context of another. Although such context-aware analysis can potentially enable a more holistic understanding of spatio-temporal processes, it is rarely documented in the scientific literature yet. In this paper we analyzed the collective human behavior in the context of the weather. We therefore explored the complex relationships between these two spatio-temporal phenomena to provide novel insights into the dynamics of urban systems. Aggregated mobile phone data, which served as a proxy for collective human behavior, was linked with the weather data from climate stations in the case study area, the city of Udine, Northern Italy. To identify and characterize potential patterns within the weather-human relationships, we developed a hybrid approach which integrates several spatio-temporal statistical analysis methods. Thereby we show that explanatory factor analysis, when applied to a number of meteorological variables, can be used to differentiate between normal and adverse weather conditions. Further, we measured the strength of the relationship between the ‘global’ adverse weather conditions and the spatially explicit effective variations in user-generated mobile network traffic for three distinct periods using the Maximal Information Coefficient (MIC). The analyses result in three spatially referenced maps of MICs which reveal interesting insights into collective human dynamics in the context of weather, but also initiate several new scientific challenges. PMID:23012571
Navigating complex decision spaces: Problems and paradigms in sequential choice
Walsh, Matthew M.; Anderson, John R.
2015-01-01
To behave adaptively, we must learn from the consequences of our actions. Doing so is difficult when the consequences of an action follow a delay. This introduces the problem of temporal credit assignment. When feedback follows a sequence of decisions, how should the individual assign credit to the intermediate actions that comprise the sequence? Research in reinforcement learning provides two general solutions to this problem: model-free reinforcement learning and model-based reinforcement learning. In this review, we examine connections between stimulus-response and cognitive learning theories, habitual and goal-directed control, and model-free and model-based reinforcement learning. We then consider a range of problems related to temporal credit assignment. These include second-order conditioning and secondary reinforcers, latent learning and detour behavior, partially observable Markov decision processes, actions with distributed outcomes, and hierarchical learning. We ask whether humans and animals, when faced with these problems, behave in a manner consistent with reinforcement learning techniques. Throughout, we seek to identify neural substrates of model-free and model-based reinforcement learning. The former class of techniques is understood in terms of the neurotransmitter dopamine and its effects in the basal ganglia. The latter is understood in terms of a distributed network of regions including the prefrontal cortex, medial temporal lobes cerebellum, and basal ganglia. Not only do reinforcement learning techniques have a natural interpretation in terms of human and animal behavior, but they also provide a useful framework for understanding neural reward valuation and action selection. PMID:23834192
Siegel, Adam J; Fondrk, M Kim; Amdam, Gro V; Page, Robert E
2013-01-01
Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging.
Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.
Eddins, Ann Clock; Eddins, David A
This study was designed to evaluate binaural temporal processing in young and older adults using a binaural masking level difference (BMLD) paradigm. Using behavioral and electrophysiological measures within the same listeners, a series of stimulus manipulations was used to evaluate the relative contribution of binaural temporal fine-structure and temporal envelope cues. We evaluated the hypotheses that age-related declines in the BMLD task would be more strongly associated with temporal fine-structure than envelope cues and that age-related declines in behavioral measures would be correlated with cortical auditory evoked potential (CAEP) measures. Thirty adults participated in the study, including 10 young normal-hearing, 10 older normal-hearing, and 10 older hearing-impaired adults with bilaterally symmetric, mild-to-moderate sensorineural hearing loss. Behavioral and CAEP thresholds were measured for diotic (So) and dichotic (Sπ) tonal signals presented in continuous diotic (No) narrowband noise (50-Hz wide) maskers. Temporal envelope cues were manipulated by using two different narrowband maskers; Gaussian noise (GN) with robust envelope fluctuations and low-noise noise (LNN) with minimal envelope fluctuations. The potential to use temporal fine-structure cues was controlled by varying the signal frequency (500 or 4000 Hz), thereby relying on the natural decline in phase-locking with increasing frequency. Behavioral and CAEP thresholds were similar across groups for diotic conditions, while the masking release in dichotic conditions was larger for younger than for older participants. Across all participants, BMLDs were larger for GN than LNN and for 500-Hz than for 4000-Hz conditions, where envelope and fine-structure cues were most salient, respectively. Specific age-related differences were demonstrated for 500-Hz dichotic conditions in GN and LNN, reflecting reduced binaural temporal fine-structure coding. No significant age effects were observed for 4000-Hz dichotic conditions, consistent with similar use of binaural temporal envelope cues across age in these conditions. For all groups, thresholds and derived BMLD values obtained using the behavioral and CAEP methods were strongly correlated, supporting the notion that CAEP measures may be useful as an objective index of age-related changes in binaural temporal processing. These results demonstrate an age-related decline in the processing of binaural temporal fine-structure cues with preserved temporal envelope coding that was similar with and without mild-to-moderate peripheral hearing loss. Such age-related changes can be reliably indexed by both behavioral and CAEP measures in young and older adults.
Agent-based model with multi-level herding for complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-02-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.
Agent-based model with multi-level herding for complex financial systems
Chen, Jun-Jie; Tan, Lei; Zheng, Bo
2015-01-01
In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427
EYE MOVEMENT RECORDING AND NONLINEAR DYNAMICS ANALYSIS – THE CASE OF SACCADES#
Aştefănoaei, Corina; Pretegiani, Elena; Optican, L.M.; Creangă, Dorina; Rufa, Alessandra
2015-01-01
Evidence of a chaotic behavioral trend in eye movement dynamics was examined in the case of a saccadic temporal series collected from a healthy human subject. Saccades are highvelocity eye movements of very short duration, their recording being relatively accessible, so that the resulting data series could be studied computationally for understanding the neural processing in a motor system. The aim of this study was to assess the complexity degree in the eye movement dynamics. To do this we analyzed the saccadic temporal series recorded with an infrared camera eye tracker from a healthy human subject in a special experimental arrangement which provides continuous records of eye position, both saccades (eye shifting movements) and fixations (focusing over regions of interest, with rapid, small fluctuations). The semi-quantitative approach used in this paper in studying the eye functioning from the viewpoint of non-linear dynamics was accomplished by some computational tests (power spectrum, portrait in the state space and its fractal dimension, Hurst exponent and largest Lyapunov exponent) derived from chaos theory. A high complexity dynamical trend was found. Lyapunov largest exponent test suggested bi-stability of cellular membrane resting potential during saccadic experiment. PMID:25698889
Casarrubea, Maurizio; Faulisi, Fabiana; Magnusson, Magnus S; Crescimanno, Giuseppe
2016-08-01
The largest amount of researches on the hot-plate test was carried out using quantitative assessments. However, the evaluation of the relationships among the different elements that compose the behavioral response to pain requires different approaches. Although previous studies have provided clear information on the behavioral structure of the response, no data are available on its temporal structure. The objective of this study was to investigate the temporal structure of the behavioral response to pain in Wistar rat tested in hot-plate and how this structure was influenced by morphine-induced analgesia. The behavior of four groups of subjects tested in hot-plate, one administered saline and three with different doses (3, 6, 12 mg/kg) of morphine IP, was analyzed by means of quantitative and t-pattern analyses. The latter is a multivariate technique able to detect the existence of statistically significant temporal relationships among the behavioral events in time. A clear-cut influence of morphine on quantitative parameters of the response to the noxious stimulation was observed. T-pattern analysis evidenced profound structural changes of behavior. Twenty-four different t-patterns were identified following saline, whereas a dose-dependent reduction was observed following morphine. Such a reduction was accompanied by a decrease of the total amount of t-patterns detected. Morphine, by reducing the effects of the noxious stimulation, orients animal behavior prevalently toward exploratory t-patterns. In addition, it is suggested that the temporal structure of the response is very quickly organized and adapted to environmental noxious cues.
Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.
Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh
2017-08-15
Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Identifying Changes of Complex Flood Dynamics with Recurrence Analysis
NASA Astrophysics Data System (ADS)
Wendi, D.; Merz, B.; Marwan, N.
2016-12-01
Temporal changes in flood hazard system are known to be difficult to detect and attribute due to multiple drivers that include complex processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defense, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time. Moreover hydrological time series (i.e. discharge) are often subject to measurement errors, such as rating curve error especially in the case of extremes where observation are actually derived through extrapolation. This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. Sensitivity of the common measurement errors and noise on recurrence analysis will also be analyzed and evaluated against conventional methods. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic to certain flood events.
Buzsáki, György; Watson, Brendon O.
2012-01-01
The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or “chunk” neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms. PMID:23393413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zafar, A., E-mail: zafara@ornl.gov; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830; Martin, E. H.
2016-11-15
An electron density diagnostic (≥10{sup 10} cm{sup −3}) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6–2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-δ spectra for electron densities of 10{sup 10}–10{sup 13} cm{supmore » −3}. The profile shows complex behavior due to the interaction between the magnetic substates of the atom.« less
Spatio-temporal distribution of global solar radiation for Mexico using GOES data
NASA Astrophysics Data System (ADS)
Bonifaz, R.; Cuahutle, M.; Valdes, M.; Riveros, D.
2013-05-01
Increased need of sustainable and renewable energies around the world requires studies about the amount and distribution of such types of energies. Global solar radiation distribution in space and time is a key component on order to know the availability of the energy for different applications. Using GOES hourly data, the heliosat model was implemented for Mexico. Details about the model and its components are discussed step by stem an once obtained the global solar radiation images, different time datasets (hourly, daily, monthly and seasonal) were built in order to know the spatio-temporal behavior of this type of energy. Preliminary maps of the available solar global radiation energy for Mexico are presented, the amount and variation of the solar radiation by regions are analyzed and discussed. Future work includes a better parametrization of the model using calibrated ground stations data and more use of more complex models for better results.
Bethel, EW; Bauer, A; Abbasi, H; ...
2016-06-10
The considerable interest in the high performance computing (HPC) community regarding analyzing and visualization data without first writing to disk, i.e., in situ processing, is due to several factors. First is an I/O cost savings, where data is analyzed /visualized while being generated, without first storing to a filesystem. Second is the potential for increased accuracy, where fine temporal sampling of transient analysis might expose some complex behavior missed in coarse temporal sampling. Third is the ability to use all available resources, CPU’s and accelerators, in the computation of analysis products. This STAR paper brings together researchers, developers and practitionersmore » using in situ methods in extreme-scale HPC with the goal to present existing methods, infrastructures, and a range of computational science and engineering applications using in situ analysis and visualization.« less
Modeling structural change in spatial system dynamics: A Daisyworld example.
Neuwirth, C; Peck, A; Simonović, S P
2015-03-01
System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.
‘To do or not to do’? The neurobiology of decision-making in daily life: I. Getting the basics
Palmini, André; Haase, Victor Geraldi
2007-01-01
The constant conflict between decisions leading to immediate pleasurable consequences versus behaviors aiming at long-term social advantages is reviewed here in the framework of the evolutionary systems regulating behavior. The inescapable temporal perspective in decision-making in everyday life is highlighted and integrated with the role of the executive functions in the modulation of subcortical systems. In particular, the representations of the ‘non-existent’ future in the prefrontal cortical regions and how these representations can bridge theory and practice in everyday life are addressed. Relevant discussions regarding the battle between emotions and reasons in the determination of more complex decisions in the realm of neuroeconomics and in moral issues have been reserved for a second essay. PMID:29213362
Local orientational mobility in regular hyperbranched polymers.
Dolgushev, Maxim; Markelov, Denis A; Fürstenberg, Florian; Guérin, Thomas
2016-07-01
We study the dynamics of local bond orientation in regular hyperbranched polymers modeled by Vicsek fractals. The local dynamics is investigated through the temporal autocorrelation functions of single bonds and the corresponding relaxation forms of the complex dielectric susceptibility. We show that the dynamic behavior of single segments depends on their remoteness from the periphery rather than on the size of the whole macromolecule. Remarkably, the dynamics of the core segments (which are most remote from the periphery) shows a scaling behavior that differs from the dynamics obtained after structural average. We analyze the most relevant processes of single segment motion and provide an analytic approximation for the corresponding relaxation times. Furthermore, we describe an iterative method to calculate the orientational dynamics in the case of very large macromolecular sizes.
Nonlinear dynamics of the magnetosphere and space weather
NASA Technical Reports Server (NTRS)
Sharma, A. Surjalal
1996-01-01
The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.
Regional climate projection of the Maritime Continent using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
IM, E. S.; Eltahir, E. A. B.
2014-12-01
Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.
NASA Astrophysics Data System (ADS)
Brochier, Timothée; Auger, Pierre-Amaël; Pecquerie, Laure; Machu, Eric; Capet, Xavier; Thiaw, Modou; Mbaye, Baye Cheikh; Braham, Cheikh-Baye; Ettahiri, Omar; Charouki, Najib; Sène, Ousseynou Ndaw; Werner, Francisco; Brehmer, Patrice
2018-05-01
Small pelagic fish (SPF) species are heavily exploited in eastern boundary upwelling systems (EBUS) as their transformation products are increasingly used in the world's food chain. Management relies on regular monitoring, but there is a lack of robust theories for the emergence of the populations' traits and their evolution in highly variable environments. This work aims to address existing knowledge gaps by combining physical and biogeochemical modelling with an individual life-cycle based model applied to round sardinella (Sardinella aurita) off northwest Africa, a key species for regional food security. Our approach focused on the processes responsible for seasonal migrations, spatio-temporal size-structure, and interannual biomass fluctuations. Emergence of preferred habitat resulted from interactions between natal homing behavior and environmental variability that impacts early life stages. Exploration of the environment by the fishes was determined by swimming capabilities, mesoscale to regional habitat structure, and horizontal currents. Fish spatio-temporal abundance variability emerged from a complex combination of distinct life-history traits. An alongshore gradient in fish size distributions is reported and validated by in situ measurements. New insights into population structure are provided, within an area where the species is abundant year-round (Mauritania) and with latitudinal migrations of variable (300-1200 km) amplitude. Interannual biomass fluctuations were linked to modulations of fish recruitment over the Sahara Bank driven by variability in alongshore current intensity. The identified processes constitute an analytical framework that can be implemented in other EBUS and used to explore impacts of regional climate change on SPF.
Cook, C M; Persinger, M A
2001-04-01
We tested the hypothesis that proportionally more people with above average numbers of complex partial epileptic-like experiences before the experiment would report a proximal presence during applications of a weak (1 microTesla), frequency-modulated magnetic field over the right hemisphere. Each of 16 subjects sat in a darkened, quiet room and was exposed for 20 min. to complex fields, applied through a helmet, either along the right hemisphere or across both hemispheres. None of the 8 subjects with below average scores reported a presence during the applications of the magnetic fields while 75% and 60% of the 8 subjects with above average scores reported a presence during right hemispheric and bilateral stimulation, respectively.
Zelic, Gregory; Mottet, Denis; Lagarde, Julien
2012-01-01
Recent behavioral neuroscience research revealed that elementary reactive behavior can be improved in the case of cross-modal sensory interactions thanks to underlying multisensory integration mechanisms. Can this benefit be generalized to an ongoing coordination of movements under severe physical constraints? We choose a juggling task to examine this question. A central issue well-known in juggling lies in establishing and maintaining a specific temporal coordination among balls, hands, eyes and posture. Here, we tested whether providing additional timing information about the balls and hands motions by using external sound and tactile periodic stimulations, the later presented at the wrists, improved the behavior of jugglers. One specific combination of auditory and tactile metronome led to a decrease of the spatiotemporal variability of the juggler's performance: a simple sound associated to left and right tactile cues presented antiphase to each other, which corresponded to the temporal pattern of hands movement in the juggling task. A contrario, no improvements were obtained in the case of other auditory and tactile combinations. We even found a degraded performance when tactile events were presented alone. The nervous system thus appears able to integrate in efficient way environmental information brought by different sensory modalities, but only if the information specified matches specific features of the coordination pattern. We discuss the possible implications of these results for the understanding of the neuronal integration process implied in audio-tactile interaction in the context of complex voluntary movement, and considering the well-known gating effect of movement on vibrotactile perception. PMID:22384211
Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior
Hall, Peter A.; Fong, Geoffrey T.
2015-01-01
Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines. PMID:25859196
Capturing the Temporal Sequence of Interaction in Young Siblings
Steele, Fiona; Jenkins, Jennifer
2015-01-01
We explored whether young children exhibit subtypes of behavioral sequences during sibling interaction. Ten-minute, free-play observations of over 300 sibling dyads were coded for positivity, negativity and disengagement. The data were analyzed using growth mixture modeling (GMM). Younger (18-month-old) children’s temporal behavioral sequences showed a harmonious (53%) and a casual (47%) class. Older (approximately four-year-old) children’s behavior was more differentiated revealing a harmonious (25%), a deteriorating (31%), a recovery (22%) and a casual (22%) class. A more positive maternal affective climate was associated with more positive patterns. Siblings’ sequential behavioral patterns tended to be complementary rather than reciprocal in nature. The study illustrates a novel use of GMM and makes a theoretical contribution by showing that young children exhibit distinct types of temporal behavioral sequences that are related to parenting processes. PMID:25996957
Individual consistency in the behaviors of newly-settled reef fish
Meekan, Mark G.; McCormick, Mark I.
2015-01-01
Flexibility in behavior is advantageous for organisms that transition between stages of a complex life history. However, various constraints can set limits on plasticity, giving rise to the existence of personalities that have associated costs and benefits. Here, we document a field and laboratory experiment that examines the consistency of measures of boldness, activity, and aggressive behavior in the young of a tropical reef fish, Pomacentrus amboinensis (Pomacentridae) immediately following their transition between pelagic larval and benthic juvenile habitats. Newly-settled fish were observed in aquaria and in the field on replicated patches of natural habitat cleared of resident fishes. Seven behavioral traits representing aspects of boldness, activity and aggression were monitored directly and via video camera over short (minutes), medium (hours), and long (3 days) time scales. With the exception of aggression, these behaviors were found to be moderately or highly consistent over all time scales in both laboratory and field settings, implying that these fish show stable personalities within various settings. Our study is the first to examine the temporal constancy of behaviors in both field and laboratory settings in over various time scales at a critically important phase during the life cycle of a reef fish. PMID:26020013
Individual consistency in the behaviors of newly-settled reef fish.
White, James R; Meekan, Mark G; McCormick, Mark I
2015-01-01
Flexibility in behavior is advantageous for organisms that transition between stages of a complex life history. However, various constraints can set limits on plasticity, giving rise to the existence of personalities that have associated costs and benefits. Here, we document a field and laboratory experiment that examines the consistency of measures of boldness, activity, and aggressive behavior in the young of a tropical reef fish, Pomacentrus amboinensis (Pomacentridae) immediately following their transition between pelagic larval and benthic juvenile habitats. Newly-settled fish were observed in aquaria and in the field on replicated patches of natural habitat cleared of resident fishes. Seven behavioral traits representing aspects of boldness, activity and aggression were monitored directly and via video camera over short (minutes), medium (hours), and long (3 days) time scales. With the exception of aggression, these behaviors were found to be moderately or highly consistent over all time scales in both laboratory and field settings, implying that these fish show stable personalities within various settings. Our study is the first to examine the temporal constancy of behaviors in both field and laboratory settings in over various time scales at a critically important phase during the life cycle of a reef fish.
Fornix and medial temporal lobe lesions lead to comparable deficits in complex visual perception.
Lech, Robert K; Koch, Benno; Schwarz, Michael; Suchan, Boris
2016-05-04
Recent research dealing with the structures of the medial temporal lobe (MTL) has shifted away from exclusively investigating memory-related processes and has repeatedly incorporated the investigation of complex visual perception. Several studies have demonstrated that higher level visual tasks can recruit structures like the hippocampus and perirhinal cortex in order to successfully perform complex visual discriminations, leading to a perceptual-mnemonic or representational view of the medial temporal lobe. The current study employed a complex visual discrimination paradigm in two patients suffering from brain lesions with differing locations and origin. Both patients, one with extensive medial temporal lobe lesions (VG) and one with a small lesion of the anterior fornix (HJK), were impaired in complex discriminations while showing otherwise mostly intact cognitive functions. The current data confirmed previous results while also extending the perceptual-mnemonic theory of the MTL to the main output structure of the hippocampus, the fornix. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A data-driven prediction method for fast-slow systems
NASA Astrophysics Data System (ADS)
Groth, Andreas; Chekroun, Mickael; Kondrashov, Dmitri; Ghil, Michael
2016-04-01
In this work, we present a prediction method for processes that exhibit a mixture of variability on low and fast scales. The method relies on combining empirical model reduction (EMR) with singular spectrum analysis (SSA). EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity and serial correlation in the estimated noise, while SSA provides a decomposition of the complex dynamics into low-order components that capture spatio-temporal behavior on different time scales. Our study focuses on the data-driven modeling of partial observations from dynamical systems that exhibit power spectra with broad peaks. The main result in this talk is that the combination of SSA pre-filtering with EMR modeling improves, under certain circumstances, the modeling and prediction skill of such a system, as compared to a standard EMR prediction based on raw data. Specifically, it is the separation into "fast" and "slow" temporal scales by the SSA pre-filtering that achieves the improvement. We show, in particular that the resulting EMR-SSA emulators help predict intermittent behavior such as rapid transitions between specific regions of the system's phase space. This capability of the EMR-SSA prediction will be demonstrated on two low-dimensional models: the Rössler system and a Lotka-Volterra model for interspecies competition. In either case, the chaotic dynamics is produced through a Shilnikov-type mechanism and we argue that the latter seems to be an important ingredient for the good prediction skills of EMR-SSA emulators. Shilnikov-type behavior has been shown to arise in various complex geophysical fluid models, such as baroclinic quasi-geostrophic flows in the mid-latitude atmosphere and wind-driven double-gyre ocean circulation models. This pervasiveness of the Shilnikow mechanism of fast-slow transition opens interesting perspectives for the extension of the proposed EMR-SSA approach to more realistic situations.
Broderick, Patricia A
2013-06-21
The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system.
Broderick, Patricia A.
2013-01-01
The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system. PMID:24961434
NASA Astrophysics Data System (ADS)
Philibosian, B.; Meltzner, A. J.; Sieh, K.
2017-12-01
Understanding earthquake cycle processes is key to both seismic hazard and fault mechanics. A concept that has come into focus recently is that rupture segmentation and cyclicity can be complex, and that simple models of periodically repeating similar earthquakes are inadequate. The term "supercycle" has been used to describe repeating longer periods of strain accumulation that involve multiple fault ruptures. However, this term has become broadly applied, lumping together several distinct phenomena that likely have disparate underlying causes. Earthquake recurrence patterns have often been described as "clustered," but this term is also imprecise. It is necessary to develop a terminology framework that consistently and meaningfully describes all types of behavior that are observed. We divide earthquake cycle patterns into four major classes, each having different implications for seismic hazard and fault mechanics: 1) quasi-periodic similar ruptures, 2) temporally clustered similar ruptures, 3) temporally clustered complementary ruptures, also known as rupture cascades, in which neighboring fault patches fail sequentially, and 4) superimposed cycles in which neighboring fault patches have cycles with different recurrence intervals, but may occasionally rupture together. Rupture segmentation is classified as persistent, frequent, or transient depending on how reliably ruptures terminate in a given area. We discuss the paleoseismic and historical evidence currently available for each of these types of behavior on subduction zone megathrust faults worldwide. Due to the unique level of paleoseismic and paleogeodetic detail provided by the coral microatoll technique, the Sumatran Sunda megathrust provides one of the most complete records over multiple seismic cycles. Most subduction zones with sufficient data exhibit examples of persistent and frequent segmentation, with cycle patterns 1, 3, and 4 on different segments. Pattern 2 is generally confined to overlap zones between segments. This catalog of seismic cycle observations provides a basis for exploring and modeling root causes of rupture segmentation and cycle behavior. Researchers should expect to discover similar behavior styles on other megathrust faults and perhaps major crustal faults around the world.
Solute Transport Dynamics in a Large Hyporheic Corridor System
NASA Astrophysics Data System (ADS)
Zachara, J. M.; Chen, X.; Murray, C. J.; Shuai, P.; Rizzo, C.; Song, X.; Dai, H.
2016-12-01
A hyporheic corridor is an extended zone of groundwater surface water-interaction that occurs within permeable aquifer sediments in hydrologic continuity with a river. These systems are dynamic and tightly coupled to river stage variations that may occur over variable time scales. Here we describe the behavior of a persistent uranium (U) contaminant plume that exists within the hyporheic corridor of a large, managed river system - the Columbia River. Temporally dense monitoring data were collected for a two year period from wells located within the plume at varying distances up to 400 m from the river shore. Groundwater U originates from desorption of residual U in the lower vadose zone during periods of high river stage and associated elevated water table. U is weakly adsorbed to aquifer sediments because of coarse texture, and along with specific conductance, serves as a tracer of vadose zone source terms, solute transport pathways, and groundwater-surface water mixing. Complex U concentration and specific conductance trends were observed for all wells that varied with distance from the river shoreline and the river hydrograph, although trends for each well were generally repeatable for each year during the monitoring period. Statistical clustering analysis was used to identify four groups of wells that exhibited common trends in dissolved U and specific conductance. A flow and reactive transport code, PFLOTRAN, was implemented within a hydrogeologic model of the groundwater-surface water interaction zone to provide insights on hydrologic processes controlling monitoring trends and cluster behavior. The hydrogeologic model was informed by extensive subsurface characterization, with the spatially variable topography of a basal aquitard being one of several key parameters. Numerical tracer experiments using PFLOTRAN revealed the presence of temporally complex flow trajectories, spatially variable domains of groundwater - river water mixing, and locations of enhanced groundwater - river exchange that helped to explain monitoring trends. Observations and modeling results are integrated into a conceptual model of this highly complex and dynamic system with applicability to hyporheic corridor systems elsewhere.
The Behavioral Toxicology of High-Peak, Low Average Power, Pulsed Microwave Irradiation
1993-01-25
Psychometrika, 47, 95-99. Raslear, T. G. (1983). A test of the Pfanzagl bisection model in rats. Journal of Experimental Psychology : Animal Behavior Processes, 9...temporal bisection, Y-maze, treadmill running, food motivation (behavioraleconomics), and Persolt swim test . Reliable effects were found with the...subsequent task performance: temporal bisection, Y-maze, treadmill running, food motivation (behavioral economics), and Porsolt swim test . Reliable effects
Temporal Contingency as an Independent Component of Parenting Behavior.
ERIC Educational Resources Information Center
Keller, Heidi; Lohaus, Arnold; Volker, Susanne; Cappenberg, Martina; Chasiotis, Athanasios
1999-01-01
Examined relationship between temporal contingency of maternal behavior and interactional quality. Found that although prompt responding was typical, the existence of individual differences indicated that this tendency was expressed in different communicative channels. The relationship between contingency and ratings of interactional quality was…
Automated Discovery and Modeling of Sequential Patterns Preceding Events of Interest
NASA Technical Reports Server (NTRS)
Rohloff, Kurt
2010-01-01
The integration of emerging data manipulation technologies has enabled a paradigm shift in practitioners' abilities to understand and anticipate events of interest in complex systems. Example events of interest include outbreaks of socio-political violence in nation-states. Rather than relying on human-centric modeling efforts that are limited by the availability of SMEs, automated data processing technologies has enabled the development of innovative automated complex system modeling and predictive analysis technologies. We introduce one such emerging modeling technology - the sequential pattern methodology. We have applied the sequential pattern methodology to automatically identify patterns of observed behavior that precede outbreaks of socio-political violence such as riots, rebellions and coups in nation-states. The sequential pattern methodology is a groundbreaking approach to automated complex system model discovery because it generates easily interpretable patterns based on direct observations of sampled factor data for a deeper understanding of societal behaviors that is tolerant of observation noise and missing data. The discovered patterns are simple to interpret and mimic human's identifications of observed trends in temporal data. Discovered patterns also provide an automated forecasting ability: we discuss an example of using discovered patterns coupled with a rich data environment to forecast various types of socio-political violence in nation-states.
Local Variation of Hashtag Spike Trains and Popularity in Twitter
Sanlı, Ceyda; Lambiotte, Renaud
2015-01-01
We draw a parallel between hashtag time series and neuron spike trains. In each case, the process presents complex dynamic patterns including temporal correlations, burstiness, and all other types of nonstationarity. We propose the adoption of the so-called local variation in order to uncover salient dynamical properties, while properly detrending for the time-dependent features of a signal. The methodology is tested on both real and randomized hashtag spike trains, and identifies that popular hashtags present regular and so less bursty behavior, suggesting its potential use for predicting online popularity in social media. PMID:26161650
NASA Astrophysics Data System (ADS)
Manore, C.; Conrad, J.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Generous, E. N.
2017-12-01
Mosquito-borne diseases such as Zika, dengue, and chikungunya viruses have dynamics coupled to weather, ecology, human infrastructure, socio-economic demographics, and behavior. We use time-varying remote sensing and weather data, along with demographics and ecozones to predict risk through time for Zika, dengue, and chikungunya outbreaks in Brazil. We use distributed lag methods to quantify the lag between outbreaks and weather. Our statistical model indicates that the relationships between the variables are complex, but that quantifying risk is possible with the right data at appropriate spatio-temporal scales.
Wave Number Selection for Incompressible Parallel Jet Flows Periodic in Space
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
1997-01-01
The temporal instability of a spatially periodic parallel flow of an incompressible inviscid fluid for various jet velocity profiles is studied numerically using Floquet Analysis. The transition matrix at the end of a period is evaluated by direct numerical integration. For verification, a method based on approximating a continuous function by a series of step functions was used. Unstable solutions were found only over a limited range of wave numbers and have a band type structure. The results obtained are analogous to the behavior observed in systems exhibiting complexity at the edge of order and chaos.
NASA Astrophysics Data System (ADS)
Carpi, Laura; Masoller, Cristina
2018-02-01
Many natural systems display transitions among different dynamical regimes, which are difficult to identify when the data are noisy and high dimensional. A technologically relevant example is a fiber laser, which can display complex dynamical behaviors that involve nonlinear interactions of millions of cavity modes. Here we study the laminar-turbulence transition that occurs when the laser pump power is increased. By applying various data analysis tools to empirical intensity time series we characterize their persistence and demonstrate that at the transition temporal correlations can be precisely represented by a surprisingly simple model.
Mining Recent Temporal Patterns for Event Detection in Multivariate Time Series Data
Batal, Iyad; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos
2015-01-01
Improving the performance of classifiers using pattern mining techniques has been an active topic of data mining research. In this work we introduce the recent temporal pattern mining framework for finding predictive patterns for monitoring and event detection problems in complex multivariate time series data. This framework first converts time series into time-interval sequences of temporal abstractions. It then constructs more complex temporal patterns backwards in time using temporal operators. We apply our framework to health care data of 13,558 diabetic patients and show its benefits by efficiently finding useful patterns for detecting and diagnosing adverse medical conditions that are associated with diabetes. PMID:25937993
Delayed Reinforcement of Operant Behavior
ERIC Educational Resources Information Center
Lattal, Kennon A.
2010-01-01
The experimental analysis of delay of reinforcement is considered from the perspective of three questions that seem basic not only to understanding delay of reinforcement but also, by implication, the contributions of temporal relations between events to operant behavior. The first question is whether effects of the temporal relation between…
Age-related changes in the functional neuroanatomy of overt speech production.
Sörös, Peter; Bose, Arpita; Sokoloff, Lisa Guttman; Graham, Simon J; Stuss, Donald T
2011-08-01
Alterations of existing neural networks during healthy aging, resulting in behavioral deficits and changes in brain activity, have been described for cognitive, motor, and sensory functions. To investigate age-related changes in the neural circuitry underlying overt non-lexical speech production, functional MRI was performed in 14 healthy younger (21-32 years) and 14 healthy older individuals (62-84 years). The experimental task involved the acoustically cued overt production of the vowel /a/ and the polysyllabic utterance /pataka/. In younger and older individuals, overt speech production was associated with the activation of a widespread articulo-phonological network, including the primary motor cortex, the supplementary motor area, the cingulate motor areas, and the posterior superior temporal cortex, similar in the /a/ and /pataka/ condition. An analysis of variance with the factors age and condition revealed a significant main effect of age. Irrespective of the experimental condition, significantly greater activation was found in the bilateral posterior superior temporal cortex, the posterior temporal plane, and the transverse temporal gyri in younger compared to older individuals. Significantly greater activation was found in the bilateral middle temporal gyri, medial frontal gyri, middle frontal gyri, and inferior frontal gyri in older vs. younger individuals. The analysis of variance did not reveal a significant main effect of condition and no significant interaction of age and condition. These results suggest a complex reorganization of neural networks dedicated to the production of speech during healthy aging. Copyright © 2009 Elsevier Inc. All rights reserved.
Reinforcing and timing properties of water in the schedule-induced drinking situation.
Ruiz, Jorge A; López-Tolsa, Gabriela E; Pellón, Ricardo
2016-06-01
A series of recent studies from our laboratory have added to the preceding literature on the potential role of water (in addition to food) as a positive reinforcer in the schedule-induced drinking situation, thus suggesting that adjunctive behaviors might have motivational properties that make their engagement a preferable alternative. It has also been suggested that adjunctive behaviors serve as a behavioral clock that helps organisms to estimate time, making their engagement motivational, so that they enable more accurate time adjustment under temporal schedules. Here, we review some of these experiments on conditioned reinforcement and concurrent chains, as well as on temporal learning. Data presented in this article suggest that adjunctive behaviors may be a part of the behavior patterns maintained by reinforcement, thus serving towards a better performance in temporal tasks. Copyright © 2016 Elsevier B.V. All rights reserved.
Gomez, Jesse; Pestilli, Franco; Witthoft, Nathan; Golarai, Golijeh; Liberman, Alina; Poltoratski, Sonia; Yoon, Jennifer; Grill-Spector, Kalanit
2014-01-01
Summary It is unknown if the white matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective regions. Diffusion properties of portions of these tracts adjacent to face- and place-selective regions of ventral temporal cortex correlate with behavioral performance for face or place processing, respectively. Strikingly, adults with developmental prosopagnosia (face blindness) express an atypical structure-behavior relationship near face-selective cortex, suggesting that white matter atypicalities in this region may have behavioral consequences. These data suggest that examining the interplay between cortical function, anatomical connectivity, and visual behavior is integral to understanding functional networks and their role in producing visual abilities and deficits. PMID:25569351
High-resolution Temporal Representations of Alcohol and Tobacco Behaviors from Social Media Data.
Huang, Tom; Elghafari, Anas; Relia, Kunal; Chunara, Rumi
2017-11-01
Understanding tobacco- and alcohol-related behavioral patterns is critical for uncovering risk factors and potentially designing targeted social computing intervention systems. Given that we make choices multiple times per day, hourly and daily patterns are critical for better understanding behaviors. Here, we combine natural language processing, machine learning and time series analyses to assess Twitter activity specifically related to alcohol and tobacco consumption and their sub-daily, daily and weekly cycles. Twitter self-reports of alcohol and tobacco use are compared to other data streams available at similar temporal resolution. We assess if discussion of drinking by inferred underage versus legal age people or discussion of use of different types of tobacco products can be differentiated using these temporal patterns. We find that time and frequency domain representations of behaviors on social media can provide meaningful and unique insights, and we discuss the types of behaviors for which the approach may be most useful.
Fluctuation scaling, Taylor's law, and crime.
Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May
2014-01-01
Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.
Fluctuation Scaling, Taylor’s Law, and Crime
Hanley, Quentin S.; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May
2014-01-01
Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor’s law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor’s law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057±0.026) while burglary exhibited a greater exponent (α = 1.292±0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor’s law exponents from 1.43±0.12 (Drugs) to 2.094±0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation. PMID:25271781
Pakrashi, Sunandan; Dalai, Swayamprava; Ritika; Sneha, B; Chandrasekaran, N; Mukherjee, Amitava
2012-10-01
This study on a microcosm, brings out the temporal changes in physico-chemical behavior of aluminum oxide nanoparticles (for a period of 210 days), at environmentally relevant concentrations (1000 μg/L and below). The dynamics of particle behavior in terms of mean hydrodynamic diameter, specific surface area and dissolution of soluble aluminum and, their possible ecological implications have been presented in this study. A thorough statistical analysis brings out nanoparticle behavior, where a rapid aggregation of particles (79±13 nm at 0 h to 1464±80 nm at 48 h), with a decrease in specific surface area (32 m2/g at 0 h to 1.7 m2/g at 48 h) was observed. Ion release profile indicated a significant increase in soluble aluminum concentration only after 36 h (277±15 μg/L at 0 h to 462±3 μg/L at 36 h) which reduced over a period of 60 days (279±20 μg/L). A differential response at 1000 μg/L concentration was observed, short term exposure (5 days) showed an immediate effect on the resident algal population (∼25% decreased viability) and the long term (7 months/210 days) exposure showed a gradual recovery. Thus, nanomaterials may not have the stipulated toxic response, at low concentration and longer standing period, presumably owing to the complexity of the natural systems. Copyright © 2012 Elsevier Inc. All rights reserved.
Bifurcation and stability in a model of moist convection in a shearing environment
NASA Technical Reports Server (NTRS)
Shirer, H. N.
1980-01-01
The truncated spectral system (model I) of shallow moist two-dimensional convection discussed by Shirer and Dutton (1979) is expanded to eleven coefficients (model II) in order to include a basic wind. Cloud streets, the atmospheric analog of the solutions to model II, are typically observed in an environment containing a shearing basic motion field. Analysis of the branching behavior of solutions to mode II shows that, if the basic wind direction varies with height, very complex temporal behavior is possible as the modified Rayleigh number HR is increased sufficiently. The first convective solution is periodic, corresponding to a cloud band that propagates downwind; but secondary branching to a two-dimensional torus can occur for larger values of HR. Orientation band formulas are derived whose predictions generally agree with the results of previous studies.
Interaction between dorsal and ventral processing streams: where, when and how?
Cloutman, Lauren L
2013-11-01
The execution of complex visual, auditory, and linguistic behaviors requires a dynamic interplay between spatial ('where/how') and non-spatial ('what') information processed along the dorsal and ventral processing streams. However, while it is acknowledged that there must be some degree of interaction between the two processing networks, how they interact, both anatomically and functionally, is a question which remains little explored. The current review examines the anatomical, temporal, and behavioral evidence regarding three potential models of dual stream interaction: (1) computations along the two pathways proceed independently and in parallel, reintegrating within shared target brain regions; (2) processing along the separate pathways is modulated by the existence of recurrent feedback loops; and (3) information is transferred directly between the two pathways at multiple stages and locations along their trajectories. Copyright © 2012 Elsevier Inc. All rights reserved.
Permutation Entropy Applied to Movement Behaviors of Drosophila Melanogaster
NASA Astrophysics Data System (ADS)
Liu, Yuedan; Chon, Tae-Soo; Baek, Hunki; Do, Younghae; Choi, Jin Hee; Chung, Yun Doo
Movement of different strains in Drosophila melanogaster was continuously observed by using computer interfacing techniques and was analyzed by permutation entropy (PE) after exposure to toxic chemicals, toluene (0.1 mg/m3) and formaldehyde (0.01 mg/m3). The PE values based on one-dimensional time series position (vertical) data were variable according to internal constraint (i.e. strains) and accordingly increased in response to external constraint (i.e. chemicals) by reflecting diversity in movement patterns from both normal and intoxicated states. Cross-correlation function revealed temporal associations between the PE values and between the component movement patterns in different chemicals and strains through the period of intoxication. The entropy based on the order of position data could be a useful means for complexity measure in behavioral changes and for monitoring the impact of stressors in environment.
Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks
NASA Technical Reports Server (NTRS)
Zaal, Peter; Sweet, Barbara
2010-01-01
Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.
Reconceptualizing Children's Suggestibility: Bidirectional and Temporal Properties
ERIC Educational Resources Information Center
Gilstrap, Livia L.; Ceci, Stephen J.
2005-01-01
Forty-one children (3 to 7 years) were exposed to a staged event and later interviewed by 1 of 41 professional interviewers. All interviews were coded with a detailed, mutually exclusive, and exhaustive coding scheme capturing adult behaviors (leading questions vs. neutral) and child behaviors (acquiescence vs. denial) in a temporally organized…
Temporal and spatial behavior of pharmaceuticals in Narragansett Bay, Rhode Island, United States.
The behavior and fate of pharmaceutical ingredients in coastal marine ecosystems are not well understood. To address this, the spatial and temporal distribution of 15 high-volume pharmaceuticals were measured over a 1-yr period in Narragansett Bay (RI, USA) to elucidate factors a...
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
NASA Astrophysics Data System (ADS)
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity.
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
Long-Lag, Wide-pulse Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargle, . D.; Hakkila, J.; Giblin, T. W.
2004-01-01
Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.
Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Takahashi, Reinaldo N; Bertoglio, Leandro J; Cunha, Rodrigo A; Prediger, Rui D
2016-08-01
The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). The nigrostriatal dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC), which has been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Using behavioral, neurochemical, and electrophysiological approaches, we investigated the temporal dissociation between the role of the DLS and PFC in the appearance of anhedonia and defense behaviors relevant to depression in rats submitted to bilateral DLS lesions with 6-hydroxydopamine (6-OHDA; 10 μg/hemisphere). 6-OHDA induced partial dopaminergic nigrostriatal damage with no gross motor impairments. Anhedonic-like behaviors were observed in the splash and sucrose consumption tests only 7 days after 6-OHDA lesion. By contrast, defense behaviors relevant to depression evaluated in the forced swimming test and social withdrawal only emerged 21 days after 6-OHDA lesion when anhedonia was no longer present. These temporally dissociated behavioral alterations were coupled to temporal- and structure-dependent alterations in dopaminergic markers such as dopamine D1 and D2 receptors and dopamine transporter, leading to altered dopamine sensitivity in DLS and PFC circuits, evaluated electrophysiologically. These results provide the first demonstration of a dissociated involvement of the DLS and PFC in anhedonic-like and defense behaviors relevant to depression in 6-OHDA-lesioned rats, which was linked with temporal fluctuations in dopaminergic receptor density, leading to altered dopaminergic system sensitivity in these two brain structures. This sheds new light to the duality between depressive and anhedonic symptoms in PD.
Chen, Yaning; Li, Weihong; Liu, Zuhan; Wei, Chunmeng; Tang, Jie
2013-01-01
Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD), classical statistics, and geostatistics. The main conclusions are as follows (1) The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2) The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3) The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform. PMID:23843732
Modeling habits as self-sustaining patterns of sensorimotor behavior
Egbert, Matthew D.; Barandiaran, Xabier E.
2014-01-01
In the recent history of psychology and cognitive neuroscience, the notion of habit has been reduced to a stimulus-triggered response probability correlation. In this paper we use a computational model to present an alternative theoretical view (with some philosophical implications), where habits are seen as self-maintaining patterns of behavior that share properties in common with self-maintaining biological processes, and that inhabit a complex ecological context, including the presence and influence of other habits. Far from mechanical automatisms, this organismic and self-organizing concept of habit can overcome the dominating atomistic and statistical conceptions, and the high temporal resolution effects of situatedness, embodiment and sensorimotor loops emerge as playing a more central, subtle and complex role in the organization of behavior. The model is based on a novel “iterant deformable sensorimotor medium (IDSM),” designed such that trajectories taken through sensorimotor-space increase the likelihood that in the future, similar trajectories will be taken. We couple the IDSM to sensors and motors of a simulated robot, and show that under certain conditions, the IDSM conditions, the IDSM forms self-maintaining patterns of activity that operate across the IDSM, the robot's body, and the environment. We present various environments and the resulting habits that form in them. The model acts as an abstraction of habits at a much needed sensorimotor “meso-scale” between microscopic neuron-based models and macroscopic descriptions of behavior. Finally, we discuss how this model and extensions of it can help us understand aspects of behavioral self-organization, historicity and autonomy that remain out of the scope of contemporary representationalist frameworks. PMID:25152724
The temporal representation of speech in a nonlinear model of the guinea pig cochlea
NASA Astrophysics Data System (ADS)
Holmes, Stephen D.; Sumner, Christian J.; O'Mard, Lowel P.; Meddis, Ray
2004-12-01
The temporal representation of speechlike stimuli in the auditory-nerve output of a guinea pig cochlea model is described. The model consists of a bank of dual resonance nonlinear filters that simulate the vibratory response of the basilar membrane followed by a model of the inner hair cell/auditory nerve complex. The model is evaluated by comparing its output with published physiological auditory nerve data in response to single and double vowels. The evaluation includes analyses of individual fibers, as well as ensemble responses over a wide range of best frequencies. In all cases the model response closely follows the patterns in the physiological data, particularly the tendency for the temporal firing pattern of each fiber to represent the frequency of a nearby formant of the speech sound. In the model this behavior is largely a consequence of filter shapes; nonlinear filtering has only a small contribution at low frequencies. The guinea pig cochlear model produces a useful simulation of the measured physiological response to simple speech sounds and is therefore suitable for use in more advanced applications including attempts to generalize these principles to the response of human auditory system, both normal and impaired. .
Eastman, Kyler M; Huk, Alexander C
2012-01-01
Neurophysiological studies in awake, behaving primates (both human and non-human) have focused with increasing scrutiny on the temporal relationship between neural signals and behaviors. Consequently, laboratories are often faced with the problem of developing experimental equipment that can support data recording with high temporal precision and also be flexible enough to accommodate a wide variety of experimental paradigms. To this end, we have developed a MATLAB toolbox that integrates several modern pieces of equipment, but still grants experimenters the flexibility of a high-level programming language. Our toolbox takes advantage of three popular and powerful technologies: the Plexon apparatus for neurophysiological recordings (Plexon, Inc., Dallas, TX, USA), a Datapixx peripheral (Vpixx Technologies, Saint-Bruno, QC, Canada) for control of analog, digital, and video input-output signals, and the Psychtoolbox MATLAB toolbox for stimulus generation (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). The PLDAPS ("Platypus") system is designed to support the study of the visual systems of awake, behaving primates during multi-electrode neurophysiological recordings, but can be easily applied to other related domains. Despite its wide range of capabilities and support for cutting-edge video displays and neural recording systems, the PLDAPS system is simple enough for someone with basic MATLAB programming skills to design their own experiments.
Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback
NASA Astrophysics Data System (ADS)
Gurevich, Svetlana V.
2013-05-01
We are interested in stability properties of a single localized structure in a three-component reaction-diffusion system subjected to the time-delayed feedback. We shall show that variation in the product of the delay time and the feedback strength leads to complex dynamical behavior of the system, including formation of target patterns, spontaneous motion, and spontaneous breathing as well as various complex structures, arising from combination of different oscillatory instabilities. In the case of spontaneous motion, we provide a bifurcation analysis of the delayed system and derive an order parameter equation for the position of the localized structure, explicitly describing its temporal evolution in the vicinity of the bifurcation point. This equation is a subject to a nonlinear delay differential equation, which can be transformed to the normal form of the pitchfork drift bifurcation.
Fulham, Elizabeth; Mullan, Barbara
2011-06-01
An estimated 25% of the populations of both the United States and Australia suffer from foodborne illness every year, generally as a result of incorrect food handling practices. The aim of the current study was to determine through the application of the theory of planned behavior what motivates these behaviors and to supplement the model with two aspects of temporal self-regulation theory--behavioral prepotency and executive function--in an attempt to bridge the "intention-behavior gap." A prospective 1-week design was utilized to investigate the prediction of food hygiene using the theory of planned behavior with the additional variables of behavioral prepotency and executive function. One hundred forty-nine undergraduate psychology students completed two neurocognitive executive function tasks and a self-report questionnaire assessing theory of planned behavior variables, behavioral prepotency, and intentions to perform hygienic food handling behaviors. A week later, behavior was assessed via a follow-up self-report questionnaire. It was found that subjective norm and perceived behavioral control predicted intentions and intentions predicted behavior. However, behavioral prepotency was found to be the strongest predictor of behavior, over and above intentions, suggesting that food hygiene behavior is habitual. Neither executive function measure of self-regulation predicted any additional variance. These results provide support for the utility of the theory of planned behavior in this health domain, but the augmentation of the theory with two aspects of temporal self-regulation theory was only partially successful.
Pierce, Jordan E; McDowell, Jennifer E
2016-02-01
Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. Copyright © 2016 the American Physiological Society.
How social cognition can inform social decision making.
Lee, Victoria K; Harris, Lasana T
2013-12-25
Social decision-making is often complex, requiring the decision-maker to make inferences of others' mental states in addition to engaging traditional decision-making processes like valuation and reward processing. A growing body of research in neuroeconomics has examined decision-making involving social and non-social stimuli to explore activity in brain regions such as the striatum and prefrontal cortex, largely ignoring the power of the social context. Perhaps more complex processes may influence decision-making in social vs. non-social contexts. Years of social psychology and social neuroscience research have documented a multitude of processes (e.g., mental state inferences, impression formation, spontaneous trait inferences) that occur upon viewing another person. These processes rely on a network of brain regions including medial prefrontal cortex (MPFC), superior temporal sulcus (STS), temporal parietal junction, and precuneus among others. Undoubtedly, these social cognition processes affect social decision-making since mental state inferences occur spontaneously and automatically. Few studies have looked at how these social inference processes affect decision-making in a social context despite the capability of these inferences to serve as predictions that can guide future decision-making. Here we review and integrate the person perception and decision-making literatures to understand how social cognition can inform the study of social decision-making in a way that is consistent with both literatures. We identify gaps in both literatures-while behavioral economics largely ignores social processes that spontaneously occur upon viewing another person, social psychology has largely failed to talk about the implications of social cognition processes in an economic decision-making context-and examine the benefits of integrating social psychological theory with behavioral economic theory.
How social cognition can inform social decision making
Lee, Victoria K.; Harris, Lasana T.
2013-01-01
Social decision-making is often complex, requiring the decision-maker to make inferences of others' mental states in addition to engaging traditional decision-making processes like valuation and reward processing. A growing body of research in neuroeconomics has examined decision-making involving social and non-social stimuli to explore activity in brain regions such as the striatum and prefrontal cortex, largely ignoring the power of the social context. Perhaps more complex processes may influence decision-making in social vs. non-social contexts. Years of social psychology and social neuroscience research have documented a multitude of processes (e.g., mental state inferences, impression formation, spontaneous trait inferences) that occur upon viewing another person. These processes rely on a network of brain regions including medial prefrontal cortex (MPFC), superior temporal sulcus (STS), temporal parietal junction, and precuneus among others. Undoubtedly, these social cognition processes affect social decision-making since mental state inferences occur spontaneously and automatically. Few studies have looked at how these social inference processes affect decision-making in a social context despite the capability of these inferences to serve as predictions that can guide future decision-making. Here we review and integrate the person perception and decision-making literatures to understand how social cognition can inform the study of social decision-making in a way that is consistent with both literatures. We identify gaps in both literatures—while behavioral economics largely ignores social processes that spontaneously occur upon viewing another person, social psychology has largely failed to talk about the implications of social cognition processes in an economic decision-making context—and examine the benefits of integrating social psychological theory with behavioral economic theory. PMID:24399928
Engineering a light-activated caspase-3 for precise ablation of neurons in vivo.
Smart, Ashley D; Pache, Roland A; Thomsen, Nathan D; Kortemme, Tanja; Davis, Graeme W; Wells, James A
2017-09-26
The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases. Here, we describe the engineering of a light-activated human caspase-3 (Caspase-LOV) by exploiting its natural spring-loaded activation mechanism through rational insertion of the light-sensitive LOV2 domain that expands upon illumination. We apply the light-activated caspase (Caspase-LOV) to study neurodegeneration in larval and adult Drosophila Using the tissue-specific expression system (UAS)-GAL4, we express Caspase-LOV specifically in three neuronal cell types: retinal, sensory, and motor neurons. Illumination of whole flies or specific tissues containing Caspase-LOV-induced cell death and allowed us to follow the time course and sequence of neurodegenerative events. For example, we find that global synchronous activation of caspase-3 drives degeneration with a different time-course and extent in sensory versus motor neurons. We believe the Caspase-LOV tool we engineered will have many other uses for neurobiologists and others for specific temporal and spatial ablation of cells in complex organisms.
Engineering a light-activated caspase-3 for precise ablation of neurons in vivo
Smart, Ashley D.; Pache, Roland A.; Thomsen, Nathan D.; Kortemme, Tanja; Davis, Graeme W.; Wells, James A.
2017-01-01
The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases. Here, we describe the engineering of a light-activated human caspase-3 (Caspase-LOV) by exploiting its natural spring-loaded activation mechanism through rational insertion of the light-sensitive LOV2 domain that expands upon illumination. We apply the light-activated caspase (Caspase-LOV) to study neurodegeneration in larval and adult Drosophila. Using the tissue-specific expression system (UAS)-GAL4, we express Caspase-LOV specifically in three neuronal cell types: retinal, sensory, and motor neurons. Illumination of whole flies or specific tissues containing Caspase-LOV–induced cell death and allowed us to follow the time course and sequence of neurodegenerative events. For example, we find that global synchronous activation of caspase-3 drives degeneration with a different time-course and extent in sensory versus motor neurons. We believe the Caspase-LOV tool we engineered will have many other uses for neurobiologists and others for specific temporal and spatial ablation of cells in complex organisms. PMID:28893998
Landscape analysis of methane flux across complex terrain
NASA Astrophysics Data System (ADS)
Kaiser, K. E.; McGlynn, B. L.; Dore, J. E.
2014-12-01
Greenhouse gas (GHG) fluxes into and out of the soil are influenced by environmental conditions resulting in landscape-mediated patterns of spatial heterogeneity. The temporal variability of inputs (e.g. precipitation) and internal redistribution (e.g. groundwater flow) and dynamics (e.g. microbial communities) make predicating these fluxes challenging. Complex terrain can provide a laboratory for improving understanding of the spatial patterns, temporal dynamics, and drivers of trace gas flux rates, requisite to constraining current GHG budgets and future scenarios. Our research builds on previous carbon cycle research at the USFS Tenderfoot Creek Experimental Forest, Little Belt Mountains, Montana that highlighted the relationships between landscape position and seasonal CO2 efflux, induced by the topographic redistribution of water. Spatial patterns and landscape scale mediation of CH4 fluxes in seasonally aerobic soils have not yet been elucidated. We measured soil methane concentrations and fluxes across a full range of landscape positions, leveraging topographic and seasonal gradients, to examine the relationships between environmental variables, hydrologic dynamics, and CH4 production and consumption. We determined that a threshold of ~30% VWC distinguished the direction of flux at individual time points, with the riparian area and uplands having distinct source/sink characteristics respectively. Riparian locations were either strong sources or fluctuated between sink and source behavior, resulting in near neutral seasonal flux. Upland sites however, exhibited significant relationships between sink strength and topographic/energy balance indices. Our results highlight spatial and temporal coherence to landscape scale heterogeneity of CH4 dynamics that can improve estimates of landscape scale CH4 balances and sensitivity to change.
Optothermal transport behavior in whispering gallery mode optical cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani, Soheil; Armani, Andrea M., E-mail: armani@usc.edu; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089
Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longermore » solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.« less
Network modulation during complex syntactic processing
den Ouden, Dirk-Bart; Saur, Dorothee; Mader, Wolfgang; Schelter, Björn; Lukic, Sladjana; Wali, Eisha; Timmer, Jens; Thompson, Cynthia K.
2011-01-01
Complex sentence processing is supported by a left-lateralized neural network including inferior frontal cortex and posterior superior temporal cortex. This study investigates the pattern of connectivity and information flow within this network. We used fMRI BOLD data derived from 12 healthy participants reported in an earlier study (Thompson, C. K., Den Ouden, D. B., Bonakdarpour, B., Garibaldi, K., & Parrish, T. B. (2010b). Neural plasticity and treatment-induced recovery of sentence processing in agrammatism. Neuropsychologia, 48(11), 3211-3227) to identify activation peaks associated with object-cleft over syntactically less complex subject-cleft processing. Directed Partial Correlation Analysis was conducted on time series extracted from participant-specific activation peaks and showed evidence of functional connectivity between four regions, linearly between premotor cortex, inferior frontal gyrus, posterior superior temporal sulcus and anterior middle temporal gyrus. This pattern served as the basis for Dynamic Causal Modeling of networks with a driving input to posterior superior temporal cortex, which likely supports thematic role assignment, and networks with a driving input to inferior frontal cortex, a core region associated with syntactic computation. The optimal model was determined through both frequentist and Bayesian model selection and turned out to reflect a network with a primary drive from inferior frontal cortex and modulation of the connection between inferior frontal and posterior superior temporal cortex by complex sentence processing. The winning model also showed a substantive role for a feedback mechanism from posterior superior temporal cortex back to inferior frontal cortex. We suggest that complex syntactic processing is driven by word-order analysis, supported by inferior frontal cortex, in an interactive relation with posterior superior temporal cortex, which supports verb argument structure processing. PMID:21820518
Analogy as a strategy for supporting complex problem solving under uncertainty.
Chan, Joel; Paletz, Susannah B F; Schunn, Christian D
2012-11-01
Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.
NASA Astrophysics Data System (ADS)
Azami, Hamed; Escudero, Javier
2017-01-01
Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.
Casarrubea, M; Jonsson, G K; Faulisi, F; Sorbera, F; Di Giovanni, G; Benigno, A; Crescimanno, G; Magnusson, M S
2015-01-15
A basic tenet in the realm of modern behavioral sciences is that behavior consists of patterns in time. For this reason, investigations of behavior deal with sequences that are not easily perceivable by the unaided observer. This problem calls for improved means of detection, data handling and analysis. This review focuses on the analysis of the temporal structure of behavior carried out by means of a multivariate approach known as T-pattern analysis. Using this technique, recurring sequences of behavioral events, usually hard to detect, can be unveiled and carefully described. T-pattern analysis has been successfully applied in the study of various aspects of human or animal behavior such as behavioral modifications in neuro-psychiatric diseases, route-tracing stereotypy in mice, interaction between human subjects and animal or artificial agents, hormonal-behavioral interactions, patterns of behavior associated with emesis and, in our laboratories, exploration and anxiety-related behaviors in rodents. After describing the theory and concepts of T-pattern analysis, this review will focus on the application of the analysis to the study of the temporal characteristics of behavior in different species from rodents to human beings. This work could represent a useful background for researchers who intend to employ such a refined multivariate approach to the study of behavior. Copyright © 2014 Elsevier B.V. All rights reserved.
A computational framework for modeling targets as complex adaptive systems
NASA Astrophysics Data System (ADS)
Santos, Eugene; Santos, Eunice E.; Korah, John; Murugappan, Vairavan; Subramanian, Suresh
2017-05-01
Modeling large military targets is a challenge as they can be complex systems encompassing myriad combinations of human, technological, and social elements that interact, leading to complex behaviors. Moreover, such targets have multiple components and structures, extending across multiple spatial and temporal scales, and are in a state of change, either in response to events in the environment or changes within the system. Complex adaptive system (CAS) theory can help in capturing the dynamism, interactions, and more importantly various emergent behaviors, displayed by the targets. However, a key stumbling block is incorporating information from various intelligence, surveillance and reconnaissance (ISR) sources, while dealing with the inherent uncertainty, incompleteness and time criticality of real world information. To overcome these challenges, we present a probabilistic reasoning network based framework called complex adaptive Bayesian Knowledge Base (caBKB). caBKB is a rigorous, overarching and axiomatic framework that models two key processes, namely information aggregation and information composition. While information aggregation deals with the union, merger and concatenation of information and takes into account issues such as source reliability and information inconsistencies, information composition focuses on combining information components where such components may have well defined operations. Since caBKBs can explicitly model the relationships between information pieces at various scales, it provides unique capabilities such as the ability to de-aggregate and de-compose information for detailed analysis. Using a scenario from the Network Centric Operations (NCO) domain, we will describe how our framework can be used for modeling targets with a focus on methodologies for quantifying NCO performance metrics.
How the brain attunes to sentence processing: Relating behavior, structure, and function
Fengler, Anja; Meyer, Lars; Friederici, Angela D.
2016-01-01
Unlike other aspects of language comprehension, the ability to process complex sentences develops rather late in life. Brain maturation as well as verbal working memory (vWM) expansion have been discussed as possible reasons. To determine the factors contributing to this functional development, we assessed three aspects in different age-groups (5–6 years, 7–8 years, and adults): first, functional brain activity during the processing of increasingly complex sentences; second, brain structure in language-related ROIs; and third, the behavioral comprehension performance on complex sentences and the performance on an independent vWM test. At the whole-brain level, brain functional data revealed a qualitatively similar neural network in children and adults including the left pars opercularis (PO), the left inferior parietal lobe together with the posterior superior temporal gyrus (IPL/pSTG), the supplementary motor area, and the cerebellum. While functional activation of the language-related ROIs PO and IPL/pSTG predicted sentence comprehension performance for all age-groups, only adults showed a functional selectivity in these brain regions with increased activation for more complex sentences. The attunement of both the PO and IPL/pSTG toward a functional selectivity for complex sentences is predicted by region-specific gray matter reduction while that of the IPL/pSTG is additionally predicted by vWM span. Thus, both structural brain maturation and vWM expansion provide the basis for the emergence of functional selectivity in language-related brain regions leading to more efficient sentence processing during development. PMID:26777477
Correlation between vortex structures and unsteady loads for flapping motion in hover
NASA Astrophysics Data System (ADS)
Jardin, Thierry; Chatellier, Ludovic; Farcy, Alain; David, Laurent
2009-10-01
During the past decade, efforts were made to develop a new generation of unmanned aircrafts, qualified as Micro-Air Vehicles. The particularity of these systems resides in their maximum dimension limited to 15 cm, which, in terms of aerodynamics, corresponds to low Reynolds number flows ( Re ≈ 102 to 104). At low Reynolds number, the concept of flapping wings seems to be an interesting alternative to the conventional fixed and rotary wings. Despite the fact that this concept may lead to enhanced lift forces and efficiency ratios, it allows hovering coupled with a low-noise generation. Previous studies (Dickinson et al. in Science 284:1954-1960, 1999) revealed that the flow engendered by flapping wings is highly vortical and unsteady, inducing significant temporal variations of the loads experienced by the airfoil. In order to enhance the aerodynamic performance of such flapping wings, it is essential to give further insight into the loads generating mechanisms by correlating the spatial and temporal evolution of the vortical structures together with the time-dependent lift and drag. In this paper, Time Resolved Particle Image Velocimetry is used as a basis to evaluate both unsteady forces and vortical structures generated by an airfoil undergoing complex motion (i.e. asymmetric flapping flight), through the momentum equation approach and a multidimensional wavelet-like vortex parameterization method, respectively. The momentum equation approach relies on the integration of flow variables inside and around a control volume surrounding the airfoil (Noca et al. in J Fluids Struct 11:345-350, 1997; Unal et al. in J Fluids Struct 11:965-971, 1997). Besides the direct link performed between the flow behavior and the force mechanisms, the load characterization is here non-intrusive and specifically convenient for flapping flight studies thanks to its low Reynolds flows’ sensitivity and adaptability to moving bodies. Results are supported by a vortex parameterization which evaluates the circulation of the multiple vortices generated in such complex flows. The temporal evolution of the loads matches the flow behavior and hence reveals the preponderant inertial force component and that due to vortical structures.
The neuropsychology of the Klüver-Bucy syndrome in children.
Lippe, S; Gonin-Flambois, C; Jambaqué, I
2013-01-01
The Klüver-Bucy syndrome (KBS) is characterized by a number of peculiar behavioral symptoms. The syndrome was first observed in 1939 by Heinrich Klüver and Paul Bucy in the rhesus monkey following removal of the greater portion of the monkey's temporal lobes and rhinencephalon. The animal showed (a) visual agnosia (inability to recognize objects without general loss of visual discrimination), (b) excessive oral tendency (oral exploration of objects), (c) hypermetamorphosis (excessive visual attentiveness), (d) placidity with loss of normal fear and anger responses, (e) altered sexual behavior manifesting mainly as marked and indiscriminate hypersexuality, and (f) changes in eating behavior. In humans, KBS can be complete or incomplete. It occurs as a consequence of neurological disorders that essentially cause destruction or dysfunction of bilateral mesial temporal lobe structures (i.e., Pick disease, Alzheimer disease, cerebral trauma, cerebrovascular accidents, temporal lobe epilepsy, herpetic encephalopathy, heat stroke). As for epilepsy, complete and incomplete KBS are well documented in temporal lobe epilepsy, temporal lobectomy, and partial status epilepticus. KBS can occur at any age. Children seem to show similar symptoms to adults, although some differences in the manifestations of symptoms may be related to the fact that children have not yet learned certain behaviors. Copyright © 2013 Elsevier B.V. All rights reserved.
Chauhan, Abha; Gu, Feng; Essa, Musthafa M; Wegiel, Jerzy; Kaur, Kulbir; Brown, William Ted; Chauhan, Ved
2011-04-01
Mitochondria play important roles in generation of free radicals, ATP formation, and in apoptosis. We studied the levels of mitochondrial electron transport chain (ETC) complexes, that is, complexes I, II, III, IV, and V, in brain tissue samples from the cerebellum and the frontal, parietal, occipital, and temporal cortices of subjects with autism and age-matched control subjects. The subjects were divided into two groups according to their ages: Group A (children, ages 4-10 years) and Group B (adults, ages 14-39 years). In Group A, we observed significantly lower levels of complexes III and V in the cerebellum (p<0.05), of complex I in the frontal cortex (p<0.05), and of complexes II (p<0.01), III (p<0.01), and V (p<0.05) in the temporal cortex of children with autism as compared to age-matched control subjects, while none of the five ETC complexes was affected in the parietal and occipital cortices in subjects with autism. In the cerebellum and temporal cortex, no overlap was observed in the levels of these ETC complexes between subjects with autism and control subjects. In the frontal cortex of Group A, a lower level of ETC complexes was observed in a subset of autism cases, that is, 60% (3/5) for complexes I, II, and V, and 40% (2/5) for complexes III and IV. A striking observation was that the levels of ETC complexes were similar in adult subjects with autism and control subjects (Group B). A significant increase in the levels of lipid hydroperoxides, an oxidative stress marker, was also observed in the cerebellum and temporal cortex in the children with autism. These results suggest that the expression of ETC complexes is decreased in the cerebellum and the frontal and temporal regions of the brain in children with autism, which may lead to abnormal energy metabolism and oxidative stress. The deficits observed in the levels of ETC complexes in children with autism may readjust to normal levels by adulthood. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Chauhan, Abha; Gu, Feng; Essa, Musthafa M.; Wegiel, Jerzy; Kaur, Kulbir; Brown, William Ted; Chauhan, Ved
2016-01-01
Mitochondria play important roles in generation of free radicals, ATP formation, and in apoptosis. We studied the levels of mitochondrial electron transport chain (ETC) complexes, that is, complexes I, II, III, IV, and V, in brain tissue samples from the cerebellum and the frontal, parietal, occipital, and temporal cortices of subjects with autism and age-matched control subjects. The subjects were divided into two groups according to their ages: Group A (children, ages 4–10 years) and Group B (adults, ages 14–39 years). In Group A, we observed significantly lower levels of complexes III and V in the cerebellum (p < 0.05), of complex I in the frontal cortex (p < 0.05), and of complexes II (p < 0.01), III (p<0.01), and V (p < 0.05) in the temporal cortex of children with autism as compared to age-matched control subjects, while none of the five ETC complexes was affected in the parietal and occipital cortices in subjects with autism. In the cerebellum and temporal cortex, no overlap was observed in the levels of these ETC complexes between subjects with autism and control subjects. In the frontal cortex of Group A, a lower level of ETC complexes was observed in a subset of autism cases, that is, 60% (3/5) for complexes I, II, and V, and 40% (2/5) for complexes III and IV. A striking observation was that the levels of ETC complexes were similar in adult subjects with autism and control subjects (Group B). A significant increase in the levels of lipid hydroperoxides, an oxidative stress marker, was also observed in the cerebellum and temporal cortex in the children with autism. These results suggest that the expression of ETC complexes is decreased in the cerebellum and the frontal and temporal regions of the brain in children with autism, which may lead to abnormal energy metabolism and oxidative stress. The deficits observed in the levels of ETC complexes in children with autism may readjust to normal levels by adulthood. PMID:21250997
NASA Astrophysics Data System (ADS)
Zielke, Olaf; Arrowsmith, Ramon
2010-05-01
Slip-rates along individual faults may differ as a function of measurement time scale. Short-term slip-rates may be higher than the long term rate and vice versa. For example, vertical slip-rates along the Wasatch Fault, Utah are 1.7+/-0.5 mm/yr since 6ka, <0.6 mm/yr since 130ka, and 0.5-0.7 mm/yr since 10Ma (Friedrich et al., 2003). Following conventional earthquake recurrence models like the characteristic earthquake model, this observation implies that the driving strain accumulation rates may have changed over the respective time scales as well. While potential explanations for such slip-rate variations may be found for example in the reorganization of plate tectonic motion or mantle flow dynamics, causing changes in the crustal velocity field over long spatial wavelengths, no single geophysical explanation exists. Temporal changes in earthquake rate (i.e., event clustering) due to elastic interactions within a complex fault system may present an alternative explanation that requires neither variations in strain accumulation rate or nor changes in fault constitutive behavior for frictional sliding. In the presented study, we explore this scenario and investigate how fault geometric complexity, fault segmentation and fault (segment) interaction affect the seismic behavior and slip-rate along individual faults while keeping tectonic stressing-rate and frictional behavior constant in time. For that, we used FIMozFric--a physics-based numerical earthquake simulator, based on Okada's (1992) formulations for internal displacements and strains due to shear and tensile faults in a half-space. Faults are divided into a large number of equal-sized fault patches which communicate via elastic interaction, allowing implementation of geometrically complex, non-planar faults. Each patch has assigned a static and dynamic friction coefficient. The difference between those values is a function of depth--corresponding to the temperature-dependence of velocity-weakening that is observed in laboratory friction experiments and expressed in an [a-b] term in Rate-State-Friction (RSF) theory. Patches in the seismic zone are incrementally loaded during the interseismic phase. An earthquake initiates if shear stress along at least one (seismic) patch exceeds its static frictional strength and may grow in size due to elastic interaction with other fault patches (static stress transfer). Aside from investigating slip-rate variations due to the elastic interactions within a fault system with this tool, we want to show how such modeling results can be very useful in exploring the physics underlying the patterns that the paleoseismology sees and that those methods (simulation and observations) can be merged, with both making important contributions. Using FIMozFric, we generated synthetic seismic records for a large number of fault geometries and structural scenarios to investigate along-fault slip accumulation patterns and the variability of slip at a point. Our simulations show that fault geometric complexity and the accompanied fault interactions and multi-fault ruptures may cause temporal deviations from the average fault slip-rate, in other words phases of earthquake clustering or relative quiescence. Slip-rates along faults within an interacting fault system may change even when the loading function (stressing rate) remains constant and the magnitude of slip rate change is suggested to be proportional to the magnitude of fault interaction. Thus, spatially isolated and structurally mature faults are expected to experience less slip-rate changes than strongly interacting and less mature faults. The magnitude of slip-rate change may serve as a proxy for the magnitude of fault interaction and vice versa.
Spatio-temporal Organization During Ventricular Fibrillation in the Human Heart.
Robson, Jinny; Aram, Parham; Nash, Martyn P; Bradley, Chris P; Hayward, Martin; Paterson, David J; Taggart, Peter; Clayton, Richard H; Kadirkamanathan, Visakan
2018-06-01
In this paper, we present a novel approach to quantify the spatio-temporal organization of electrical activation during human ventricular fibrillation (VF). We propose three different methods based on correlation analysis, graph theoretical measures and hierarchical clustering. Using the proposed approach, we quantified the level of spatio-temporal organization during three episodes of VF in ten patients, recorded using multi-electrode epicardial recordings with 30 s coronary perfusion, 150 s global myocardial ischaemia and 30 s reflow. Our findings show a steady decline in spatio-temporal organization from the onset of VF with coronary perfusion. We observed transient increases in spatio-temporal organization during global myocardial ischaemia. However, the decline in spatio-temporal organization continued during reflow. Our results were consistent across all patients, and were consistent with the numbers of phase singularities. Our findings show that the complex spatio-temporal patterns can be studied using complex network analysis.
A note on the temporal behavior of bucket hydrologies
NASA Technical Reports Server (NTRS)
Suarez, M. J.
1984-01-01
The use of a "canopy' bucket to more accurately represent evapotranspiration over land surfaces is explained. The temporal behavior of the traditional bucket model is compared with one that mimics the effects of interception loss. Results are presented in terms of the spectral response of the parameterization to a hypothetical white noise forcing.
NASA Astrophysics Data System (ADS)
Balasis, George; Donner, Reik V.; Donges, Jonathan F.; Radebach, Alexander; Eftaxias, Konstantinos; Kurths, Jürgen
2013-04-01
The dynamics of many complex systems is characterized by the same universal principles. In particular, systems which are otherwise quite different in nature show striking similarities in their behavior near tipping points (bifurcations, phase transitions, sudden regime shifts) and associated extreme events. Such critical phenomena are frequently found in diverse fields such as climate, seismology, or financial markets. Notably, the observed similarities include a high degree of organization, persistent behavior, and accelerated energy release, which are common to (among others) phenomena related to geomagnetic variability of the terrestrial magnetosphere (intense magnetic storms), seismic activity (electromagnetic emissions prior to earthquakes), solar-terrestrial physics (solar flares), neurophysiology (epileptic seizures), and socioeconomic systems (stock market crashes). It is an open question whether the spatial and temporal complexity associated with extreme events arises from the system's structural organization (geometry) or from the chaotic behavior inherent to the nonlinear equations governing the dynamics of these phenomena. On the one hand, the presence of scaling laws associated with earthquakes and geomagnetic disturbances suggests understanding these events as generalized phase transitions similar to nucleation and critical phenomena in thermal and magnetic systems. On the other hand, because of the structural organization of the systems (e.g., as complex networks) the associated spatial geometry and/or topology of interactions plays a fundamental role in the emergence of extreme events. Here, a few aspects of the interplay between geometry and dynamics (critical phase transitions) that could result in the emergence of extreme events, which is an open problem, will be discussed.
Social behavior of bacteria: from physics to complex organization
NASA Astrophysics Data System (ADS)
Ben-Jacob, E.
2008-10-01
I describe how bacteria develop complex colonial patterns by utilizing intricate communication capabilities, such as quorum sensing, chemotactic signaling and exchange of genetic information (plasmids) Bacteria do not store genetically all the information required for generating the patterns for all possible environments. Instead, additional information is cooperatively generated as required for the colonial organization to proceed. Each bacterium is, by itself, a biotic autonomous system with its own internal cellular informatics capabilities (storage, processing and assessments of information). These afford the cell certain plasticity to select its response to biochemical messages it receives, including self-alteration and broadcasting messages to initiate alterations in other bacteria. Hence, new features can collectively emerge during self-organization from the intra-cellular level to the whole colony. Collectively bacteria store information, perform decision make decisions (e.g. to sporulate) and even learn from past experience (e.g. exposure to antibiotics)-features we begin to associate with bacterial social behavior and even rudimentary intelligence. I also take Schrdinger’s’ “feeding on negative entropy” criteria further and propose that, in addition organisms have to extract latent information embedded in the environment. By latent information we refer to the non-arbitrary spatio-temporal patterns of regularities and variations that characterize the environmental dynamics. In other words, bacteria must be able to sense the environment and perform internal information processing for thriving on latent information embedded in the complexity of their environment. I then propose that by acting together, bacteria can perform this most elementary cognitive function more efficiently as can be illustrated by their cooperative behavior.
Earthquake Complex Network applied along the Chilean Subduction Zone.
NASA Astrophysics Data System (ADS)
Martin, F.; Pasten, D.; Comte, D.
2017-12-01
In recent years the earthquake complex networks have been used as a useful tool to describe and characterize the behavior of seismicity. The earthquake complex network is built in space, dividing the three dimensional space in cubic cells. If the cubic cell contains a hypocenter, we call this cell like a node. The connections between nodes follows the time sequence of the occurrence of the seismic events. In this sense, we have a spatio-temporal configuration of a specific region using the seismicity in that zone. In this work, we are applying complex networks to characterize the subduction zone along the coast of Chile using two networks: a directed and an undirected network. The directed network takes in consideration the time-direction of the connections, that is very important for the connectivity of the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out from the node i and we add the self-connections (if two seismic events occurred successive in time in the same cubic cell, we have a self-connection). The undirected network is the result of remove the direction of the connections and the self-connections from the directed network. These two networks were building using seismic data events recorded by CSN (Chilean Seismological Center) in Chile. This analysis includes the last largest earthquakes occurred in Iquique (April 2014) and in Illapel (September 2015). The result for the directed network shows a change in the value of the critical exponent along the Chilean coast. The result for the undirected network shows a small-world behavior without important changes in the topology of the network. Therefore, the complex network analysis shows a new form to characterize the Chilean subduction zone with a simple method that could be compared with another methods to obtain more details about the behavior of the seismicity in this region.
Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner
2017-10-01
We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2 = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2 = 0.7, P = 0.00001 and r 2 = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2 = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
McDonald, Karlie; Mika, Sarah; Kolbe, Tamara; Abbott, Ben; Ciocca, Francesco; Marruedo, Amaia; Hannah, David; Schmidt, Christian; Fleckenstein, Jan; Karuse, Stefan
2016-04-01
Sub-surface hydrologic processes are highly dynamic, varying spatially and temporally with strong links to the geomorphology and hydrogeologic properties of an area. This spatial and temporal complexity is a critical regulator of biogeochemical and ecological processes within the interface groundwater - surface water (GW-SW) ecohydrological interface and adjacent ecosystems. Many GW-SW models have attempted to capture this spatial and temporal complexity with varying degrees of success. The incorporation of spatial and temporal complexity within GW-SW model configuration is important to investigate interactions with transient storage and subsurface geology, infiltration and recharge, and mass balance of exchange fluxes at the GW-SW ecohydrological interface. Additionally, characterising spatial and temporal complexity in GW-SW models is essential to derive predictions using realistic environmental conditions. In this paper we conduct a systematic Web of Science meta-analysis of conceptual, hydrodynamic, and reactive and heat transport models of the GW-SW ecohydrological interface since 2004 to explore how these models handled spatial and temporal complexity. The freshwater - groundwater ecohydrological interface was the most commonly represented in publications between 2004 and 2014 with 91% of papers followed by marine 6% and estuarine systems with 3% of papers. Of the GW-SW models published since 2004, the 52% have focused on hydrodynamic processes and <15% covered more than one process (e.g. heat and reactive transport). Within the hydrodynamic subset, 25% of models focused on a vertical depth of <5m. The primary scientific and technological limitations of incorporating spatial and temporal variability into GW-SW models are identified as the inclusion of woody debris, carbon sources, subsurface geological structures and bioclogging into model parameterization. The technological limitations influence the types of models applied, such as hydrostatic coupled models and fully intrinsic saturated and unsaturated models, and the assumptions or simplifications scientists apply to investigate the GW-SW ecohydrological interface. We investigated the type of modelling approaches applied across different scales (site, reach, catchment, nested catchments) and assessed the simplifications in environmental conditions and complexity that are commonly made in model configuration. Understanding the theoretical concepts that underpin these current modelling approaches is critical for scientists to develop measures to derive predictions from realistic environmental conditions at management relevant scales and establish best-practice modelling approaches for improving the scientific understanding and management of the GW-SW interface. Additionally, the assessment of current modelling approaches informs our proposed framework for the progress of GW-SW models in the future. The framework presented aims to increase future scientific, technological and management integration and the identification of research priorities to allow spatial and temporal complexity to be better incorporated into GW-SW models.
Temporal horizon: modulation by smoking status and gender
Jones, Bryan A.; Landes, Reid D.; Yi, Richard; Bickel, Warren K.
2009-01-01
Recently, delay discounting has been argued to be conceptually consistent with the notion of temporal horizon (Bickel et al., 2008). Temporal horizon refers to the temporal distance over which behavioral events or objects can influence behavior. Here we examine the results on two putative measures of temporal horizon, future time perspective (FTP) and delay discounting, collected over three separate studies (n = 227), to determine the influence of smoking and gender on temporal horizon. By comparing the results on these temporal horizon measures we address our population of interest: women who smoke. One of the measures of FTP indicates that smoking women have a shorter temporal horizon than their nonsmoking counterparts. Additionally, the story completion measures of FTP are positively correlated with delay discounting. In contrast, results of delay discounting measures showed no difference between smoking women and nonsmoking women, while results of delay discounting measures indicated smoking men have a shorter temporal horizon than non-smoking men. Additionally, the results of the FTP story completion measure indicated that lower third income earners had a shortened temporal horizon compared to upper third income earners. A possible explanation for these results is explored, and the implications of the modulation of temporal horizon by gender and smoking are discussed. PMID:19446407
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akiba, M., E-mail: akiba@nict.go.jp; Tsujino, K.
This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and itsmore » temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p–n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.« less
Algorithms for the detection of chewing behavior in dietary monitoring applications
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Helal, Abdelsalam; Mendez-Vasquez, Andres
2009-08-01
The detection of food consumption is key to the implementation of successful behavior modification in support of dietary monitoring and therapy, for example, during the course of controlling obesity, diabetes, or cardiovascular disease. Since the vast majority of humans consume food via mastication (chewing), we have designed an algorithm that automatically detects chewing behaviors in surveillance video of a person eating. Our algorithm first detects the mouth region, then computes the spatiotemporal frequency spectrum of a small perioral region (including the mouth). Spectral data are analyzed to determine the presence of periodic motion that characterizes chewing. A classifier is then applied to discriminate different types of chewing behaviors. Our algorithm was tested on seven volunteers, whose behaviors included chewing with mouth open, chewing with mouth closed, talking, static face presentation (control case), and moving face presentation. Early test results show that the chewing behaviors induce a temporal frequency peak at 0.5Hz to 2.5Hz, which is readily detected using a distance-based classifier. Computational cost is analyzed for implementation on embedded processing nodes, for example, in a healthcare sensor network. Complexity analysis emphasizes the relationship between the work and space estimates of the algorithm, and its estimated error. It is shown that chewing detection is possible within a computationally efficient, accurate, and subject-independent framework.
High-resolution Temporal Representations of Alcohol and Tobacco Behaviors from Social Media Data
Huang, Tom; Elghafari, Anas; Relia, Kunal; Chunara, Rumi
2017-01-01
Understanding tobacco- and alcohol-related behavioral patterns is critical for uncovering risk factors and potentially designing targeted social computing intervention systems. Given that we make choices multiple times per day, hourly and daily patterns are critical for better understanding behaviors. Here, we combine natural language processing, machine learning and time series analyses to assess Twitter activity specifically related to alcohol and tobacco consumption and their sub-daily, daily and weekly cycles. Twitter self-reports of alcohol and tobacco use are compared to other data streams available at similar temporal resolution. We assess if discussion of drinking by inferred underage versus legal age people or discussion of use of different types of tobacco products can be differentiated using these temporal patterns. We find that time and frequency domain representations of behaviors on social media can provide meaningful and unique insights, and we discuss the types of behaviors for which the approach may be most useful. PMID:29264592
A marked point process approach for identifying neural correlates of tics in Tourette Syndrome.
Loza, Carlos A; Shute, Jonathan B; Principe, Jose C; Okun, Michael S; Gunduz, Aysegul
2017-07-01
We propose a novel interpretation of local field potentials (LFP) based on a marked point process (MPP) framework that models relevant neuromodulations as shifted weighted versions of prototypical temporal patterns. Particularly, the MPP samples are categorized according to the well known oscillatory rhythms of the brain in an effort to elucidate spectrally specific behavioral correlates. The result is a transient model for LFP. We exploit data-driven techniques to fully estimate the model parameters with the added feature of exceptional temporal resolution of the resulting events. We utilize the learned features in the alpha and beta bands to assess correlations to tic events in patients with Tourette Syndrome (TS). The final results show stronger coupling between LFP recorded from the centromedian-paraficicular complex of the thalamus and the tic marks, in comparison to electrocorticogram (ECoG) recordings from the hand area of the primary motor cortex (M1) in terms of the area under the curve (AUC) of the receiver operating characteristic (ROC) curve.
Theories of Impaired Consciousness in Epilepsy
Yu, Lissa; Blumenfeld, Hal
2015-01-01
Although the precise mechanisms for control of consciousness are not fully understood, emerging data show that conscious information processing depends on the activation of certain networks in the brain and that the impairment of consciousness is related to abnormal activity in these systems. Epilepsy can lead to transient impairment of consciousness, providing a window into the mechanisms necessary for normal consciousness. Thus, despite differences in behavioral manifestations, cause, and electrophysiology, generalized tonic–clonic, absence, and partial seizures engage similar anatomical structures and pathways. We review prior concepts of impaired consciousness in epilepsy, focusing especially on temporal lobe complex partial seizures, which are a common and debilitating form of epileptic unconsciousness. We discuss a “network inhibition hypothesis” in which focal temporal lobe seizure activity disrupts normal cortical–subcortical interactions, leading to depressed neocortical function and impaired consciousness. This review of the major prior theories of impaired consciousness in epilepsy allows us to put more recent data into context and to reach a better understanding of the mechanisms important for normal consciousness. PMID:19351355
The temporal structures and functional significance of scale-free brain activity
He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.
2010-01-01
SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349
Investigating Bacterial-Animal Symbioses with Light Sheet Microscopy
Taormina, Michael J.; Jemielita, Matthew; Stephens, W. Zac; Burns, Adam R.; Troll, Joshua V.; Parthasarathy, Raghuveer; Guillemin, Karen
2014-01-01
SUMMARY Microbial colonization of the digestive tract is a crucial event in vertebrate development, required for maturation of host immunity and establishment of normal digestive physiology. Advances in genomic, proteomic, and metabolomic technologies are providing a more detailed picture of the constituents of the intestinal habitat, but these approaches lack the spatial and temporal resolution needed to characterize the assembly and dynamics of microbial communities in this complex environment. We report the use of light sheet microscopy to provide high resolution imaging of bacterial colonization of the zebrafish intestine. The methodology allows us to characterize bacterial population dynamics across the entire organ and the behaviors of individual bacterial and host cells throughout the colonization process. The large four-dimensional datasets generated by these imaging approaches require new strategies for image analysis. When integrated with other “omics” datasets, information about the spatial and temporal dynamics of microbial cells within the vertebrate intestine will provide new mechanistic insights into how microbial communities assemble and function within hosts. PMID:22983029
Emotions induced by intracerebral electrical stimulation of the temporal lobe.
Meletti, Stefano; Tassi, Laura; Mai, Roberto; Fini, Nicola; Tassinari, Carlo Alberto; Russo, Giorgio Lo
2006-01-01
To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe. Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed. Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses. These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.
An Efficient Pattern Mining Approach for Event Detection in Multivariate Temporal Data
Batal, Iyad; Cooper, Gregory; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos
2015-01-01
This work proposes a pattern mining approach to learn event detection models from complex multivariate temporal data, such as electronic health records. We present Recent Temporal Pattern mining, a novel approach for efficiently finding predictive patterns for event detection problems. This approach first converts the time series data into time-interval sequences of temporal abstractions. It then constructs more complex time-interval patterns backward in time using temporal operators. We also present the Minimal Predictive Recent Temporal Patterns framework for selecting a small set of predictive and non-spurious patterns. We apply our methods for predicting adverse medical events in real-world clinical data. The results demonstrate the benefits of our methods in learning accurate event detection models, which is a key step for developing intelligent patient monitoring and decision support systems. PMID:26752800
Hu, Xie; Wang, Teng; Pierson, Thomas C.; Lu, Zhong; Kim, Jin-Woo; Cecere, Thomas H.
2016-01-01
Detection of slow or limited landslide movement within broad areas of forested terrain has long been problematic, particularly for the Cascade landslide complex (Washington) located along the Columbia River Gorge. Although parts of the landslide complex have been found reactivated in recent years, the timing and magnitude of motion have not been systematically monitored or interpreted. Here we apply novel time-series strategies to study the spatial distribution and temporal behavior of the landslide movement between 2007 and 2011 using InSAR images from two overlapping L-band ALOS PALSAR-1 satellite tracks. Our results show that the reactivated part has moved approximately 700 mm downslope during the 4-year observation period, while other parts of the landslide complex have generally remained stable. However, we also detect about 300 mm of seasonal downslope creep in a terrain block upslope of the Cascade landslide complex—terrain previously thought to be stable. The temporal oscillation of the seasonal movement can be correlated with precipitation, implying that seasonal movement here is hydrology-driven. The seasonal movement also has a frequency similar to GPS-derived regional ground oscillations due to mass loading by stored rainfall and subsequent rebound but with much smaller magnitude, suggesting different hydrological loading effects. From the time-series amplitude information on terrain upslope of the headscarp, we also re-evaluate the incipient motion related to the 2008 Greenleaf Basin rock avalanche, not previously recognized by traditional SAR/InSAR methods. The approach used in this study can be used to identify active landslides in forested terrain, to track the seasonal movement of landslides, and to identify previously unknown landslide hazards.
Punctuated equilibrium dynamics in human communications
NASA Astrophysics Data System (ADS)
Peng, Dan; Han, Xiao-Pu; Wei, Zong-Wen; Wang, Bing-Hong
2015-10-01
A minimal model based on network incorporating individual interactions is proposed to study the non-Poisson statistical properties of human behavior: individuals in system interact with their neighbors, the probability of an individual acting correlates to its activity, and all the individuals involved in action will change their activities randomly. The model reproduces varieties of spatial-temporal patterns observed in empirical studies of human daily communications, providing insight into various human activities and embracing a range of realistic social interacting systems, particularly, intriguing bimodal phenomenon. This model bridges priority queueing theory and punctuated equilibrium dynamics, and our modeling and analysis is likely to shed light on non-Poisson phenomena in many complex systems.
Venus magmatic and tectonic evolution
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Hansen, V. L.
1993-01-01
Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.
Systems thinking in combating infectious diseases.
Xia, Shang; Zhou, Xiao-Nong; Liu, Jiming
2017-09-11
The transmission of infectious diseases is a dynamic process determined by multiple factors originating from disease pathogens and/or parasites, vector species, and human populations. These factors interact with each other and demonstrate the intrinsic mechanisms of the disease transmission temporally, spatially, and socially. In this article, we provide a comprehensive perspective, named as systems thinking, for investigating disease dynamics and associated impact factors, by means of emphasizing the entirety of a system's components and the complexity of their interrelated behaviors. We further develop the general steps for performing systems approach to tackling infectious diseases in the real-world settings, so as to expand our abilities to understand, predict, and mitigate infectious diseases.
Spatio-temporal organization during group formation in rats.
Weiss, Omri; Levi, Anat; Segev, Elad; Simbirsky, Margarita; Eilam, David
2018-05-02
In the present study, the dynamic process of group formation in eight unfamiliar rats was followed in order to reveal how the group becomes oriented together in time and space, in light of the complexity that accompanies grouping. The focus was on who, where, and when joined together. We found that rats preferred to be in companionship over remaining alone, with all the rats gradually shifting to share the same location as a resting place. Group formation can be viewed as a tri-phasic process, with some rats gradually becoming more social than others, and thus playing a key role in group formation. Starting with seemingly independent traveling, the rats gradually converged to share the same location as a terminal (home base) for roundtrips in the arena. Because such a terminal is considered as the organizer of an individual's spatial behavior, the shared home-base location may be viewed as the organizer of spatial behavior of the entire group. Despite huddling together, the rats continued to travel alone or in duos throughout the 3 h of testing. We suggest that resting together and traveling alone or in duos enabled the maintenance of communal relationship while reducing the complexity involved in traveling in relatively large groups. Taken together, the present results demonstrate the dynamic process during which unfamiliar rats shift from independent to group spatial behavior.
1976-01-01
Experimental and Pre- 9 dieted Temporal Behavior of the Laser Output Pulse for a 20% CO and 80% N2 Mixture 3 Comparison of the Normalized Experimental...and Pre- 10 dieted Temporal Behavior of the Laser Output Pulse for a 20% CO and 80% A~ Mixture 4 Predictions of the Temporal Variation of Small...Z o < z CD o o ÜJ 10 -7 .1 D4862 II i i r~rT"T pco (Torr) ♦ 700 O 350 A 200 O 100 + i & i J I \\ I I I 1.0 AVERAUü
ERIC Educational Resources Information Center
Martin, Paul R.; Forsyth, Michael R.; Reece, John
2007-01-01
Sixty-four headache sufferers were allocated randomly to cognitive-behavioral therapy (CBT), temporal pulse amplitude (TPA) biofeedback training, or waiting-list control. Fifty-one participants (14M/37F) completed the study, 30 with migraine and 21 with tension-type headache. Treatment consisted of 8, 1-hour sessions. CBT was highly effective,…
Monitoring the perennial martian northern polar cap with MGS MOC
NASA Astrophysics Data System (ADS)
Hale, A. Snyder; Bass, D. S.; Tamppari, L. K.
2005-04-01
We have used the Mars Global Surveyor Mars Orbiter Camera Wide Angle (MGS MOC WA) dataset to study albedo trends on the martian northern residual cap. Six study regions were selected, the Chasma Boreale source region, three regions near the center of the cap ("fish hook" region, latitude = 87°; "bottle opener" region, latitude = 87°, "steep-shallow" region, latitude = 85°), and two lower latitude regions (crater, latitude = 77°, and polar outlier, latitude = 82°), and the albedos of these six regions were examined. These regions were chosen due to their good temporal coverage in the MOC dataset, as well as having been studied by other researchers (Bass et al., 2000, Icarus 144, 382-396; Calvin and Titus, 2004, Lunar Planet. Sci. XXXV, Abstract 1455). The picture which emerges is complex. Most areas experience a combination of darkening and brightening through the northern summer; only one area consistently brightens (the polar outlier region). A good deal of interannual repeatability in each region's albedo behavior is seen, however. Possible causes for the observed complex behaviors include dust deposition from late summer storms, sintering of frost grains over the course of the summer, and cold trapping of volatiles on bright, cold surfaces.
The chorus environment and the shape of communication systems in frogs
NASA Astrophysics Data System (ADS)
Marshall, Vince
2003-04-01
Many species of frogs breed in dense and structurally complex aggregations of calling males termed choruses. Females entering a chorus are faced with the tasks of recognizing and locating mates on the basis of their advertisement calls. The chorus environment poses particular challenges for communication as signalers and receivers will face high levels of background noise and interference between signals. For females, such conditions may decrease the efficiency of communication, with the consequences of increasing the time required to find a mate or errors in mate choice. For males, it will give rise to intense competition for the attention of females. Additionally, the chorus environment for a species is not static, and will vary over both spatial and temporal scales. This complex and dynamic environment has shaped the signals and signaling behaviors of frogs in sometimes surprising ways. In this talk, some of the implications of the chorus environment for both receivers and signalers is discussed. In particular, examples from North American hylid frogs are drawn upon and research on the role of signal timing in influencing the responses of females and plasticity in aggressive behavior between neighbors in choruses are discussed.
Loss of Gnas imprinting differentially affects REM/NREM sleep and cognition in mice.
Lassi, Glenda; Ball, Simon T; Maggi, Silvia; Colonna, Giovanni; Nieus, Thierry; Cero, Cheryl; Bartolomucci, Alessandro; Peters, Jo; Tucci, Valter
2012-01-01
It has been suggested that imprinted genes are important in the regulation of sleep. However, the fundamental question of whether genomic imprinting has a role in sleep has remained elusive up to now. In this work we show that REM and NREM sleep states are differentially modulated by the maternally expressed imprinted gene Gnas. In particular, in mice with loss of imprinting of Gnas, NREM and complex cognitive processes are enhanced while REM and REM-linked behaviors are inhibited. This is the first demonstration that a specific overexpression of an imprinted gene affects sleep states and related complex behavioral traits. Furthermore, in parallel to the Gnas overexpression, we have observed an overexpression of Ucp1 in interscapular brown adipose tissue (BAT) and a significant increase in thermoregulation that may account for the REM/NREM sleep phenotypes. We conclude that there must be significant evolutionary advantages in the monoallelic expression of Gnas for REM sleep and for the consolidation of REM-dependent memories. Conversely, biallelic expression of Gnas reinforces slow wave activity in NREM sleep, and this results in a reduction of uncertainty in temporal decision-making processes.
A model of non-Gaussian diffusion in heterogeneous media
NASA Astrophysics Data System (ADS)
Lanoiselée, Yann; Grebenkov, Denis S.
2018-04-01
Recent progress in single-particle tracking has shown evidence of the non-Gaussian distribution of displacements in living cells, both near the cellular membrane and inside the cytoskeleton. Similar behavior has also been observed in granular materials, turbulent flows, gels and colloidal suspensions, suggesting that this is a general feature of diffusion in complex media. A possible interpretation of this phenomenon is that a tracer explores a medium with spatio-temporal fluctuations which result in local changes of diffusivity. We propose and investigate an ergodic, easily interpretable model, which implements the concept of diffusing diffusivity. Depending on the parameters, the distribution of displacements can be either flat or peaked at small displacements with an exponential tail at large displacements. We show that the distribution converges slowly to a Gaussian one. We calculate statistical properties, derive the asymptotic behavior and discuss some implications and extensions.
Technologies for imaging neural activity in large volumes
Ji, Na; Freeman, Jeremy; Smith, Spencer L.
2017-01-01
Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Collecting data from individual planes, conventional microscopy cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here, we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for the processing and analysis of volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics, and help elucidate how brain regions work in concert to support behavior. PMID:27571194
Utility of computer simulations in landscape genetics
Bryan K. Epperson; Brad H. McRae; Kim Scribner; Samuel A. Cushman; Michael S. Rosenberg; Marie-Josee Fortin; Patrick M. A. James; Melanie Murphy; Stephanie Manel; Pierre Legendre; Mark R. T. Dale
2010-01-01
Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to...
A numerical study of coarsening in the two-dimensional complex Ginzburg-Landau equation
NASA Astrophysics Data System (ADS)
Liu, Weigang; Tauber, Uwe
The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide range of physical systems: coupled non-linear oscillators subject to external noise near a Hopf bifurcation instability; spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations; and driven-dissipative Bose-Einstein condensation, realized in open systems on the interface of quantum optics and many-body physics. We employ a finite-difference method to numerically solve the noisy complex Ginzburg-Landau equation on a two-dimensional domain with the goal to investigate the coarsening dynamics following a quench from a strongly fluctuating defect turbulence phase to a long-range ordered phase. We start from a simplified amplitude equation, solve it numerically, and then study the spatio-temporal behavior characterized by the spontaneous creation and annihilation of topological defects (spiral waves). We check our simulation results against the known dynamical phase diagram in this non-equilibrium system, tentatively analyze the coarsening kinetics following sudden quenches, and characterize the ensuing aging scaling behavior. In addition, we aim to use Voronoi triangulation to study the cellular structure in the phase turbulence and frozen states. This research is supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-FG02-09ER46613.
Kim, Minah; Cho, Kang Ik Kevin; Yoon, Youngwoo Bryan; Lee, Tae Young; Kwon, Jun Soo
2017-02-01
Although disconnection syndrome has been considered a core pathophysiologic mechanism of schizophrenia, little is known about the temporal behavior of mismatch negativity (MMN) generators in individuals with schizophrenia or clinical high risk (CHR) for psychosis. MMN was assessed in 29 schizophrenia patients, 40 CHR subjects, and 47 healthy controls (HCs). Individual realistic head models and the minimum L2 norm algorithm were used to generate a current source density (CSD) model of MMN. The strength and time course of MMN CSD activity were calculated separately for the frontal and temporal cortices and were compared across brain regions and groups. Schizophrenia patients and CHR subjects displayed lower MMN CSD strength than HCs in both the temporal and frontal cortices. We found a significant time delay in MMN generator activity in the frontal cortex relative to that in the temporal cortex in HCs. However, the sequential temporo-frontal activities of MMN generators were disrupted in both the schizophrenia and CHR groups. Impairments and altered temporal behavior of MMN multiple generators were observed even in individuals at risk for psychosis. These findings suggest that aberrant MMN generator activity might be helpful in revealing the pathophysiology of schizophrenia. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Nakano, M.; Kumagai, H.
2005-01-01
We investigate temporal variations in the complex frequencies (frequency and quality factor Q) of long-period (LP) events that occurred at Kusatsu-Shirane Volcano, central Japan. We analyze LP waveforms observed at this volcano in the period between 1988 and 1995, which covers a seismically active period between 1989 and 1993. Systematic temporal variations in the complex frequencies are observed in October-November 1989, July-October 1991, and September 1992-January 1993. We use acoustic properties of a crack filled with hydrothermal fluids to interpret the observed temporal variations in the complex frequencies. The temporal variations in October-November 1989 can be divided into two periods, which are explained by a gradual decrease and increase of a gas-volume fraction in a water-steam mixture in a crack, respectively. The temporal variations in July-October 1991 can be also divided into two periods. These variations in the first and second periods are similar to those observed in November 1989 and in September-November 1992, respectively, and are interpreted as drying of a water-steam mixture and misty gas in a crack, respectively. The repeated nature of the temporal variations observed in similar seasons between July and November suggests the existence of seasonality in the occurrence of LP events. This may be caused by a seasonally variable meteoritic water supply to a hydrothermal system, which may have been heated by the flux of volcanic gases from magma beneath this volcano. ?? 2005 Elsevier B.V. All rights reserved.
Two distinct subtypes of right temporal variant frontotemporal dementia
Josephs, K A.; Whitwell, J L.; Knopman, D S.; Boeve, B F.; Vemuri, P; Senjem, M L.; Parisi, J E.; Ivnik, R J.; Dickson, D W.; Petersen, R C.; Jack, C R.
2009-01-01
Background: Right temporal frontotemporal dementia (FTD) is an anatomic variant of FTD associated with relatively distinct behavioral and cognitive symptoms. We aimed to determine whether right temporal FTD is a homogeneous clinical, imaging, and pathologic/genetic entity. Methods: In this case-control study, 101 subjects with FTD were identified. Atlas-based parcellation generated temporal, frontal, and parietal grey matter volumes which were used to identify subjects with a right temporal dominant atrophy pattern. Clinical, neuropsychological, genetic, and neuropathologic features were reviewed. The subjects with right temporal FTD were grouped by initial clinical diagnosis and voxel-based morphometry was used to assess grey matter loss in the different groups, compared to controls, and each other. Results: We identified 20 subjects with right temporal FTD. Twelve had been initially diagnosed with behavioral variant FTD (bvFTD), and the other 8 with semantic dementia (SMD). Personality change and inappropriate behaviors were more frequent in the bvFTD group, while prosopagnosia, word-finding difficulties, comprehension problems, and topographagnosia were more frequent in the SMD group. The bvFTD group showed greater loss in frontal lobes than the SMD group. The SMD group showed greater fusiform loss than the bvFTD group. All 8 bvFTD subjects with pathologic/genetic diagnosis showed abnormalities in tau protein (7 with tau mutations), while all three SMD subjects with pathology showed abnormalities in TDP-43 (p = 0.006). Conclusions: We have identified 2 subtypes of right temporal variant frontotemporal dementia (FTD) allowing further differentiation of FTD subjects with underlying tau pathology from those with TDP-43 pathology. GLOSSARY ADPR = Alzheimer Disease Patient Registry; ADRC = Alzheimer Disease Research Center; bvFTD = behavioral variant frontotemporal dementia; CDR-SB = Clinical Dementia Rating Scale sum of boxes; FDR = False Discovery Rate; FTD = frontotemporal dementia; MMSE = Mini-Mental State Examination; NPI = Neuropsychiatric Inventory; SMD = semantic dementia; TPM = tissue probability map; VBM = voxel-based morphometry. PMID:19884571
Clustered functional MRI of overt speech production.
Sörös, Peter; Sokoloff, Lisa Guttman; Bose, Arpita; McIntosh, Anthony R; Graham, Simon J; Stuss, Donald T
2006-08-01
To investigate the neural network of overt speech production, event-related fMRI was performed in 9 young healthy adult volunteers. A clustered image acquisition technique was chosen to minimize speech-related movement artifacts. Functional images were acquired during the production of oral movements and of speech of increasing complexity (isolated vowel as well as monosyllabic and trisyllabic utterances). This imaging technique and behavioral task enabled depiction of the articulo-phonologic network of speech production from the supplementary motor area at the cranial end to the red nucleus at the caudal end. Speaking a single vowel and performing simple oral movements involved very similar activation of the cortical and subcortical motor systems. More complex, polysyllabic utterances were associated with additional activation in the bilateral cerebellum, reflecting increased demand on speech motor control, and additional activation in the bilateral temporal cortex, reflecting the stronger involvement of phonologic processing.
Modeling infectious disease dynamics in the complex landscape of global health
Heesterbeek, Hans; Anderson, Roy; Andreasen, Viggo; Bansal, Shweta; De Angelis, Daniela; Dye, Chris; Eames, Ken; Edmunds, John; Frost, Simon; Funk, Sebastian; Hollingsworth, Deirdre; House, Thomas; Isham, Valerie; Klepac, Petra; Lessler, Justin; Lloyd-Smith, James; Metcalf, Jessica; Mollison, Denis; Pellis, Lorenzo; Pulliam, Juliet; Roberts, Mick; Viboud, Cecile
2015-01-01
Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational and spatial scales, which even within a single pathogen often span hours to months, cellular to ecosystem levels, and local to pandemic spread. Some pathogens are directly transmitted between individuals of a single species, while others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity, and dynamic human behavior, raise prevention and control from formerly national to international issues. In the face of this complexity, mathematical models offer essential tools for synthesizing information to understand epidemiological patterns, and for developing the quantitative evidence base for decision-making in global health. PMID:25766240
Modeling infectious disease dynamics in the complex landscape of global health.
Heesterbeek, Hans; Anderson, Roy M; Andreasen, Viggo; Bansal, Shweta; De Angelis, Daniela; Dye, Chris; Eames, Ken T D; Edmunds, W John; Frost, Simon D W; Funk, Sebastian; Hollingsworth, T Deirdre; House, Thomas; Isham, Valerie; Klepac, Petra; Lessler, Justin; Lloyd-Smith, James O; Metcalf, C Jessica E; Mollison, Denis; Pellis, Lorenzo; Pulliam, Juliet R C; Roberts, Mick G; Viboud, Cecile
2015-03-13
Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health. Copyright © 2015, American Association for the Advancement of Science.
Bergadano, Alessandra; Andersen, Ole K; Arendt-Nielsen, Lars; Spadavecchia, Claudia
2007-08-01
To investigate the facilitation of the nociceptive withdrawal reflex (NWR) by repeated electrical stimuli and the associated behavioral response scores in conscious, nonmedicated dogs as a measure of temporal summation and analyze the influence of stimulus intensity and frequency on temporal summation responses. 8 adult Beagles. Surface electromyographic responses evoked by transcutaneous constant-current electrical stimulation of ulnaris and digital plantar nerves were recorded from the deltoideus, cleidobrachialis, biceps femoris, and cranial tibial muscles. A repeated stimulus was given at 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.1 x I(t) (the individual NWR threshold intensity) at 2, 5, and 20 Hz. Threshold intensity and relative amplitude and latency of the reflex were analyzed for each stimulus configuration. Behavioral reactions were subjectively scored. Repeated sub-I(t) stimuli summated and facilitated the NWR. To elicit temporal summation, significantly lower intensities were needed for the hind limb, compared with the forelimb. Stimulus frequency did not influence temporal summation, whereas increasing intensity resulted in significantly stronger electromyographic responses and nociception (determined via behavioral response scoring) among the dogs. In dogs, it is possible to elicit nociceptive temporal summation that correlates with behavioral reactions. These data suggest that this experimental technique can be used to evaluate nociceptive system excitability and efficacy of analgesics in canids.
Long-Lag, Wide-pulse Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargie, J. D.; Hakkila, J.; Giblin, T. W.
2005-01-01
The best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine observed GRB pulse evolution, including at least: jet opening angle, profiles of Lorentz factor and matter/field density, distance of emission region from central source, and viewing angle. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. We have analyzed the temporal and spectral behavior of wide pulses in 24 long-lag bursts from the BATSE sample, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systemtically lower peaks in nu*F(nu), harder low-energy spectra and softer high-energy spectra. These five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior, roughly commensurate with the theoretical phase space. However, we do find that pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low nu*F(nu) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swiift will detect many such bursts.
NASA Astrophysics Data System (ADS)
Takamatsu, Atsuko
2006-11-01
Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ∘. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.
Mechanisms of impulsive choice: II. Time-based interventions to improve self-control
Smith, Aaron P.; Marshall, Andrew T.; Kirkpatrick, Kimberly
2014-01-01
Impulsive choice behavior has been proposed as a primary risk factor for other maladaptive behaviors (e.g., gambling, substance abuse). Recent research has suggested that timing processes may play a key role in impulsive choice behavior, and could provide an avenue for altering impulsive choice. Accordingly, the current experiments assessed a set of time-based behavioral interventions to increase self-control while simultaneously assessing effects on timing processes within the impulsive choice task. Three experiments assessed temporal interventions using a differential reinforcement of low rates task (Experiment 1) and exposure to either a variable or fixed interval schedule (Experiments 2–3). The efficacy of the interventions was assessed in Sprague-Dawley (Experiments 1–2) and Lewis (Experiment 3) rat strains. Impulsive choice behavior was assessed by measuring preferences of a smaller-sooner (SS) versus a larger-later (LL) reward, while timing of the SS and LL durations was measured during peak trials within the impulsive choice procedure. The rats showed an increased preference for the LL following all three time-based interventions and also displayed increased temporal precision. These results add to the increasing evidence that supports a possible role for temporal processing in impulsive choice behavior and supply novel behavioral interventions to decrease impulsive behavior. PMID:25444771
Sridharan, Vishnupriya; Cohen, Trevor; Cobb, Nathan; Myneni, Sahiti
2016-01-01
With online social platforms gaining popularity as venues of behavior change, it is important to understand the ways in which these platforms facilitate peer interactions. In this paper, we characterize temporal trends in user communication through mapping of theoretically-linked semantic content. We used qualitative coding and automated text analysis to assign theoretical techniques to peer interactions in an online community for smoking cessation, subsequently facilitating temporal visualization of the observed techniques. Results indicate manifestation of several behavior change techniques such as feedback and monitoring' and 'rewards'. Automated methods yielded reasonable results (F-measure=0.77). Temporal trends among relapsers revealed reduction in communication after a relapse event. This social withdrawal may be attributed to failure guilt after the relapse. Results indicate significant change in thematic categories such as 'social support', 'natural consequences', and 'comparison of outcomes' pre and post relapse. Implications for development of behavioral support technologies that promote long-term abstinence are discussed.
Impacts of climate on shrubland fuels and fire behavior in the Owyhee Basin, Idaho
NASA Astrophysics Data System (ADS)
Vogelmann, J. E.; Shi, H.; Hawbaker, T.; Li, Z.
2013-12-01
There is evidence that wildland fire is increasing as a function of global change. However, fire activity is spatially, temporally and ecologically variable across the globe, and our understanding of fire risk and behavior in many ecosystems is limited. After a series of severe fire seasons that occurred during the late 1990's in the western United States, the LANDFIRE program was developed with the goals of providing the fire community with objective spatial fuel data for assessing wildland fire risk. Even with access to the data provided by LANDFIRE, assessing fire behavior in shrublands in sagebrush-dominated ecosystems of the western United States has proven especially problematic, in part due to the complex nature of the vegetation, the variable influence of understory vegetation including invasive species (e.g. cheatgrass), and prior fire history events. Climate is undoubtedly playing a major role, affecting the intra- and inter-annual variability in vegetation conditions, which in turn impacts fire behavior. In order to further our understanding of climate-vegetation-fire interactions in shrublands, we initiated a study in the Owyhee Basin, which is located in southwestern Idaho and adjacent Nevada. Our goals include: (1) assessing the relationship between climate and vegetation condition, (2) quantifying the range of temporal variability in grassland and shrubland fuel loads, (3) identifying methods to operationally map the variability in fuel loads, and (4) assessing how the variability in fuel loads affect fire spread simulations. To address these goals, we are using a wide variety of geospatial data, including remotely sensed time-series data sets derived from MODIS and Landsat, and climate data from DAYMET and PRISM. Remotely-sensed information is used to characterize climate-induced temporal variability in primary productivity in the Basin, where fire spread can be extensive after senescence when dry vegetation is added to dead fuel loads. Gridded climate data indicate that this area has become warmer and dryer over the previous three decades. We have also observed that fires are especially prevalent in areas that have high Normalized Difference Vegetation Index (NDVI) values in the spring, followed by low NDVI in the summer. At present we are concentrating on the temporally rich MODIS data to map spatial and temporal variability in live fuel loads. To translate NDVI to biomass, we are scaling the range of biomass values using data from the literature. We assume that departure from maximum NDVI, typically occurring during spring, to NDVI values later in the season are related to the proportion of live biomass transferred to dead biomass, which burns more readily than green biomass. Using the FARSITE fire spread model, our initial simulations show that the conversion from live herbaceous fuel to dead fuel increases the burn area by 30% compared with using default static fuel parameters. This indicates that current fuel models underestimate fire spread and areas that could potentially burn. Our study also indicates that a combined remote sensing product with good temporal resolution (MODIS) and spatial resolution (Landsat) is necessary to provide accurate information on the fuel dynamics in shrublands.
Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test.
Stewart, Adam Michael; Gaikwad, Siddharth; Kyzar, Evan; Kalueff, Allan V
2012-04-27
Zebrafish (Danio rerio) are emerging as a useful model organism for neuroscience research. Mounting evidence suggests that various traditional rodent paradigms may be adapted for testing zebrafish behavior. The open field test is a popular rodent test of novelty exploration, recently applied to zebrafish research. To better understand fish novelty behavior, we exposed adult zebrafish to two different open field arenas for 30 min, assessing the amount and temporal patterning of their exploration. While (similar to rodents) zebrafish scale their locomotory activity depending on the size of the tank, the temporal patterning of their activity was independent of arena size. These observations strikingly parallel similar rodent behaviors, suggesting that spatio-temporal strategies of animal exploration may be evolutionarily conserved across vertebrate species. In addition, we found interesting oscillations in zebrafish exploration, with the per-minute distribution of their horizontal activity demonstrating sinusoidal-like patterns. While such patterning is not reported for rodents and other higher vertebrates, a nonlinear regression analysis confirmed the oscillation patterning of all assessed zebrafish behavioral endpoints in both open field arenas, revealing a potentially important aspect of novelty exploration in lower vertebrates. Copyright © 2012 Elsevier B.V. All rights reserved.
Automated Video Analysis System Reveals Distinct Diurnal Behaviors in C57BL/6 and C3H/HeN Mice
Adamah-Biassi, E. B.; Stepien, I.; Hudson, R.L.; Dubocovich, M.L.
2013-01-01
Advances in rodent behavior dissection using automated video recording and analysis allows detailed phenotyping. This study compared and contrasted 15 diurnal behaviors recorded continuously using an automated behavioral analysis system for a period of 14 days under a 14/10 light/dark cycle in single housed C3H/HeN (C3H) or C57BL/6 (C57) male mice. Diurnal behaviors, recorded with minimal experimental interference and analyzed using phenotypic array and temporal distribution analysis showed bimodal and unimodal profiles in the C57 and C3H mice, respectively. Phenotypic array analysis revealed distinct behavioral rhythms in activity-like behaviors (i.e. walk, hang, jump, come down) (ALB), exploration-like behaviors (i.e. dig, groom, rear up, sniff, stretch) (ELB), ingestion-like behaviors (i.e. drink, eat) (ILB) and resting-like behaviors (i.e. awake, remain low, rest, twitch) (RLB) of C3H and C57 mice. Temporal analysis demonstrated that strain and time of day affects the magnitude and distribution of the spontaneous homecage behaviors. Wheel running activity, water and food measurements correlated with timing of homecage behaviors. Subcutaneous (3 mg/kg, sc) or oral (0.02 mg/ml, oral) melatonin treatments in C57 mice did not modify either the total 24 hr magnitude or temporal distribution of homecage behaviors when compared with vehicle treatments. We conclude that C3H and C57 mice show different spontaneous activity and behavioral rhythms specifically during the night period which are not modulated by melatonin. PMID:23337734
Convective boundary layer heights over mountainous terrain - A review of concepts -
NASA Astrophysics Data System (ADS)
De Wekker, Stephan; Kossmann, Meinolf
2015-12-01
Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.
Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model
NASA Astrophysics Data System (ADS)
Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel
2017-11-01
The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range ( 0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.
Chouhan, Nitin Singh; Mohan, Krithika; Ghose, Aurnab
2017-12-01
Social rituals, such as male-male aggression in Drosophila , are often stereotyped and the component behavioral patterns modular. The likelihood of transition from one behavioral pattern to another is malleable by experience and confers flexibility to the behavioral repertoire. Experience-dependent modification of innate aggressive behavior in flies alters fighting strategies during fights and establishes dominant-subordinate relationships. Dominance hierarchies resulting from agonistic encounters are consolidated to longer-lasting, social-status-dependent behavioral modifications, resulting in a robust loser effect. We showed that cAMP dynamics regulated by the calcium-calmodulin-dependent adenylyl cyclase, Rut, and the cAMP phosphodiesterase, Dnc, but not the Amn gene product, in specific neuronal groups of the mushroom body and central complex, mediate behavioral plasticity necessary to establish dominant-subordinate relationships. rut and dnc mutant flies were unable to alter fighting strategies and establish dominance relationships during agonistic interactions. This real-time flexibility during a fight was independent of changes in aggression levels. Longer-term consolidation of social status in the form of a loser effect, however, required additional Amn -dependent inputs to cAMP signaling and involved a circuit-level association between the α/β and γ neurons of the mushroom body. Our findings implicate cAMP signaling in mediating the plasticity of behavioral patterns in aggressive behavior and in the generation of a temporally stable memory trace that manifests as a loser effect. © 2017. Published by The Company of Biologists Ltd.
PeakVizor: Visual Analytics of Peaks in Video Clickstreams from Massive Open Online Courses.
Chen, Qing; Chen, Yuanzhe; Liu, Dongyu; Shi, Conglei; Wu, Yingcai; Qu, Huamin
2016-10-01
Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported.
Babiszewska, Magdalena; Schel, Anne Marijke; Wilke, Claudia; Slocombe, Katie E
2015-01-01
The production of structured and repetitive sounds by striking objects is a behavior found not only in humans, but also in a variety of animal species, including chimpanzees (Pan troglodytes). In this study we examined individual and social factors that may influence the frequency with which individuals engage in drumming behavior when producing long distance pant hoot vocalizations, and analyzed the temporal structure of those drumming bouts. Male chimpanzees from Budongo Forest, Uganda, drummed significantly more frequently during travel than feeding or resting and older individuals were significantly more likely to produce drumming bouts than younger ones. In contrast, we found no evidence that the presence of estrus females, high ranking males and preferred social partners in the caller's vicinty had an effect on the frequency with which an individual accompanied their pant hoot vocalization with drumming. Through acoustic analyses, we demonstrated that drumming sequences produced with pant hoots may have contained information on individual identity and that qualitatively, there was individual variation in the complexity of the temporal patterns produced. We conclude that drumming patterns may act as individually distinctive long-distance signals that, together with pant hoot vocalizations, function to coordinate the movement and spacing of dispersed individuals within a community, rather than as signals to group members in the immediate audience. © 2014 Wiley Periodicals, Inc.
Mapping similarities in temporal parking occupancy behavior based on city-wide parking meter data
NASA Astrophysics Data System (ADS)
Bock, Fabian; Xia, Karen; Sester, Monika
2018-05-01
The search for a parking space is a severe and stressful problem for drivers in many cities. The provision of maps with parking space occupancy information assists drivers in avoiding the most crowded roads at certain times. Since parking occupancy reveals a repetitive pattern per day and per week, typical parking occupancy patterns can be extracted from historical data. In this paper, we analyze city-wide parking meter data from Hannover, Germany, for a full year. We describe an approach of clustering these parking meters to reduce the complexity of this parking occupancy information and to reveal areas with similar parking behavior. The parking occupancy at every parking meter is derived from a timestamp of ticket payment and the validity period of the parking tickets. The similarity of the parking meters is computed as the mean-squared deviation of the average daily patterns in parking occupancy at the parking meters. Based on this similarity measure, a hierarchical clustering is applied. The number of clusters is determined with the Davies-Bouldin Index and the Silhouette Index. Results show that, after extensive data cleansing, the clustering leads to three clusters representing typical parking occupancy day patterns. Those clusters differ mainly in the hour of the maximum occupancy. In addition, the lo-cations of parking meter clusters, computed only based on temporal similarity, also show clear spatial distinctions from other clusters.
NASA Astrophysics Data System (ADS)
Zhou, Xi-Guo; Jin, Ning-De; Wang, Zhen-Ya; Zhang, Wen-Yin
2009-11-01
The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a highspeed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic parameter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to understand the temporal and spatial evolution of flow pattern dynamics.
NASA Astrophysics Data System (ADS)
Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.
2017-12-01
Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.
Jašarević, Eldin; Howard, Christopher D.; Misic, Ana M.; Beiting, Daniel P.; Bale, Tracy L.
2017-01-01
The microbiome is a regulator of host immunity, metabolism, neurodevelopment, and behavior. During early life, bacterial communities within maternal gut and vaginal compartments can have an impact on directing these processes. Maternal stress experience during pregnancy may impact offspring development by altering the temporal and spatial dynamics of the maternal microbiome during pregnancy. To examine the hypothesis that maternal stress disrupts gut and vaginal microbial dynamics during critical prenatal and postnatal windows, we used high-resolution 16S rRNA marker gene sequencing to examine outcomes in our mouse model of early prenatal stress. Consistent with predictions, maternal fecal communities shift across pregnancy, a process that is disrupted by stress. Vaginal bacterial community structure and composition exhibit lasting disruption following stress exposure. Comparison of maternal and offspring microbiota revealed that similarities in bacterial community composition was predicted by a complex interaction between maternal body niche and offspring age and sex. Importantly, early prenatal stress influenced offspring bacterial community assembly in a temporal and sex-specific manner. Taken together, our results demonstrate that early prenatal stress may influence offspring development through converging modifications to gut microbial composition during pregnancy and transmission of dysbiotic vaginal microbiome at birth. PMID:28266645
A method for analyzing temporal patterns of variability of a time series from Poincare plots.
Fishman, Mikkel; Jacono, Frank J; Park, Soojin; Jamasebi, Reza; Thungtong, Anurak; Loparo, Kenneth A; Dick, Thomas E
2012-07-01
The Poincaré plot is a popular two-dimensional, time series analysis tool because of its intuitive display of dynamic system behavior. Poincaré plots have been used to visualize heart rate and respiratory pattern variabilities. However, conventional quantitative analysis relies primarily on statistical measurements of the cumulative distribution of points, making it difficult to interpret irregular or complex plots. Moreover, the plots are constructed to reflect highly correlated regions of the time series, reducing the amount of nonlinear information that is presented and thereby hiding potentially relevant features. We propose temporal Poincaré variability (TPV), a novel analysis methodology that uses standard techniques to quantify the temporal distribution of points and to detect nonlinear sources responsible for physiological variability. In addition, the analysis is applied across multiple time delays, yielding a richer insight into system dynamics than the traditional circle return plot. The method is applied to data sets of R-R intervals and to synthetic point process data extracted from the Lorenz time series. The results demonstrate that TPV complements the traditional analysis and can be applied more generally, including Poincaré plots with multiple clusters, and more consistently than the conventional measures and can address questions regarding potential structure underlying the variability of a data set.
Dynamic Control of Plans with Temporal Uncertainty
NASA Technical Reports Server (NTRS)
Morris, Paul; Muscettola, Nicola; Vidal, Thierry
2001-01-01
Certain planning systems that deal with quantitative time constraints have used an underlying Simple Temporal Problem solver to ensure temporal consistency of plans. However, many applications involve processes of uncertain duration whose timing cannot be controlled by the execution agent. These cases require more complex notions of temporal feasibility. In previous work, various "controllability" properties such as Weak, Strong, and Dynamic Controllability have been defined. The most interesting and useful Controllability property, the Dynamic one, has ironically proved to be the most difficult to analyze. In this paper, we resolve the complexity issue for Dynamic Controllability. Unexpectedly, the problem turns out to be tractable. We also show how to efficiently execute networks whose status has been verified.
2014-12-01
Introduction 1.1 Background In today’s world of high -tech warfare, we have developed the ability to deploy virtually any type of ordnance quickly and... ANSI Std. 239–18 i THIS PAGE INTENTIONALLY LEFT BLANK ii Approved for public release; distribution is unlimited TEMPORALLY ADJUSTED COMPLEX AMBIGUITY...this time due to time constraints and the high computational complexity involved in the current implementation of the Moss algorithm. Full maps, with
Discriminating bot accounts based solely on temporal features of microblog behavior
NASA Astrophysics Data System (ADS)
Pan, Junshan; Liu, Ying; Liu, Xiang; Hu, Hanping
2016-05-01
As the largest microblog service in China, Sina Weibo has attracted numerous automated applications (known as bots) due to its popularity and open architecture. We classify the active users from Sina Weibo into human, bot-based and hybrid groups based solely on the study of temporal features of their posting behavior. The anomalous burstiness parameter and time-interval entropy value are exploited to characterize automation. We also reveal different behavior patterns among the three types of users regarding their reposting ratio, daily rhythm and active days. Our findings may help Sina Weibo manage a better community and should be considered for dynamic models of microblog behaviors.
Frontotemporal networks and behavioral symptoms in primary progressive aphasia.
D'Anna, Lucio; Mesulam, Marsel M; Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Murphy, Declan; Wieneke, Christina; Martersteck, Adam; Cobia, Derin; Rogalski, Emily; Catani, Marco
2016-04-12
To determine if behavioral symptoms in patients with primary progressive aphasia (PPA) were associated with degeneration of a ventral frontotemporal network. We used diffusion tensor imaging tractography to quantify abnormalities of the uncinate fasciculus that connects the anterior temporal lobe and the ventrolateral frontal cortex. Two additional ventral tracts were studied: the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus. We also measured cortical thickness of anterior temporal and orbitofrontal regions interconnected by these tracts. Thirty-three patients with PPA and 26 healthy controls were recruited. In keeping with the PPA diagnosis, behavioral symptoms were distinctly less prominent than the language deficits. Although all 3 tracts had structural pathology as determined by tractography, significant correlations with scores on the Frontal Behavioral Inventory were found only for the uncinate fasciculus. Cortical atrophy of the orbitofrontal and anterior temporal lobe cortex was also correlated with these scores. Our findings indicate that damage to a frontotemporal network mediated by the uncinate fasciculus may underlie the emergence of behavioral symptoms in patients with PPA. © 2016 American Academy of Neurology.
Frontotemporal networks and behavioral symptoms in primary progressive aphasia
Mesulam, Marsel M.; Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Murphy, Declan; Wieneke, Christina; Martersteck, Adam; Cobia, Derin; Rogalski, Emily
2016-01-01
Objective: To determine if behavioral symptoms in patients with primary progressive aphasia (PPA) were associated with degeneration of a ventral frontotemporal network. Methods: We used diffusion tensor imaging tractography to quantify abnormalities of the uncinate fasciculus that connects the anterior temporal lobe and the ventrolateral frontal cortex. Two additional ventral tracts were studied: the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus. We also measured cortical thickness of anterior temporal and orbitofrontal regions interconnected by these tracts. Thirty-three patients with PPA and 26 healthy controls were recruited. Results: In keeping with the PPA diagnosis, behavioral symptoms were distinctly less prominent than the language deficits. Although all 3 tracts had structural pathology as determined by tractography, significant correlations with scores on the Frontal Behavioral Inventory were found only for the uncinate fasciculus. Cortical atrophy of the orbitofrontal and anterior temporal lobe cortex was also correlated with these scores. Conclusions: Our findings indicate that damage to a frontotemporal network mediated by the uncinate fasciculus may underlie the emergence of behavioral symptoms in patients with PPA. PMID:26992858
Sensitivity and specificity of auditory steady‐state response testing
Rabelo, Camila Maia; Schochat, Eliane
2011-01-01
INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442
Network representations of immune system complexity
Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar
2015-01-01
The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853
2017-01-01
Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo. PMID:29183943
ERIC Educational Resources Information Center
Dalvit, Silvia; Eimer, Martin
2011-01-01
Previous research has shown that the detection of a visual target can be guided not only by the temporal integration of two percepts, but also by integrating a percept and an image held in working memory. Behavioral and event-related brain potential (ERP) measures were obtained in a target detection task that required temporal integration of 2…
Muehlmann, A M; Edington, G; Mihalik, A C; Buchwald, Z; Koppuzha, D; Korah, M; Lewis, M H
2012-12-01
Aberrant repetitive behaviors are commonly observed in a variety of neurodevelopmental, neurological, and neuropsychiatric disorders. Little is known about the specific neurobiological mechanisms that underlie such behaviors, however, and effective treatments are lacking. Valid animal models can aid substantially in identifying pathophysiological factors mediating aberrant repetitive behavior and aid in treatment development. The C58 inbred mouse strain is a particularly promising model, and we have further characterized its repetitive behavior phenotype. Compared to C57BL/6 mice, C58 mice exhibit high rates of spontaneous hindlimb jumping and backward somersaulting reaching adult frequencies by 5 weeks post-weaning and adult temporal organization by 2 weeks post-weaning. The development of repetitive behavior in C58 mice was markedly attenuated by rearing these mice in larger, more complex environments. In addition to characterizing repetitive motor behavior, we also assessed related forms of inflexible behavior that reflect restricted and perseverative responding. Contrary to our hypothesis, C58 mice did not exhibit increased marble burying nor did they display reduced exploratory behavior in the holeboard task. The C58 strain appears to be a very useful model for the repetitive motor behavior characteristic of a number of clinical disorders. As an inbred mouse strain, studies using the C58 model can take full advantage of the tool kit of modern genetics and molecular neuroscience. This technical advantage makes the model a compelling choice for use in studies designed to elucidate the etiology and pathophysiology of aberrant repetitive behavior. Such findings should, in turn, translate into effective new treatments. Published by Elsevier B.V.
Temporal Relations in Daily-Reported Maternal Mood and Disruptive Child Behavior
ERIC Educational Resources Information Center
Elgar, Frank J.; Waschbusch, Daniel A.; McGrath, Patrick J.; Stewart, Sherry H.; Curtis, Lori J.
2004-01-01
Examined temporal relations between maternal mood and disruptive child behaviour using daily assessments of 30 mother-child dyads carried out over 8 consecutive weeks (623 pooled observations). Pooled time-series analyses showed synchronous fluctuation in child behaviour and maternal distress. Time-lagged models showed temporal relations between…
Haldin, Charlotte; Nymark, Soile; Aho, Ann-Christine; Koskelainen, Ari; Donner, Kristian
2009-05-06
Human vision is approximately 10 times less sensitive than toad vision on a cool night. Here, we investigate (1) how far differences in the capacity for temporal integration underlie such differences in sensitivity and (2) whether the response kinetics of the rod photoreceptors can explain temporal integration at the behavioral level. The toad was studied as a model that allows experimentation at different body temperatures. Sensitivity, integration time, and temporal accuracy of vision were measured psychophysically by recording snapping at worm dummies moving at different velocities. Rod photoresponses were studied by ERG recording across the isolated retina. In both types of experiments, the general timescale of vision was varied by using two temperatures, 15 and 25 degrees C. Behavioral integration times were 4.3 s at 15 degrees C and 0.9 s at 25 degrees C, and rod integration times were 4.2-4.3 s at 15 degrees C and 1.0-1.3 s at 25 degrees C. Maximal behavioral sensitivity was fivefold lower at 25 degrees C than at 15 degrees C, which can be accounted for by inability of the "warm" toads to integrate light over longer times than the rods. However, the long integration time at 15 degrees C, allowing high sensitivity, degraded the accuracy of snapping toward quickly moving worms. We conclude that temporal integration explains a considerable part of all variation in absolute visual sensitivity. The strong correlation between rods and behavior suggests that the integration time of dark-adapted vision is set by rod phototransduction at the input to the visual system. This implies that there is an inexorable trade-off between temporal integration and resolution.
Brain correlates of aesthetic judgment of beauty.
Jacobsen, Thomas; Schubotz, Ricarda I; Höfel, Lea; Cramon, D Yves V
2006-01-01
Functional MRI was used to investigate the neural correlates of aesthetic judgments of beauty of geometrical shapes. Participants performed evaluative aesthetic judgments (beautiful or not?) and descriptive symmetry judgments (symmetric or not?) on the same stimulus material. Symmetry was employed because aesthetic judgments are known to be often guided by criteria of symmetry. Novel, abstract graphic patterns were presented to minimize influences of attitudes or memory-related processes and to test effects of stimulus symmetry and complexity. Behavioral results confirmed the influence of stimulus symmetry and complexity on aesthetic judgments. Direct contrasts showed specific activations for aesthetic judgments in the frontomedian cortex (BA 9/10), bilateral prefrontal BA 45/47, and posterior cingulate, left temporal pole, and the temporoparietal junction. In contrast, symmetry judgments elicited specific activations in parietal and premotor areas subserving spatial processing. Interestingly, beautiful judgments enhanced BOLD signals not only in the frontomedian cortex, but also in the left intraparietal sulcus of the symmetry network. Moreover, stimulus complexity caused differential effects for each of the two judgment types. Findings indicate aesthetic judgments of beauty to rely on a network partially overlapping with that underlying evaluative judgments on social and moral cues and substantiate the significance of symmetry and complexity for our judgment of beauty.
Decision processes in choice overload: a product of delay and probability discounting?
Kaplan, Brent A; Reed, Derek D
2013-07-01
Recent research in the behavioral decision making literature has demonstrated that humans hyperbolically discount the subjective value of options as the number of options increases (Reed et al., 2012). These findings provide a cognitive-behavioral synthesis of the "choice overload" phenomenon, also known as the "paradox of choice." Specifically, these findings suggest that temporal discounting may serve as the underlying process contributing to this effect. As an extension, this study examined the effects of reward magnitude sizes had on rates temporal and options discounting. This manipulation was conducted to determine what role temporal discounting plays in discounting of options. The present results suggest that temporal discounting may not be the only process contributing to the choice overload effect. Copyright © 2013 Elsevier B.V. All rights reserved.
Money Walks: Implicit Mobility Behavior and Financial Well-Being.
Singh, Vivek Kumar; Bozkaya, Burcin; Pentland, Alex
2015-01-01
Traditional financial decision systems (e.g. credit) had to rely on explicit individual traits like age, gender, job type, and marital status, while being oblivious to spatio-temporal mobility or the habits of the individual involved. Emerging trends in geo-aware and mobile payment systems, and the resulting "big data," present an opportunity to study human consumption patterns across space and time. Taking inspiration from animal behavior studies that have reported significant interconnections between animal spatio-temporal "foraging" behavior and their life outcomes, we analyzed a corpus of hundreds of thousands of human economic transactions and found that financial outcomes for individuals are intricately linked with their spatio-temporal traits like exploration, engagement, and elasticity. Such features yield models that are 30% to 49% better at predicting future financial difficulties than the comparable demographic models.
Kalemenev, S V; Zubareva, O E; Frolova, E V; Sizov, V V; Lavrentyeva, V V; Lukomskaya, N Ya; Kim, K Kh; Zaitsev, A V; Magazanik, L G
2015-01-01
Cognitive impairment in six-week -old rats has been studied in the lithium-pilocarpine model of adolescent temporal lobe epilepsy in humans. The pilocarpine-treated rats (n =21) exhibited (a) a decreased exploratory activity in comparison with control rats (n = 20) in the open field (OP) test and (b) a slower extinction of exploratory behavior in repeated OP tests. The Morris Water Maze (MWM) test showed that the effect of training was less pronounced in the pilocarpine-treated rats, which demonstrated disruption of predominantly short-term memory. Therefore, our study has shown that lithium-pilocarpine seizures induce substantial changes in exploratory behavior and spatial memory in adolescent rats. OP and MWM tests can be used in the search of drugs reducing cognitive impairments associated with temporal lobe epilepsy.
Money Walks: Implicit Mobility Behavior and Financial Well-Being
Singh, Vivek Kumar; Bozkaya, Burcin; Pentland, Alex
2015-01-01
Traditional financial decision systems (e.g. credit) had to rely on explicit individual traits like age, gender, job type, and marital status, while being oblivious to spatio-temporal mobility or the habits of the individual involved. Emerging trends in geo-aware and mobile payment systems, and the resulting “big data,” present an opportunity to study human consumption patterns across space and time. Taking inspiration from animal behavior studies that have reported significant interconnections between animal spatio-temporal “foraging” behavior and their life outcomes, we analyzed a corpus of hundreds of thousands of human economic transactions and found that financial outcomes for individuals are intricately linked with their spatio-temporal traits like exploration, engagement, and elasticity. Such features yield models that are 30% to 49% better at predicting future financial difficulties than the comparable demographic models. PMID:26317339
Spike count, spike timing and temporal information in the cortex of awake, freely moving rats
Scaglione, Alessandro; Foffani, Guglielmo; Moxon, Karen A.
2014-01-01
Objective Sensory processing of peripheral information is not stationary but is, in general, a dynamic process related to the behavioral state of the animal. Yet the link between the state of the behavior and the encoding properties of neurons is unclear. This report investigates the impact of the behavioral state on the encoding mechanisms used by cortical neurons for both detection and discrimination of somatosensory stimuli in awake, freely moving, rats. Approach Neuronal activity was recorded from the primary somatosensory cortex of five rats under two different behavioral states (quiet vs. whisking) while electrical stimulation of increasing stimulus strength was delivered to the mystacial pad. Information theoretical measures were then used to measure the contribution of different encoding mechanisms to the information carried by neurons in response to the whisker stimulation. Main Results We found that the behavioral state of the animal modulated the total amount of information conveyed by neurons and that the timing of individual spikes increased the information compared to the total count of spikes alone. However, the temporal information, i.e. information exclusively related to when the spikes occur, was not modulated by behavioral state. Significance We conclude that information about somatosensory stimuli is modulated by the behavior of the animal and this modulation is mainly expressed in the spike count while the temporal information is more robust to changes in behavioral state. PMID:25024291
Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport
Yoon, Hongkyu; Kang, Qinjun; Valocchi, Albert J.
2015-07-29
Here an important geoscience and environmental applications such as geologic carbon storage, environmental remediation, and unconventional oil and gas recovery are best understood in the context of reactive flow and multicomponent transport in the subsurface environment. The coupling of chemical and microbiological reactions with hydrological and mechanical processes can lead to complex behaviors across an enormous range of spatial and temporal scales. These coupled responses are also strongly influenced by the heterogeneity and anisotropy of the geologic formations. Reactive transport processes can change the pore morphology at the pore scale, thereby leading to nonlinear interactions with advective and diffusive transport,more » which can strongly influence larger-scale properties such as permeability and dispersion.« less
Koorehdavoudi, Hana; Bogdan, Paul
2016-01-01
Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity. PMID:27297496
NASA Astrophysics Data System (ADS)
Koorehdavoudi, Hana; Bogdan, Paul
2016-06-01
Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.
NASA Astrophysics Data System (ADS)
Donner, Reik; Balasis, Georgios; Stolbova, Veronika; Wiedermann, Marc; Georgiou, Marina; Kurths, Jürgen
2016-04-01
Magnetic storms are the most prominent global manifestations of out-of-equilibrium magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables can provide valuable insights into relevant physical processes as well as temporal scales associated with this phenomenon. In this work, we introduce several innovative data analysis techniques enabling a quantitative analysis of the Dst index non-stationary behavior. Using recurrence quantification analysis (RQA) and recurrence network analysis (RNA), we obtain a variety of complexity measures serving as markers of quiet- and storm-time magnetospheric dynamics. We additionally apply these techniques to the main driver of Dst index variations, the V BSouth coupling function and interplanetary medium parameters Bz and Pdyn in order to discriminate internal processes from the magnetosphere's response directly induced by the external forcing by the solar wind. The derived recurrence-based measures allow us to improve the accuracy with which magnetospheric storms can be classified based on ground-based observations. The new methodology presented here could be of significant interest for the space weather research community working on time series analysis for magnetic storm forecasts.
NASA Technical Reports Server (NTRS)
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that contains the system and other systems evolves with the CAS as well. The effects of the emerging adaptation and co-evolution are difficult to capture with only combined mathematical and computational experimentation. Therefore, an ab initio flight simulation environment must accommodate individual vehicles, groups of self-organizing vehicles, and large-scale infrastructure behavior. Inspired by Massively Multiplayer Online Role Playing Games (MMORPG) and Serious Gaming, the proposed ab initio simulation environment is similar to online gaming environments in which player participants interact with each other, affect their environment, and expect the simulation to persist and change regardless of any individual player's active participation.
Automated video analysis system reveals distinct diurnal behaviors in C57BL/6 and C3H/HeN mice.
Adamah-Biassi, E B; Stepien, I; Hudson, R L; Dubocovich, M L
2013-04-15
Advances in rodent behavior dissection using automated video recording and analysis allows detailed phenotyping. This study compared and contrasted 15 diurnal behaviors recorded continuously using an automated behavioral analysis system for a period of 14 days under a 14/10 light/dark cycle in single housed C3H/HeN (C3H) or C57BL/6 (C57) male mice. Diurnal behaviors, recorded with minimal experimental interference and analyzed using phenotypic array and temporal distribution analysis showed bimodal and unimodal profiles in the C57 and C3H mice, respectively. Phenotypic array analysis revealed distinct behavioral rhythms in Activity-Like Behaviors (i.e. walk, hang, jump, come down) (ALB), Exploration-Like Behaviors (i.e. dig, groom, rear up, sniff, stretch) (ELB), Ingestion-Like Behaviors (i.e. drink, eat) (ILB) and Resting-Like Behaviors (i.e. awake, remain low, rest, twitch) (RLB) of C3H and C57 mice. Temporal distribution analysis demonstrated that strain and time of day affects the magnitude and distribution of the spontaneous homecage behaviors. Wheel running activity, water and food measurements correlated with timing of homecage behaviors. Subcutaneous (3 mg/kg, sc) or oral (0.02 mg/ml, oral) melatonin treatments in C57 mice did not modify either the total 24 h magnitude or temporal distribution of homecage behaviors when compared with vehicle treatments. We conclude that C3H and C57 mice show different spontaneous activity and behavioral rhythms specifically during the night period which are not modulated by melatonin. Copyright © 2013 Elsevier B.V. All rights reserved.
Rodent ultrasonic vocalizations are bound to active sniffing behavior
Sirotin, Yevgeniy B.; Costa, Martín Elias; Laplagne, Diego A.
2014-01-01
During rodent active behavior, multiple orofacial sensorimotor behaviors, including sniffing and whisking, display rhythmicity in the theta range (~5–10 Hz). During specific behaviors, these rhythmic patterns interlock, such that execution of individual motor programs becomes dependent on the state of the others. Here we performed simultaneous recordings of the respiratory cycle and ultrasonic vocalization emission by adult rats and mice in social settings. We used automated analysis to examine the relationship between breathing patterns and vocalization over long time periods. Rat ultrasonic vocalizations (USVs, “50 kHz”) were emitted within stretches of active sniffing (5–10 Hz) and were largely absent during periods of passive breathing (1–4 Hz). Because ultrasound was tightly linked to the exhalation phase, the sniffing cycle segmented vocal production into discrete calls and imposed its theta rhythmicity on their timing. In turn, calls briefly prolonged exhalations, causing an immediate drop in sniffing rate. Similar results were obtained in mice. Our results show that ultrasonic vocalizations are an integral part of the rhythmic orofacial behavioral ensemble. This complex behavioral program is thus involved not only in active sensing but also in the temporal structuring of social communication signals. Many other social signals of mammals, including monkey calls and human speech, show structure in the theta range. Our work points to a mechanism for such structuring in rodent ultrasonic vocalizations. PMID:25477796
Venkataraman, Archana; Duncan, James S.; Yang, Daniel Y.-J.; Pelphrey, Kevin A.
2015-01-01
Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder. PMID:26106561
Left centro-parieto-temporal response to tool-gesture incongruity: an ERP study.
Chang, Yi-Tzu; Chen, Hsiang-Yu; Huang, Yuan-Chieh; Shih, Wan-Yu; Chan, Hsiao-Lung; Wu, Ping-Yi; Meng, Ling-Fu; Chen, Chen-Chi; Wang, Ching-I
2018-03-13
Action semantics have been investigated in relation to context violation but remain less examined in relation to the meaning of gestures. In the present study, we examined tool-gesture incongruity by event-related potentials (ERPs) and hypothesized that the component N400, a neural index which has been widely used in both linguistic and action semantic congruence, is significant for conditions of incongruence. Twenty participants performed a tool-gesture judgment task, in which they were asked to judge whether the tool-gesture pairs were correct or incorrect, for the purpose of conveying functional expression of the tools. Online electroencephalograms and behavioral performances (the accuracy rate and reaction time) were recorded. The ERP analysis showed a left centro-parieto-temporal N300 effect (220-360 ms) for the correct condition. However, the expected N400 (400-550 ms) could not be differentiated between correct/incorrect conditions. After 700 ms, a prominent late negative complex for the correct condition was also found in the left centro-parieto-temporal area. The neurophysiological findings indicated that the left centro-parieto-temporal area is the predominant region contributing to neural processing for tool-gesture incongruity in right-handers. The temporal dynamics of tool-gesture incongruity are: (1) firstly enhanced for recognizable tool-gesture using patterns, (2) and require a secondary reanalysis for further examination of the highly complicated visual structures of gestures and tools. The evidence from the tool-gesture incongruity indicated altered brain activities attributable to the N400 in relation to lexical and action semantics. The online interaction between gesture and tool processing provided minimal context violation or anticipation effect, which may explain the missing N400.
Peña, Catherine Jensen; Champagne, Frances A.
2014-01-01
Previous studies in Long-Evans rats demonstrated a significant relationship between variation in pup licking/grooming and arched-back nursing (LG-ABN) and offspring development. However, maternal care is dynamic and exhibits significant temporal variation. In the current study, we assessed temporal variation in LG and ABN in lactating rats across the circadian cycle and determined the impact of these behaviors for the prediction of offspring hypothalamic gene expression, anxiety-like behavior, and responsiveness to high fat diet (HFD). We find that distinguishing between dams that engage in stable individual differences in maternal behavior (Low, Mid, High) requires assessment across the light-dark phases of the light cycle and across multiple postpartum days. Amongst juvenile female offspring, we find a positive correlation between maternal LG and mRNA levels of estrogen receptor alpha and beta and the oxytocin receptor (when LG is assessed across the light-dark cycle or in the dark phase). In young adults, we find sex-specific effects, with female High LG offspring exhibiting increased exploration of a novel environment and increased latency to approach HFD and male High LG offspring displaying increased activity in a novel environment and reduced HFD consumption. Importantly, these effects on behavior were primarily evident when LG was assessed across the light-dark cycle and ABN was not associated with these measures. Overall, our findings illustrate the dissociation between the effects of LG and ABN on offspring development and provide critical insights into the temporal characteristics of maternal behavior that have methodological implications for the study of maternal effects. PMID:23398440
Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark
2016-01-01
Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405
Age effects on discrimination of timing in auditory sequences
NASA Astrophysics Data System (ADS)
Fitzgibbons, Peter J.; Gordon-Salant, Sandra
2004-08-01
The experiments examined age-related changes in temporal sensitivity to increments in the interonset intervals (IOI) of components in tonal sequences. Discrimination was examined using reference sequences consisting of five 50-ms tones separated by silent intervals; tone frequencies were either fixed at 4 kHz or varied within a 2-4-kHz range to produce spectrally complex patterns. The tonal IOIs within the reference sequences were either equal (200 or 600 ms) or varied individually with an average value of 200 or 600 ms to produce temporally complex patterns. The difference limen (DL) for increments of IOI was measured. Comparison sequences featured either equal increments in all tonal IOIs or increments in a single target IOI, with the sequential location of the target changing randomly across trials. Four groups of younger and older adults with and without sensorineural hearing loss participated. Results indicated that DLs for uniform changes of sequence rate were smaller than DLs for single target intervals, with the largest DLs observed for single targets embedded within temporally complex sequences. Older listeners performed more poorly than younger listeners in all conditions, but the largest age-related differences were observed for temporally complex stimulus conditions. No systematic effects of hearing loss were observed.
Strategic allocation of attention reduces temporally predictable stimulus conflict
Appelbaum, L. Gregory; Boehler, Carsten N.; Won, Robert; Davis, Lauren; Woldorff, Marty G.
2013-01-01
Humans are able to continuously monitor environmental situations and adjust their behavioral strategies to optimize performance. Here we investigate the behavioral and brain adjustments that occur when conflicting stimulus elements are, or are not, temporally predictable. Event-related potentials (ERPs) were collected while manual-response variants of the Stroop task were performed in which the stimulus onset asynchronies (SOAs) between the relevant-color and irrelevant-word stimulus components were either randomly intermixed, or held constant, within each experimental run. Results indicated that the size of both the neural and behavioral effects of stimulus incongruency varied with the temporal arrangement of the stimulus components, such that the random-SOA arrangements produced the greatest incongruency effects at the earliest irrelevant-first SOA (−200 ms) and the constant-SOA arrangements produced the greatest effects with simultaneous presentation. These differences in conflict processing were accompanied by rapid (~150 ms) modulations of the sensory ERPs to the irrelevant distracter components when they occurred consistently first. These effects suggest that individuals are able to strategically allocate attention in time to mitigate the influence of a temporally predictable distracter. As these adjustments are instantiated by the subjects without instruction, they reveal a form of rapid strategic learning for dealing with temporally predictable stimulus incongruency. PMID:22360623
Gaugler, Joseph E; Wall, Melanie M; Kane, Robert L; Menk, Jeremiah S; Sarsour, Khaled; Johnston, Joseph A; Beusching, Don; Newcomer, Robert
2010-10-01
The individual contributions of behavior problems to key and related outcomes in dementia, such as nursing home admission (NHA) or caregiver burden, remain unclear. This study sought to determine the ramifications of temporal change in individual behavior problems when accounting for increases in caregiver burden and time to NHA. Although burden is sometimes conceptualized as an antecedent to NHA, it has also emerged as a relevant outcome in dementia caregiving research. A sample of 4545 dementia caregivers who participated in the Medicare Alzheimer disease Demonstration Evaluation was selected for this secondary analysis. Various patterns of change in individual behavior problems were considered as predictors of increases in caregiver burden and time to NHA over a 3-year period via mixed effects and Cox proportional hazards models, respectively. Caregivers who did not indicate a care recipient's dangerous behavior initially but did so subsequently (ie, an "incident" behavior problem) were more likely to experience increases in burden (P < 0.0026). Alternatively, the persistent occurrence of behavior disturbances (particularly memory problems) emerged as the strongest predictors of time to NHA. The findings of this study suggest the benefit of examining temporal patterns of individual behavioral disturbances, and that incident and persistent problems account for different dementia outcomes over time. Considering the temporal ramifications and potency of specific behavior problems can facilitate the targeted and timely delivery of effective clinical interventions.
Age-related variation in EEG complexity to photic stimulation: A multiscale entropy analysis
Takahashi, Tetsuya; Cho, Raymond Y.; Murata, Tetsuhito; Mizuno, Tomoyuki; Kikuchi, Mitsuru; Mizukami, Kimiko; Kosaka, Hirotaka; Takahashi, Koichi; Wada, Yuji
2010-01-01
Objective This study was intended to examine variations in electroencephalographic (EEG) complexity in response to photic stimulation (PS) during aging to test the hypothesis that the aging process reduces physiologic complexity and functional responsiveness. Methods Multiscale entropy (MSE), an estimate of time-series signal complexity associated with long-range temporal correlation, is used as a recently proposed method for quantifying EEG complexity with multiple coarse-grained sequences. We recorded EEG in 13 healthy elderly subjects and 12 healthy young subjects during pre-PS and post-PS conditions and estimated their respective MSE values. Results For the pre-PS condition, no significant complexity difference was found between the groups. However, a significant MSE change (complexity increase) was found post-PS only in young subjects, thereby revealing a power-law scaling property, which means long-range temporal correlation. Conclusions Enhancement of long-range temporal correlation in young subjects after PS might reflect a cortical response to stimuli, which was absent in elderly subjects. These results are consistent with the general “loss of complexity/diminished functional response to stimuli” theory of aging. Significance Our findings demonstrate that application of MSE analysis to EEG is a powerful approach for studying age-related changes in brain function. PMID:19231279
The coordination dynamics of social neuromarkers.
Tognoli, Emmanuelle; Kelso, J A Scott
2015-01-01
Social behavior is a complex integrative function that entails many aspects of the brain's sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called "neuromarkers" of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction.
The coordination dynamics of social neuromarkers
Tognoli, Emmanuelle; Kelso, J. A. Scott
2015-01-01
Social behavior is a complex integrative function that entails many aspects of the brain’s sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called “neuromarkers” of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction. PMID:26557067
Jane, Nancy Yesudhas; Nehemiah, Khanna Harichandran; Arputharaj, Kannan
2016-01-01
Clinical time-series data acquired from electronic health records (EHR) are liable to temporal complexities such as irregular observations, missing values and time constrained attributes that make the knowledge discovery process challenging. This paper presents a temporal rough set induced neuro-fuzzy (TRiNF) mining framework that handles these complexities and builds an effective clinical decision-making system. TRiNF provides two functionalities namely temporal data acquisition (TDA) and temporal classification. In TDA, a time-series forecasting model is constructed by adopting an improved double exponential smoothing method. The forecasting model is used in missing value imputation and temporal pattern extraction. The relevant attributes are selected using a temporal pattern based rough set approach. In temporal classification, a classification model is built with the selected attributes using a temporal pattern induced neuro-fuzzy classifier. For experimentation, this work uses two clinical time series dataset of hepatitis and thrombosis patients. The experimental result shows that with the proposed TRiNF framework, there is a significant reduction in the error rate, thereby obtaining the classification accuracy on an average of 92.59% for hepatitis and 91.69% for thrombosis dataset. The obtained classification results prove the efficiency of the proposed framework in terms of its improved classification accuracy.
Brain signal complexity rises with repetition suppression in visual learning.
Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah
2016-06-21
Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
It's time to fear! Interval timing in odor fear conditioning in rats
Shionoya, Kiseko; Hegoburu, Chloé; Brown, Bruce L.; Sullivan, Regina M.; Doyère, Valérie; Mouly, Anne-Marie
2013-01-01
Time perception is crucial to goal attainment in humans and other animals, and interval timing also guides fundamental animal behaviors. Accumulating evidence has made it clear that in associative learning, temporal relations between events are encoded, and a few studies suggest this temporal learning occurs very rapidly. Most of these studies, however, have used methodologies that do not permit investigating the emergence of this temporal learning. In the present study we monitored respiration, ultrasonic vocalization (USV) and freezing behavior in rats in order to perform fine-grain analysis of fear responses during odor fear conditioning. In this paradigm an initially neutral odor (the conditioned stimulus, CS) predicted the arrival of an aversive unconditioned stimulus (US, footshock) at a fixed 20-s time interval. We first investigated the development of a temporal pattern of responding related to CS-US interval duration. The data showed that during acquisition with odor-shock pairings, a temporal response pattern of respiration rate was observed. Changing the CS-US interval duration from 20-s to 30-s resulted in a shift of the temporal response pattern appropriate to the new duration thus demonstrating that the pattern reflected the learning of the CS-US interval. A temporal pattern was also observed during a retention test 24 h later for both respiration and freezing measures, suggesting that the animals had stored the interval duration in long-term memory. We then investigated the role of intra-amygdalar dopaminergic transmission in interval timing. For this purpose, the D1 dopaminergic receptors antagonist SCH23390 was infused in the basolateral amygdala before conditioning. This resulted in an alteration of timing behavior, as reflected in differential temporal patterns between groups observed in a 24 h retention test off drug. The present data suggest that D1 receptor dopaminergic transmission within the amygdala is involved in temporal processing. PMID:24098277
Nonlinear dynamics of emotion-cognition interaction: when emotion does not destroy cognition?
Afraimovich, Valentin; Young, Todd; Muezzinoglu, Mehmet K; Rabinovich, Mikhail I
2011-02-01
Emotion (i.e., spontaneous motivation and subsequent implementation of a behavior) and cognition (i.e., problem solving by information processing) are essential to how we, as humans, respond to changes in our environment. Recent studies in cognitive science suggest that emotion and cognition are subserved by different, although heavily integrated, neural systems. Understanding the time-varying relationship of emotion and cognition is a challenging goal with important implications for neuroscience. We formulate here the dynamical model of emotion-cognition interaction that is based on the following principles: (1) the temporal evolution of cognitive and emotion modes are captured by the incoming stimuli and competition within and among themselves (competition principle); (2) metastable states exist in the unified emotion-cognition phase space; and (3) the brain processes information with robust and reproducible transients through the sequence of metastable states. Such a model can take advantage of the often ignored temporal structure of the emotion-cognition interaction to provide a robust and generalizable method for understanding the relationship between brain activation and complex human behavior. The mathematical image of the robust and reproducible transient dynamics is a Stable Heteroclinic Sequence (SHS), and the Stable Heteroclinic Channels (SHCs). These have been hypothesized to be possible mechanisms that lead to the sequential transient behavior observed in networks. We investigate the modularity of SHCs, i.e., given a SHS and a SHC that is supported in one part of a network, we study conditions under which the SHC pertaining to the cognition will continue to function in the presence of interfering activity with other parts of the network, i.e., emotion.
Collective Intelligence: Aggregation of Information from Neighbors in a Guessing Game.
Pérez, Toni; Zamora, Jordi; Eguíluz, Víctor M
2016-01-01
Complex systems show the capacity to aggregate information and to display coordinated activity. In the case of social systems the interaction of different individuals leads to the emergence of norms, trends in political positions, opinions, cultural traits, and even scientific progress. Examples of collective behavior can be observed in activities like the Wikipedia and Linux, where individuals aggregate their knowledge for the benefit of the community, and citizen science, where the potential of collectives to solve complex problems is exploited. Here, we conducted an online experiment to investigate the performance of a collective when solving a guessing problem in which each actor is endowed with partial information and placed as the nodes of an interaction network. We measure the performance of the collective in terms of the temporal evolution of the accuracy, finding no statistical difference in the performance for two classes of networks, regular lattices and random networks. We also determine that a Bayesian description captures the behavior pattern the individuals follow in aggregating information from neighbors to make decisions. In comparison with other simple decision models, the strategy followed by the players reveals a suboptimal performance of the collective. Our contribution provides the basis for the micro-macro connection between individual based descriptions and collective phenomena.
Collective Intelligence: Aggregation of Information from Neighbors in a Guessing Game
Pérez, Toni; Zamora, Jordi; Eguíluz, Víctor M.
2016-01-01
Complex systems show the capacity to aggregate information and to display coordinated activity. In the case of social systems the interaction of different individuals leads to the emergence of norms, trends in political positions, opinions, cultural traits, and even scientific progress. Examples of collective behavior can be observed in activities like the Wikipedia and Linux, where individuals aggregate their knowledge for the benefit of the community, and citizen science, where the potential of collectives to solve complex problems is exploited. Here, we conducted an online experiment to investigate the performance of a collective when solving a guessing problem in which each actor is endowed with partial information and placed as the nodes of an interaction network. We measure the performance of the collective in terms of the temporal evolution of the accuracy, finding no statistical difference in the performance for two classes of networks, regular lattices and random networks. We also determine that a Bayesian description captures the behavior pattern the individuals follow in aggregating information from neighbors to make decisions. In comparison with other simple decision models, the strategy followed by the players reveals a suboptimal performance of the collective. Our contribution provides the basis for the micro-macro connection between individual based descriptions and collective phenomena. PMID:27093274
Irrmischer, Mona; van der Wal, C Natalie; Mansvelder, Huibert D; Linkenkaer-Hansen, Klaus
2018-01-01
There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability.
Sad facial cues inhibit temporal attention: evidence from an event-related potential study.
Kong, Xianxian; Chen, Xiaoqiang; Tan, Bo; Zhao, Dandan; Jin, Zhenlan; Li, Ling
2013-06-19
We examined the influence of different emotional cues (happy or sad) on temporal attention (short or long interval) using behavioral as well as event-related potential recordings during a Stroop task. Emotional stimuli cued short and long time intervals, inducing 'sad-short', 'sad-long', 'happy-short', and 'happy-long' conditions. Following the intervals, participants performed a numeric Stroop task. Behavioral results showed the temporal attention effects in the sad-long, happy-long, and happy-short conditions, in which valid cues quickened the reaction times, but not in the sad-short condition. N2 event-related potential components showed sad cues to have decreased activity for short intervals compared with long intervals, whereas happy cues did not. Taken together, these findings provide evidence for different modulation of sad and happy facial cues on temporal attention. Furthermore, sad cues inhibit temporal attention, resulting in longer reaction time and decreased neural activity in the short interval by diverting more attentional resources.
Negative mood and mind wandering increase long-range temporal correlations in attention fluctuations
van der Wal, C. Natalie; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus
2018-01-01
There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability. PMID:29746529
Temporal evolution of the spatial covariability of rainfall in South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja
2017-10-01
The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.
Buckling instability in ordered bacterial colonies
NASA Astrophysics Data System (ADS)
Boyer, Denis; Mather, William; Mondragón-Palomino, Octavio; Orozco-Fuentes, Sirio; Danino, Tal; Hasty, Jeff; Tsimring, Lev S.
2011-04-01
Bacterial colonies often exhibit complex spatio-temporal organization. This collective behavior is affected by a multitude of factors ranging from the properties of individual cells (shape, motility, membrane structure) to chemotaxis and other means of cell-cell communication. One of the important but often overlooked mechanisms of spatio-temporal organization is direct mechanical contact among cells in dense colonies such as biofilms. While in natural habitats all these different mechanisms and factors act in concert, one can use laboratory cell cultures to study certain mechanisms in isolation. Recent work demonstrated that growth and ensuing expansion flow of rod-like bacteria Escherichia coli in confined environments leads to orientation of cells along the flow direction and thus to ordering of cells. However, the cell orientational ordering remained imperfect. In this paper we study one mechanism responsible for the persistence of disorder in growing cell populations. We demonstrate experimentally that a growing colony of nematically ordered cells is prone to the buckling instability. Our theoretical analysis and discrete-element simulations suggest that the nature of this instability is related to the anisotropy of the stress tensor in the ordered cell colony.
Central pattern generators for social vocalization: Androgen-dependent neurophysiological mechanisms
Bass, Andrew H.; Remage-Healey, Luke
2008-01-01
Historically, most studies of vertebrate central pattern generators (CPGs) have focused on mechanisms for locomotion and respiration. Here, we highlight new results for ectothermic vertebrates, namely teleost fish and amphibians, showing how androgenic steroids can influence the temporal patterning of CPGs for social vocalization. Investigations of vocalizing teleosts show how androgens can rapidly (within minutes) modulate the neurophysiological output of the vocal CPG (fictive vocalizations that mimic the temporal properties of natural vocalizations) inclusive of their divergent actions between species, as well as intraspecific differences between male reproductive morphs. Studies of anuran amphibians (frogs) demonstrate that long-term steroid treatments (wks) can masculinize the fictive vocalizations of females, inclusive of its sensitivity to rapid modulation by serotonin. Given the conserved organization of vocal control systems across vertebrate groups, the vocal CPGs of fish and amphibians provide tractable models for identifying androgen-dependent events that are fundamental to the mechanisms of vocal motor patterning. These basic mechanisms can also inform our understanding of the more complex CPGs for vocalization, and social behaviors in general, that have evolved among birds and mammals. PMID:18262186
Bishop, Todd M; Maisto, Stephen A; Britton, Peter C; Pigeon, Wilfred R
2016-09-01
A greater understanding of the temporal variation of suicidal ideation and suicidal behavior is needed to inform more effective prevention efforts. Interactive voice recording (IVR) allows for the study of temporal relationships that cannot be captured with most traditional methodologies. To examine the feasibility of implementing IVR for the assessment of suicidal ideation. Participants (n = 4) receiving a brief intervention based on dialectical behavior therapy were asked to respond to three phone-based surveys each day over 6 weeks that assessed suicidal ideation and alcohol consumption. Participants completed 77.7% of daily assessments, reported that calls were not burdensome, and indicated that calls were sometimes helpful in interrupting suicidal ideation. The preliminary data reported here provide optimism for the use of IVR and other forms of ecological momentary assessment in the exploration of the antecedents of suicidal behavior.
deCarvalho, Tagide N.; Shaw, Kerry L.
2011-01-01
The Hawaiian cricket genus Laupala (Gryllidae: Trigonidiinae) has undergone rapid and extensive speciation, with divergence in male song and female acoustic preference playing a role in maintaining species boundaries. Recent study of interspecific differences in the diel rhythmicity of singing and mating, suggests that temporal variation in behavior may reduce gene flow between species. In addition, Laupala perform an elaborate and protracted courtship, providing potential for further temporal variation. However, whether these behavioral differences have a genetic basis or result from environmental variation is unknown. We observed courtship and mating in a common garden study of the sympatric species, Laupala cerasina and Laupala paranigra. We document interspecific differences in the onset and duration of courtship, spermatophore production rate, and diel mating rhythmicity. Our study demonstrates a genetic contribution to interspecific behavioral differences, and suggests an evolutionary pathway to the origins of novel timing phenotypes. PMID:20878226
Habituation of medaka (Oryzias latipes) demonstrated by open-field testing.
Matsunaga, Wataru; Watanabe, Eiji
2010-10-01
Habituation to novel environments is frequently studied to analyze cognitive phenotypes in animals, and an open-field test is generally conducted to investigate the changes that occur in animals during habituation. The test has not been used in behavioral studies of medaka (Oryzias latipes), which is recently being used in behavioral research. Therefore, we examined the open-field behavior of medaka on the basis of temporal changes in 2 conventional indexes of locomotion and position. The findings of our study clearly showed that medaka changed its behavior through multiple temporal phases as it became more familiar with new surroundings; this finding is consistent with those of other ethological studies in animals. During repeated open-field testing on 2 consecutive days, we observed that horizontal locomotion on the second day was less than that on the first day, which suggested that habituation is retained in fish for days. This temporal habituation was critically affected by water factors or visual cues of the tank, thereby suggesting that fish have spatial memory of their surroundings. Thus, the data from this study will afford useful fundamental information for behavioral phenotyping of medaka and for elucidating cognitive phenotypes in animals. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Preventing Data Ambiguity in Infectious Diseases with Four-Dimensional and Personalized Evaluations
Iandiorio, Michelle J.; Fair, Jeanne M.; Chatzipanagiotou, Stylianos; Ioannidis, Anastasios; Trikka-Graphakos, Eleftheria; Charalampaki, Nikoletta; Sereti, Christina; Tegos, George P.; Hoogesteijn, Almira L.; Rivas, Ariel L.
2016-01-01
Background Diagnostic errors can occur, in infectious diseases, when anti-microbial immune responses involve several temporal scales. When responses span from nanosecond to week and larger temporal scales, any pre-selected temporal scale is likely to miss some (faster or slower) responses. Hoping to prevent diagnostic errors, a pilot study was conducted to evaluate a four-dimensional (4D) method that captures the complexity and dynamics of infectious diseases. Methods Leukocyte-microbial-temporal data were explored in canine and human (bacterial and/or viral) infections, with: (i) a non-structured approach, which measures leukocytes or microbes in isolation; and (ii) a structured method that assesses numerous combinations of interacting variables. Four alternatives of the structured method were tested: (i) a noise-reduction oriented version, which generates a single (one data point-wide) line of observations; (ii) a version that measures complex, three-dimensional (3D) data interactions; (iii) a non-numerical version that displays temporal data directionality (arrows that connect pairs of consecutive observations); and (iv) a full 4D (single line-, complexity-, directionality-based) version. Results In all studies, the non-structured approach revealed non-interpretable (ambiguous) data: observations numerically similar expressed different biological conditions, such as recovery and lack of recovery from infections. Ambiguity was also found when the data were structured as single lines. In contrast, two or more data subsets were distinguished and ambiguity was avoided when the data were structured as complex, 3D, single lines and, in addition, temporal data directionality was determined. The 4D method detected, even within one day, changes in immune profiles that occurred after antibiotics were prescribed. Conclusions Infectious disease data may be ambiguous. Four-dimensional methods may prevent ambiguity, providing earlier, in vivo, dynamic, complex, and personalized information that facilitates both diagnostics and selection or evaluation of anti-microbial therapies. PMID:27411058
The complexity of gene expression dynamics revealed by permutation entropy
2010-01-01
Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199
Astrand, Elaine
2018-06-01
Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, [Formula: see text]. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r = 0.47, p < 0.05). It is furthermore shown that this measure allows to predict task performance before action (r = 0.49, p < 0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain-machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or using the continuous measure as neurofeedback opens up new possibilities to develop novel rehabilitation techniques for individuals with degraded WM capacity.
NASA Astrophysics Data System (ADS)
Astrand, Elaine
2018-06-01
Objective. Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Approach. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, n\\in [1,2] . Main results. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r = 0.47, p < 0.05). It is furthermore shown that this measure allows to predict task performance before action (r = 0.49, p < 0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. Significance. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain–machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or using the continuous measure as neurofeedback opens up new possibilities to develop novel rehabilitation techniques for individuals with degraded WM capacity.
[Factors behind action, emotion, and decision making].
Watanabe, Katsumi
2009-12-01
Human actions, emotions, and decision making are products of complex interactions between explicit and implicit processes at various levels of spatial and temporal scales. Although it may not be possible to obtain to experimental data for all the complexity of human behavioral and emotional processes in our everyday life, recent studies have investigated the effects of social contexts on actions, emotions, and decision making; these studies include those in the fields of experimental psychology, cognitive science, and neuroscience. In this paper, we review several empirical studies that exemplify how our actions, social emotions, and decision making are influenced by the presence of implicit external, rather than internal factors, particularly by presence of other individuals. The following are the main principles identified. (1) Unconscious behavioral contagion: Individuals tend to mimic others' actions. This tendency occurs unconsciously even when the observed and the to-be-executed movements are unrelated at various levels and aspects of behaviors (e. g., behavioral tempo and speed). (2) Neural substrates of social emotions: Various social emotions, including admiration, compassion, envy, and schadenfreude, are represented in neuronal networks that are similar to those of basic emotional processes. (3) Evasive nature of human decision making: Individuals tend to overrate their own subjective impression of and emotional reaction in forecasting affective reaction to events in the future, even though the predictive power of information from peer group is much larger in this regard. Individuals are seldom aware of the dissociation between their intended choice and excuted actions and are willing to give elaborate explanations for the choices they, in fact, did not make. Using these empirical examples, I will illustrate the considerable influences of implicit, unconscious processes on human actions, emotions, and decision making.
Persistency and flexibility of complex brain networks underlie dual-task interference.
Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten
2015-09-01
Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley Periodicals, Inc.
Infant and Maternal Sensitivity to Interpersonal Timing
ERIC Educational Resources Information Center
Henning, Anne; Striano, Tricia
2011-01-01
A perturbation paradigm was employed to assess 3- and 6-month-old infants' and their mothers' sensitivity to a 3-s temporal delay implemented in an ongoing televised interaction. At both ages, the temporal delay affected infant but not maternal behavior and only when implementing the temporal delay in maternal (Experiment 1, N = 64) but not infant…
Statistical Mechanics of Temporal and Interacting Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun
In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.
Wang, X; Jiao, Y; Tang, T; Wang, H; Lu, Z
2013-12-19
Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. The goals of this study were twofold: to investigate the test-retest reliability of temporal patterns for ICNs, and to analyze these informative univariate metrics. Additionally, a correlation analysis was performed to enhance interpretability. Our study included three datasets: (a) short- and long-term scans, (b) multi-band echo-planar imaging (mEPI), and (c) eyes open or closed. Using dual regression, we obtained the time courses of ICNs for each subject. To produce temporal patterns for ICNs, we applied two categories of univariate metrics: network-wise complexity and network-wise low-frequency oscillation. Furthermore, we validated the test-retest reliability for each metric. The network-wise temporal patterns for most ICNs (especially for default mode network, DMN) exhibited moderate-to-high reliability and reproducibility under different scan conditions. Network-wise complexity for DMN exhibited fair reliability (ICC<0.5) based on eyes-closed sessions. Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brown-Steiner, B.; Selin, N. E.; Prinn, R. G.; Monier, E.; Garcia-Menendez, F.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Cameron-Smith, P. J.
2017-12-01
We summarize two methods to aid in the identification of ozone signals from underlying spatially and temporally heterogeneous data in order to help research communities avoid the sometimes burdensome computational costs of high-resolution high-complexity models. The first method utilizes simplified chemical mechanisms (a Reduced Hydrocarbon Mechanism and a Superfast Mechanism) alongside a more complex mechanism (MOZART-4) within CESM CAM-Chem to extend the number of simulated meteorological years (or add additional members to an ensemble) for a given modeling problem. The Reduced Hydrocarbon mechanism is twice as fast, and the Superfast mechanism is three times faster than the MOZART-4 mechanism. We show that simplified chemical mechanisms are largely capable of simulating surface ozone across the globe as well as the more complex chemical mechanisms, and where they are not capable, a simple standardized anomaly emulation approach can correct for their inadequacies. The second method uses strategic averaging over both temporal and spatial scales to filter out the highly heterogeneous noise that underlies ozone observations and simulations. This method allows for a selection of temporal and spatial averaging scales that match a particular signal strength (between 0.5 and 5 ppbv), and enables the identification of regions where an ozone signal can rise above the ozone noise over a given region and a given period of time. In conjunction, these two methods can be used to "scale down" chemical mechanism complexity and quantitatively determine spatial and temporal scales that could enable research communities to utilize simplified representations of atmospheric chemistry and thereby maximize their productivity and efficiency given computational constraints. While this framework is here applied to ozone data, it could also be applied to a broad range of geospatial data sets (observed or modeled) that have spatial and temporal coverage.
Dalrymple, Matthew B; Jaeger, Werner C; Eidne, Karin A; Pfleger, Kevin D G
2011-05-13
Orexin G protein-coupled receptors (OxRs) and their cognate agonists have been implicated in a number of disorders since their recent discovery, ranging from narcolepsy to formation of addictive behavior. Bioluminescence resonance energy transfer assays of agonist-occupied OxRs provided evidence for a strong dose-dependent interaction with both trafficking proteins β-arrestin 1 and 2 that required unusually high agonist concentrations compared with inositol phosphate signaling. This appears to be reflected in functional differences in potency with respect to orexin A (OxA) and OxR2-dependent ERK1/2 phosphorylation after 90 min compared with 2 min, potentially consistent with β-arrestin-mediated versus G protein-mediated signaling, respectively. Furthermore, extended bioluminescence resonance energy transfer kinetic data monitoring OxA-dependent receptor-β-arrestin and β-arrestin-ubiquitin proximity suggested subtype-specific differences in receptor trafficking, with OxR2 activation resulting in more sustained receptor-β-arrestin-ubiquitin complex formation than elicited by OxR1 activation. Enzyme-linked immunosorbent assay (ELISA) data also revealed that OxR1 underwent significantly more rapid recycling compared with OxR2. Finally, we have observed sustained OxA-dependent ERK1/2 phosphorylation in the presence of OxR2 compared with OxR1. Although both OxR subtypes could be classified as class B receptors for β-arrestin usage based on the initial strength of interaction with both β-arrestins, our temporal profiling revealed tangible differences between OxR subtypes. Consequently, OxR1 appears to fit uneasily into the commonly used β-arrestin classification scheme. More importantly, it is hoped that this improved profiling capability, enabling the subtleties of protein complex formation, stability, and duration to be assessed in live cells, will help unlock the therapeutic potential of targeting these receptors.
Loosli, Y; Vianay, B; Luginbuehl, R; Snedeker, J G
2012-05-01
We present a novel approach to modeling cell spreading, and use it to reveal a potentially central mechanism regulating focal adhesion maturation in various cell phenotypes. Actin bundles that span neighboring focal complexes at the lamellipodium-lamellum interface were assumed to be loaded by intracellular forces in proportion to bundle length. We hypothesized that the length of an actin bundle (with the corresponding accumulated force at its adhesions) may thus regulate adhesion maturation to ensure cell mechanical stability and morphological integrity. We developed a model to test this hypothesis, implementing a "top-down" approach to simplify certain cellular processes while explicitly incorporating complexity of other key subcellular mechanisms. Filopodial and lamellipodial activities were treated as modular processes with functional spatiotemporal interactions coordinated by rules regarding focal adhesion turnover and actin bundle dynamics. This theoretical framework was able to robustly predict temporal evolution of cell area and cytoskeletal organization as reported from a wide range of cell spreading experiments using micropatterned substrates. We conclude that a geometric/temporal modeling framework can capture the key functional aspects of the rapid spreading phase and resultant cytoskeletal complexity. Hence the model is used to reveal mechanistic insight into basic cell behavior essential for spreading. It demonstrates that actin bundles spanning nascent focal adhesions such that they are aligned to the leading edge may accumulate centripetal endogenous forces along their length, and could thus trigger focal adhesion maturation in a force-length dependent fashion. We suggest that this mechanism could be a central "integrating" factor that effectively coordinates force-mediated adhesion maturation at the lamellipodium-lamellum interface.
Time series analysis for psychological research: examining and forecasting change
Jebb, Andrew T.; Tay, Louis; Wang, Wei; Huang, Qiming
2015-01-01
Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials. PMID:26106341
The Behavioral Economics of Choice and Interval Timing
Jozefowiez, J.; Staddon, J. E. R.; Cerutti, D. T.
2009-01-01
We propose a simple behavioral economic model (BEM) describing how reinforcement and interval timing interact. The model assumes a Weber-law-compliant logarithmic representation of time. Associated with each represented time value are the payoffs that have been obtained for each possible response. At a given real time, the response with the highest payoff is emitted. The model accounts for a wide range of data from procedures such as simple bisection, metacognition in animals, economic effects in free-operant psychophysical procedures and paradoxical choice in double-bisection procedures. Although it assumes logarithmic time representation, it can also account for data from the time-left procedure usually cited in support of linear time representation. It encounters some difficulties in complex free-operant choice procedures, such as concurrent mixed fixed-interval schedules as well as some of the data on double bisection, that may involve additional processes. Overall, BEM provides a theoretical framework for understanding how reinforcement and interval timing work together to determine choice between temporally differentiated reinforcers. PMID:19618985
Mobile Sensing in Environmental Health and Neighborhood Research.
Chaix, Basile
2018-04-01
Public health research has witnessed a rapid development in the use of location, environmental, behavioral, and biophysical sensors that provide high-resolution objective time-stamped data. This burgeoning field is stimulated by the development of novel multisensor devices that collect data for an increasing number of channels and algorithms that predict relevant dimensions from one or several data channels. Global positioning system (GPS) tracking, which enables geographic momentary assessment, permits researchers to assess multiplace personal exposure areas and the algorithm-based identification of trips and places visited, eventually validated and complemented using a GPS-based mobility survey. These methods open a new space-time perspective that considers the full dynamic of residential and nonresidential momentary exposures; spatially and temporally disaggregates the behavioral and health outcomes, thus replacing them in their immediate environmental context; investigates complex time sequences; explores the interplay among individual, environmental, and situational predictors; performs life-segment analyses considering infraindividual statistical units using case-crossover models; and derives recommendations for just-in-time interventions.
Interarrival times of message propagation on directed networks.
Mihaljev, Tamara; de Arcangelis, Lucilla; Herrmann, Hans J
2011-08-01
One of the challenges in fighting cybercrime is to understand the dynamics of message propagation on botnets, networks of infected computers used to send viruses, unsolicited commercial emails (SPAM) or denial of service attacks. We map this problem to the propagation of multiple random walkers on directed networks and we evaluate the interarrival time distribution between successive walkers arriving at a target. We show that the temporal organization of this process, which models information propagation on unstructured peer to peer networks, has the same features as SPAM reaching a single user. We study the behavior of the message interarrival time distribution on three different network topologies using two different rules for sending messages. In all networks the propagation is not a pure Poisson process. It shows universal features on Poissonian networks and a more complex behavior on scale free networks. Results open the possibility to indirectly learn about the process of sending messages on networks with unknown topologies, by studying interarrival times at any node of the network.
Interarrival times of message propagation on directed networks
NASA Astrophysics Data System (ADS)
Mihaljev, Tamara; de Arcangelis, Lucilla; Herrmann, Hans J.
2011-08-01
One of the challenges in fighting cybercrime is to understand the dynamics of message propagation on botnets, networks of infected computers used to send viruses, unsolicited commercial emails (SPAM) or denial of service attacks. We map this problem to the propagation of multiple random walkers on directed networks and we evaluate the interarrival time distribution between successive walkers arriving at a target. We show that the temporal organization of this process, which models information propagation on unstructured peer to peer networks, has the same features as SPAM reaching a single user. We study the behavior of the message interarrival time distribution on three different network topologies using two different rules for sending messages. In all networks the propagation is not a pure Poisson process. It shows universal features on Poissonian networks and a more complex behavior on scale free networks. Results open the possibility to indirectly learn about the process of sending messages on networks with unknown topologies, by studying interarrival times at any node of the network.
Time series analysis for psychological research: examining and forecasting change.
Jebb, Andrew T; Tay, Louis; Wang, Wei; Huang, Qiming
2015-01-01
Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials.
Lee, Mei-Hua; Bodfish, James W; Lewis, Mark H; Newell, Karl M
2010-01-01
This study investigated the mean rate and time-dependent sequential organization of spontaneous eye blinks in adults with intellectual and developmental disability (IDD) and individuals from this group who were additionally categorized with stereotypic movement disorder (IDD+SMD). The mean blink rate was lower in the IDD+SMD group than the IDD group and both of these groups had a lower blink rate than a contrast group of healthy adults. In the IDD group the n to n+1 sequential organization over time of the eye-blink durations showed a stronger compensatory organization than the contrast group suggesting decreased complexity/dimensionality of eye-blink behavior. Very low blink rate (and thus insufficient time series data) precluded analysis of time-dependent sequential properties in the IDD+SMD group. These findings support the hypothesis that both IDD and SMD are associated with a reduction in the dimension and adaptability of movement behavior and that this may serve as a risk factor for the expression of abnormal movements.
On the Instability of Large Slopes in the Upstream of Wu River, Taiwan
NASA Astrophysics Data System (ADS)
Shou, Keh-Jian; Lin, Jia-Fei
2015-04-01
Considering the existence of various types of landslides (shallow and deep-seated) and the importance of protection targets (the landslide might affect a residential area, cut a road, isolate a village, etc.), this study aims to analyze the landslide susceptibility along the Lixing Industrial Road, i.e., Nantou County Road # 89, in the upstream of Wu River. Focusing on the selected typical large scale landslides, the data and information of the landslides were collected from the field and the government (including the local government, the Soil and Water Conservation Bureau, and the highway agencies). Based on the data of Li-DAR and the information from boreholes, the temporal behavior and the complex mechanism of large scale landslides were analyzed. To assess the spatial hazard of the landslides, probabilistic analysis was applied. The study of the landslide mechanism can help to understand the behavior of landslides in similar geologic conditions, and the results of hazard analysis can be applied for risk prevention and management in the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinh, Thanh-Hung, E-mail: dinh@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei; Arai, Goki
2015-09-21
We have characterized the spectral structure and the temporal history of the laser-produced high-Z multi-charged ion plasmas for the efficient water window soft x-ray sources. Strong unresolved transition array emission was observed due to 4d–4f and 4f–5g transitions from Au, Pb, and Bi plasmas in the 280–700 eV photon energy region. The temporal behavior of the emission was essentially similar of that of the laser pulse with a slight delay between different transitions. These results provide feedback for accurate modeling of the atomic processes with the radiative hydrodynamic simulations.
Markovian robots: Minimal navigation strategies for active particles
NASA Astrophysics Data System (ADS)
Nava, Luis Gómez; Großmann, Robert; Peruani, Fernando
2018-04-01
We explore minimal navigation strategies for active particles in complex, dynamical, external fields, introducing a class of autonomous, self-propelled particles which we call Markovian robots (MR). These machines are equipped with a navigation control system (NCS) that triggers random changes in the direction of self-propulsion of the robots. The internal state of the NCS is described by a Boolean variable that adopts two values. The temporal dynamics of this Boolean variable is dictated by a closed Markov chain—ensuring the absence of fixed points in the dynamics—with transition rates that may depend exclusively on the instantaneous, local value of the external field. Importantly, the NCS does not store past measurements of this value in continuous, internal variables. We show that despite the strong constraints, it is possible to conceive closed Markov chain motifs that lead to nontrivial motility behaviors of the MR in one, two, and three dimensions. By analytically reducing the complexity of the NCS dynamics, we obtain an effective description of the long-time motility behavior of the MR that allows us to identify the minimum requirements in the design of NCS motifs and transition rates to perform complex navigation tasks such as adaptive gradient following, detection of minima or maxima, or selection of a desired value in a dynamical, external field. We put these ideas in practice by assembling a robot that operates by the proposed minimalistic NCS to evaluate the robustness of MR, providing a proof of concept that is possible to navigate through complex information landscapes with such a simple NCS whose internal state can be stored in one bit. These ideas may prove useful for the engineering of miniaturized robots.
Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing.
Heldmann, Marcus; Berding, Georg; Voges, Jürgen; Bogerts, Bernhard; Galazky, Imke; Müller, Ulf; Baillot, Gunther; Heinze, Hans-Jochen; Münte, Thomas F
2012-01-01
The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H(2)[(15)O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control.
IA and PA network-based computation of coordinating combat behaviors in the military MAS
NASA Astrophysics Data System (ADS)
Xia, Zuxun; Fang, Huijia
2004-09-01
In the military multi-agent system every agent needs to analyze the dependent and temporal relations among the tasks or combat behaviors for working-out its plans and getting the correct behavior sequences, it could guarantee good coordination, avoid unexpected damnification and guard against bungling the change of winning a battle due to the possible incorrect scheduling and conflicts. In this paper IA and PA network based computation of coordinating combat behaviors is put forward, and emphasize particularly on using 5x5 matrix to represent and compute the temporal binary relation (between two interval-events, two point-events or between one interval-event and one point-event), this matrix method makes the coordination computing convenience than before.
Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?
Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter
2006-01-01
To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks.
Osório, Camila Moreira; Latini, Alexandra; Leal, Rodrigo Bainy; de Oliveira Thais, Maria Emília Rodrigues; Vascouto, Helena Dresch; Remor, Aline Pertile; Lopes, Mark William; Linhares, Marcelo Neves; Ben, Juliana; de Paula Martins, Roberta; Prediger, Rui Daniel; Hoeller, Alexandre Ademar; Markowitsch, Hans Joachim; Wolf, Peter; Lin, Kátia; Walz, Roger
2017-12-01
Interictal hypometabolism is commonly measured by 18-fluoro-deoxyglucose Positron Emission Tomography (FDG-PET) in the temporal lobe of patients with mesial temporal lobe epilepsy (MTLE-HS). Left temporal lobe interictal FDG-PET hypometabolism has been associated with verbal memory impairment, while right temporal lobe FDG-PET hypometabolism is associated with nonverbal memory impairment. The biochemical mechanisms involved in these findings remain unknown. In comparison to healthy controls (n=21), surgically treated patients with MTLE-HS (n=32, left side=17) had significant lower scores in the Rey Auditory Verbal Learning Test (RAVLT retention and delayed), Logical Memory II (LMII), Boston Naming test (BNT), Letter Fluency and Category Fluency. We investigated whether enzymatic activities of the mitochondrial enzymes Complex I (C I), Complex II (C II), Complex IV (C IV) and Succinate Dehydrogenase (SDH) from the resected samples of the middle temporal neocortex (mTCx), amygdala (AMY) and hippocampus (HIP) were associated with performance in the RAVLT, LMII, BNT and fluency tests of our patients. After controlling for the side of hippocampus sclerosis, years of education, disease duration, antiepileptic treatment and seizure outcome after surgery, no independent associations were observed between the cognitive test scores and the analyzed mitochondrial enzymatic activities (p>0.37). Results indicate that memory and language impairment observed in MTLE-HS patients are not strongly associated with the levels of mitochondrial CI, CII, SDH and C IV enzymatic activities in the temporal lobe structures ipsilateral to the HS lesion. Copyright © 2017 Elsevier B.V. All rights reserved.
The functional neuroanatomy of maternal love: mother's response to infant's attachment behaviors.
Noriuchi, Madoka; Kikuchi, Yoshiaki; Senoo, Atsushi
2008-02-15
Maternal love, which may be the core of maternal behavior, is essential for the mother-infant attachment relationship and is important for the infant's development and mental health. However, little has been known about these neural mechanisms in human mothers. We examined patterns of maternal brain activation in response to infant cues using video clips. We performed functional magnetic resonance imaging (fMRI) measurements while 13 mothers viewed video clips, with no sound, of their own infant and other infants of approximately 16 months of age who demonstrated two different attachment behaviors (smiling at the infant's mother and crying for her). We found that a limited number of the mother's brain areas were specifically involved in recognition of the mother's own infant, namely orbitofrontal cortex (OFC), periaqueductal gray, anterior insula, and dorsal and ventrolateral parts of putamen. Additionally, we found the strong and specific mother's brain response for the mother's own infant's distress. The differential neural activation pattern was found in the dorsal region of OFC, caudate nucleus, right inferior frontal gyrus, dorsomedial prefrontal cortex (PFC), anterior cingulate, posterior cingulate, thalamus, substantia nigra, posterior superior temporal sulcus, and PFC. Our results showed the highly elaborate neural mechanism mediating maternal love and diverse and complex maternal behaviors for vigilant protectiveness.
Learning Temporal Statistics for Sensory Predictions in Aging.
Luft, Caroline Di Bernardi; Baker, Rosalind; Goldstone, Aimee; Zhang, Yang; Kourtzi, Zoe
2016-03-01
Predicting future events based on previous knowledge about the environment is critical for successful everyday interactions. Here, we ask which brain regions support our ability to predict the future based on implicit knowledge about the past in young and older age. Combining behavioral and fMRI measurements, we test whether training on structured temporal sequences improves the ability to predict upcoming sensory events; we then compare brain regions involved in learning predictive structures between young and older adults. Our behavioral results demonstrate that exposure to temporal sequences without feedback facilitates the ability of young and older adults to predict the orientation of an upcoming stimulus. Our fMRI results provide evidence for the involvement of corticostriatal regions in learning predictive structures in both young and older learners. In particular, we showed learning-dependent fMRI responses for structured sequences in frontoparietal regions and the striatum (putamen) for young adults. However, for older adults, learning-dependent activations were observed mainly in subcortical (putamen, thalamus) regions but were weaker in frontoparietal regions. Significant correlations of learning-dependent behavioral and fMRI changes in these regions suggest a strong link between brain activations and behavioral improvement rather than general overactivation. Thus, our findings suggest that predicting future events based on knowledge of temporal statistics engages brain regions involved in implicit learning in both young and older adults.
Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice.
Bedrosian, Tracy A; Herring, Kamillya L; Weil, Zachary M; Nelson, Randy J
2011-07-12
Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is "sundowning syndrome," which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomotor activity relative to adult mice near the end of the dark phase, and with time-dependent changes in basal forebrain acetylcholinesterase expression. Transgenic APP mice show a similar behavioral phenomenon that is not observed among age-matched wild-type mice. These results may have useful applications to the study and treatment of age- and dementia-related circadian behavioral disturbances, namely, sundowning syndrome.
Assessing the Extent of Influence Subglacial Hydrology Has on Dynamic Ice Sheet Behavior
NASA Astrophysics Data System (ADS)
Babonis, G. S.; Csatho, B. M.
2012-12-01
Numerous recent studies have done an excellent job capturing and quantifying the complex pattern of dynamic changes of the Greenland Ice Sheet (GrIS) over the past several decades. The timing of changes in ice velocities and mass balance indicate that the mechanisms controlling these behaviors, both external and internal, act over variable spatial and temporal regimes, can change in rapid and complex fashion, and have significant effect on ice sheet behavior as well as sea level rise. With roughly half of the estimated ice loss from the GrIS attributed to dynamic processes, these changes account for about 250 Gt/yr (2003-2008), equivalence to 0.6 mm/yr sea level rise. One of the primary influences of dynamic ice behavior is ice sheet hydrology, including the storage and transport of water from the supraglacial to subglacial environment, and the subsequent development of water transport pathways, thus demonstrating the need for further characterization of the subglacial environment. Enhanced dynamic flow of ice due to the influence of meltwater distribution on the subglacial environment has been reported, including In-SAR observations of large velocity increases over short periods of time, suggesting regions where dynamic changes are likely being caused by changes in hydrology. Additionally, building upon the 1993-2011 laser altimetry record, analyzed by our Surface Elevation Reconstruction And Change detection (SERAC) procedure, we have detected complex patterns of rapid thickening and thinning patterns over several outlet glaciers. This study presents a comprehensive investigation of hydrologic control on dynamic glacier behavior for several key sites in Greenland. We combine a high resolution surface digital elevation model (DEM) derived by fusing space- and airborne laser altimetry observations and SPIRIT SPOT DEMs, with a high resolution, hydrologically-corrected bedrock DEM derived from a combination of CResIS and Operation Icebridge ice penetrating radar data for generating potentiometric maps for each region of interest. Using these potentiometric maps, along with surficial DEMs, supra- and subglacial routing paths, as well as potential sites for discrete supraglacial hydrologic input sources are identified. Comparison of hydrologic drainage networks with the spatial distribution of recent rapid dynamic changes detected by altimetry allows for the assessment of the extent of influence that subglacial hydrology has on ice sheet behavior.
Properties of the Residual Stress of the Temporally Filtered Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Pruett, C. D.; Gatski, T. B.; Grosch, C. E.; Thacker, W. D.
2002-01-01
The development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, is of current interest. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. Causal time-domain filters, parameterized by a temporal filter width 0 less than Delta less than infinity, are considered. For several reasons, the differential forms of such filters are preferred to their corresponding integral forms; among these, storage requirements for differential forms are typically much less than for integral forms and, for some filters, are independent of Delta. The behavior of the residual stress in the limits of both vanishing and in infinite filter widths is examined. It is shown analytically that, in the limit Delta to 0, the residual stress vanishes, in which case the Navier-Stokes equations are recovered from the temporally filtered equations. Alternately, in the limit Delta to infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits of filter width is further validated by numerical simulations of the temporally filtered forced, viscous Burger's equation. Finally, finite filter widths are also considered, and a priori analyses of temporal similarity and temporal approximate deconvolution models of the residual stress are conducted.
Cortical entrainment to music and its modulation by expertise
Doelling, Keith B.; Poeppel, David
2015-01-01
Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta–theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15–30 Hz)—often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition. PMID:26504238
Cortical entrainment to music and its modulation by expertise.
Doelling, Keith B; Poeppel, David
2015-11-10
Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta-theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.
Common neural correlates of intertemporal choices and intelligence in adolescents.
Ripke, Stephan; Hübner, Thomas; Mennigen, Eva; Müller, Kathrin U; Li, Shu-Chen; Smolka, Michael N
2015-02-01
Converging behavioral evidence indicates that temporal discounting, measured by intertemporal choice tasks, is inversely related to intelligence. At the neural level, the parieto-frontal network is pivotal for complex, higher-order cognitive processes. Relatedly, underrecruitment of the pFC during a working memory task has been found to be associated with steeper temporal discounting. Furthermore, this network has also been shown to be related to the consistency of intertemporal choices. Here we report an fMRI study that directly investigated the association of neural correlates of intertemporal choice behavior with intelligence in an adolescent sample (n = 206; age 13.7-15.5 years). After identifying brain regions where the BOLD response during intertemporal choice was correlated with individual differences in intelligence, we further tested whether BOLD responses in these areas would mediate the associations between intelligence, the discounting rate, and choice consistency. We found positive correlations between BOLD response in a value-independent decision network (i.e., dorsolateral pFC, precuneus, and occipital areas) and intelligence. Furthermore, BOLD response in a value-dependent decision network (i.e., perigenual ACC, inferior frontal gyrus, ventromedial pFC, ventral striatum) was positively correlated with intelligence. The mediation analysis revealed that BOLD responses in the value-independent network mediated the association between intelligence and choice consistency, whereas BOLD responses in the value-dependent network mediated the association between intelligence and the discounting rate. In summary, our findings provide evidence for common neural correlates of intertemporal choice and intelligence, possibly linked by valuation as well as executive functions.
Blessing, William; Ootsuka, Youichirou
2016-01-01
Charles Darwin noted that natural selection applies even to the hourly organization of daily life. Indeed, in many species, the day is segmented into active periods when the animal searches for food, and inactive periods when the animal digests and rests. This episodic temporal patterning is conventionally referred to as ultradian (<24 hours) rhythmicity. The average time between ultradian events is approximately 1-2 hours, but the interval is highly variable. The ultradian pattern is stochastic, jaggy rather than smooth, so that although the next event is likely to occur within 1-2 hours, it is not possible to predict the precise timing. When models of circadian timing are applied to the ultradian temporal pattern, the underlying assumption of true periodicity (stationarity) has distorted the analyses, so that the ultradian pattern is frequently averaged away and ignored. Each active ultradian episode commences with an increase in hippocampal theta rhythm, indicating the switch of attention to the external environment. During each active episode, behavioral and physiological processes, including changes in body and brain temperature, occur in an integrated temporal order, confirming organization by programs endogenous to the central nervous system. We describe methods for analyzing episodic ultradian events, including the use of wavelet mathematics to determine their timing and amplitude, and the use of fractal-based procedures to determine their complexity.
Blessing, William; Ootsuka, Youichirou
2016-01-01
ABSTRACT Charles Darwin noted that natural selection applies even to the hourly organization of daily life. Indeed, in many species, the day is segmented into active periods when the animal searches for food, and inactive periods when the animal digests and rests. This episodic temporal patterning is conventionally referred to as ultradian (<24 hours) rhythmicity. The average time between ultradian events is approximately 1–2 hours, but the interval is highly variable. The ultradian pattern is stochastic, jaggy rather than smooth, so that although the next event is likely to occur within 1–2 hours, it is not possible to predict the precise timing. When models of circadian timing are applied to the ultradian temporal pattern, the underlying assumption of true periodicity (stationarity) has distorted the analyses, so that the ultradian pattern is frequently averaged away and ignored. Each active ultradian episode commences with an increase in hippocampal theta rhythm, indicating the switch of attention to the external environment. During each active episode, behavioral and physiological processes, including changes in body and brain temperature, occur in an integrated temporal order, confirming organization by programs endogenous to the central nervous system. We describe methods for analyzing episodic ultradian events, including the use of wavelet mathematics to determine their timing and amplitude, and the use of fractal-based procedures to determine their complexity. PMID:28349079
Temporal scaling and spatial statistical analyses of groundwater level fluctuations
NASA Astrophysics Data System (ADS)
Sun, H.; Yuan, L., Sr.; Zhang, Y.
2017-12-01
Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.
Individual Differences Reveal Correlates of Hidden Hearing Deficits
Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G.
2015-01-01
Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of “normal hearing.” PMID:25653371
Ictal affective symptoms in temporal lobe epilepsy are related to gender and age.
Toth, Vanda; Fogarasi, Andras; Karadi, Kazmer; Kovacs, Norbert; Ebner, Alois; Janszky, Jozsef
2010-07-01
We systematically analyzed the video-recorded and patient-reported, as well as positive and negative ictal affective symptoms (IAS) in temporal lobe epilepsy (TLE). Our aim was to assess (1) frequency, (2) gender effect, (3) lateralizing significance, (4) localizing value, and (5) prognostic significance in epilepsy surgery of IAS in patients with video-registered seizures. We reviewed ictal video recordings of 184 patients (99 women, aged 16-63). All patients had surgery for intractable TLE with video-recorded complex partial seizures (CPS) due to temporal lobe lesions visualized by high-resolution magnetic resonance imaging (MRI). Affective auras (AAs) were categorized into two groups: positive or negative. We registered AAs in 18% of patients: positive in 3%, negative in 15%. We saw ictal affective behavior (IAB) in 22% of patients; 10% had positive, whereas 14% had negative IAB. Two patients had both positive and negative IAB. AAs showed an association with IAB in case of fear expression versus fear auras (p = 0.018). IAB, especially negative IAB, occurred more often in women than in men. Patients with negative IAB were younger than others. We could not demonstrate an association between IAS and the localization, lateralization, or hemispheric dominance. Surgical outcome did not associate with IAS. Patient-reported and video-recorded negative-but not positive-affective signs are related to each other. Video-recorded negative AAs occur more often in women and young patients.
Hearing shapes our perception of time: temporal discrimination of tactile stimuli in deaf people.
Bolognini, Nadia; Cecchetto, Carlo; Geraci, Carlo; Maravita, Angelo; Pascual-Leone, Alvaro; Papagno, Costanza
2012-02-01
Confronted with the loss of one type of sensory input, we compensate using information conveyed by other senses. However, losing one type of sensory information at specific developmental times may lead to deficits across all sensory modalities. We addressed the effect of auditory deprivation on the development of tactile abilities, taking into account changes occurring at the behavioral and cortical level. Congenitally deaf and hearing individuals performed two tactile tasks, the first requiring the discrimination of the temporal duration of touches and the second requiring the discrimination of their spatial length. Compared with hearing individuals, deaf individuals were impaired only in tactile temporal processing. To explore the neural substrate of this difference, we ran a TMS experiment. In deaf individuals, the auditory association cortex was involved in temporal and spatial tactile processing, with the same chronometry as the primary somatosensory cortex. In hearing participants, the involvement of auditory association cortex occurred at a later stage and selectively for temporal discrimination. The different chronometry in the recruitment of the auditory cortex in deaf individuals correlated with the tactile temporal impairment. Thus, early hearing experience seems to be crucial to develop an efficient temporal processing across modalities, suggesting that plasticity does not necessarily result in behavioral compensation.
Epilepsy, Antiepileptic Drugs, and Aggression: An Evidence-Based Review
Besag, Frank; Ettinger, Alan B.; Mula, Marco; Gobbi, Gabriella; Comai, Stefano; Aldenkamp, Albert P.; Steinhoff, Bernhard J.
2016-01-01
Antiepileptic drugs (AEDs) have many benefits but also many side effects, including aggression, agitation, and irritability, in some patients with epilepsy. This article offers a comprehensive summary of current understanding of aggressive behaviors in patients with epilepsy, including an evidence-based review of aggression during AED treatment. Aggression is seen in a minority of people with epilepsy. It is rarely seizure related but is interictal, sometimes occurring as part of complex psychiatric and behavioral comorbidities, and it is sometimes associated with AED treatment. We review the common neurotransmitter systems and brain regions implicated in both epilepsy and aggression, including the GABA, glutamate, serotonin, dopamine, and noradrenaline systems and the hippocampus, amygdala, prefrontal cortex, anterior cingulate cortex, and temporal lobes. Few controlled clinical studies have used behavioral measures to specifically examine aggression with AEDs, and most evidence comes from adverse event reporting from clinical and observational studies. A systematic approach was used to identify relevant publications, and we present a comprehensive, evidence-based summary of available data surrounding aggression-related behaviors with each of the currently available AEDs in both adults and in children/adolescents with epilepsy. A psychiatric history and history of a propensity toward aggression/anger should routinely be sought from patients, family members, and carers; its presence does not preclude the use of any specific AEDs, but those most likely to be implicated in these behaviors should be used with caution in such cases. PMID:27255267
Forlim, Caroline G.; Pinto, Reynaldo D.
2014-01-01
Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish’s position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution. PMID:24400122
Achieving behavioral control with millisecond resolution in a high-level programming environment.
Asaad, Wael F; Eskandar, Emad N
2008-08-30
The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the 1 ms time-scale that is relevant for the alignment of behavioral and neural events.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
Enhanced cortical connectivity in absolute pitch musicians: a model for local hyperconnectivity.
Loui, Psyche; Li, H Charles; Hohmann, Anja; Schlaug, Gottfried
2011-04-01
Connectivity in the human brain has received increased scientific interest in recent years. Although connection disorders can affect perception, production, learning, and memory, few studies have associated brain connectivity with graded variations in human behavior, especially among normal individuals. One group of normal individuals who possess unique characteristics in both behavior and brain structure is absolute pitch (AP) musicians, who can name the appropriate pitch class of any given tone without a reference. Using diffusion tensor imaging and tractography, we observed hyperconnectivity in bilateral superior temporal lobe structures linked to AP possession. Furthermore, volume of tracts connecting left superior temporal gyrus to left middle temporal gyrus predicted AP performance. These findings extend previous reports of exaggerated temporal lobe asymmetry, may explain the higher incidence of AP in special populations, and may provide a model for understanding the heightened connectivity that is thought to underlie savant skills and cases of exceptional creativity.
Enhanced Cortical Connectivity in Absolute Pitch Musicians: A Model for Local Hyperconnectivity
Loui, Psyche; Charles Li, Hui C.; Hohmann, Anja; Schlaug, Gottfried
2010-01-01
Connectivity in the human brain has received increased scientific interest in recent years. Although connection disorders can affect perception, production, learning, and memory, few studies have associated brain connectivity with graded variations in human behavior, especially among normal individuals. One group of normal individuals who possess unique characteristics in both behavior and brain structure is absolute pitch (AP) musicians, who can name the appropriate pitch class of any given tone without a reference. Using diffusion tensor imaging and tractography, we observed hyperconnectivity in bilateral superior temporal lobe structures linked to AP possession. Furthermore, volume of tracts connecting left superior temporal gyrus to left middle temporal gyrus predicted AP performance. These findings extend previous reports of exaggerated temporal lobe asymmetry, may explain the higher incidence of AP in developmental disorders, and may provide a model for understanding the heightened connectivity that is thought to underlie savant skills and cases of exceptional creativity. PMID:20515408
Attentional load and attentional boost: a review of data and theory.
Swallow, Khena M; Jiang, Yuhong V
2013-01-01
Both perceptual and cognitive processes are limited in capacity. As a result, attention is selective, prioritizing items and tasks that are important for adaptive behavior. However, a number of recent behavioral and neuroimaging studies suggest that, at least under some circumstances, increasing attention to one task can enhance performance in a second task (e.g., the attentional boost effect). Here we review these findings and suggest a new theoretical framework, the dual-task interaction model, that integrates these findings with current views of attentional selection. To reconcile the attentional boost effect with the effects of attentional load, we suggest that temporal selection results in a temporally specific enhancement across modalities, tasks, and spatial locations. Moreover, the effects of temporal selection may be best observed when the attentional system is optimally tuned to the temporal dynamics of incoming stimuli. Several avenues of research motivated by the dual-task interaction model are then discussed.
Attentional Load and Attentional Boost: A Review of Data and Theory
Swallow, Khena M.; Jiang, Yuhong V.
2013-01-01
Both perceptual and cognitive processes are limited in capacity. As a result, attention is selective, prioritizing items and tasks that are important for adaptive behavior. However, a number of recent behavioral and neuroimaging studies suggest that, at least under some circumstances, increasing attention to one task can enhance performance in a second task (e.g., the attentional boost effect). Here we review these findings and suggest a new theoretical framework, the dual-task interaction model, that integrates these findings with current views of attentional selection. To reconcile the attentional boost effect with the effects of attentional load, we suggest that temporal selection results in a temporally specific enhancement across modalities, tasks, and spatial locations. Moreover, the effects of temporal selection may be best observed when the attentional system is optimally tuned to the temporal dynamics of incoming stimuli. Several avenues of research motivated by the dual-task interaction model are then discussed. PMID:23730294
Evidence of Deterministic Components in the Apparent Randomness of GRBs: Clues of a Chaotic Dynamic
Greco, G.; Rosa, R.; Beskin, G.; Karpov, S.; Romano, L.; Guarnieri, A.; Bartolini, C.; Bedogni, R.
2011-01-01
Prompt γ-ray emissions from gamma-ray bursts (GRBs) exhibit a vast range of extremely complex temporal structures with a typical variability time-scale significantly short – as fast as milliseconds. This work aims to investigate the apparent randomness of the GRB time profiles making extensive use of nonlinear techniques combining the advanced spectral method of the Singular Spectrum Analysis (SSA) with the classical tools provided by the Chaos Theory. Despite their morphological complexity, we detect evidence of a non stochastic short-term variability during the overall burst duration – seemingly consistent with a chaotic behavior. The phase space portrait of such variability shows the existence of a well-defined strange attractor underlying the erratic prompt emission structures. This scenario can shed new light on the ultra-relativistic processes believed to take place in GRB explosions and usually associated with the birth of a fast-spinning magnetar or accretion of matter onto a newly formed black hole. PMID:22355609
Evidence of deterministic components in the apparent randomness of GRBs: clues of a chaotic dynamic.
Greco, G; Rosa, R; Beskin, G; Karpov, S; Romano, L; Guarnieri, A; Bartolini, C; Bedogni, R
2011-01-01
Prompt γ-ray emissions from gamma-ray bursts (GRBs) exhibit a vast range of extremely complex temporal structures with a typical variability time-scale significantly short - as fast as milliseconds. This work aims to investigate the apparent randomness of the GRB time profiles making extensive use of nonlinear techniques combining the advanced spectral method of the Singular Spectrum Analysis (SSA) with the classical tools provided by the Chaos Theory. Despite their morphological complexity, we detect evidence of a non stochastic short-term variability during the overall burst duration - seemingly consistent with a chaotic behavior. The phase space portrait of such variability shows the existence of a well-defined strange attractor underlying the erratic prompt emission structures. This scenario can shed new light on the ultra-relativistic processes believed to take place in GRB explosions and usually associated with the birth of a fast-spinning magnetar or accretion of matter onto a newly formed black hole.
A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates
Joly, Jean-Stéphane; Recher, Gaelle; Brombin, Alessandro; Ngo, Kathy; Hartenstein, Volker
2016-01-01
The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar ‘conveyor belt neurogenesis’ could play an essential role in generating the topographically ordered circuitry of the visual system. PMID:27780043
Dissociating visual form from lexical frequency using Japanese.
Twomey, Tae; Kawabata Duncan, Keith J; Hogan, John S; Morita, Kenji; Umeda, Kazumasa; Sakai, Katsuyuki; Devlin, Joseph T
2013-05-01
In Japanese, the same word can be written in either morphographic Kanji or syllabographic Hiragana and this provides a unique opportunity to disentangle a word's lexical frequency from the frequency of its visual form - an important distinction for understanding the neural information processing in regions engaged by reading. Behaviorally, participants responded more quickly to high than low frequency words and to visually familiar relative to less familiar words, independent of script. Critically, the imaging results showed that visual familiarity, as opposed to lexical frequency, had a strong effect on activation in ventral occipito-temporal cortex. Activation here was also greater for Kanji than Hiragana words and this was not due to their inherent differences in visual complexity. These findings can be understood within a predictive coding framework in which vOT receives bottom-up information encoding complex visual forms and top-down predictions from regions encoding non-visual attributes of the stimulus. Copyright © 2012 Elsevier Inc. All rights reserved.
Evolutions Of Diff-Tomo For Sensing Subcanopy Deformations And Height-Varying Temporal Coherence
NASA Astrophysics Data System (ADS)
Lombardini, Fabrizio; Cai, Francesco
2012-01-01
Interest is continuing to grow in advanced interferometric SAR methods for sensing complex scenarios with multiple (layover or volumetric) scatterers mapped in the SAR cell. Multibaseline SAR tomographic (3D) elevation beam forming is a promising technique in this field. Recently, the Tomo concept has been integrated with the differential interferometry concept, producing the advanced “differential tomography” (Diff-Tomo, “4D”) processing mode which furnishes “space-time” signatures of multiple scatterer dynamics in the SAR cell. Advances in the application of this new framework are investigated for complex volume scattering scenarios including temporal signal variations, both from scatterer temporal decorrelation and deformation motions. In particular, new results are reported concerning the potentials of Diff-Tomo for the analysis of forest scenarios, based on the original concept of the space-time signatures of temporal decorrelation. E-SAR P-band data results are expanded of tomography robust to temporal decorrelation, and first trials are reported of separation of different temporal decorrelation mechanisms of canopy and ground, and of sensing possible sub-canopy subsidences.
Comparison of Observed Spatio-temporal Aftershock Patterns with Earthquake Simulator Results
NASA Astrophysics Data System (ADS)
Kroll, K.; Richards-Dinger, K. B.; Dieterich, J. H.
2013-12-01
Due to the complex nature of faulting in southern California, knowledge of rupture behavior near fault step-overs is of critical importance to properly quantify and mitigate seismic hazards. Estimates of earthquake probability are complicated by the uncertainty that a rupture will stop at or jump a fault step-over, which affects both the magnitude and frequency of occurrence of earthquakes. In recent years, earthquake simulators and dynamic rupture models have begun to address the effects of complex fault geometries on earthquake ground motions and rupture propagation. Early models incorporated vertical faults with highly simplified geometries. Many current studies examine the effects of varied fault geometry, fault step-overs, and fault bends on rupture patterns; however, these works are limited by the small numbers of integrated fault segments and simplified orientations. The previous work of Kroll et al., 2013 on the northern extent of the 2010 El Mayor-Cucapah rupture in the Yuha Desert region uses precise aftershock relocations to show an area of complex conjugate faulting within the step-over region between the Elsinore and Laguna Salada faults. Here, we employ an innovative approach of incorporating this fine-scale fault structure defined through seismological, geologic and geodetic means in the physics-based earthquake simulator, RSQSim, to explore the effects of fine-scale structures on stress transfer and rupture propagation and examine the mechanisms that control aftershock activity and local triggering of other large events. We run simulations with primary fault structures in state of California and northern Baja California and incorporate complex secondary faults in the Yuha Desert region. These models produce aftershock activity that enables comparison between the observed and predicted distribution and allow for examination of the mechanisms that control them. We investigate how the spatial and temporal distribution of aftershocks are affected by changes to model parameters such as shear and normal stress, rate-and-state frictional properties, fault geometry, and slip rate.
Effects of Task Complexity on L2 Writing Behaviors and Linguistic Complexity
ERIC Educational Resources Information Center
Révész, Andrea; Kourtali, Nektaria-Efstathia; Mazgutova, Diana
2017-01-01
This study investigated whether task complexity influences second language (L2) writers' fluency, pausing, and revision behaviors and the cognitive processes underlying these behaviors; whether task complexity affects linguistic complexity of written output; and whether relationships between writing behaviors and linguistic complexity are…
Fractal structure enables temporal prediction in music.
Rankin, Summer K; Fink, Philip W; Large, Edward W
2014-10-01
1/f serial correlations and statistical self-similarity (fractal structure) have been measured in various dimensions of musical compositions. Musical performances also display 1/f properties in expressive tempo fluctuations, and listeners predict tempo changes when synchronizing. Here the authors show that the 1/f structure is sufficient for listeners to predict the onset times of upcoming musical events. These results reveal what information listeners use to anticipate events in complex, non-isochronous acoustic rhythms, and this will entail innovative models of temporal synchronization. This finding could improve therapies for Parkinson's and related disorders and inform deeper understanding of how endogenous neural rhythms anticipate events in complex, temporally structured communication signals.
NASA Astrophysics Data System (ADS)
Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig
2008-08-01
SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network.
Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig
2008-01-01
This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network. ?? 2008 Elsevier B.V.
Takahashi, Tetsuya; Cho, Raymond Y.; Mizuno, Tomoyuki; Kikuchi, Mitsuru; Murata, Tetsuhito; Takahashi, Koichi; Wada, Yuji
2010-01-01
Multiscale entropy (MSE) analysis is a novel entropy-based approach for measuring dynamical complexity in physiological systems over a range of temporal scales. To evaluate this analytic approach as an aid to elucidating the pathophysiologic mechanisms in schizophrenia, we examined MSE in EEG activity in drug-naïve schizophrenia subjects pre- and post-treatment with antipsychotics in comparison with traditional EEG analysis. We recorded eyes-closed resting state EEG from frontal, temporal, parietal and occipital regions in drug-naïve 22 schizophrenia and 24 age-matched healthy control subjects. Fifteen patients were re-evaluated within 2–8 weeks after the initiation of antipsychotic treatment. For each participant, MSE was calculated on one continuous 60 second epoch for each experimental session. Schizophrenia subjects showed significantly higher complexity at higher time scales (lower frequencies), than that of healthy controls in fronto-centro-temporal, but not in parieto-occipital regions. Post-treatment, this higher complexity decreased to healthy control subject levels selectively in fronto-central regions, while the increased complexity in temporal sites remained higher. Comparative power analysis identified spectral slowing in frontal regions in pre-treatment schizophrenia subjects, consistent with previous findings, whereas no antipsychotic treatment effect was observed. In summary, multiscale entropy measures identified abnormal dynamical EEG signal complexity in anterior brain areas in schizophrenia that normalized selectively in fronto-central areas with antipsychotic treatment. These findings show that entropy-based analytic methods may serve as a novel approach for characterizing and understanding abnormal cortical dynamics in schizophrenia, and elucidating the therapeutic mechanisms of antipsychotics. PMID:20149880
Xu, Ke; Sun, Luping; Wang, Hansheng
2018-01-01
Using data provided by a ride-hailing platform, this paper examines the factors that affect taxi driver response behavior to ride-hailing requests. The empirical investigation from a driver’s perspective is of great importance for ride-hailing service providers, given that approximately 40% of the hailing requests receive no response from any driver. To comprehensively understand taxi driver response behavior, we use a rich dataset to generate variables related to the spatio-temporal supply-demand intensities, the economic incentives, the requests’ and the drivers’ characteristics. The results show that drivers are more likely to respond to requests with economic incentives (especially a firm subsidy), and those with a lower spatio-temporal demand intensity or a higher spatio-temporal supply intensity. In addition, drivers are more likely to respond to requests involving rides covering a greater geographical distance and to those with a smaller number of repeated submissions. The drivers’ characteristics, namely, the number of requests received and the number of requests responded, however, have relatively little impacts on their response probability to the current request. Our findings contribute to the related literature and provide managerial implications for ride-hailing service providers. PMID:29883478
Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing.
Stevenson, Ryan A; Segers, Magali; Ferber, Susanne; Barense, Morgan D; Camarata, Stephen; Wallace, Mark T
2016-07-01
A growing area of interest and relevance in the study of autism spectrum disorder (ASD) focuses on the relationship between multisensory temporal function and the behavioral, perceptual, and cognitive impairments observed in ASD. Atypical sensory processing is becoming increasingly recognized as a core component of autism, with evidence of atypical processing across a number of sensory modalities. These deviations from typical processing underscore the value of interpreting ASD within a multisensory framework. Furthermore, converging evidence illustrates that these differences in audiovisual processing may be specifically related to temporal processing. This review seeks to bridge the connection between temporal processing and audiovisual perception, and to elaborate on emerging data showing differences in audiovisual temporal function in autism. We also discuss the consequence of such changes, the specific impact on the processing of different classes of audiovisual stimuli (e.g. speech vs. nonspeech, etc.), and the presumptive brain processes and networks underlying audiovisual temporal integration. Finally, possible downstream behavioral implications, and possible remediation strategies are outlined. Autism Res 2016, 9: 720-738. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Formally grounding spatio-temporal thinking.
Klippel, Alexander; Wallgrün, Jan Oliver; Yang, Jinlong; Li, Rui; Dylla, Frank
2012-08-01
To navigate through daily life, humans use their ability to conceptualize spatio-temporal information, which ultimately leads to a system of categories. Likewise, the spatial sciences rely heavily on conceptualization and categorization as means to create knowledge when they process spatio-temporal data. In the spatial sciences and in related branches of artificial intelligence, an approach has been developed for processing spatio-temporal data on the level of coarse categories: qualitative spatio-temporal representation and reasoning (QSTR). Calculi developed in QSTR allow for the meaningful processing of and reasoning with spatio-temporal information. While qualitative calculi are widely acknowledged in the cognitive sciences, there is little behavioral assessment whether these calculi are indeed cognitively adequate. This is an astonishing conundrum given that these calculi are ubiquitous, are often intended to improve processes at the human-machine interface, and are on several occasions claimed to be cognitively adequate. We have systematically evaluated several approaches to formally characterize spatial relations from a cognitive-behavioral perspective for both static and dynamically changing spatial relations. This contribution will detail our framework, which is addressing the question how formal characterization of space can help us understand how people think with, in, and about space.
Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance.
Crompton, Douglas E; Scheffer, Ingrid E; Taylor, Isabella; Cook, Mark J; McKelvie, Penelope A; Vears, Danya F; Lawrence, Kate M; McMahon, Jacinta M; Grinton, Bronwyn E; McIntosh, Anne M; Berkovic, Samuel F
2010-11-01
Temporal lobe epilepsy is the commonest partial epilepsy of adulthood. Although generally perceived as an acquired disorder, several forms of familial temporal lobe epilepsy, with mesial or lateral seizure semiology, have been described. Descriptions of familial mesial temporal lobe epilepsy have varied widely from a benign epilepsy syndrome with prominent déjà vu and without antecedent febrile seizures or magnetic resonance imaging abnormalities, to heterogeneous, but generally more refractory epilepsies, often with a history of febrile seizures and with frequent hippocampal atrophy and high T₂ signal on magnetic resonance imaging. Compelling evidence of a genetic aetiology (rather than chance aggregation) in familial mesial temporal lobe epilepsy has come from twin studies. Dominant inheritance has been reported in two large families, though the usual mode of inheritance is not known. Here, we describe clinical and neurophysiological features of 20 new mesial temporal lobe epilepsy families including 51 affected individuals. The epilepsies in these families were generally benign, and febrile seizure history was infrequent (9.8%). No evidence of hippocampal sclerosis or dysplasia was present on brain imaging. A single individual underwent anterior temporal lobectomy, with subsequent seizure freedom and histopathological evidence of hippocampal sclerosis was not found. Inheritance patterns in probands' relatives were analysed in these families, together with 19 other temporal lobe epilepsy families previously reported by us. Observed frequencies of epilepsies in relatives were lower than predicted by dominant Mendelian models, while only a minority (8/39) of families could be compatible with recessive inheritance. These findings strongly suggest that complex inheritance, similar to that widely accepted in the idiopathic generalized epilepsies, is the usual mode of inheritance in familial mesial temporal lobe epilepsy. This disorder, which appears to be relatively common, and not typically associated with hippocampal sclerosis, is an appropriate target for contemporary approaches to complex disorders such as genome-wide association studies for common genetic variants or deep sequencing for rare variants.
Spatiotemporal canards in neural field equations
NASA Astrophysics Data System (ADS)
Avitabile, D.; Desroches, M.; Knobloch, E.
2017-04-01
Canards are special solutions to ordinary differential equations that follow invariant repelling slow manifolds for long time intervals. In realistic biophysical single-cell models, canards are responsible for several complex neural rhythms observed experimentally, but their existence and role in spatially extended systems is largely unexplored. We identify and describe a type of coherent structure in which a spatial pattern displays temporal canard behavior. Using interfacial dynamics and geometric singular perturbation theory, we classify spatiotemporal canards and give conditions for the existence of folded-saddle and folded-node canards. We find that spatiotemporal canards are robust to changes in the synaptic connectivity and firing rate. The theory correctly predicts the existence of spatiotemporal canards with octahedral symmetry in a neural field model posed on the unit sphere.
Spectral properties of the temporal evolution of brain network structure.
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G
2016-08-02
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Spectral properties of the temporal evolution of brain network structure
NASA Astrophysics Data System (ADS)
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
The neural correlates of mental arithmetic in adolescents: a longitudinal fNIRS study.
Artemenko, Christina; Soltanlou, Mojtaba; Ehlis, Ann-Christine; Nuerk, Hans-Christoph; Dresler, Thomas
2018-03-10
Arithmetic processing in adults is known to rely on a frontal-parietal network. However, neurocognitive research focusing on the neural and behavioral correlates of arithmetic development has been scarce, even though the acquisition of arithmetic skills is accompanied by changes within the fronto-parietal network of the developing brain. Furthermore, experimental procedures are typically adjusted to constraints of functional magnetic resonance imaging, which may not reflect natural settings in which children and adolescents actually perform arithmetic. Therefore, we investigated the longitudinal neurocognitive development of processes involved in performing the four basic arithmetic operations in 19 adolescents. By using functional near-infrared spectroscopy, we were able to use an ecologically valid task, i.e., a written production paradigm. A common pattern of activation in the bilateral fronto-parietal network for arithmetic processing was found for all basic arithmetic operations. Moreover, evidence was obtained for decreasing activation during subtraction over the course of 1 year in middle and inferior frontal gyri, and increased activation during addition and multiplication in angular and middle temporal gyri. In the self-paced block design, parietal activation in multiplication and left angular and temporal activation in addition were observed to be higher for simple than for complex blocks, reflecting an inverse effect of arithmetic complexity. In general, the findings suggest that the brain network for arithmetic processing is already established in 12-14 year-old adolescents, but still undergoes developmental changes.
AbdulSabur, Nuria Y; Xu, Yisheng; Liu, Siyuan; Chow, Ho Ming; Baxter, Miranda; Carson, Jessica; Braun, Allen R
2014-08-01
The neural correlates of narrative production and comprehension remain poorly understood. Here, using positron emission tomography (PET), functional magnetic resonance imaging (fMRI), contrast and functional network connectivity analyses we comprehensively characterize the neural mechanisms underlying these complex behaviors. Eighteen healthy subjects told and listened to fictional stories during scanning. In addition to traditional language areas (e.g., left inferior frontal and posterior middle temporal gyri), both narrative production and comprehension engaged regions associated with mentalizing and situation model construction (e.g., dorsomedial prefrontal cortex, precuneus and inferior parietal lobules) as well as neocortical premotor areas, such as the pre-supplementary motor area and left dorsal premotor cortex. Narrative comprehension alone showed marked bilaterality, activating right hemisphere homologs of perisylvian language areas. Narrative production remained predominantly left lateralized, uniquely activating executive and motor-related regions essential to language formulation and articulation. Connectivity analyses revealed strong associations between language areas and the superior and middle temporal gyri during both tasks. However, only during storytelling were these same language-related regions connected to cortical and subcortical motor regions. In contrast, during story comprehension alone, they were strongly linked to regions supporting mentalizing. Thus, when employed in a more complex, ecologically-valid context, language production and comprehension show both overlapping and idiosyncratic patterns of activation and functional connectivity. Importantly, in each case the language system is integrated with regions that support other cognitive and sensorimotor domains. Copyright © 2014. Published by Elsevier Ltd.
Sweeney, Allison M; Culcea, Ileana
2017-05-01
The present study aimed to quantify the magnitude of the association between future temporal perspective and Body Mass Index (BMI), diet, and exercise, respectively, and to clarify whether subjective future-focus scales or delay-discounting tasks are a more robust predictor of health behaviors. A systematic search was conducted for studies that included a dispositional measure of future temporal perspective and a measure of BMI, eating, and/or exercise behavior. Effect sizes for BMI, eating, and exercise were calculated using a random-effects model. The aggregate effect sizes for BMI (r = 0.14, k = 36, 95% CI = 0.10 - 0.18, p < 0.001), eating (r = 0.16, k = 18, 95% CI = 0.12-0.21, p < 0.001), and exercise (r = 0.12, k = 18, 95% CI = 0.09-0.14, p < 0.001) were significant and small in magnitude. Neither the type of future temporal perspective task (delay-discounting vs. subjective future-focus scale) nor the percentage of obese participants moderated the effect of temporal perspective on BMI, eating, or exercise. Although small in magnitude, the association between temporal perspective and health outcomes is comparable to other individual differences, such as personality and temperament. Future research is needed to examine how increasing the value placed on future outcomes can be integrated into long-term health behavior change interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural Controllability of Temporal Networks with a Single Switching Controller
Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang
2017-01-01
Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538