Sample records for complex trait context

  1. Fitness and Individuality in Complex Life Cycles.

    PubMed

    Herron, Matthew D

    2016-12-01

    Complex life cycles are common in the eukaryotic world, and they complicate the question of how to define individuality. Using a bottom-up, gene-centric approach, I consider the concept of fitness in the context of complex life cycles. I analyze the fitness effects of an allele (or a trait) on different biological units within a complex life history and how these effects drive evolutionary change within populations. Based on these effects, I attempt to construct a concept of fitness that accurately predicts evolutionary change in the context of complex life cycles.

  2. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions.

    PubMed

    Schmitz, Oswald

    2017-01-01

    Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.

  3. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions

    PubMed Central

    Schmitz, Oswald

    2017-01-01

    Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts. PMID:29043073

  4. Invasion complexity at large spatial scales is an emergent property of interactions among landscape characteristics and invader traits

    USDA-ARS?s Scientific Manuscript database

    Understanding the potential for invasive spread is an important consideration for novel agricultural species that may be translocated or introduced into new regions. However, estimating invasion risks remains a challenging problem, particularly in the context of real, complex landscapes. There is ...

  5. Neofunctionalization of embryonic head patterning genes facilitates the positioning of novel traits on the dorsal head of adult beetles.

    PubMed

    Zattara, Eduardo E; Busey, Hannah A; Linz, David M; Tomoyasu, Yoshinori; Moczek, Armin P

    2016-07-13

    The origin and integration of novel traits are fundamental processes during the developmental evolution of complex organisms. Yet how novel traits integrate into pre-existing contexts remains poorly understood. Beetle horns represent a spectacular evolutionary novelty integrated within the context of the adult dorsal head, a highly conserved trait complex present since the origin of insects. We investigated whether otd1/2 and six3, members of a highly conserved gene network that instructs the formation of the anterior end of most bilaterians, also play roles in patterning more recently evolved traits. Using ablation-based fate-mapping, comparative larval RNA interference (RNAi) and transcript sequencing, we found that otd1/2, but not six3, play a fundamental role in the post-embryonic formation of the adult dorsal head and head horns of Onthophagus beetles. By contrast, neither gene appears to pattern the adult head of Tribolium flour beetles even though all are expressed in the dorsal head epidermis of both Onthophagus and Tribolium We propose that, at least in beetles, the roles of otd genes during post-embryonic development are decoupled from their embryonic functions, and that potentially non-functional post-embryonic expression in the dorsal head facilitated their co-option into a novel horn-patterning network during Onthophagus evolution. © 2016 The Author(s).

  6. Neofunctionalization of embryonic head patterning genes facilitates the positioning of novel traits on the dorsal head of adult beetles

    PubMed Central

    Busey, Hannah A.; Linz, David M.; Tomoyasu, Yoshinori; Moczek, Armin P.

    2016-01-01

    The origin and integration of novel traits are fundamental processes during the developmental evolution of complex organisms. Yet how novel traits integrate into pre-existing contexts remains poorly understood. Beetle horns represent a spectacular evolutionary novelty integrated within the context of the adult dorsal head, a highly conserved trait complex present since the origin of insects. We investigated whether otd1/2 and six3, members of a highly conserved gene network that instructs the formation of the anterior end of most bilaterians, also play roles in patterning more recently evolved traits. Using ablation-based fate-mapping, comparative larval RNA interference (RNAi) and transcript sequencing, we found that otd1/2, but not six3, play a fundamental role in the post-embryonic formation of the adult dorsal head and head horns of Onthophagus beetles. By contrast, neither gene appears to pattern the adult head of Tribolium flour beetles even though all are expressed in the dorsal head epidermis of both Onthophagus and Tribolium. We propose that, at least in beetles, the roles of otd genes during post-embryonic development are decoupled from their embryonic functions, and that potentially non-functional post-embryonic expression in the dorsal head facilitated their co-option into a novel horn-patterning network during Onthophagus evolution. PMID:27412276

  7. If Language Is a Complex Adaptive System, What Is Language Assessment?

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Yin, Chengbin

    2009-01-01

    Individuals' use of language in contexts emerges from second-to-second processes of activating and integrating traces of past experiences--an interactionist view compatible with the study of language as a complex adaptive system but quite different from the trait-based framework through which measurement specialists investigate validity, establish…

  8. GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits.

    PubMed

    Huang, Dandan; Yi, Xianfu; Zhang, Shijie; Zheng, Zhanye; Wang, Panwen; Xuan, Chenghao; Sham, Pak Chung; Wang, Junwen; Li, Mulin Jun

    2018-05-16

    Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants.

  9. Evaluative judgments are based on evaluative information: Evidence against meaning change in evaluative context effects.

    PubMed

    Kaplan, M F

    1975-07-01

    Trait adjectives commonly employed in person perception studies have both evaluative and denotative meanings. Evaluative ratings of single traits shift with variations in the context of other traits ascribed to the stimulus person; the extent to which denotative changes underlie these evaluative context effects has been a theoretical controversy. In the first experiment, it was shown that context effects on quantitative ratings of denotation can be largely accounted for by evaluative halo effects. In the second experiment, increasing the denotative relatedness of context traits to the test trait didnot increase the effect of the context. Only the evaluative meaning of the context affected evaluation of the rated test trait. These studies suggest that the denotative relationship between a test adjective and its context has little influence on context effects in person perception, and that denotative meaning changes do not mediate context effects. Instead, evaluative judgments appear to be based on evaluative meaning.

  10. A Tricky Trait: Applying the Fruits of the "Function Debate" in the Philosophy of Biology to the "Venom Debate" in the Science of Toxinology.

    PubMed

    Jackson, Timothy N W; Fry, Bryan G

    2016-09-07

    The "function debate" in the philosophy of biology and the "venom debate" in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between "venomous" and "non-venomous" species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology.

  11. Predator attack rate evolution in space: the role of ecology mediated by complex emergent spatial structure and self-shading.

    PubMed

    Messinger, Susanna M; Ostling, Annette

    2013-11-01

    Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Quantitative genetic methods depending on the nature of the phenotypic trait.

    PubMed

    de Villemereuil, Pierre

    2018-01-24

    A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression. © 2018 New York Academy of Sciences.

  13. A powerful approach reveals numerous expression quantitative trait haplotypes in multiple tissues.

    PubMed

    Ying, Dingge; Li, Mulin Jun; Sham, Pak Chung; Li, Miaoxin

    2018-04-26

    Recently many studies showed single nucleotide polymorphisms (SNPs) affect gene expression and contribute to development of complex traits/diseases in a tissue context-dependent manner. However, little is known about haplotype's influence on gene expression and complex traits, which reflects the interaction effect between SNPs. In the present study, we firstly proposed a regulatory region guided eQTL haplotype association analysis approach, and then systematically investigate the expression quantitative trait loci (eQTL) haplotypes in 20 different tissues by the approach. The approach has a powerful design of reducing computational burden by the utilization of regulatory predictions for candidate SNP selection and multiple testing corrections on non-independent haplotypes. The application results in multiple tissues showed that haplotype-based eQTLs not only increased the number of eQTL genes in a tissue specific manner, but were also enriched in loci that associated with complex traits in a tissue-matched manner. In addition, we found that tag SNPs of eQTL haplotypes from whole blood were selectively enriched in certain combination of regulatory elements (e.g. promoters and enhancers) according to predicted chromatin states. In summary, this eQTL haplotype detection approach, together with the application results, shed insights into synergistic effect of sequence variants on gene expression and their susceptibility to complex diseases. The executable application "eHaplo" is implemented in Java and is publicly available at http://grass.cgs.hku.hk/limx/ehaplo/. jonsonfox@gmail.com, limiaoxin@mail.sysu.edu.cn. Supplementary data are available at Bioinformatics online.

  14. Emotional intelligence, teamwork effectiveness, and job performance: the moderating role of job context.

    PubMed

    Farh, Crystal I C Chien; Seo, Myeong-Gu; Tesluk, Paul E

    2012-07-01

    We advance understanding of the role of ability-based emotional intelligence (EI) and its subdimensions in the workplace by examining the mechanisms and context-based boundary conditions of the EI-performance relationship. Using a trait activation framework, we theorize that employees with higher overall EI and emotional perception ability exhibit higher teamwork effectiveness (and subsequent job performance) when working in job contexts characterized by high managerial work demands because such contexts contain salient emotion-based cues that activate employees' emotional capabilities. A sample of 212 professionals from various organizations and industries indicated support for the salutary effect of EI, above and beyond the influence of personality, cognitive ability, emotional labor job demands, job complexity, and demographic control variables. Theoretical and practical implications of the potential value of EI for workplace outcomes under contexts involving managerial complexity are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  15. Plasticity first: molecular signatures of a complex morphological trait in filamentous cyanobacteria.

    PubMed

    Koch, Robin; Kupczok, Anne; Stucken, Karina; Ilhan, Judith; Hammerschmidt, Katrin; Dagan, Tal

    2017-08-31

    Filamentous cyanobacteria that differentiate multiple cell types are considered the peak of prokaryotic complexity and their evolution has been studied in the context of multicellularity origins. Species that form true-branching filaments exemplify the most complex cyanobacteria. However, the mechanisms underlying the true-branching morphology remain poorly understood despite of several investigations that focused on the identification of novel genes or pathways. An alternative route for the evolution of novel traits is based on existing phenotypic plasticity. According to that scenario - termed genetic assimilation - the fixation of a novel phenotype precedes the fixation of the genotype. Here we show that the evolution of transcriptional regulatory elements constitutes a major mechanism for the evolution of new traits. We found that supplementation with sucrose reconstitutes the ancestral branchless phenotype of two true-branching Fischerella species and compared the transcription start sites (TSSs) between the two phenotypic states. Our analysis uncovers several orthologous TSSs whose transcription level is correlated with the true-branching phenotype. These TSSs are found in genes that encode components of the septosome and elongasome (e.g., fraC and mreB). The concept of genetic assimilation supplies a tenable explanation for the evolution of novel traits but testing its feasibility is hindered by the inability to recreate and study the evolution of present-day traits. We present a novel approach to examine transcription data for the plasticity first route and provide evidence for its occurrence during the evolution of complex colony morphology in true-branching cyanobacteria. Our results reveal a route for evolution of the true-branching phenotype in cyanobacteria via modification of the transcription level of pre-existing genes. Our study supplies evidence for the 'plasticity-first' hypothesis and highlights the importance of transcriptional regulation in the evolution of novel traits.

  16. A Tricky Trait: Applying the Fruits of the “Function Debate” in the Philosophy of Biology to the “Venom Debate” in the Science of Toxinology

    PubMed Central

    Jackson, Timothy N. W.; Fry, Bryan G.

    2016-01-01

    The “function debate” in the philosophy of biology and the “venom debate” in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between “venomous” and “non-venomous” species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology. PMID:27618098

  17. Specificity, contexts, and reference groups matter when assessing autistic traits

    PubMed Central

    Stevenson, Jennifer L.; Dern, Sebastian

    2017-01-01

    Many of the personality and behavioral traits (e.g., social imperviousness, directness in conversation, lack of imagination, affinity for solitude, difficulty displaying emotions) that are known to be sensitive to context (with whom?) and reference group (according to whom?) also appear in questionnaire-based assessments of autistic traits. Therefore, two experiments investigated the effects of specifying contexts and reference groups when assessing autistic traits in autistic and non-autistic participants. Experiment 1 (124 autistic and 124 non-autistic participants) demonstrated that context matters when assessing autistic traits (F(1,244) = 267.5, p < .001, η2p = .523). When the context of the Broad Autism Phenotype Questionnaire was specified as the participants’ out-group (e.g., “I like being around non-autistic people” or “I like being around autistic people”), both autistic and non-autistic participants self-reported having more autistic traits; when the context was specified as the participants’ in-group, participants reported having fewer autistic traits. Experiment 2 (82 autistic and 82 non-autistic participants) demonstrated that reference group matters when assessing autistic traits (F(2,160) = 94.38, p < .001, η2p = .541). When the reference group on the Social Responsiveness Scale was specified as the participants’ out-group (e.g., “According to non-autistic people, I have unusual eye contact”), autistic participants reported having more autistic traits; when the reference group was their in-group, autistic participants reported having fewer autistic traits. Non-autistic participants appeared insensitive to reference group on the Social Responsiveness Scale. Exploratory analyses suggested that when neither the context nor the reference group is specified (for assessing autistic traits on the Autism-Spectrum Quotient), both autistic and non-autistic participants use the majority (“non-autistic people”) as the implied context and reference group. PMID:28192464

  18. Modelling the multidimensional niche by linking functional traits to competitive performance

    PubMed Central

    Maynard, Daniel S.; Leonard, Kenneth E.; Drake, John M.; Hall, David W.; Crowther, Thomas W.; Bradford, Mark A.

    2015-01-01

    Linking competitive outcomes to environmental conditions is necessary for understanding species' distributions and responses to environmental change. Despite this importance, generalizable approaches for predicting competitive outcomes across abiotic gradients are lacking, driven largely by the highly complex and context-dependent nature of biotic interactions. Here, we present and empirically test a novel niche model that uses functional traits to model the niche space of organisms and predict competitive outcomes of co-occurring populations across multiple resource gradients. The model makes no assumptions about the underlying mode of competition and instead applies to those settings where relative competitive ability across environments correlates with a quantifiable performance metric. To test the model, a series of controlled microcosm experiments were conducted using genetically related strains of a widespread microbe. The model identified trait microevolution and performance differences among strains, with the predicted competitive ability of each organism mapped across a two-dimensional carbon and nitrogen resource space. Areas of coexistence and competitive dominance between strains were identified, and the predicted competitive outcomes were validated in approximately 95% of the pairings. By linking trait variation to competitive ability, our work demonstrates a generalizable approach for predicting and modelling competitive outcomes across changing environmental contexts. PMID:26136444

  19. The interplay of trait worry and trait anxiety in determining episodic retrieval: The role of cognitive control.

    PubMed

    Pajkossy, Péter; Keresztes, Attila; Racsmány, Mihály

    2017-11-01

    Worrying is a key concept in describing the complex relationship between anxiety and cognitive control. On the one hand, cognitive control processes might underlie the specific tendency to engage in worrying (i.e., trait worry), conceptualized as a future-oriented mental problem-solving activity. On the other hand, the general tendency to experience the signs and symptoms of anxiety (i.e., trait anxiety) is suggested to impair cognitive control because worrisome thoughts interfere with task-relevant processing. Based on these opposing tendencies, we predicted that the effect of the two related constructs, trait anxiety and trait worry, might cancel out one another. In statistics, such instances have been termed suppressor situations. In four experiments, we found evidence for such a suppressor situation: When their shared variance was controlled, trait worry was positively whereas trait anxiety was negatively related to performance in a memory task requiring strategic, effortful retrieval. We also showed that these opposing effects are related to temporal context reinstatement. Our results suggest that trait worry and trait anxiety possess unique sources of variance, which differently relate to performance in memory tasks requiring cognitive control.

  20. The complexity underlying invasiveness precludes the identification of invasive traits: A comparative study of invasive and non-invasive heterocarpic Atriplex congeners

    PubMed Central

    Doudová, Jana; Douda, Jan; Mandák, Bohumil

    2017-01-01

    Heterocarpy enables species to effectively spread under unfavourable conditions by producing two or more types of fruit differing in ecological characteristics. Although it is frequent in annuals occupying disturbed habitats that are vulnerable to invasion, there is still a lack of congeneric studies addressing the importance of heterocarpy for species invasion success. We compared two pairs of heterocarpic Atriplex species, each of them comprising one invasive and one non-invasive non-native congener. In two common garden experiments, we (i) simulated the influence of different levels of nutrients and population density on plants grown from different types of fruits and examined several traits that are generally positively associated with invasion success, and (ii) grew plants in a replacement series experiment to evaluate resource partitioning between them and to compare their competitive ability. We found that specific functional traits or competitiveness of species cannot explain the invasiveness of Atriplex species, indicating that species invasiveness involves more complex interactions of traits that are important only in certain ecological contexts, i.e. in specific environmental conditions and only some habitats. Interestingly, species trait differences related to invasion success were found between plants growing from the ecologically most contrasting fruit types. We suggest that fruit types differing in ecological behaviour may be essential in the process of invasion or in the general spreading of heterocarpic species, as they either the maximize population growth (type C fruit) or enhance the chance of survival of new populations (type A fruit). Congeners offer the best available methodical framework for comparing traits among phylogenetically closely related invasive and non-invasive species. However, as indicated by our results, this approach is unlikely to reveal invasive traits because of the complexity underlying invasiveness. PMID:28445514

  1. Stopping at the sight of food - How gender and obesity impact on response inhibition.

    PubMed

    Mühlberg, Christoph; Mathar, David; Villringer, Arno; Horstmann, Annette; Neumann, Jane

    2016-12-01

    Recent research indicates that reduced inhibitory control is associated with higher body mass index (BMI), higher food craving and increased food intake. However, experimental evidence for the relationship between response inhibition and weight status is inconsistent and to date has been investigated predominantly in women. In the current study, 56 participants (26 obese, 30 lean; 27 female, 29 male) performed a Food Picture Rating Task followed by a Stop Signal Task where pictures of palatable high or low caloric food or non-food items were presented prior to the Go signal. We further assessed participants' self-reported eating behavior and trait impulsivity as potential factors influencing response inhibition, in particular within the food context. Independent of BMI, women showed significantly higher liking for low caloric food items than men. This was accompanied by shorter Stop Signal Reaction Times (SSRT) after high compared to low caloric food pictures for women, and shorter SSRT in women compared to men for high caloric food. No influence of gender on SSRT was observable outside of the food context. While SSRTs did not differ between obese and lean participants across the three picture categories, we found a moderating effect of trait impulsivity on the relationship between BMI and SSRT, specifically in the high caloric food context. Higher BMI was predictive of longer SSRT only for participants with low to normal trait impulsivity, pointing at a complex interplay between response inhibition, general impulsivity and weight status. Our results support the notion that individuals with obesity do not suffer from diminished response inhibition capacity per se. Rather, the ability to withhold a response depends on context and social norms, and strongly interacts with factors like gender and trait impulsivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. From observational to dynamic genetics

    PubMed Central

    Haworth, Claire M. A.; Davis, Oliver S. P.

    2014-01-01

    Twin and family studies have shown that most traits are at least moderately heritable. But what are the implications of finding genetic influence for the design of intervention and prevention programs? For complex traits, heritability does not mean immutability, and research has shown that genetic influences can change with age, context, and in response to behavioral and drug interventions. The most significant implications for intervention will come when we move from observational genetics to investigating dynamic genetics, including genetically sensitive interventions. Future interventions should be designed to overcome genetic risk and draw upon genetic strengths by changing the environment. PMID:24478793

  3. Adult attention deficit hyperactivity disorder symptoms and five-factor model traits in a clinical sample: a structural equation modeling approach.

    PubMed

    Knouse, Laura E; Traeger, Lara; O'Cleirigh, Conall; Safren, Steven A

    2013-10-01

    Relationships among attention deficit hyperactivity disorder (ADHD) symptoms and adult personality traits have not been examined in larger clinically diagnosed samples. We collected multisource ADHD symptom and self-report NEO Five-Factor Inventory (Costa and McCrae [Odessa, FL: Psychological Assessment Resources, Inc, 1992) data from 117 adults with ADHD and tested symptom-trait associations using structural equation modeling. The final model fit the data. Inattention was positively associated with neuroticism and negatively associated with conscientiousness. On the basis of ADHD expression in adulthood, hyperactivity and impulsivity were estimated as separate constructs and showed differential relationships to extraversion and agreeableness. A significant positive relationship between hyperactivity and conscientiousness arose in the context of other pathways. ADHD symptoms are reliably associated with personality traits, suggesting a complex interplay across development that warrants prospective study into adulthood.

  4. Impulsive responding in threat and reward contexts as a function of PTSD symptoms and trait disinhibition.

    PubMed

    Sadeh, Naomi; Spielberg, Jeffrey M; Hayes, Jasmeet P

    2018-01-01

    We examined current posttraumatic stress disorder (PTSD) symptoms, trait disinhibition, and affective context as contributors to impulsive and self-destructive behavior in 94 trauma-exposed Veterans. Participants completed an affective Go/No-Go task (GNG) with different emotional contexts (threat, reward, and a multidimensional threat/reward condition) and current PTSD, trait disinhibition, and risky/self-destructive behavior measures. PTSD interacted with trait disinhibition to explain recent engagement in risky/self-destructive behavior, with Veterans scoring high on trait disinhibition and current PTSD symptoms reporting the highest levels of these behaviors. On the GNG task, commission errors were also associated with the interaction of PTSD symptoms and trait disinhibition. Specifically, PTSD symptoms were associated with greater commission errors in threat vs. reward contexts for individuals who were low on trait disinhibition. In contrast, veterans high on PTSD and trait disinhibition exhibited the greatest number of commission errors in the multidimensional affective context that involved both threat and reward processing. Results highlight the interactive effects of PTSD and disinhibited personality traits, as well as threat and reward systems, as risk factors for impulsive and self-destructive behavior in trauma-exposed groups. Findings have clinical implications for understanding heterogeneity in the expression of PTSD and its association with disinhibited behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus

    PubMed Central

    2011-01-01

    Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler temperature (23°C), exhibited significant levels of additive genetic variance. Conclusions Our results show that the genetics underlying phenotypic expression can be complex, context-dependent and different in each of the sexes. We discuss the implications of these results, particularly in terms of the evolutionary processes that hinge on good and compatible genes models. PMID:21791118

  6. Social traits, social networks and evolutionary biology.

    PubMed

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  7. Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae.

    PubMed

    Tommasini, Steven M; Hu, Bin; Nadeau, Joseph H; Jepsen, Karl J

    2009-04-01

    Conventional approaches to identifying quantitative trait loci (QTLs) regulating bone mass and fragility are limited because they examine cortical and trabecular traits independently. Prior work examining long bones from young adult mice and humans indicated that skeletal traits are functionally related and that compensatory interactions among morphological and compositional traits are critical for establishing mechanical function. However, it is not known whether trait covariation (i.e., phenotypic integration) also is important for establishing mechanical function in more complex, corticocancellous structures. Covariation among trabecular, cortical, and compositional bone traits was examined in the context of mechanical functionality for L(4) vertebral bodies across a panel of 16-wk-old female AXB/BXA recombinant inbred (RI) mouse strains. The unique pattern of randomization of the A/J and C57BL/6J (B6) genome among the RI panel provides a powerful tool that can be used to measure the tendency for different traits to covary and to study the biology of complex traits. We tested the hypothesis that genetic variants affecting vertebral size and mass are buffered by changes in the relative amounts of cortical and trabecular bone and overall mineralization. Despite inheriting random sets of A/J and B6 genomes, the RI strains inherited nonrandom sets of cortical and trabecular bone traits. Path analysis, which is a multivariate analysis that shows how multiple traits covary simultaneously when confounding variables like body size are taken into consideration, showed that RI strains that tended to have smaller vertebrae relative to body size achieved mechanical functionality by increasing mineralization and the relative amounts of cortical and trabecular bone. The interdependence among corticocancellous traits in the vertebral body indicated that variation in trabecular bone traits among inbred mouse strains, which is often thought to arise from genetic factors, is also determined in part by the adaptive response to variation in traits describing the cortical shell. The covariation among corticocancellous traits has important implications for genetic analyses and for interpreting the response of bone to genetic and environmental perturbations.

  8. Genomics in rugby union: A review and future prospects.

    PubMed

    Heffernan, Shane M; Kilduff, Liam P; Day, Stephen H; Pitsiladis, Yannis P; Williams, Alun G

    2015-01-01

    This article introduces some aspects of sports genomics in a rugby union context, considers the rugby-specific genetic data in the published literature and outlines the next research steps required if the potential applications of genetic technology in rugby union, also identified here, are to become possible. A substantial proportion of the inter-individual variation for many traits related to rugby performance, including strength, short-term muscle power, VO2 max, injury susceptibility and the likelihood of being an elite athlete is inherited and can be investigated using molecular genetic techniques. In sports genomics, significant efforts have been made in recent years to develop large DNA biobanks of elite athletes for detailed exploration of the heritable bases of those traits. However, little effort has been devoted to the study of rugby athletes, and most of the little research that has focused on rugby was conducted with small cohorts of non-elite players. With steadily growing knowledge of the molecular mechanisms underpinning complex performance traits and the aetiology of injury, investigating sports genomics in the context of rugby is now a viable proposition and a worthwhile endeavour. The RugbyGene project we describe briefly in this article is a multi-institutional research collaboration in rugby union that will perform molecular genetic analyses of varying complexity. Genetic tests could become useful tools for rugby practitioners in the future and provide complementary and additional information to that provided by the non-genetic tests currently used.

  9. Context dependency of trait repeatability and its relevance for management and conservation of fish populations

    PubMed Central

    Killen, S S; Adriaenssens, B; Marras, S; Claireaux, G; Cooke, S J

    2016-01-01

    Abstract Repeatability of behavioural and physiological traits is increasingly a focus for animal researchers, for which fish have become important models. Almost all of this work has been done in the context of evolutionary ecology, with few explicit attempts to apply repeatability and context dependency of trait variation toward understanding conservation-related issues. Here, we review work examining the degree to which repeatability of traits (such as boldness, swimming performance, metabolic rate and stress responsiveness) is context dependent. We review methods for quantifying repeatability (distinguishing between within-context and across-context repeatability) and confounding factors that may be especially problematic when attempting to measure repeatability in wild fish. Environmental factors such temperature, food availability, oxygen availability, hypercapnia, flow regime and pollutants all appear to alter trait repeatability in fishes. This suggests that anthropogenic environmental change could alter evolutionary trajectories by changing which individuals achieve the greatest fitness in a given set of conditions. Gaining a greater understanding of these effects will be crucial for our ability to forecast the effects of gradual environmental change, such as climate change and ocean acidification, the study of which is currently limited by our ability to examine trait changes over relatively short time scales. Also discussed are situations in which recent advances in technologies associated with electronic tags (biotelemetry and biologging) and respirometry will help to facilitate increased quantification of repeatability for physiological and integrative traits, which so far lag behind measures of repeatability of behavioural traits. PMID:27382470

  10. Geography, environment and organismal traits in the diversification of a major tropical herbaceous angiosperm radiation

    PubMed Central

    2018-01-01

    Abstract The generation of plant diversity involves complex interactions between geography, environment and organismal traits. Many macroevolutionary processes and emergent patterns have been identified in different plant groups through the study of spatial data, but rarely in the context of a large radiation of tropical herbaceous angiosperms. A powerful system for testing interrelated biogeographical hypotheses is provided by the terrestrial bromeliads, a Neotropical group of extensive ecological diversity and importance. In this investigation, distributional data for 564 species of terrestrial bromeliads were used to estimate variation in the position and width of species-level hydrological habitat occupancy and test six core hypotheses linking geography, environment and organismal traits. Taxonomic groups and functional types differed in hydrological habitat occupancy, modulated by convergent and divergent trait evolution, and with contrasting interactions with precipitation abundance and seasonality. Plant traits in the Bromeliaceae are intimately associated with bioclimatic differentiation, which is in turn strongly associated with variation in geographical range size and species richness. These results emphasize the ecological relevance of structural-functional innovation in a major plant radiation. PMID:29479409

  11. Thermal niches of two invasive genotypes of the wheat curl mite Aceria tosichella (Acari: Eriophyidae): congruence between physiological and geographical distribution data

    USDA-ARS?s Scientific Manuscript database

    The wheat curl mite (WCM; Aceria tosichella) is a major pest of cereals worldwide. It is also a complex of well-defined genetic lineages with divergent physiological traits, which has not been accounted for in applied contexts. The aims of the study were to model the thermal niches of the two most p...

  12. On the Origin of Complex Adaptive Traits: Progress Since the Darwin Versus Mivart Debate.

    PubMed

    Suzuki, Takao K

    2017-06-01

    The evolutionary origin of complex adaptive traits has been a controversial topic in the history of evolutionary biology. Although Darwin argued for the gradual origins of complex adaptive traits within the theory of natural selection, Mivart insisted that natural selection could not account for the incipient stages of complex traits. The debate starting from Darwin and Mivart eventually engendered two opposite views: gradualism and saltationism. Although this has been a long-standing debate, the issue remains unresolved. However, recent studies have interrogated classic examples of complex traits, such as the asymmetrical eyes of flatfishes and leaf mimicry of butterfly wings, whose origins were debated by Darwin and Mivart. Here, I review recent findings as a starting point to provide a modern picture of the evolution of complex adaptive traits. First, I summarize the empirical evidence that unveils the evolutionary steps toward complex traits. I then argue that the evolution of complex traits could be understood within the concept of "reducible complexity." Through these discussions, I propose a conceptual framework for the formation of complex traits, named as reducible-composable multicomponent systems, that satisfy two major characteristics: reducibility into a sum of subcomponents and composability to construct traits from various additional and combinatorial arrangements of the subcomponents. This conceptual framework provides an analytical foundation for exploring evolutionary pathways to build up complex traits. This review provides certain essential avenues for deciphering the origin of complex adaptive traits. © 2017 Wiley Periodicals, Inc.

  13. Motivational Basis of Personality Traits: A Meta-Analysis of Value-Personality Correlations.

    PubMed

    Fischer, Ronald; Boer, Diana

    2015-10-01

    We investigated the relationships between personality traits and basic value dimensions. Furthermore, we developed novel country-level hypotheses predicting that contextual threat moderates value-personality trait relationships. We conducted a three-level v-known meta-analysis of correlations between Big Five traits and Schwartz's (1992) 10 values involving 9,935 participants from 14 countries. Variations in contextual threat (measured as resource threat, ecological threat, and restrictive social institutions) were used as country-level moderator variables. We found systematic relationships between Big Five traits and human values that varied across contexts. Overall, correlations between Openness traits and the Conservation value dimension and Agreeableness traits and the Transcendence value dimension were strongest across all samples. Correlations between values and all personality traits (except Extraversion) were weaker in contexts with greater financial, ecological, and social threats. In contrast, stronger personality-value links are typically found in contexts with low financial and ecological threats and more democratic institutions and permissive social context. These effects explained on average more than 10% of the variability in value-personality correlations. Our results provide strong support for systematic linkages between personality and broad value dimensions, but they also point out that these relations are shaped by contextual factors. © 2014 Wiley Periodicals, Inc.

  14. Complex implications around a simple trait: ecological context determines the fecundity effects of corolla marcescence.

    PubMed

    Herrera, Carlos M

    2011-05-01

    Post-anthesis functionality of persistent perianth parts has rarely been investigated, but available evidence suggests that perianth persistence may not always have an adaptive value. Given the high occurrence of the trait, that it may sometimes be maladaptive is an intriguing possibility and deserves exploration. This paper tests the hypothesis that the fitness value of corolla persistence after anthesis depends on ecological context, specifically the abundance of fruit predators and pollinators. The study was conducted on Narcissus longispathus, a species in which corolla marcescence is apparently maladaptive because withered corollas provide a shelter for fruit-predatory lepidopteran larvae. By experimentally manipulating corolla persistence, presence of fruit predators, and pollination, I tested whether variation in ecological scenario led to concomitant variation in the sign and magnitude of the effects of corolla marcescence on fecundity. Persistent corollas were detrimental to fecundity when plants were exposed to larvae, but not when larvae were excluded. Pollination and herbivory had nonadditive effects on the fecundity consequences of corolla marcescence, the strongest detrimental effects of corolla persistence occurring for the "exposed to larvae + supplementary pollination" treatment combination. The hypothesis that ecological context is a major determinant of the fitness value of corolla marcescence was supported. In N. longispathus, corolla marcescence will be a maladaptive trait in situations in which pollinators and fruit predators are simultaneously abundant, but will be a neutral character in the absence of fruit predators, irrespective of pollinator service.

  15. Motivational valence alters memory formation without altering exploration of a real-life spatial environment.

    PubMed

    Chiew, Kimberly S; Hashemi, Jordan; Gans, Lee K; Lerebours, Laura; Clement, Nathaniel J; Vu, Mai-Anh T; Sapiro, Guillermo; Heller, Nicole E; Adcock, R Alison

    2018-01-01

    Volitional exploration and learning are key to adaptive behavior, yet their characterization remains a complex problem for cognitive science. Exploration has been posited as a mechanism by which motivation promotes memory, but this relationship is not well-understood, in part because novel stimuli that motivate exploration also reliably elicit changes in neuromodulatory brain systems that directly alter memory formation, via effects on neural plasticity. To deconfound interrelationships between motivation, exploration, and memory formation we manipulated motivational state prior to entering a spatial context, measured exploratory responses to the context and novel stimuli within it, and then examined motivation and exploration as predictors of memory outcomes. To elicit spontaneous exploration, we used the physical space of an art exhibit with affectively rich content; we expected motivated exploration and memory to reflect multiple factors, including not only motivational valence, but also individual differences. Motivation was manipulated via an introductory statement framing exhibit themes in terms of Promotion- or Prevention-oriented goals. Participants explored the exhibit while being tracked by video. They returned 24 hours later for recall and spatial memory tests, followed by measures of motivation, personality, and relevant attitude variables. Promotion and Prevention condition participants did not differ in terms of group-level exploration time or memory metrics, suggesting similar motivation to explore under both framing contexts. However, exploratory behavior and memory outcomes were significantly more closely related under Promotion than Prevention, indicating that Prevention framing disrupted expected depth-of-encoding effects. Additionally, while trait measures predicted exploration similarly across framing conditions, traits interacted with motivational framing context and facial affect to predict memory outcomes. This novel characterization of motivated learning implies that dissociable behavioral and biological mechanisms, here varying as a function of valence, contribute to memory outcomes in complex, real-life environments.

  16. Motivational valence alters memory formation without altering exploration of a real-life spatial environment

    PubMed Central

    Hashemi, Jordan; Gans, Lee K.; Lerebours, Laura; Clement, Nathaniel J.; Vu, Mai-Anh T.; Sapiro, Guillermo; Heller, Nicole E.; Adcock, R. Alison

    2018-01-01

    Volitional exploration and learning are key to adaptive behavior, yet their characterization remains a complex problem for cognitive science. Exploration has been posited as a mechanism by which motivation promotes memory, but this relationship is not well-understood, in part because novel stimuli that motivate exploration also reliably elicit changes in neuromodulatory brain systems that directly alter memory formation, via effects on neural plasticity. To deconfound interrelationships between motivation, exploration, and memory formation we manipulated motivational state prior to entering a spatial context, measured exploratory responses to the context and novel stimuli within it, and then examined motivation and exploration as predictors of memory outcomes. To elicit spontaneous exploration, we used the physical space of an art exhibit with affectively rich content; we expected motivated exploration and memory to reflect multiple factors, including not only motivational valence, but also individual differences. Motivation was manipulated via an introductory statement framing exhibit themes in terms of Promotion- or Prevention-oriented goals. Participants explored the exhibit while being tracked by video. They returned 24 hours later for recall and spatial memory tests, followed by measures of motivation, personality, and relevant attitude variables. Promotion and Prevention condition participants did not differ in terms of group-level exploration time or memory metrics, suggesting similar motivation to explore under both framing contexts. However, exploratory behavior and memory outcomes were significantly more closely related under Promotion than Prevention, indicating that Prevention framing disrupted expected depth-of-encoding effects. Additionally, while trait measures predicted exploration similarly across framing conditions, traits interacted with motivational framing context and facial affect to predict memory outcomes. This novel characterization of motivated learning implies that dissociable behavioral and biological mechanisms, here varying as a function of valence, contribute to memory outcomes in complex, real-life environments. PMID:29558526

  17. Personality, emotion, and individual differences in physiological responses.

    PubMed

    Stemmler, Gerhard; Wacker, Jan

    2010-07-01

    A dominant paradigm in biopsychological personality research seeks to establish links between emotional and motivational traits and habitual, transsituationally consistent individual differences in measures of physiological activity. An alternative approach conceptualizes traits as dispositions that are only operative in certain situational contexts and consequently predicts associations between emotional and motivational traits and physiological activity only for trait-relevant situational contexts in which the physiological systems underlying the traits in question are engaged. In the present paper we first examine and contrast these personistic and interactionistic conceptualizations of personality and personality-physiology associations and then present data from several large studies (N>100) in which electrocortical (e.g., frontal alpha asymmetry) and somatovisceral parameters were measured in various situational contexts (e.g., after the induction of either anger, or fear, or anxiety). As predicted by the interactionistic conceptualization of traits as dispositions the situational context and its subjective representation by the participants moderated the personality-physiology relationships for measures of both central and peripheral nervous system activity. We conclude by outlining the implications of the interactionistic approach for biopsychological personality research. Copyright © 2009 Elsevier B.V. All rights reserved.

  18. Identifying gene networks underlying the neurobiology of ethanol and alcoholism.

    PubMed

    Wolen, Aaron R; Miles, Michael F

    2012-01-01

    For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.

  19. On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network.

    PubMed

    Waliszewski, P; Molski, M; Konarski, J

    1998-06-01

    A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self-organization, and natural selection drives formation of malignant phenotype. This concept offers a novel perspective for investigation of tumorigenesis without invalidating current molecular findings. The essay integrates the ideas of the sciences of complexity in a biological context.

  20. Expression and Regulation of Attachment-Related Emotions in Children with Conduct Problems and Callous-Unemotional Traits.

    PubMed

    Dadds, Mark R; Gale, Nyree; Godbee, Megan; Moul, Caroline; Pasalich, Dave S; Fink, Elian; Hawes, David J

    2016-08-01

    Callous-unemotional traits (CU) are defined by low responsiveness to, and unfeeling disregard for the emotions of others. There is controversial evidence, however, that children with high CU traits can demonstrate affective responsiveness under certain conditions, namely those associated with attachment threat. We tested this using 'fear + amusing' and 'attachment rich' stimuli from the Lion King film. Of N = 76, 4-14 years old children, 56 were clinic-referred children divided into high and low CU traits groups, and 20 children were drawn from the community. Participants watched film sequences of fearful, attachment-related and neutral stimuli and their affective responses and emotion-regulation strategies were coded by independent observers. Children in the high CU traits group were able to disengage from the fear stimuli by showing more 'happiness' to a brief slapstick interlude. In the attachment scenario, high CU children expressed similar or trends toward higher emotional responses and emotion regulation strategies, compared to low-CU children and control children. The results support the idea that high CU children may have the potential for emotional responsiveness to complex emotional stimuli in attachment contexts. Implications of these results for the development of interventions are discussed.

  1. Strategies for mapping heterogeneous recessive traits by allele-sharing methods.

    PubMed Central

    Feingold, E; Siegmund, D O

    1997-01-01

    We investigate strategies for detecting linkage of recessive and partially recessive traits, using sibling pairs and inbred individuals. We assume that a genomewide search is being conducted and that locus heterogeneity of the trait is likely. For sibling pairs, we evaluate the efficiency of different statistics under the assumption that one does not know the true degree of recessiveness of the trait. We recommend a sibling-pair statistic that is a linear compromise between two previously suggested statistics. We also compare the power of sibling pairs to that of more distant relatives, such as cousins. For inbred individuals, we evaluate the power of offspring of different types of matings and compare them to sibling pairs. Over a broad range of trait etiologies, sibling pairs are more powerful than inbred individuals, but for traits caused by very rare alleles, particularly in the case of heterogeneity, inbred individuals can be much more powerful. The models we develop can also be used to examine specific situations other than those we look at. We present this analysis in the idealized context of a dense set of highly polymorphic markers. In general, incorporation of real-world complexities makes inbred individuals, particularly offspring of distant relatives, look slightly less useful than our results imply. PMID:9106544

  2. Modelling the Interplay between Lifestyle Factors and Genetic Predisposition on Markers of Type 2 Diabetes Mellitus Risk.

    PubMed

    Walker, Celia G; Solis-Trapala, Ivonne; Holzapfel, Christina; Ambrosini, Gina L; Fuller, Nicholas R; Loos, Ruth J F; Hauner, Hans; Caterson, Ian D; Jebb, Susan A

    2015-01-01

    The risk of developing type 2 diabetes mellitus (T2DM) is determined by a complex interplay involving lifestyle factors and genetic predisposition. Despite this, many studies do not consider the relative contributions of this complex array of factors to identify relationships which are important in progression or prevention of complex diseases. We aimed to describe the integrated effect of a number of lifestyle changes (weight, diet and physical activity) in the context of genetic susceptibility, on changes in glycaemic traits in overweight or obese participants following 12-months of a weight management programme. A sample of 353 participants from a behavioural weight management intervention were included in this study. A graphical Markov model was used to describe the impact of the intervention, by dividing the effects into various pathways comprising changes in proportion of dietary saturated fat, physical activity and weight loss, and a genetic predisposition score (T2DM-GPS), on changes in insulin sensitivity (HOMA-IR), insulin secretion (HOMA-B) and short and long term glycaemia (glucose and HbA1c). We demonstrated the use of graphical Markov modelling to identify the importance and interrelationships of a number of possible variables changed as a result of a lifestyle intervention, whilst considering fixed factors such as genetic predisposition, on changes in traits. Paths which led to weight loss and change in dietary saturated fat were important factors in the change of all glycaemic traits, whereas the T2DM-GPS only made a significant direct contribution to changes in HOMA-IR and plasma glucose after considering the effects of lifestyle factors. This analysis shows that modifiable factors relating to body weight, diet, and physical activity are more likely to impact on glycaemic traits than genetic predisposition during a behavioural intervention.

  3. Consequences of complex environments: Temperature and energy intake interact to influence growth and metabolic rate.

    PubMed

    Stahlschmidt, Zachary R; Jodrey, Alicia D; Luoma, Rachel L

    2015-09-01

    The field of comparative physiology has a rich history of elegantly examining the effects of individual environmental factors on performance traits linked to fitness (e.g., thermal performance curves for locomotion). However, animals live in complex environments wherein multiple environmental factors co-vary. Thus, we investigated the independent and interactive effects of temperature and energy intake on the growth and metabolic rate of juvenile corn snakes (Pantherophis guttatus) in the context of shifts in complex environments. Unlike previous studies that imposed constant or fluctuating temperature regimes, we manipulated the availability of preferred thermal microclimates (control vs. relatively warm regimes) for eight weeks and allowed snakes to behaviorally thermoregulate among microclimates. By also controlling for energy intake, we demonstrate an interactive effect of temperature and energy on growth-relevant temperature shifts had no effect on snakes' growth when energy intake was low and a positive effect on growth when energy intake was high. Thus, acclimation to relatively warm thermal options can result in increased rates of growth when food is abundant in a taxon in which body size confers fitness advantages. Temperature and energy also interactively influenced metabolic rate-snakes in the warmer temperature regime exhibited reduced metabolic rate (O2 consumption rate at 25 °C and 30 °C) if they had relatively high energy intake. Although we advocate for continued investigation into the effects of complex environments on other traits, our results indicate that warming may actually benefit important life history traits in some taxa and that metabolic shifts may underlie thermal acclimation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Proneness to social anxiety modulates neural complexity in the absence of exposure: A resting state fMRI study using Hurst exponent.

    PubMed

    Gentili, Claudio; Vanello, Nicola; Cristea, Ioana; David, Daniel; Ricciardi, Emiliano; Pietrini, Pietro

    2015-05-30

    To test the hypothesis that brain activity is modulated by trait social anxiety, we measured the Hurst Exponent (HE), an index of complexity in time series, in healthy individuals at rest in the absence of any social trigger. Functional magnetic resonance imaging (fMRI) time series were recorded in 36 subjects at rest. All volunteers were healthy without any psychiatric, medical or neurological disorder. Subjects completed the Liebowitz Social Anxiety Scale (LSAS) and the Brief Fear of Negative Evaluation (BFNE) to assess social anxiety and thoughts in social contexts. We also obtained the fractional Amplitude of Low Frequency Fluctuations (fALFF) of the BOLD signal as an independent control measure for HE data. BFNE scores correlated positively with HE in the posterior cingulate/precuneus, while LSAS scores correlated positively with HE in the precuneus, in the inferior parietal sulci and in the parahippocamus. Results from fALFF were highly consistent with those obtained using LSAS and BFNE to predict HE. Overall our data indicate that spontaneous brain activity is influenced by the degree of social anxiety, on a continuum and in the absence of social stimuli. These findings suggest that social anxiety is a trait characteristic that shapes brain activity and predisposes to different reactions in social contexts. Copyright © 2015. Published by Elsevier Ireland Ltd.

  5. Influencing agent group behavior by adjusting cultural trait values.

    PubMed

    Tuli, Gaurav; Hexmoor, Henry

    2010-10-01

    Social reasoning and norms among individuals that share cultural traits are largely fashioned by those traits. We have explored predominant sociological and cultural traits. We offer a methodology for parametrically adjusting relevant traits. This exploratory study heralds a capability to deliberately tune cultural group traits in order to produce a desired group behavior. To validate our methodology, we implemented a prototypical-agent-based simulated test bed for demonstrating an exemplar from intelligence, surveillance, and reconnaissance scenario. A group of simulated agents traverses a hostile territory while a user adjusts their cultural group trait settings. Group and individual utilities are dynamically observed against parametric values for the selected traits. Uncertainty avoidance index and individualism are the cultural traits we examined in depth. Upon the user's training of the correspondence between cultural values and system utilities, users deliberately produce the desired system utilities by issuing changes to trait. Specific cultural traits are without meaning outside of their context. Efficacy and timely application of traits in a given context do yield desirable results. This paper heralds a path for the control of large systems via parametric cultural adjustments.

  6. Sibling bullying perpetration: associations with gender, grade, peer perpetration, trait anger, and moral disengagement.

    PubMed

    Tanrikulu, Ibrahim; Campbell, Marilyn A

    2015-03-01

    This study investigated bullying among siblings in both traditional and cyber forms, and the associations of gender, grade, peer bullying perpetration, trait anger, and moral disengagement. The participants were 455 children in Grades 5 to 12 (262 girls and 177 boys with 16 unknown gender) who had a sibling. As the number of siblings who only bullied by technology was low, these associations were not able to be calculated. However, the findings showed that the percentage of sibling traditional bullying perpetration (31.6%) was higher than peer bullying perpetration (9.8%). Sibling bullies reported engaging in complex behaviors of perpetration and victimization in both the physical and in cyber settings, although the number was small. Gender, trait anger, moral disengagement, and bullying peers at school (but not grade) were all significantly associated with sibling traditional bullying perpetration. The implications of the findings are discussed for bullying intervention and prevention programs to understand childhood bullying in diverse contexts. © The Author(s) 2014.

  7. Trait complexes and academic achievement: old and new ways of examining personality in educational contexts.

    PubMed

    Ackerman, Phillip L; Chamorro-Premuzic, Tomas; Furnham, Adrian

    2011-03-01

    BACKGROUND. Although recent research has provided evidence for the predictive validity of personality traits in academic settings, the path to an improved understanding of the nature of personality influences on academic achievement involves a reconceptualization of both criterion and predictor construct spaces. AIMS. For the criterion space, one needs to consider student behaviours beyond grades and level of educational attainment, and include what the student does among other things outside of the classroom. For the predictor space, it is possible to bring some order to the myriad personality constructs that have been developed over the last century, by focusing on common variance among personality and other non-ability traits. METHODS. We review these conceptual issues and several empirical studies. CONCLUSIONS. We demonstrate the possible increments in understanding non-ability determinants of academic achievement that may be obtained by focusing on areas where there is a theoretical convergence between predictor and criterion spaces. 2010 The British Psychological Society.

  8. Contrasting Transcriptional Programs Control Postharvest Development of Apples (Malus x domestica Borkh.) Submitted to Cold Storage and Ethylene Blockage.

    PubMed

    Storch, Tatiane Timm; Finatto, Taciane; Bruneau, Maryline; Orsel-Baldwin, Mathilde; Renou, Jean-Pierre; Rombaldi, Cesar Valmor; Quecini, Vera; Laurens, François; Girardi, César Luis

    2017-09-06

    Apple is commercially important worldwide. Favorable genomic contexts and postharvest technologies allow year-round availability. Although ripening is considered a unidirectional developmental process toward senescence, storage at low temperatures, alone or in combination with ethylene blockage, is effective in preserving apple properties. Quality traits and genome wide expression were integrated to investigate the mechanisms underlying postharvest changes. Development and conservation techniques were responsible for transcriptional reprogramming and distinct programs associated with quality traits. A large portion of the differentially regulated genes constitutes a program involved in ripening and senescence, whereas a smaller module consists of genes associated with reestablishment and maintenance of juvenile traits after harvest. Ethylene inhibition was associated with a reversal of ripening by transcriptional induction of anabolic pathways. Our results demonstrate that the blockage of ethylene perception and signaling leads to upregulation of genes in anabolic pathways. We also associated complex phenotypes to subsets of differentially regulated genes.

  9. Aggressiveness as a latent personality trait of domestic dogs: Testing local independence and measurement invariance

    PubMed Central

    2017-01-01

    Studies of animal personality attempt to uncover underlying or “latent” personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4–10 months, 10 months–3 years, 3–6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate “aggressive personality” trait attributions can be costly to dogs, recipients of aggression and society in general. PMID:28854267

  10. Aggressiveness as a latent personality trait of domestic dogs: Testing local independence and measurement invariance.

    PubMed

    Goold, Conor; Newberry, Ruth C

    2017-01-01

    Studies of animal personality attempt to uncover underlying or "latent" personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4-10 months, 10 months-3 years, 3-6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate "aggressive personality" trait attributions can be costly to dogs, recipients of aggression and society in general.

  11. The Architecture of the Pollen Hoarding Syndrome in Honey Bees: Implications for Understanding Social Evolution, Behavioral Syndromes, and Selective Breeding

    PubMed Central

    Rueppell, Olav

    2014-01-01

    Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been coopted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic QTL. Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous “behavioral” syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: If these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection. PMID:25506100

  12. The Architecture of the Pollen Hoarding Syndrome in Honey Bees: Implications for Understanding Social Evolution, Behavioral Syndromes, and Selective Breeding.

    PubMed

    Rueppell, Olav

    2014-05-01

    Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been coopted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic QTL. Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous "behavioral" syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: If these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection.

  13. The Value of Extended Pedigrees for Next-Generation Analysis of Complex Disease in the Rhesus Macaque

    PubMed Central

    Vinson, Amanda; Prongay, Kamm; Ferguson, Betsy

    2013-01-01

    Complex diseases (e.g., cardiovascular disease and type 2 diabetes, among many others) pose the biggest threat to human health worldwide and are among the most challenging to investigate. Susceptibility to complex disease may be caused by multiple genetic variants (GVs) and their interaction, by environmental factors, and by interaction between GVs and environment, and large study cohorts with substantial analytical power are typically required to elucidate these individual contributions. Here, we discuss the advantages of both power and feasibility afforded by the use of extended pedigrees of rhesus macaques (Macaca mulatta) for genetic studies of complex human disease based on next-generation sequence data. We present these advantages in the context of previous research conducted in rhesus macaques for several representative complex diseases. We also describe a single, multigeneration pedigree of Indian-origin rhesus macaques and a sample biobank we have developed for genetic analysis of complex disease, including power of this pedigree to detect causal GVs using either genetic linkage or association methods in a variance decomposition approach. Finally, we summarize findings of significant heritability for a number of quantitative traits that demonstrate that genetic contributions to risk factors for complex disease can be detected and measured in this pedigree. We conclude that the development and application of an extended pedigree to analysis of complex disease traits in the rhesus macaque have shown promising early success and that genome-wide genetic and higher order -omics studies in this pedigree are likely to yield useful insights into the architecture of complex human disease. PMID:24174435

  14. Prediction and Cross-Situational Consistency of Daily Behavior across Cultures: Testing Trait and Cultural Psychology Perspectives

    PubMed Central

    Church, A. Timothy; Katigbak, Marcia S.; Reyes, Jose Alberto S.; Salanga, Maria Guadalupe C.; Miramontes, Lilia A.; Adams, Nerissa B.

    2008-01-01

    Trait and cultural psychology perspectives on the cross-situational consistency of behavior, and the predictive validity of traits, were tested in a daily process study in the United States (N = 68), an individualistic culture, and the Philippines (N = 80), a collectivistic culture. Participants completed the Revised NEO Personality Inventory (Costa & McCrae, 1992) and a measure of self-monitoring, then reported their daily behaviors and associated situational contexts for approximately 30 days. Consistent with trait perspectives, the Big Five traits predicted daily behaviors in both cultures, and relative (interindividual) consistency was observed across many, although not all, situational contexts. The frequency of various Big Five behaviors varied across relevant situational contexts in both cultures and, consistent with cultural psychology perspectives, there was a tendency for Filipinos to exhibit greater situational variability than Americans. Self-monitoring showed some ability to account for individual differences in situational variability in the American sample, but not the Filipino sample. PMID:22146866

  15. Sexual selection and the evolution of genital shape and complexity in water striders.

    PubMed

    Rowe, Locke; Arnqvist, Göran

    2012-01-01

    Animal genitalia show two striking but incompletely understood evolutionary trends: a great evolutionary divergence in the shape of genitalic structures, and characteristic structural complexity. Both features are thought to result from sexual selection, but explicit comparative tests are hampered by the fact that it is difficult to quantify both morphological complexity and divergence in shape. We undertake a comparative study of multiple nongenitalic and male genital traits in a clade of 15 water strider species to quantify complexity and shape divergence. We show that genital structures are more complex and their shape more divergent among species than nongenital traits. Further, intromittent genital traits are more complex and have evolved more divergently than nonintromittent genital traits. More importantly, shape and complexity of nonintromittent genital traits show correlated evolution with indices of premating sexual selection and intromittent genital traits with postmating sexual selection, suggesting that the evolution of different components of genital morphology are shaped independently by distinct forms of sexual selection. Our quantitative results provide direct comparative support for the hypothesis that sexual selection is associated with morphological complexity in genitalic traits and highlight the importance of quantifying morphological shape and complexity, rather than size in studies of genital evolution. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  16. Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues.

    PubMed

    Wheeler, Heather E; Shah, Kaanan P; Brenner, Jonathon; Garcia, Tzintzuni; Aquino-Michaels, Keston; Cox, Nancy J; Nicolae, Dan L; Im, Hae Kyung

    2016-11-01

    Understanding the genetic architecture of gene expression traits is key to elucidating the underlying mechanisms of complex traits. Here, for the first time, we perform a systematic survey of the heritability and the distribution of effect sizes across all representative tissues in the human body. We find that local h2 can be relatively well characterized with 59% of expressed genes showing significant h2 (FDR < 0.1) in the DGN whole blood cohort. However, current sample sizes (n ≤ 922) do not allow us to compute distal h2. Bayesian Sparse Linear Mixed Model (BSLMM) analysis provides strong evidence that the genetic contribution to local expression traits is dominated by a handful of genetic variants rather than by the collective contribution of a large number of variants each of modest size. In other words, the local architecture of gene expression traits is sparse rather than polygenic across all 40 tissues (from DGN and GTEx) examined. This result is confirmed by the sparsity of optimal performing gene expression predictors via elastic net modeling. To further explore the tissue context specificity, we decompose the expression traits into cross-tissue and tissue-specific components using a novel Orthogonal Tissue Decomposition (OTD) approach. Through a series of simulations we show that the cross-tissue and tissue-specific components are identifiable via OTD. Heritability and sparsity estimates of these derived expression phenotypes show similar characteristics to the original traits. Consistent properties relative to prior GTEx multi-tissue analysis results suggest that these traits reflect the expected biology. Finally, we apply this knowledge to develop prediction models of gene expression traits for all tissues. The prediction models, heritability, and prediction performance R2 for original and decomposed expression phenotypes are made publicly available (https://github.com/hakyimlab/PrediXcan).

  17. Signatures of negative selection in the genetic architecture of human complex traits.

    PubMed

    Zeng, Jian; de Vlaming, Ronald; Wu, Yang; Robinson, Matthew R; Lloyd-Jones, Luke R; Yengo, Loic; Yap, Chloe X; Xue, Angli; Sidorenko, Julia; McRae, Allan F; Powell, Joseph E; Montgomery, Grant W; Metspalu, Andres; Esko, Tonu; Gibson, Greg; Wray, Naomi R; Visscher, Peter M; Yang, Jian

    2018-05-01

    We develop a Bayesian mixed linear model that simultaneously estimates single-nucleotide polymorphism (SNP)-based heritability, polygenicity (proportion of SNPs with nonzero effects), and the relationship between SNP effect size and minor allele frequency for complex traits in conventionally unrelated individuals using genome-wide SNP data. We apply the method to 28 complex traits in the UK Biobank data (N = 126,752) and show that on average, 6% of SNPs have nonzero effects, which in total explain 22% of phenotypic variance. We detect significant (P < 0.05/28) signatures of natural selection in the genetic architecture of 23 traits, including reproductive, cardiovascular, and anthropometric traits, as well as educational attainment. The significant estimates of the relationship between effect size and minor allele frequency in complex traits are consistent with a model of negative (or purifying) selection, as confirmed by forward simulation. We conclude that negative selection acts pervasively on the genetic variants associated with human complex traits.

  18. Gene expression allelic imbalance in ovine brown adipose tissue impacts energy homeostasis

    PubMed Central

    Ghazanfar, Shila; Vuocolo, Tony; Morrison, Janna L.; Nicholas, Lisa M.; McMillen, Isabella C.; Yang, Jean Y. H.; Buckley, Michael J.

    2017-01-01

    Heritable trait variation within a population of organisms is largely governed by DNA variations that impact gene transcription and protein function. Identifying genetic variants that affect complex functional traits is a primary aim of population genetics studies, especially in the context of human disease and agricultural production traits. The identification of alleles directly altering mRNA expression and thereby biological function is challenging due to difficulty in isolating direct effects of cis-acting genetic variations from indirect trans-acting genetic effects. Allele specific gene expression or allelic imbalance in gene expression (AI) occurring at heterozygous loci provides an opportunity to identify genes directly impacted by cis-acting genetic variants as indirect trans-acting effects equally impact the expression of both alleles. However, the identification of genes showing AI in the context of the expression of all genes remains a challenge due to a variety of technical and statistical issues. The current study focuses on the discovery of genes showing AI using single nucleotide polymorphisms as allelic reporters. By developing a computational and statistical process that addressed multiple analytical challenges, we ranked 5,809 genes for evidence of AI using RNA-Seq data derived from brown adipose tissue samples from a cohort of late gestation fetal lambs and then identified a conservative subgroup of 1,293 genes. Thus, AI was extensive, representing approximately 25% of the tested genes. Genes associated with AI were enriched for multiple Gene Ontology (GO) terms relating to lipid metabolism, mitochondrial function and the extracellular matrix. These functions suggest that cis-acting genetic variations causing AI in the population are preferentially impacting genes involved in energy homeostasis and tissue remodelling. These functions may contribute to production traits likely to be under genetic selection in the population. PMID:28665992

  19. Exploring the Estimation of Examinee Locations Using Multidimensional Latent Trait Models under Different Distributional Assumptions

    ERIC Educational Resources Information Center

    Jang, Hyesuk

    2014-01-01

    This study aims to evaluate a multidimensional latent trait model to determine how well the model works in various empirical contexts. Contrary to the assumption of these latent trait models that the traits are normally distributed, situations in which the latent trait is not shaped with a normal distribution may occur (Sass et al, 2008; Woods…

  20. An Unbiased Systems Genetics Approach to Mapping Genetic Loci Modulating Susceptibility to Severe Streptococcal Sepsis

    PubMed Central

    Abdeltawab, Nourtan F.; Aziz, Ramy K.; Kansal, Rita; Rowe, Sarah L.; Su, Yin; Gardner, Lidia; Brannen, Charity; Nooh, Mohammed M.; Attia, Ramy R.; Abdelsamed, Hossam A.; Taylor, William L.; Lu, Lu; Williams, Robert W.; Kotb, Malak

    2008-01-01

    Striking individual differences in severity of group A streptococcal (GAS) sepsis have been noted, even among patients infected with the same bacterial strain. We had provided evidence that HLA class II allelic variation contributes significantly to differences in systemic disease severity by modulating host responses to streptococcal superantigens. Inasmuch as the bacteria produce additional virulence factors that participate in the pathogenesis of this complex disease, we sought to identify additional gene networks modulating GAS sepsis. Accordingly, we applied a systems genetics approach using a panel of advanced recombinant inbred mice. By analyzing disease phenotypes in the context of mice genotypes we identified a highly significant quantitative trait locus (QTL) on Chromosome 2 between 22 and 34 Mb that strongly predicts disease severity, accounting for 25%–30% of variance. This QTL harbors several polymorphic genes known to regulate immune responses to bacterial infections. We evaluated candidate genes within this QTL using multiple parameters that included linkage, gene ontology, variation in gene expression, cocitation networks, and biological relevance, and identified interleukin1 alpha and prostaglandin E synthases pathways as key networks involved in modulating GAS sepsis severity. The association of GAS sepsis with multiple pathways underscores the complexity of traits modulating GAS sepsis and provides a powerful approach for analyzing interactive traits affecting outcomes of other infectious diseases. PMID:18421376

  1. Genetics of dispersal.

    PubMed

    Saastamoinen, Marjo; Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W; Fronhofer, Emanuel A; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M; Travis, Justin M J; Donohue, Kathleen; Bullock, James M; Del Mar Delgado, Maria

    2018-02-01

    Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  2. Fisher's geometrical model emerges as a property of complex integrated phenotypic networks.

    PubMed

    Martin, Guillaume

    2014-05-01

    Models relating phenotype space to fitness (phenotype-fitness landscapes) have seen important developments recently. They can roughly be divided into mechanistic models (e.g., metabolic networks) and more heuristic models like Fisher's geometrical model. Each has its own drawbacks, but both yield testable predictions on how the context (genomic background or environment) affects the distribution of mutation effects on fitness and thus adaptation. Both have received some empirical validation. This article aims at bridging the gap between these approaches. A derivation of the Fisher model "from first principles" is proposed, where the basic assumptions emerge from a more general model, inspired by mechanistic networks. I start from a general phenotypic network relating unspecified phenotypic traits and fitness. A limited set of qualitative assumptions is then imposed, mostly corresponding to known features of phenotypic networks: a large set of traits is pleiotropically affected by mutations and determines a much smaller set of traits under optimizing selection. Otherwise, the model remains fairly general regarding the phenotypic processes involved or the distribution of mutation effects affecting the network. A statistical treatment and a local approximation close to a fitness optimum yield a landscape that is effectively the isotropic Fisher model or its extension with a single dominant phenotypic direction. The fit of the resulting alternative distributions is illustrated in an empirical data set. These results bear implications on the validity of Fisher's model's assumptions and on which features of mutation fitness effects may vary (or not) across genomic or environmental contexts.

  3. The genetic basis for survivorship in coronary artery disease

    PubMed Central

    Dungan, Jennifer R.; Hauser, Elizabeth R.; Qin, Xuejun; Kraus, William E.

    2013-01-01

    Survivorship is a trait characterized by endurance and virility in the face of hardship. It is largely considered a psychosocial attribute developed during fatal conditions, rather than a biological trait for robustness in the context of complex, age-dependent diseases like coronary artery disease (CAD). The purpose of this paper is to present the novel phenotype, survivorship in CAD as an observed survival advantage concurrent with clinically significant CAD. We present a model for characterizing survivorship in CAD and its relationships with overlapping time- and clinically-related phenotypes. We offer an optimal measurement interval for investigating survivorship in CAD. We hypothesize genetic contributions to this construct and review the literature for evidence of genetic contribution to overlapping phenotypes in support of our hypothesis. We also present preliminary evidence of genetic effects on survival in people with clinically significant CAD from a primary case-control study of symptomatic coronary disease. Identifying gene variants that confer improved survival in the context of clinically appreciable CAD may improve our understanding of cardioprotective mechanisms acting at the gene level and potentially impact patients clinically in the future. Further, characterizing other survival-variant genetic effects may improve signal-to-noise ratio in detecting gene associations for CAD. PMID:24143143

  4. Perceived emotional intelligence in nursing: psychometric properties of the Trait Meta-Mood Scale.

    PubMed

    Aradilla-Herrero, Amor; Tomás-Sábado, Joaquín; Gómez-Benito, Juana

    2014-04-01

    To examine the psychometric properties of the Trait Meta-Mood Scale in the nursing context and to determine the relationships between emotional intelligence, self-esteem, alexithymia and death anxiety. The Trait Meta-Mood Scale is one of the most widely used self-report measures for assessing perceived emotional intelligence. However, in the nursing context, no extensive analysis has been conducted to examine its psychometric properties. Cross-sectional and observational study. A total of 1417 subjects participated in the study (1208 nursing students and 209 hospital nurses). The Trait Meta-Mood Scale, the Toronto Alexithymia Scale, the Rosenberg Self-Esteem Scale and the Death Anxiety Inventory were all applied to half of the sample (n = 707). A confirmatory factor analysis was carried out, and statistical analyses examined the internal consistency and test-retest reliability of the Trait Meta-Mood Scale, as well as its relationship with relevant variables. Confirmatory factor analysis confirmed the three dimensions of the original scale (Attention, Clarity and Repair). The instrument showed adequate internal consistency and temporal stability. Correlational results indicated that nurses with high scores on emotional Attention experience more death anxiety, report greater difficulties identifying feelings and have less self-esteem. By contrast, nurses with high levels of emotional Clarity and Repair showed less death anxiety and higher levels of self-esteem. The Trait Meta-Mood Scale is an effective, valid and reliable tool for measuring perceived emotional intelligence in the nursing context. Training programmes should seek to promote emotional abilities among nurses. Use of the Trait Meta-Mood Scale in the nursing context would provide information about nurses' perceived abilities to interpret and manage emotions when interacting with patients. © 2013 John Wiley & Sons Ltd.

  5. Phenotypic integration and the evolution of signal repertoires: A case study of treefrog acoustic communication.

    PubMed

    Reichert, Michael S; Höbel, Gerlinde

    2018-03-01

    Animal signals are inherently complex phenotypes with many interacting parts combining to elicit responses from receivers. The pattern of interrelationships between signal components reflects the extent to which each component is expressed, and responds to selection, either in concert with or independently of others. Furthermore, many species have complex repertoires consisting of multiple signal types used in different contexts, and common morphological and physiological constraints may result in interrelationships extending across the multiple signals in species' repertoires. The evolutionary significance of interrelationships between signal traits can be explored within the framework of phenotypic integration, which offers a suite of quantitative techniques to characterize complex phenotypes. In particular, these techniques allow for the assessment of modularity and integration, which describe, respectively, the extent to which sets of traits covary either independently or jointly. Although signal and repertoire complexity are thought to be major drivers of diversification and social evolution, few studies have explicitly measured the phenotypic integration of signals to investigate the evolution of diverse communication systems. We applied methods from phenotypic integration studies to quantify integration in the two primary vocalization types (advertisement and aggressive calls) in the treefrogs Hyla versicolor , Hyla cinerea, and Dendropsophus ebraccatus . We recorded male calls and calculated standardized phenotypic variance-covariance ( P ) matrices for characteristics within and across call types. We found significant integration across call types, but the strength of integration varied by species and corresponded with the acoustic similarity of the call types within each species. H. versicolor had the most modular advertisement and aggressive calls and the least acoustically similar call types. Additionally, P was robust to changing social competition levels in H. versicolor . Our findings suggest new directions in animal communication research in which the complex relationships among the traits of multiple signals are a key consideration for understanding signal evolution.

  6. The Extent, Causes, and Importance of Context Effects on Item Parameters for Two Latent-Trait Models.

    ERIC Educational Resources Information Center

    Yen, Wendy M.

    The extent, causes, and importance of context effects on item parameters for one- and three-parameter latent-trait models were examined. Items were taken from the California Achievement Tests Reading Comprehension and Mathematics Concepts and Applications subtests. The reading items were administered to 1,678 fourth-grade students, and the…

  7. Estimation of (co)variances for genomic regions of flexible sizes: application to complex infectious udder diseases in dairy cattle

    PubMed Central

    2012-01-01

    Background Multi-trait genomic models in a Bayesian context can be used to estimate genomic (co)variances, either for a complete genome or for genomic regions (e.g. per chromosome) for the purpose of multi-trait genomic selection or to gain further insight into the genomic architecture of related traits such as mammary disease traits in dairy cattle. Methods Data on progeny means of six traits related to mastitis resistance in dairy cattle (general mastitis resistance and five pathogen-specific mastitis resistance traits) were analyzed using a bivariate Bayesian SNP-based genomic model with a common prior distribution for the marker allele substitution effects and estimation of the hyperparameters in this prior distribution from the progeny means data. From the Markov chain Monte Carlo samples of the allele substitution effects, genomic (co)variances were calculated on a whole-genome level, per chromosome, and in regions of 100 SNP on a chromosome. Results Genomic proportions of the total variance differed between traits. Genomic correlations were lower than pedigree-based genetic correlations and they were highest between general mastitis and pathogen-specific traits because of the part-whole relationship between these traits. The chromosome-wise genomic proportions of the total variance differed between traits, with some chromosomes explaining higher or lower values than expected in relation to chromosome size. Few chromosomes showed pleiotropic effects and only chromosome 19 had a clear effect on all traits, indicating the presence of QTL with a general effect on mastitis resistance. The region-wise patterns of genomic variances differed between traits. Peaks indicating QTL were identified but were not very distinctive because a common prior for the marker effects was used. There was a clear difference in the region-wise patterns of genomic correlation among combinations of traits, with distinctive peaks indicating the presence of pleiotropic QTL. Conclusions The results show that it is possible to estimate, genome-wide and region-wise genomic (co)variances of mastitis resistance traits in dairy cattle using multivariate genomic models. PMID:22640006

  8. Deficient inhibitory processing in trait anxiety: Evidence from context-dependent fear learning, extinction recall and renewal.

    PubMed

    Haaker, J; Lonsdorf, T B; Schümann, D; Menz, M; Brassen, S; Bunzeck, N; Gamer, M; Kalisch, R

    2015-10-01

    Impaired fear inhibition has been described as a hallmark of pathological anxiety. We aimed at further characterizing the relation between fear inhibition and anxiety by extending previous work to contextual safety stimuli as well as to dimensional scores of trait anxiety in a large sample. We employed a validated paradigm for context-dependent fear acquisition/extinction (day 1) and retrieval/expression (day 2) in 377 healthy individuals. This large sample size allowed the employment of a dimensional rather than binary approach with respect to individual differences in trait anxiety. We observed a positive correlation on day 1 between trait anxiety with all CSs that possess an inherent inhibitory component, conveyed either by reliable non-reinforcement of a specific CS in a dangerous context (safe cue) or by the context itself (i.e., safe context). No correlation however was observed for a CS that possesses excitatory (threatening) properties only. These results were observed during fear learning (day 1) for US expectancy and fear ratings but not for SCRs. No such pattern was evident during fear and extinction retrieval/expression (day 2). We provide further evidence that high trait anxiety is associated with the inability to take immediate advantage of environmental safety cues (cued and contextual), which might represent a promising trans-diagnostic marker for different anxiety disorders. Consequently, the incorporation of methods to optimize inhibitory learning in current cognitive behavioral therapy (CBT) treatments might open up a promising avenue for precision medicine in anxiety disorders. We did not include patients diagnosed with anxiety disorders. Copyright © 2015. Published by Elsevier B.V.

  9. Variation in a Host-Parasitoid Interaction across Independent Populations.

    PubMed

    van Nouhuys, Saskya; Niemikapee, Suvi; Hanski, Ilkka

    2012-12-05

    Antagonistic relationships between parasitoids and their insect hosts involve multiple traits and are shaped by their ecological and evolutionary context. The parasitoid wasp Cotesia melitaearum and its host butterfly Melitaea cinxia occur in several locations around the Baltic sea, with differences in landscape structure, population sizes and the histories of the populations. We compared the virulence of the parasitoid and the susceptibility of the host from five populations in a reciprocal transplant-style experiment using the progeny of five independent host and parasitoid individuals from each population. The host populations showed significant differences in the rate of encapsulation and parasitoid development rate. The parasitoid populations differed in brood size, development rate, pupal size and adult longevity. Some trait differences depended on specific host-parasitoid combinations, but neither species performed systematically better or worse in experiments involving local versus non-local populations of the other species. Furthermore, individuals from host populations with the most recent common ancestry did not perform alike, and there was no negative effect due to a history of inbreeding in the parasitoid. The complex pattern of variation in the traits related to the vulnerability of the host and the ability of the parasitoid to exploit the host may reflect multiple functions of the traits that would hinder simple local adaptation.

  10. Gendered contexts: psychopathy and drug use in relation to sex work and exchange

    PubMed Central

    Edwards, Bethany G.; Verona, Edelyn

    2016-01-01

    Few scholars have examined psychopathology correlates of sex work. It has been suggested that sex work may reflect manifestations of impulsive-antisocial psychopathic traits (e.g., reckless disregard, delinquency) in women more than men. The current work examined relative contributions of drug dependence and distinct psychopathic features in relation to traditional forms of sex work (i.e., prostitution) in women, along with gender differences in psychopathy relationships with casual forms of sex exchange (i.e., trading sex for necessities). Study 1 included 171 community-dwelling women offenders, and Study 2 included 319 participants (42.3% women) with histories of drug use and/or violence. Participants completed the Psychopathy Checklist: Screening Version, prostitution was measured as self-report and/or public record data across studies, and sex exchange in Study 2 was assessed using a questionnaire based on prior research on sexual risk-taking. Findings across both studies demonstrated that while psychopathic traits, particularly impulsive-antisocial features, were associated with prostitution in women above the use of drugs, drug dependence did not moderate the relationship between psychopathic traits and prostitution in women. Analyses of Study 2 data revealed that impulsive-antisocial traits were associated with sex exchange at low, but not high, levels of interpersonal-affective traits across participants. As well, interpersonal-affective traits were significantly positively related to sex exchange in men and not significantly (and negatively) related in women. In sum, impulsive-antisocial traits related to prostitution among women, suggesting that women may manifest these traits within intimate contexts. Moreover, findings indicated gender differences in the manifestation of interpersonal-affective traits within sexual exchange contexts. PMID:27030996

  11. Gendered contexts: Psychopathy and drug use in relation to sex work and exchange.

    PubMed

    Edwards, Bethany G; Verona, Edelyn

    2016-05-01

    Few scholars have examined psychopathology correlates of sex work. It has been suggested that sex work may reflect manifestations of impulsive-antisocial psychopathic traits (e.g., reckless disregard, delinquency) in women more than men. The current work examined relative contributions of drug dependence and distinct psychopathic features in relation to traditional forms of sex work (i.e., prostitution) in women, along with gender differences in psychopathy relationships with casual forms of sex exchange (i.e., trading sex for necessities). Study 1 included 171 community-dwelling women offenders, and Study 2 included 319 participants (42.3% women) with histories of drug use and/or violence. Participants completed the Psychopathy Checklist: Screening Version, prostitution was measured as self-report and/or public record data across studies, and sex exchange in Study 2 was assessed using a questionnaire based on prior research on sexual risk-taking. Findings across both studies demonstrated that although psychopathic traits, particularly impulsive-antisocial features, were associated with prostitution in women above the use of drugs, drug dependence did not moderate the relationship between psychopathic traits and prostitution in women. Analyses of Study 2 data revealed that impulsive-antisocial traits were associated with sex exchange at low, but not high, levels of interpersonal-affective traits across participants. As well, interpersonal-affective traits were significantly positively related to sex exchange in men and not significantly (and negatively) related in women. In sum, impulsive-antisocial traits related to prostitution among women, suggesting that women may manifest these traits within intimate contexts. Moreover, findings indicated gender differences in the manifestation of interpersonal-affective traits within sexual exchange contexts. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Situated Willingness to Communicate in an L2: Interplay of Individual Characteristics and Context

    ERIC Educational Resources Information Center

    Yashima, Tomoko; MacIntyre, Peter D.; Ikeda, Maiko

    2018-01-01

    Recently, situated willingness to communicate (WTC) has received increasing research attention in addition to traditional quantitative studies of trait-like WTC. This article is an addition to the former but unique in two ways. First, it investigates both trait and state WTC in a classroom context and explores ways to combine the two to reach a…

  13. Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions

    Treesearch

    Xiaoqing Yu; Guihua Bai; Shuwei Liu; Na Luo; Ying Wang; Douglas S. Richmond; Paula M. Pijut; Scott A. Jackson; Jianming Yu; Yiwei Jiang

    2013-01-01

    Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits. Candidate gene association mapping of drought tolerance traits was conducted in 192 diverse...

  14. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    PubMed

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.

  15. The role of trait mindfulness in the pain experience of adolescents.

    PubMed

    Petter, Mark; Chambers, Christine T; McGrath, Patrick J; Dick, Bruce D

    2013-12-01

    Trait mindfulness appears to mitigate pain among adult clinical populations and has a unique relationship with pain catastrophizing. However, little is understood about this phenomenon among adolescents. The association between trait mindfulness and pain in both real-world and experimental contexts was examined in a community sample of adolescents. Participants were 198 adolescents who completed measures of trait mindfulness, pain catastrophizing, and pain interference, as well as an interview on day-to-day pain before undergoing an acute experimental pain task. Following the task, they provided ratings of pain intensity and state catastrophizing. Results showed that with regard to day-to-day pains, mindfulness was a significant and unique predictor of pain interference, and this relationship was partially mediated by pain catastrophizing. Mindfulness also had an indirect relationship with experimental pain intensity and tolerance. These associations were mediated by catastrophizing during the pain task. These findings highlight the association between trait mindfulness and both real-world and experimental pain and offer insight into how mindfulness may affect pain among youth. Findings are discussed in the context of current psychological models of pediatric pain and future avenues for research. This article highlights the association between trait mindfulness and pain variables among adolescents in both real-world and experimental pain settings. These findings offer further evidence of the unique relationship between trait mindfulness and pain catastrophizing in affecting pain variables across pain contexts and populations. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Facial attractiveness.

    PubMed

    Little, Anthony C

    2014-11-01

    Facial attractiveness has important social consequences. Despite a widespread belief that beauty cannot be defined, in fact, there is considerable agreement across individuals and cultures on what is found attractive. By considering that attraction and mate choice are critical components of evolutionary selection, we can better understand the importance of beauty. There are many traits that are linked to facial attractiveness in humans and each may in some way impart benefits to individuals who act on their preferences. If a trait is reliably associated with some benefit to the perceiver, then we would expect individuals in a population to find that trait attractive. Such an approach has highlighted face traits such as age, health, symmetry, and averageness, which are proposed to be associated with benefits and so associated with facial attractiveness. This view may postulate that some traits will be universally attractive; however, this does not preclude variation. Indeed, it would be surprising if there existed a template of a perfect face that was not affected by experience, environment, context, or the specific needs of an individual. Research on facial attractiveness has documented how various face traits are associated with attractiveness and various factors that impact on an individual's judgments of facial attractiveness. Overall, facial attractiveness is complex, both in the number of traits that determine attraction and in the large number of factors that can alter attraction to particular faces. A fuller understanding of facial beauty will come with an understanding of how these various factors interact with each other. WIREs Cogn Sci 2014, 5:621-634. doi: 10.1002/wcs.1316 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. © 2014 John Wiley & Sons, Ltd.

  17. Enhanced discrimination between threatening and safe contexts in high-anxious individuals

    PubMed Central

    Glotzbach-Schoon, Evelyn; Tadda, Regina; Andreatta, Marta; Tröger, Christian; Ewald, Heike; Grillon, Christian; Pauli, Paul; Mühlberger, Andreas

    2014-01-01

    Trait anxiety, a stable personality trait associated with increased fear responses to threat, is regarded as a risk factor for the development and maintenance of anxiety disorders. Although the effect of trait anxiety has been examined with regard to explicit threat cues, little is known about the effect of trait anxiety on contextual threat learning. To assess this issue, extreme groups of low and high trait anxiety underwent a contextual fear conditioning protocol using virtual reality. Two virtual office rooms served as the conditioned contexts. One virtual office room (CXT+) was paired with unpredictable electrical stimuli. In the other virtual office room, no electrical stimuli were delivered (CXT−). High-anxious participants tended to show faster acquisition of startle potentiation in the CXT+ versus the CXT− than low-anxious participants. This enhanced contextual fear learning might function as a risk factor for anxiety disorders that are characterized by sustained anxiety. PMID:23384512

  18. Understanding the individual to implement the ecosystem approach to fisheries management.

    PubMed

    Ward, Taylor D; Algera, Dirk A; Gallagher, Austin J; Hawkins, Emily; Horodysky, Andrij; Jørgensen, Christian; Killen, Shaun S; McKenzie, David J; Metcalfe, Julian D; Peck, Myron A; Vu, Maria; Cooke, Steven J

    2016-01-01

    Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management.

  19. Clinical and evoked pain, personality traits, and emotional states: can familial confounding explain the associations?

    PubMed

    Strachan, Eric; Poeschla, Brian; Dansie, Elizabeth; Succop, Annemarie; Chopko, Laura; Afari, Niloofar

    2015-01-01

    Pain is a complex phenomenon influenced by context and person-specific factors. Affective dimensions of pain involve both enduring personality traits and fleeting emotional states. We examined how personality traits and emotional states are linked with clinical and evoked pain in a twin sample. 99 female twin pairs were evaluated for clinical and evoked pain using the McGill Pain Questionnaire (MPQ) and dolorimetry, and completed the 120-item International Personality Item Pool (IPIP), the Positive and Negative Affect Scale (PANAS), and ratings of stress and mood. Using a co-twin control design we examined a) the relationship of personality traits and emotional states with clinical and evoked pain and b) whether genetics and common environment (i.e. familial factors) may account for the associations. Neuroticism was associated with the sensory component of the MPQ; this relationship was not confounded by familial factors. None of the emotional state measures was associated with the MPQ. PANAS negative affect was associated with lower evoked pressure pain threshold and tolerance; these associations were confounded by familial factors. There were no associations between IPIP traits and evoked pain. A relationship exists between neuroticism and clinical pain that is not confounded by familial factors. There is no similar relationship between negative emotional states and clinical pain. In contrast, the relationship between negative emotional states and evoked pain is strong while the relationship with enduring personality traits is weak. The relationship between negative emotional states and evoked pain appears to be non-causal and due to familial factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Understanding the individual to implement the ecosystem approach to fisheries management

    PubMed Central

    Ward, Taylor D.; Algera, Dirk A.; Gallagher, Austin J.; Hawkins, Emily; Horodysky, Andrij; Jørgensen, Christian; Killen, Shaun S.; McKenzie, David J.; Metcalfe, Julian D.; Peck, Myron A.; Vu, Maria; Cooke, Steven J.

    2016-01-01

    Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management. PMID:27293757

  1. A Model of Situational Willingness to Communicate (WTC) in the Study Abroad Context

    ERIC Educational Resources Information Center

    Robson, Graham

    2015-01-01

    The use of structural modeling has helped to explain constructs leading to Willingness to Communicate (WTC) in L1 and L2 contexts. When WTC was conceptualized as a trait in the L1, more personality variables were used in models. When WTC moved into the realm of second language, researchers still used trait measurements to explain the construct,…

  2. Asynchrony of senescence among phenotypic traits in a wild mammal population

    PubMed Central

    Hayward, Adam D.; Moorad, Jacob; Regan, Charlotte E.; Berenos, Camillo; Pilkington, Jill G.; Pemberton, Josephine M.; Nussey, Daniel H.

    2015-01-01

    The degree to which changes in lifespan are coupled to changes in senescence in different physiological systems and phenotypic traits is a central question in biogerontology. It is underpinned by deeper biological questions about whether or not senescence is a synchronised process, or whether levels of synchrony depend on species or environmental context. Understanding how natural selection shapes patterns of synchrony in senescence across physiological systems and phenotypic traits demands the longitudinal study of many phenotypes under natural conditions. Here, we examine the patterns of age-related variation in late adulthood in a wild population of Soay sheep (Ovis aries) that have been the subject of individual-based monitoring for thirty years. We examined twenty different phenotypic traits in both males and females, encompassing vital rates (survival and fecundity), maternal reproductive performance (offspring birth weight, birth date and survival), male rutting behaviour, home range measures, parasite burdens, and body mass. We initially quantified age-related variation in each trait having controlled for annual variation in the environment, among-individual variation and selective disappearance effects. We then standardised our age-specific trait means and tested whether age trajectories could be meaningfully grouped according to sex or the type of trait. Whilst most traits showed age-related declines in later life, we found striking levels of asynchrony both within and between the sexes. Of particular note, female fecundity and reproductive performance declined with age, but male annual reproductive success did not. We also discovered that whilst home range size and quality decline with age in females, home range size increases with age in males. Our findings highlight the complexity of phenotypic ageing under natural conditions and, along with emerging data from other wild populations and laboratory models, suggest that the long-standing hypothesis within evolutionary biology that fitness-related traits should senesce in a synchronous manner is seriously flawed. PMID:26277618

  3. Use of Multivariate Linkage Analysis for Dissection of a Complex Cognitive Trait

    PubMed Central

    Marlow, Angela J.; Fisher, Simon E.; Francks, Clyde; MacPhie, I. Laurence; Cherny, Stacey S.; Richardson, Alex J.; Talcott, Joel B.; Stein, John F.; Monaco, Anthony P.; Cardon, Lon R.

    2003-01-01

    Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. PMID:12587094

  4. Relationships between structural complexity, coral traits, and reef fish assemblages

    NASA Astrophysics Data System (ADS)

    Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.

    2017-06-01

    With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.

  5. Animal models and conserved processes

    PubMed Central

    2012-01-01

    Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is insufficient for inter-species extrapolation when the trait or response being studied is located at higher levels of organization, is in a different module, or is influenced by other modules. However, when the examination of the conserved process occurs at the same level of organization or in the same module, and hence is subject to study solely by reductionism, then extrapolation is possible. PMID:22963674

  6. Using genomics to characterize evolutionary potential for conservation of wild populations

    PubMed Central

    Harrisson, Katherine A; Pavlova, Alexandra; Telonis-Scott, Marina; Sunnucks, Paul

    2014-01-01

    Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework. PMID:25553064

  7. Design of microarray experiments for genetical genomics studies.

    PubMed

    Bueno Filho, Júlio S S; Gilmour, Steven G; Rosa, Guilherme J M

    2006-10-01

    Microarray experiments have been used recently in genetical genomics studies, as an additional tool to understand the genetic mechanisms governing variation in complex traits, such as for estimating heritabilities of mRNA transcript abundances, for mapping expression quantitative trait loci, and for inferring regulatory networks controlling gene expression. Several articles on the design of microarray experiments discuss situations in which treatment effects are assumed fixed and without any structure. In the case of two-color microarray platforms, several authors have studied reference and circular designs. Here, we discuss the optimal design of microarray experiments whose goals refer to specific genetic questions. Some examples are used to illustrate the choice of a design for comparing fixed, structured treatments, such as genotypic groups. Experiments targeting single genes or chromosomic regions (such as with transgene research) or multiple epistatic loci (such as within a selective phenotyping context) are discussed. In addition, microarray experiments in which treatments refer to families or to subjects (within family structures or complex pedigrees) are presented. In these cases treatments are more appropriately considered to be random effects, with specific covariance structures, in which the genetic goals relate to the estimation of genetic variances and the heritability of transcriptional abundances.

  8. A Semiparametric Approach for Composite Functional Mapping of Dynamic Quantitative Traits

    PubMed Central

    Yang, Runqing; Gao, Huijiang; Wang, Xin; Zhang, Ji; Zeng, Zhao-Bang; Wu, Rongling

    2007-01-01

    Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age. PMID:17947431

  9. Adaptation to seasonality and the winter freeze

    PubMed Central

    Preston, Jill C.; Sandve, Simen R.

    2013-01-01

    Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve. PMID:23761798

  10. The role of ecology in speciation by sexual selection: a systematic empirical review.

    PubMed

    Scordato, Elizabeth S C; Symes, Laurel B; Mendelson, Tamra C; Safran, Rebecca J

    2014-01-01

    Theoretical and empirical research indicates that sexual selection interacts with the ecological context in which mate choice occurs, suggesting that sexual and natural selection act together during the evolution of premating reproductive isolation. However, the relative importance of natural and sexual selection to speciation remains poorly understood. Here, we applied a recent conceptual framework for examining interactions between mate choice divergence and ecological context to a review of the empirical literature on speciation by sexual selection. This framework defines two types of interactions between mate choice and ecology: internal interactions, wherein natural and sexual selection jointly influence divergence in sexual signal traits and preferences, and external interactions, wherein sexual selection alone acts on traits and preferences but ecological context shapes the transmission efficacy of sexual signals. The objectives of this synthesis were 3-fold: to summarize the traits, ecological factors, taxa, and geographic contexts involved in studies of mate choice divergence; to analyze patterns of association between these variables; and to identify the most common types of interactions between mate choice and ecological factors. Our analysis revealed that certain traits are consistently associated with certain ecological factors. Moreover, among studies that examined a divergent sexually selected trait and an ecological factor, internal interactions were more common than external interactions. Trait-preference associations may thus frequently be subject to both sexual and natural selection in cases of divergent mate choice. Our results highlight the importance of interactions between sexual selection and ecology in mate choice divergence and suggest areas for future research. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Global genetic differentiation of complex traits shaped by natural selection in humans.

    PubMed

    Guo, Jing; Wu, Yang; Zhu, Zhihong; Zheng, Zhili; Trzaskowski, Maciej; Zeng, Jian; Robinson, Matthew R; Visscher, Peter M; Yang, Jian

    2018-05-14

    There are mean differences in complex traits among global human populations. We hypothesize that part of the phenotypic differentiation is due to natural selection. To address this hypothesis, we assess the differentiation in allele frequencies of trait-associated SNPs among African, Eastern Asian, and European populations for ten complex traits using data of large sample size (up to ~405,000). We show that SNPs associated with height ([Formula: see text]), waist-to-hip ratio ([Formula: see text]), and schizophrenia ([Formula: see text]) are significantly more differentiated among populations than matched "control" SNPs, suggesting that these trait-associated SNPs have undergone natural selection. We further find that SNPs associated with height ([Formula: see text]) and schizophrenia ([Formula: see text]) show significantly higher variance in linkage disequilibrium (LD) scores across populations than control SNPs. Our results support the hypothesis that natural selection has shaped the genetic differentiation of complex traits, such as height and schizophrenia, among worldwide populations.

  12. Clarifying Baker's Law

    PubMed Central

    Cheptou, P.-O.

    2012-01-01

    Background Baker's Law states that colonization by self-compatible organisms is more likely to be successful than colonization by self-incompatible organisms because of the ability for self-compatible organisms to produce offspring without pollination agents. This simple model has proved very successful in plant ecology and has been applied to various contexts, including colonizing or ruderal species, islands colonizers, invasive species or mating system variation across distribution ranges. Moreover, it is one of the only models in population biology linking two traits of major importance in ecology, namely dispersal and mating system. Although Baker's Law has stimulated a large number of empirical studies reporting the association of self-fertilization and colonizing ability in various contexts, the data have not established a general pattern for the association of traits. Scope In this paper, a critical position is adopted to discuss and clarify Baker's Law. From the literature referring to Baker's Law, an analysis made regarding how mating success is considered in such studies and discrepancies with population genetics theory of mating systems are highlighted. The data reporting the association of self-fertilization and colonizing ability are also briefly reviewed and the potential bias in interpretation is discussed. Lastly, a recent theoretical model analysing the link between colonizing ability and self-fertilization is considered. Conclusions Evolutionary predictions are actually more complex than Baker's intuitive arguments. It appears that Baker's Law encompasses a variety of ecological scenarios, which cannot be considered a priori as equivalent. Questioning what has been considered as self-evident for more than 50 years seems a reasonable objective to analyse in-depth dispersal and mating system traits. PMID:21685434

  13. Directed evolution and synthetic biology applications to microbial systems.

    PubMed

    Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T

    2016-06-01

    Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Variation in pre- and post-copulatory sexual selection on male genital size in two species of lygaeid bug.

    PubMed

    Dougherty, Liam R; Shuker, David M

    Sexual selection has been shown to be the driving force behind the evolution of the sometimes extreme and elaborate genitalia of many species. Sexual selection may arise before and/or after mating, or vary according to other factors such as the social environment. However, bouts of selection are typically considered in isolation. We measured the strength and pattern of selection acting on the length of the male intromittent organ (or processus) in two closely related species of lygaeid seed bug: Lygaeus equestris and Lygaeus simulans . In both species, we measured both pre- and post-copulatory selection. For L. equestris , we also varied the experimental choice design used in mating trials. We found contrasting pre- and post-copulatory selection on processus length in L. equestris . Furthermore, significant pre-copulatory selection was only seen in mating trials in which two males were present. This selection likely arises indirectly due to selection on a correlated trait, as the processus does not interact with the female prior to copulation. In contrast, we were unable to detect significant pre- or post-copulatory selection on processus length in L. simulans . However, a formal meta-analysis of previous estimates of post-copulatory selection on processus length in L. simulans suggests that there is significant stabilising selection across studies, but the strength of selection varies between experiments. Our results emphasise that the strength and direction of sexual selection on genital traits may be multifaceted and can vary across studies, social contexts and different stages of reproduction. Animal genitalia vary greatly in size and complexity across species, and selection acting on genital size and shape can be complex. In this study, we show that the length of the penis in two species of seed bug is subject to complex patterns of selection, varying depending on the social context and whether selection is measured before or after mating. In one of the species, we show unexpectedly that penis length is correlated with male mating success, despite the fact that the penis does not interact with the female prior to mating. Our results highlight the fact that genitalia may be subject to both direct and indirect selection at different stages of mating and that to fully understand the evolution of such traits we should combine estimates of selection arising from these multiple episodes.

  15. Willingness to Communicate in English as a Second Language as a Stable Trait or Context-Influenced Variable: Case Studies of Iranian Migrants to New Zealand

    ERIC Educational Resources Information Center

    Cameron, Denise

    2013-01-01

    Whether Willingness to Communicate (WTC) is a permanent trait or is modified by situational context has previously been investigated in various studies (e.g. Cao & Philp, 2006; Kang, 2005; MacIntyre & Legatto, 2011). However, most research into WTC has been quantitative or conducted in the English as a Foreign Language (EFL) or Study…

  16. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Trait and state anxiety across academic evaluative contexts: development and validation of the MTEA-12 and MSEA-12 scales.

    PubMed

    Sotardi, Valerie A

    2018-05-01

    Educational measures of anxiety focus heavily on students' experiences with tests yet overlook other assessment contexts. In this research, two brief multiscale questionnaires were developed and validated to measure trait evaluation anxiety (MTEA-12) and state evaluation anxiety (MSEA-12) for use in various assessment contexts in non-clinical, educational settings. The research included a cross-sectional analysis of self-report data using authentic assessment settings in which evaluation anxiety was measured. Instruments were tested using a validation sample of 241 first-year university students in New Zealand. Scale development included component structures for state and trait scales based on existing theoretical frameworks. Analyses using confirmatory factor analysis and descriptive statistics indicate that the scales are reliable and structurally valid. Multivariate general linear modeling using subscales from the MTEA-12, MSEA-12, and student grades suggest adequate criterion-related validity. Initial predictive validity in which one relevant MTEA-12 factor explained between 21% and 54% of the variance in three MSEA-12 factors. Results document MTEA-12 and MSEA-12 as reliable measures of trait and state dimensions of evaluation anxiety for test and writing contexts. Initial estimates suggest the scales as having promising validity, and recommendations for further validation are outlined.

  18. Sexual Conflict and Gender Gap Effects: Associations between Social Context and Sex on Rated Attractiveness and Economic Status.

    PubMed

    Gouda-Vossos, Amany; Dixson, Barnaby J; Brooks, Robert C

    2016-01-01

    Human mate choice research often concerns sex differences in the importance of traits such as physical attractiveness and social status. A growing number of studies indicate that cues to social context, including other people who appear in stimulus photographs, can alter that individual's attractiveness. Fewer studies, however, consider judgements of traits other than physical attractiveness, such as wealth. Here we manipulate the presence/absence of other people in photographs of target models, and test the effects on judgments of both attractiveness and earnings (a proxy for status). Participants (N = 2044) rated either male or female models for either physical attractiveness or social/economic status when presented alone, with same sex others or with opposite sex others. We collectively refer to this manipulation as 'social context'. Male and female models received similar responses for physical attractiveness, but social context affected ratings of status differently for women and men. Males presented alongside other men received the highest status ratings while females presented alone were given the highest status ratings. Further, the status of females presented alongside a male was constrained by the rated status of that male. Our results suggests that high status may not directly lead to high attractiveness in men, but that status is more readily attributed to men than to women. This divide in status between the sexes is very clear when men and women are presented together, possibly reflecting one underlying mechanism of the modern day gender gap and sexist attitudes to women's economic participation. This adds complexity to our understanding of the relationship between attractiveness, status, and sex in the light of parental investment theory, sexual conflict and economic theory.

  19. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We havemore » applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. Furthermore, a more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.« less

  20. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing

    DOE PAGES

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; ...

    2017-01-17

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We havemore » applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. Furthermore, a more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.« less

  1. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing.

    PubMed

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; Fierro, Ana C; Mansfield, Shawn D; Davis, Mark F; Gjersing, Erica; Tuskan, Gerald A; Van Montagu, Marc; Van de Peer, Yves; Marchal, Kathleen; Myburg, Alexander A

    2017-01-31

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We have applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. A more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.

  2. Geography, assortative mating, and the effects of sexual selection on speciation with gene flow.

    PubMed

    Servedio, Maria R

    2016-01-01

    Theoretical and empirical research on the evolution of reproductive isolation have both indicated that the effects of sexual selection on speciation with gene flow are quite complex. As part of this special issue on the contributions of women to basic and applied evolutionary biology, I discuss my work on this question in the context of a broader assessment of the patterns of sexual selection that lead to, versus inhibit, the speciation process, as derived from theoretical research. In particular, I focus on how two factors, the geographic context of speciation and the mechanism leading to assortative mating, interact to alter the effect that sexual selection through mate choice has on speciation. I concentrate on two geographic contexts: sympatry and secondary contact between two geographically separated populations that are exchanging migrants and two mechanisms of assortative mating: phenotype matching and separate preferences and traits. I show that both of these factors must be considered for the effects of sexual selection on speciation to be inferred.

  3. Brain imaging in the context of food perception and eating.

    PubMed

    Hollmann, Maurice; Pleger, Burkhard; Villringer, Arno; Horstmann, Annette

    2013-02-01

    Eating behavior depends heavily on brain function. In recent years, brain imaging has proved to be a powerful tool to elucidate brain function and brain structure in the context of eating. In this review, we summarize recent findings in the fast growing body of literature in the field and provide an overview of technical aspects as well as the basic brain mechanisms identified with imaging. Furthermore, we highlight findings linking neural processing of eating-related stimuli with obesity. The consumption of food is based on a complex interplay between homeostatic and hedonic mechanisms. Several hormones influence brain activity to regulate food intake and interact with the brain's reward circuitry, which is partly mediated by dopamine signaling. Additionally, it was shown that food stimuli trigger cognitive control mechanisms that incorporate internal goals into food choice. The brain mechanisms observed in this context are strongly influenced by genetic factors, sex and personality traits. Overall, a complex picture arises from brain-imaging findings, because a multitude of factors influence human food choice. Although several key mechanisms have been identified, there is no comprehensive model that is able to explain the behavioral observations to date. Especially a careful characterization of patients according to genotypes and phenotypes could help to better understand the current and future findings in neuroimaging studies.

  4. Dissecting the genetics of complex traits using summary association statistics.

    PubMed

    Pasaniuc, Bogdan; Price, Alkes L

    2017-02-01

    During the past decade, genome-wide association studies (GWAS) have been used to successfully identify tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyse summary association statistics. Here, we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases.

  5. Dissecting the genetics of complex traits using summary association statistics

    PubMed Central

    Pasaniuc, Bogdan; Price, Alkes L.

    2017-01-01

    During the past decade, genome-wide association studies (GWAS) have successfully identified tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyze summary association statistics. Here we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases. PMID:27840428

  6. Facial emotion recognition deficits: The new face of schizophrenia

    PubMed Central

    Behere, Rishikesh V.

    2015-01-01

    Schizophrenia has been classically described to have positive, negative, and cognitive symptom dimension. Emerging evidence strongly supports a fourth dimension of social cognitive symptoms with facial emotion recognition deficits (FERD) representing a new face in our understanding of this complex disorder. FERD have been described to be one among the important deficits in schizophrenia and could be trait markers for the disorder. FERD are associated with socio-occupational dysfunction and hence are of important clinical relevance. This review discusses FERD in schizophrenia, challenges in its assessment in our cultural context, its implications in understanding neurobiological mechanisms and clinical applications. PMID:26600574

  7. Leaf traits within communities: context may affect the mapping of traits to function.

    PubMed

    Funk, Jennifer L; Cornwell, William K

    2013-09-01

    The leaf economics spectrum (LES) has revolutionized the way many ecologists think about quantifying plant ecological trade-offs. In particular, the LES has connected a clear functional trade-off (long-lived leaves with slow carbon capture vs. short-lived leaves with fast carbon capture) to a handful of easily measured leaf traits. Building on this work, community ecologists are now able to quickly assess species carbon-capture strategies, which may have implications for community-level patterns such as competition or succession. However, there are a number of steps in this logic that require careful examination, and a potential danger arises when interpreting leaf-trait variation among species within communities where trait relationships are weak. Using data from 22 diverse communities, we show that relationships among three common functional traits (photosynthetic rate, leaf nitrogen concentration per mass, leaf mass per area) are weak in communities with low variation in leaf life span (LLS), especially communities dominated by herbaceous or deciduous woody species. However, globally there are few LLS data sets for communities dominated by herbaceous or deciduous species, and more data are needed to confirm this pattern. The context-dependent nature of trait relationships at the community level suggests that leaf-trait variation within communities, especially those dominated by herbaceous and deciduous woody species, should be interpreted with caution.

  8. On teaching styles of water educators and the impact of didactic training

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Koster, J. H.; de Jong, E.; Uhlenbrook, S.

    2012-10-01

    Solving today's complex hydrological problems requires originality, creative thinking and trans-disciplinary approaches. Hydrological education that was traditionally teacher centred, where the students look up to the teacher for expertise and information, should change to better prepare hydrologists to develop new knowledge and apply it in new contexts. An important first step towards this goal is to change the concept of education in the educators' minds. The results of an investigation to find out whether didactic training influences the beliefs of hydrology educators about their teaching styles is presented. Faculty of UNESCO-IHE has been offered a didactic certification program named university teaching qualification (UTQ). The hypothesis that UTQ training will significantly alter the teaching style of faculty at UNESCO-IHE from expert/formal authority traits towards facilitator/delegator traits was tested. A first survey was conducted among the entire teaching staff (total 101, response rate 58%). The results indicated that there are significantly higher traits of facilitator and delegator teaching styles among UTQ graduates compared to faculty who were not significantly trained in didactics. The second survey which was conducted among UTQ graduates (total 20, response rate 70%), enquiring after their teaching styles before and after UTQ, corroborated these findings.

  9. On teaching styles of water educators and the impact of didactic training

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Koster, J. H.; de Jong, E.; Uhlenbrook, S.

    2012-03-01

    Solving today's complex hydrological problems requires originality, creative thinking and trans-disciplinary approaches. Hydrological education that was traditionally teacher centred, where the students look up to the teacher for expertise and information, should change to better prepare hydrologists to develop new knowledge and apply it in new contexts. An important first step towards this goal is to change the concept of education in the educators' minds. The results of an investigation to find out whether didactic training influences the beliefs of hydrology educators about their teaching styles is presented. Faculty of UNESCO-IHE has been offered a didactic certification program named University Teaching Qualification (UTQ). The hypothesis that UTQ training will significantly alter the teaching style of faculty at UNESCO-IHE from expert/formal authority traits towards facilitator/delegator traits was tested. A first survey was conducted among the entire teaching staff (total 101, response rate 58%). The results indicated that there are significantly higher traits of facilitator and delegator teaching styles among UTQ graduates compared to faculty who were not significantly trained in didactics. The second survey which was conducted among UTQ graduates (total 20, response rate 70%), enquiring after their teaching styles before and after UTQ, corroborated these findings.

  10. Scaling up functional traits for ecosystem services with remote sensing: concepts and methods.

    PubMed

    Abelleira Martínez, Oscar J; Fremier, Alexander K; Günter, Sven; Ramos Bendaña, Zayra; Vierling, Lee; Galbraith, Sara M; Bosque-Pérez, Nilsa A; Ordoñez, Jenny C

    2016-07-01

    Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between functional trait and remote sensing methods for ecosystem service management.

  11. Lumpy species coexistence arises robustly in fluctuating resource environments.

    PubMed

    Sakavara, Athanasia; Tsirtsis, George; Roelke, Daniel L; Mancy, Rebecca; Spatharis, Sofie

    2018-01-23

    The effect of life-history traits on resource competition outcomes is well understood in the context of a constant resource supply. However, almost all natural systems are subject to fluctuations of resources driven by cyclical processes such as seasonality and tidal hydrology. To understand community composition, it is therefore imperative to study the impact of resource fluctuations on interspecies competition. We adapted a well-established resource-competition model to show that fluctuations in inflow concentrations of two limiting resources lead to the survival of species in clumps along the trait axis, consistent with observations of "lumpy coexistence" [Scheffer M, van Nes EH (2006) Proc Natl Acad Sci USA 103:6230-6235]. A complex dynamic pattern in the available ambient resources arose very early in the self-organization process and dictated the locations of clumps along the trait axis by creating niches that promoted the growth of species with specific traits. This dynamic pattern emerged as the combined result of fluctuations in the inflow of resources and their consumption by the most competitive species that accumulated the bulk of biomass early in assemblage organization. Clumps emerged robustly across a range of periodicities, phase differences, and amplitudes. Given the ubiquity in the real world of asynchronous fluctuations of limiting resources, our findings imply that assemblage organization in clumps should be a common feature in nature. Copyright © 2018 the Author(s). Published by PNAS.

  12. Mapping complex traits as a dynamic system

    PubMed Central

    Sun, Lidan; Wu, Rongling

    2017-01-01

    Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a “system” in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states. PMID:25772476

  13. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation

    Treesearch

    William R. Glenny; Justin B. Runyon; Laura A. Burkle

    2018-01-01

    Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were...

  14. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    PubMed

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms and genes that lead to complex phenotypes, like meat quality, and the nutritional and healthfulness value of beef. Improvements in genome annotation and knowledge of gene function will contribute to more comprehensive analyses that will advance our ability to dissect the complex architecture of complex traits.

  15. Exogenous testosterone in women enhances and inhibits competitive decision-making depending on victory-defeat experience and trait dominance.

    PubMed

    Mehta, Pranjal H; van Son, Veerle; Welker, Keith M; Prasad, Smrithi; Sanfey, Alan G; Smidts, Ale; Roelofs, Karin

    2015-10-01

    The present experiment tested the causal impact of testosterone on human competitive decision-making. According to prevailing theories about testosterone's role in social behavior, testosterone should directly boost competitive decisions. But recent correlational evidence suggests that testosterone's behavioral effects may depend on specific aspects of the context and person relevant to social status (win-lose context and trait dominance). We tested the causal influence of testosterone on competitive decisions by combining hormone administration with measures of trait dominance and a newly developed social competition task in which the victory-defeat context was experimentally manipulated, in a sample of 54 female participants. Consistent with the hypothesis that testosterone has context- and person-dependent effects on competitive behavior, testosterone increased competitive decisions after victory only among high-dominant individuals but testosterone decreased competitive decisions after defeat across all participants. These results suggest that testosterone flexibly modulates competitive decision-making depending on prior social experience and dominance motivation in the service of enhancing social status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The nuclear question: rethinking species importance in multi-species animal groups.

    PubMed

    Srinivasan, Umesh; Raza, Rashid Hasnain; Quader, Suhel

    2010-09-01

    1. Animals group for various benefits, and may form either simple single-species groups, or more complex multi-species associations. Multi-species groups are thought to provide anti-predator and foraging benefits to participant individuals. 2. Despite detailed studies on multi-species animal groups, the importance of species in group initiation and maintenance is still rated qualitatively as 'nuclear' (maintaining groups) or 'attendant' (species following nuclear species) based on species-specific traits. This overly simplifies and limits understanding of inherently complex associations, and is biologically unrealistic, because species roles in multi-species groups are: (i) likely to be context-specific and not simply a fixed species property, and (ii) much more variable than this dichotomy indicates. 3. We propose a new view of species importance (measured as number of inter-species associations), along a continuum from 'most nuclear' to 'least nuclear'. Using mixed-species bird flocks from a tropical rainforest in India as an example, we derive inter-species association measures from randomizations on bird species abundance data (which takes into account species 'availability') and data on 86 mixed-species flocks from two different flock types. Our results show that the number and average strength of inter-species associations covary positively, and we argue that species with many, strong associations are the most nuclear. 4. From our data, group size and foraging method are ecological and behavioural traits of species that best explain nuclearity in mixed-species bird flocks. Parallels have been observed in multi-species fish shoals, in which group size and foraging method, as well as diet, have been shown to correlate with nuclearity. Further, the context in which multi-species groups occur, in conjunction with species-specific traits, influences the role played by a species in a multi-species group, and this highlights the importance of extrinsic factors in shaping species importance. 5. Our view of nuclearity provides predictive power in examining species roles in a variety of situations (e.g. predicting leadership in differently composed communities), and can be applied to examine a broad range of ecological and evolutionary questions pertinent to multi-species groups in general.

  17. A multifactorial analysis of obesity as CVD risk factor: use of neural network based methods in a nutrigenetics context.

    PubMed

    Valavanis, Ioannis K; Mougiakakou, Stavroula G; Grimaldi, Keith A; Nikita, Konstantina S

    2010-09-08

    Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm. PDM-ANN and GA-ANN were comparatively assessed in terms of their ability to identify the most important factors among the initial 63 variables describing genetic variations, nutrition and gender, able to classify a subject into one of the BMI related classes: normal and overweight. The methods were designed and evaluated using appropriate training and testing sets provided by 3-fold Cross Validation (3-CV) resampling. Classification accuracy, sensitivity, specificity and area under receiver operating characteristics curve were utilized to evaluate the resulted predictive ANN models. The most parsimonious set of factors was obtained by the GA-ANN method and included gender, six genetic variations and 18 nutrition-related variables. The corresponding predictive model was characterized by a mean accuracy equal of 61.46% in the 3-CV testing sets. The ANN based methods revealed factors that interactively contribute to obesity trait and provided predictive models with a promising generalization ability. In general, results showed that ANNs and their hybrids can provide useful tools for the study of complex traits in the context of nutrigenetics.

  18. Structured feedback on students' concept maps: the proverbial path to learning?

    PubMed

    Joseph, Conran; Conradsson, David; Nilsson Wikmar, Lena; Rowe, Michael

    2017-05-25

    Good conceptual knowledge is an essential requirement for health professions students, in that they are required to apply concepts learned in the classroom to a variety of different contexts. However, the use of traditional methods of assessment limits the educator's ability to correct students' conceptual knowledge prior to altering the educational context. Concept mapping (CM) is an educational tool for evaluating conceptual knowledge, but little is known about its use in facilitating the development of richer knowledge frameworks. In addition, structured feedback has the potential to develop good conceptual knowledge. The purpose of this study was to use Kinchin's criteria to assess the impact of structured feedback on the graphical complexity of CM's by observing the development of richer knowledge frameworks. Fifty-eight physiotherapy students created CM's targeting the integration of two knowledge domains within a case-based teaching paradigm. Each student received one round of structured feedback that addressed correction, reinforcement, forensic diagnosis, benchmarking, and longitudinal development on their CM's prior to the final submission. The concept maps were categorized according to Kinchin's criteria as either Spoke, Chain or Net representations, and then evaluated against defined traits of meaningful learning. The inter-rater reliability of categorizing CM's was good. Pre-feedback CM's were predominantly Chain structures (57%), with Net structures appearing least often. There was a significant reduction of the basic Spoke- structured CMs (P = 0.002) and a significant increase of Net-structured maps (P < 0.001) at the final evaluation (post-feedback). Changes in structural complexity of CMs appeared to be indicative of broader knowledge frameworks as assessed against the meaningful learning traits. Feedback on CM's seemed to have contributed towards improving conceptual knowledge and correcting naive conceptions of related knowledge. Educators in medical education could therefore consider using CM's to target individual student development.

  19. When music “flows”. State and trait in musical performance, composition and listening: a systematic review

    PubMed Central

    Chirico, Alice; Serino, Silvia; Cipresso, Pietro; Gaggioli, Andrea; Riva, Giuseppe

    2015-01-01

    It is not unusual to experience a sense of total absorption, concentration, action-awareness, distortion of time and intrinsic enjoyment during an activity that involves music. Indeed, it is noted that there is a special relationship between these two aspects (i.e., music and flow experience). In order to deeply explore flow in the musical domain, it is crucial to consider the complexity of the flow experience—both as a “state” and as a “trait.” Secondly, since music is a multifaceted domain, it is necessary to concentrate on specific music settings, such as (i) musical composition; (ii) listening; and (iii) musical performance. To address these issues, the current review aims to outline flow experience as a “trait” and as a “state” in the three above-mentioned musical domains. Clear and useful guidelines to distinguish between flow as a “state” and as a “trait” are provided by literature concerning flow assessment. For this purpose, three aspects of the selected studies are discussed and analyzed: (i) the characteristics of the flow assessments used; (ii) the experimental design; (iii) the results; and (iv) the interrelations between the three domains. Results showed that the dispositional approach is predominant in the above-mentioned settings, mainly regarding music performance. Several aspects concerning musical contexts still need to be deeply analyzed. Future challenges could include the role of a group level of analysis, overcoming a frequency approach toward dispositional flow, and integrating both state and dispositional flow perspectives in order to deepen comprehension of how flow takes place in musical contexts. Finally, to explain the complex relationship between these two phenomena, we suggest that music and flow could be seen as an emergent embodied system. PMID:26175709

  20. A simple model clarifies the complicated relationships of complex networks

    PubMed Central

    Zheng, Bojin; Wu, Hongrun; Kuang, Li; Qin, Jun; Du, Wenhua; Wang, Jianmin; Li, Deyi

    2014-01-01

    Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of models were proposed to characterize these traits for understanding the networks. Because different models used very different mechanisms, it is widely believed that these traits origin from different causes. However, we find that a simple model based on optimisation can produce many traits, including scale-free, small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks. Moreover, by revising the proposed model, the community-structure networks are generated. By this model and the revised versions, the complicated relationships of complex networks are illustrated. The model brings a new universal perspective to the understanding of complex networks and provide a universal method to model complex networks from the viewpoint of optimisation. PMID:25160506

  1. Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits.

    PubMed

    Eckert, Andrew J; Bower, Andrew D; Wegrzyn, Jill L; Pande, Barnaly; Jermstad, Kathleen D; Krutovsky, Konstantin V; St Clair, J Bradley; Neale, David B

    2009-08-01

    Adaptation to cold is one of the greatest challenges to forest trees. This process is highly synchronized with environmental cues relating to photoperiod and temperature. Here, we use a candidate gene-based approach to search for genetic associations between 384 single-nucleotide polymorphism (SNP) markers from 117 candidate genes and 21 cold-hardiness related traits. A general linear model approach, including population structure estimates as covariates, was implemented for each marker-trait pair. We discovered 30 highly significant genetic associations [false discovery rate (FDR) Q < 0.10] across 12 candidate genes and 10 of the 21 traits. We also detected a set of 7 markers that had elevated levels of differentiation between sampling sites situated across the Cascade crest in northeastern Washington. Marker effects were small (r(2) < 0.05) and within the range of those published previously for forest trees. The derived SNP allele, as measured by a comparison to a recently diverged sister species, typically affected the phenotype in a way consistent with cold hardiness. The majority of markers were characterized as having largely nonadditive modes of gene action, especially underdominance in the case of cold-tolerance related phenotypes. We place these results in the context of trade-offs between the abilities to grow longer and to avoid fall cold damage, as well as putative epigenetic effects. These associations provide insight into the genetic components of complex traits in coastal Douglas fir, as well as highlight the need for landscape genetic approaches to the detection of adaptive genetic diversity.

  2. The Allusion of the Gene: Misunderstandings of the Concepts Heredity and Gene

    NASA Astrophysics Data System (ADS)

    Falk, Raphael

    2014-02-01

    Life sciences became Biology, a formal scientific discipline, at the turn of the nineteenth century, when it adopted the methods of reductive physics and chemistry. Mendel's hypothesis of inheritance of discrete factors further introduced a quantitative reductionist dimension into biology. In 1910 Johannsen differentiated between the phenotype, which defines traits, and their genotype, the hereditary essence of such traits and their entities—the genes. The efforts to characterize these entities culminated in 1953, in Watson-Crick's physico-chemical double helix model of DNA, the hereditary matter. However, the more molecular biology advanced the less real were its entities: Genes became generic units of heredity. The increasing role of science in society, and the mutual interdependence of the two on each other augmented the urge of the public at large to find in science icons of authority; the generic nature of the gene concept allowed scientists to offer it as the bait, even though advances in research made it clear that a distinction must be maintained between advances in reductive methodologies and the progress of systems' conceptions. Genes out of context are meaningless. There are no "genes for" a trait: even if a specific change in a site on the DNA sequence may end in a conspicuous change in a trait, it must be realized that many sites in the DNA, in the cell, and in the organism as a complex integrated system in its environment, determine or rather, condition traits. The role of science is asking questions by putting up hypotheses and suggesting methods of testing them rather than in providing definite answers.

  3. Personality traits among burnt out and non-burnt out health-care personnel at the same workplaces: a pilot study.

    PubMed

    Gustafsson, Gabriella; Persson, Birgitta; Eriksson, Sture; Norberg, Astrid; Strandberg, Gunilla

    2009-10-01

    Stress-related illnesses, such as burnout, have increased over the last decade, but not everyone at the same workplace develops burnout, suggesting that individual factors may contribute to this phenomenon. The aim of this study was to describe patterns of personality traits among two groups of health-care personnel from the same workplaces, one group on sick leave due to medically-assessed burnout, and one group with no indication of burnout, respectively. Fourteen psychiatric- (n = 7) and elderly (n = 7)-care units, located in one specific area in a municipality in northern Sweden, participated in this questionnaire-based study. The participants (n = 40), on sick leave due to medically-assessed burnout (n = 20), and those with no indication of burnout (n = 20), respectively, completed Cattell's 16 Personality Factors Questionnaire between February and December 2004. Conventional statistical methods and partial least square regression were used to analyze data. The results showed that the burnout group had lower scores regarding emotional stability and higher scores regarding anxiety than the non-burnout group, but the results also showed a wide variation of personality traits within groups. The most important indicators for belonging to the burnout group were 'openness to changes' and 'anxiety', and for belonging to the non-burnout group, 'emotional stability', 'liveliness', 'privateness' (i.e. forthright or discreet), and 'tension'. The result indicates complex interactions between personality traits and the context in which the individual lives. It seems to be important to increase our awareness of when personality traits may constitute opportunities versus risks in dealing with one's existing circumstances.

  4. Integrating genome-wide association study summaries and element-gene interaction datasets identified multiple associations between elements and complex diseases.

    PubMed

    He, Awen; Wang, Wenyu; Prakash, N Tejo; Tinkov, Alexey A; Skalny, Anatoly V; Wen, Yan; Hao, Jingcan; Guo, Xiong; Zhang, Feng

    2018-03-01

    Chemical elements are closely related to human health. Extensive genomic profile data of complex diseases offer us a good opportunity to systemically investigate the relationships between elements and complex diseases/traits. In this study, we applied gene set enrichment analysis (GSEA) approach to detect the associations between elements and complex diseases/traits though integrating element-gene interaction datasets and genome-wide association study (GWAS) data of complex diseases/traits. To illustrate the performance of GSEA, the element-gene interaction datasets of 24 elements were extracted from the comparative toxicogenomics database (CTD). GWAS summary datasets of 24 complex diseases or traits were downloaded from the dbGaP or GEFOS websites. We observed significant associations between 7 elements and 13 complex diseases or traits (all false discovery rate (FDR) < 0.05), including reported relationships such as aluminum vs. Alzheimer's disease (FDR = 0.042), calcium vs. bone mineral density (FDR = 0.031), magnesium vs. systemic lupus erythematosus (FDR = 0.012) as well as novel associations, such as nickel vs. hypertriglyceridemia (FDR = 0.002) and bipolar disorder (FDR = 0.027). Our study results are consistent with previous biological studies, supporting the good performance of GSEA. Our analyzing results based on GSEA framework provide novel clues for discovering causal relationships between elements and complex diseases. © 2017 WILEY PERIODICALS, INC.

  5. Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits.

    PubMed

    Mancuso, Nicholas; Shi, Huwenbo; Goddard, Pagé; Kichaev, Gleb; Gusev, Alexander; Pasaniuc, Bogdan

    2017-03-02

    Although genome-wide association studies (GWASs) have identified thousands of risk loci for many complex traits and diseases, the causal variants and genes at these loci remain largely unknown. Here, we introduce a method for estimating the local genetic correlation between gene expression and a complex trait and utilize it to estimate the genetic correlation due to predicted expression between pairs of traits. We integrated gene expression measurements from 45 expression panels with summary GWAS data to perform 30 multi-tissue transcriptome-wide association studies (TWASs). We identified 1,196 genes whose expression is associated with these traits; of these, 168 reside more than 0.5 Mb away from any previously reported GWAS significant variant. We then used our approach to find 43 pairs of traits with significant genetic correlation at the level of predicted expression; of these, eight were not found through genetic correlation at the SNP level. Finally, we used bi-directional regression to find evidence that BMI causally influences triglyceride levels and that triglyceride levels causally influence low-density lipoprotein. Together, our results provide insight into the role of gene expression in the susceptibility of complex traits and diseases. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. A functional trait perspective on plant invasion

    PubMed Central

    Drenovsky, Rebecca E.; Grewell, Brenda J.; D'Antonio, Carla M.; Funk, Jennifer L.; James, Jeremy J.; Molinari, Nicole; Parker, Ingrid M.; Richards, Christina L.

    2012-01-01

    Background and Aims Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management. Scope We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change. Conclusions To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels. PMID:22589328

  7. Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits

    PubMed Central

    Deming, Yuetiva; Xia, Jian; Cai, Yefei; Lord, Jenny; Del-Aguila, Jorge L.; Fernandez, Maria Victoria; Carrell, David; Black, Kathleen; Budde, John; Ma, ShengMei; Saef, Benjamin; Howells, Bill; Bertelsen, Sarah; Bailey, Matthew; Ridge, Perry G.; Hefti, Franz; Fillit, Howard; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Carrillo, Maria; Fleisher, Adam; Reeder, Stephanie; Trncic, Nadira; Burke, Anna; Tariot, Pierre; Reiman, Eric M.; Chen, Kewei; Sabbagh, Marwan N.; Beiden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Green, Robert C.; Marshall, Gad; Johnson, Keith A.; Sperling, Reisa A.; Snyder, Peter; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Bernick, Charles; Munic, Donna; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Relkin, Norman; Chaing, Gloria; Ravdin, Lisa; Paul, Steven; Flashman, Laura A.; Seltzer, Marc; Hynes, Mary L.; Santulli, Robert B.; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Friedl, Karl; Murali Doraiswamy, P.; Petrella, Jeffrey R.; Borges-Neto, Salvador; James, Olga; Wong, Terence; Coleman, Edward; Schwartz, Adam; Cellar, Janet S.; Levey, Allan L.; Lah, James J.; Behan, Kelly; Scott Turner, Raymond; Johnson, Kathleen; Reynolds, Brigid; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Obisesan, Thomas O.; Wolday, Saba; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Tatsuoka, Curtis; Fatica, Parianne; Farlow, Martin R.; Saykin, Andrew J.; Foroud, Tatiana M.; Shen, Li; Faber, Kelly; Kim, Sungeun; Nho, Kwangsik; Marie Hake, Ann; Matthews, Brandy R.; Brosch, Jared R.; Herring, Scott; Hunt, Cynthia; Albert, Marilyn; Onyike, Chiadi; D’Agostino, Daniel; Kielb, Stephanie; Graff-Radford, Neill R; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Petersen, Ronald; Jack, Clifford R.; Bernstein, Matthew; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Chertkow, Howard; Hosein, Chris; Mintzer, Jacob; Spicer, Kenneth; Bachman, David; Grossman, Hillel; Mitsis, Effie; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Potter, William; Buckholtz, Neil; Hsiao, John; Kittur, Smita; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Pogorelec, Dana M.; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Johnson, Nancy; Chuang-Kuo; Kerwin, Diana; Bonakdarpour, Borna; Weintraub, Sandra; Grafman, Jordan; Lipowski, Kristine; Mesulam, Marek-Marsel; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Kaye, Jeffrey; Quinn, Joseph; Silbert, Lisa; Lind, Betty; Carter, Raina; Dolen, Sara; Borrie, Michael; Lee, T-Y; Bartha, Rob; Martinez, Walter; Villena, Teresa; Sadowsky, Carl; Khachaturian, Zaven; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Frank, Richard; Fleischman, Debra; Arfanakis, Konstantinos; Shah, Raj C.; deToledo-Morrell, Leyla; Sorensen, Greg; Finger, Elizabeth; Pasternack, Stephen; Rachinsky, Irina; Drost, Dick; Rogers, John; Kertesz, Andrew; Furst, Ansgar J.; Chad, Stevan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Mudge, Benita; Assaly, Michele; Fox, Nick; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Ekstam Smith, Karen; Burns, Jeffrey M.; Swerdlow, Russell H.; Brooks, William M.; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Natelson Love, Marissa; DeCarli, Charles; Carmichael, Owen; Olichney, John; Maillard, Pauline; Fletcher, Evan; Nguyen, Dana; Preda, Andrian; Potkin, Steven; Mulnard, Ruth A.; Thai, Gaby; McAdams-Ortiz, Catherine; Landau, Susan; Jagust, William; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H.S.; Lu, Po H.; Bartzokis, George; Thompson, Paul; Donohue, Michael; Thomas, Ronald G.; Walter, Sarah; Gessert, Devon; Brewer, James; Vanderswag, Helen; Sather, Tamie; Jiminez, Gus; Balasubramanian, Archana B.; Mason, Jennifer; Sim, Iris; Aisen, Paul; Davis, Melissa; Morrison, Rosemary; Harvey, Danielle; Thal, Lean; Beckett, Laurel; Neylan, Thomas; Finley, Shannon; Weiner, Michael W.; Hayes, Jacqueline; Rosen, Howard J.; Miller, Bruce L.; Perry, David; Massoglia, Dino; Brawman-Mentzer, Olga; Schuff, Norbert; Smith, Charles D.; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Koeppe, Robert A.; Lord, Joanne L.; Heidebrink, Judith L.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Clark, Christopher M.; Trojanowki, John Q.; Shaw, Leslie M.; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Foster, Norm; Montine, Tom; Fruehling, J. Jay; Harding, Sandra; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Petrie, Eric C.; Peskind, Elaine; Li, Gail; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Smith, Amanda; Ashok Raj, Balebail; Fargher, Kristin; Kuller, Lew; Mathis, Chet; Ann Oakley, Mary; Lopez, Oscar L.; Simpson, Donna M.; Sink, Kaycee M.; Gordineer, Leslie; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Cairns, Nigel J.; Raichle, Marc; Morris, John C.; Householder, Erin; Taylor-Reinwald, Lisa; Holtzman, David; Ances, Beau; Carroll, Maria; Creech, Mary L.; Franklin, Erin; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Varma, Pradeep; MacAvoy, Martha G.; Carson, Richard E.; van Dyck, Christopher H.; Davies, Peter; Holtzman, David; Morris, John C.; Bales, Kelly; Pickering, Eve H.; Lee, Jin-Moo; Heitsch, Laura; Kauwe, John; Goate, Alison; Piccio, Laura; Cruchaga, Carlos

    2016-01-01

    Genome-wide association studies of 146 plasma protein levels in 818 individuals revealed 56 genome-wide significant associations (28 novel) with 47 analytes. Loci associated with plasma levels of 39 proteins tested have been previously associated with various complex traits such as heart disease, inflammatory bowel disease, Type 2 diabetes, and multiple sclerosis. These data suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits. We found three potential pleiotropic genes: ABO for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels, and APOE for ApoE and CRP levels. We also found multiple independent signals in loci associated with plasma levels of ApoH, CA19-9, FetuinA, IL6r, and LPa. Our study highlights the power of biological traits for genetic studies to identify genetic variants influencing clinically relevant traits, potential pleiotropic effects, and complex disease associations in the same locus.

  8. Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits

    PubMed Central

    Aulen, Maurice; Shipley, Bill; Bradley, Robert

    2012-01-01

    Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237

  9. Future directions in personality, occupational and medical selection: myths, misunderstandings, measurement, and suggestions.

    PubMed

    Ferguson, Eamonn; Lievens, Filip

    2017-05-01

    This paper has two objectives: (1) presenting recent advances in personality theory whereby personality traits are conceptualized within a framework that focuses on the dynamic interactions of behaviour, biology, context, and states, and (2) discussing the implications of these developments for measurement and medical selection. We start by presenting evidence that traits are no longer regarded as stable deterministic predictors of behaviour. Instead, traits are found to change across generations, the life span, and in response to environmental contingencies. Thus, there is an urgent need to explore how traits change as function of medical education. Second, drawing on recent theory and research (behavioural reaction norms and the density distribution model) we highlight evidence to show how the expression of trait relevant behaviour is dependent on context, and is distributed with an average (typical behaviour or personality) and a variance (plasticity or adaptability), with traditional personality measure associated with typical responding. Third, we demystify that some traits are better than others showing that so-called "good" traits have a dark-side. Fourth, we show how these developments impact on how personality might be assessed, thereby presenting recent evidence on the use of contextualized personality measures, situational judgment tests, other reports, and implicit measures. Throughout the paper, we outline the key implications of these developments for medical selection practices.

  10. The Impact of the Emerging Genomics Data on the Management of Agerelated Phenotypes in the Context of Cellular Senescence.

    PubMed

    Montesanto, Alberto; Geracitano, Silvana; Garasto, Sabrina; Fusco, Sergio; Lattanzio, Fabrizia; Passarino, Giuseppe; Corsonello, Andrea

    2016-01-01

    Before the last decade, attempts to identify the genetic factors involved in the susceptibility to age-related complex diseases such as cardiovascular disease, diabetes and cancer had very limited success. Recently, two important advancements have provided new opportunities to improve our knowledge in this field. Firstly, it has emerged the concept of studying the molecular mechanisms underlying the age related decline of the organism (such as cellular senescence), rather than the genetics of single disorders. In addition, advances in DNA technology have uncovered an incredible number of common susceptibility variants for several complex traits. Despite these progresses, the translation of these discoveries into clinical practice has been very difficult. To date, several attempts in translating genomics to medicine are being carried out to look for the best way by which genomic discoveries may improve our understanding of fundamental issues in the prediction and prevention of some complex diseases. The successful strategy seems to be testing simultaneously multiple susceptibility variants in combination with traditional risk factors. In fact, such approach showed that genetic factors substantially improve the prediction of complex diseases especially for coronary heart disease and prostate cancer, making possible appropriate behavioural and medical interventions. In the future, the identification of new genetic variants and their inclusion into current risk profile models will probably improve the discrimination power of these models for other complex diseases such as type 2 diabetes mellitus and breast cancer. On the other hand, for traits with low heritability, this improvement will probably be negligible, and this will urge further researches on the role played by traditional and newly discovered non-genetic risk factors.

  11. A new tool called DISSECT for analysing large genomic data sets using a Big Data approach

    PubMed Central

    Canela-Xandri, Oriol; Law, Andy; Gray, Alan; Woolliams, John A.; Tenesa, Albert

    2015-01-01

    Large-scale genetic and genomic data are increasingly available and the major bottleneck in their analysis is a lack of sufficiently scalable computational tools. To address this problem in the context of complex traits analysis, we present DISSECT. DISSECT is a new and freely available software that is able to exploit the distributed-memory parallel computational architectures of compute clusters, to perform a wide range of genomic and epidemiologic analyses, which currently can only be carried out on reduced sample sizes or under restricted conditions. We demonstrate the usefulness of our new tool by addressing the challenge of predicting phenotypes from genotype data in human populations using mixed-linear model analysis. We analyse simulated traits from 470,000 individuals genotyped for 590,004 SNPs in ∼4 h using the combined computational power of 8,400 processor cores. We find that prediction accuracies in excess of 80% of the theoretical maximum could be achieved with large sample sizes. PMID:26657010

  12. Environmental context effects on craving among consumers of caffeinated alcohol beverages: Associations with aspects of impulsivity.

    PubMed

    Stamates, Amy L; Lau-Barraco, Cathy

    2017-12-01

    The present study primarily sought to (a) determine the effects of environmental context on subjective ratings of craving for alcohol and caffeinated alcohol beverages (CAB) and (b) test inhibitory control, a state behavioral aspect of impulsivity, as a mediator of the association between context and craving in a sample of consumers of CAB. A secondary aim was to examine the associations between trait impulsivity and subjective craving for alcohol and CAB. Participants were 143 (67.1% female) college CAB drinkers. Participants were randomized into either a simulated bar context condition or neutral context condition and completed measures of alcohol use, CAB use, trait impulsivity, inhibitory control on a go/no-go task, and subjective craving for alcohol and CAB. Findings revealed that participants in the simulated bar condition, as compared with those in the neutral condition, reported more subjective craving for alcohol and for CAB; however, alcohol and CAB-specific craving were not different overall or as a function of context. The association between context and subjective craving for alcohol was not mediated by inhibitory control. Trait impulsivity was positively associated with alcohol and CAB-specific craving at baseline and post context exposure, and this finding was similar across both conditions. Therefore, the current investigation suggests that consumers of CAB may be sensitive to alcohol contexts as indicated by greater responses in alcohol and CAB-specific craving. However, inhibitory control did not explain this association. Future research may benefit from examining other potential mechanisms that explain the relationship between context and craving among CAB consumers. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Emotional intelligence in sport and exercise: A systematic review.

    PubMed

    Laborde, S; Dosseville, F; Allen, M S

    2016-08-01

    This review targets emotional intelligence (EI) in sport and physical activity. We systematically review the available literature and offer a sound theoretical integration of differing EI perspectives (the tripartite model of EI) before considering applied practice in the form of EI training. Our review identified 36 studies assessing EI in an athletic or physical activity context. EI has most often been conceptualized as a trait. In the context of sport performance, we found that EI relates to emotions, physiological stress responses, successful psychological skill usage, and more successful athletic performance. In the context of physical activity, we found that trait EI relates to physical activity levels and positive attitudes toward physical activity. There was a shortage of research into the EI of coaches, officials, and spectators, non-adult samples, and longitudinal and experimental methods. The tripartite model proposes that EI operates on three levels - knowledge, ability, and trait - and predicts an interplay between the different levels of EI. We present this framework as a promising alternative to trait and ability EI conceptualizations that can guide applied research and professional practice. Further research into EI training, measurement validation and cultural diversity is recommended. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Systems genetics approaches to understand complex traits

    PubMed Central

    Civelek, Mete; Lusis, Aldons J.

    2014-01-01

    Systems genetics is an approach to understand the flow of biological information that underlies complex traits. It uses a range of experimental and statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein or metabolite levels, in populations that vary for traits of interest. Systems genetics studies have provided the first global view of the molecular architecture of complex traits and are useful for the identification of genes, pathways and networks that underlie common human diseases. Given the urgent need to understand how the thousands of loci that have been identified in genome-wide association studies contribute to disease susceptibility, systems genetics is likely to become an increasingly important approach to understanding both biology and disease. PMID:24296534

  15. Impacts of fever on locust life-history traits: costs or benefits?

    PubMed Central

    Elliot, Sam L; Horton, Charlotte M; Blanford, Simon; Thomas, Matthew B

    2005-01-01

    Fever, like other mechanisms for defence against pathogens, may have positive and negative consequences for host fitness. In ectotherms, fever can be attained through modified behavioural thermoregulation. Here we examine potential costs of behavioural fever by holding adult, gregarious desert locusts at elevated temperatures simulating a range of fever intensities. We found no effect of fever temperatures on primary fitness correlates of survival and fecundity. However, flight capacity and mate competition were reduced, although there was no relation between time spent at fever temperatures and magnitude of the response. While these effects could indicate a direct cost of fever, they are also consistent with a shift towards the solitaria phase state that, in a field context, could be considered an adaptive life-history response to limit the impact of disease. These conflicting interpretations highlight the importance of considering complex defence mechanisms and trade-offs in an appropriate ecological context. PMID:17148161

  16. The search for Pleiades in trait constellations: functional integration and phenotypic selection in the complex flowers of Morrenia brachystephana (Apocynaceae).

    PubMed

    Baranzelli, M C; Sérsic, A N; Cocucci, A A

    2014-04-01

    Pollinator-mediated natural selection on single traits, such as corolla tube or spur length, has been well documented. However, flower phenotypes are usually complex, and selection is expected to act on several traits that functionally interact rather than on a single isolated trait. Despite the fact that selection on complex phenotypes is expectedly widespread, multivariate selection modelling on such phenotypes still remains under-explored in plants. Species of the subfamily Asclepiadoideae (Apocynaceae) provide an opportunity to study such complex flower contrivances integrated by fine-scaled organs from disparate developmental origin. We studied the correlation structure among linear floral traits (i) by testing a priori morphological, functional or developmental hypotheses among traits and (ii) by exploring the organization of flower covariation, considering alternative expectations of modular organization or whole flower integration through conditional dependence analysis (CDA) and integration matrices. The phenotypic selection approach was applied to determine whether floral traits involved in the functioning of the pollination mechanism were affected by natural selection. Floral integration was low, suggesting that flowers are organized in more than just one correlation pleiad; our hypothetical functional correlation matrix was significantly correlated with the empirical matrix, and the CDA revealed three putative modules. Analyses of phenotypic selection showed significant linear and correlational gradients, lending support to expectations of functional interactions between floral traits. Significant correlational selection gradients found involved traits of different floral whorls, providing evidence for the existence of functional integration across developmental domains. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  17. Genetic constraints on wing pattern variation in Lycaeides butterflies: A case study on mapping complex, multifaceted traits in structured populations.

    PubMed

    Lucas, Lauren K; Nice, Chris C; Gompert, Zachariah

    2018-03-13

    Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems. © 2018 John Wiley & Sons Ltd.

  18. A prolonged chronological lifespan is an unexpected benefit of the [PSI+] prion in yeast.

    PubMed

    Wang, Kai; Melki, Ronald; Kabani, Mehdi

    2017-01-01

    Self-replicating 'proteinaceous infectious particles' or prions are responsible for complex heritable traits in the yeast Saccharomyces cerevisiae. Our current understanding of the biology of yeast prions stems from studies mostly done in the context of actively dividing cells in optimal laboratory growth conditions. Evidence suggest that fungal prions exist in the wild where most cells are in a non-dividing quiescent state, because of imperfect growth conditions, scarcity of nutrients and competition. We know little about the faithful transmission of yeast prions in such conditions and their physiological consequences throughout the lifespan of yeast cells. We addressed this issue for the [PSI+] prion that results from the self-assembly of the translation release factor Sup35p into insoluble fibrillar aggregates. [PSI+] leads to increased nonsense suppression and confers phenotypic plasticity in response to environmental fluctuations. Here, we report that while [PSI+] had little to no effect on growth per se, it dramatically improved the survival of yeast cells in stationary phase. Remarkably, prolonged chronological lifespan persisted even after [PSI+] was cured from the cells, suggesting that prions may facilitate the acquisition of complex new traits. Such an important selective advantage may contribute to the evolutionary conservation of the prion-forming ability of Sup35p orthologues in distantly related yeast species.

  19. Evidence of linkage of HDL level variation to APOC3 in two samples with different ascertainment.

    PubMed

    Gagnon, France; Jarvik, Gail P; Motulsky, Arno G; Deeb, Samir S; Brunzell, John D; Wijsman, Ellen M

    2003-11-01

    The APOA1-C3-A4-A5 gene complex encodes genes whose products are implicated in the metabolism of HDL and/or triglycerides. Although the relationship between polymorphisms in this gene cluster and dyslipidemias was first reported more than 15 years ago, association and linkage results have remained inconclusive. This is due, in part, to the oligogenic and multivariate nature of dyslipidemic phenotypes. Therefore, we investigate evidence of linkage of APOC3 and HDL using two samples of dyslipidemic pedigrees: familial combined hyperlipidemia (FCHL) and isolated low-HDL (ILHDL). We used a strategy that deals with several difficulties inherent in the study of complex traits: by using a Bayesian Markov Chain Monte Carlo (MCMC) approach we allow for oligogenic trait models, as well as simultaneous incorporation of covariates, in the context of multipoint analysis. By using this approach on extended pedigrees we provide evidence of linkage of APOC3 and HDL level variation in two samples with different ascertainment. In addition to APOC3, we estimate that two to three genes, each with a substantial effect on total variance, are responsible for HDL variation in both data sets. We also provide evidence, using the FCHL data set, for a pleiotropic effect between HDL, HDL3 and triglycerides at the APOC3 locus.

  20. A critical issue in model-based inference for studying trait-based community assembly and a solution.

    PubMed

    Ter Braak, Cajo J F; Peres-Neto, Pedro; Dray, Stéphane

    2017-01-01

    Statistical testing of trait-environment association from data is a challenge as there is no common unit of observation: the trait is observed on species, the environment on sites and the mediating abundance on species-site combinations. A number of correlation-based methods, such as the community weighted trait means method (CWM), the fourth-corner correlation method and the multivariate method RLQ, have been proposed to estimate such trait-environment associations. In these methods, valid statistical testing proceeds by performing two separate resampling tests, one site-based and the other species-based and by assessing significance by the largest of the two p -values (the p max test). Recently, regression-based methods using generalized linear models (GLM) have been proposed as a promising alternative with statistical inference via site-based resampling. We investigated the performance of this new approach along with approaches that mimicked the p max test using GLM instead of fourth-corner. By simulation using models with additional random variation in the species response to the environment, the site-based resampling tests using GLM are shown to have severely inflated type I error, of up to 90%, when the nominal level is set as 5%. In addition, predictive modelling of such data using site-based cross-validation very often identified trait-environment interactions that had no predictive value. The problem that we identify is not an "omitted variable bias" problem as it occurs even when the additional random variation is independent of the observed trait and environment data. Instead, it is a problem of ignoring a random effect. In the same simulations, the GLM-based p max test controlled the type I error in all models proposed so far in this context, but still gave slightly inflated error in more complex models that included both missing (but important) traits and missing (but important) environmental variables. For screening the importance of single trait-environment combinations, the fourth-corner test is shown to give almost the same results as the GLM-based tests in far less computing time.

  1. PRECOG: a tool for automated extraction and visualization of fitness components in microbial growth phenomics.

    PubMed

    Fernandez-Ricaud, Luciano; Kourtchenko, Olga; Zackrisson, Martin; Warringer, Jonas; Blomberg, Anders

    2016-06-23

    Phenomics is a field in functional genomics that records variation in organismal phenotypes in the genetic, epigenetic or environmental context at a massive scale. For microbes, the key phenotype is the growth in population size because it contains information that is directly linked to fitness. Due to technical innovations and extensive automation our capacity to record complex and dynamic microbial growth data is rapidly outpacing our capacity to dissect and visualize this data and extract the fitness components it contains, hampering progress in all fields of microbiology. To automate visualization, analysis and exploration of complex and highly resolved microbial growth data as well as standardized extraction of the fitness components it contains, we developed the software PRECOG (PREsentation and Characterization Of Growth-data). PRECOG allows the user to quality control, interact with and evaluate microbial growth data with ease, speed and accuracy, also in cases of non-standard growth dynamics. Quality indices filter high- from low-quality growth experiments, reducing false positives. The pre-processing filters in PRECOG are computationally inexpensive and yet functionally comparable to more complex neural network procedures. We provide examples where data calibration, project design and feature extraction methodologies have a clear impact on the estimated growth traits, emphasising the need for proper standardization in data analysis. PRECOG is a tool that streamlines growth data pre-processing, phenotypic trait extraction, visualization, distribution and the creation of vast and informative phenomics databases.

  2. Toward Bridging the Mechanistic Gap Between Genes and Traits by Emphasizing the Role of Proteins in a Computational Environment

    NASA Astrophysics Data System (ADS)

    Haskel-Ittah, Michal; Yarden, Anat

    2017-12-01

    Previous studies have shown that students often ignore molecular mechanisms when describing genetic phenomena. Specifically, students tend to directly link genes to their encoded traits, ignoring the role of proteins as mediators in this process. We tested the ability of 10th grade students to connect genes to traits through proteins, using concept maps and reasoning questions. The context of this study was a computational learning environment developed specifically to foster this ability. This environment presents proteins as the mechanism-mediating genetic phenomena. We found that students' ability to connect genes, proteins, and traits, or to reason using this connection, was initially poor. However, significant improvement was obtained when using the learning environment. Our results suggest that visual representations of proteins' functions in the context of a specific trait contributed to this improvement. One significant aspect of these results is the indication that 10th graders are capable of accurately describing genetic phenomena and their underlying mechanisms, a task that has been shown to raise difficulties, even in higher grades of high school.

  3. Genetic and Genomic Analysis of a Fat Mass Trait with Complex Inheritance Reveals Marked Sex Specificity

    PubMed Central

    Wang, Hui; Drake, Thomas A; Lusis, Aldons J

    2006-01-01

    The integration of expression profiling with linkage analysis has increasingly been used to identify genes underlying complex phenotypes. The effects of gender on the regulation of many physiological traits are well documented; however, “genetical genomic” analyses have not yet addressed the degree to which their conclusions are affected by sex. We constructed and densely genotyped a large F2 intercross derived from the inbred mouse strains C57BL/6J and C3H/HeJ on an apolipoprotein E null (ApoE−/−) background. This BXH.ApoE−/− population recapitulates several “metabolic syndrome” phenotypes. The cross consists of 334 animals of both sexes, allowing us to specifically test for the dependence of linkage on sex. We detected several thousand liver gene expression quantitative trait loci, a significant proportion of which are sex-biased. We used these analyses to dissect the genetics of gonadal fat mass, a complex trait with sex-specific regulation. We present evidence for a remarkably high degree of sex-dependence on both the cis and trans regulation of gene expression. We demonstrate how these analyses can be applied to the study of the genetics underlying gonadal fat mass, a complex trait showing significantly female-biased heritability. These data have implications on the potential effects of sex on the genetic regulation of other complex traits. PMID:16462940

  4. Progress of genome wide association study in domestic animals

    PubMed Central

    2012-01-01

    Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL) responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS), which utilizes high-density single-nucleotide polymorphism (SNP), provides a new way to tackle this issue. Encouraging achievements in dissection of the genetic mechanisms of complex diseases in humans have resulted from the use of GWAS. At present, GWAS has been applied to the field of domestic animal breeding and genetics, and some advances have been made. Many genes or markers that affect economic traits of interest in domestic animals have been identified. In this review, advances in the use of GWAS in domestic animals are described. PMID:22958308

  5. Insight into Genotype-Phenotype Associations through eQTL Mapping in Multiple Cell Types in Health and Immune-Mediated Disease

    PubMed Central

    Peters, James E.; Lyons, Paul A.; Lee, James C.; Richard, Arianne C.; Fortune, Mary D.; Newcombe, Paul J.; Richardson, Sylvia; Smith, Kenneth G. C.

    2016-01-01

    Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases. PMID:27015630

  6. Autistic traits in children with ADHD index clinical and cognitive problems.

    PubMed

    Cooper, Miriam; Martin, Joanna; Langley, Kate; Hamshere, Marian; Thapar, Anita

    2014-01-01

    Traits of autistic spectrum disorders (ASD) occur frequently in attention deficit hyperactivity disorder (ADHD), but the significance of their presence in terms of phenotype and underlying neurobiology is not properly understood. This analysis aimed to determine whether higher levels of autistic traits, as measured by the Social Communication Questionnaire (SCQ), index a more severe presentation in a large, rigorously phenotyped sample of children with ADHD (N=711). Regression analyses were used to examine association of SCQ scores with core ADHD features, clinical comorbidities and cognitive and developmental features, with adjustment for putative confounders. For outcomes showing association with total SCQ score, secondary analyses determined levels of differential association of the three ASD sub-domains. Results suggest that increasing ASD symptomatology within ADHD is associated with a more severe phenotype in terms of oppositional, conduct and anxiety symptoms, lower full-scale IQ, working memory deficits and general motor problems. These associations persisted after accounting for ADHD severity, suggesting that autistic symptomatology independently indexes the severity of comorbid impairments in the context of ADHD. Sub-domain scores did not show unique contributions to most outcomes, except that social deficits were independently associated with oppositional symptoms and repetitive behaviours independently predicted hyperactive-impulsive symptoms and motor problems. It would be worthwhile for clinicians to consider levels of socio-communicative and repetitive traits in those with ADHD who do not meet diagnostic criteria for ASD, as they index higher levels of phenotypic complexity, which may have implications for efficacy of interventions.

  7. A Powerful Approach to Estimating Annotation-Stratified Genetic Covariance via GWAS Summary Statistics.

    PubMed

    Lu, Qiongshi; Li, Boyang; Ou, Derek; Erlendsdottir, Margret; Powles, Ryan L; Jiang, Tony; Hu, Yiming; Chang, David; Jin, Chentian; Dai, Wei; He, Qidu; Liu, Zefeng; Mukherjee, Shubhabrata; Crane, Paul K; Zhao, Hongyu

    2017-12-07

    Despite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic architecture is far from complete. Jointly modeling multiple traits' genetic profiles has provided insights into the shared genetic basis of many complex traits. However, large-scale inference sets a high bar for both statistical power and biological interpretability. Here we introduce a principled framework to estimate annotation-stratified genetic covariance between traits using GWAS summary statistics. Through theoretical and numerical analyses, we demonstrate that our method provides accurate covariance estimates, thereby enabling researchers to dissect both the shared and distinct genetic architecture across traits to better understand their etiologies. Among 50 complex traits with publicly accessible GWAS summary statistics (N total ≈ 4.5 million), we identified more than 170 pairs with statistically significant genetic covariance. In particular, we found strong genetic covariance between late-onset Alzheimer disease (LOAD) and amyotrophic lateral sclerosis (ALS), two major neurodegenerative diseases, in single-nucleotide polymorphisms (SNPs) with high minor allele frequencies and in SNPs located in the predicted functional genome. Joint analysis of LOAD, ALS, and other traits highlights LOAD's correlation with cognitive traits and hints at an autoimmune component for ALS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. When Field Experiments Yield Unexpected Results: Lessons Learned from Measuring Selection in White Sands Lizards

    PubMed Central

    Hardwick, Kayla M.; Harmon, Luke J.; Hardwick, Scott D.; Rosenblum, Erica Bree

    2015-01-01

    Determining the adaptive significance of phenotypic traits is key for understanding evolution and diversification in natural populations. However, evolutionary biologists have an incomplete understanding of how specific traits affect fitness in most populations. The White Sands system provides an opportunity to study the adaptive significance of traits in an experimental context. Blanched color evolved recently in three species of lizards inhabiting the gypsum dunes of White Sands and is likely an adaptation to avoid predation. To determine whether there is a relationship between color and susceptibility to predation in White Sands lizards, we conducted enclosure experiments, quantifying survivorship of Holbrookia maculate exhibiting substrate-matched and substrate-mismatched phenotypes. Lizards in our study experienced strong predation. Color did not have a significant effect on survival, but we found several unexpected relationships including variation in predation over small spatial and temporal scales. In addition, we detected a marginally significant interaction between sex and color, suggesting selection for substrate matching may be stronger for males than females. We use our results as a case study to examine six major challenges frequently encountered in field-based studies of natural selection, and suggest that insight into the complexities of selection often results when experiments turn out differently than expected. PMID:25714838

  9. E-Index for Differentiating Complex Dynamic Traits

    PubMed Central

    Qi, Jiandong; Sun, Jianfeng; Wang, Jianxin

    2016-01-01

    While it is a daunting challenge in current biology to understand how the underlying network of genes regulates complex dynamic traits, functional mapping, a tool for mapping quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs), has been applied in a variety of cases to tackle this challenge. Though useful and powerful, functional mapping performs well only when one or more model parameters are clearly responsible for the developmental trajectory, typically being a logistic curve. Moreover, it does not work when the curves are more complex than that, especially when they are not monotonic. To overcome this inadaptability, we therefore propose a mathematical-biological concept and measurement, E-index (earliness-index), which cumulatively measures the earliness degree to which a variable (or a dynamic trait) increases or decreases its value. Theoretical proofs and simulation studies show that E-index is more general than functional mapping and can be applied to any complex dynamic traits, including those with logistic curves and those with nonmonotonic curves. Meanwhile, E-index vector is proposed as well to capture more subtle differences of developmental patterns. PMID:27064292

  10. Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait.

    PubMed

    Maurer, Matthew J; Sutardja, Lawrence; Pinel, Dominic; Bauer, Stefan; Muehlbauer, Amanda L; Ames, Tyler D; Skerker, Jeffrey M; Arkin, Adam P

    2017-03-17

    Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.

  11. Relationships among Trait Resilience, Virtues, Post-traumatic Stress Disorder, and Post-traumatic Growth

    PubMed Central

    Duan, Wenjie; Guo, Pengfei; Gan, Pei

    2015-01-01

    The present study aims to examine the relationship between trait resilience and virtues in the context of trauma. A total of 537 participants who attended the preliminary investigation and completed the Life Events Checklist were screened. Of these participants, 142 suffered from personal traumatic experiences in the past year; these individuals were qualified and invited to respond to online questionnaires to assess trait resilience, virtues (i.e., Conscientiousness, Vitality, and Relationship), post-traumatic stress disorder (PTSD) symptoms, and post-traumatic growth (PTG). The following questionnaires were used: Connor-Davidson Resilience Scale-Revised, Chinese Virtues Questionnaire, PTSD Checklist-Specific, and Post-traumatic Growth Inventory-Chinese. Only 95 participants who manifested self-reported PTSD symptoms and PTG were involved in the current analyses. Trauma was positively and significantly correlated with PTSD in the current sample. Results indicated that trait resilience was positively associated with virtues and PTG; by contrast, PTSD scores were negatively but not significantly related to most of these factors. The three virtues contributed to PTG to a greater extent than trait resilience in non-PTSD and PTSD groups. However, trait resilience remained a significant predictor in the PTSD group even when the three virtues were controlled. The relationship between trait resilience and PTG was moderated by PTSD type (non-PTSD group vs. PTSD group). Our results further suggested that trait resilience and virtues were conceptually related but functionally different constructs. Trait resilience and virtues are positively related; thus, these factors contributed variances to PTG in the context of trauma; however, trait resilience is only manifested when virtues are controlled and when individuals are diagnosed as PTSD. Furthermore, implications and limitations of this study are discussed. PMID:25932954

  12. The transformative potential of an integrative approach to pregnancy.

    PubMed

    Eidem, Haley R; McGary, Kriston L; Capra, John A; Abbot, Patrick; Rokas, Antonis

    2017-09-01

    Complex traits typically involve diverse biological pathways and are shaped by numerous genetic and environmental factors. Pregnancy-associated traits and pathologies are further complicated by extensive communication across multiple tissues in two individuals, interactions between two genomes-maternal and fetal-that obscure causal variants and lead to genetic conflict, and rapid evolution of pregnancy-associated traits across mammals and in the human lineage. Given the multi-faceted complexity of human pregnancy, integrative approaches that synthesize diverse data types and analyses harbor tremendous promise to identify the genetic architecture and environmental influences underlying pregnancy-associated traits and pathologies. We review current research that addresses the extreme complexities of traits and pathologies associated with human pregnancy. We find that successful efforts to address the many complexities of pregnancy-associated traits and pathologies often harness the power of many and diverse types of data, including genome-wide association studies, evolutionary analyses, multi-tissue transcriptomic profiles, and environmental conditions. We propose that understanding of pregnancy and its pathologies will be accelerated by computational platforms that provide easy access to integrated data and analyses. By simplifying the integration of diverse data, such platforms will provide a comprehensive synthesis that transcends many of the inherent challenges present in studies of pregnancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Correlational selection on personality and social plasticity: morphology and social context determine behavioural effects on mating success.

    PubMed

    Montiglio, Pierre-Olivier; Wey, Tina W; Chang, Ann T; Fogarty, Sean; Sih, Andrew

    2017-03-01

    Despite a central line of research aimed at quantifying relationships between mating success and sexually dimorphic traits (e.g., ornaments), individual variation in sexually selected traits often explains only a modest portion of the variation in mating success. Another line of research suggests that a significant portion of the variation in mating success observed in animal populations could be explained by correlational selection, where the fitness advantage of a given trait depends on other components of an individual's phenotype and/or its environment. We tested the hypothesis that interactions between multiple traits within an individual (phenotype dependence) or between an individual's phenotype and its social environment (context dependence) can select for individual differences in behaviour (i.e., personality) and social plasticity. To quantify the importance of phenotype- and context-dependent selection on mating success, we repeatedly measured the behaviour, social environment and mating success of about 300 male stream water striders, Aquarius remigis. Rather than explaining individual differences in long-term mating success, we instead quantified how the combination of a male's phenotype interacted with the immediate social context to explain variation in hour-by-hour mating decisions. We suggest that this analysis captures more of the mechanisms leading to differences in mating success. Males differed consistently in activity, aggressiveness and social plasticity. The mating advantage of these behavioural traits depended on male morphology and varied with the number of rival males in the pool, suggesting mechanisms selecting for consistent differences in behaviour and social plasticity. Accounting for phenotype and context dependence improved the amount of variation in male mating success we explained statistically by 30-274%. Our analysis of the determinants of male mating success provides important insights into the evolutionary forces that shape phenotypic variation. In particular, our results suggest that sexual selection is likely to favour individual differences in behaviour, social plasticity (i.e., individuals adjusting their behaviour), niche preference (i.e., individuals dispersing to particular social conditions) or social niche construction (i.e., individuals modifying the social environment). The true effect of sexual traits can only be understood in interaction with the individual's phenotype and environment. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  14. Pre and Post-copulatory Selection Favor Similar Genital Phenotypes in the Male Broad Horned Beetle

    PubMed Central

    House, Clarissa M.; Sharma, M. D.; Okada, Kensuke; Hosken, David J.

    2016-01-01

    Sexual selection can operate before and after copulation and the same or different trait(s) can be targeted during these episodes of selection. The direction and form of sexual selection imposed on characters prior to mating has been relatively well described, but the same is not true after copulation. In general, when male–male competition and female choice favor the same traits then there is the expectation of reinforcing selection on male sexual traits that improve competitiveness before and after copulation. However, when male–male competition overrides pre-copulatory choice then the opposite could be true. With respect to studies of selection on genitalia there is good evidence that male genital morphology influences mating and fertilization success. However, whether genital morphology affects reproductive success in more than one context (i.e., mating versus fertilization success) is largely unknown. Here we use multivariate analysis to estimate linear and nonlinear selection on male body size and genital morphology in the flour beetle Gnatocerus cornutus, simulated in a non-competitive (i.e., monogamous) setting. This analysis estimates the form of selection on multiple traits and typically, linear (directional) selection is easiest to detect, while nonlinear selection is more complex and can be stabilizing, disruptive, or correlational. We find that mating generates stabilizing selection on male body size and genitalia, and fertilization causes a blend of directional and stabilizing selection. Differences in the form of selection across these bouts of selection result from a significant alteration of nonlinear selection on body size and a marginally significant difference in nonlinear selection on a component of genital shape. This suggests that both bouts of selection favor similar genital phenotypes, whereas the strong stabilizing selection imposed on male body size during mate acquisition is weak during fertilization. PMID:27371390

  15. A new perspective on trait differences between native and invasive exotic plants.

    PubMed

    Leffler, A Joshua; James, Jeremy J; Monaco, Thomas A; Sheley, Roger L

    2014-02-01

    Functional differences between native and exotic species potentially constitute one factor responsible for plant invasion. Differences in trait values between native and exotic invasive species, however, should not be considered fixed and may depend on the context of the comparison. Furthermore, the magnitude of difference between native and exotic species necessary to trigger invasion is unknown. We propose a criterion that differences in trait values between a native and exotic invasive species must be greater than differences between co-occurring natives for this difference to be ecologically meaningful and a contributing factor to plant invasion. We used a meta-analysis to quantify the difference between native and exotic invasive species for various traits examined in previous studies and compared this value to differences among native species reported in the same studies. The effect size between native and exotic invasive species was similar to the effect size between co-occurring natives except for studies conducted in the field; in most instances, our criterion was not met although overall differences between native and exotic invasive species were slightly larger than differences between natives. Consequently, trait differences may be important in certain contexts, but other mechanisms of invasion are likely more important in most cases. We suggest that using trait values as predictors of invasion will be challenging.

  16. Viewing relational aggression through multiple lenses: temperament, personality, and personality pathology.

    PubMed

    Tackett, Jennifer L; Kushner, Shauna C; Herzhoff, Kathrin; Smack, Avante J; Reardon, Kathleen W

    2014-08-01

    Dispositional trait frameworks offer great potential to elucidate the nature and development of psychopathology, including the construct of relational aggression. The present study sought to explore the dispositional context of relational aggression across three dispositional frameworks: temperament, personality, and personality pathology. Participants comprised a large community sample of youth, aged 6 to 18 years (N = 1,188; 51.2% female). Ratings of children's relational aggression, temperament, personality, and personality pathology traits were obtained through parent report (86.3% mothers). Results showed convergence and divergence across these three dispositional frameworks. Like other antisocial behavior subtypes, relational aggression generally showed connections with traits reflecting negative emotionality and poor self-regulation. Relational aggression showed stronger connections with temperament traits than with personality traits, suggesting that temperament frameworks may capture more relationally aggressive content. Findings at the lower order trait level help differentiate relational aggression from other externalizing problems by providing a more nuanced perspective (e.g., both sociability and shyness positively predicted relational aggression). In addition, there was little evidence of moderation of these associations by gender, age, or age2, and findings remained robust even after controlling for physical aggression. Results are discussed in the broader context of conceptualizing relational aggression in an overarching personality-psychopathology framework.

  17. Trait and state disgust: an experimental investigation of disgust and avoidance in colorectal cancer decision scenarios.

    PubMed

    Reynolds, Lisa M; McCambridge, Sarah A; Bissett, Ian P; Consedine, Nathan S

    2014-12-01

    To evaluate whether trait and experimentally manipulated state disgust independently and/or interactively predict immediate and anticipated avoidance in decision scenarios related to colorectal cancer (CRC). Eighty participants, aged 18 to 66 years, completed questionnaires assessing trait disgust prior to a laboratory session. Participants were gender block randomized to disgust or control conditions before completing tasks assessing immediate avoidance of a CRC disgust elicitor (stoma bag) and anticipated avoidance in hypothetical CRC scenarios. Manipulation checks confirmed the elicitation of disgust in the experimental condition. Persons in the experimental condition were more likely to exhibit immediate avoidance behaviors in response to a commonly used bowel disease device (stoma bag), and trait disgust predicted time to touch the device. Trait disgust also moderated the influence of state disgust on anticipated avoidance, namely delay in help seeking for bowel symptoms and predicted rating disgusting side effects as more deterring to adherence. The current report suggests the importance of examining disgust in CRC contexts and provides the first empirical demonstration that state and trait aspects of disgust may interactively operate to deter certain types of decisions. It thus furthers understanding of emotions and avoidance in a health context that has had surprisingly little focus to date.

  18. Complementary approaches to the assessment of personality disorder. The Personality Assessment Schedule and Adult Personality Functioning Assessment compared.

    PubMed

    Hill, J; Fudge, H; Harrington, R; Pickles, A; Rutter, M

    2000-05-01

    Current concepts and measures of personality disorder are in many respects unsatisfactory. To establish agreement between two contrasting measures of personality disorder, and to compare subject-informant agreement on each. To examine the extent to which trait abnormality can be separated from interpersonal and social role dysfunction. Fifty-six subjects and their closest informants were interviewed and rated independently. Personality functioning was assessed using a modified Personality Assessment Schedule (M-PAS), and the Adult Personality Functioning Assessment (APFA). Subject-informant agreement on the M-PAS was moderately good, and agreement between the M-PAS and the APFA, across and within subjects and informants, was comparable to that for the M-PAS. This was equally the case when M-PAS trait plus impairment scores and trait abnormality scores were used. The M-PAS and the APFA are probably assessing similar constructs. Trait abnormalities occur predominantly in an interpersonal context and could be assessed within that context.

  19. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.

    PubMed

    Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S

    2013-10-01

    Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF effects on growth may overlook changes in plant traits that have the potential to influence interactions, and hence yield, on farms. Given the effects of AMF on plant traits documented here, and the great importance of both herbivores and pollinators to wild and cultivated plants, we advocate for comprehensive assessments of mycorrhizal effects in complex community contexts, with the aim of incorporating multispecies interactions both above and below the soil surface.

  20. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  1. Poly-Omic Prediction of Complex Traits: OmicKriging

    PubMed Central

    Wheeler, Heather E.; Aquino-Michaels, Keston; Gamazon, Eric R.; Trubetskoy, Vassily V.; Dolan, M. Eileen; Huang, R. Stephanie; Cox, Nancy J.; Im, Hae Kyung

    2014-01-01

    High-confidence prediction of complex traits such as disease risk or drug response is an ultimate goal of personalized medicine. Although genome-wide association studies have discovered thousands of well-replicated polymorphisms associated with a broad spectrum of complex traits, the combined predictive power of these associations for any given trait is generally too low to be of clinical relevance. We propose a novel systems approach to complex trait prediction, which leverages and integrates similarity in genetic, transcriptomic, or other omics-level data. We translate the omic similarity into phenotypic similarity using a method called Kriging, commonly used in geostatistics and machine learning. Our method called OmicKriging emphasizes the use of a wide variety of systems-level data, such as those increasingly made available by comprehensive surveys of the genome, transcriptome, and epigenome, for complex trait prediction. Furthermore, our OmicKriging framework allows easy integration of prior information on the function of subsets of omics-level data from heterogeneous sources without the sometimes heavy computational burden of Bayesian approaches. Using seven disease datasets from the Wellcome Trust Case Control Consortium (WTCCC), we show that OmicKriging allows simple integration of sparse and highly polygenic components yielding comparable performance at a fraction of the computing time of a recently published Bayesian sparse linear mixed model method. Using a cellular growth phenotype, we show that integrating mRNA and microRNA expression data substantially increases performance over either dataset alone. Using clinical statin response, we show improved prediction over existing methods. PMID:24799323

  2. MicroRNA-guided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle.

    PubMed

    Fang, Lingzhao; Sørensen, Peter; Sahana, Goutam; Panitz, Frank; Su, Guosheng; Zhang, Shengli; Yu, Ying; Li, Bingjie; Ma, Li; Liu, George; Lund, Mogens Sandø; Thomsen, Bo

    2018-06-19

    MicroRNAs (miRNA) are key modulators of gene expression and so act as putative fine-tuners of complex phenotypes. Here, we hypothesized that causal variants of complex traits are enriched in miRNAs and miRNA-target networks. First, we conducted a genome-wide association study (GWAS) for seven functional and milk production traits using imputed sequence variants (13~15 million) and >10,000 animals from three dairy cattle breeds, i.e., Holstein (HOL), Nordic red cattle (RDC) and Jersey (JER). Second, we analyzed for enrichments of association signals in miRNAs and their miRNA-target networks. Our results demonstrated that genomic regions harboring miRNA genes were significantly (P < 0.05) enriched with GWAS signals for milk production traits and mastitis, and that enrichments within miRNA-target gene networks were significantly higher than in random gene-sets for the majority of traits. Furthermore, most between-trait and across-breed correlations of enrichments with miRNA-target networks were significantly greater than with random gene-sets, suggesting pleiotropic effects of miRNAs. Intriguingly, genes that were differentially expressed in response to mammary gland infections were significantly enriched in the miRNA-target networks associated with mastitis. All these findings were consistent across three breeds. Collectively, our observations demonstrate the importance of miRNAs and their targets for the expression of complex traits.

  3. Improving breeding efficiency in potato using molecular and quantitative genetics.

    PubMed

    Slater, Anthony T; Cogan, Noel O I; Hayes, Benjamin J; Schultz, Lee; Dale, M Finlay B; Bryan, Glenn J; Forster, John W

    2014-11-01

    Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.

  4. Sexual Conflict and Gender Gap Effects: Associations between Social Context and Sex on Rated Attractiveness and Economic Status

    PubMed Central

    Dixson, Barnaby J.

    2016-01-01

    Human mate choice research often concerns sex differences in the importance of traits such as physical attractiveness and social status. A growing number of studies indicate that cues to social context, including other people who appear in stimulus photographs, can alter that individual’s attractiveness. Fewer studies, however, consider judgements of traits other than physical attractiveness, such as wealth. Here we manipulate the presence/absence of other people in photographs of target models, and test the effects on judgments of both attractiveness and earnings (a proxy for status). Participants (N = 2044) rated either male or female models for either physical attractiveness or social/economic status when presented alone, with same sex others or with opposite sex others. We collectively refer to this manipulation as ‘social context’. Male and female models received similar responses for physical attractiveness, but social context affected ratings of status differently for women and men. Males presented alongside other men received the highest status ratings while females presented alone were given the highest status ratings. Further, the status of females presented alongside a male was constrained by the rated status of that male. Our results suggests that high status may not directly lead to high attractiveness in men, but that status is more readily attributed to men than to women. This divide in status between the sexes is very clear when men and women are presented together, possibly reflecting one underlying mechanism of the modern day gender gap and sexist attitudes to women’s economic participation. This adds complexity to our understanding of the relationship between attractiveness, status, and sex in the light of parental investment theory, sexual conflict and economic theory. PMID:26731414

  5. Compassion Is a Necessity and an Individual and Collective Responsibility Comment on "Why and How Is Compassion Necessary to Provide Good Quality Healthcare?".

    PubMed

    Lown, Beth A

    2015-06-02

    Compassion is a complex process that is innate, determined in part by individual traits, and modulated by a myriad of conscious and unconscious factors, immediate context, social structures and expectations, and organizational "culture." Compassion is an ethical foundation of healthcare and a widely shared value; it is not an optional luxury in the healing process. While the interrelations between individual motivation and social structure are complex, we can choose to act individually and collectively to remove barriers to the innate compassion that most healthcare professionals bring to their work. Doing so will reduce professional burnout, improve the well-being of the healthcare workforce, and facilitate our efforts to achieve the triple aim of improving patients' experiences of care and health while lowering costs. © 2015 by Kerman University of Medical Sciences.

  6. Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders

    PubMed Central

    Marian, Ali J.; van Rooij, Eva; Roberts, Robert

    2016-01-01

    This is the first of 2 review papers on genetics and genomics appearing as part of the series on “omics.” Genomics pertains to all components of an organism’s genes, whereas genetics involves analysis of a specific gene(s) in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper. PMID:28007145

  7. Personality disorders at the interface of psychiatry and the law: legal use and clinical classification

    PubMed Central

    Johnson, Sally C.; Elbogen, Eric B.

    2013-01-01

    Personality disorders have a complex relationship with the law that in many ways reflects their complexity within the clinical and research communities. This paper addresses expert testimony about personality disorders, outlines how personality disorders are assessed in forensic cases, and describes how personality disorders are viewed in different legal contexts. Reasons are identified why personality disorders are not generally accepted as significant mental illness within the legal system, including high incidence of personality dysfunction in criminal populations, frequent comorbidity of personality disorders making it difficult to determine direct causation, and difficulty determining where on a continuum personality traits should be defined as illness (or not). In summary, the legal system, to a significant degree, mirrors the clinical conception of personality disorders as not severe mental diseases or defects, not likely to change, and most often, under volitional control. PMID:24174894

  8. Personality disorders at the interface of psychiatry and the law: legal use and clinical classification.

    PubMed

    Johnson, Sally C; Elbogen, Eric B

    2013-06-01

    Personality disorders have a complex relationship with the law that in many ways reflects their complexity within the clinical and research communities. This paper addresses expert testimony about personality disorders, outlines how personality disorders are assessed in forensic cases, and describes how personality disorders are viewed in different legal contexts. Reasons are identified why personality disorders are not generally accepted as significant mental illness within the legal system, including high incidence of personality dysfunction in criminal populations, frequent comorbidity of personality disorders making it difficult to determine direct causation, and difficulty determining where on a continuum personality traits should be defined as illness (or not). In summary, the legal system, to a significant degree, mirrors the clinical conception of personality disorders as not severe mental diseases or defects, not likely to change, and most often, under volitional control.

  9. Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds.

    PubMed

    Fang, Lingzhao; Sahana, Goutam; Ma, Peipei; Su, Guosheng; Yu, Ying; Zhang, Shengli; Lund, Mogens Sandø; Sørensen, Peter

    2017-08-10

    A better understanding of the genetic architecture underlying complex traits (e.g., the distribution of causal variants and their effects) may aid in the genomic prediction. Here, we hypothesized that the genomic variants of complex traits might be enriched in a subset of genomic regions defined by genes grouped on the basis of "Gene Ontology" (GO), and that incorporating this independent biological information into genomic prediction models might improve their predictive ability. Four complex traits (i.e., milk, fat and protein yields, and mastitis) together with imputed sequence variants in Holstein (HOL) and Jersey (JER) cattle were analysed. We first carried out a post-GWAS analysis in a HOL training population to assess the degree of enrichment of the association signals in the gene regions defined by each GO term. We then extended the genomic best linear unbiased prediction model (GBLUP) to a genomic feature BLUP (GFBLUP) model, including an additional genomic effect quantifying the joint effect of a group of variants located in a genomic feature. The GBLUP model using a single random effect assumes that all genomic variants contribute to the genomic relationship equally, whereas GFBLUP attributes different weights to the individual genomic relationships in the prediction equation based on the estimated genomic parameters. Our results demonstrate that the immune-relevant GO terms were more associated with mastitis than milk production, and several biologically meaningful GO terms improved the prediction accuracy with GFBLUP for the four traits, as compared with GBLUP. The improvement of the genomic prediction between breeds (the average increase across the four traits was 0.161) was more apparent than that it was within the HOL (the average increase across the four traits was 0.020). Our genomic feature modelling approaches provide a framework to simultaneously explore the genetic architecture and genomic prediction of complex traits by taking advantage of independent biological knowledge.

  10. Integrative approaches for large-scale transcriptome-wide association studies

    PubMed Central

    Gusev, Alexander; Ko, Arthur; Shi, Huwenbo; Bhatia, Gaurav; Chung, Wonil; Penninx, Brenda W J H; Jansen, Rick; de Geus, Eco JC; Boomsma, Dorret I; Wright, Fred A; Sullivan, Patrick F; Nikkola, Elina; Alvarez, Marcus; Civelek, Mete; Lusis, Aldons J.; Lehtimäki, Terho; Raitoharju, Emma; Kähönen, Mika; Seppälä, Ilkka; Raitakari, Olli T.; Kuusisto, Johanna; Laakso, Markku; Price, Alkes L.; Pajukanta, Päivi; Pasaniuc, Bogdan

    2016-01-01

    Many genetic variants influence complex traits by modulating gene expression, thus altering the abundance levels of one or multiple proteins. Here, we introduce a powerful strategy that integrates gene expression measurements with summary association statistics from large-scale genome-wide association studies (GWAS) to identify genes whose cis-regulated expression is associated to complex traits. We leverage expression imputation to perform a transcriptome wide association scan (TWAS) to identify significant expression-trait associations. We applied our approaches to expression data from blood and adipose tissue measured in ~3,000 individuals overall. We imputed gene expression into GWAS data from over 900,000 phenotype measurements to identify 69 novel genes significantly associated to obesity-related traits (BMI, lipids, and height). Many of the novel genes are associated with relevant phenotypes in the Hybrid Mouse Diversity Panel. Our results showcase the power of integrating genotype, gene expression and phenotype to gain insights into the genetic basis of complex traits. PMID:26854917

  11. Cancer and life-history traits: lessons from host-parasite interactions.

    PubMed

    Ujvari, Beata; Beckmann, Christa; Biro, Peter A; Arnal, Audrey; Tasiemski, Aurelie; Massol, Francois; Salzet, Michel; Mery, Frederic; Boidin-Wichlacz, Celine; Misse, Dorothee; Renaud, Francois; Vittecoq, Marion; Tissot, Tazzio; Roche, Benjamin; Poulin, Robert; Thomas, Frederic

    2016-04-01

    Despite important differences between infectious diseases and cancers, tumour development (neoplasia) can nonetheless be closely compared to infectious disease because of the similarity of their effects on the body. On this basis, we predict that many of the life-history (LH) responses observed in the context of host-parasite interactions should also be relevant in the context of cancer. Parasites are thought to affect LH traits of their hosts because of strong selective pressures like direct and indirect mortality effects favouring, for example, early maturation and reproduction. Cancer can similarly also affect LH traits by imposing direct costs and/or indirectly by triggering plastic adjustments and evolutionary responses. Here, we discuss how and why a LH focus is a potentially productive but under-exploited research direction for cancer research, by focusing our attention on similarities between infectious disease and cancer with respect to their effects on LH traits and their evolution. We raise the possibility that LH adjustments can occur in response to cancer via maternal/paternal effects and that these changes can be heritable to (adaptively) modify the LH traits of their offspring. We conclude that LH adjustments can potentially influence the transgenerational persistence of inherited oncogenic mutations in populations.

  12. Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits.

    PubMed

    Ippolito, A; Todeschini, R; Vighi, M

    2012-03-01

    Assessing the sensitivity of different species to chemicals is one of the key points in predicting the effects of toxic compounds in the environment. Trait-based predicting methods have proved to be extremely efficient for assessing the sensitivity of macroinvertebrates toward compounds with non specific toxicity (narcotics). Nevertheless, predicting the sensitivity of organisms toward compounds with specific toxicity is much more complex, since it depends on the mode of action of the chemical. The aim of this work was to predict the sensitivity of several freshwater macroinvertebrates toward three classes of plant protection products: organophosphates, carbamates and pyrethroids. Two databases were built: one with sensitivity data (retrieved, evaluated and selected from the U.S. Environmental Protection Agency ECOTOX database) and the other with biological traits. Aside from the "traditional" traits usually considered in ecological analysis (i.e. body size, respiration technique, feeding habits, etc.), multivariate analysis was used to relate the sensitivity of organisms to some other characteristics which may be involved in the process of intoxication. Results confirmed that, besides traditional biological traits, related to uptake capability (e.g. body size and body shape) some traits more related to particular metabolic characteristics or patterns have a good predictive capacity on the sensitivity to these kinds of toxic substances. For example, behavioral complexity, assumed as an indicator of nervous system complexity, proved to be an important predictor of sensitivity towards these compounds. These results confirm the need for more complex traits to predict effects of highly specific substances. One key point for achieving a complete mechanistic understanding of the process is the choice of traits, whose role in the discrimination of sensitivity should be clearly interpretable, and not only statistically significant.

  13. Ontogenetic and life history trait changes associated with convergent ecological specializations in extinct ungulate mammals

    PubMed Central

    Gomes Rodrigues, Helder; Billet, Guillaume

    2017-01-01

    Investigating life history traits in mammals is crucial to understand their survival in changing environments. However, these parameters are hard to estimate in a macroevolutionary context. Here we show that the use of dental ontogenetic parameters can provide clues to better understand the adaptive nature of phenotypic traits in extinct species such as South American notoungulates. This recently extinct order of mammals evolved in a context of important geological, climatic, and environmental variations. Interestingly, notoungulates were mostly herbivorous and acquired high-crowned teeth very early in their evolutionary history. We focused on the variations in crown height, dental eruption pattern, and associated body mass of 69 notoungulate taxa, placed in their phylogenetic and geological contexts. We showed that notoungulates evolved higher crowns several times between 45 and 20 Ma, independently of the variation in body mass. Interestingly, the independent acquisitions of ever-growing teeth were systematically accompanied by eruption of molars faster than permanent premolars. These repeated associations of dental innovations have never been documented for other mammals and raise questions on their significance and causal relationships. We suggest that these correlated changes could originate from ontogenetic adjustments favored by structural constraints, and may indicate accelerated life histories. Complementarily, these more durable and efficient dentitions could be selected to cope with important ingestions of abrasive particles in the context of intensified volcanism and increasing aridity. This study demonstrates that assessing both life history and ecological traits allows a better knowledge of the specializations of extinct mammals that evolved under strong environmental constraints. PMID:28096389

  14. Advanced complex trait analysis.

    PubMed

    Gray, A; Stewart, I; Tenesa, A

    2012-12-01

    The Genome-wide Complex Trait Analysis (GCTA) software package can quantify the contribution of genetic variation to phenotypic variation for complex traits. However, as those datasets of interest continue to increase in size, GCTA becomes increasingly computationally prohibitive. We present an adapted version, Advanced Complex Trait Analysis (ACTA), demonstrating dramatically improved performance. We restructure the genetic relationship matrix (GRM) estimation phase of the code and introduce the highly optimized parallel Basic Linear Algebra Subprograms (BLAS) library combined with manual parallelization and optimization. We introduce the Linear Algebra PACKage (LAPACK) library into the restricted maximum likelihood (REML) analysis stage. For a test case with 8999 individuals and 279,435 single nucleotide polymorphisms (SNPs), we reduce the total runtime, using a compute node with two multi-core Intel Nehalem CPUs, from ∼17 h to ∼11 min. The source code is fully available under the GNU Public License, along with Linux binaries. For more information see http://www.epcc.ed.ac.uk/software-products/acta. a.gray@ed.ac.uk Supplementary data are available at Bioinformatics online.

  15. TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis

    PubMed Central

    Zhang, Bipei

    2017-01-01

    The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway’s core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thaliana ttg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted. PMID:29261137

  16. Managers' Informal Learning: A Trait Activation Theory Perspective

    ERIC Educational Resources Information Center

    Noe, Raymond A.; Tews, Michael J.; Michel, John W.

    2017-01-01

    Research focusing on how individual differences and the work context influence informal learning is growing but incomplete. This study contributes to our understanding of the antecedents of informal learning by examining the relationships of goal orientation, job autonomy and training climate with informal learning. Based on trait activation…

  17. Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat

    USDA-ARS?s Scientific Manuscript database

    Background and aims: Root functional traits are determinants of soil carbon storage; plant productivity; and ecosystemproperties. However, few studies look at both annual and perennial roots, soil properties, and productivity in the context of field scale agricultural systems. Methods: In Long Term...

  18. Constitutional mechanisms of vulnerability and resilience to nicotine dependence

    PubMed Central

    Hiroi, N; Scott, D

    2017-01-01

    The core nature of nicotine dependence is evident in wide variations in how individuals become and remain smokers. Individuals with pre-existing behavioral traits are more likely to develop nicotine dependence and experience difficulty when attempting to quit. Many molecular factors likely contribute to individual variations in the development of nicotine dependence and behavioral traits in complex manners. However, the identification of such molecules has been hampered by the phenotypic complexity of nicotine dependence and the complex ways molecules affect elements of nicotine dependence. We hypothesize that nicotine dependence is, in part, a result of interactions between nicotine and pre-existing behavioral traits. This perspective suggests that the identification of the molecular bases of such pre-existing behavioral traits will contribute to the development of effective methods for reducing smoking dependence and for helping smokers to quit. PMID:19238150

  19. Temperament trait of sensory processing sensitivity moderates cultural differences in neural response.

    PubMed

    Aron, Arthur; Ketay, Sarah; Hedden, Trey; Aron, Elaine N; Rose Markus, Hazel; Gabrieli, John D E

    2010-06-01

    This study focused on a possible temperament-by-culture interaction. Specifically, it explored whether a basic temperament/personality trait (sensory processing sensitivity; SPS), perhaps having a genetic component, might moderate a previously established cultural difference in neural responses when making context-dependent vs context-independent judgments of simple visual stimuli. SPS has been hypothesized to underlie what has been called inhibitedness or reactivity in infants, introversion in adults, and reactivity or responsivness in diverse animal species. Some biologists view the trait as one of two innate strategies-observing carefully before acting vs being first to act. Thus the central characteristic of SPS is hypothesized to be a deep processing of information. Here, 10 European-Americans and 10 East Asians underwent functional magnetic resonance imaging while performing simple visuospatial tasks emphasizing judgments that were either context independent (typically easier for Americans) or context dependent (typically easier for Asians). As reported elsewhere, each group exhibited greater activation for the culturally non-preferred task in frontal and parietal regions associated with greater effort in attention and working memory. However, further analyses, reported here for the first time, provided preliminary support for moderation by SPS. Consistent with the careful-processing theory, high-SPS individuals showed little cultural difference; low-SPS, strong culture differences.

  20. Temperament trait of sensory processing sensitivity moderates cultural differences in neural response

    PubMed Central

    Ketay, Sarah; Hedden, Trey; Aron, Elaine N.; Rose Markus, Hazel; Gabrieli, John D. E.

    2010-01-01

    This study focused on a possible temperament-by-culture interaction. Specifically, it explored whether a basic temperament/personality trait (sensory processing sensitivity; SPS), perhaps having a genetic component, might moderate a previously established cultural difference in neural responses when making context-dependent vs context-independent judgments of simple visual stimuli. SPS has been hypothesized to underlie what has been called inhibitedness or reactivity in infants, introversion in adults, and reactivity or responsivness in diverse animal species. Some biologists view the trait as one of two innate strategies—observing carefully before acting vs being first to act. Thus the central characteristic of SPS is hypothesized to be a deep processing of information. Here, 10 European-Americans and 10 East Asians underwent functional magnetic resonance imaging while performing simple visuospatial tasks emphasizing judgments that were either context independent (typically easier for Americans) or context dependent (typically easier for Asians). As reported elsewhere, each group exhibited greater activation for the culturally non-preferred task in frontal and parietal regions associated with greater effort in attention and working memory. However, further analyses, reported here for the first time, provided preliminary support for moderation by SPS. Consistent with the careful-processing theory, high-SPS individuals showed little cultural difference; low-SPS, strong culture differences. PMID:20388694

  1. Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality1[W][OA

    PubMed Central

    Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.

    2012-01-01

    Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596

  2. Small- and Large-Effect Quantitative Trait Locus Interactions Underlie Variation in Yeast Sporulation Efficiency

    PubMed Central

    Lorenz, Kim; Cohen, Barak A.

    2012-01-01

    Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative trait nucleotides (QTN) have been genetically fixed we identify small-effect QTL that explain approximately half of the remaining variation not explained by the major effects. We find that small-effect QTL are often physically linked to large-effect QTL and that there are extensive genetic interactions between small- and large-effect QTL. A more complete understanding of quantitative traits will require a better understanding of the numbers, effect sizes, and genetic interactions of small-effect QTL. PMID:22942125

  3. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association mapping using dense marker sets has identified some nucleotide variants affecting complex traits which have been validated with fine-mapping and functional analysis. Many sequence variants associated with complex traits in maize have small effects and low repeatability, howev...

  4. Introduction to the Special Issue: Beyond traits: integrating behaviour into plant ecology and biology.

    PubMed

    Cahill, James F

    2015-10-26

    The way that plants are conceptualized in the context of ecological understanding is changing. In one direction, a reductionist school is pulling plants apart into a list of measured 'traits', from which ecological function and outcomes of species interactions may be inferred. This special issue offers an alternative, and more holistic, view: that the ecological functions performed by a plant will be a consequence not only of their complement of traits but also of the ways in which their component parts are used in response to environmental and social conditions. This is the realm of behavioural ecology, a field that has greatly advanced our understanding of animal biology, ecology and evolution. Included in this special issue are 10 articles focussing not on the tried and true metaphor that plant growth is similar to animal movement, but instead on how application of principles from animal behaviour can improve our ability to understand plant biology and ecology. The goals are not to draw false parallels, nor to anthropomorphize plant biology, but instead to demonstrate how existing and robust theory based on fundamental principles can provide novel understanding for plants. Key to this approach is the recognition that behaviour and intelligence are not the same. Many organisms display complex behaviours despite a lack of cognition (as it is traditionally understood) or any hint of a nervous system. The applicability of behavioural concepts to plants is further enhanced with the realization that all organisms face the same harsh forces of natural selection in the context of finding resources, mates and coping with neighbours. As these ecological realities are often highly variable in space and time, it is not surprising that all organisms-even plants-exhibit complex behaviours to handle this variability. The articles included here address diverse topics in behavioural ecology, as applied to plants: general conceptual understanding, plant nutrient foraging, root-root interactions, and using and helping others. As a group, the articles in this special issue demonstrate how plant ecological understanding can be enhanced through incorporation of behavioural ideas and set the stage for future research in the emerging discipline of plant behavioural ecology. Published by Oxford University Press on behalf of the Annals of Botany Company.

  5. A multifactorial analysis of obesity as CVD risk factor: Use of neural network based methods in a nutrigenetics context

    PubMed Central

    2010-01-01

    Background Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm. Results PDM-ANN and GA-ANN were comparatively assessed in terms of their ability to identify the most important factors among the initial 63 variables describing genetic variations, nutrition and gender, able to classify a subject into one of the BMI related classes: normal and overweight. The methods were designed and evaluated using appropriate training and testing sets provided by 3-fold Cross Validation (3-CV) resampling. Classification accuracy, sensitivity, specificity and area under receiver operating characteristics curve were utilized to evaluate the resulted predictive ANN models. The most parsimonious set of factors was obtained by the GA-ANN method and included gender, six genetic variations and 18 nutrition-related variables. The corresponding predictive model was characterized by a mean accuracy equal of 61.46% in the 3-CV testing sets. Conclusions The ANN based methods revealed factors that interactively contribute to obesity trait and provided predictive models with a promising generalization ability. In general, results showed that ANNs and their hybrids can provide useful tools for the study of complex traits in the context of nutrigenetics. PMID:20825661

  6. New insights from monogenic diabetes for “common” type 2 diabetes

    PubMed Central

    Tallapragada, Divya Sri Priyanka; Bhaskar, Seema; Chandak, Giriraj R.

    2015-01-01

    Boundaries between monogenic and complex genetic diseases are becoming increasingly blurred, as a result of better understanding of phenotypes and their genetic determinants. This had a large impact on the way complex disease genetics is now being investigated. Starting with conventional approaches like familial linkage, positional cloning and candidate genes strategies, the scope of complex disease genetics has grown exponentially with scientific and technological advances in recent times. Despite identification of multiple loci harboring common and rare variants associated with complex diseases, interpreting and evaluating their functional role has proven to be difficult. Information from monogenic diseases, especially related to the intermediate traits associated with complex diseases comes handy. The significant overlap between traits and phenotypes of monogenic diseases with related complex diseases provides a platform to understand the disease biology better. In this review, we would discuss about one such complex disease, type 2 diabetes, which shares marked similarity of intermediate traits with different forms of monogenic diabetes. PMID:26300908

  7. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III

    Treesearch

    Kathleen D. Jermstad; Daniel L. Bassoni; Keith S. Jech; Gary A. Ritchie; Nicholas C. Wheeler; David B. Neale

    2003-01-01

    Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring...

  8. Personality correlates of aggression: evidence from measures of the five-factor model, UPPS model of impulsivity, and BIS/BAS.

    PubMed

    Miller, Joshua D; Zeichner, Amos; Wilson, Lauren F

    2012-09-01

    Although many studies of personality and aggression focus on multidimensional traits and higher order personality disorders (e.g., psychopathy), lower order, unidimensional traits may provide more precision in identifying specific aspects of personality that relate to aggression. The current study includes a comprehensive measurement of lower order personality traits in relation to three forms of aggression: reactive, proactive, and relational. Traits related to interpersonal antagonism and impulsivity, especially impulsive behavior in the context of negative affect, were consistently related to aggression across multiple indices. These findings suggest that certain lower order traits are of critical importance to understanding who engages in aggressive behavior and why this behavior occurs.

  9. The Impact of Population Demography and Selection on the Genetic Architecture of Complex Traits

    PubMed Central

    Lohmueller, Kirk E.

    2014-01-01

    Population genetic studies have found evidence for dramatic population growth in recent human history. It is unclear how this recent population growth, combined with the effects of negative natural selection, has affected patterns of deleterious variation, as well as the number, frequency, and effect sizes of mutations that contribute risk to complex traits. Because researchers are performing exome sequencing studies aimed at uncovering the role of low-frequency variants in the risk of complex traits, this topic is of critical importance. Here I use simulations under population genetic models where a proportion of the heritability of the trait is accounted for by mutations in a subset of the exome. I show that recent population growth increases the proportion of nonsynonymous variants segregating in the population, but does not affect the genetic load relative to a population that did not expand. Under a model where a mutation's effect on a trait is correlated with its effect on fitness, rare variants explain a greater portion of the additive genetic variance of the trait in a population that has recently expanded than in a population that did not recently expand. Further, when using a single-marker test, for a given false-positive rate and sample size, recent population growth decreases the expected number of significant associations with the trait relative to the number detected in a population that did not expand. However, in a model where there is no correlation between a mutation's effect on fitness and the effect on the trait, common variants account for much of the additive genetic variance, regardless of demography. Moreover, here demography does not affect the number of significant associations detected. These findings suggest recent population history may be an important factor influencing the power of association tests and in accounting for the missing heritability of certain complex traits. PMID:24875776

  10. Joint Analysis of Strain and Parent-of-Origin Effects for Recombinant Inbred Intercrosses Generated from Multiparent Populations with the Collaborative Cross as an Example.

    PubMed

    Liu, Yanyan; Xiong, Sican; Sun, Wei; Zou, Fei

    2018-02-02

    Multiparent populations (MPP) have become popular resources for complex trait mapping because of their wider allelic diversity and larger population size compared with traditional two-way recombinant inbred (RI) strains. In mice, the collaborative cross (CC) is one of the most popular MPP and is derived from eight genetically diverse inbred founder strains. The strategy of generating RI intercrosses (RIX) from MPP in general and from the CC in particular can produce a large number of completely reproducible heterozygote genomes that better represent the (outbred) human population. Since both maternal and paternal haplotypes of each RIX are readily available, RIX is a powerful resource for studying both standing genetic and epigenetic variations of complex traits, in particular, the parent-of-origin (PoO) effects, which are important contributors to many complex traits. Furthermore, most complex traits are affected by >1 genes, where multiple quantitative trait locus mapping could be more advantageous. In this paper, for MPP-RIX data but taking CC-RIX as a working example, we propose a general Bayesian variable selection procedure to simultaneously search for multiple genes with founder allelic effects and PoO effects. The proposed model respects the complex relationship among RIX samples, and the performance of the proposed method is examined by extensive simulations. Copyright © 2018 Liu et al.

  11. Assessment of Social Traits in Married Couples: Self-Reports versus Spouse Ratings around the Interpersonal Circumplex

    PubMed Central

    Smith, Timothy W.; Williams, Paula G.

    2015-01-01

    Personality traits predict the quality of intimate relationships, and as a result can be useful additions to assessments of couple functioning. For traits involving social behavior, the affiliation (i.e., warmth, friendliness vs. hostility, quarrelsomeness) and control (i.e., dominance vs. deference, submissiveness) dimensions of the interpersonal circumplex (IPC) are an alternative to the five-factor model traits of agreeableness and extraversion, given that they may provide a more specific and relevant description of social behavior in the context of couple functioning. The couple context creates an opportunity to supplement commonly used self-reports with informant ratings. Although substantial correlations between self-reports and partner ratings of personality are well-documented, differences between these assessment modalities in levels of affiliation and control have not been examined previously. The present study of 301 middle-aged and older couples addressed this issue by comparing self-reports and spouse ratings, using parallel forms of a measure of the interpersonal circumplex derived from the NEO PI-R. Participants reported lower trait dominance relative to spouses’ ratings, and less trait hostility. For dominance, this discrepancy was evident at all levels of marital quality, but for hostility it was particularly apparent among couples reporting low marital quality. The tendency to self-report less dominance relative to ratings by spouses was stronger among women than men. These discrepancies may be important in couple assessment and intervention. PMID:26372262

  12. Conservation, Innovation, and Bias: Embryonic Segment Boundaries Position Posterior, but Not Anterior, Head Horns in Adult Beetles.

    PubMed

    Busey, Hannah A; Zattara, Eduardo E; Moczek, Armin P

    2016-07-01

    The integration of form and function of novel traits is a fundamental process during the developmental evolution of complex organisms, yet how novel traits and trait functions integrate into preexisting contexts remains poorly understood. Here, we explore the mechanisms by which the adult insect head has been able to integrate novel traits and features during its ontogeny, focusing on the cephalic horns of Onthophagus beetles. Specifically, using a microablation approach we investigate how different regions of the dorsal head of adult horned beetles relate to their larval and embryonic counterparts and test whether deeply conserved regional boundaries that establish the embryonic head might also facilitate or bias the positioning of cephalic horns along the dorsal adult head. We find that paired posterior horns-the most widespread horn type within the genus-are positioned along a border homologous to the embryonic clypeolabral (CL)-ocular boundary, and that this placement constitutes the ancestral form of horn positioning. In contrast, we observed that the phylogenetically much rarer anterior horns are positioned by larval head regions contained firmly within the CL segment and away from any major preexisting larval head landmarks or boundaries. Lastly, we describe the unexpected finding that ablations at medial head regions can result in ectopic outgrowths bearing terminal structures resembling the more anterior clypeal ridge. We discuss our results in the light of the developmental genetic mechanisms of head formation in holometabolous insects and the role of co-option in innovation and bias in developmental evolution. © 2016 Wiley Periodicals, Inc.

  13. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network1[OPEN

    PubMed Central

    Herman, Dorota; Slabbinck, Bram; Pè, Mario Enrico

    2016-01-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. PMID:26754667

  14. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network.

    PubMed

    Baute, Joke; Herman, Dorota; Coppens, Frederik; De Block, Jolien; Slabbinck, Bram; Dell'Acqua, Matteo; Pè, Mario Enrico; Maere, Steven; Nelissen, Hilde; Inzé, Dirk

    2016-03-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits

    PubMed Central

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris

    2016-01-01

    Phenotyping local crop cultivars is becoming more and more important, as they are an important genetic source for breeding – especially in regard to inherent root system architectures. Machine learning algorithms are promising tools to assist in the analysis of complex data sets; novel approaches are need to apply them on root phenotyping data of mature plants. A greenhouse experiment was conducted in large, sand-filled columns to differentiate 16 European Pisum sativum cultivars based on 36 manually derived root traits. Through combining random forest and support vector machine models, machine learning algorithms were successfully used for unbiased identification of most distinguishing root traits and subsequent pairwise cultivar differentiation. Up to 86% of pea cultivar pairs could be distinguished based on top five important root traits (Timp5) – Timp5 differed widely between cultivar pairs. Selecting top important root traits (Timp) provided a significant improved classification compared to using all available traits or randomly selected trait sets. The most frequent Timp of mature pea cultivars was total surface area of lateral roots originating from tap root segments at 0–5 cm depth. The high classification rate implies that culturing did not lead to a major loss of variability in root system architecture in the studied pea cultivars. Our results illustrate the potential of machine learning approaches for unbiased (root) trait selection and cultivar classification based on rather small, complex phenotypic data sets derived from pot experiments. Powerful statistical approaches are essential to make use of the increasing amount of (root) phenotyping information, integrating the complex trait sets describing crop cultivars. PMID:27999587

  16. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits

    PubMed Central

    Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël

    2007-01-01

    Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748

  17. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees

    Treesearch

    Glenn T. Howe; Sally N. Aitken; David B. Neale; Kathleen D. Jermstad; Nicholas C. Wheeler; Tony H.H Chen

    2003-01-01

    Adaptation to winter cold in temperate and boreal trees involves complex genetic, physiological, and developmental processes. Genecological studies demonstrate the existence of steep genetic clines for cold adaptation traits in relation to environmental (mostly temperature related) gradients. Population differentiation is generally stronger for cold adaptation traits...

  18. Personality dimensions of the captive California sea lion (Zalophus californianus).

    PubMed

    Ciardelli, Lillian E; Weiss, Alexander; Powell, David M; Reiss, Diana

    2017-02-01

    Although the field of animal personality research is growing, information on sea lion personality is lacking. This is surprising as sea lions are charismatic, cognitively advanced, and relatively accessible for research. In addition, their presence in captivity and frequent interactions with humans allow for them to be closely observed in various contexts. These interactions provide a valuable and unique opportunity to assess dimensions of their personality. This study created a personality survey for captive California sea lions (Zalophus californianus) using a 3-step approach that balances comprehensiveness and comparability to other species. Zookeepers (N = 43) at 5 zoological parks rated sea lions (N = 16) on 52 personality traits and 7 training traits. A principal components analysis and regularized exploratory factor analysis revealed 3 dimensions (Extraversion/Impulsivity, Dominance/Confidence, and Reactivity/Undependability). Each dimension was significantly correlated with at least 1 training trait. Pups and juveniles scored significantly higher on Extraversion/Impulsivity than adults. No other age or sex effects were present on this or any other dimension. Sea lions are cognitively complex marine mammals that represent a valuable addition to the group of species in which personality structure and function have been studied. The unique behavioral and ecological characteristics of sea lions offer another vantage point for understanding how personality varies between disparate species. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Genome-wide investigation of genetic changes during modern breeding of Brassica napus.

    PubMed

    Wang, Nian; Li, Feng; Chen, Biyun; Xu, Kun; Yan, Guixin; Qiao, Jiangwei; Li, Jun; Gao, Guizhen; Bancroft, Ian; Meng, Jingling; King, Graham J; Wu, Xiaoming

    2014-08-01

    Considerable genome variation had been incorporated within rapeseed breeding programs over past decades. In past decades, there have been substantial changes in phenotypic properties of rapeseed as a result of extensive breeding effort. Uncovering the underlying patterns of allelic variation in the context of genome organisation would provide knowledge to guide future genetic improvement. We assessed genome-wide genetic changes, including population structure, genetic relatedness, the extent of linkage disequilibrium, nucleotide diversity and genetic differentiation based on F ST outlier detection, for a panel of 472 Brassica napus inbred accessions using a 60 k Brassica Infinium® SNP array. We found genetic diversity varied in different sub-groups. Moreover, the genetic diversity increased from 1950 to 1980 and then remained at a similar level in China and Europe. We also found ~6-10 % genomic regions revealed high F ST values. Some QTLs previously associated with important agronomic traits overlapped with these regions. Overall, the B. napus C genome was found to have more high F ST signals than the A genome, and we concluded that the C genome may contribute more valuable alleles to generate elite traits. The results of this study indicate that considerable genome variation had been incorporated within rapeseed breeding programs over past decades. These results also contribute to understanding the impact of rapeseed improvement on available genome variation and the potential for dissecting complex agronomic traits.

  20. Culture and Personality in International Schools: Are Trait Differences in Students' Personalities Attenuated or Amplified?

    ERIC Educational Resources Information Center

    Wurf, Gerald C.

    2018-01-01

    International schools provide a unique context for examining the influence of culture on adolescent personality and identity. In order to investigate whether intercultural education attenuates or amplifies known cultural differences in personality, the traits of 81 students from Chinese, North American, and mixed Chinese-North American cultural…

  1. Confirming Testlet Effects

    ERIC Educational Resources Information Center

    DeMars, Christine E.

    2012-01-01

    A testlet is a cluster of items that share a common passage, scenario, or other context. These items might measure something in common beyond the trait measured by the test as a whole; if so, the model for the item responses should allow for this testlet trait. But modeling testlet effects that are negligible makes the model unnecessarily…

  2. Organizational Justice: Personality Traits or Emotional Intelligence? An Empirical Study in an Italian Hospital Context

    ERIC Educational Resources Information Center

    Di Fabio, Annamaria; Palazzeschi, Letizia

    2012-01-01

    The purpose of this study was to investigate the role of personality traits and emotional intelligence in relation to organizational justice. The Organizational Justice Scale, the Eysenck Personality Questionnaire-Revised Short Form, and the Bar-On Emotional Quotient Inventory were administered to 384 Italian nurses. The emotional intelligence…

  3. Exploring the Temperament and Character Traits of Rural and Urban Doctors

    ERIC Educational Resources Information Center

    Eley, Diann; Young, Louise; Przybeck, Thomas R.

    2009-01-01

    Context: Australia shares many dilemmas with North America regarding shortages of doctors in rural and remote locations. This preliminary study contributes to the establishment of a psychobiological profile for rural doctors by comparing temperament and character traits with an urban cohort. Purpose: The aim was to compare the individual levels…

  4. Contexts and Individual Differences as Influences on Consumers' Delay Discounting

    ERIC Educational Resources Information Center

    Foxall, Gordon R.; Doyle, John R.; Yani-de-Soriano, Mirella; Wells, Victoria K.

    2011-01-01

    Delay discounting is often considered a universal feature of human choice behavior, but there is controversy over whether it is an individual difference that reflects an underlying psychological trait or a domain-specific behavior. Trait influence on discounting would manifest in (a) highly correlated discount rates for all decisions, regardless…

  5. Negative Effects of Makeup Use on Perceptions of Leadership Ability Across Two Ethnicities.

    PubMed

    James, Esther A; Jenkins, Shauny; Watkins, Christopher D

    2018-01-01

    Cosmetics alter social perceptions, and prior work suggests that cosmetic use may aid female intrasexual competition, making women appear more dominant to other women but more prestigious to other men. It is unclear whether these findings reflect general improvements in perceptions of traits related to women's dominance or if they are specific to mating contexts only. Here, across two ethnicities, we examined effects of cosmetics used for a social night out on perceptions of women's leadership ability, a trait that denotes competence/high status outside of mating contexts. Participants of African and Caucasian ethnicity judged faces for leadership ability where half of the trials differed in ethnicity (own- vs. other-ethnicity face pairs) and the subtlety of the color manipulation (50% vs. 100%). Regardless of the participant's sex or ethnicity, makeup used for a social night out had a negative effect on perceptions of women's leadership ability. Our findings suggest that, in prior work, women are afforded traits related to dominance, as makeup enhances perceptions of traits that are important for successful female mating competition but not other components of social dominance such as leadership.

  6. Beyond Positive Psychology?

    PubMed Central

    McNulty, James K.; Fincham, Frank D.

    2014-01-01

    The field of positive psychology rests on the assumption that certain psychological traits and processes are inherently beneficial for well-being. We review evidence that challenges this assumption. First, we review data from 4 independent longitudinal studies of marriage revealing that 4 ostensibly positive processes—forgiveness, optimistic expectations, positive thoughts, and kindness—can either benefit or harm well-being depending on the context in which they operate. Although all 4 processes predicted better relationship well-being among spouses in healthy marriages, they predicted worse relationship well-being in more troubled marriages. Then, we review evidence from other research that reveals that whether ostensibly positive psychological traits and processes benefit or harm well-being depends on the context of various noninterpersonal domains as well. Finally, we conclude by arguing that any movement to promote well-being may be most successful to the extent that it (a) examines the conditions under which the same traits and processes may promote versus threaten well-being, (b) examines both healthy and unhealthy people, (c) examines well-being over substantial periods of time, and (d) avoids labeling psychological traits and processes as positive or negative. PMID:21787036

  7. Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Wheat quality is defined by culinary end-uses and processing characteristics. Wheat breeders are interested to identify quantitative trait loci for grain, milling, and end-use quality traits because it is imperative to understand the genetic complexity underlying quantitatively inherited traits to ...

  8. How social cognition can inform social decision making.

    PubMed

    Lee, Victoria K; Harris, Lasana T

    2013-12-25

    Social decision-making is often complex, requiring the decision-maker to make inferences of others' mental states in addition to engaging traditional decision-making processes like valuation and reward processing. A growing body of research in neuroeconomics has examined decision-making involving social and non-social stimuli to explore activity in brain regions such as the striatum and prefrontal cortex, largely ignoring the power of the social context. Perhaps more complex processes may influence decision-making in social vs. non-social contexts. Years of social psychology and social neuroscience research have documented a multitude of processes (e.g., mental state inferences, impression formation, spontaneous trait inferences) that occur upon viewing another person. These processes rely on a network of brain regions including medial prefrontal cortex (MPFC), superior temporal sulcus (STS), temporal parietal junction, and precuneus among others. Undoubtedly, these social cognition processes affect social decision-making since mental state inferences occur spontaneously and automatically. Few studies have looked at how these social inference processes affect decision-making in a social context despite the capability of these inferences to serve as predictions that can guide future decision-making. Here we review and integrate the person perception and decision-making literatures to understand how social cognition can inform the study of social decision-making in a way that is consistent with both literatures. We identify gaps in both literatures-while behavioral economics largely ignores social processes that spontaneously occur upon viewing another person, social psychology has largely failed to talk about the implications of social cognition processes in an economic decision-making context-and examine the benefits of integrating social psychological theory with behavioral economic theory.

  9. The Evolution of Sexually Antagonistic Phenotypes

    PubMed Central

    Perry, Jennifer C.; Rowe, Locke

    2015-01-01

    Sexual conflict occurs whenever there is sexually antagonistic selection on shared traits. When shared traits result from interactions (e.g., mating rate) and have a different genetic basis in each sex (i.e., interlocus conflict), then sex-specific traits that shift the value of these interaction traits toward the sex-specific optimum will be favored. Male traits can be favored that increase the fitness of their male bearers, but decrease the fitness of interacting females. Likewise, female traits that reduce the costs of interacting with harmful males may simultaneously impose costs on males. If the evolution of these antagonistic traits changes the nature of selection acting on the opposite sex, interesting coevolutionary dynamics will result. Here we examine three current issues in the study of sexually antagonistic interactions: the female side of sexual conflict, the ecological context of sexual conflict, and the strength of evidence for sexually antagonistic coevolution. PMID:26032715

  10. Does structural complexity determine the morphology of assemblages? An experimental test on three continents.

    PubMed

    Gibb, Heloise; Parr, Catherine L

    2013-01-01

    Understanding how species will respond to global change depends on our ability to distinguish generalities from idiosyncrasies. For diverse, but poorly known taxa, such as insects, species traits may provide a short-cut to predicting species turnover. We tested whether ant traits respond consistently to habitat complexity across geographically independent ant assemblages, using an experimental approach and baits. We repeated our study in six paired simple and complex habitats on three continents with distinct ant faunas. We also compared traits amongst ants with different foraging strategies. We hypothesised that ants would be larger, broader, have longer legs and more dorsally positioned eyes in simpler habitats. In agreement with predictions, ants had longer femurs and dorsally positioned eyes in simple habitats. This pattern was most pronounced for ants that discovered resources. Body size and pronotum width responded as predicted for experimental treatments, but were inconsistent across continents. Monopolising ants were smaller, with shorter femurs than those that occupied or discovered resources. Consistent responses for several traits suggest that many, but not all, aspects of morphology respond predictably to habitat complexity, and that foraging strategy is linked with morphology. Some traits thus have the potential to be used to predict the direction of species turnover, changes in foraging strategy and, potentially, evolution in response to changes in habitat structure.

  11. Biodiversity in a complex world: consolidation and progress in functional biodiversity research.

    PubMed

    Hillebrand, Helmut; Matthiessen, Birte

    2009-12-01

    The global decline of biodiversity caused by human domination of ecosystems worldwide is supposed to alter important process rates and state variables in these ecosystems. However, there is considerable debate on the prevalence and importance of biodiversity effects on ecosystem function (BDEF). Here, we argue that much of the debate stems from two major shortcomings. First, most studies do not directly link the traits leading to increased or decreased function to the traits needed for species coexistence and dominance. We argue that implementing a trait-based approach and broadening the perception of diversity to include trait dissimilarity or trait divergence will result in more realistic predictions on the consequences of altered biodiversity. Second, the empirical and theoretical studies do not reflect the complexity of natural ecosystems, which makes it difficult to transfer the results to natural situations of species loss. We review how different aspects of complexity (trophic structure, multifunctionality, spatial or temporal heterogeneity, and spatial population dynamics) alter our perception of BDEF. We propose future research avenues concisely testing whether acknowledging this complexity will strengthen the observed biodiversity effects. Finally, we propose that a major future task is to disentangle biodiversity effects on ecosystem function from direct changes in function due to human alterations of abiotic constraints.

  12. Sunflower Hybrid Breeding: From Markers to Genomic Selection

    PubMed Central

    Dimitrijevic, Aleksandra; Horn, Renate

    2018-01-01

    In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches combining omic technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics) using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and will give a better insight into the mechanisms behind the traits. PMID:29387071

  13. Using a system of differential equations that models cattle growth to uncover the genetic basis of complex traits.

    PubMed

    Freua, Mateus Castelani; Santana, Miguel Henrique de Almeida; Ventura, Ricardo Vieira; Tedeschi, Luis Orlindo; Ferraz, José Bento Sterman

    2017-08-01

    The interplay between dynamic models of biological systems and genomics is based on the assumption that genetic variation of the complex trait (i.e., outcome of model behavior) arises from component traits (i.e., model parameters) in lower hierarchical levels. In order to provide a proof of concept of this statement for a cattle growth model, we ask whether model parameters map genomic regions that harbor quantitative trait loci (QTLs) already described for the complex trait. We conducted a genome-wide association study (GWAS) with a Bayesian hierarchical LASSO method in two parameters of the Davis Growth Model, a system of three ordinary differential equations describing DNA accretion, protein synthesis and degradation, and fat synthesis. Phenotypic and genotypic data were available for 893 Nellore (Bos indicus) cattle. Computed values for parameter k 1 (DNA accretion rate) ranged from 0.005 ± 0.003 and for α (constant for energy for maintenance requirement) 0.134 ± 0.024. The expected biological interpretation of the parameters is confirmed by QTLs mapped for k 1 and α. QTLs within genomic regions mapped for k 1 are expected to be correlated with the DNA pool: body size and weight. Single nucleotide polymorphisms (SNPs) which were significant for α mapped QTLs that had already been associated with residual feed intake, feed conversion ratio, average daily gain (ADG), body weight, and also dry matter intake. SNPs identified for k 1 were able to additionally explain 2.2% of the phenotypic variability of the complex ADG, even when SNPs for k 1 did not match the genomic regions associated with ADG. Although improvements are needed, our findings suggest that genomic analysis on component traits may help to uncover the genetic basis of more complex traits, particularly when lower biological hierarchies are mechanistically described by mathematical simulation models.

  14. Young Children's Self-Concepts Include Representations of Abstract Traits and the Global Self.

    PubMed

    Cimpian, Andrei; Hammond, Matthew D; Mazza, Giulia; Corry, Grace

    2017-11-01

    There is debate about the abstractness of young children's self-concepts-specifically, whether they include representations of (a) general traits and abilities and (b) the global self. Four studies (N = 176 children aged 4-7) suggested these representations are indeed part of early self-concepts. Studies 1 and 2 reexamined prior evidence that young children cannot represent traits and abilities. The results suggested that children's seemingly immature judgments in previous studies were due to peculiarities of the task context not the inadequacy of children's self-concepts. Similarly, Studies 3 and 4 revealed that, contrary to claims of immaturity in reasoning about the global self, young children update their global self-evaluations in flexible, context-sensitive ways. This evidence suggests continuity in the structure of self-concepts across childhood. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  15. Variability in sperm form and function in the context of sperm competition risk in two Tupinambis lizards

    PubMed Central

    Blengini, Cecilia S; Sergio, Naretto; Gabriela, Cardozo; Giojalas, Laura C; Margarita, Chiaraviglio

    2014-01-01

    In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success. We aim at elucidating the variability of sperm morphometric traits and velocity in two Tupinambis lizards in the context of sperm competition risk. Sperm traits showed substantial variation at all levels examined: between species, among males within species, and within the ejaculate of individual males. Sperm velocity was found to be positively correlated with flagellum: midpiece ratio, with relatively longer flagella associated with faster sperm. Our results document high variability in sperm form and function in lizards. PMID:25505535

  16. Interspecific competition alters nonlinear selection on offspring size in the field.

    PubMed

    Marshall, Dustin J; Monro, Keyne

    2013-02-01

    Offspring size is one of the most important life-history traits with consequences for both the ecology and evolution of most organisms. Surprisingly, formal estimates of selection on offspring size are rare, and the degree to which selection (particularly nonlinear selection) varies among environments remains poorly explored. We estimate linear and nonlinear selection on offspring size, module size, and senescence rate for a sessile marine invertebrate in the field under three different intensities of interspecific competition. The intensity of competition strongly modified the strength and form of selection acting on offspring size. We found evidence for differences in nonlinear selection across the three environments. Our results suggest that the fitness returns of a given offspring size depend simultaneously on their environmental context, and on the context of other offspring traits. Offspring size effects can be more pervasive with regards to their influence on the fitness returns of other traits than previously recognized, and we suggest that the evolution of offspring size cannot be understood in isolation from other traits. Overall, variability in the form and strength of selection on offspring size in nature may reduce the efficacy of selection on offspring size and maintain variation in this trait. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  17. The evolution of multivariate maternal effects.

    PubMed

    Kuijper, Bram; Johnstone, Rufus A; Townley, Stuart

    2014-04-01

    There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations.

  18. The Evolution of Multivariate Maternal Effects

    PubMed Central

    Kuijper, Bram; Johnstone, Rufus A.; Townley, Stuart

    2014-01-01

    There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative, as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in isolation, and that their study in a multivariate context may provide important insights about the nature of past selection. Our results call for more studies that measure multivariate maternal effects in wild populations. PMID:24722346

  19. Sub-dimensions of trait emotional intelligence and health: A critical and systematic review of the literature.

    PubMed

    Baudry, Anne-Sophie; Grynberg, Delphine; Dassonneville, Charlotte; Lelorain, Sophie; Christophe, Véronique

    2018-04-01

    Despite a growing number of studies on the role of the multidimensional construct of trait emotional intelligence (EI) in health, most have focused on global EI, without examining the role of the sub-dimensions. The present systematic review aimed to highlight the current knowledge about self-reported health associated with trait-EI sub-dimensions in general and clinical populations. We searched for the articles including valid self-report scales of trait-EI and health (mental or physical or general) in general and clinical samples. Based on 42 studies, the majority of studies was based on mental health with cross-sectional designs and the TMMS scale, in the general population. Few studies have been focused on physical health and clinical population. The description of studies results revealed that trait-EI sub-dimensions are associated to a greater extent with better mental health, rather than with physical and general health. Furthermore, intrapersonal dimensions, and especially emotion regulation, have stronger effects on health than interpersonal dimensions. Finally, patients with a clinical disorder present lower trait-EI sub-dimensions than the general population. This review supports the importance of focusing on the sub-dimensions of trait-EI to understand better the role of EI in health. The use of scales exclusively based on emotional competences in health contexts is recommended. Developing interventions targeting emotional competences according to the emotional profiles and contexts of individuals could be beneficial to improve health and disease adjustment. © 2018 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  20. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants.

    PubMed

    Blanchard, Benjamin D; Moreau, Corrie S

    2017-02-01

    Evolutionary biologists have long predicted that evolutionary trade-offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family-wide trait database, and conduct various trait-based analyses to show that defensive traits in ants do exhibit an evolutionary trade-off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  1. Ensemble learning of QTL models improves prediction of complex traits

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability, but are less useful for genetic prediction due to difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage ...

  2. The impact of cue learning, trait anxiety and genetic variation in the serotonin 1A receptor on contextual fear.

    PubMed

    Baas, Johanna M P; Heitland, Ivo

    2015-12-01

    In everyday life, aversive events are usually associated with certain predictive cues. Normally, the acquisition of these contingencies enables organisms to appropriately respond to threat. Presence of a threat cue clearly signals 'danger', whereas absence of such cues signals a period of 'safety'. Failure to identify threat cues may lead to chronic states of anxious apprehension in the context in which the threat has been imminent, which may be instrumental in the pathogenesis of anxiety disorders. In this study, existing data from 150 healthy volunteers in a cue and context virtual reality fear conditioning paradigm were reanalyzed. The aim was to further characterize the impact of cue acquisition and trait anxiety, and of a single nucleotide polymorphism in the serotonin 1A receptor gene (5-HTR1A, rs6295), on cued fear and contextual anxiety before and after fear contingencies were explicitly introduced. Fear conditioned responding was quantified with fear potentiation of the eyeblink startle reflex and subjective fear ratings. First, we replicated previous findings that the inability to identify danger cues during acquisition leads to heightened anxious apprehension in the threat context. Second, in subjects who did not identify the danger cue initially, contextual fear was associated with trait anxiety after the contingencies were explicitly instructed. Third, genetic variability within 5-HTR1A (rs6295) was associated with contextual fear independent of awareness or trait anxiety. These findings confirm that failure to acquire cue contingencies impacts contextual fear responding, in association with trait anxiety. The observed 5-HTR1A effect is in line with models of anxiety, but needs further replication. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Nested association mapping for dissecting complex traits using Peanut 58K SNP array

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association studies (GWAS) and linkage mapping have been the two most predominant strategies to dissect complex traits, but are limited by the occurrence of false positives reported for GWAS, and low resolution in the case of linkage analysis. This has led to the development of a joint a...

  4. The genetic architecture of a complex ecological trait: host plant use in the specialist moth, HELIOTHIS SUBFLEXA

    USDA-ARS?s Scientific Manuscript database

    The study of the genetic basis of ecological adaptation remains in its infancy, and most studies have focused on phenotypically simple traits. Host plant use by herbivorous insects is phenotypically complex. While research has illuminated the evolutionary determinants of host use, knowledge of its...

  5. The Genetic Architecture of Complex Traits in Teosinte (Zea mays ssp. parviglumis): New Evidence from Association Mapping

    USDA-ARS?s Scientific Manuscript database

    Our previous association analyses showed that variation at major regulatory genes contributes to standing variation for complex traits in Balsas teosinte, the progenitor of maize. This study expands our previous association mapping effort in teosinte by testing 123 markers in 52 candidate genes for ...

  6. Association analysis of three diverse rice (Oryza sativa L.) germplasm collections for loci regulating grain quality traits

    USDA-ARS?s Scientific Manuscript database

    In rice (Oryza sativa L.), end-use/cooking quality is vital for producers and millions of consumers worldwide. Grain quality is a complex trait with interacting genetic and environmental factors. Deciphering the complex genetic architecture associated with grain quality, will provide vital informati...

  7. Handling Complexity in Animal and Plant Science Research-From Single to Functional Traits: Are We There Yet?

    PubMed

    Roberts, Jessica; Power, Aoife; Chandra, Shaneel; Chapman, James; Cozzolino, Daniel

    2018-05-28

    The current knowledge of the main factors governing livestock, crop and plant quality as well as yield in different species is incomplete. For example, this can be evidenced by the persistence of benchmark crop varieties for many decades in spite of the gains achieved over the same period. In recent years, it has been demonstrated that molecular breeding based on DNA markers has led to advances in breeding (animal and crops). However, these advances are not in the way that it was anticipated initially by the researcher in the field. According to several scientists, one of the main reasons for this was related to the evidence that complex target traits such as grain yield, composition or nutritional quality depend on multiple factors in addition to genetics. Therefore, some questions need to be asked: are the current approaches in molecular genetics the most appropriate to deal with complex traits such as yield or quality? Are the current tools for phenotyping complex traits enough to differentiate among genotypes? Do we need to change the way that data is collected and analysed?

  8. Cultural ecologies of adaptive vs. maladaptive traits: A simple nonlinear model

    NASA Astrophysics Data System (ADS)

    Antoci, Angelo; Russu, Paolo; Sacco, Pier Luigi

    2018-05-01

    In this paper, we generalize a model by Enquist and Ghirlanda [12] to analyze the "macro" dynamics of cumulative culture in a context where there is a coexistence of adaptive and maladaptive cultural traits. In particular, we introduce a different, nonlinear specification of the main processes at work in the cumulative culture dynamics: imperfect transmission of traits, generation of new traits, and switches from adaptive to maladaptive and vice-versa. We find that the system exhibits a variety of dynamic behaviors where the crucial force is the switching between the adaptive and maladaptive nature of a certain trait, with the other processes playing a modulating role. We identify in particular a number of dynamic regimes with distinctive characteristics.

  9. Hidden state prediction: a modification of classic ancestral state reconstruction algorithms helps unravel complex symbioses.

    PubMed

    Zaneveld, Jesse R R; Thurber, Rebecca L V

    2014-01-01

    Complex symbioses between animal or plant hosts and their associated microbiotas can involve thousands of species and millions of genes. Because of the number of interacting partners, it is often impractical to study all organisms or genes in these host-microbe symbioses individually. Yet new phylogenetic predictive methods can use the wealth of accumulated data on diverse model organisms to make inferences into the properties of less well-studied species and gene families. Predictive functional profiling methods use evolutionary models based on the properties of studied relatives to put bounds on the likely characteristics of an organism or gene that has not yet been studied in detail. These techniques have been applied to predict diverse features of host-associated microbial communities ranging from the enzymatic function of uncharacterized genes to the gene content of uncultured microorganisms. We consider these phylogenetically informed predictive techniques from disparate fields as examples of a general class of algorithms for Hidden State Prediction (HSP), and argue that HSP methods have broad value in predicting organismal traits in a variety of contexts, including the study of complex host-microbe symbioses.

  10. The Ecohydrological Context of Drought and Classification of Plant Responses

    NASA Astrophysics Data System (ADS)

    Feng, X.; Ackerly, D.; Dawson, T. E.; Manzoni, S.; Skelton, R. P.; Vico, G.; Thompson, S. E.

    2017-12-01

    Many recent studies on drought-induced vegetation mortality have explored how plant functional traits, and classifications of such traits along axes of, e.g., isohydry - anisohydry, might contribute to predicting drought survival and recovery. As these studies proliferate, concerns are growing about the consistency and predictive value of such classifications. Here, we outline the basis for a systematic classification of drought strategies that accounts for both environmental conditions and functional traits. We (1) identify drawbacks of exiting isohydricity and trait-based metrics, (2) identify major axes of trait and environmental variation that determine drought mortality pathways (hydraulic failure and carbon starvation) using non-dimensional trait groups, and (3) demonstrate that these trait groupings predict physiological drought outcomes using both measured and synthetic data. In doing so we untangle some confounding effects of environment and trait variations that undermine current classification schemes, outline a pathway to progress towards a general classification of drought vulnerability, and advocate for more careful treatment of the environmental conditions within which plant drought responses occur.

  11. Local Genetic Correlation Gives Insights into the Shared Genetic Architecture of Complex Traits.

    PubMed

    Shi, Huwenbo; Mancuso, Nicholas; Spendlove, Sarah; Pasaniuc, Bogdan

    2017-11-02

    Although genetic correlations between complex traits provide valuable insights into epidemiological and etiological studies, a precise quantification of which genomic regions disproportionately contribute to the genome-wide correlation is currently lacking. Here, we introduce ρ-HESS, a technique to quantify the correlation between pairs of traits due to genetic variation at a small region in the genome. Our approach requires GWAS summary data only and makes no distributional assumption on the causal variant effect sizes while accounting for linkage disequilibrium (LD) and overlapping GWAS samples. We analyzed large-scale GWAS summary data across 36 quantitative traits, and identified 25 genomic regions that contribute significantly to the genetic correlation among these traits. Notably, we find 6 genomic regions that contribute to the genetic correlation of 10 pairs of traits that show negligible genome-wide correlation, further showcasing the power of local genetic correlation analyses. Finally, we report the distribution of local genetic correlations across the genome for 55 pairs of traits that show putative causal relationships. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Occam's shadow: levels of analysis in evolutionary ecology - where to next?

    USGS Publications Warehouse

    Cooch, E.G.; Cam, E.; Link, W.A.

    2002-01-01

    Evolutionary ecology is the study of evolutionary processes, and the ecological conditions that influence them. A fundamental paradigm underlying the study of evolution is natural selection. Although there are a variety of operational definitions for natural selection in the literature, perhaps the most general one is that which characterizes selection as the process whereby heritable variation in fitness associated with variation in one or more phenotypic traits leads to intergenerational change in the frequency distribution of those traits. The past 20 years have witnessed a marked increase in the precision and reliability of our ability to estimate one or more components of fitness and characterize natural selection in wild populations, owing particularly to significant advances in methods for analysis of data from marked individuals. In this paper, we focus on several issues that we believe are important considerations for the application and development of these methods in the context of addressing questions in evolutionary ecology. First, our traditional approach to estimation often rests upon analysis of aggregates of individuals, which in the wild may reflect increasingly non-random (selected) samples with respect to the trait(s) of interest. In some cases, analysis at the aggregate level, rather than the individual level, may obscure important patterns. While there are a growing number of analytical tools available to estimate parameters at the individual level, and which can cope (to varying degrees) with progressive selection of the sample, the advent of new methods does not reduce the need to consider carefully the appropriate level of analysis in the first place. Estimation should be motivated a priori by strong theoretical analysis. Doing so provides clear guidance, in terms of both (i) assisting in the identification of realistic and meaningful models to include in the candidate model set, and (ii) providing the appropriate context under which the results are interpreted. Second, while it is true that selection (as defined) operates at the level of the individual, the selection gradient is often (if not generally) conditional on the abundance of the population. As such, it may be important to consider estimating transition rates conditional on both the parameter values of the other individuals in the population (or at least their distribution), and population abundance. This will undoubtedly pose a considerable challenge, for both single- and multi-strata applications. It will also require renewed consideration of the estimation of abundance, especially for open populations. Thirdly, selection typically operates on dynamic, individually varying traits. Such estimation may require characterizing fitness in terms of individual plasticity in one or more state variables, constituting analysis of the norms of reaction of individuals to variable environments. This can be quite complex, especially for traits that are under facultative control. Recent work has indicated that the pattern of selection on such traits is conditional on the relative rates of movement among and frequency of spatially heterogeneous habitats, suggesting analyses of evolution of life histories in open populations can be misleading in some cases.

  13. A systems-genetics approach and data mining tool to assist in the discovery of genes underlying complex traits in Oryza sativa.

    PubMed

    Ficklin, Stephen P; Feltus, Frank Alex

    2013-01-01

    Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance.

  14. A Systems-Genetics Approach and Data Mining Tool to Assist in the Discovery of Genes Underlying Complex Traits in Oryza sativa

    PubMed Central

    Ficklin, Stephen P.; Feltus, Frank Alex

    2013-01-01

    Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance. PMID:23874666

  15. Male pregnancy and the evolution of body segmentation in seahorses and pipefishes.

    PubMed

    Hoffman, Eric A; Mobley, Kenyon B; Jones, Adam G

    2006-02-01

    The evolution of complex traits, which are specified by the interplay of multiple genetic loci and environmental effects, is a topic of central importance in evolutionary biology. Here, we show that body and tail vertebral numbers in fishes of the pipefish and seahorse family (Syngnathidae) can serve as a model for studies of quantitative trait evolution. A quantitative genetic analysis of body and tail vertebrae from field-collected families of the Gulf pipefish, Syngnathus scovelli, shows that both traits exhibit significantly positive additive genetic variance, with heritabilities of 0.75 +/- 0.13 (mean +/- standard error) and 0.46 +/- 0.18, respectively. We do not find any evidence for either phenotypic or genetic correlations between the two traits. Pipefish are characterized by male pregnancy, and phylogenetic consideration of body proportions suggests that the position of eggs on the pregnant male's body may have contributed to the evolution of vertebral counts. In terms of numbers of vertebrae, tail-brooding males have longer tails for a given trunk size than do trunk-brooding males. Overall, these results suggest that vertebral counts in pipefish are heritable traits, capable of a response to selection, and they may have experienced an interesting history of selection due to the phenomenon of male pregnancy. Given that these traits vary among populations within species as well as among species, they appear to provide an excellent model for further research on complex trait evolution. Body segmentation may thus afford excellent opportunities for comparative study of homologous complex traits among disparate vertebrate taxa.

  16. Autistic traits and social anxiety predict differential performance on social cognitive tasks in typically developing young adults

    PubMed Central

    Burk, Joshua A.; Fleckenstein, Katarina; Kozikowski, C. Teal

    2018-01-01

    The current work examined the unique contribution that autistic traits and social anxiety have on tasks examining attention and emotion processing. In Study 1, 119 typically-developing college students completed a flanker task assessing the control of attention to target faces and away from distracting faces during emotion identification. In Study 2, 208 typically-developing college students performed a visual search task which required identification of whether a series of 8 or 16 emotional faces depicted the same or different emotions. Participants with more self-reported autistic traits performed more slowly on the flanker task in Study 1 than those with fewer autistic traits when stimuli depicted complex emotions. In Study 2, participants higher in social anxiety performed less accurately on trials showing all complex faces; participants with autistic traits showed no differences. These studies suggest that traits related to autism and to social anxiety differentially impact social cognitive processing. PMID:29596523

  17. Fitness consequences of larval traits persist across the metamorphic boundary.

    PubMed

    Crean, Angela J; Monro, Keyne; Marshall, Dustin J

    2011-11-01

    Metamorphosis is thought to provide an adaptive decoupling between traits specialized for each life-history stage in species with complex life cycles. However, an increasing number of studies are finding that larval traits can carry-over to influence postmetamorphic performance, suggesting that these life-history stages may not be free to evolve independently of each other. We used a phenotypic selection framework to compare the relative and interactive effects of larval size, time to hatching, and time to settlement on postmetamorphic survival and growth in a marine invertebrate, Styela plicata. Time to hatching was the only larval trait found to be under directional selection, individuals that took more time to hatch into larvae survived better after metamorphosis but grew more slowly. Nonlinear selection was found to act on multivariate trait combinations, once again acting in opposite directions for selection acting via survival and growth. Individuals with above average values of larval traits were most likely to survive, but surviving individuals with intermediate larval traits grew to the largest size. These results demonstrate that larval traits can have multiple, complex fitness consequences that persist across the metamorphic boundary; and thus postmetamorphic selection pressures may constrain the evolution of larval traits. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  18. Trait-mediated trophic interactions: is foraging theory keeping up?

    Treesearch

    Steven F. Railsback; Bret C. Harvey

    2013-01-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can...

  19. Investigating Leadership in Charter Schools: An Examination of the Leadership Traits of Executive Directors in Successful Charter Schools

    ERIC Educational Resources Information Center

    Bloomfield, Brian D.

    2013-01-01

    This study was a qualitative exploration of educational leadership within charter schools in an attempt to identify traits demonstrated by executive directors of successful charter schools. Because much research has been conducted to identify trends in educational leadership, but comparable little within the unique context of charter schools, and…

  20. Facilitating Organizational Learning in the Russian Business Context

    ERIC Educational Resources Information Center

    Molodchik, Mariia; Jardon, Carlos

    2015-01-01

    Purpose: The paper aims to identify particular traits of the Russian context which condition two key enablers of organizational learning--organizational culture and transformational leadership. Design/methodology/approach: Drawing on a literature review, the study determines management challenges by implementation of organizational learning in the…

  1. Personality disorder assessment: the challenge of construct validity.

    PubMed

    Clark, L A; Livesley, W J; Morey, L

    1997-01-01

    We begin with a review of the data that challenge the current categorical system for classifying personality disorder, focusing on the central assessment issues of convergent and discriminant validity. These data indicate that while there is room for improvement in assessment, even greater change is needed in conceptualization than in instrumentation. Accordingly, we then refocus the categorical-dimensional debate in assessment terms, and place it in the broader context of such issues as the hierarchical structure of personality, overlap and distinctions between normal and abnormal personality, sources of information in personality disorder assessment, and overlap and discrimination of trait and state assessment. We conclude that more complex conceptual models that can incorporate both biological and environmental influences on the development of adaptive and maladaptive personality are needed.

  2. Six Classroom Exercises to Teach Natural Selection to Undergraduate Biology Students

    PubMed Central

    Kalinowski, Steven T.; Leonard, Mary J.; Andrews, Tessa M.; Litt, Andrea R.

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural selection and also include discussions on sexual selection, molecular evolution, evolution of complex traits, and the evolution of behavior. The set of six topics gives students the opportunity to see how natural selection operates in a variety of contexts. Pre- and postinstruction testing showed students’ understanding of natural selection increased substantially after completing this series of learning activities. Testing throughout this unit showed steadily increasing student understanding, and surveys indicated students enjoyed the activities. PMID:24006396

  3. Stability of a behavioural syndrome vs. plasticity in individual behaviours over the breeding cycle: Ultimate and proximate explanations.

    PubMed

    Trnka, Alfréd; Samaš, Peter; Grim, Tomáš

    2018-08-01

    Animals often show correlated suites of consistent behavioural traits, i.e., personality or behavioural syndromes. Does this conflict with potential phenotypic plasticity which should be adaptive for animals facing various contexts and situations? This fundamental question has been tested predominantly in studies which were done in non-breeding contexts and under laboratory conditions. Therefore, in the present study we examined the temporal stability of behavioural correlations in a breeding context and under natural conditions. We found that in the great reed warbler (Acrocephalus arundinaceus) females, the intensity of their nest defence formed a behavioural syndrome with two other traits: their aggression during handling (self-defence) and stress responses during handling (breath rate). This syndrome was stable across the nesting cycle: each of the three behavioural traits was highly statistically repeatable between egg and nestling stages and the traits were strongly correlated with each other during both the egg stage and the nestling stage. Despite this consistency (i.e., rank order between stages) the individual behaviours changed their absolute values significantly during the same period. This shows that stable behavioural syndromes might be based on behaviours that are themselves unstable. Thus, syndromes do not inevitably constrain phenotypic plasticity. We suggest that the observed behavioural syndrome is the product of interactions between behavioural and life history trade-offs and that crucial proximate mechanisms for the plasticity and correlations between individual behaviours are hormonally-regulated. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. On the relationship between phylogenetic diversity and trait diversity.

    PubMed

    Tucker, Caroline M; Davies, T Jonathan; Cadotte, Marc W; Pearse, William D

    2018-05-21

    Niche differences are key to understanding the distribution and structure of biodiversity. To examine niche differences, we must first characterize how species occupy niche space, and two approaches are commonly used in the ecological literature. The first uses species traits to estimate multivariate trait space (so-called functional trait diversity, FD); the second quantifies the amount of time or evolutionary history captured by a group of species (phylogenetic diversity, PD). It is often-but controversially-assumed that these putative measures of niche space are at a minimum correlated and perhaps redundant, since more evolutionary time allows for greater accumulation of trait changes. This theoretical expectation remains surprisingly poorly evaluated, particularly in the context of multivariate measures of trait diversity. We evaluated the relationship between phylogenetic diversity and trait diversity using analytical and simulation-based methods across common models of trait evolution. We show that PD correlates with FD increasingly strongly as more traits are included in the FD measure. Our results indicate that phylogenetic diversity can be a useful surrogate for high-dimensional trait diversity, but we also show that the correlation weakens when the underlying process of trait evolution includes variation in rate and optima. © 2018 by the Ecological Society of America.

  5. Identifying Specific Genes Controlling Complex Traits Through A Genome-Wide Screen For cis-Acting Regulatory Elements - An Example Using Marek's Disease

    USDA-ARS?s Scientific Manuscript database

    The identification of specific genes underlying phenotypic variation of complex traits remains one of the greatest challenges in biology despite having genome sequences and more powerful tools. Most genome-wide screens lack sufficient resolving power as they typically depend on linkage. One altern...

  6. Comprehensive Identification Of Specific Genes Controlling Complex Traits Through A Genome-Wide Screen for Cis-Acting Regulatory Elements - An Example Using Marek's Disease

    USDA-ARS?s Scientific Manuscript database

    The comprehensive identification of genes underlying phenotypic variation of complex traits remains a major challenge. Most genome-wide screens lack sufficient resolving power as they typically depend on linkage. An alternate method is to screen for allele-specific expression (ASE), a simple yet pow...

  7. Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids.

    PubMed

    Hauck, Andrew L; Novais, Joana; Grift, Tony E; Bohn, Martin O

    2015-01-01

    The mature root system is a vital plant organ, which is critical to plant performance. Commercial maize (Zea mays L.) breeding has resulted in a steady increase in plant performance over time, along with noticeable changes in above ground vegetative traits, but the corresponding changes in the root system are not presently known. In this study, roughly 2500 core root systems from field trials of a set of 10 diverse elite inbreds formerly protected by Plant Variety Protection plus B73 and Mo17 and the 66 diallel intercrosses among them were evaluated for root traits using high throughput image-based phenotyping. Overall root architecture was modeled by root angle (RA) and stem diameter (SD), while root complexity, the amount of root branching, was quantified using fractal analysis to obtain values for fractal dimension (FD) and fractal abundance (FA). For each trait, per se line effects were highly significant and the most important contributor to trait performance. Mid-parent heterosis and specific combining ability was also highly significant for FD, FA, and RA, while none of the traits showed significant general combining ability. The interaction between the environment and the additive line effect was also significant for all traits. Within the inbred and hybrid generations, FD and FA were highly correlated (rp ≥ 0.74), SD was moderately correlated to FD and FA (0.69 ≥ rp ≥ 0.48), while the correlation between RA and other traits was low (0.13 ≥ rp ≥ -0.40). Inbreds with contrasting effects on complexity and architecture traits were observed, suggesting that root complexity and architecture traits are inherited independently. A more comprehensive understanding of the maize root system and the way it interacts with the environment will be useful for defining adaptation to nutrient acquisition and tolerance to stress from drought and high plant densities, critical factors in the yield gains of modern hybrids.

  8. Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.

    PubMed

    Georges, Michel

    2007-01-01

    Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.

  9. Deciphering the Interdependence between Ecological and Evolutionary Networks.

    PubMed

    Melián, Carlos J; Matthews, Blake; de Andreazzi, Cecilia S; Rodríguez, Jorge P; Harmon, Luke J; Fortuna, Miguel A

    2018-05-24

    Biological systems consist of elements that interact within and across hierarchical levels. For example, interactions among genes determine traits of individuals, competitive and cooperative interactions among individuals influence population dynamics, and interactions among species affect the dynamics of communities and ecosystem processes. Such systems can be represented as hierarchical networks, but can have complex dynamics when interdependencies among levels of the hierarchy occur. We propose integrating ecological and evolutionary processes in hierarchical networks to explore interdependencies in biological systems. We connect gene networks underlying predator-prey trait distributions to food webs. Our approach addresses longstanding questions about how complex traits and intraspecific trait variation affect the interdependencies among biological levels and the stability of meta-ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Advances in cereal genomics and applications in crop breeding.

    PubMed

    Varshney, Rajeev K; Hoisington, David A; Tyagi, Akhilesh K

    2006-11-01

    Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of the genes that are linked to key agronomically important traits. These studies have used molecular genetic mapping of quantitative trait loci (QTL) of several complex traits that are important in breeding. The identification and molecular cloning of genes underlying QTLs offers the possibility to examine the naturally occurring allelic variation for respective complex traits. Novel alleles, identified by functional genomics or haplotype analysis, can enrich the genetic basis of cultivated crops to improve productivity. Advances made in cereal genomics research in recent years thus offer the opportunities to enhance the prediction of phenotypes from genotypes for cereal breeding.

  11. Tilting at Quixotic Trait Loci (QTL): An Evolutionary Perspective on Genetic Causation

    PubMed Central

    Weiss, Kenneth M.

    2008-01-01

    Recent years have seen great advances in generating and analyzing data to identify the genetic architecture of biological traits. Human disease has understandably received intense research focus, and the genes responsible for most Mendelian diseases have successfully been identified. However, the same advances have shown a consistent if less satisfying pattern, in which complex traits are affected by variation in large numbers of genes, most of which have individually minor or statistically elusive effects, leaving the bulk of genetic etiology unaccounted for. This pattern applies to diverse and unrelated traits, not just disease, in basically all species, and is consistent with evolutionary expectations, raising challenging questions about the best way to approach and understand biological complexity. PMID:18711218

  12. Integrating modelling and phenotyping approaches to identify and screen complex traits - Illustration for transpiration efficiency in cereals.

    PubMed

    Chenu, K; van Oosterom, E J; McLean, G; Deifel, K S; Fletcher, A; Geetika, G; Tirfessa, A; Mace, E S; Jordan, D R; Sulman, R; Hammer, G L

    2018-02-21

    Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plants and with their environments, and to target traits of most relevance for the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to identify traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their values in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding program. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programs for improving yield gains in target populations of environments.

  13. Relationship between Personality Traits and Brain Reward Responses when Playing on a Team

    PubMed Central

    Morawetz, Carmen; Kirilina, Evgeniya; Baudewig, Juergen; Heekeren, Hauke R.

    2014-01-01

    Cooperation is an integral part of human social life and we often build teams to achieve certain goals. However, very little is currently understood about emotions with regard to cooperation. Here, we investigated the impact of social context (playing alone versus playing on a team) on emotions while winning or losing a game. We hypothesized that activity in the reward network is modulated by the social context and that personality characteristics might impact team play. We conducted an event-related functional magnetic resonance imaging experiment that involved a simple game of dice. In the team condition, the participant played with a partner against another two-person team. In the single-player condition, the participant played alone against another player. Our results revealed that reward processing in the right amygdala was modulated by the social context. The main effect of outcome (gains versus losses) was associated with increased responses in the reward network. We also found that differences in the reward-related neural response due to social context were associated with specific personality traits. When playing on a team, increased activity in the amygdala during winning was a unique function of openness, while decreased activity in the ventromedial prefrontal cortex and ventral striatum during losing was associated with extraversion and conscientiousness, respectively. In conclusion, we provide evidence that working on a team influences the affective value of a negative outcome by attenuating the negative response associated with it in the amygdala. Our results also show that brain reward responses in a social context are affected by personality traits related to teamwork. PMID:24475262

  14. Relationship between personality traits and brain reward responses when playing on a team.

    PubMed

    Morawetz, Carmen; Kirilina, Evgeniya; Baudewig, Juergen; Heekeren, Hauke R

    2014-01-01

    Cooperation is an integral part of human social life and we often build teams to achieve certain goals. However, very little is currently understood about emotions with regard to cooperation. Here, we investigated the impact of social context (playing alone versus playing on a team) on emotions while winning or losing a game. We hypothesized that activity in the reward network is modulated by the social context and that personality characteristics might impact team play. We conducted an event-related functional magnetic resonance imaging experiment that involved a simple game of dice. In the team condition, the participant played with a partner against another two-person team. In the single-player condition, the participant played alone against another player. Our results revealed that reward processing in the right amygdala was modulated by the social context. The main effect of outcome (gains versus losses) was associated with increased responses in the reward network. We also found that differences in the reward-related neural response due to social context were associated with specific personality traits. When playing on a team, increased activity in the amygdala during winning was a unique function of openness, while decreased activity in the ventromedial prefrontal cortex and ventral striatum during losing was associated with extraversion and conscientiousness, respectively. In conclusion, we provide evidence that working on a team influences the affective value of a negative outcome by attenuating the negative response associated with it in the amygdala. Our results also show that brain reward responses in a social context are affected by personality traits related to teamwork.

  15. The Evolution of Biological Complexity in Digital Organisms

    NASA Astrophysics Data System (ADS)

    Ofria, Charles

    2013-03-01

    When Darwin first proposed his theory of evolution by natural selection, he realized that it had a problem explaining the origins of traits of ``extreme perfection and complication'' such as the vertebrate eye. Critics of Darwin's theory have latched onto this perceived flaw as a proof that Darwinian evolution is impossible. In anticipation of this issue, Darwin described the perfect data needed to understand this process, but lamented that such data are ``scarcely ever possible'' to obtain. In this talk, I will discuss research where we use populations of digital organisms (self-replicating and evolving computer programs) to elucidate the genetic and evolutionary processes by which new, highly-complex traits arise, drawing inspiration directly from Darwin's wistful thinking and hypotheses. During the process of evolution in these fully-transparent computational environments we can measure the incorporation of new information into the genome, a process akin to a natural Maxwell's Demon, and identify the original source of any such information. We show that, as Darwin predicted, much of the information used to encode a complex trait was already in the genome as part of simpler evolved traits, and that many routes must be possible for a new complex trait to have a high probability of successfully evolving. In even more extreme examples of the evolution of complexity, we are now using these same principles to examine the evolutionary dynamics the drive major transitions in evolution; that is transitions to higher-levels of organization, which are some of the most complex evolutionary events to occur in nature. Finally, I will explore some of the implications of this research to other aspects of evolutionary biology and as well as ways that these evolutionary principles can be applied toward solving computational and engineering problems.

  16. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.

    PubMed

    Nazarian, Alireza; Gezan, Salvador A

    2016-03-01

    The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Does Structural Complexity Determine the Morphology of Assemblages? An Experimental Test on Three Continents

    PubMed Central

    Gibb, Heloise; Parr, Catherine L.

    2013-01-01

    Understanding how species will respond to global change depends on our ability to distinguish generalities from idiosyncrasies. For diverse, but poorly known taxa, such as insects, species traits may provide a short-cut to predicting species turnover. We tested whether ant traits respond consistently to habitat complexity across geographically independent ant assemblages, using an experimental approach and baits. We repeated our study in six paired simple and complex habitats on three continents with distinct ant faunas. We also compared traits amongst ants with different foraging strategies. We hypothesised that ants would be larger, broader, have longer legs and more dorsally positioned eyes in simpler habitats. In agreement with predictions, ants had longer femurs and dorsally positioned eyes in simple habitats. This pattern was most pronounced for ants that discovered resources. Body size and pronotum width responded as predicted for experimental treatments, but were inconsistent across continents. Monopolising ants were smaller, with shorter femurs than those that occupied or discovered resources. Consistent responses for several traits suggest that many, but not all, aspects of morphology respond predictably to habitat complexity, and that foraging strategy is linked with morphology. Some traits thus have the potential to be used to predict the direction of species turnover, changes in foraging strategy and, potentially, evolution in response to changes in habitat structure. PMID:23691137

  18. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.

    PubMed

    Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P

    2017-01-01

    In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool to equip modern crops with environment-tailored characteristics.

  19. The tricks of the trait: neural implementation of personality varies with genotype-dependent serotonin levels.

    PubMed

    Hahn, Tim; Heinzel, Sebastian; Notebaert, Karolien; Dresler, Thomas; Reif, Andreas; Lesch, Klaus-Peter; Jakob, Peter M; Windmann, Sabine; Fallgatter, Andreas J

    2013-11-01

    Gray's Reinforcement Sensitivity Theory (RST) has developed into one of the most prominent personality theories of the last decades. The RST postulates a Behavioral Inhibition System (BIS) modulating the reaction to stimuli indicating aversive events. A number of psychiatric disorders including depression, anxiety disorders, and psychosomatic illnesses have been associated with extreme BIS responsiveness. In recent years, neuroimaging studies have implicated the amygdala-septo-hippocampal circuit as an important neural substrate of the BIS. However, the neurogenetic basis of the regulation of this behaviorally and clinically essential system remains unclear. Investigating the effects of two functional genetic polymorphisms (tryptophan hydroxylase-2, G-703T, and serotonin transporter, serotonin transporter gene-linked polymorphic region) in 89 human participants, we find significantly different patterns of associations between BIS scores and amygdala-hippocampus connectivity during loss anticipation for genotype groups regarding both polymorphisms. Specifically, the correlation between amygdala-hippocampus connectivity and Gray's trait anxiety scores is positive in individuals homozygous for the TPH2 G-allele, while carriers of at least one T-allele show a negative association. Likewise, individuals homozygous for the 5-HTTLPR L(A) variant display a positive association while carriers of the S/L(G) allele show a trend towards a negative association. Thus, we show converging evidence of different neural implementation of the BIS depending on genotype-dependent levels of serotonin. We provide evidence suggesting that genotype-dependent serotonin levels and thus putative changes in the efficiency of serotonergic neurotransmission might not only alter brain activation levels directly, but also more fundamentally impact the neural implementation of personality traits. We outline the direct clinical implications arising from this finding and discuss the complex interplay of neural responses, genes and personality traits in this context. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Environmental variability and acoustic signals: a multi-level approach in songbirds.

    PubMed

    Medina, Iliana; Francis, Clinton D

    2012-12-23

    Among songbirds, growing evidence suggests that acoustic adaptation of song traits occurs in response to habitat features. Despite extensive study, most research supporting acoustic adaptation has only considered acoustic traits averaged for species or populations, overlooking intraindividual variation of song traits, which may facilitate effective communication in heterogeneous and variable environments. Fewer studies have explicitly incorporated sexual selection, which, if strong, may favour variation across environments. Here, we evaluate the prevalence of acoustic adaptation among 44 species of songbirds by determining how environmental variability and sexual selection intensity are associated with song variability (intraindividual and intraspecific) and short-term song complexity. We show that variability in precipitation can explain short-term song complexity among taxonomically diverse songbirds, and that precipitation seasonality and the intensity of sexual selection are related to intraindividual song variation. Our results link song complexity to environmental variability, something previously found for mockingbirds (Family Mimidae). Perhaps more importantly, our results illustrate that individual variation in song traits may be shaped by both environmental variability and strength of sexual selection.

  1. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease.

    PubMed

    Astle, William J; Elding, Heather; Jiang, Tao; Allen, Dave; Ruklisa, Dace; Mann, Alice L; Mead, Daniel; Bouman, Heleen; Riveros-Mckay, Fernando; Kostadima, Myrto A; Lambourne, John J; Sivapalaratnam, Suthesh; Downes, Kate; Kundu, Kousik; Bomba, Lorenzo; Berentsen, Kim; Bradley, John R; Daugherty, Louise C; Delaneau, Olivier; Freson, Kathleen; Garner, Stephen F; Grassi, Luigi; Guerrero, Jose; Haimel, Matthias; Janssen-Megens, Eva M; Kaan, Anita; Kamat, Mihir; Kim, Bowon; Mandoli, Amit; Marchini, Jonathan; Martens, Joost H A; Meacham, Stuart; Megy, Karyn; O'Connell, Jared; Petersen, Romina; Sharifi, Nilofar; Sheard, Simon M; Staley, James R; Tuna, Salih; van der Ent, Martijn; Walter, Klaudia; Wang, Shuang-Yin; Wheeler, Eleanor; Wilder, Steven P; Iotchkova, Valentina; Moore, Carmel; Sambrook, Jennifer; Stunnenberg, Hendrik G; Di Angelantonio, Emanuele; Kaptoge, Stephen; Kuijpers, Taco W; Carrillo-de-Santa-Pau, Enrique; Juan, David; Rico, Daniel; Valencia, Alfonso; Chen, Lu; Ge, Bing; Vasquez, Louella; Kwan, Tony; Garrido-Martín, Diego; Watt, Stephen; Yang, Ying; Guigo, Roderic; Beck, Stephan; Paul, Dirk S; Pastinen, Tomi; Bujold, David; Bourque, Guillaume; Frontini, Mattia; Danesh, John; Roberts, David J; Ouwehand, Willem H; Butterworth, Adam S; Soranzo, Nicole

    2016-11-17

    Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Enhancing knowledge and technology adoption in a misunderstood discipline: The weight trait project

    USDA-ARS?s Scientific Manuscript database

    Currently several commercial DNA marker panels are available for complex traits. In the fall of 2009, the American Angus Association integrated the results of an Angus-specific marker panel into their national cattle evaluation for carcass traits. Despite this advancement, there still exists treme...

  3. Systems genetics: a paradigm to improve discovery of candidate genes and mechanisms underlying complex traits.

    PubMed

    Feltus, F Alex

    2014-06-01

    Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Callous-unemotional traits are associated with deficits in recognizing complex emotions in preadolescent children.

    PubMed

    Sharp, Carla; Vanwoerden, Salome; Van Baardewijk, Y; Tackett, J L; Stegge, H

    2015-06-01

    The aims of the current study were to show that the affective component of psychopathy (callous-unemotional traits) is related to deficits in recognizing emotions over and above other psychopathy dimensions and to show that this relationship is driven by a specific deficit in recognizing complex emotions more so than basic emotions. The authors administered the Child Eyes Test to assess emotion recognition in a community sample of preadolescent children between the ages of 10 and 12 (N = 417; 53.6% boys). The task required children to identify a broad array of emotions from photographic stimuli depicting the eye region of the face. Stimuli were then divided into complex or basic emotions. Results demonstrated a unique association between callous-unemotional traits and complex emotions, with weaker associations with basic emotion recognition, over and above other dimensions of psychopathy.

  5. DSM-5 Personality Traits and DSM-IV Personality Disorders

    PubMed Central

    Hopwood, Christopher J.; Thomas, Katherine M.; Markon, Kristian E.; Wright, Aidan G.C.; Krueger, Robert F.

    2014-01-01

    Two issues pertinent to the DSM-5 proposal for personality pathology, the recovery of DSM-IV personality disorders (PDs) by proposed DSM-5 traits and the validity of the proposed DSM-5 hybrid model which incorporates both personality pathology symptoms and maladaptive traits, were evaluated in a large undergraduate sample (N = 808). Proposed DSM-5 traits as assessed with the Personality Inventory for DSM-5 explained a substantial proportion of variance in DSM-IV PDs as assessed with the Personality Diagnostic Questionnaire-4+, and trait indicators of the six proposed DSM-5 PDs were mostly specific to those disorders with some exceptions. Regression analyses support the DSM-5 hybrid model in that pathological traits and an indicator of general personality pathology severity provided incremental information about PDs. Findings are discussed in the context of broader issues around the proposed DSM-5 model of personality disorders. PMID:22250660

  6. Development of personality and the remission and onset of personality pathology.

    PubMed

    Wright, Aidan G C; Pincus, Aaron L; Lenzenweger, Mark F

    2011-12-01

    The current study used the Longitudinal Study of Personality Disorders data set (Lenzenweger, 1999) to examine the development of personality traits in the context of the remission and onset of personality disorder (PD) symptoms. Despite high levels of stability, past research on the development of basic personality traits has also found a mean trend toward increased maturity and that individuals vary in their trajectories of trait development. Research on PD change has shown a similar pattern. We employed individual growth curve modeling to examine the relationship between personality trait development and PD symptom course. We found that both are indeed related and that remission in PD symptoms is associated with patterns of trait development associated with more rapid maturity. In contrast, deviating from the mean of trait development either through no change (i.e., stagnation) or change in the opposite direction (i.e., regression) was associated with developing PD symptoms over the course of the study.

  7. An Interpersonal Analysis of Pathological Personality Traits in DSM-5

    PubMed Central

    Wright, Aidan G.C.; Pincus, Aaron L.; Hopwood, Christopher J.; Thomas, Katherine M.; Markon, Kristian E.; Krueger, Robert F.

    2012-01-01

    The proposed changes to the personality disorder section of the DSM-5 places an increased focus on interpersonal impairment as one of the defining features of personality psychopathology. In addition, a proposed trait model has been offered to provide a means of capturing phenotypic variation on the expression of personality disorder. In this study, we subject the proposed DSM-5 traits to interpersonal analysis using the Inventory of Interpersonal Problems – Circumplex scales via the structural summary method for circumplex data. DSM-5 traits were consistently associated with generalized interpersonal dysfunction suggesting that they are maladaptive in nature, the majority of traits demonstrated discriminant validity with prototypical and differentiated interpersonal problem profiles, and conformed well to a priori hypothesized associations. These results are discussed in the context of the DSM-5 proposal and contemporary interpersonal theory, with a particular focus on potential areas for expansion of the DSM-5 trait model. PMID:22589411

  8. A Calculus for Boxes and Traits in a Java-Like Setting

    NASA Astrophysics Data System (ADS)

    Bettini, Lorenzo; Damiani, Ferruccio; de Luca, Marco; Geilmann, Kathrin; Schäfer, Jan

    The box model is a component model for the object-oriented paradigm, that defines components (the boxes) with clear encapsulation boundaries. Having well-defined boundaries is crucial in component-based software development, because it enables to argue about the interference and interaction between a component and its context. In general, boxes contain several objects and inner boxes, of which some are local to the box and cannot be accessed from other boxes and some can be accessible by other boxes. A trait is a set of methods divorced from any class hierarchy. Traits can be composed together to form classes or other traits. We present a calculus for boxes and traits. Traits are units of fine-grained reuse, whereas boxes can be seen as units of coarse-grained reuse. The calculus is equipped with an ownership type system and allows us to combine coarse- and fine-grained reuse of code by maintaining encapsulation of components.

  9. Pre and Post-copulatory Selection Favor Similar Genital Phenotypes in the Male Broad Horned Beetle.

    PubMed

    House, Clarissa M; Sharma, M D; Okada, Kensuke; Hosken, David J

    2016-10-01

    Sexual selection can operate before and after copulation and the same or different trait(s) can be targeted during these episodes of selection. The direction and form of sexual selection imposed on characters prior to mating has been relatively well described, but the same is not true after copulation. In general, when male-male competition and female choice favor the same traits then there is the expectation of reinforcing selection on male sexual traits that improve competitiveness before and after copulation. However, when male-male competition overrides pre-copulatory choice then the opposite could be true. With respect to studies of selection on genitalia there is good evidence that male genital morphology influences mating and fertilization success. However, whether genital morphology affects reproductive success in more than one context (i.e., mating versus fertilization success) is largely unknown. Here we use multivariate analysis to estimate linear and nonlinear selection on male body size and genital morphology in the flour beetle Gnatocerus cornutus, simulated in a non-competitive (i.e., monogamous) setting. This analysis estimates the form of selection on multiple traits and typically, linear (directional) selection is easiest to detect, while nonlinear selection is more complex and can be stabilizing, disruptive, or correlational. We find that mating generates stabilizing selection on male body size and genitalia, and fertilization causes a blend of directional and stabilizing selection. Differences in the form of selection across these bouts of selection result from a significant alteration of nonlinear selection on body size and a marginally significant difference in nonlinear selection on a component of genital shape. This suggests that both bouts of selection favor similar genital phenotypes, whereas the strong stabilizing selection imposed on male body size during mate acquisition is weak during fertilization. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

  10. Bipartite Community Structure of eQTLs.

    PubMed

    Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John

    2016-09-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.

  11. Imaging-Genetics in Dyslexia: Connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments

    PubMed Central

    Eicher, John D.; Gruen, Jeffrey R.

    2013-01-01

    Dyslexia is a common pediatric disorder that affects 5-17% of schoolchildren in the United States. It is marked by unexpected difficulties in fluent reading despite adequate intelligence, opportunity, and instruction. Classically, neuropsychologists have studied dyslexia using a variety of neurocognitive batteries to gain insight into the specific deficits and impairments in affected children. Since dyslexia is a complex genetic trait with high heritability, analyses conditioned on performance on these neurocognitive batteries have been used to try to identify associated genes. This has led to some successes in identifying contributing genes, although much of the heritability remains unexplained. Additionally, the lack of relevant human brain tissue for analysis and the challenges of modeling a uniquely human trait in animals are barriers to advancing our knowledge of the underlying pathophysiology. In vivo imaging technologies, however, present new opportunities to examine dyslexia and reading skills in a clearly relevant context in human subjects. Recent investigations have started to integrate these imaging data with genetic data in attempts to gain a more complete and complex understanding of reading processes. In addition to bridging the gap from genetic risk variant to a discernible neuroimaging phenotype and ultimately to the clinical impairments in reading performance, the use of neuroimaging phenotypes will reveal novel risk genes and variants. In this article, we briefly discuss the genetic and imaging investigations and take an in-depth look at the recent imaging-genetics investigations of dyslexia. PMID:23916419

  12. What doesn't kill you makes you stronger and weaker: how childhood trauma relates to temperament traits.

    PubMed

    Sudbrack, Roberto; Manfro, Pedro H; Kuhn, Isadora M; de Carvalho, Hudson W; Lara, Diogo R

    2015-03-01

    Childhood trauma arises from damaging experiences and the absence of a secure and reliable environment for child development. Despite many studies on the risk for developing psychiatric disorders, much less is known on the relationship between traumatic experiences and personality traits. A total of 10,800 participants (mean age 27.7 ± 7.8 years old, 69.8% women) anonymously answered the Childhood Trauma Questionnaire (CTQ) and the Affective and Emotional Composite Temperament Scale (AFECTS) in the Brazilian Internet Study on Temperament and Psychopathology (BRAINSTEP). The results showed that total trauma score was associated with lower levels of positive traits (volition, control, coping, and stability), higher scores of negative traits (sensitivity, anger, anxiety) and a higher frequency of depressive and cyclothymic temperaments. Linear regression analysis showed similar findings for emotional abuse and neglect, whereas physical abuse and neglect were positively associated with more volition and coping as well as less fear, sensitivity and anxiety traits, especially in men. This study has a cross-sectional design and the sole use of self-reporting as the main limitations. In conclusion, dysfunctional temperament profiles were associated mainly with emotional trauma and sexual abuse. Some adaptive traits were associated with physical abuse and neglect, especially in men. These results reinforce the negative impact of emotional trauma and people's resilience to physical trauma, which may even translate into adaptive trait expression in males particularly. We propose that the "context-dependent nature" of stress should be further studied to break down the influence of specific types and contexts of adversity on psychological and psychiatric outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Analysis of trait mean and variability versus temperature in trematode cercariae: is there scope for adaptation to global warming?

    PubMed

    Studer, A; Poulin, R

    2014-05-01

    The potential of species for evolutionary adaptation in the context of global climate change has recently come under scrutiny. Estimates of phenotypic variation in biological traits may prove valuable for identifying species, or groups of species, with greater or lower potential for evolutionary adaptation, as this variation, when heritable, represents the basis for natural selection. Assuming that measures of trait variability reflect the evolutionary potential of these traits, we conducted an analysis across trematode species to determine the potential of these parasites as a group to adapt to increasing temperatures. Firstly, we assessed how the mean number of infective stages (cercariae) emerging from infected snail hosts as well as the survival and infectivity of cercariae are related to temperature. Secondly and importantly in the context of evolutionary potential, we assessed how coefficients of variation for these traits are related to temperature, in both cases controlling for other factors such as habitat, acclimatisation, latitude and type of target host. With increasing temperature, an optimum curve was found for mean output and mean infectivity, and a linear decrease for survival of cercariae. For coefficients of variation, temperature was only an important predictor in the case of cercarial output, where results indicated that there is, however, no evidence for limited trait variation at the higher temperature range. No directional trend was found for either variation of survival or infectivity. These results, characterising general patterns among trematodes, suggest that all three traits considered may have potential to change through adaptive evolution. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  14. Beyond the Generational Stereotypes: A Study of U.S. Generation Y Employees in Context

    ERIC Educational Resources Information Center

    Rentz, Kathryn C.

    2015-01-01

    This case study examined the extent to which expected Gen Y traits surfaced in a well-managed U.S. company. The results indicate that certain Gen Y traits typically regarded as undesirable in the workplace are especially persistent, even in an optimal organizational setting, but others are not. The findings also reveal both expected and unexpected…

  15. Examining High-School Students' Preferences toward Learning Environments, Personal Beliefs and Concept Learning in Web-Based Contexts

    ERIC Educational Resources Information Center

    Yang, Fang-Ying; Chang, Cheng-Chieh

    2009-01-01

    The purpose of the study is to explore three kinds of personal affective traits among high-school students and their effects on web-based concept learning. The affective traits include personal preferences about web-based learning environments, personal epistemological beliefs, and beliefs about web-based learning. One hundred 11th graders…

  16. A Preliminary Study of Sex Differences in Emotional Experience.

    PubMed

    Reyes-Aguilar, Azalea; Barrios, Fernando A

    2016-04-01

    Evolutionary approaches have proposed that women possess an advantage over men in emotional functioning to promote attachment for child-rearing. Likewise, sex differences have been reported in traits such as personality and empathy, traits that likely modulate emotional processing. In this preliminary study, sex differences in emotional processing were analyzed, including empathy as a social emotion and personality traits, as well as whether there exist relationships between those measures. Young volunteers (N = 105) indicated the emotional valence, activation, and dominance that they experience in situations categorized as emotionally positive, negative, or neutral. The results of comparison between sexes supported the approach that women showed more sensitivity to high activation and dominance for positive emotions and empathy, and men were more sensitive to negative situations. Correlation analysis showed only one positive relationship between scores of Self-transcendence, a subscale of Temperament and Character Inventory, with activation scores of neutral situations, but not with emotionally charged situations, perhaps because emotions are context-dependent processes while personality traits are considered context-independent descriptions of habits. These findings should be replicated to enrich knowledge about problems in emotional processing. © The Author(s) 2016.

  17. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.

    PubMed

    Mahajan, Anubha; Wessel, Jennifer; Willems, Sara M; Zhao, Wei; Robertson, Neil R; Chu, Audrey Y; Gan, Wei; Kitajima, Hidetoshi; Taliun, Daniel; Rayner, N William; Guo, Xiuqing; Lu, Yingchang; Li, Man; Jensen, Richard A; Hu, Yao; Huo, Shaofeng; Lohman, Kurt K; Zhang, Weihua; Cook, James P; Prins, Bram Peter; Flannick, Jason; Grarup, Niels; Trubetskoy, Vassily Vladimirovich; Kravic, Jasmina; Kim, Young Jin; Rybin, Denis V; Yaghootkar, Hanieh; Müller-Nurasyid, Martina; Meidtner, Karina; Li-Gao, Ruifang; Varga, Tibor V; Marten, Jonathan; Li, Jin; Smith, Albert Vernon; An, Ping; Ligthart, Symen; Gustafsson, Stefan; Malerba, Giovanni; Demirkan, Ayse; Tajes, Juan Fernandez; Steinthorsdottir, Valgerdur; Wuttke, Matthias; Lecoeur, Cécile; Preuss, Michael; Bielak, Lawrence F; Graff, Marielisa; Highland, Heather M; Justice, Anne E; Liu, Dajiang J; Marouli, Eirini; Peloso, Gina Marie; Warren, Helen R; Afaq, Saima; Afzal, Shoaib; Ahlqvist, Emma; Almgren, Peter; Amin, Najaf; Bang, Lia B; Bertoni, Alain G; Bombieri, Cristina; Bork-Jensen, Jette; Brandslund, Ivan; Brody, Jennifer A; Burtt, Noël P; Canouil, Mickaël; Chen, Yii-Der Ida; Cho, Yoon Shin; Christensen, Cramer; Eastwood, Sophie V; Eckardt, Kai-Uwe; Fischer, Krista; Gambaro, Giovanni; Giedraitis, Vilmantas; Grove, Megan L; de Haan, Hugoline G; Hackinger, Sophie; Hai, Yang; Han, Sohee; Tybjærg-Hansen, Anne; Hivert, Marie-France; Isomaa, Bo; Jäger, Susanne; Jørgensen, Marit E; Jørgensen, Torben; Käräjämäki, Annemari; Kim, Bong-Jo; Kim, Sung Soo; Koistinen, Heikki A; Kovacs, Peter; Kriebel, Jennifer; Kronenberg, Florian; Läll, Kristi; Lange, Leslie A; Lee, Jung-Jin; Lehne, Benjamin; Li, Huaixing; Lin, Keng-Hung; Linneberg, Allan; Liu, Ching-Ti; Liu, Jun; Loh, Marie; Mägi, Reedik; Mamakou, Vasiliki; McKean-Cowdin, Roberta; Nadkarni, Girish; Neville, Matt; Nielsen, Sune F; Ntalla, Ioanna; Peyser, Patricia A; Rathmann, Wolfgang; Rice, Kenneth; Rich, Stephen S; Rode, Line; Rolandsson, Olov; Schönherr, Sebastian; Selvin, Elizabeth; Small, Kerrin S; Stančáková, Alena; Surendran, Praveen; Taylor, Kent D; Teslovich, Tanya M; Thorand, Barbara; Thorleifsson, Gudmar; Tin, Adrienne; Tönjes, Anke; Varbo, Anette; Witte, Daniel R; Wood, Andrew R; Yajnik, Pranav; Yao, Jie; Yengo, Loïc; Young, Robin; Amouyel, Philippe; Boeing, Heiner; Boerwinkle, Eric; Bottinger, Erwin P; Chowdhury, Rajiv; Collins, Francis S; Dedoussis, George; Dehghan, Abbas; Deloukas, Panos; Ferrario, Marco M; Ferrières, Jean; Florez, Jose C; Frossard, Philippe; Gudnason, Vilmundur; Harris, Tamara B; Heckbert, Susan R; Howson, Joanna M M; Ingelsson, Martin; Kathiresan, Sekar; Kee, Frank; Kuusisto, Johanna; Langenberg, Claudia; Launer, Lenore J; Lindgren, Cecilia M; Männistö, Satu; Meitinger, Thomas; Melander, Olle; Mohlke, Karen L; Moitry, Marie; Morris, Andrew D; Murray, Alison D; de Mutsert, Renée; Orho-Melander, Marju; Owen, Katharine R; Perola, Markus; Peters, Annette; Province, Michael A; Rasheed, Asif; Ridker, Paul M; Rivadineira, Fernando; Rosendaal, Frits R; Rosengren, Anders H; Salomaa, Veikko; Sheu, Wayne H-H; Sladek, Rob; Smith, Blair H; Strauch, Konstantin; Uitterlinden, André G; Varma, Rohit; Willer, Cristen J; Blüher, Matthias; Butterworth, Adam S; Chambers, John Campbell; Chasman, Daniel I; Danesh, John; van Duijn, Cornelia; Dupuis, Josée; Franco, Oscar H; Franks, Paul W; Froguel, Philippe; Grallert, Harald; Groop, Leif; Han, Bok-Ghee; Hansen, Torben; Hattersley, Andrew T; Hayward, Caroline; Ingelsson, Erik; Kardia, Sharon L R; Karpe, Fredrik; Kooner, Jaspal Singh; Köttgen, Anna; Kuulasmaa, Kari; Laakso, Markku; Lin, Xu; Lind, Lars; Liu, Yongmei; Loos, Ruth J F; Marchini, Jonathan; Metspalu, Andres; Mook-Kanamori, Dennis; Nordestgaard, Børge G; Palmer, Colin N A; Pankow, James S; Pedersen, Oluf; Psaty, Bruce M; Rauramaa, Rainer; Sattar, Naveed; Schulze, Matthias B; Soranzo, Nicole; Spector, Timothy D; Stefansson, Kari; Stumvoll, Michael; Thorsteinsdottir, Unnur; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Wareham, Nicholas J; Wilson, James G; Zeggini, Eleftheria; Scott, Robert A; Barroso, Inês; Frayling, Timothy M; Goodarzi, Mark O; Meigs, James B; Boehnke, Michael; Saleheen, Danish; Morris, Andrew P; Rotter, Jerome I; McCarthy, Mark I

    2018-04-01

    We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10 -7 ); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

  18. Hypnosis and Empathy: A Complex Relationship.

    PubMed

    Barrett, Deirdre

    2016-01-01

    This article takes its inspiration from Wickramasekera II's empathic involvement theory of hypnosis. That model illuminates the mutual territory of hypnosis and empathy-common to much interaction between hypnotist and subject, and to the internal process of subjects as they enact suggestions of the hypnotist. However, the present article suggests that the overlap is not as ubiquitous as the empathic involvement theory asserts. Other aspects of hypnosis involve disengagement from real persons in the environment and dissociating from other ego states of the self. Amnesia and certain uses of focused attention in the hypnotic context run counter to empathy. The fantasizer type of high hypnotizables experiences hypnosis more empathically than do the equally hypnotizable dissociater type. This article also explores the relationship of hypnosis and empathy to other related states, including meditation, dreaming, and psychedelic drugs. The conclusion is that empathy is an important component of many hypnotic phenomena, but that the relationship is as partial and complex as the manner in which other traits, such as imagery ability and dissociation, map onto hypnosis.

  19. Intergenerational Similarity in Callous-Unemotional Traits: Contributions of Hostile Parenting and Household Chaos during Adolescence

    PubMed Central

    Kahn, Rachel E.; Deater-Deckard, Kirby; King-Casas, Brooks; Kim-Spoon, Jungmeen

    2016-01-01

    Extant research has examined both genetic and environmental risk involved in the transmission of callous-unemotional traits in youth populations, yet no study has examined the intergenerational similarity of these traits between parents and their offspring. The current study examined whether the association between parent callous-unemotional traits and child callous-unemotional traits was mediated by parenting behavior and whether this association was moderated by household environment. Participants included 115 dyads of adolescents (48% female; Mean age = 13.97) and their primary caregivers (87% female; Mean age = 42.54). Measures of callous-unemotional traits, hostile parenting, and household chaos were collected from both adolescents and parents. A two group structural equation modeling revealed that hostile parenting serves as a mediating process in the association between parent and adolescent callous-unemotional traits, but only in the context of high household chaos. Our findings suggest that hostile parenting practices are a mediating process that may explain intergenerational similarity in callous-unemotional traits. Additionally, household chaos may exacerbate the effects of hostile parenting on callous-unemotional traits within adolescents, resulting in heightened vulnerability to intergenerational transmission of callous-unemotional traits. PMID:28029442

  20. Intergenerational similarity in callous-unemotional traits: Contributions of hostile parenting and household chaos during adolescence.

    PubMed

    Kahn, Rachel E; Deater-Deckard, Kirby; King-Casas, Brooks; Kim-Spoon, Jungmeen

    2016-12-30

    Extant research has examined both genetic and environmental risk involved in the transmission of callous-unemotional traits in youth populations, yet no study has examined the intergenerational similarity of these traits between parents and their offspring. The current study examined whether the association between parent callous-unemotional traits and child callous-unemotional traits was mediated by parenting behavior and whether this association was moderated by household environment. Participants included 115 dyads of adolescents (48% female; Mean age=13.97) and their primary caregivers (87% female; Mean age=42.54). Measures of callous-unemotional traits, hostile parenting, and household chaos were collected from both adolescents and parents. A two group structural equation modeling revealed that hostile parenting serves as a mediating process in the association between parent and adolescent callous-unemotional traits, but only in the context of high household chaos. Our findings suggest that hostile parenting practices are a mediating process that may explain intergenerational similarity in callous-unemotional traits. Additionally, household chaos may exacerbate the effects of hostile parenting on callous-unemotional traits within adolescents, resulting in heightened vulnerability to intergenerational transmission of callous-unemotional traits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce.

    PubMed

    Lamara, Mebarek; Raherison, Elie; Lenz, Patrick; Beaulieu, Jean; Bousquet, Jean; MacKay, John

    2016-04-01

    Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P < 0.05 to maximize discovery. Over-representation of genes associated for nearly all traits was found in a xylem preferential co-expression group developed in independent experiments. A xylem co-expression network was reconstructed with 180 wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level.

    PubMed

    Toscano, Benjamin J; Gownaris, Natasha J; Heerhartz, Sarah M; Monaco, Cristián J

    2016-09-01

    Behavioral traits and diet were traditionally thought to be highly plastic within individuals. This view was espoused in the widespread use of optimality models, which broadly predict that individuals can modify behavioral traits and diet across ecological contexts to maximize fitness. Yet, research conducted over the past 15 years supports an alternative view; fundamental behavioral traits (e.g., activity level, exploration, sociability, boldness and aggressiveness) and diet often vary among individuals and this variation persists over time and across contexts. This phenomenon has been termed animal personality with regard to behavioral traits and individual specialization with regard to diet. While these aspects of individual-level phenotypic variation have been thus far studied in isolation, emerging evidence suggests that personality and individual specialization may covary, or even be causally related. Building on this work, we present the overarching hypothesis that animal personality can drive specialization through individual differences in various aspects of consumer foraging behavior. Specifically, we suggest pathways by which consumer personality traits influence foraging activity, risk-dependent foraging, roles in social foraging groups, spatial aspects of foraging and physiological drivers of foraging, which in turn can lead to consistent individual differences in food resource use. These pathways provide a basis for generating testable hypotheses directly linking animal personality to ecological dynamics, a major goal in contemporary behavioral ecology.

  3. The relationship between level of autistic traits and local bias in the context of the McGurk effect

    PubMed Central

    Ujiie, Yuta; Asai, Tomohisa; Wakabayashi, Akio

    2015-01-01

    The McGurk effect is a well-known illustration that demonstrates the influence of visual information on hearing in the context of speech perception. Some studies have reported that individuals with autism spectrum disorder (ASD) display abnormal processing of audio-visual speech integration, while other studies showed contradictory results. Based on the dimensional model of ASD, we administered two analog studies to examine the link between level of autistic traits, as assessed by the Autism Spectrum Quotient (AQ), and the McGurk effect among a sample of university students. In the first experiment, we found that autistic traits correlated negatively with fused (McGurk) responses. Then, we manipulated presentation types of visual stimuli to examine whether the local bias toward visual speech cues modulated individual differences in the McGurk effect. The presentation included four types of visual images, comprising no image, mouth only, mouth and eyes, and full face. The results revealed that global facial information facilitates the influence of visual speech cues on McGurk stimuli. Moreover, individual differences between groups with low and high levels of autistic traits appeared when the full-face visual speech cue with an incongruent voice condition was presented. These results suggest that individual differences in the McGurk effect might be due to a weak ability to process global facial information in individuals with high levels of autistic traits. PMID:26175705

  4. In Vivo fitness associated with high virulence in a vertebrate virus is a complex trait regulated by host entry, replication, and shedding

    USGS Publications Warehouse

    Wargo, Andrew R.; Kurath, Gael

    2011-01-01

    The relationship between pathogen fitness and virulence is typically examined by quantifying only one or two pathogen fitness traits. More specifically, it is regularly assumed that within-host replication, as a precursor to transmission, is the driving force behind virulence. In reality, many traits contribute to pathogen fitness, and each trait could drive the evolution of virulence in different ways. Here, we independently quantified four viral infection cycle traits, namely, host entry, within-host replication, within-host coinfection fitness, and shedding, in vivo, in the vertebrate virus Infectious hematopoietic necrosis virus (IHNV). We examined how each of these stages of the viral infection cycle contributes to the fitness of IHNV genotypes that differ in virulence in rainbow trout. This enabled us to determine how infection cycle fitness traits are independently associated with virulence. We found that viral fitness was independently regulated by each of the traits examined, with the largest impact on fitness being provided by within-host replication. Furthermore, the more virulent of the two genotypes of IHNV we used had advantages in all of the traits quantified. Our results are thus congruent with the assumption that virulence and within-host replication are correlated but suggest that infection cycle fitness is complex and that replication is not the only trait associated with virulence.

  5. Similarity Attraction in Learning Contexts: An Empirical Study

    ERIC Educational Resources Information Center

    Varela, Otmar E.; Cater, John James, III; Michel, Norbert

    2011-01-01

    This study tests a process model of learning in which trainer and trainee traits are simultaneously considered as endogenous variables of learning outcomes. The article builds on a social view of training and similarity-attraction paradigms. In this context, the authors hypothesize that trainer-trainee similarity in personality (agreeableness)…

  6. Elucidation of the genetic basis of variation for stem strength characteristics in bread wheat by Associative Transcriptomics.

    PubMed

    Miller, Charlotte N; Harper, Andrea L; Trick, Martin; Werner, Peter; Waldron, Keith; Bancroft, Ian

    2016-07-16

    The current approach to reducing the tendency for wheat grown under high fertilizer conditions to collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes. However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the improvement of stem mechanical strength provides a further way through which lodging can be reduced. To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066 Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions. This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled with the more traditional sequence-based markers, provides the power required to understand the biological context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to accumulate regarding gene function and plant adaptation, but also provides breeders with the information required to make more informed decisions regarding the potential consequences of incorporating the use of particular markers into future breeding programmes.

  7. We can be heroes: MLA's leadership journey(s).

    PubMed

    Tooey, Mary Joan M J

    2017-01-01

    Are there key attributes of leaders? Extrovert versus introvert? Charismatic? Detail oriented? Visionary? How do past leaders of the Medical Library Association (MLA) stack up? What leadership skills will MLA's leaders need in a complex information future? Leadership attributes of MLA's past and current presidents were studied to determine the common characteristics shared among these leaders. An examination of the leadership literature identified critical leadership characteristics essential to successful future leaders. MLA's past, current, and future leadership development efforts were examined. Finally, all members were encouraged to consider leadership with a small "l" and become leaders based on their own strengths, interests, and environments. A text analysis was performed on past presidential profiles, the past twenty-five years of MLA presidents were surveyed, and conversations with MLA's current presidents were held to determine commonalities among leadership characteristics. These were compared and contrasted with characteristics in the current leadership literature regarding the qualities of future leaders. The text analysis of past presidential profiles was not particularly revelatory regarding leadership qualities of early MLA presidents although several generalized traits emerged including collaborative traits; management traits such as effectiveness and efficiency, innovation, and vision; personal traits such as humor and energy; and finally, a passion for the work were revealed. These aligned with traits identified in the survey of the past twenty-five years of MLA presidents and with the thoughts of the president-elect, president, and past president. Additional qualities identified were communication skills, political acumen, creativity, courage, and respect for the opinions and concerns of all members. MLA's current leadership programs were reviewed in the context of examining traits needed by leaders of the future. A lack of focus on the needs of middle managers and the development of individual leadership skills was identified. As an organization, MLA should focus on leadership development in contrast to management training to prepare members as leaders in careers and work that may be vastly different than current situations. Equipping members with the skills enabling them to lead and thrive in these diverse situations, whether as the heads of programs or middle managers, or exploring and empowering individual leadership development while maintaining a passion for the profession, will be essential.

  8. Impacts of Population Structure and Analytical Models in Genome-Wide Association Studies of Complex Traits in Forest Trees: A Case Study in Eucalyptus globulus

    PubMed Central

    Garcia, Martín N.; Acuña, Cintia; Borralho, Nuno M. G.; Grattapaglia, Dario; Marcucci Poltri, Susana N.

    2013-01-01

    The promise of association genetics to identify genes or genomic regions controlling complex traits has generated a flurry of interest. Such phenotype-genotype associations could be useful to accelerate tree breeding cycles, increase precision and selection intensity for late expressing, low heritability traits. However, the prospects of association genetics in highly heterozygous undomesticated forest trees can be severely impacted by the presence of cryptic population and pedigree structure. To investigate how to better account for this, we compared the GLM and five combinations of the Unified Mixed Model (UMM) on data of a low-density genome-wide association study for growth and wood property traits carried out in a Eucalyptus globulus population (n = 303) with 7,680 Diversity Array Technology (DArT) markers. Model comparisons were based on the degree of deviation from the uniform distribution and estimates of the mean square differences between the observed and expected p-values of all significant marker-trait associations detected. Our analysis revealed the presence of population and family structure. There was not a single best model for all traits. Striking differences in detection power and accuracy were observed among the different models especially when population structure was not accounted for. The UMM method was the best and produced superior results when compared to GLM for all traits. Following stringent correction for false discoveries, 18 marker-trait associations were detected, 16 for tree diameter growth and two for lignin monomer composition (S∶G ratio), a key wood property trait. The two DArT markers associated with S∶G ratio on chromosome 10, physically map within 1 Mbp of the ferulate 5-hydroxylase (F5H) gene, providing a putative independent validation of this marker-trait association. This study details the merit of collectively integrate population structure and relatedness in association analyses in undomesticated, highly heterozygous forest trees, and provides additional insights into the nature of complex quantitative traits in Eucalyptus. PMID:24282578

  9. Stress generation in adolescence: Contributions from five-factor model (FFM) personality traits and childhood maltreatment.

    PubMed

    Kushner, Shauna C; Bagby, R Michael; Harkness, Kate L

    2017-04-01

    Youth with depression are theorized to generate stress in their lives because of a complex interaction between their personal characteristics and their chronic environmental context. Using a moderated regression approach, we provided a novel test of this hypothesis by examining whether adolescent 5-factor model personality traits moderate the associations between early emotional, physical, and sexual maltreatment and life events experienced in the past 6 months. Participants in this cross-sectional study were 110 adolescents (M = 16.24, SD = 1.53, age range = 13-17, 74.5% female) with major depressive disorder. The relation of physical maltreatment to dependent interpersonal life events was moderated by extraversion. Among physically maltreated youth, dependent interpersonal events were positively associated with extraversion. Further, the relation of sexual maltreatment to independent events were moderated by extraversion and agreeableness. Among sexually maltreated youth, independent events were negatively associated with extraversion and positively associated with agreeableness. The observed vulnerability-risk interactions are discussed in terms of their implications for understanding the role of stress generation mechanisms in an integrated model of depression. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. LAILAPS: the plant science search engine.

    PubMed

    Esch, Maria; Chen, Jinbo; Colmsee, Christian; Klapperstück, Matthias; Grafahrend-Belau, Eva; Scholz, Uwe; Lange, Matthias

    2015-01-01

    With the number of sequenced plant genomes growing, the number of predicted genes and functional annotations is also increasing. The association between genes and phenotypic traits is currently of great interest. Unfortunately, the information available today is widely scattered over a number of different databases. Information retrieval (IR) has become an all-encompassing bioinformatics methodology for extracting knowledge from complex, heterogeneous and distributed databases, and therefore can be a useful tool for obtaining a comprehensive view of plant genomics, from genes to traits. Here we describe LAILAPS (http://lailaps.ipk-gatersleben.de), an IR system designed to link plant genomic data in the context of phenotypic attributes for a detailed forward genetic research. LAILAPS comprises around 65 million indexed documents, encompassing >13 major life science databases with around 80 million links to plant genomic resources. The LAILAPS search engine allows fuzzy querying for candidate genes linked to specific traits over a loosely integrated system of indexed and interlinked genome databases. Query assistance and an evidence-based annotation system enable time-efficient and comprehensive information retrieval. An artificial neural network incorporating user feedback and behavior tracking allows relevance sorting of results. We fully describe LAILAPS's functionality and capabilities by comparing this system's performance with other widely used systems and by reporting both a validation in maize and a knowledge discovery use-case focusing on candidate genes in barley. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. The "CEO" of women's work lives: how Big Five Conscientiousness, Extraversion, and Openness predict 50 years of work experiences in a changing sociocultural context.

    PubMed

    George, Linda G; Helson, Ravenna; John, Oliver P

    2011-10-01

    Few long-term longitudinal studies have examined how dimensions of personality are related to work lives, especially in women. We propose a life-course framework for studying work over time, from preparatory activities (in the 20s) to descending work involvement (after age 60), using 50 years of life data from the women in the Mills Longitudinal Study. We hypothesized differential work effects for Extraversion (work as pursuit of rewards), Openness (work as self-actualization), and Conscientiousness (work as duty) and measured these 3 traits as predictor variables when the women were still in college. In a prospective longitudinal design, we then studied how these traits predicted the women's subsequent work lives from young adulthood to age 70 and how these effects depended on the changing sociocultural context. Specifically, the young adulthood of the Mills women in the mid-1960s was rigidly gender typed and family oriented; neither work nor education variables at that time were predicted from earlier personality traits. However, as women's roles changed, later work variables became related to all 3 traits, as expected from current Big Five theory and research. For example, early personality traits predicted the timing of involvement in work, the kinds of jobs chosen, and the status and satisfaction achieved, as well as continued work participation and financial security in late adulthood. Early traits were also linked to specific cultural influences, such as the traditional feminine role, the women's movement, and graduate education for careers. 2011 APA, all rights reserved

  12. doublesex alters aggressiveness as a function of social context and sex in the polyphenic beetle Onthophagus taurus.

    PubMed

    Beckers, Oliver M; Kijimoto, Teiya; Moczek, Armin P

    2017-10-01

    Despite sharing nearly the same genome, individuals within the same species can vary drastically in both morphology and behaviour as a function of developmental stage, sex or developmental plasticity. Thus, regulatory processes must exist that enable the stage-, sex- or environment-specific expression of traits and their integration during ontogeny, yet exactly how trait complexes are co-regulated and integrated is poorly understood. In this study, we explore the developmental genetic basis of the regulation and integration of environment-dependent sexual dimorphism in behaviour and morphology in the horn-polyphenic dung beetle Onthophagus taurus through the experimental manipulation of the transcription factor doublesex (dsx). The gene dsx plays a profound role in the developmental regulation of morphological differences between sexes as well as alternative male morphs by inhibiting horn formation in females but enabling nutrition-responsive horn growth in males. Specifically, we investigated whether experimental downregulation of dsx expression affects male and female aggressive and courtship behaviours in two social contexts: interactions between individuals of the same sex and interactions between males and females. We find that dsx downregulation significantly alters aggressiveness in both males and females, yet does so differently for both sexes as a function of social context: dsx RNAi males exhibited elevated aggression towards males but showed reduced aggression towards females, whereas dsx RNAi females became more aggressive towards males, while their aggressiveness towards other females was unaffected. Moreover, we document unexpectedly high levels of female aggression independent of dsx treatment in both wild-type and control-injected individuals. Lastly, we found no effects of dsx RNAi on courtship and mating behaviours. We discuss the role of dsx in the regulation of sex-specific and plastic behaviours, the unexpectedly high levels of aggression of hornless dsx RNAi males in relation to the well-established description of the hornless sneaker phenotype and the potential ecological function of high female aggression.

  13. Digestive Organ in the Female Reproductive Tract Borrows Genes from Multiple Organ Systems to Adopt Critical Functions

    PubMed Central

    Meslin, Camille; Plakke, Melissa S.; Deutsch, Aaron B.; Small, Brandon S.; Morehouse, Nathan I.; Clark, Nathan L.

    2015-01-01

    Persistent adaptive challenges are often met with the evolution of novel physiological traits. Although there are specific examples of single genes providing new physiological functions, studies on the origin of complex organ functions are lacking. One such derived set of complex functions is found in the Lepidopteran bursa copulatrix, an organ within the female reproductive tract that digests nutrients from the male ejaculate or spermatophore. Here, we characterized bursa physiology and the evolutionary mechanisms by which it was equipped with digestive and absorptive functionality. By studying the transcriptome of the bursa and eight other tissues, we revealed a suite of highly expressed and secreted gene products providing the bursa with a combination of stomach-like traits for mechanical and enzymatic digestion of the male spermatophore. By subsequently placing these bursa genes in an evolutionary framework, we found that the vast majority of their novel digestive functions were co-opted by borrowing genes that continue to be expressed in nonreproductive tissues. However, a number of bursa-specific genes have also arisen, some of which represent unique gene families restricted to Lepidoptera and may provide novel bursa-specific functions. This pattern of promiscuous gene borrowing and relatively infrequent evolution of tissue-specific duplicates stands in contrast to studies of the evolution of novelty via single gene co-option. Our results suggest that the evolution of complex organ-level phenotypes may often be enabled (and subsequently constrained) by changes in tissue specificity that allow expression of existing genes in novel contexts, such as reproduction. The extent to which the selective pressures encountered in these novel roles require resolution via duplication and sub/neofunctionalization is likely to be determined by the need for specialized reproductive functionality. Thus, complex physiological phenotypes such as that found in the bursa offer important opportunities for understanding the relative role of pleiotropy and specialization in adaptive evolution. PMID:25725432

  14. TYK2 Protein-Coding Variants Protect against Rheumatoid Arthritis and Autoimmunity, with No Evidence of Major Pleiotropic Effects on Non-Autoimmune Complex Traits

    PubMed Central

    Diogo, Dorothée; Bastarache, Lisa; Liao, Katherine P.; Graham, Robert R.; Fulton, Robert S.; Greenberg, Jeffrey D.; Eyre, Steve; Bowes, John; Cui, Jing; Lee, Annette; Pappas, Dimitrios A.; Kremer, Joel M.; Barton, Anne; Coenen, Marieke J. H.; Franke, Barbara; Kiemeney, Lambertus A.; Mariette, Xavier; Richard-Miceli, Corrine; Canhão, Helena; Fonseca, João E.; de Vries, Niek; Tak, Paul P.; Crusius, J. Bart A.; Nurmohamed, Michael T.; Kurreeman, Fina; Mikuls, Ted R.; Okada, Yukinori; Stahl, Eli A.; Larson, David E.; Deluca, Tracie L.; O'Laughlin, Michelle; Fronick, Catrina C.; Fulton, Lucinda L.; Kosoy, Roman; Ransom, Michael; Bhangale, Tushar R.; Ortmann, Ward; Cagan, Andrew; Gainer, Vivian; Karlson, Elizabeth W.; Kohane, Isaac; Murphy, Shawn N.; Martin, Javier; Zhernakova, Alexandra; Klareskog, Lars; Padyukov, Leonid; Worthington, Jane; Mardis, Elaine R.; Seldin, Michael F.; Gregersen, Peter K.; Behrens, Timothy; Raychaudhuri, Soumya; Denny, Joshua C.; Plenge, Robert M.

    2015-01-01

    Despite the success of genome-wide association studies (GWAS) in detecting a large number of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack of information on the causal genes leaves important challenges to interpret GWAS results in the context of the disease biology. Here, we genetically fine-map the RA risk locus at 19p13 to define causal variants, and explore the pleiotropic effects of these same variants in other complex traits. First, we combined Immunochip dense genotyping (n = 23,092 case/control samples), Exomechip genotyping (n = 18,409 case/control samples) and targeted exon-sequencing (n = 2,236 case/controls samples) to demonstrate that three protein-coding variants in TYK2 (tyrosine kinase 2) independently protect against RA: P1104A (rs34536443, OR = 0.66, P = 2.3x10-21), A928V (rs35018800, OR = 0.53, P = 1.2x10-9), and I684S (rs12720356, OR = 0.86, P = 4.6x10-7). Second, we show that the same three TYK2 variants protect against systemic lupus erythematosus (SLE, Pomnibus = 6x10-18), and provide suggestive evidence that two of the TYK2 variants (P1104A and A928V) may also protect against inflammatory bowel disease (IBD; Pomnibus = 0.005). Finally, in a phenome-wide association study (PheWAS) assessing >500 phenotypes using electronic medical records (EMR) in >29,000 subjects, we found no convincing evidence for association of P1104A and A928V with complex phenotypes other than autoimmune diseases such as RA, SLE and IBD. Together, our results demonstrate the role of TYK2 in the pathogenesis of RA, SLE and IBD, and provide supporting evidence for TYK2 as a promising drug target for the treatment of autoimmune diseases. PMID:25849893

  15. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits.

    PubMed

    Diogo, Dorothée; Bastarache, Lisa; Liao, Katherine P; Graham, Robert R; Fulton, Robert S; Greenberg, Jeffrey D; Eyre, Steve; Bowes, John; Cui, Jing; Lee, Annette; Pappas, Dimitrios A; Kremer, Joel M; Barton, Anne; Coenen, Marieke J H; Franke, Barbara; Kiemeney, Lambertus A; Mariette, Xavier; Richard-Miceli, Corrine; Canhão, Helena; Fonseca, João E; de Vries, Niek; Tak, Paul P; Crusius, J Bart A; Nurmohamed, Michael T; Kurreeman, Fina; Mikuls, Ted R; Okada, Yukinori; Stahl, Eli A; Larson, David E; Deluca, Tracie L; O'Laughlin, Michelle; Fronick, Catrina C; Fulton, Lucinda L; Kosoy, Roman; Ransom, Michael; Bhangale, Tushar R; Ortmann, Ward; Cagan, Andrew; Gainer, Vivian; Karlson, Elizabeth W; Kohane, Isaac; Murphy, Shawn N; Martin, Javier; Zhernakova, Alexandra; Klareskog, Lars; Padyukov, Leonid; Worthington, Jane; Mardis, Elaine R; Seldin, Michael F; Gregersen, Peter K; Behrens, Timothy; Raychaudhuri, Soumya; Denny, Joshua C; Plenge, Robert M

    2015-01-01

    Despite the success of genome-wide association studies (GWAS) in detecting a large number of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack of information on the causal genes leaves important challenges to interpret GWAS results in the context of the disease biology. Here, we genetically fine-map the RA risk locus at 19p13 to define causal variants, and explore the pleiotropic effects of these same variants in other complex traits. First, we combined Immunochip dense genotyping (n = 23,092 case/control samples), Exomechip genotyping (n = 18,409 case/control samples) and targeted exon-sequencing (n = 2,236 case/controls samples) to demonstrate that three protein-coding variants in TYK2 (tyrosine kinase 2) independently protect against RA: P1104A (rs34536443, OR = 0.66, P = 2.3 x 10(-21)), A928V (rs35018800, OR = 0.53, P = 1.2 x 10(-9)), and I684S (rs12720356, OR = 0.86, P = 4.6 x 10(-7)). Second, we show that the same three TYK2 variants protect against systemic lupus erythematosus (SLE, Pomnibus = 6 x 10(-18)), and provide suggestive evidence that two of the TYK2 variants (P1104A and A928V) may also protect against inflammatory bowel disease (IBD; P(omnibus) = 0.005). Finally, in a phenome-wide association study (PheWAS) assessing >500 phenotypes using electronic medical records (EMR) in >29,000 subjects, we found no convincing evidence for association of P1104A and A928V with complex phenotypes other than autoimmune diseases such as RA, SLE and IBD. Together, our results demonstrate the role of TYK2 in the pathogenesis of RA, SLE and IBD, and provide supporting evidence for TYK2 as a promising drug target for the treatment of autoimmune diseases.

  16. Human evolution. Evolution of early Homo: an integrated biological perspective.

    PubMed

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-04

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments. Copyright © 2014, American Association for the Advancement of Science.

  17. The synergistic effect of prosociality and physical attractiveness on mate desirability.

    PubMed

    Ehlebracht, Daniel; Stavrova, Olga; Fetchenhauer, Detlef; Farrelly, Daniel

    2017-12-17

    Mate selection requires a prioritization and joint evaluation of different traits present or absent in potential mates. Herein, we focus on two such traits - physical attractiveness and prosociality - and examine how they jointly shape impressions of overall desirability. We report on two related experiments which make use of an innovative methodology combining large samples of raters and target persons (i.e., stimuli) and information on targets' behaviour in economic games representing altruistic behaviour (Experiment 1) and trustworthiness (Experiment 2), two important facets of prosociality. In accordance with predictions derived from a cognitive perspective on mate choice and sexual strategies theory, the results show that the impact of being prosocial on an individual's overall desirability was increased further by them also being physically attractive, but only in long-term mating contexts. Furthermore, we show that men's mate preferences for certain prosocial traits (i.e., trustworthiness) were more context-dependent than women's due to differential evolutionary pressures for ancestral men and women. © 2017 The British Psychological Society.

  18. The Dynamic Association between Healthy Leisure and Substance Use in South African Adolescents: A State and Trait Perspective

    PubMed Central

    Weybright, Elizabeth H.; Caldwell, Linda L.; Ram, Nilam; Smith, Edward; Jacobs, Joachim

    2014-01-01

    South Africa has an increasing adolescent substance use problem, lack of leisure opportunities and resources, and high adolescent discretionary time. How aspects of leisure relate to adolescent substance use is not well understood. Little research has been conducted on the leisure behaviors and experiences of South African adolescents, if and how those behaviors are associated with substance use, and ecological influences on those associations. By applying multi-level models to longitudinal data obtained from youth living in high-risk contexts, this research examines the association between state and trait healthy leisure and adolescent substance use and how perceived parental over-control moderates those associations. Results indicate healthy leisure protects against substance use at state and trait levels, provides empirical support that risk behavior can be addressed through leisure-based interventions, and emphasizes the importance of both short- and long-term processes when considering the context-dependent nature of adolescents’ leisure experiences. PMID:24948905

  19. From cultural traditions to cumulative culture: parameterizing the differences between human and nonhuman culture.

    PubMed

    Kempe, Marius; Lycett, Stephen J; Mesoudi, Alex

    2014-10-21

    Diverse species exhibit cultural traditions, i.e. population-specific profiles of socially learned traits, from songbird dialects to primate tool-use behaviours. However, only humans appear to possess cumulative culture, in which cultural traits increase in complexity over successive generations. Theoretically, it is currently unclear what factors give rise to these phenomena, and consequently why cultural traditions are found in several species but cumulative culture in only one. Here, we address this by constructing and analysing cultural evolutionary models of both phenomena that replicate empirically attestable levels of cultural variation and complexity in chimpanzees and humans. In our model of cultural traditions (Model 1), we find that realistic cultural variation between populations can be maintained even when individuals in different populations invent the same traits and migration between populations is frequent, and under a range of levels of social learning accuracy. This lends support to claims that putative cultural traditions are indeed cultural (rather than genetic) in origin, and suggests that cultural traditions should be widespread in species capable of social learning. Our model of cumulative culture (Model 2) indicates that both the accuracy of social learning and the number of cultural demonstrators interact to determine the complexity of a trait that can be maintained in a population. Combining these models (Model 3) creates two qualitatively distinct regimes in which there are either a few, simple traits, or many, complex traits. We suggest that these regimes correspond to nonhuman and human cultures, respectively. The rarity of cumulative culture in nature may result from this interaction between social learning accuracy and number of demonstrators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Importance of whole-plant biomass allocation and reproductive timing to habitat differentiation across the North American sunflowers.

    PubMed

    Mason, Chase M; Goolsby, Eric W; Davis, Kaleigh E; Bullock, Devon V; Donovan, Lisa A

    2017-05-01

    Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant fitness and environmental adaptation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Importance of whole-plant biomass allocation and reproductive timing to habitat differentiation across the North American sunflowers

    PubMed Central

    Goolsby, Eric W.; Davis, Kaleigh E.; Bullock, Devon V.; Donovan, Lisa A.

    2017-01-01

    Abstract Background and Aims Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. Methods A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Key Results Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Conclusions Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant fitness and environmental adaptation. PMID:28203721

  2. Does plant architectural complexity increase with increasing habitat complexity? A test with a pioneer shrub in the Brazilian Cerrado.

    PubMed

    Silveira, F A O; Oliveira, E G

    2013-05-01

    Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna) area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences) of Miconia albicans (SW.) Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS), shrublands (cerrado sensu strico, CE) and woodlands (cerradão, CD). As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.

  3. Anger and hostility from the perspective of the Big Five personality model.

    PubMed

    Sanz, Jesús; García-Vera, María Paz; Magán, Inés

    2010-06-01

    This study was aimed at examining the relationships of the personality dimensions of the five-factor model or Big Five with trait anger and with two specific traits of hostility (mistrust and confrontational attitude), and identifying the similarities and differences between trait anger and hostility in the framework of the Big Five. In a sample of 353 male and female adults, the Big Five explained a significant percentage of individual differences in trait anger and hostility after controlling the effects due to the relationship between both constructs and content overlapping across scales. In addition, trait anger was primarily associated with neuroticism, whereas mistrust and confrontational attitude were principally related to low agreeableness. These findings are discussed in the context of the anger-hostility-aggression syndrome and the capability of the Big Five for organizing and clarifying related personality constructs.

  4. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    PubMed Central

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  5. How rare bone diseases have informed our knowledge of complex diseases.

    PubMed

    Johnson, Mark L

    2016-01-01

    Rare bone diseases, generally defined as monogenic traits with either autosomal recessive or dominant patterns of inheritance, have provided a rich database of genes and associated pathways over the past 2-3 decades. The molecular genetic dissection of these bone diseases has yielded some major surprises in terms of the causal genes and/or involved pathways. The discovery of genes/pathways involved in diseases such as osteopetrosis, osteosclerosis, osteogenesis imperfecta and many other rare bone diseases have all accelerated our understanding of complex traits. Importantly these discoveries have provided either direct validation for a specific gene embedded in a group of genes within an interval identified through a complex trait genome-wide association study (GWAS) or based upon the pathway associated with a monogenic trait gene, provided a means to prioritize a large number of genes for functional validation studies. In some instances GWAS studies have yielded candidate genes that fall within linkage intervals associated with monogenic traits and resulted in the identification of causal mutations in those rare diseases. Driving all of this discovery is a complement of technologies such as genome sequencing, bioinformatics and advanced statistical analysis methods that have accelerated genetic dissection and greatly reduced the cost. Thus, rare bone disorders in partnership with GWAS have brought us to the brink of a new era of personalized genomic medicine in which the prevention and management of complex diseases will be driven by the molecular understanding of each individuals contributing genetic risks for disease.

  6. Plant community resistance to invasion by Bromus species: The roles of community attributes, Bromus interactions with plant communities, and Bromus traits [Chapter 10

    Treesearch

    Jeanne C. Chambers; Matthew J. Germino; Jayne Belnap; Cynthia S. Brown; Eugene W. Schupp; Samuel B. St. Clair

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromus hereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in...

  7. A face for all seasons: Searching for context-specific leadership traits and discovering a general preference for perceived health

    PubMed Central

    Spisak, Brian R.; Blaker, Nancy M.; Lefevre, Carmen E.; Moore, Fhionna R.; Krebbers, Kleis F. B.

    2014-01-01

    Previous research indicates that followers tend to contingently match particular leader qualities to evolutionarily consistent situations requiring collective action (i.e., context-specific cognitive leadership prototypes) and information processing undergoes categorization which ranks certain qualities as first-order context-general and others as second-order context-specific. To further investigate this contingent categorization phenomenon we examined the “attractiveness halo”—a first-order facial cue which significantly biases leadership preferences. While controlling for facial attractiveness, we independently manipulated the underlying facial cues of health and intelligence and then primed participants with four distinct organizational dynamics requiring leadership (i.e., competition vs. cooperation between groups and exploratory change vs. stable exploitation). It was expected that the differing requirements of the four dynamics would contingently select for relatively healthier- or intelligent-looking leaders. We found perceived facial intelligence to be a second-order context-specific trait—for instance, in times requiring a leader to address between-group cooperation—whereas perceived health is significantly preferred across all contexts (i.e., a first-order trait). The results also indicate that facial health positively affects perceived masculinity while facial intelligence negatively affects perceived masculinity, which may partially explain leader choice in some of the environmental contexts. The limitations and a number of implications regarding leadership biases are discussed. PMID:25414653

  8. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics.

    PubMed

    Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2012-09-25

    Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.

  9. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics

    PubMed Central

    2012-01-01

    Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363

  10. Host Genome Influence on Gut Microbial Composition and Microbial Prediction of Complex Traits in Pigs.

    PubMed

    Camarinha-Silva, Amelia; Maushammer, Maria; Wellmann, Robin; Vital, Marius; Preuss, Siegfried; Bennewitz, Jörn

    2017-07-01

    The aim of the present study was to analyze the interplay between gastrointestinal tract (GIT) microbiota, host genetics, and complex traits in pigs using extended quantitative-genetic methods. The study design consisted of 207 pigs that were housed and slaughtered under standardized conditions, and phenotyped for daily gain, feed intake, and feed conversion rate. The pigs were genotyped with a standard 60 K SNP chip. The GIT microbiota composition was analyzed by 16S rRNA gene amplicon sequencing technology. Eight from 49 investigated bacteria genera showed a significant narrow sense host heritability, ranging from 0.32 to 0.57. Microbial mixed linear models were applied to estimate the microbiota variance for each complex trait. The fraction of phenotypic variance explained by the microbial variance was 0.28, 0.21, and 0.16 for daily gain, feed conversion, and feed intake, respectively. The SNP data and the microbiota composition were used to predict the complex traits using genomic best linear unbiased prediction (G-BLUP) and microbial best linear unbiased prediction (M-BLUP) methods, respectively. The prediction accuracies of G-BLUP were 0.35, 0.23, and 0.20 for daily gain, feed conversion, and feed intake, respectively. The corresponding prediction accuracies of M-BLUP were 0.41, 0.33, and 0.33. Thus, in addition to SNP data, microbiota abundances are an informative source of complex trait predictions. Since the pig is a well-suited animal for modeling the human digestive tract, M-BLUP, in addition to G-BLUP, might be beneficial for predicting human predispositions to some diseases, and, consequently, for preventative and personalized medicine. Copyright © 2017 by the Genetics Society of America.

  11. A computational interactome for prioritizing genes associated with complex agronomic traits in rice (Oryza sativa).

    PubMed

    Liu, Shiwei; Liu, Yihui; Zhao, Jiawei; Cai, Shitao; Qian, Hongmei; Zuo, Kaijing; Zhao, Lingxia; Zhang, Lida

    2017-04-01

    Rice (Oryza sativa) is one of the most important staple foods for more than half of the global population. Many rice traits are quantitative, complex and controlled by multiple interacting genes. Thus, a full understanding of genetic relationships will be critical to systematically identify genes controlling agronomic traits. We developed a genome-wide rice protein-protein interaction network (RicePPINet, http://netbio.sjtu.edu.cn/riceppinet) using machine learning with structural relationship and functional information. RicePPINet contained 708 819 predicted interactions for 16 895 non-transposable element related proteins. The power of the network for discovering novel protein interactions was demonstrated through comparison with other publicly available protein-protein interaction (PPI) prediction methods, and by experimentally determined PPI data sets. Furthermore, global analysis of domain-mediated interactions revealed RicePPINet accurately reflects PPIs at the domain level. Our studies showed the efficiency of the RicePPINet-based method in prioritizing candidate genes involved in complex agronomic traits, such as disease resistance and drought tolerance, was approximately 2-11 times better than random prediction. RicePPINet provides an expanded landscape of computational interactome for the genetic dissection of agronomically important traits in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Searching new signals for production traits through gene-based association analysis in three Italian cattle breeds.

    PubMed

    Capomaccio, Stefano; Milanesi, Marco; Bomba, Lorenzo; Cappelli, Katia; Nicolazzi, Ezequiel L; Williams, John L; Ajmone-Marsan, Paolo; Stefanon, Bruno

    2015-08-01

    Genome-wide association studies (GWAS) have been widely applied to disentangle the genetic basis of complex traits. In cattle breeds, classical GWAS approaches with medium-density marker panels are far from conclusive, especially for complex traits. This is due to the intrinsic limitations of GWAS and the assumptions that are made to step from the association signals to the functional variations. Here, we applied a gene-based strategy to prioritize genotype-phenotype associations found for milk production and quality traits with classical approaches in three Italian dairy cattle breeds with different sample sizes (Italian Brown n = 745; Italian Holstein n = 2058; Italian Simmental n = 477). Although classical regression on single markers revealed only a single genome-wide significant genotype-phenotype association, for Italian Holstein, the gene-based approach identified specific genes in each breed that are associated with milk physiology and mammary gland development. As no standard method has yet been established to step from variation to functional units (i.e., genes), the strategy proposed here may contribute to revealing new genes that play significant roles in complex traits, such as those investigated here, amplifying low association signals using a gene-centric approach. © 2015 Stichting International Foundation for Animal Genetics.

  13. Women at the top: powerful leaders define success as work + family in a culture of gender.

    PubMed

    Cheung, Fanny M; Halpern, Diane F

    2010-04-01

    How do women rise to the top of their professions when they also have significant family care responsibilities? This critical question has not been addressed by existing models of leadership. In a review of recent research, we explore an alternative model to the usual notion of a Western male as the prototypical leader. The model includes (a) relationship-oriented leadership traits, (b) the importance of teamwork and consensus building, and (c) an effective work-family interface that women with family care responsibilities create and use to break through the glass ceiling. We adopted a cross-cultural perspective to highlight the importance of relational orientation and work-family integration in collectivistic cultures, which supplements models of leadership based on Western men. Our expanded model of leadership operates in the context of a "culture of gender" that defines expectations for women and men as leaders. This complex model includes women in diverse global contexts and enriches our understanding of the interplay among personal attributes, processes, and environments in leadership. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  14. Successful Secondary School Principalship in Disadvantaged Contexts from a Leadership for Learning Perspective

    ERIC Educational Resources Information Center

    Moral, Cristina; Martín-Romera, Ana; Martínez-Valdivia, Estefanía; Olmo-Extremera, Marta

    2018-01-01

    The paper we present here is part of the International Successful School Principalship Project (ISSPP), which is designed to analyse the characteristic traits of successful leadership in different contexts and countries [Day, C., and K. Leithwood. 2007. "Successful School Leadership in Times of Change." Dordrecht: Springer-Kluwer; Day,…

  15. Taken out of Context: Defending Civic Education from the Situationist Critique

    ERIC Educational Resources Information Center

    Ben-Porath, Sigal; Dishon, Gideon

    2015-01-01

    Situationists have suggested that educational efforts to improve character and instill virtues should be abandoned, as individuals' behavior is predicted by contexts and situations rather than by character traits. More recently it has been suggested that civic education and especially the effort to cultivate civic virtues are ineffective for…

  16. Student or Situation? Personality and Classroom Context as Predictors of Attitudes about Business School Cheating

    ERIC Educational Resources Information Center

    Day, Nancy E.; Hudson, Doranne; Dobies, Pamela Roffol; Waris, Robert

    2011-01-01

    Many business faculties may question why their students cheat. While past research shows that student characteristics predict cheating attitudes and behavior, evidence exists that attributes of classroom contexts also play a part. We investigate how three personality traits (conscientiousness, emotional stability, and openness to experience) and…

  17. PhyloDet: a scalable visualization tool for mapping multiple traits to large evolutionary trees

    PubMed Central

    Lee, Bongshin; Nachmanson, Lev; Robertson, George; Carlson, Jonathan M.; Heckerman, David

    2009-01-01

    Summary: Evolutionary biologists are often interested in finding correlations among biological traits across a number of species, as such correlations may lead to testable hypotheses about the underlying function. Because some species are more closely related than others, computing and visualizing these correlations must be done in the context of the evolutionary tree that relates species. In this note, we introduce PhyloDet (short for PhyloDetective), an evolutionary tree visualization tool that enables biologists to visualize multiple traits mapped to the tree. Availability: http://research.microsoft.com/cue/phylodet/ Contact: bongshin@microsoft.com. PMID:19633096

  18. The 'dark side' and 'bright side' of personality: when too much conscientiousness and too little anxiety are detrimental with respect to the acquisition of medical knowledge and skill.

    PubMed

    Ferguson, Eamonn; Semper, Heather; Yates, Janet; Fitzgerald, J Edward; Skatova, Anya; James, David

    2014-01-01

    Theory suggests that personality traits evolved to have costs and benefits, with the effectiveness of a trait dependent on how these costs and benefits relate to the present circumstances. This suggests that traits that are generally viewed as positive can have a 'dark side' and those generally viewed as negative can have a 'bright side' depending on changes in context. We test this in a sample of 220 UK medical students with respect to associations between the Big 5 personality traits and learning outcomes across the 5 years of a medical degree. The medical degree offers a changing learning context from pre-clinical years (where a more methodical approach to learning is needed) to the clinical years (where more flexible learning is needed, in a more stressful context). We argue that while trait conscientiousness should enhance pre-clinical learning, it has a 'dark side' reducing the acquisition of knowledge in the clinical years. We also suggest that anxiety has a 'bright side' enhancing the acquisition of skills in the clinical years. We also explore if intelligence enhances learning across the medical degree. Using confirmatory factor analysis and structural equation modelling we show that medical skills and knowledge assessed in the pre-clinical and clinical years are psychometrically distinguishable, forming a learning 'backbone', whereby subsequent learning outcomes are predicted by previous ones. Consistent with our predictions conscientiousness enhanced preclinical knowledge acquisition but reduced the acquisition of clinical knowledge and anxiety enhanced the acquisition of clinical skills. We also identified a curvilinear U shaped association between Surgency (extraversion) and pre-clinical knowledge acquisition. Intelligence predicted initial clinical knowledge, and had a positive total indirect effect on clinical knowledge and clinical skill acquisition. For medical selection, this suggests that selecting students high on conscientiousness may be problematic, as it may be excluding those with some degree of moderate anxiety.

  19. The ‘Dark Side’ and ‘Bright Side’ of Personality: When Too Much Conscientiousness and Too Little Anxiety Are Detrimental with Respect to the Acquisition of Medical Knowledge and Skill

    PubMed Central

    Ferguson, Eamonn; Semper, Heather; Yates, Janet; Fitzgerald, J. Edward; Skatova, Anya; James, David

    2014-01-01

    Theory suggests that personality traits evolved to have costs and benefits, with the effectiveness of a trait dependent on how these costs and benefits relate to the present circumstances. This suggests that traits that are generally viewed as positive can have a ‘dark side’ and those generally viewed as negative can have a ‘bright side’ depending on changes in context. We test this in a sample of 220 UK medical students with respect to associations between the Big 5 personality traits and learning outcomes across the 5 years of a medical degree. The medical degree offers a changing learning context from pre-clinical years (where a more methodical approach to learning is needed) to the clinical years (where more flexible learning is needed, in a more stressful context). We argue that while trait conscientiousness should enhance pre-clinical learning, it has a ‘dark side’ reducing the acquisition of knowledge in the clinical years. We also suggest that anxiety has a ‘bright side’ enhancing the acquisition of skills in the clinical years. We also explore if intelligence enhances learning across the medical degree. Using confirmatory factor analysis and structural equation modelling we show that medical skills and knowledge assessed in the pre-clinical and clinical years are psychometrically distinguishable, forming a learning ‘backbone’, whereby subsequent learning outcomes are predicted by previous ones. Consistent with our predictions conscientiousness enhanced preclinical knowledge acquisition but reduced the acquisition of clinical knowledge and anxiety enhanced the acquisition of clinical skills. We also identified a curvilinear U shaped association between Surgency (extraversion) and pre-clinical knowledge acquisition. Intelligence predicted initial clinical knowledge, and had a positive total indirect effect on clinical knowledge and clinical skill acquisition. For medical selection, this suggests that selecting students high on conscientiousness may be problematic, as it may be excluding those with some degree of moderate anxiety. PMID:24586353

  20. Limited plasticity in the phenotypic variance-covariance matrix for male advertisement calls in the black field cricket, Teleogryllus commodus

    PubMed Central

    Pitchers, W. R.; Brooks, R.; Jennions, M. D.; Tregenza, T.; Dworkin, I.; Hunt, J.

    2013-01-01

    Phenotypic integration and plasticity are central to our understanding of how complex phenotypic traits evolve. Evolutionary change in complex quantitative traits can be predicted using the multivariate breeders’ equation, but such predictions are only accurate if the matrices involved are stable over evolutionary time. Recent work, however, suggests that these matrices are temporally plastic, spatially variable and themselves evolvable. The data available on phenotypic variance-covariance matrix (P) stability is sparse, and largely focused on morphological traits. Here we compared P for the structure of the complex sexual advertisement call of six divergent allopatric populations of the Australian black field cricket, Teleogryllus commodus. We measured a subset of calls from wild-caught crickets from each of the populations and then a second subset after rearing crickets under common-garden conditions for three generations. In a second experiment, crickets from each population were reared in the laboratory on high- and low-nutrient diets and their calls recorded. In both experiments, we estimated P for call traits and used multiple methods to compare them statistically (Flury hierarchy, geometric subspace comparisons and random skewers). Despite considerable variation in means and variances of individual call traits, the structure of P was largely conserved among populations, across generations and between our rearing diets. Our finding that P remains largely stable, among populations and between environmental conditions, suggests that selection has preserved the structure of call traits in order that they can function as an integrated unit. PMID:23530814

  1. Dissection of complex adult traits in a mouse synthetic population.

    PubMed

    Burke, David T; Kozloff, Kenneth M; Chen, Shu; West, Joshua L; Wilkowski, Jodi M; Goldstein, Steven A; Miller, Richard A; Galecki, Andrzej T

    2012-08-01

    Finding the causative genetic variations that underlie complex adult traits is a significant experimental challenge. The unbiased search strategy of genome-wide association (GWAS) has been used extensively in recent human population studies. These efforts, however, typically find only a minor fraction of the genetic loci that are predicted to affect variation. As an experimental model for the analysis of adult polygenic traits, we measured a mouse population for multiple phenotypes and conducted a genome-wide search for effector loci. Complex adult phenotypes, related to body size and bone structure, were measured as component phenotypes, and each subphenotype was associated with a genomic spectrum of candidate effector loci. The strategy successfully detected several loci for the phenotypes, at genome-wide significance, using a single, modest-sized population (N = 505). The effector loci each explain 2%-10% of the measured trait variation and, taken together, the loci can account for over 25% of a trait's total population variation. A replicate population (N = 378) was used to confirm initially observed loci for one trait (femur length), and, when the two groups were merged, the combined population demonstrated increased power to detect loci. In contrast to human population studies, our mouse genome-wide searches find loci that individually explain a larger fraction of the observed variation. Also, the additive effects of our detected mouse loci more closely match the predicted genetic component of variation. The genetic loci discovered are logical candidates for components of the genetic networks having evolutionary conservation with human biology.

  2. Contributions of acculturation, enculturation, discrimination, and personality traits to social anxiety among Chinese immigrants: A context-specific assessment.

    PubMed

    Fang, Ke; Friedlander, Myrna; Pieterse, Alex L

    2016-01-01

    Based on the diathesis-stress model of anxiety, this study examined the contributions of cultural processes, perceived racial discrimination, and personality traits to social anxiety among Chinese immigrants. Further guided by the theory of intergroup anxiety, this study also adopted a context-specific approach to distinguish between participants' experience of social anxiety when interacting with European Americans versus with other Chinese in the United States. This quantitative and ex post facto study used a convenience sample of 140 first-generation Chinese immigrants. Participants were recruited through e-mails from different university and community groups across the United States. The sample includes 55 men and 82 women (3 did not specify) with an average age of 36 years old. Results showed that more social anxiety was reported in the European American context than in the Chinese ethnic context. The full models accounted for almost half the variance in anxiety in each context. Although personality accounted for the most variance, the cultural variables and discrimination contributed 14% of the unique variance in the European American context. Notably, low acculturation, high neuroticism, and low extraversion were unique contributors to social anxiety with European Americans, whereas in the Chinese ethnic context only low extraversion was a unique contributor; more discrimination was uniquely significant in both contexts. The findings suggest a need to contextualize the research and clinical assessment of social anxiety, and have implications for culturally sensitive counseling with immigrants. (c) 2016 APA, all rights reserved).

  3. Novel throughput phenotyping platforms in plant genetic studies.

    PubMed

    Montes, Juan M; Melchinger, Albrecht E; Reif, Jochen C

    2007-10-01

    Unraveling the genetic basis of complex traits in plants is limited by the lack of appropriate phenotyping platforms that enable high-throughput screening of many genotypes in multilocation field trials. Near-infrared spectroscopy on agricultural harvesters and spectral reflectance of plant canopies have recently been reported as promising components of novel phenotyping platforms. Understanding the genetic basis of complex traits is now within reach with the use of these new techniques.

  4. Decomposing genomic variance using information from GWA, GWE and eQTL analysis.

    PubMed

    Ehsani, A; Janss, L; Pomp, D; Sørensen, P

    2016-04-01

    A commonly used procedure in genome-wide association (GWA), genome-wide expression (GWE) and expression quantitative trait locus (eQTL) analyses is based on a bottom-up experimental approach that attempts to individually associate molecular variants with complex traits. Top-down modeling of the entire set of genomic data and partitioning of the overall variance into subcomponents may provide further insight into the genetic basis of complex traits. To test this approach, we performed a whole-genome variance components analysis and partitioned the genomic variance using information from GWA, GWE and eQTL analyses of growth-related traits in a mouse F2 population. We characterized the mouse trait genetic architecture by ordering single nucleotide polymorphisms (SNPs) based on their P-values and studying the areas under the curve (AUCs). The observed traits were found to have a genomic variance profile that differed significantly from that expected of a trait under an infinitesimal model. This situation was particularly true for both body weight and body fat, for which the AUCs were much higher compared with that of glucose. In addition, SNPs with a high degree of trait-specific regulatory potential (SNPs associated with subset of transcripts that significantly associated with a specific trait) explained a larger proportion of the genomic variance than did SNPs with high overall regulatory potential (SNPs associated with transcripts using traditional eQTL analysis). We introduced AUC measures of genomic variance profiles that can be used to quantify relative importance of SNPs as well as degree of deviation of a trait's inheritance from an infinitesimal model. The shape of the curve aids global understanding of traits: The steeper the left-hand side of the curve, the fewer the number of SNPs controlling most of the phenotypic variance. © 2015 Stichting International Foundation for Animal Genetics.

  5. Receiver discriminability drives the evolution of complex sexual signals by sexual selection.

    PubMed

    Cui, Jianguo; Song, Xiaowei; Zhu, Bicheng; Fang, Guangzhan; Tang, Yezhong; Ryan, Michael J

    2016-04-01

    A hallmark of sexual selection by mate choice is the evolution of exaggerated traits, such as longer tails in birds and more acoustic components in the calls of birds and frogs. Trait elaboration can be opposed by costs such as increased metabolism and greater predation risk, but cognitive processes of the receiver can also put a brake on trait elaboration. For example, according to Weber's Law traits of a fixed absolute difference will be more difficult to discriminate as the absolute magnitude increases. Here, we show that in the Emei music frog (Babina daunchina) increases in the fundamental frequency between successive notes in the male advertisement call, which increases the spectral complexity of the call, facilitates the female's ability to compare the number of notes between calls. These results suggest that female's discriminability provides the impetus to switch from enhancement of signaling magnitude (i.e., adding more notes into calls) to employing a new signal feature (i.e., increasing frequency among notes) to increase complexity. We suggest that increasing the spectral complexity of notes ameliorates some of the effects of Weber's Law, and highlights how perceptual and cognitive biases of choosers can have important influences on the evolution of courtship signals. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  6. Integrating Genomic Analysis with the Genetic Basis of Gene Expression: Preliminary Evidence of the Identification of Causal Genes for Cardiovascular and Metabolic Traits Related to Nutrition in Mexicans123

    PubMed Central

    Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.

    2012-01-01

    Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999

  7. Epistatic effects between pairs of the growth hormone secretagogue receptor 1a, growth hormone, growth hormone receptor, non-SMC condensin I complex, subunit G and stearoyl-CoA desaturase genes on carcass, price-related and fatty acid composition traits in Japanese Black cattle.

    PubMed

    Komatsu, Masanori; Nishino, Kagetomo; Fujimori, Yuki; Haga, Yasutoshi; Iwama, Nagako; Arakawa, Aisaku; Aihara, Yoshito; Takeda, Hisato; Takahashi, Hideaki

    2018-02-01

    Growth hormone secretagogue receptor 1a (GHSR1a), growth hormone (GH), growth hormone receptor (GHR), non-SMC condensin I complex, subunit G (NCAPG) and stearoyl-CoA desaturase (SCD), are known to play important roles in growth and lipid metabolisms. Single and epistatic effects of the five genes on carcass, price-related and fatty acid (FA) composition traits were analyzed in a commercial Japanese Black cattle population of Ibaraki Prefecture. A total of 650 steers and 116 heifers for carcass and price-related traits, and 158 steers for FA composition traits were used in this study. Epistatic effects between pairs of the five genes were found in several traits. Alleles showing strain-specific differences in the five genes had significant single and epistatic effects in some traits. The data suggest that a TG-repeat polymorphism of the GHSR1a.5'UTR-(TG) n locus plays a central role in gene-gene epistatic interaction of FA composition traits in the adipose tissue of Japanese Black cattle. © 2017 Japanese Society of Animal Science.

  8. Evolution of Novel Signal Traits in the Absence of Female Preferences in Neoconocephalus Katydids (Orthoptera, Tettigoniidae)

    PubMed Central

    Bush, Sarah L.; Schul, Johannes

    2010-01-01

    Background Significance Communication signals that function to bring together the sexes are important for maintaining reproductive isolation in many taxa. Changes in male calls are often attributed to sexual selection, in which female preferences initiate signal divergence. Natural selection can also influence signal traits if calls attract predators or parasitoids, or if calling is energetically costly. Neutral evolution is often neglected in the context of acoustic communication. Methodology/Principal Findings We describe a signal trait that appears to have evolved in the absence of either sexual or natural selection. In the katydid genus Neoconocephalus, calls with a derived pattern in which pulses are grouped into pairs have evolved five times independently. We have previously shown that in three of these species, females require the double pulse pattern for call recognition, and hence the recognition system of the females is also in a derived state. Here we describe the remaining two species and find that although males produce the derived call pattern, females use the ancestral recognition mechanism in which no pulse pattern is required. Females respond equally well to the single and double pulse calls, indicating that the derived trait is selectively neutral in the context of mate recognition. Conclusions/Significance These results suggest that 1) neutral changes in signal traits could be important in the diversification of communication systems, and 2) males rather than females may be responsible for initiating signal divergence. PMID:20805980

  9. Perception of facial profiles: influence of female sex hormones and personality traits.

    PubMed

    Jovic, T; Pavlic, A; Varga, S; Kovacevic Pavicic, D; Slaj, M; Spalj, S

    2016-11-01

    The observational study investigated whether women's perception of the facial profile is related to changes in sex hormones during the menstrual cycle and under the influence of personality traits. Participants were heterosexual Caucasian normally menstruating women not using oral contraceptives (N = 30, aged 20-44 years). The profile attractiveness was assessed by grading of thirteen men's and women's Caucasian profile distortions by a visual analogue scale (0 = least to 100 = most attractive) in the non-ovulating phase and ovulating phase of the menstrual cycle. Male profiles were graded twice-in social and emotional contexts. Personality traits were assessed by Big Five Inventory. The most attractive male profiles in both phases and contexts were a straight profile or mild lip retrusion. According to cluster analysis, non-ovulating females distinguish skeletal from dentoalveolar alterations; however, maxillary retrognathism was considered to be closer to an attractive profile, which were resulting from dentoalveolar manipulations only. Ovulating females, when considering emotional relationship, exhibit lowest preference for males with convex profiles and extreme concave profile, while they consider males with slightly prominent chins due to maxillary retrognathism, mandibular prognathism or pronounced lip retrusion closer to the most attractive males. No clear patterns of influence of personality traits were detected. Moderate lip protrusion was the most attractive female profile in ovulating and straight profile in non-ovulating phase. The favorable profiles, on average, are the same regardless of the female hormonal status and personality traits. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Phenotypic and genetic relations between the HEXACO dimensions and trait emotional intelligence.

    PubMed

    Veselka, Livia; Petrides, K V; Schermer, Julie Aitken; Cherkas, Lynn F; Spector, Tim D; Vernon, Philip A

    2010-02-01

    The present study investigated the location of trait emotional intelligence (trait EI or trait emotional self-efficacy) within the context of the HEXACO model - a more comprehensive personality framework than the conventional Big Five structure. A total of 666 MZ and 526 DZ adult twin pairs from the United Kingdom completed the short form of the Trait Emotional Intelligence Questionnaire (TEIQue-SF) and the short form of the HEXACO Personality Inventory (HEXACO-60). Many significant phenotypic correlations between the TEIQue-SF and the HEXACO-60 were obtained, which were strongest for HEXACO Extraversion, and weakest for HEXACO Honesty-Humility. As was expected, Emotionality was the only HEXACO dimension to correlate negatively with TEIQue-SF scores. Bivariate behavioral genetic analyses revealed that all phenotypic correlations were attributable to common genetic and common nonshared environmental factors. The study confirms the validity of trait EI as a constellation of emotional self-perceptions located at the lower levels of personality.

  11. Moderating the interaction between procedural justice and decision frame: the counterbalancing effect of personality traits.

    PubMed

    Sasaki, Hiroyuki; Hayashi, Yoichiro

    2013-01-01

    This study examined the framing effect of decision making in contexts in which the issue of social justice matters as well as the moderating effects of personality traits on the relationship between justice and framing effects. The authors manipulated procedural justice and outcome valence of the decision frame within two vignettes and measured two personality traits (self-efficacy and anxiety) of participants. The results from 363 participants showed that the moderating effects of personality traits counterbalanced the interaction between justice and framing, such that for individuals with high self-efficacy/low trait anxiety, justice effects were larger in negative framing than in positive framing; those with the opposite disposition exhibited the opposite pattern. These effects were interpreted in terms of an attribution process as the information processing strategy. The aforementioned findings suggest that the justice and decision theories can be developed to account for the moderating effects of personality traits. Some limitations of this study and the direction of future research are also discussed.

  12. Development of Personality and the Remission and Onset of Personality Pathology

    PubMed Central

    Wright, Aidan G. C.; Pincus, Aaron L.; Lenzenweger, Mark F.

    2011-01-01

    The current study uses the Longitudinal Study of Personality Disorders dataset (Lenzenweger, 1999) to examine the development of personality traits in the context of the remission and onset of personality disorder (PD) symptoms. Despite high levels of stability, past research that has examined the development of basic personality traits has also found a mean trend towards increased maturity, and that individuals vary in their trajectories of trait development. Research on PD change has shown a similar pattern. We employ individual growth curve modeling to examine the relationship between personality trait development and PD symptom course. We found that the two are indeed related, and that remission in PD symptoms is associated with patterns of trait development associated with more rapid maturity. In contrast, deviating from the mean of trait development either through no change (i.e., stagnation) or change in the opposite direction (i.e., regression) was associated with developing PD symptoms over the course of the study. PMID:21967009

  13. Beyond Contagion: Reality Mining Reveals Complex Patterns of Social Influence.

    PubMed

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2015-01-01

    Contagion, a concept from epidemiology, has long been used to characterize social influence on people's behavior and affective (emotional) states. While it has revealed many useful insights, it is not clear whether the contagion metaphor is sufficient to fully characterize the complex dynamics of psychological states in a social context. Using wearable sensors that capture daily face-to-face interaction, combined with three daily experience sampling surveys, we collected the most comprehensive data set of personality and emotion dynamics of an entire community of work. From this high-resolution data about actual (rather than self-reported) face-to-face interaction, a complex picture emerges where contagion (that can be seen as adaptation of behavioral responses to the behavior of other people) cannot fully capture the dynamics of transitory states. We found that social influence has two opposing effects on states: adaptation effects that go beyond mere contagion, and complementarity effects whereby individuals' behaviors tend to complement the behaviors of others. Surprisingly, these effects can exhibit completely different directions depending on the stable personality or emotional dispositions (stable traits) of target individuals. Our findings provide a foundation for richer models of social dynamics, and have implications on organizational engineering and workplace well-being.

  14. Hidden state prediction: a modification of classic ancestral state reconstruction algorithms helps unravel complex symbioses

    PubMed Central

    Zaneveld, Jesse R. R.; Thurber, Rebecca L. V.

    2014-01-01

    Complex symbioses between animal or plant hosts and their associated microbiotas can involve thousands of species and millions of genes. Because of the number of interacting partners, it is often impractical to study all organisms or genes in these host-microbe symbioses individually. Yet new phylogenetic predictive methods can use the wealth of accumulated data on diverse model organisms to make inferences into the properties of less well-studied species and gene families. Predictive functional profiling methods use evolutionary models based on the properties of studied relatives to put bounds on the likely characteristics of an organism or gene that has not yet been studied in detail. These techniques have been applied to predict diverse features of host-associated microbial communities ranging from the enzymatic function of uncharacterized genes to the gene content of uncultured microorganisms. We consider these phylogenetically informed predictive techniques from disparate fields as examples of a general class of algorithms for Hidden State Prediction (HSP), and argue that HSP methods have broad value in predicting organismal traits in a variety of contexts, including the study of complex host-microbe symbioses. PMID:25202302

  15. Triarchic Model Personality Traits and Their Impact on Mock Juror Perceptions of a White-Collar Criminal Defendant.

    PubMed

    Rulseh, Allison; Edens, John F; Cox, Jennifer

    2017-01-01

    The triarchic model of psychopathy proposes that this personality disorder is composed of 3 relatively distinct constructs: meanness, disinhibition, and boldness. Although the first 2 components are widely accepted, boldness has generated considerable theoretical debate concerning its relevance-largely due to its association with various ostensibly adaptive characteristics and socially desirable behaviors (e.g., self-reported heroism). But is being bold actually perceived by others as an intrinsically adaptive, socially desirable personality trait? We investigated this question using a novel approach-a jury simulation study that manipulated the level of triarchic traits exhibited by a white-collar criminal. More specifically, 330 community members read a vignette in which the defendant's degree of boldness and disinhibition was manipulated and then provided sentence recommendations and other evaluative ratings. As hypothesized, manipulating boldness and disinhibition resulted in more negative views of the defendant, with the boldness manipulation more consistently predicting higher global psychopathy, "meanness," and "evil" ratings. Surprisingly, neither manipulation predicted sentence recommendations, although higher global psychopathy ratings did correlate with more punitive sentence recommendations. The presence of personality traits construed in some contexts as advantageous or socially desirable can be perceived as more dysfunctional and undesirable in other contexts-particularly when they cooccur with criminal behavior.

  16. Trait Perception Accuracy and Acquaintance Within Groups: Tracking Accuracy Development.

    PubMed

    Brown, Jill A; Bernieri, Frank

    2017-05-01

    Previous work on trait perception has evaluated accuracy at discrete stages of relationships (e.g., strangers, best friends). A relatively limited body of literature has investigated changes in accuracy as acquaintance within a dyad or group increases. Small groups of initially unacquainted individuals spent more than 30 hr participating in a wide range of activities designed to represent common interpersonal contexts (e.g., eating, traveling). We calculated how accurately each participant judged others in their group on the big five traits across three distinct points within the acquaintance process: zero acquaintance, after a getting-to-know-you conversation, and after 10 weeks of interaction and activity. Judgments of all five traits exhibited accuracy above chance levels after 10 weeks. An examination of the trait rating stability revealed that much of the revision in judgments occurred not over the course of the 10-week relationship as suspected, but between zero acquaintance and the getting-to-know-you conversation.

  17. The role of ecology, neutral processes and antagonistic coevolution in an apparent sexual arms race.

    PubMed

    Perry, Jennifer C; Garroway, Colin J; Rowe, Locke

    2017-09-01

    Some of the strongest examples of a sexual 'arms race' come from observations of correlated evolution in sexually antagonistic traits among populations. However, it remains unclear whether these cases truly represent sexually antagonistic coevolution; alternatively, ecological or neutral processes might also drive correlated evolution. To investigate these alternatives, we evaluated the contributions of intersex genetic correlations, ecological context, neutral genetic divergence and sexual coevolution in the correlated evolution of antagonistic traits among populations of Gerris incognitus water striders. We could not detect intersex genetic correlations for these sexually antagonistic traits. Ecological variation was related to population variation in the key female antagonistic trait (spine length, a defence against males), as well as body size. Nevertheless, population covariation between sexually antagonistic traits remained substantial and significant even after accounting for all of these processes. Our results therefore provide strong evidence for a contemporary sexual arms race. © 2017 John Wiley & Sons Ltd/CNRS.

  18. Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci.

    PubMed

    Burgess-Herbert, Sarah L; Cox, Allison; Tsaih, Shirng-Wern; Paigen, Beverly

    2008-12-01

    Dissecting the genes involved in complex traits can be confounded by multiple factors, including extensive epistatic interactions among genes, the involvement of epigenetic regulators, and the variable expressivity of traits. Although quantitative trait locus (QTL) analysis has been a powerful tool for localizing the chromosomal regions underlying complex traits, systematically identifying the causal genes remains challenging. Here, through its application to plasma levels of high-density lipoprotein cholesterol (HDL) in mice, we demonstrate a strategy for narrowing QTL that utilizes comparative genomics and bioinformatics techniques. We show how QTL detected in multiple crosses are subjected to both combined cross analysis and haplotype block analysis; how QTL from one species are mapped to the concordant regions in another species; and how genomewide scans associating haplotype groups with their phenotypes can be used to prioritize the narrowed regions. Then we illustrate how these individual methods for narrowing QTL can be systematically integrated for mouse chromosomes 12 and 15, resulting in a significantly reduced number of candidate genes, often from hundreds to <10. Finally, we give an example of how additional bioinformatics resources can be combined with experiments to determine the most likely quantitative trait genes.

  19. Plastic flies: the regulation and evolution of trait variability in Drosophila.

    PubMed

    Shingleton, Alexander W; Tang, Hui Yuan

    2012-01-01

    Individuals within species and populations vary. Such variation arises through environmental and genetic factors and ensures that no two individuals are identical. However, it is clear that not all traits show the same degree of intraspecific variation. Some traits, in particular secondary sexual characteristics used by males to compete for and attract females, are extremely variable among individuals in a population. Other traits, for example brain size in mammals, are not. Recent research has begun to explore the possibility that the extent of phenotypic variation (here referred to as "variability") may be a character itself and subject to natural selection. While these studies support the concept of variability as an evolvable trait, controversy remains over what precisely the trait is. At the heart of this controversy is the fact that there are very few examples of developmental mechanisms that regulate trait variability in response to any source of variation, be it environmental or genetic. Here, we describe a recent study from our laboratory that identifies such a mechanism. We then place the study in the context of current research on the regulation of trait variability, and discuss the implications for our understanding of the developmental regulation and evolution of phenotypic variation.

  20. Interactions between genetic variation and cellular environment in skeletal muscle gene expression.

    PubMed

    Taylor, D Leland; Knowles, David A; Scott, Laura J; Ramirez, Andrea H; Casale, Francesco Paolo; Wolford, Brooke N; Guan, Li; Varshney, Arushi; Albanus, Ricardo D'Oliveira; Parker, Stephen C J; Narisu, Narisu; Chines, Peter S; Erdos, Michael R; Welch, Ryan P; Kinnunen, Leena; Saramies, Jouko; Sundvall, Jouko; Lakka, Timo A; Laakso, Markku; Tuomilehto, Jaakko; Koistinen, Heikki A; Stegle, Oliver; Boehnke, Michael; Birney, Ewan; Collins, Francis S

    2018-01-01

    From whole organisms to individual cells, responses to environmental conditions are influenced by genetic makeup, where the effect of genetic variation on a trait depends on the environmental context. RNA-sequencing quantifies gene expression as a molecular trait, and is capable of capturing both genetic and environmental effects. In this study, we explore opportunities of using allele-specific expression (ASE) to discover cis-acting genotype-environment interactions (GxE)-genetic effects on gene expression that depend on an environmental condition. Treating 17 common, clinical traits as approximations of the cellular environment of 267 skeletal muscle biopsies, we identify 10 candidate environmental response expression quantitative trait loci (reQTLs) across 6 traits (12 unique gene-environment trait pairs; 10% FDR per trait) including sex, systolic blood pressure, and low-density lipoprotein cholesterol. Although using ASE is in principle a promising approach to detect GxE effects, replication of such signals can be challenging as validation requires harmonization of environmental traits across cohorts and a sufficient sampling of heterozygotes for a transcribed SNP. Comprehensive discovery and replication will require large human transcriptome datasets, or the integration of multiple transcribed SNPs, coupled with standardized clinical phenotyping.

  1. Heuristic Identification of Biological Architectures for Simulating Complex Hierarchical Genetic Interactions

    PubMed Central

    Moore, Jason H; Amos, Ryan; Kiralis, Jeff; Andrews, Peter C

    2015-01-01

    Simulation plays an essential role in the development of new computational and statistical methods for the genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because these statistical methods are commonly used in genetic analysis. It is our working hypothesis that simulations need to move beyond simple statistical models to more realistically represent the biological complexity of genetic architecture. The goal of the present study was to develop a prototype genotype–phenotype simulation method and software that are capable of simulating complex genetic effects within the context of a hierarchical biology-based framework. Specifically, our goal is to simulate multilocus epistasis or gene–gene interaction where the genetic variants are organized within the framework of one or more genes, their regulatory regions and other regulatory loci. We introduce here the Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions (HIBACHI) method and prototype software for simulating data in this manner. This approach combines a biological hierarchy, a flexible mathematical framework, a liability threshold model for defining disease endpoints, and a heuristic search strategy for identifying high-order epistatic models of disease susceptibility. We provide several simulation examples using genetic models exhibiting independent main effects and three-way epistatic effects. PMID:25395175

  2. Divide and conquer: intermediate levels of population fragmentation maximize cultural accumulation.

    PubMed

    Derex, Maxime; Perreault, Charles; Boyd, Robert

    2018-04-05

    Identifying the determinants of cumulative cultural evolution is a key issue in the interdisciplinary field of cultural evolution. A widely held view is that large and well-connected social networks facilitate cumulative cultural evolution because they promote the spread of useful cultural traits and prevent the loss of cultural knowledge through factors such as drift. This view stems from models that focus on the transmission of cultural information, without considering how new cultural traits actually arise. In this paper, we review the literature from various fields that suggest that, under some circumstances, increased connectedness can decrease cultural diversity and reduce innovation rates. Incorporating this idea into an agent-based model, we explore the effect of population fragmentation on cumulative culture and show that, for a given population size, there exists an intermediate level of population fragmentation that maximizes the rate of cumulative cultural evolution. This result is explained by the fact that fully connected, non-fragmented populations are able to maintain complex cultural traits but produce insufficient variation and so lack the cultural diversity required to produce highly complex cultural traits. Conversely, highly fragmented populations produce a variety of cultural traits but cannot maintain complex ones. In populations with intermediate levels of fragmentation, cultural loss and cultural diversity are balanced in a way that maximizes cultural complexity. Our results suggest that population structure needs to be taken into account when investigating the relationship between demography and cumulative culture.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  3. Oxytocin Experiments Shed Light on Mechanisms Shaping Prosocial and Antisocial Behaviors in Non-human Mammals.

    PubMed

    Smith, Jennifer E; Petelle, Matthew B; Jerome, Emily L; Cristofari, Hélène; Blumstein, Daniel T

    2017-09-01

    Oxytocin has gained a reputation in popular culture as a simple "love drug" or "cuddle hormone", yet emerging biological evidence indicates that the effects of oxytocin are complex, mediating a suite of behavioral traits that range from ultrasocial to antisocial. Here we provide a comprehensive review to assess the salience of oxytocin in the lives of free-living social mammals. We reviewed the literature to understand the potential effects of oxytocin in promoting prosocial and antisocial behaviors in non-human mammals. Our review highlights a strong bias for studies of model organisms in highly-controlled settings, and emerging evidence for oxytocin's antisocial, context-specific and sex-specific effects. We discuss the results of the review in the context of insights gained from a pilot study aimed to investigate the potential for oxytocin to promote social cohesion in free-living yellow-bellied marmots (Marmota flaviventer). Our field experiment offers an example of the diverse issues that arise when conducting oxytocin manipulations in ecologically relevant contexts. Our synthesis highlights the challenges associated with acquiring adequate sample sizes for field-based, manipulative studies that require standardized measures of social behavior. Taken together, our findings lead us to join others in calling for revision of a simplistic view of oxytocin's role in regulating patterns of behavior. We draw from classical approaches used to study the mechanistic basis of behavior and offer a useful guide for disentangling these effects while appreciating the complex actions of oxytocin in shaping mammalian social behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. How social cognition can inform social decision making

    PubMed Central

    Lee, Victoria K.; Harris, Lasana T.

    2013-01-01

    Social decision-making is often complex, requiring the decision-maker to make inferences of others' mental states in addition to engaging traditional decision-making processes like valuation and reward processing. A growing body of research in neuroeconomics has examined decision-making involving social and non-social stimuli to explore activity in brain regions such as the striatum and prefrontal cortex, largely ignoring the power of the social context. Perhaps more complex processes may influence decision-making in social vs. non-social contexts. Years of social psychology and social neuroscience research have documented a multitude of processes (e.g., mental state inferences, impression formation, spontaneous trait inferences) that occur upon viewing another person. These processes rely on a network of brain regions including medial prefrontal cortex (MPFC), superior temporal sulcus (STS), temporal parietal junction, and precuneus among others. Undoubtedly, these social cognition processes affect social decision-making since mental state inferences occur spontaneously and automatically. Few studies have looked at how these social inference processes affect decision-making in a social context despite the capability of these inferences to serve as predictions that can guide future decision-making. Here we review and integrate the person perception and decision-making literatures to understand how social cognition can inform the study of social decision-making in a way that is consistent with both literatures. We identify gaps in both literatures—while behavioral economics largely ignores social processes that spontaneously occur upon viewing another person, social psychology has largely failed to talk about the implications of social cognition processes in an economic decision-making context—and examine the benefits of integrating social psychological theory with behavioral economic theory. PMID:24399928

  5. Character Education in Taiwan: A Reflection of Historical Shifts in Sociocultural Contexts

    ERIC Educational Resources Information Center

    Ho, Hsiu-Zu; Lam, Yeana W.; Yeh, Kuang-Hui

    2013-01-01

    Education systems across the world reflect the values of the cultures and societies they represent. Character education is often framed as a response to certain values emphasized in a given context, reflecting the commonly accepted traits of good character and responsible citizenship in which learners are engaged. This article describes the nature…

  6. Demographic responses to weather fluctuations are context dependent in a long-lived amphibian.

    PubMed

    Cayuela, Hugo; Arsovski, Dragan; Thirion, Jean-Marc; Bonnaire, Eric; Pichenot, Julian; Boitaud, Sylvain; Miaud, Claude; Joly, Pierre; Besnard, Aurélien

    2016-08-01

    Weather fluctuations have been demonstrated to affect demographic traits in many species. In long-lived organisms, their impact on adult survival might be buffered by the evolution of traits that reduce variation in interannual adult survival. For example, skipping breeding is an effective behavioral mechanism that may limit yearly variation in adult survival when harsh weather conditions occur; however, this in turn would likely lead to strong variation in recruitment. Yet, only a few studies to date have examined the impact of weather variation on survival, recruitment and breeding probability simultaneously in different populations of the same species. To fill this gap, we studied the impact of spring temperatures and spring rainfall on survival, on reproductive skipping behavior and on recruitment in five populations of a long-lived amphibian, the yellow-bellied toad (Bombina variegata). Based on capture-recapture data, our findings demonstrate that survival depends on interactions between age, population and weather variation. Varying weather conditions in the spring result in strong variation in the survival of immature toads, whereas they have little effect on adult toads. Breeding probability depends on both the individual's previous reproductive status and on the weather conditions during the current breeding season, leading to high interannual variation in recruitment. Crucially, we found that the impact of weather variation on demographic traits is largely context dependent and may thus differ sharply between populations. Our results suggest that studies predicting the impact of climate change on population dynamics should be taken with caution when the relationship between climate and demographic traits is established using only one population or few populations. We therefore highly recommend further research that includes surveys replicated in a substantial number of populations to account for context-dependent variation in demographic processes. © 2016 John Wiley & Sons Ltd.

  7. An overview of the genetic dissection of complex traits.

    PubMed

    Rao, D C

    2008-01-01

    Thanks to the recent revolutionary genomic advances such as the International HapMap consortium, resolution of the genetic architecture of common complex traits is beginning to look hopeful. While demonstrating the feasibility of genome-wide association (GWA) studies, the pathbreaking Wellcome Trust Case Control Consortium (WTCCC) study also serves to underscore the critical importance of very large sample sizes and draws attention to potential problems, which need to be addressed as part of the study design. Even the large WTCCC study had vastly inadequate power for several of the associations reported (and confirmed) and, therefore, most of the regions harboring relevant associations may not be identified anytime soon. This chapter provides an overview of some of the key developments in the methodological approaches to genetic dissection of common complex traits. Constrained Bayesian networks are suggested as especially useful for analysis of pathway-based SNPs. Likewise, composite likelihood is suggested as a promising method for modeling complex systems. It discusses the key steps in a study design, with an emphasis on GWA studies. Potential limitations highlighted by the WTCCC GWA study are discussed, including problems associated with massive genotype imputation, analysis of pooled national samples, shared controls, and the critical role of interactions. GWA studies clearly need massive sample sizes that are only possible through genuine collaborations. After all, for common complex traits, the question is not whether we can find some pieces of the puzzle, but how large and what kind of a sample we need to (nearly) solve the genetic puzzle.

  8. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits.

    PubMed

    Wu, Yang; Zeng, Jian; Zhang, Futao; Zhu, Zhihong; Qi, Ting; Zheng, Zhili; Lloyd-Jones, Luke R; Marioni, Riccardo E; Martin, Nicholas G; Montgomery, Grant W; Deary, Ian J; Wray, Naomi R; Visscher, Peter M; McRae, Allan F; Yang, Jian

    2018-03-02

    The identification of genes and regulatory elements underlying the associations discovered by GWAS is essential to understanding the aetiology of complex traits (including diseases). Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at GWAS loci for follow-up functional studies. We perform an integrative analysis that uses summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites associated with gene expression and phenotype through shared genetic effects (i.e., pleiotropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes. These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped to distal genes. Further pleiotropic association analyses, which link both the methylome and transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by genetic regulation of transcription through DNAm.

  9. Lessons learned from the dog genome.

    PubMed

    Wayne, Robert K; Ostrander, Elaine A

    2007-11-01

    Extensive genetic resources and a high-quality genome sequence position the dog as an important model species for understanding genome evolution, population genetics and genes underlying complex phenotypic traits. Newly developed genomic resources have expanded our understanding of canine evolutionary history and dog origins. Domestication involved genetic contributions from multiple populations of gray wolves probably through backcrossing. More recently, the advent of controlled breeding practices has segregated genetic variability into distinct dog breeds that possess specific phenotypic traits. Consequently, genome-wide association and selective sweep scans now allow the discovery of genes underlying breed-specific characteristics. The dog is finally emerging as a novel resource for studying the genetic basis of complex traits, including behavior.

  10. Assessing the potential for an ongoing arms race within and between the sexes: selection and heritable variation.

    PubMed

    Friberg, Urban; Lew, Timothy A; Byrne, Phillip G; Rice, William R

    2005-07-01

    In promiscuous species, sexual selection generates two opposing male traits: offense (acquiring new mates and supplanting stored sperm) and defense (enforcing fidelity on one's mates and preventing sperm displacement when this fails). Coevolution between these traits requires both additive genetic variation and associated natural selection. Previous work with Drosophila melanogaster found autosomal genetic variation for these traits among inbred lines from a mixture of populations, but only nonheritable genetic variation was found within a single outbred population. These results do not support ongoing antagonistic coevolution between offense and defense, nor between either of these male traits and female reproductive characters. Here we use a new method (hemiclonal analysis) to study genomewide genetic variation in a large outbred laboratory population of D. melanogaster. Hemiclonal analysis estimates the additive genetic variation among random, genomewide haplotypes taken from a large, outbred, locally adapted laboratory population and determines the direction of the selection gradient on this variation. In contrast to earlier studies, we found low but biologically significant heritable variation for defensive and offensive offspring production as well as all their components (P1, fidelity, P2, and remating). Genetic correlations between these traits were substantially different from those reported for inbred lines. A positive genetic correlation was found between defense and offense, demonstrating that some shared genes influence both traits. In addition to this common variation, evidence for unique genetic variation for each trait was also found, supporting an ongoing coevolutionary arms race between defense and offense. Reproductive conflict between males can strongly influence female fitness. Correspondingly, we found genetic variation in both defense and offense that affected female fitness. No evidence was found for intersexual conflict in the context of male defense, but we found substantial intersexual conflict in the context of male offensive sperm competitive ability. These results indicate that conflict between competing males also promotes an associated arms race between the sexes.

  11. TRY – a global database of plant traits

    PubMed Central

    Kattge, J; Díaz, S; Lavorel, S; Prentice, I C; Leadley, P; Bönisch, G; Garnier, E; Westoby, M; Reich, P B; Wright, I J; Cornelissen, J H C; Violle, C; Harrison, S P; Van Bodegom, P M; Reichstein, M; Enquist, B J; Soudzilovskaia, N A; Ackerly, D D; Anand, M; Atkin, O; Bahn, M; Baker, T R; Baldocchi, D; Bekker, R; Blanco, C C; Blonder, B; Bond, W J; Bradstock, R; Bunker, D E; Casanoves, F; Cavender-Bares, J; Chambers, J Q; Chapin, F S; Chave, J; Coomes, D; Cornwell, W K; Craine, J M; Dobrin, B H; Duarte, L; Durka, W; Elser, J; Esser, G; Estiarte, M; Fagan, W F; Fang, J; Fernández-Méndez, F; Fidelis, A; Finegan, B; Flores, O; Ford, H; Frank, D; Freschet, G T; Fyllas, N M; Gallagher, R V; Green, W A; Gutierrez, A G; Hickler, T; Higgins, S I; Hodgson, J G; Jalili, A; Jansen, S; Joly, C A; Kerkhoff, A J; Kirkup, D; Kitajima, K; Kleyer, M; Klotz, S; Knops, J M H; Kramer, K; Kühn, I; Kurokawa, H; Laughlin, D; Lee, T D; Leishman, M; Lens, F; Lenz, T; Lewis, S L; Lloyd, J; Llusià, J; Louault, F; Ma, S; Mahecha, M D; Manning, P; Massad, T; Medlyn, B E; Messier, J; Moles, A T; Müller, S C; Nadrowski, K; Naeem, S; Niinemets, Ü; Nöllert, S; Nüske, A; Ogaya, R; Oleksyn, J; Onipchenko, V G; Onoda, Y; Ordoñez, J; Overbeck, G; Ozinga, W A; Patiño, S; Paula, S; Pausas, J G; Peñuelas, J; Phillips, O L; Pillar, V; Poorter, H; Poorter, L; Poschlod, P; Prinzing, A; Proulx, R; Rammig, A; Reinsch, S; Reu, B; Sack, L; Salgado-Negret, B; Sardans, J; Shiodera, S; Shipley, B; Siefert, A; Sosinski, E; Soussana, J-F; Swaine, E; Swenson, N; Thompson, K; Thornton, P; Waldram, M; Weiher, E; White, M; White, S; Wright, S J; Yguel, B; Zaehle, S; Zanne, A E; Wirth, C

    2011-01-01

    Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

  12. Leaf traits in parental and hybrid species of Sorbus (Rosaceae).

    PubMed

    Durkovic, Jaroslav; Kardosová, Monika; Canová, Ingrid; Lagana, Rastislav; Priwitzer, Tibor; Chorvát, Dusan; Cicák, Alojz; Pichler, Viliam

    2012-09-01

    Knowledge of functional leaf traits can provide important insights into the processes structuring plant communities. In the genus Sorbus, the generation of taxonomic novelty through reticulate evolution that gives rise to new microspecies is believed to be driven primarily by a series of interspecific hybridizations among closely related taxa. We tested hypotheses for dispersion of intermediacy across the leaf traits in Sorbus hybrids and for trait linkages with leaf area and specific leaf area. Here, we measured and compared the whole complex of growth, vascular, and ecophysiological leaf traits among parental (Sorbus aria, Sorbus aucuparia, Sorbus chamaemespilus) and natural hybrid (Sorbus montisalpae, Sorbus zuzanae) species growing under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to characterize the topography of cell wall surfaces of tracheary elements and to map the reduced Young's modulus of elasticity. Intermediacy was associated predominantly with leaf growth traits, whereas vascular and ecophysiological traits were mainly parental-like and transgressive phenotypes. Larger-leaf species tended to have lower modulus of elasticity values for midrib tracheary element cell walls. Leaves with a biomass investment related to a higher specific leaf area had a lower density. Leaf area- and length-normalized theoretical hydraulic conductivity was related to leaf thickness. For the whole complex of examined leaf traits, hybrid microspecies were mosaics of parental-like, intermediate, and transgressive phenotypes. The high proportion of transgressive character expressions found in Sorbus hybrids implies that generation of extreme traits through transgressive segregation played a key role in the speciation process.

  13. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean.

    PubMed

    Sonah, Humira; O'Donoughue, Louise; Cober, Elroy; Rajcan, Istvan; Belzile, François

    2015-02-01

    Soya bean is a major source of edible oil and protein for human consumption as well as animal feed. Understanding the genetic basis of different traits in soya bean will provide important insights for improving breeding strategies for this crop. A genome-wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of agronomic traits in soya bean. A genotyping-by-sequencing (GBS) approach was used to provide dense genome-wide marker coverage (>47,000 SNPs) for a panel of 304 short-season soya bean lines. A subset of 139 lines, representative of the diversity among these, was characterized phenotypically for eight traits under six environments (3 sites × 2 years). Marker coverage proved sufficient to ensure highly significant associations between the genes known to control simple traits (flower, hilum and pubescence colour) and flanking SNPs. Between one and eight genomic loci associated with more complex traits (maturity, plant height, seed weight, seed oil and protein) were also identified. Importantly, most of these GWAS loci were located within genomic regions identified by previously reported quantitative trait locus (QTL) for these traits. In some cases, the reported QTLs were also successfully validated by additional QTL mapping in a biparental population. This study demonstrates that integrating GBS and GWAS can be used as a powerful complementary approach to classical biparental mapping for dissecting complex traits in soya bean. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Moral reasoning and personality traits.

    PubMed

    Mudrack, Peter E

    2006-06-01

    Moral reasoning should not be clearly associated with measures of personality traits. Although this assumption pervades the moral reasoning literature, it may not always be true. This paper provides evidence that moral reasoning, as assessed with P scores of the Defining Issues Test, is indeed positively associated with five traits from the California Psychological Inventory: Achievement via Independence, Intellectual Efficiency, Tolerance, Responsibility, and Capacity for Status. Such relationships make conceptual sense, shed light on the meaning and implications of moral reasoning, call into question prevailing assumptions in the literature, and may encourage investigators to broaden the types of research questions asked in the context of moral reasoning.

  15. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  16. Mimicry on the QT(L): genetics of speciation in Mimulus.

    PubMed

    Bleiweiss, R

    2001-08-01

    Ecological studies suggest that hummingbird-pollinated plants in North America mimic each other to increase visitation by birds. Published quantitative trait locus (QTL) data for two Mimulus species indicate that floral traits associated with hummingbird versus bee pollination results from a few loci with major effects on morphology, as predicted by classical models for the evolution of mimicry. Thus, the architecture of genetic divergence associated with speciation may depend on the ecological context.

  17. Genetic, Genomic, and Breeding Approaches to Further Explore Kernel Composition Traits and Grain Yield in Maize

    ERIC Educational Resources Information Center

    Da Silva, Helena Sofia Pereira

    2009-01-01

    Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…

  18. Life history context of reproductive aging in a wild primate model

    PubMed Central

    Altmann, Jeanne; Gesquiere, Laurence; Galbany, Jordi; Onyango, Patrick O.; Alberts, Susan C.

    2012-01-01

    The pace of reproductive aging has been of considerable interest, especially in regard to the long postreproductive period in modern women. Here we use data for both sexes from a 37-year longitudinal study of a wild baboon population to place reproductive aging within a life history context for this species, a primate relative of humans that evolved in the same savannah habitat as humans did. We examine the patterns and pace of reproductive aging, including birth rates and reproductive hormones for both sexes, and compare reproductive aging to age-related changes in several other traits. Reproductive senescence occurs later in baboon females than males. Delayed senescence in females relative to males is also found in several other traits, such as dominance status and body condition, but not in molar wear or glucocorticoid profiles. Survival, health, and well-being are the product of risk factors in morphological, physiological, and behavioral traits that differ in rate of senescence and in dependence on social or ecological conditions; some will be very sensitive to differences in circumstances and others less so. PMID:20738283

  19. Levels and domains in personality: an introduction.

    PubMed

    Emmons, R A

    1995-09-01

    This special issue is centered around the problem of levels and domains in personality functioning. What kind of constructs--and at what levels and in what domains--are needed to understand what a person is like? To account for the complexity and scope of human lives, personality psychologists have traditionally put forth lists and taxonomies of factors, features, and variables that must be taken into consideration in formulating an adequate psychological portrait of the whole person. The five-factor model of personality traits has recently been offered as a comprehensive framework; however, critical analyses of the trait concept have revealed the limitations of a trait-based model of personality. Recognizing that the concept of trait is indispensable to a vital psychology of personality, this special issue aims to (a) communicate recent developments and organizational frameworks for understanding the person at multiple levels and in varied domains, and (b) articulate and elaborate units of analysis that, when combined with trait assessments, yield a psychology of personality that is commensurate with the complexity of individual functioning and that offers greater potential for the attainment of the original goals of the discipline.

  20. Digital Life and Youth Well-being, Social Connectedness, Empathy, and Narcissism.

    PubMed

    James, Carrie; Davis, Katie; Charmaraman, Linda; Konrath, Sara; Slovak, Petr; Weinstein, Emily; Yarosh, Lana

    2017-11-01

    Youth well-being, social connectedness, and personality traits, such as empathy and narcissism, are at the crux of concerns often raised about the impacts of digital life. Understanding known impacts, and research gaps, in these areas is an important first step toward supporting media use that contributes positively to youth's happiness, life satisfaction, and prosocial attitudes and behaviors. By examining existing work addressing these issues across domains, we found that a complex interplay of individual factors, type of digital media engagement, and experiences in media contexts informs outcomes related to well-being, social connectedness, empathy, and narcissism. We argue that further research is needed to uncover how, where, when, and for whom digital media practices support positive well-being and social connectedness outcomes. Specifically, research needs to move beyond correlational studies to uncover causal connections between traits like narcissism and media use. Longitudinal studies are also needed to explore patterns of media use over time and related impacts. Further research is needed to explore how specific technologies can be designed to support positive well-being, social outcomes, and prosocial personality traits. Finally, research is needed regarding parenting, educational practices, and policies that support positive digital media use and related outcomes. Although existing research suggests that digital life has mixed potentials and effects for well-being, social connectedness, empathy, and narcissism, we provide recommendations for clinicians, policy makers, and educators in partnering with caregivers and youth to support media use that promotes positive outcomes in these areas. Copyright © 2017 by the American Academy of Pediatrics.

  1. The Effect of Concept Mapping on L2 Writing Performance: Examining Possible Effects of Trait-Level Writing Anxiety

    ERIC Educational Resources Information Center

    Machida, Naoko; Dalsky, David J.

    2014-01-01

    Research on anxiety in a foreign language-learning context is well-documented; however, few studies have directly focused on anxiety occurring within writing contexts despite the fact that writing anxiety is known to affect students' learning. The present study examined the effectiveness of concept mapping considering students' writing anxiety.…

  2. Leadership solves collective action problems in small-scale societies

    PubMed Central

    Glowacki, Luke; von Rueden, Chris

    2015-01-01

    Observation of leadership in small-scale societies offers unique insights into the evolution of human collective action and the origins of sociopolitical complexity. Using behavioural data from the Tsimane forager-horticulturalists of Bolivia and Nyangatom nomadic pastoralists of Ethiopia, we evaluate the traits of leaders and the contexts in which leadership becomes more institutional. We find that leaders tend to have more capital, in the form of age-related knowledge, body size or social connections. These attributes can reduce the costs leaders incur and increase the efficacy of leadership. Leadership becomes more institutional in domains of collective action, such as resolution of intragroup conflict, where collective action failure threatens group integrity. Together these data support the hypothesis that leadership is an important means by which collective action problems are overcome in small-scale societies. PMID:26503683

  3. Leadership solves collective action problems in small-scale societies.

    PubMed

    Glowacki, Luke; von Rueden, Chris

    2015-12-05

    Observation of leadership in small-scale societies offers unique insights into the evolution of human collective action and the origins of sociopolitical complexity. Using behavioural data from the Tsimane forager-horticulturalists of Bolivia and Nyangatom nomadic pastoralists of Ethiopia, we evaluate the traits of leaders and the contexts in which leadership becomes more institutional. We find that leaders tend to have more capital, in the form of age-related knowledge, body size or social connections. These attributes can reduce the costs leaders incur and increase the efficacy of leadership. Leadership becomes more institutional in domains of collective action, such as resolution of intragroup conflict, where collective action failure threatens group integrity. Together these data support the hypothesis that leadership is an important means by which collective action problems are overcome in small-scale societies. © 2015 The Author(s).

  4. Toward a definition of affective instability.

    PubMed

    Renaud, Suzane M; Zacchia, Camillo

    2012-01-01

    Affective instability is a psychophysiological symptom observed in some psychopathologies. It is a complex construct that encompasses (1) primary emotions, or affects, and secondary emotions, with each category having its own characteristics, amplitude, and duration, (2) rapid shifting from neutral or valenced affect to intense affect, and (3) dysfunctional modulation of emotions. Affective instability is often confused with mood lability, as in bipolar disorders, as well as with other terms. To clarify the concept, we searched databases for the term affective instability and read related articles on the topic. In this article we situate the term within the current affective nomenclature and human emotional experience, explore its psychophysiological features, and place it within the context of psychopathology. We explain why the term can potentially be confused with mood pathology and then define affective instability as an inherited temperamental trait modulated by developmental experience.

  5. Not As Good as You Think? Trait Positive Emotion Is Associated with Increased Self-Reported Empathy but Decreased Empathic Performance

    PubMed Central

    Devlin, Hillary C.; Zaki, Jamil; Ong, Desmond C.; Gruber, June

    2014-01-01

    How is positive emotion associated with our ability to empathize with others? Extant research provides support for two competing predictions about this question. An empathy amplification hypothesis suggests positive emotion would be associated with greater empathy, as it often enhances other prosocial processes. A contrasting empathy attenuation hypothesis suggests positive emotion would be associated with lower empathy, because positive emotion promotes self-focused or antisocial behaviors. The present investigation tested these competing perspectives by examining associations between dispositional positive emotion and both subjective (i.e., self-report) and objective (i.e., task performance) measures of empathy. Findings revealed that although trait positive emotion was associated with increased subjective beliefs about empathic tendencies, it was associated with both increases and decreases in task-based empathic performance depending on the target’s emotional state. More specifically, trait positive emotion was linked to lower overall empathic accuracy toward a high-intensity negative target, but also a higher sensitivity to emotion upshifts (i.e., shifts in emotion from negative to positive) toward positive targets. This suggests that trait positive affect may be associated with decreased objective empathy in the context of mood incongruent (i.e., negative) emotional stimuli, but may increase some aspects of empathic performance in the context of mood congruent (i.e., positive) stimuli. Taken together, these findings suggest that trait positive emotion engenders a compelling subjective-objective gap regarding its association with empathy, in being related to a heightened perception of empathic tendencies, despite being linked to mixed abilities in regards to empathic performance. (Word count: 242). PMID:25353635

  6. An oxytocin-induced facilitation of neural and emotional responses to social touch correlates inversely with autism traits.

    PubMed

    Scheele, Dirk; Kendrick, Keith M; Khouri, Christoph; Kretzer, Elisa; Schläpfer, Thomas E; Stoffel-Wagner, Birgit; Güntürkün, Onur; Maier, Wolfgang; Hurlemann, René

    2014-08-01

    Social communication through touch and mutual grooming can convey highly salient socio-emotional signals and has been shown to involve the neuropeptide oxytocin (OXT) in several species. Less is known about the modulatory influence of OXT on the neural and emotional responses to human interpersonal touch. The present randomized placebo (PLC)-controlled within-subject pharmaco-functional magnetic resonance imaging (fMRI) study was designed to test the hypothesis that a single intranasal dose of synthetic OXT (24 IU) would facilitate both neural and emotional responses to interpersonal touch in a context- (female vs male touch) and trait- (autistic trait load) specific manner. Specifically, the experimental rationale was to manipulate the reward value of interpersonal touch independent of the intensity and type of actual cutaneous stimulation administered. Thus, 40 heterosexual males believed that they were touched by either a man or a woman, although in fact an identical pattern of touch was always given by the same female experimenter blind to condition type. Our results show that OXT increased the perceived pleasantness of female, but not male touch, and associated neural responses in insula, precuneus, orbitofrontal, and pregenual anterior cingulate cortex. Moreover, the behavioral and neural effects of OXT were negatively correlated with autistic-like traits. Taken together, this is the first study to show that the perceived hedonic value of human heterosexual interpersonal touch is facilitated by OXT in men, but that its behavioral and neural effects in this context are blunted in individuals with autistic traits.

  7. Not as good as you think? Trait positive emotion is associated with increased self-reported empathy but decreased empathic performance.

    PubMed

    Devlin, Hillary C; Zaki, Jamil; Ong, Desmond C; Gruber, June

    2014-01-01

    How is positive emotion associated with our ability to empathize with others? Extant research provides support for two competing predictions about this question. An empathy amplification hypothesis suggests positive emotion would be associated with greater empathy, as it often enhances other prosocial processes. A contrasting empathy attenuation hypothesis suggests positive emotion would be associated with lower empathy, because positive emotion promotes self-focused or antisocial behaviors. The present investigation tested these competing perspectives by examining associations between dispositional positive emotion and both subjective (i.e., self-report) and objective (i.e., task performance) measures of empathy. Findings revealed that although trait positive emotion was associated with increased subjective beliefs about empathic tendencies, it was associated with both increases and decreases in task-based empathic performance depending on the target's emotional state. More specifically, trait positive emotion was linked to lower overall empathic accuracy toward a high-intensity negative target, but also a higher sensitivity to emotion upshifts (i.e., shifts in emotion from negative to positive) toward positive targets. This suggests that trait positive affect may be associated with decreased objective empathy in the context of mood incongruent (i.e., negative) emotional stimuli, but may increase some aspects of empathic performance in the context of mood congruent (i.e., positive) stimuli. Taken together, these findings suggest that trait positive emotion engenders a compelling subjective-objective gap regarding its association with empathy, in being related to a heightened perception of empathic tendencies, despite being linked to mixed abilities in regards to empathic performance. (Word count: 242).

  8. Trait impulsive choice predicts resistance to extinction and propensity to relapse to cocaine seeking: a bidirectional investigation.

    PubMed

    Broos, Nienke; Diergaarde, Leontien; Schoffelmeer, Anton Nm; Pattij, Tommy; De Vries, Taco J

    2012-05-01

    Despite the strong association between impulsivity and addiction in humans, it is still a matter of debate whether impulsive choice predisposes to, or results from, drug dependence. Furthermore, it is unknown whether treating impulsivity can protect against relapse propensity. Therefore, this study explored the bidirectional relationship between impulsive choice and cocaine taking and seeking in rat behavioral models. In experiment 1, to determine whether impulsive choice predisposes to cocaine taking or seeking, rats were selected based on trait impulsivity in a delayed reward task and subsequently compared on various stages of cocaine self-administration (SA). To examine the consequence of cocaine intake on impulsive choice, impulsivity was monitored once a week throughout various stages of cocaine SA. To determine whether treating impulsive choice can protect against relapse propensity, in experiment 2, impulsive choice was manipulated by pharmacological interventions and cocaine-associated contextual cues. Trait impulsive choice as determined in experiment 1 predicted high extinction resistance and enhanced propensity to context-induced relapse in the cocaine SA model, whereas cocaine intake did not alter impulsive choice. Furthermore, acute changes in impulsive choice were not related to rates of context-induced relapse. Taken together, the current data indicate that trait impulsive choice predicts persistent cocaine seeking during extinction and enhanced propensity to relapse, whereas acute manipulations of impulsive choice had no favorable outcomes on relapse measures. These observations suggest that trait impulsivity can be used as a predictive factor for addiction liability, but treating this impulsivity does not necessarily protect against relapse.

  9. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits

    PubMed Central

    Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties. PMID:27187616

  10. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits.

    PubMed

    Klonner, Günther; Fischer, Stefan; Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties.

  11. Attitude Toward Ambiguity: Empirically Robust Factors in Self-Report Personality Scales.

    PubMed

    Lauriola, Marco; Foschi, Renato; Mosca, Oriana; Weller, Joshua

    2016-06-01

    Two studies were conducted to examine the factor structure of attitude toward ambiguity, a broad personality construct that refers to personal reactions to perceived ambiguous stimuli in a variety of context and situations. Using samples from two countries, Study 1 mapped the hierarchical structure of 133 items from seven tolerance-intolerance of ambiguity scales (N = 360, Italy; N = 306, United States). Three major factors-Discomfort with Ambiguity, Moral Absolutism/Splitting, and Need for Complexity and Novelty-were recovered in each country with high replicability coefficients across samples. In Study 2 (N = 405, Italian community sample; N =366, English native speakers sample), we carried out a confirmatory analysis on selected factor markers. A bifactor model had an acceptable fit for each sample and reached the construct-level invariance for general and group factors. Convergent validity with related traits was assessed in both studies. We conclude that attitude toward ambiguity can be best represented a multidimensional construct involving affective (Discomfort with Ambiguity), cognitive (Moral Absolutism/Splitting), and epistemic (Need for Complexity and Novelty) components. © The Author(s) 2015.

  12. Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex.

    PubMed

    Cheng, Gordon L F; Lee, Tatia M C

    2016-01-01

    The prefrontal cortex (PFC) subserves complex cognitive abilities, including risky decision-making; the modulation of this brain area is shown to alter the way people take risks. Yet, neuromodulation of the PFC in relation to risk-taking behavior remains relatively less well-studied. Moreover, the psychological variables that influence such neuromodulation remain poorly understood. To address these issues, 16 participants took part in 3 experimental sessions on separate days. They received: (i) left anodal-right cathodal transcranial direct current stimulation (tDCS); (ii) left cathodal-right anodal stimulation; or (iii) sham stimulation while they completed two risk-taking tasks. They also measured on several cognitive-affective abilities and personality traits. It was revealed that left cathodal-right anodal stimulation led to significantly reduced risk-taking under a context of haste. The reduction of risk-taking (relative to sham) correlated with state and trait impulsivity, such that the effect was larger in more impulsive individuals. For these individuals, the tDCS effect size was considered to be large (generalized partial η(2) > .17). The effect of prefrontal-neuromodulation in reducing risk-taking was influenced by baseline impulsivity, reflecting a state-dependent effect of neuromodulation on the PFC. The results of this study carry important insights into the use of neuromodulation to alter higher cognition.

  13. Frequency-dependent and correlational selection pressures have conflicting consequences for assortative mating in a color-polymorphic lizard, Uta stansburiana.

    PubMed

    Lancaster, Lesley T; McAdam, Andrew G; Hipsley, Christy A; Sinervo, Barry R

    2014-08-01

    Genetically determined polymorphisms incorporating multiple traits can persist in nature under chronic, fluctuating, and sometimes conflicting selection pressures. Balancing selection among morphs preserves equilibrium frequencies, while correlational selection maintains favorable trait combinations within each morph. Under negative frequency-dependent selection, females should mate (often disassortatively) with rare male morphotypes to produce conditionally fit offspring. Conversely, under correlational selection, females should mate assortatively to preserve coadapted gene complexes and avoid ontogenetic conflict. Using controlled breeding designs, we evaluated consequences of assortative mating patterns in color-polymorphic side-blotched lizards (Uta stansburiana), to identify conflict between these sources of selection. Females who mated disassortatively, and to conditionally high-quality males in the context of frequency-dependent selection, experienced highest fertility rates. In contrast, assortatively mated females experienced higher fetal viability rates. The trade-off between fertility and egg viability resulted in no overall fitness benefit to either assortative or disassortative mating patterns. These results suggest that ongoing conflict between correlational and frequency dependent selection in polymorphic populations may generate a trade-off between rare-morph advantage and phenotypic integration and between assortative and disassortative mating decisions. More generally, interactions among multiple sources of diversity-promoting selection can alter adaptations and dynamics predicted to arise under any of these regimes alone.

  14. Social context influences chemical communication in D. melanogaster males.

    PubMed

    Kent, Clement; Azanchi, Reza; Smith, Ben; Formosa, Amanda; Levine, Joel D

    2008-09-23

    Chemical communication mediates social interactions in insects. For the fruit fly, D. melanogaster, the chemical display is a key fitness trait because it leads to mating. An exchange of cues that resembles a dialogue between males and females is enacted by pheromones, chemical signals that pass between individual flies to alter physiology and behavior. Chemical signals also affect the timing of locomotor activity and sleep. We investigated genetic and environmental determinants of chemical communication. To evaluate the role of the social environment, we extracted a chemical blend from individual males selected from groups composed of one genotype and compared these extracts to those from groups of mixed genotypes. To evaluate the role of the physical environment, these comparisons were performed under a light-dark cycle or in constant darkness. Here, we show that chemical signaling is affected by the social environment, light-dark cycle, and genotype as well as the complex interplay of these variables. Gene-by-environment interactions produce highly significant effects on chemical signaling. We also examined individual responses within the groups. Strikingly, the response of one wild-type fly to another is modulated by the genotypic composition of his neighbors. Chemical signaling in D. melanogaster may be a "fickle" trait that depends on the individual's social background.

  15. Detecting gene subnetworks under selection in biological pathways.

    PubMed

    Gouy, Alexandre; Daub, Joséphine T; Excoffier, Laurent

    2017-09-19

    Advances in high throughput sequencing technologies have created a gap between data production and functional data analysis. Indeed, phenotypes result from interactions between numerous genes, but traditional methods treat loci independently, missing important knowledge brought by network-level emerging properties. Therefore, detecting selection acting on multiple genes affecting the evolution of complex traits remains challenging. In this context, gene network analysis provides a powerful framework to study the evolution of adaptive traits and facilitates the interpretation of genome-wide data. We developed a method to analyse gene networks that is suitable to evidence polygenic selection. The general idea is to search biological pathways for subnetworks of genes that directly interact with each other and that present unusual evolutionary features. Subnetwork search is a typical combinatorial optimization problem that we solve using a simulated annealing approach. We have applied our methodology to find signals of adaptation to high-altitude in human populations. We show that this adaptation has a clear polygenic basis and is influenced by many genetic components. Our approach, implemented in the R package signet, improves on gene-level classical tests for selection by identifying both new candidate genes and new biological processes involved in adaptation to altitude. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Genetic basis for rapidly evolved tolerance in the wild ...

    EPA Pesticide Factsheets

    Atlantic killifish (Fundulus heteroclitus) residing in some urban and industrialized estuaries of the US eastern seaboard demonstrate recently evolved and extreme tolerance to toxic aryl hydrocarbon pollutants, characterized as dioxin-like compounds (DLCs). Here we provide an unusually comprehensive accounting (69%) through Quantitative Trait Locus (QTL) analysis of the genetic basis for DLC tolerance in killifish inhabiting an urban estuary contaminated with PCB congeners, the most toxic of which are DLCs. Consistent with mechanistic knowledge of DLC toxicity in fish and other vertebrates, the Aryl Hydrocarbon Receptor (ahr2) region accounts for 17% of trait variation; however, QTLs on independent linkage groups and their interactions have even greater explanatory power (44%). QTLs interpreted within the context of recently available Fundulus genomic resources and shared synteny among fish species suggest adaptation via inter-acting components of a complex stress response network. Some QTLs were also enriched in other killifish populations characterized as DLC tolerant and residing in distant urban estuaries contaminated with unique mixtures of pollutants. Together, our results suggest that DLC tolerance in killifish represents an emerging example of parallel contemporary evolution that has been driven by intense human-mediated selection on natural populations. This manuscript describes experimental studies that contribute to our understanding of the ecological

  17. Estimating genetic effects and quantifying missing heritability explained by identified rare-variant associations.

    PubMed

    Liu, Dajiang J; Leal, Suzanne M

    2012-10-05

    Next-generation sequencing has led to many complex-trait rare-variant (RV) association studies. Although single-variant association analysis can be performed, it is grossly underpowered. Therefore, researchers have developed many RV association tests that aggregate multiple variant sites across a genetic region (e.g., gene), and test for the association between the trait and the aggregated genotype. After these aggregate tests detect an association, it is only possible to estimate the average genetic effect for a group of RVs. As a result of the "winner's curse," such an estimate can be biased. Although for common variants one can obtain unbiased estimates of genetic parameters by analyzing a replication sample, for RVs it is desirable to obtain unbiased genetic estimates for the study where the association is identified. This is because there can be substantial heterogeneity of RV sites and frequencies even among closely related populations. In order to obtain an unbiased estimate for aggregated RV analysis, we developed bootstrap-sample-split algorithms to reduce the bias of the winner's curse. The unbiased estimates are greatly important for understanding the population-specific contribution of RVs to the heritability of complex traits. We also demonstrate both theoretically and via simulations that for aggregate RV analysis the genetic variance for a gene or region will always be underestimated, sometimes substantially, because of the presence of noncausal variants or because of the presence of causal variants with effects of different magnitudes or directions. Therefore, even if RVs play a major role in the complex-trait etiologies, a portion of the heritability will remain missing, and the contribution of RVs to the complex-trait etiologies will be underestimated. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Selection of Yeasts as Starter Cultures for Table Olives: A Step-by-Step Procedure

    PubMed Central

    Bevilacqua, Antonio; Corbo, Maria Rosaria; Sinigaglia, Milena

    2012-01-01

    The selection of yeasts intended as starters for table olives is a complex process, including a characterization step at laboratory level and a validation at lab level and factory-scale. The characterization at lab level deals with the assessment of some technological traits (growth under different temperatures and at alkaline pHs, effect of salt, and for probiotic strains the resistance to preservatives), enzymatic activities, and some new functional properties (probiotic traits, production of vitamin B-complex, biological debittering). The paper reports on these traits, focusing both on their theoretical implications and lab protocols; moreover, there are some details on predictive microbiology for yeasts of table olives and on the use of multivariate approaches to select suitable starters. PMID:22666220

  19. Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole-exome-discovered polymorphisms

    Treesearch

    Mengmeng Lu; Konstantin V. Krutovsky; C. Dana Nelson; Jason B. West; Nathalie A. Reilly; Carol A. Loopstra

    2017-01-01

    In the USA, forest genetics research began over 100 years ago and loblolly pine breeding programs were established in the 1950s. However, the genetics underlying complex traits of loblolly pine remains to be discovered. To address this, adaptive and growth traits were measured and analyzed in a clonally tested loblolly pine (Pinus taeda L.) population. Over 2.8 million...

  20. ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae.

    PubMed

    López-Martínez, Gema; Margalef-Català, Mar; Salinas, Francisco; Liti, Gianni; Cordero-Otero, Ricardo

    2015-01-01

    Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype.

  1. Recent advancements to study flowering time in almond and other Prunus species

    PubMed Central

    Sánchez-Pérez, Raquel; Del Cueto, Jorge; Dicenta, Federico; Martínez-Gómez, Pedro

    2014-01-01

    Flowering time is an important agronomic trait in almond since it is decisive to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. Consequently, flowering time has to be studied for several years to have statistical significant results. This trait is the result of the interaction between chilling and heat requirements. Flowering time is a polygenic trait with high heritability, although a major gene Late blooming (Lb) was described in “Tardy Nonpareil.” Molecular studies at DNA level confirmed this polygenic nature identifying several genome regions (Quantitative Trait Loci, QTL) involved. Studies about regulation of gene expression are scarcer although several transcription factors have been described as responsible for flowering time. From the metabolomic point of view, the integrated analysis of the mechanisms of accumulation of cyanogenic glucosides and flowering regulation through transcription factors open new possibilities in the analysis of this complex trait in almond and in other Prunus species (apricot, cherry, peach, plum). New opportunities are arising from the integration of recent advancements including phenotypic, genetic, genomic, transcriptomic, and metabolomics studies from the beginning of dormancy until flowering. PMID:25071812

  2. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides

    DOE PAGES

    Fahrenkrog, Annette M.; Neves, Leandro G.; Resende, Jr., Marcio F. R.; ...

    2016-09-06

    Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genesmore » in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. Lastly, these polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.« less

  3. ATG18 and FAB1 Are Involved in Dehydration Stress Tolerance in Saccharomyces cerevisiae

    PubMed Central

    López-Martínez, Gema; Margalef-Català, Mar; Salinas, Francisco; Liti, Gianni; Cordero-Otero, Ricardo

    2015-01-01

    Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype. PMID:25803831

  4. A Meta-analysis of Plant Photosynthetic Traits and Water-use efficiency Responses to Drought

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2017-12-01

    Drought is predicted to become more intense and frequent in many regions of the world in the context of climate change, especially in the semi-arid regions of the Northern Hemisphere. Understanding the plant photosynthetic traits (Pn, Gs and Tr) and water use efficiency (WUE) response to drought is very important with regard to plant growth and productivity, which could reflect the terrestrial primary productivity worldwide. We used a meta-analysis based on studies of a worldwide range and full plant species Pn, Gs, Tr and WUE under drought condition and aimed to determine the responses of Pn, Gs, Tr and WUE of different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Furthermore, reveal the differences from different plant groups (e.g. C3 and C4 plants; annual (A-herbs) and perennial (P-herbs) herbs; conifer, deciduous and evergreen trees) under the same drought intensities. Additionally, we analyzed the relationship between stomatal conductance (Gs) with Pn, Tr and WUE. Our results were as follows: 1) drought decreased the photosynthetic traits with the drought stress increasing, but increased the water use efficiency, and increased to the greatest extent in lianas, compared with herbs, shrubs and trees. 2) Furthermore, C4 plants had an advantage in photosynthesis compared to C3 plants under the same drought conditions. However, the WUE in C4 plants was not promoted as in C3 plants. The photosynthesis traits showed a more substantial decrease in P-herbs than in A-herbs. The drought promoted the WUE in P-herbs, but inhibited it in A-herbs. Compared with conifer and deciduous trees, the photosynthesis traits declined the most in evergreen tree. The WUE in deciduous trees showed a more obvious increase among the three leaf habits. 3) Finally, the Gs showed a close relationship with photosynthesis rate (Pn) and transpiration rate (Tr), which could explain 50% of the decrease in the Pn and 72% of the decline in Tr. Nevertheless, the Gs did not show a significant linear correlation with WUE, it's a more complex relationship between them .Our study provides comprehensive information about the changes in plant photosynthetic traits and water use efficiency under drought.

  5. We can be heroes: MLA’s leadership journey(s)*

    PubMed Central

    Tooey, Mary Joan (M.J.)

    2017-01-01

    Objective Are there key attributes of leaders? Extrovert versus introvert? Charismatic? Detail oriented? Visionary? How do past leaders of the Medical Library Association (MLA) stack up? What leadership skills will MLA’s leaders need in a complex information future? Leadership attributes of MLA’s past and current presidents were studied to determine the common characteristics shared among these leaders. An examination of the leadership literature identified critical leadership characteristics essential to successful future leaders. MLA’s past, current, and future leadership development efforts were examined. Finally, all members were encouraged to consider leadership with a small “l” and become leaders based on their own strengths, interests, and environments. Methods A text analysis was performed on past presidential profiles, the past twenty-five years of MLA presidents were surveyed, and conversations with MLA’s current presidents were held to determine commonalities among leadership characteristics. These were compared and contrasted with characteristics in the current leadership literature regarding the qualities of future leaders. Results The text analysis of past presidential profiles was not particularly revelatory regarding leadership qualities of early MLA presidents although several generalized traits emerged including collaborative traits; management traits such as effectiveness and efficiency, innovation, and vision; personal traits such as humor and energy; and finally, a passion for the work were revealed. These aligned with traits identified in the survey of the past twenty-five years of MLA presidents and with the thoughts of the president-elect, president, and past president. Additional qualities identified were communication skills, political acumen, creativity, courage, and respect for the opinions and concerns of all members. MLA’s current leadership programs were reviewed in the context of examining traits needed by leaders of the future. A lack of focus on the needs of middle managers and the development of individual leadership skills was identified. Conclusions As an organization, MLA should focus on leadership development in contrast to management training to prepare members as leaders in careers and work that may be vastly different than current situations. Equipping members with the skills enabling them to lead and thrive in these diverse situations, whether as the heads of programs or middle managers, or exploring and empowering individual leadership development while maintaining a passion for the profession, will be essential. PMID:28096752

  6. Interactive effects of trait and state affect on top-down control of attention

    PubMed Central

    Hur, Juyoen; Miller, Gregory A.; McDavitt, Jenika R.B.; Spielberg, Jeffrey M.; Crocker, Laura D.; Infantolino, Zachary P.; Towers, David N.; Warren, Stacie L.

    2015-01-01

    Few studies have investigated how attentional control is affected by transient affective states while taking individual differences in affective traits into consideration. In this study, participants completed a color-word Stroop task immediately after undergoing a positive, neutral or negative affective context manipulation (ACM). Behavioral performance was unaffected by any ACM considered in isolation. For individuals high in trait negative affect (NA), performance was impaired by the negative but not the positive or neutral ACM. Neuroimaging results indicate that activity in primarily top-down control regions of the brain (inferior frontal gyrus and dorsal anterior cingulate cortex) was suppressed in the presence of emotional arousal (both negative and positive ACMs). This effect appears to have been exacerbated or offset by co-occurring activity in other top-down control regions (parietal) and emotion processing regions (orbitofrontal cortex, amygdala and nucleus accumbens) as a function of the valence of state affect (positive or negative) and trait affect (trait NA or trait PA). Neuroimaging results are consistent with behavioral findings. In combination, they indicate both additive and interactive influences of trait and state affect on top-down control of attention. PMID:25556211

  7. Heritability of boldness and aggressiveness in the zebrafish.

    PubMed

    Ariyomo, Tolulope O; Carter, Mauricio; Watt, Penelope J

    2013-03-01

    Behavioural traits that are consistent over time and in different contexts are often referred to as personality traits. These traits influence fitness because they play a major role in foraging, reproduction and survival, and so it is assumed that they have little or no additive genetic variance and, consequently, low heritability because, theoretically, they are under strong selection. Boldness and aggressiveness are two personality traits that have been shown to affect fitness. By crossing single males to multiple females, we estimated the heritability of boldness and aggressiveness in the zebrafish, Danio rerio. The additive genetic variance was statistically significant for both traits and the heritability estimates (95 % confidence intervals) for boldness and aggressiveness were 0.76 (0.49, 0.90) and 0.36 (0.10, 0.72) respectively. Furthermore, there were significant maternal effects accounting for 18 and 9 % of the proportion of phenotypic variance in boldness and aggressiveness respectively. This study shows that there is a significant level of genetic variation in this population that would allow these traits to evolve in response to selection.

  8. Phenotyping maize for adaptation to drought

    PubMed Central

    Araus, Jose L.; Serret, María D.; Edmeades, Gregory O.

    2012-01-01

    The need of a better adaptation of crops to drought is an issue of increasing urgency. However, enhancing the tolerance of maize has, therefore, proved to be somewhat elusive in terms of plant breeding. In that context, proper phenotyping remains as one of the main factors limiting breeding advance. Topics covered by this review include the conceptual framework for identifying secondary traits associated with yield response to drought and how to measure these secondary traits in practice. PMID:22934056

  9. Body odor quality predicts behavioral attractiveness in humans.

    PubMed

    Roberts, S Craig; Kralevich, Alexandra; Ferdenzi, Camille; Saxton, Tamsin K; Jones, Benedict C; DeBruine, Lisa M; Little, Anthony C; Havlicek, Jan

    2011-12-01

    Growing effort is being made to understand how different attractive physical traits co-vary within individuals, partly because this might indicate an underlying index of genetic quality. In humans, attention has focused on potential markers of quality such as facial attractiveness, axillary odor quality, the second-to-fourth digit (2D:4D) ratio and body mass index (BMI). Here we extend this approach to include visually-assessed kinesic cues (nonverbal behavior linked to movement) which are statistically independent of structural physical traits. The utility of such kinesic cues in mate assessment is controversial, particularly during everyday conversational contexts, as they could be unreliable and susceptible to deception. However, we show here that the attractiveness of nonverbal behavior, in 20 male participants, is predicted by perceived quality of their axillary body odor. This finding indicates covariation between two desirable traits in different sensory modalities. Depending on two different rating contexts (either a simple attractiveness rating or a rating for long-term partners by 10 female raters not using hormonal contraception), we also found significant relationships between perceived attractiveness of nonverbal behavior and BMI, and between axillary odor ratings and 2D:4D ratio. Axillary odor pleasantness was the single attribute that consistently predicted attractiveness of nonverbal behavior. Our results demonstrate that nonverbal kinesic cues could reliably reveal mate quality, at least in males, and could corroborate and contribute to mate assessment based on other physical traits.

  10. Inside the "African cattle complex": animal burials in the holocene central Sahara.

    PubMed

    di Lernia, Savino; Tafuri, Mary Anne; Gallinaro, Marina; Alhaique, Francesca; Balasse, Marie; Cavorsi, Lucia; Fullagar, Paul D; Mercuri, Anna Maria; Monaco, Andrea; Perego, Alessandro; Zerboni, Andrea

    2013-01-01

    Cattle pastoralism is an important trait of African cultures. Ethnographic studies describe the central role played by domestic cattle within many societies, highlighting its social and ideological value well beyond its mere function as 'walking larder'. Historical depth of this African legacy has been repeatedly assessed in an archaeological perspective, mostly emphasizing a continental vision. Nevertheless, in-depth site-specific studies, with a few exceptions, are lacking. Despite the long tradition of a multi-disciplinary approach to the analysis of pastoral systems in Africa, rarely do early and middle Holocene archaeological contexts feature in the same area the combination of settlement, ceremonial and rock art features so as to be multi-dimensionally explored: the Messak plateau in the Libyan central Sahara represents an outstanding exception. Known for its rich Pleistocene occupation and abundant Holocene rock art, the region, through our research, has also shown to preserve the material evidence of a complex ritual dated to the Middle Pastoral (6080-5120 BP or 5200-3800 BC). This was centred on the frequent deposition in stone monuments of disarticulated animal remains, mostly cattle. Animal burials are known also from other African contexts, but regional extent of the phenomenon, state of preservation of monuments, and associated rock art make the Messak case unique. GIS analysis, excavation data, radiocarbon dating, zooarchaeological and isotopic (Sr, C, O) analyses of animal remains, and botanical information are used to explore this highly formalized ritual and the lifeways of a pastoral community in the Holocene Sahara.

  11. Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schork, N.J.; Boehnke, M.; Terwilliger, J.D.

    1993-11-01

    Nearly all diseases mapped to date follow clear Mendelian, single-locus segregation patterns. In contrast, many common familial diseases such as diabetes, psoriasis, several forms of cancer, and schizophrenia are familial and appear to have a genetic component but do not exhibit simple Mendelian transmission. More complex models are required to explain the genetics of these important diseases. In this paper, the authors explore two-trait-locus, two-marker-locus linkage analysis in which two trait loci are mapped simultaneously to separate genetic markers. The authors compare the utility of this approach to standard one-trait-locus, one-marker-locus linkage analysis with and without allowance for heterogeneity. Themore » authors also compare the utility of the two-trait-locus, two-marker-locus analysis to two-trait-locus, one-marker-locus linkage analysis. For common diseases, pedigrees are often bilineal, with disease genes entering via two or more unrelated pedigree members. Since such pedigrees often are avoided in linkage studies, the authors also investigate the relative information content of unilineal and bilineal pedigrees. For the dominant-or-recessive and threshold models that the authors consider, the authors find that two-trait-locus, two-marker-locus linkage analysis can provide substantially more linkage information, as measured by expected maximum lod score, than standard one-trait-locus, one-marker-locus methods, even allowing for heterogeneity, while, for a dominant-or-dominant generating model, one-locus models that allow for heterogeneity extract essentially as much information as the two-trait-locus methods. For these three models, the authors also find that bilineal pedigrees provide sufficient linkage information to warrant their inclusion in such studies. The authors discuss strategies for assessing the significance of the two linkages assumed in two-trait-locus, two-marker-locus models. 37 refs., 1 fig., 4 tabs.« less

  12. Thickened cranial vault and parasagittal keeling: correlated traits and autapomorphies of Homo erectus?

    PubMed

    Balzeau, Antoine

    2013-06-01

    Homo erectus sensu lato (s.l.) is a key species in the hominin fossil record for the study of human evolution, being one of the first species discovered and perhaps the most documented, but also because of its long temporal range and having dispersed out of Africa earlier than any other human species. Here I test two proposed autapomorphic traits of H. erectus, namely the increased thickness of the upper cranial vault and parasagittal keeling. The definition of these two anatomical features and their expression and variation among hominids are discussed. The results of this study indicate that the upper vault in Asian H. erectus is not absolutely thicker compared with fossil anatomically modern Homo sapiens, whereas Broken Hill and Petralona have values above the range of variation of H. erectus. Moreover, this anatomical region in Asian H. erectus is not significantly thicker compared with Pan paniscus. In addition, these results demonstrate that cranial vault thickness should not be used to make hypotheses regarding sexual attribution of fossil hominin specimens. I also show that the relation between relief on the external surface of the upper vault, parasagittal keeling and bregmatic eminence, and bone thickness is complex. In this context, the autapomorphic status of the two analysed traits in H. erectus may be rejected. Nevertheless, different patterns in the distribution of bone thickness on the upper vault were identified. Some individual variations are visible, but specificities are observable in samples of different species. The pattern of bone thickness distribution observed in Asian H. erectus, P. paniscus, possibly australopiths, and early Homo or Homo ergaster/erectus appears to be shared by these different species and would be a plesiomorphic trait among hominids. In contrast, two apomorphic states for this feature were identified for Neandertals and H. sapiens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity.

    PubMed

    Jubery, Talukder Z; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar

    2016-01-01

    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy outline traits was observed for origins, and maturity indexes. These results indicate the usefulness of EFT method for reconstruction and study of canopy morphometric traits, and provides opportunities for data reduction of large images for ease in future use.

  14. Sky island bird populations isolated by ancient genetic barriers are characterized by different song traits than those isolated by recent deforestation.

    PubMed

    Purushotham, Chetana B; Robin, V V

    2016-10-01

    Various mechanisms of isolation can structure populations and result in cultural and genetic differentiation. Similar to genetic markers, for songbirds, culturally transmitted sexual signals such as breeding song can be used as a measure of differentiation as songs can also be impacted by geographic isolation resulting in population-level differences in song structure. Several studies have found differences in song structure either across ancient geographic barriers or across contemporary habitat barriers owing to deforestation. However, very few studies have examined the effect of both ancient barriers and recent deforestation in the same system. In this study, we examined the geographic variation in song structure across six populations of the White-bellied Shortwing, a threatened and endemic songbird species complex found on isolated mountaintops or "sky islands" of the Western Ghats. While some sky islands in the system are isolated by ancient valleys, others are separated by deforestation. We examined 14 frequency and temporal spectral traits and two syntax traits from 835 songs of 38 individuals across the six populations. We identified three major song clusters based on a discriminant model of spectral traits, degree of similarity of syntax features, as well as responses of birds to opportunistic playback. However, some traits like complex vocal mechanisms (CVM), relating to the use of syrinxes, clearly differentiated both ancient and recently fragmented populations. We suggest that CVMs may have a cultural basis and can be used to identify culturally isolated populations that cannot be differentiated using genetic markers or commonly used frequency-based song traits. Our results demonstrate the use of bird songs to reconstruct phylogenetic groups and impacts of habitat fragmentation even in complex scenarios of historic and contemporary isolation.

  15. Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers

    PubMed Central

    2010-01-01

    Background The information provided by dense genome-wide markers using high throughput technology is of considerable potential in human disease studies and livestock breeding programs. Genome-wide association studies relate individual single nucleotide polymorphisms (SNP) from dense SNP panels to individual measurements of complex traits, with the underlying assumption being that any association is caused by linkage disequilibrium (LD) between SNP and quantitative trait loci (QTL) affecting the trait. Often SNP are in genomic regions of no trait variation. Whole genome Bayesian models are an effective way of incorporating this and other important prior information into modelling. However a full Bayesian analysis is often not feasible due to the large computational time involved. Results This article proposes an expectation-maximization (EM) algorithm called emBayesB which allows only a proportion of SNP to be in LD with QTL and incorporates prior information about the distribution of SNP effects. The posterior probability of being in LD with at least one QTL is calculated for each SNP along with estimates of the hyperparameters for the mixture prior. A simulated example of genomic selection from an international workshop is used to demonstrate the features of the EM algorithm. The accuracy of prediction is comparable to a full Bayesian analysis but the EM algorithm is considerably faster. The EM algorithm was accurate in locating QTL which explained more than 1% of the total genetic variation. A computational algorithm for very large SNP panels is described. Conclusions emBayesB is a fast and accurate EM algorithm for implementing genomic selection and predicting complex traits by mapping QTL in genome-wide dense SNP marker data. Its accuracy is similar to Bayesian methods but it takes only a fraction of the time. PMID:20969788

  16. Carryover effects from natal habitat type upon competitive ability lead to trait divergence or source-sink dynamics.

    PubMed

    Kristensen, Nadiah Pardede; Johansson, Jacob; Chisholm, Ryan A; Smith, Henrik G; Kokko, Hanna

    2018-06-25

    Local adaptation to rare habitats is difficult due to gene flow, but can occur if the habitat has higher productivity. Differences in offspring phenotypes have attracted little attention in this context. We model a scenario where the rarer habitat improves offspring's later competitive ability - a carryover effect that operates on top of local adaptation to one or the other habitat type. Assuming localised dispersal, so the offspring tend to settle in similar habitat to the natal type, the superior competitive ability of offspring remaining in the rarer habitat hampers immigration from the majority habitat. This initiates a positive feedback between local adaptation and trait divergence, which can thereafter be reinforced by coevolution with dispersal traits that match ecotype to habitat type. Rarity strengthens selection on dispersal traits and promotes linkage disequilibrium between locally adapted traits and ecotype-habitat matching dispersal. We propose that carryover effects may initiate isolation by ecology. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  17. Self-affirming trait kindness regulates disgust toward one's physical appearance.

    PubMed

    Powell, Philip A; Simpson, Jane; Overton, Paul G

    2015-01-01

    In two studies, self-affirming the behavioral trait of kindness was examined as a method of regulating state disgust toward one's physical appearance. In Study 1, 56 participants (37 women, 19 men, Mage=33.16 years) completed either a questionnaire designed to self-affirm kindness or a control equivalent and rated their disgust, anger, sadness, and happiness toward their appearance and behavior. In Study 2, 116 individuals (83 women, 33 men, Mage=24.90 years) participated in the same experiment over the internet in an ecologically valid context. When controlling for trait self-disgust, the self-affirmed in Study 1 reported significantly less disgust toward their appearance (ηp(2)=.12, p=.011). This effect was replicated in Study 2, but driven by lower state disgust levels in those higher in trait self-disgust (f(2)=.10, p=.001). Affirming valued traits, like kindness, may be a useful tool for regulating disgust toward body image. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Network-based Analysis of Genome Wide Association Data Provides Novel Candidate Genes for Lipid and Lipoprotein Traits*

    PubMed Central

    Sharma, Amitabh; Gulbahce, Natali; Pevzner, Samuel J.; Menche, Jörg; Ladenvall, Claes; Folkersen, Lasse; Eriksson, Per; Orho-Melander, Marju; Barabási, Albert-László

    2013-01-01

    Genome wide association studies (GWAS) identify susceptibility loci for complex traits, but do not identify particular genes of interest. Integration of functional and network information may help in overcoming this limitation and identifying new susceptibility loci. Using GWAS and comorbidity data, we present a network-based approach to predict candidate genes for lipid and lipoprotein traits. We apply a prediction pipeline incorporating interactome, co-expression, and comorbidity data to Global Lipids Genetics Consortium (GLGC) GWAS for four traits of interest, identifying phenotypically coherent modules. These modules provide insights regarding gene involvement in complex phenotypes with multiple susceptibility alleles and low effect sizes. To experimentally test our predictions, we selected four candidate genes and genotyped representative SNPs in the Malmö Diet and Cancer Cardiovascular Cohort. We found significant associations with LDL-C and total-cholesterol levels for a synonymous SNP (rs234706) in the cystathionine beta-synthase (CBS) gene (p = 1 × 10−5 and adjusted-p = 0.013, respectively). Further, liver samples taken from 206 patients revealed that patients with the minor allele of rs234706 had significant dysregulation of CBS (p = 0.04). Despite the known biological role of CBS in lipid metabolism, SNPs within the locus have not yet been identified in GWAS of lipoprotein traits. Thus, the GWAS-based Comorbidity Module (GCM) approach identifies candidate genes missed by GWAS studies, serving as a broadly applicable tool for the investigation of other complex disease phenotypes. PMID:23882023

  19. Beyond The Blueprint: Development Of Genome-Informed Trait-Based Models For Prediction Of Microbial Dynamics And Biogeochemical Rates

    NASA Astrophysics Data System (ADS)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Johnson, J. N.; Bouskill, N.; Hug, L. A.; Thomas, B. C.; Castelle, C. J.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.

    2014-12-01

    In soils and sediments microorganisms perform essential ecosystem services through their roles in regulating the stability of carbon and the flux of nutrients, and the purification of water. But these are complex systems with the physical, chemical and biological components all intimately connected. Components of this complexity are gradually being uncovered and our understanding of the extent of microbial functional diversity in particular has been enhanced greatly with the development of cultivation independent approaches. However we have not moved far beyond a descriptive and correlative use of this powerful resource. As the ability to reconstruct thousands of genomes from microbial populations using metagenomic techniques gains momentum, the challenge will be to develop an understanding of how these metabolic blueprints serve to influence the fitness of organisms within these complex systems and how populations emerge and impact the physical and chemical properties of their environment. In the presentation we will discuss the development of a trait-based model of microbial activity that simulates coupled guilds of microorganisms that are parameterized including traits extracted from large-scale metagenomic data. Using a reactive transport framework we simulate the thermodynamics of coupled electron donor and acceptor reactions to predict the energy available for respiration, biomass development and exo-enzyme production. Each group within a functional guild is parameterized with a unique combination of traits governing organism fitness under dynamic environmental conditions. This presentation will address our latest developments in the estimation of trait values related to growth rate and the identification and linkage of key fitness traits associated with respiratory and fermentative pathways, macromolecule depolymerization enzymes and nitrogen fixation from metagenomic data. We are testing model sensitivity to initial microbial composition and intra-guild trait variability amongst other parameters and are using this model to explore abiotic controls on community emergence and impact on rates of reactions that contribute to the cycling of carbon across biogeochemical gradients from the soil to the subsurface.

  20. Consequences of hydraulic trait coordination and their associated uncertainties for tropical forest function

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Xu, C.; Koven, C.; Fisher, R.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; McDowell, N.

    2017-12-01

    Recent syntheses of variation in woody plant traits have emphasized how hydraulic traits - those related to the acquisition, transport and retention of water across roots, stems and leaves - are coordinated along a limited set of dimensions or sequence of responses (Reich 2014, Bartlett et al. 2016). However, in many hydraulic trait-trait relationships, there is considerable residual variation, despite the fact that many bivariate relationships are statistically significant. In other instances, such as the relationship between root-stem-leaf vulnerability to embolism, data are so limited that testing the trait coordination hypothesis is not yet possible. The impacts on plant hydraulic function of competing hypotheses regarding trait coordination (or the lack thereof) and residual trait variation have not yet been comprehensively tested and thus remain unknown. We addressed this knowledge gap with a parameter sensitivity analysis using a plant hydraulics model in which all parameters are biologically-interpretable and measurable plant hydraulic traits, as embedded within a size- and demographically-structured ecosystem model, the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES). We focused on tropical forests, where co-existing species have been observed to possess large variability in their hydraulic traits. Assembling 10 distinct datasets of hydraulic traits of stomata, leaves, stems, and roots, we determined the best-fit theoretical distribution for each trait and quantified interspecific (between-species) trait-trait coordination in tropical forests as a rank correlation matrix. We imputed missing correlations with values based on competing hypotheses of trait coordination, such as coordinated shifts in embolism vulnerability from roots to shoots (the hydraulic fuse hypothesis). Based on the Fourier Amplitude Sensitivity Test and our correlation matrix, we generated thousands of parameter sets for an ensemble of hydraulics model simulations at a tropical forest site in central Amazonia. We explore the sensitivity of simulated leaf water potential and stem sap flux in the context of hypotheses of trait-trait coordination and their associated uncertainties.

  1. Associations between informant ratings of personality disorder traits, self-reports of personality, and directly observed behavior.

    PubMed

    Kaurin, Aleksandra; Sauerberger, Kyle S; Funder, David C

    2018-03-02

    Diagnoses of personality disorders (PD) must rely on judgments of observers-either clinicians or acquaintances-because personality disorders are primarily defined in terms of maladaptive interpersonal behavior. Little is known, however, about how closely acquaintances' judgments of PD traits relate to self-reports of theoretically relevant Big Five traits or directly observed behavioral outcomes in interpersonal situations. The present study examines associations between judgments of the 10 PD traits provided by close acquaintances, self-reports of PD-relevant Big Five personality traits, and observed interpersonal behaviors across three different three-person laboratory interactions (i.e., unstructured chat, cooperative task, competitive game). The sample consisted of 256 undergraduate students (130 females; M age  = 19.83, SD = 1.25). Four unacquainted observers independently rated participants' behaviors from video recordings. In line with previous work, informant reports of PD traits demonstrate strong convergent validity with relevant self-reported Big Five traits (as identified by Lynam & Widiger, 2001). Directly observed behavior is meaningfully associated with acquaintances' judgments and self-reports of PD-relevant traits, and the associations between these judgments and behavior are strongest for traits associated with histrionic and schizoid PD. Vector correlations between behavioral profiles associated with informant and self-reports show that both assessments have similar behavioral correlates. Associations between PD trait ratings and behavior appeared to differ as a function of gender, with males showing more and stronger correlations. Informants' ratings of PD traits are impressively accurate, converging both with self-reports of relevant traits and directly observed interpersonal behavior. Therefore, a comprehensive understanding of PDs and associated traits can be augmented by information from multiple acquaintances who have the opportunity to observe how an individual interacts with others on a daily basis across diverse contexts. © 2018 Wiley Periodicals, Inc.

  2. Good genes, complementary genes and human mate preferences.

    PubMed

    Roberts, S Craig; Little, Anthony C

    2008-03-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  3. Good genes, complementary genes and human mate preferences.

    PubMed

    Roberts, S Craig; Little, Anthony C

    2008-09-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  4. Children's Social Behaviour for Learning (SBL): Reported and Observed Social Behaviours in Contexts of School and Home

    ERIC Educational Resources Information Center

    Fisher, Laurel; Spencer, Fiona

    2015-01-01

    The aim is to understand the diversity in children's social behaviours that are vital to learning. It is proposed that a model of Social Behaviours for Learning (SBL) relies on the positions of the observers in relevant contexts. In this case, children are observed at school and at home. The alternatives are sociability as a personal trait or…

  5. A process-based hierarchical framework for monitoring glaciated alpine headwaters

    USGS Publications Warehouse

    Weekes, Anne A.; Torgersen, Christian E.; Montgomery, David R.; Woodward, Andrea; Bolton, Susan M.

    2012-01-01

    Recent studies have demonstrated the geomorphic complexity and wide range of hydrologic regimes found in alpine headwater channels that provide complex habitats for aquatic taxa. These geohydrologic elements are fundamental to better understand patterns in species assemblages and indicator taxa and are necessary to aquatic monitoring protocols that aim to track changes in physical conditions. Complex physical variables shape many biological and ecological traits, including life history strategies, but these mechanisms can only be understood if critical physical variables are adequately represented within the sampling framework. To better align sampling design protocols with current geohydrologic knowledge, we present a conceptual framework that incorporates regional-scale conditions, basin-scale longitudinal profiles, valley-scale glacial macroform structure, valley segment-scale (i.e., colluvial, alluvial, and bedrock), and reach-scale channel types. At the valley segment- and reach-scales, these hierarchical levels are associated with differences in streamflow and sediment regime, water source contribution and water temperature. Examples of linked physical-ecological hypotheses placed in a landscape context and a case study using the proposed framework are presented to demonstrate the usefulness of this approach for monitoring complex temporal and spatial patterns and processes in glaciated basins. This approach is meant to aid in comparisons between mountain regions on a global scale and to improve management of potentially endangered alpine species affected by climate change and other stressors.

  6. "Touching Triton": Building Student Understanding of Complex Disease Risk.

    PubMed

    Loftin, Madelene; East, Kelly; Hott, Adam; Lamb, Neil

    2016-01-01

    Life science classrooms often emphasize the exception to the rule when it comes to teaching genetics, focusing heavily on rare single-gene and Mendelian traits. By contrast, the vast majority of human traits and diseases are caused by more complicated interactions between genetic and environmental factors. Research indicates that students have a deterministic view of genetics, generalize Mendelian inheritance patterns to all traits, and have unrealistic expectations of genetic technologies. The challenge lies in how to help students analyze complex disease risk with a lack of curriculum materials. Providing open access to both content resources and an engaging storyline can be achieved using a "serious game" model. "Touching Triton" was developed as a serious game in which students are asked to analyze data from a medical record, family history, and genomic report in order to develop an overall lifetime risk estimate of six common, complex diseases. Evaluation of student performance shows significant learning gains in key content areas along with a high level of engagement.

  7. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants

    PubMed Central

    Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.

    2016-01-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206

  8. Evaluating the dimensionality of first grade written composition

    PubMed Central

    Kim, Young-Suk; Al Otaiba, Stephanie; Folsom, Jessica S.; Greulich, Luana; Puranik, Cynthia

    2013-01-01

    Purpose We examined dimensions of written composition using multiple evaluative approaches such as an adapted 6+1 trait scoring, syntactic complexity measures, and productivity measures. We further examined unique relations of oral language and literacy skills to the identified dimensions of written composition. Method A large sample of first grade students (N = 527) was assessed on their language, reading, spelling, letter writing automaticity, and writing in the spring. Data were analyzed using a latent variable approach including confirmatory factor analysis and structural equation modeling. Results The seven traits in the 6+1 trait system were best described as two constructs: substantive quality, and spelling and writing conventions. When the other evaluation procedures such as productivity and syntactic complexity indicators were included, four dimensions emerged: substantive quality, productivity, syntactic complexity, and spelling and writing conventions. Language and literacy predictors were differentially related to each dimension in written composition. Conclusions These four dimensions may be a useful guideline for evaluating developing beginning writer’s compositions. PMID:24687472

  9. Humans (Homo sapiens) judge the emotional content of piglet (Sus scrofa domestica) calls based on simple acoustic parameters, not personality, empathy, nor attitude toward animals.

    PubMed

    Maruščáková, Iva L; Linhart, Pavel; Ratcliffe, Victoria F; Tallet, Céline; Reby, David; Špinka, Marek

    2015-05-01

    The vocal expression of emotion is likely driven by shared physiological principles among species. However, which acoustic features promote decoding of emotional state and how the decoding is affected by their listener's psychology remain poorly understood. Here we tested how acoustic features of piglet vocalizations interact with psychological profiles of human listeners to affect judgments of emotional content of heterospecific vocalizations. We played back 48 piglet call sequences recorded in four different contexts (castration, isolation, reunion, nursing) to 60 listeners. Listeners judged the emotional intensity and valence of the recordings and were further asked to attribute a context of emission from four proposed contexts. Furthermore, listeners completed a series of questionnaires assessing their personality (NEO-FFI personality inventory), empathy [Interpersonal Reactivity Index (IRI)] and attitudes to animals (Animal Attitudes Scale). None of the listeners' psychological traits affected the judgments. On the contrary, acoustic properties of recordings had a substantial effect on ratings. Recordings were rated as more intense with increasing pitch (mean fundamental frequency) and increasing proportion of vocalized sound within each stimulus recording and more negative with increasing pitch and increasing duration of the calls within the recording. More complex acoustic properties (jitter, harmonic-to-noise ratio, and presence of subharmonics) did not seem to affect the judgments. The probability of correct context recognition correlated positively with the assessed emotion intensity for castration and reunion calls, and negatively for nursing calls. In conclusion, listeners judged emotions from pig calls using simple acoustic properties and the perceived emotional intensity might guide the identification of the context. (c) 2015 APA, all rights reserved).

  10. Conserved Non-Coding Regulatory Signatures in Arabidopsis Co-Expressed Gene Modules

    PubMed Central

    Spangler, Jacob B.; Ficklin, Stephen P.; Luo, Feng; Freeling, Michael; Feltus, F. Alex

    2012-01-01

    Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome. PMID:23024789

  11. Conserved non-coding regulatory signatures in Arabidopsis co-expressed gene modules.

    PubMed

    Spangler, Jacob B; Ficklin, Stephen P; Luo, Feng; Freeling, Michael; Feltus, F Alex

    2012-01-01

    Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome.

  12. Neurobehavioral and self-awareness changes after traumatic brain injury: Towards new multidimensional approaches.

    PubMed

    Arnould, A; Dromer, E; Rochat, L; Van der Linden, M; Azouvi, P

    2016-02-01

    Neurobehavioral and self-awareness changes are frequently observed following traumatic brain injury (TBI). These disturbances have been related to negative consequences on functional outcomes, caregiver distress and social reintegration, representing therefore a challenge for clinical research. Some studies have recently been conducted to specifically explore apathetic and impulsive manifestations, as well as self-awareness impairments in patients with TBI. These findings underlined the heterogeneity of clinical manifestations for each behavioral disturbance and the diversity of psychological processes involved. In this context, new multidimensional approaches taking into account the various processes at play have been proposed to better understand and apprehend the complexity and dynamic nature of these problematic behaviors. In addition, the involvement of social and environmental factors as well as premorbid personality traits have increasingly been addressed. These new multidimensional frameworks have the potential to ensure targeted and effective rehabilitation by allowing a better identification and therefore consideration of the various mechanisms involved in the onset of problematic behaviors. In this context, the main objective of this position paper was to demonstrate the interest of multidimensional approaches in the understanding and rehabilitation of problematic behaviors in patients with TBI. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Strategies for improving mental health and wellbeing used by older people living with HIV: a qualitative investigation.

    PubMed

    Rosenfeld, Dana; Catalan, Jose; Ridge, Damien

    2018-05-30

    Recent research into "successful ageing" and "resilience" in the context of ageing with HIV highlights older people living with HIV's (OPLWH) adaptations and coping strategies hitherto neglected by early research's emphasis on difficulties and challenges. Yet "resilience" and "successful ageing" are limited by their inconsistent definition, conflation of personal traits and coping strategies, normative dimension, and inattention to cultural variation and the distinctive nature of older age. This article thus adopts an interpretivist approach to how OPLWH manage the challenges to their mental health and wellbeing of ageing with HIV. Drawing on interviews with 76 OPLWH (aged 50+) living in the United Kingdom, we document both the strategies these participants use (for example, "accentuating the positive" and accessing external support) and the challenges to these strategies' success posed by the need to manage their HIV's social and clinical dimensions and prevent their HIV from dominating their lives. This points to (a) the complex overlaps between challenges to and strategies for improving or maintaining mental health and wellbeing in the context of ageing with HIV, and (b) the limitations of the "resilience" and "successful ageing" approaches to ageing with HIV.

  14. Prey diversity effects on ecosystem functioning depend on consumer identity and prey composition.

    PubMed

    Wohlgemuth, Daniel; Filip, Joanna; Hillebrand, Helmut; Moorthi, Stefanie D

    2017-07-01

    Consumer diversity effects on ecosystem functioning are highly context dependent and are determined by consumer specialization and other consumer and prey specific traits such as growth and grazing rates. Despite complex reciprocal interactions between consumers and their prey, few experimental studies have focused on prey diversity effects on consumer dynamics and trophic transfer. In microbial microcosms, we investigated effects of algal prey diversity (one, two and four species) on the production, evenness and grazing rates of 4 ciliate consumers, differing in grazing preferences and rates. Prey diversity increased prey biovolume in the absence of consumers and had opposing effects on different consumers, depending on their specialization and their preferred prey. Consumers profited from prey mixtures compared to monocultures of non-preferred prey, but responded negatively if preferred prey species were offered together with other species. Prey diversity increased consumer evenness by preventing dominance of specific consumers, demonstrating that the loss of prey species may have cascading effects resulting in reduced consumer diversity. Our study emphasizes that not only the degree of specialization but also the selectivity for certain prey species within the dietary niche may alter the consequences of changing prey diversity in a food web context.

  15. The Role of Psychological and Physiological Factors in Decision Making under Risk and in a Dilemma

    PubMed Central

    Fooken, Jonas; Schaffner, Markus

    2016-01-01

    Different methods to elicit risk attitudes of individuals often provide differing results despite a common theory. Reasons for such inconsistencies may be the different influence of underlying factors in risk-taking decisions. In order to evaluate this conjecture, a better understanding of underlying factors across methods and decision contexts is desirable. In this paper we study the difference in result of two different risk elicitation methods by linking estimates of risk attitudes to gender, age, and personality traits, which have been shown to be related. We also investigate the role of these factors during decision-making in a dilemma situation. For these two decision contexts we also investigate the decision-maker's physiological state during the decision, measured by heart rate variability (HRV), which we use as an indicator of emotional involvement. We found that the two elicitation methods provide different individual risk attitude measures which is partly reflected in a different gender effect between the methods. Personality traits explain only relatively little in terms of driving risk attitudes and the difference between methods. We also found that risk taking and the physiological state are related for one of the methods, suggesting that more emotionally involved individuals are more risk averse in the experiment. Finally, we found evidence that personality traits are connected to whether individuals made a decision in the dilemma situation, but risk attitudes and the physiological state were not indicative for the ability to decide in this decision context. PMID:26834591

  16. A four-culture study of self-enhancement and adjustment using the social relations model: do alternative conceptualizations and indices make a difference?

    PubMed

    Church, A Timothy; Katigbak, Marcia S; Mazuera Arias, Rina; Rincon, Brigida Carolina; Vargas-Flores, José de Jesús; Ibáñez-Reyes, Joselina; Wang, Lei; Alvarez, Juan M; Wang, Congcong; Ortiz, Fernando A

    2014-06-01

    In the self-enhancement literature, 2 major controversies remain--whether self-enhancement is a cultural universal and whether it is healthy or maladaptive. Use of the social relations model (SRM; Kenny, 1994) might facilitate resolution of these controversies. We applied the SRM with a round-robin design in both friend and family contexts in 4 diverse cultures: the United States (n = 399), Mexico (n = 413), Venezuela (n = 290), and China (n = 222). Results obtained with social comparison, self-insight, and SRM conceptualizations and indices of self-enhancement were compared for both agentic traits (i.e., egoistic bias) and communal traits (i.e., moralistic bias). Conclusions regarding cultural differences in the prevalence of self-enhancement vs. self-effacement tendencies, and the relationship between self-enhancement and adjustment, varied depending on the index of self-enhancement used. For example, consistent with cultural psychology perspectives, Chinese showed a greater tendency to self-efface than self-enhance using social comparison and self-insight indices, particularly on communal traits in the friend context. However, no cultural differences were observed when perceiver and target effects were controlled using the SRM indices. In all cultures, self-enhancement indices were moderately consistent across friend and family contexts, suggesting traitlike tendencies. To a similar extent in all 4 cultures, self-enhancement tendencies, as measured by the SRM indices, were moderately related to self-rated adjustment, but unrelated, or less so, to observer-rated adjustment.

  17. Interrelationships between trait anxiety, situational stress and mental effort predict phonological processing efficiency, but not effectiveness.

    PubMed

    Edwards, Elizabeth J; Edwards, Mark S; Lyvers, Michael

    2016-08-01

    Attentional control theory (ACT) describes the mechanisms associated with the relationship between anxiety and cognitive performance. We investigated the relationship between cognitive trait anxiety, situational stress and mental effort on phonological performance using a simple (forward-) and complex (backward-) word span task. Ninety undergraduate students participated in the study. Predictor variables were cognitive trait anxiety, indexed using questionnaire scores; situational stress, manipulated using ego threat instructions; and perceived level of mental effort, measured using a visual analogue scale. Criterion variables (a) performance effectiveness (accuracy) and (b) processing efficiency (accuracy divided by response time) were analyzed in separate multiple moderated-regression analyses. The results revealed (a) no relationship between the predictors and performance effectiveness, and (b) a significant 3-way interaction on processing efficiency for both the simple and complex tasks, such that at higher effort, trait anxiety and situational stress did not predict processing efficiency, whereas at lower effort, higher trait anxiety was associated with lower efficiency at high situational stress, but not at low situational stress. Our results were in full support of the assumptions of ACT and implications for future research are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahrenkrog, Annette M.; Neves, Leandro G.; Resende, Jr., Marcio F. R.

    Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genesmore » in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. Lastly, these polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.« less

  19. Floral trait variation and integration as a function of sexual deception in Gorteria diffusa

    PubMed Central

    Ellis, Allan G.; Brockington, Samuel F.; de Jager, Marinus L.; Mellers, Gregory; Walker, Rachel H.; Glover, Beverley J.

    2014-01-01

    Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. PMID:25002705

  20. Relations among measures of trait empathy, empathetic response, and willingness to get involved in customer-contact situations.

    PubMed

    Su, Hung-Jen; Lee, Sanghyun; Ding, Jing; Comer, Lucette B

    2005-10-01

    This study examined anticipated reactions to nonroutine occurrences in the context of emotionally laden customer-contact situations in retail stores. Correlations between measures of the dimensions of trait empathy, anticipated emotional responses to the situations, and self-rated willingness to be involved were examined. Anticipated Compassion mediated the relation of Empathetic Concern on Involvement Willingness in 3 of 4 imaginary compassion-evoking situations. No corresponding effect was observed for Anticipated Distress in the imaginary distress-evoking situations.

  1. Assessing the complex architecture of polygenic traits in diverged yeast populations.

    PubMed

    Cubillos, Francisco A; Billi, Eleonora; Zörgö, Enikö; Parts, Leopold; Fargier, Patrick; Omholt, Stig; Blomberg, Anders; Warringer, Jonas; Louis, Edward J; Liti, Gianni

    2011-04-01

    Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker's yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain-specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross-combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits. © 2011 Blackwell Publishing Ltd.

  2. Expansion of a globally pervasive grass occurs without substantial trait differences between home and away populations.

    PubMed

    Leifso, A; MacDougall, A S; Husband, B; Hierro, J L; Köchy, M; Pärtel, M; Peltzer, D A

    2012-12-01

    The global expansion of species beyond their ancestral ranges can derive from mechanisms that are trait-based (e.g., post-establishment evolved differences compared to home populations) or circumstantial (e.g., propagule pressure, with no trait-based differences). These mechanisms can be difficult to distinguish following establishment, but each makes unique predictions regarding trait similarity between ancestral ('home') and introduced ('away') populations. Here, we tested for trait-based population differences across four continents for the globally distributed grass Dactylis glomerata, to assess the possible role of trait evolution in its worldwide expansion. We used a common-environment glasshouse experiment to quantify trait differences among home and away populations, and the potential relevance of these differences for competitive interactions. Few significant trait differences were found among continents, suggesting minimal change during global expansion. All populations were polyploids, with similar foliar carbon:nitrogen ratios (a proxy for defense), chlorophyll content, and biomass. Emergence time and growth rate favored home populations, resulting in their competitive superiority over away populations. Small but significant trait differences among away populations suggest different introductory histories or local adaptive responses following establishment. In summary, the worldwide distribution of this species appears to have arisen from its pre-adapted traits promoting growth, and its repeated introduction with cultivation and intense propagule pressure. Global expansion can thus occur without substantial shifts in growth, reproduction, or defense. Rather than focusing strictly on the invader, invasion success may also derive from the traits found (or lacking) in the recipient community and from environmental context including human disturbance.

  3. The importance of retaining a phylogenetic perspective in traits-based community analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineagesmore » had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.« less

  4. The importance of retaining a phylogenetic perspective in traits-based community analyses

    DOE PAGES

    Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.

    2015-04-08

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineagesmore » had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.« less

  5. What Explains Patterns of Diversification and Richness among Animal Phyla?

    PubMed Central

    Jezkova, Tereza; Wiens, John J.

    2016-01-01

    Animal phyla vary dramatically in species richness (from 1 species to >1.2 million), but the causes of this variation remain largely unknown. Animals have also evolved striking variation in morphology and ecology, including sessile marine taxa lacking heads, eyes, limbs, and complex organs (e.g. sponges), parasitic worms (e.g. nematodes, platyhelminths), and taxa with eyes, skeletons, limbs, and complex organs that dominate terrestrial ecosystems (arthropods, chordates). Relating this remarkable variation in traits to the diversification and richness of animal phyla is a fundamental yet unresolved problem in biology. Here, we test the impacts of 18 traits (including morphology, ecology, reproduction, and development) on diversification and richness of extant animal phyla. Using phylogenetic multiple regression, the best-fitting model includes five traits that explain ~74% of the variation in diversification rates (dioecy, parasitism, eyes/photoreceptors, a skeleton, non-marine habitat). However, a model including just three (skeleton, parasitism, habitat) explains nearly as much variation (~67%). Diversification rates then largely explain richness patterns. Our results also identify many striking traits that have surprisingly little impact on diversification (e.g. head, limbs, and complex circulatory and digestive systems). Overall, our results reveal the key factors that shape large-scale patterns of diversification and richness across >80% of all extant, described species. PMID:28221832

  6. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect.

    PubMed

    Bocianowski, Jan

    2013-03-01

    Epistasis, an additive-by-additive interaction between quantitative trait loci, has been defined as a deviation from the sum of independent effects of individual genes. Epistasis between QTLs assayed in populations segregating for an entire genome has been found at a frequency close to that expected by chance alone. Recently, epistatic effects have been considered by many researchers as important for complex traits. In order to understand the genetic control of complex traits, it is necessary to clarify additive-by-additive interactions among genes. Herein we compare estimates of a parameter connected with the additive gene action calculated on the basis of two models: a model excluding epistasis and a model with additive-by-additive interaction effects. In this paper two data sets were analysed: 1) 150 barley doubled haploid lines derived from the Steptoe × Morex cross, and 2) 145 DH lines of barley obtained from the Harrington × TR306 cross. The results showed that in cases when the effect of epistasis was different from zero, the coefficient of determination was larger for the model with epistasis than for the one excluding epistasis. These results indicate that epistatic interaction plays an important role in controlling the expression of complex traits.

  7. What Explains Patterns of Diversification and Richness among Animal Phyla?

    PubMed

    Jezkova, Tereza; Wiens, John J

    2017-03-01

    Animal phyla vary dramatically in species richness (from one species to >1.2 million), but the causes of this variation remain largely unknown. Animals have also evolved striking variation in morphology and ecology, including sessile marine taxa lacking heads, eyes, limbs, and complex organs (e.g., sponges), parasitic worms (e.g., nematodes, platyhelminths), and taxa with eyes, skeletons, limbs, and complex organs that dominate terrestrial ecosystems (arthropods, chordates). Relating this remarkable variation in traits to the diversification and richness of animal phyla is a fundamental yet unresolved problem in biology. Here, we test the impacts of 18 traits (including morphology, ecology, reproduction, and development) on diversification and richness of extant animal phyla. Using phylogenetic multiple regression, the best-fitting model includes five traits that explain ∼74% of the variation in diversification rates (dioecy, parasitism, eyes/photoreceptors, a skeleton, nonmarine habitat). However, a model including just three (skeleton, parasitism, habitat) explains nearly as much variation (∼67%). Diversification rates then largely explain richness patterns. Our results also identify many striking traits that have surprisingly little impact on diversification (e.g., head, limbs, and complex circulatory and digestive systems). Overall, our results reveal the key factors that shape large-scale patterns of diversification and richness across >80% of all extant, described species.

  8. Integrated translational genomics for analysis of complex traits in sorghum

    USDA-ARS?s Scientific Manuscript database

    We will report on the integration of sequencing and genotype data from natural variation (by whole genome resequencing [wgs] or genotype by sequencing [gbs]), transcriptome (RNA-seq) and mutant analysis (also by wgs) with the goal of identifying genes controlling important agronomic traits and tran...

  9. The promise of genomics in the study of plant-pollinator interactions

    PubMed Central

    2013-01-01

    Flowers exist in exceedingly complex fitness landscapes, in which subtle variation in each trait can affect the pollinators, herbivores and pleiotropically linked traits in other plant tissues. A whole-genome approach to flower evolution will help our understanding of plant-pollinator interactions. PMID:23796166

  10. Geometric morphometric analysis of allometric variation in the mandibular morphology of the hominids of Atapuerca, Sima de los Huesos site.

    PubMed

    Rosas, Antonio; Bastir, Markus

    2004-06-01

    Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. Copyright 2004 Wiley-Liss, Inc.

  11. Temporal and social contexts of heroin-using populations. An illustration of the snowball sampling technique.

    PubMed

    Kaplan, C D; Korf, D; Sterk, C

    1987-09-01

    Snowball sampling is a method that has been used in the social sciences to study sensitive topics, rare traits, personal networks, and social relationships. The method involves the selection of samples utilizing "insider" knowledge and referral chains among subjects who possess common traits that are of research interest. It is especially useful in generating samples for which clinical sampling frames may be difficult to obtain or are biased in some way. In this paper, snowball samples of heroin users in two Dutch cities have been analyzed for the purpose of providing descriptions and limited inferences about the temporal and social contexts of their lifestyles. Two distinct heroin-using populations have been discovered who are distinguished by their life cycle stage. Significant contextual explanations have been found involving the passage from adolescent peer group to criminal occupation, the functioning of network "knots" and "outcroppings," and the frequency of social contact. It is suggested that the snowball sampling method may have utility in studying the temporal and social contexts of other populations of clinical interest.

  12. The Perceived Benefits of Height: Strength, Dominance, Social Concern, and Knowledge among Bolivian Native Amazonians

    PubMed Central

    Undurraga, Eduardo A.; Zebrowitz, Leslie; Eisenberg, Dan T. A.; Reyes-García, Victoria; Godoy, Ricardo A.

    2012-01-01

    Research in industrial countries suggests that, with no other knowledge about a person, positive traits are attributed to taller people and correspondingly, that taller people have slightly better socioeconomic status (SES). However, research in some non-industrialized contexts has shown no correlation or even negative correlations between height and socioeconomic outcomes. It remains unclear whether positive traits remain attributed to taller people in such contexts. To address this question, here we report the results of a study in a foraging-farming society of native Amazonians in Bolivia (Tsimane’)–a group in which we have previously shown little association between height and socioeconomic outcomes. We showed 24 photographs of pairs of Tsimane’ women, men, boys, and girls to 40 women and 40 men >16 years of age. We presented four behavioral scenarios to each participant and asked them to point to the person in the photograph with greater strength, dominance, social concern, or knowledge. The pairs in the photographs were of the same sex and age, but one person was shorter. Tsimane’ women and men attributed greater strength, dominance, and knowledge to taller girls and boys, but they did not attribute most positive traits to taller adults, except for strength, and more social concern only when women assessed other women in the photographs. These results raise a puzzle: why would Tsimane’ attribute positive traits to tall children, but not tall adults? We propose three potential explanations: adults’ expectations about the more market integrated society in which their children will grow up, height as a signal of good child health, and children’s greater variation in the traits assessed corresponding to maturational stages. PMID:22574118

  13. The perceived benefits of height: strength, dominance, social concern, and knowledge among Bolivian native Amazonians.

    PubMed

    Undurraga, Eduardo A; Zebrowitz, Leslie; Eisenberg, Dan T A; Reyes-García, Victoria; Godoy, Ricardo A

    2012-01-01

    Research in industrial countries suggests that, with no other knowledge about a person, positive traits are attributed to taller people and correspondingly, that taller people have slightly better socioeconomic status (SES). However, research in some non-industrialized contexts has shown no correlation or even negative correlations between height and socioeconomic outcomes. It remains unclear whether positive traits remain attributed to taller people in such contexts. To address this question, here we report the results of a study in a foraging-farming society of native Amazonians in Bolivia (Tsimane')--a group in which we have previously shown little association between height and socioeconomic outcomes. We showed 24 photographs of pairs of Tsimane' women, men, boys, and girls to 40 women and 40 men >16 years of age. We presented four behavioral scenarios to each participant and asked them to point to the person in the photograph with greater strength, dominance, social concern, or knowledge. The pairs in the photographs were of the same sex and age, but one person was shorter. Tsimane' women and men attributed greater strength, dominance, and knowledge to taller girls and boys, but they did not attribute most positive traits to taller adults, except for strength, and more social concern only when women assessed other women in the photographs. These results raise a puzzle: why would Tsimane' attribute positive traits to tall children, but not tall adults? We propose three potential explanations: adults' expectations about the more market integrated society in which their children will grow up, height as a signal of good child health, and children's greater variation in the traits assessed corresponding to maturational stages.

  14. Anticipation of public speaking in virtual reality reveals a relationship between trait social anxiety and startle reactivity.

    PubMed

    Cornwell, Brian R; Johnson, Linda; Berardi, Luciano; Grillon, Christian

    2006-04-01

    Startle reflex modification has become valuable to the study of fear and anxiety, but few studies have explored startle reactivity in socially threatening situations. Healthy participants ranging in trait social anxiety entered virtual reality (VR) that simulates standing center-stage in front of an audience to anticipate giving a speech and count backward. We measured startle and autonomic reactivity during anticipation of both tasks inside VR after a single baseline recording outside VR. Trait social anxiety, but not general trait anxiety, was positively correlated with startle before entering VR and most clearly during speech anticipation inside VR. Speech anticipation inside VR also elicited stronger physiologic responses relative to anticipation of counting. Under social-evaluative threat, startle reactivity showed robust relationships with fear of negative evaluation, a central aspect of social anxiety and clinical social phobia. Context-specific startle modification may be an endophenotype for subtypes of pathological anxiety.

  15. Antisocial behaviour in children with and without callous-unemotional traits

    PubMed Central

    Viding, Essi; Fontaine, Nathalie MG; McCrory, Eamon J

    2012-01-01

    More than 15 years of research have documented behavioural differences between callous-unemotional and non-callous subtypes of children with antisocial behaviour. Recent studies also suggest that children with callous-unemotional traits may be genetically vulnerable to antisocial behaviour, while those without callous-unemotional traits appear to have primarily environmental aetiology to their antisocial behaviour. Furthermore neurocognitive profiles differ between antisocial children with and without callous-unemotional traits. While the former group appears emotionally under-reactive, particularly to others' distress, the latter group may be emotionally over-reactive, particularly to perceived threat. In this review we provide an overview of the current evidence base with regard to callous-unemotional and non-callous subgroups of children with antisocial behaviour and discuss the implications of the current evidence base for prevention and intervention. This overview selectively focuses on recent advances in this area of research, as well as earlier studies where these help set the research context. PMID:22637770

  16. Antisocial behaviour in children with and without callous-unemotional traits.

    PubMed

    Viding, Essi; Fontaine, Nathalie M G; McCrory, Eamon J

    2012-05-01

    More than 15 years of research have documented behavioural differences between callous-unemotional and non-callous subtypes of children with antisocial behaviour. Recent studies also suggest that children with callous-unemotional traits may be genetically vulnerable to antisocial behaviour, while those without callous-unemotional traits appear to have primarily environmental aetiology to their antisocial behaviour. Furthermore neurocognitive profiles differ between antisocial children with and without callous-unemotional traits. While the former group appears emotionally under-reactive, particularly to others' distress, the latter group may be emotionally over-reactive, particularly to perceived threat. In this review we provide an overview of the current evidence base with regard to callous-unemotional and non-callous subgroups of children with antisocial behaviour and discuss the implications of the current evidence base for prevention and intervention. This overview selectively focuses on recent advances in this area of research, as well as earlier studies where these help set the research context.

  17. Positive psychology perspective on traumatic brain injury recovery and rehabilitation.

    PubMed

    Rabinowitz, Amanda R; Arnett, Peter A

    2018-01-01

    Recovery from traumatic brain injury (TBI) is heterogeneous, with injury characteristics and neuropathological findings accounting for a relatively modest proportion of the variance in clinical outcome. Furthermore, premorbid personality traits and psychological characteristics may moderate psychosocial recovery. Constructs from the field of positive psychology have been examined in multiple illness populations and are increasingly gaining attention as factors that may influence recovery from TBI. Positive affect, hope, optimism, adaptive coping style, and resilience have all been examined in the context of TBI. These phenomena are of particular interest because they may inform treatment, either by reducing psychological distress and promoting better adjustment, or by augmenting existing therapies to improve engagement. In general, research suggests that higher levels of these factors predict better psychosocial functioning after injury. However, brain injury itself is associated with reduced levels of many of these positive traits, either relative to uninjured control samples or preinjury functioning. There have been proposals for targeting these positive traits in the context of TBI rehabilitation. Although more research is needed, the few controlled trials aimed at improving adaptive coping skills have shown promising results. Other positive psychological phenomena, such as grit, optimism, and positive affect are deserving of further study as potential intervention targets.

  18. Plasticity Regulators Modulate Specific Root Traits in Discrete Nitrogen Environments

    PubMed Central

    Gifford, Miriam L.; Banta, Joshua A.; Katari, Manpreet S.; Hulsmans, Jo; Chen, Lisa; Ristova, Daniela; Tranchina, Daniel; Purugganan, Michael D.; Coruzzi, Gloria M.; Birnbaum, Kenneth D.

    2013-01-01

    Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such “tunability” in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment. PMID:24039603

  19. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

    PubMed

    Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S

    2014-02-01

    Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.

  20. Studying Gene and Gene-Environment Effects of Uncommon and Common Variants on Continuous Traits: A Marker-Set Approach Using Gene-Trait Similarity Regression

    PubMed Central

    Tzeng, Jung-Ying; Zhang, Daowen; Pongpanich, Monnat; Smith, Chris; McCarthy, Mark I.; Sale, Michèle M.; Worrall, Bradford B.; Hsu, Fang-Chi; Thomas, Duncan C.; Sullivan, Patrick F.

    2011-01-01

    Genomic association analyses of complex traits demand statistical tools that are capable of detecting small effects of common and rare variants and modeling complex interaction effects and yet are computationally feasible. In this work, we introduce a similarity-based regression method for assessing the main genetic and interaction effects of a group of markers on quantitative traits. The method uses genetic similarity to aggregate information from multiple polymorphic sites and integrates adaptive weights that depend on allele frequencies to accomodate common and uncommon variants. Collapsing information at the similarity level instead of the genotype level avoids canceling signals that have the opposite etiological effects and is applicable to any class of genetic variants without the need for dichotomizing the allele types. To assess gene-trait associations, we regress trait similarities for pairs of unrelated individuals on their genetic similarities and assess association by using a score test whose limiting distribution is derived in this work. The proposed regression framework allows for covariates, has the capacity to model both main and interaction effects, can be applied to a mixture of different polymorphism types, and is computationally efficient. These features make it an ideal tool for evaluating associations between phenotype and marker sets defined by linkage disequilibrium (LD) blocks, genes, or pathways in whole-genome analysis. PMID:21835306

  1. Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast

    PubMed Central

    Ben-Ari, Giora; Zenvirth, Drora; Sherman, Amir; David, Lior; Klutstein, Michael; Lavi, Uri; Hillel, Jossi; Simchen, Giora

    2006-01-01

    Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs) is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four “high” sporulation alleles are derived from the “low” sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one “QTL region” that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes. PMID:17112318

  2. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance

    PubMed Central

    Trapero, Carlos; Wilson, Iain W.; Stiller, Warwick N.; Wilson, Lewis J.

    2016-01-01

    Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton cultivars has greatly reduced the amount of pesticides used in many cotton systems. However, pests not controlled by the GM traits have usually emerged as problems, especially the sucking bug complex. Control of this complex with pesticides often causes a reduction in beneficial invertebrate populations, allowing other secondary pests to increase rapidly and require control. Control of both sucking bug complex and secondary pests is problematic due to the cost of pesticides and/or high risk of selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides an opportunity to manage these issues in GM cotton systems. Cotton cultivars resistant to the sucking bug complex and/or secondary pests would require fewer pesticide applications, reducing costs and risks to beneficial invertebrate populations and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high yield and fiber quality offers the potential to further reduce pesticide use and increase the durability of pest management in GM cotton systems. We review the challenges that the identification and use of HPR against invertebrate pests brings to cotton breeding. We explore sources of resistance to the sucking bug complex and secondary pests, the mechanisms that control them and the approaches to incorporate these defense traits to commercial cultivars. PMID:27148323

  3. Occlusal traits and orthodontic treatment need in 7‐ to 10‐year‐olds in Estonia

    PubMed Central

    Saag, Mare; Svedström‐Oristo, Anna‐Liisa; Peltomäki, Timo; Vinkka‐Puhakka, Heli

    2017-01-01

    Abstract The aim of this study was to evaluate the distribution of occlusal traits and orthodontic treatment need and complexity in Estonian 7‐ to 10‐year‐old children. This data provides solid information for planning of orthodontic care. Data of 392 Estonian children (198 girls and 194 boys, mean age 9.0 years, range 7.1–10.4 years) was analysed in this cross‐sectional study. Assessed traits included first molar and canine sagittal relationship, overjet, overbite, crowding, midline diastema, crossbite, and scissor bite. Orthodontic treatment need and complexity were assessed using the Index of Complexity, Outcome, and Need. Parents' opinion regarding their child's teeth was determined using a questionnaire. The most prevalent occlusal traits were canine class I sagittal relationship (73.7%), midline diastema (73.0%), molar class I sagittal relationship (57.4%), and overbite ≥3.5 mm (51.8%). According to the Index of Complexity, Outcome, and Need, 64.3% of Estonian elementary school children were in need of orthodontic treatment. Treatment complexity was simple in 12.5%, mild in 38.8%, moderate in 22.7%, difficult in 14.0%, and very difficult in 12.0% of the children. Approximately 66.4% of the parents felt that their child needed orthodontic treatment. This study confirms earlier findings indicating that the most frequent sagittal relationship is class I in the first molars and class I in the canines. However, the sagittal relationship was asymmetric in more than half of the children. Correlation between objectively defined treatment need and parents' desire for treatment was high in Estonia. PMID:29744185

  4. Identification of gene networks underlying dystocia in dairy cattle

    USDA-ARS?s Scientific Manuscript database

    Dystocia is a trait with a high impact in the dairy industry. Among its risk factors are calf weight, gestation length, breed and conformation. Biological networks have been proposed to capture the genetic architecture of complex traits, where GWAS show limitations. The objective of this study was t...

  5. Successful Graduate Students: The Roles of Personality Traits and Emotional Intelligence

    ERIC Educational Resources Information Center

    Grehan, Patrick M.; Flanagan, Rosemary; Malgady, Robert G.

    2011-01-01

    Given the complex role of school psychologists, it is in the interest of stakeholders to identify characteristics related to student success in graduate training, which is suggestive of their effectiveness as practitioners. This study explores the relationship of personality traits and Emotional Intelligence (EI) to graduate students' performance…

  6. QTLs detected for individual sugars and soluble solids content in apple

    USDA-ARS?s Scientific Manuscript database

    Sweetness is one of the most important fruit quality traits in breeding programs, determining the overall quality and flavor-perception of apples. Selecting for this trait using conventional breeding methods is challenging due to the complexity of its genetic control. In order to improve the efficie...

  7. Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association studies (GWAS) are a powerful method to dissect the genetic basis of traits, though in practice the effects of complex genetic architecture and population structure remain poorly understood. To compare mapping strategies we dissect the genetic control of flavonoid pigmentatio...

  8. Ethnography in Educational Research: The Dynamics of Diffusion.

    ERIC Educational Resources Information Center

    Fetterman, David M.

    1982-01-01

    Ascribes difficulties associated with the use of ethnography in educational research to faulty or partial transmission of traits from one sociocultural system to another. Maintains that the appropriate use of ethnography demands that the whole trait complex be borrowed. Describes educational studies that used ethnographic methods. (Author/MJL)

  9. Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach.

    PubMed

    Brind'Amour, Anik; Boisclair, Daniel; Dray, Stéphane; Legendre, Pierre

    2011-03-01

    Understanding the relationships between species biological traits and the environment is crucial to predicting the effect of habitat perturbations on fish communities. It is also an essential step in the assessment of the functional diversity. Using two complementary three-matrix approaches (fourth-corner and RLQ analyses), we tested the hypothesis that feeding-oriented traits determine the spatial distributions of littoral fish species by assessing the relationship between fish spatial distributions, fish species traits, and habitat characteristics in two Laurentian Shield lakes. Significant associations between the feeding-oriented traits and the environmental characteristics suggested that fish communities in small lakes (displaying low species richness) can be spatially structured. Three groups of traits, mainly categorized by the species spatial and temporal feeding activity, were identified. The water column may be divided in two sections, each of them corresponding to a group of traits related to the vertical distribution of the prey coupled with the position of the mouth. Lake areas of low structural complexity were inhabited by functional assemblages dominated by surface feeders while structurally more complex areas were occupied by mid-water and benthic feeders. A third group referring to the time of feeding activity was observed. Our work could serve as a guideline study to evaluate species traits x environment associations at multiple spatial scales. Our results indicate that three-matrix statistical approaches are powerful tools that can be used to study such relationships. These recent statistical approaches open up new research directions such as the study of spatially based biological functions in lakes. They also provide new analytical tools for determining, for example, the potential size of freshwater protected areas.

  10. Pedigree- and SNP-Associated Genetics and Recent Environment are the Major Contributors to Anthropometric and Cardiometabolic Trait Variation.

    PubMed

    Xia, Charley; Amador, Carmen; Huffman, Jennifer; Trochet, Holly; Campbell, Archie; Porteous, David; Hastie, Nicholas D; Hayward, Caroline; Vitart, Veronique; Navarro, Pau; Haley, Chris S

    2016-02-01

    Genome-wide association studies have successfully identified thousands of loci for a range of human complex traits and diseases. The proportion of phenotypic variance explained by significant associations is, however, limited. Given the same dense SNP panels, mixed model analyses capture a greater proportion of phenotypic variance than single SNP analyses but the total is generally still less than the genetic variance estimated from pedigree studies. Combining information from pedigree relationships and SNPs, we examined 16 complex anthropometric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000 individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related individuals provides the opportunity to also estimate the genetic variance associated with pedigree as well as the effects of common family environment. Trait variation was partitioned into SNP-associated and pedigree-associated genetic variation, shared nuclear family environment, shared couple (partner) environment and shared full-sibling environment. Results demonstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and pedigree-associated genetic effects each explain around half the genetic variance. For most traits the recently-shared environment of couples is also significant, accounting for ~11% of the phenotypic variance on average. On the other hand, the environment shared largely in the past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings point to appropriate models to use in future studies as pedigree-associated genetic effects and couple environmental effects have seldom been taken into account in genotype-based analyses. Appropriate description of the trait variation could help understand causes of intra-individual variation and in the detection of contributing loci and environmental factors.

  11. Advances in biotechnology and linking outputs to variation in complex traits: Plant and Animal Genome meeting January 2012.

    PubMed

    Appels, R; Barrero, R; Bellgard, M

    2012-03-01

    The Plant and Animal Genome (PAG, held annually) meeting in January 2012 provided insights into the advances in plant, animal, and microbe genome studies particularly as they impact on our understanding of complex biological systems. The diverse areas of biology covered included the advances in technologies, variation in complex traits, genome change in evolution, and targeting phenotypic changes, across the broad spectrum of life forms. This overview aims to summarize the major advances in research areas presented in the plenary lectures and does not attempt to summarize the diverse research activities covered throughout the PAG in workshops, posters, presentations, and displays by suppliers of cutting-edge technologies.

  12. Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data

    PubMed Central

    Kussell, Edo

    2017-01-01

    Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such as abundance of growth-related proteins in single cells may have differential effects on the reproductive success of cells, rigorous experimental quantification of this process has remained elusive due to the complexity of single cell physiology within the context of a proliferating population. We introduce and apply a practical empirical method to quantify the fitness landscapes of arbitrary phenotypic traits, using genealogical data in the form of population lineage trees which can include phenotypic data of various kinds. Our inference methodology for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and provides a natural generalization of bulk growth rate measures for single-cell histories. Using this technique, we quantify the strength of selection acting on different cellular phenotypic traits within populations, which allows us to determine whether a change in population growth is caused by individual cells’ response, selection within a population, or by a mixture of these two processes. By applying these methods to single-cell time-lapse data of growing bacterial populations that express a resistance-conferring protein under antibiotic stress, we show how the distributions, fitness landscapes, and selection strength of single-cell phenotypes are affected by the drug. Our work provides a unified and practical framework for quantitative measurements of fitness landscapes and selection strength for any statistical quantities definable on lineages, and thus elucidates the adaptive significance of phenotypic states in time series data. The method is applicable in diverse fields, from single cell biology to stem cell differentiation and viral evolution. PMID:28267748

  13. Cortisol Stress Response Variability in Early Adolescence Attachment, Affect and Sex

    PubMed Central

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J.; Wynne-Edwards, Katherine; Wright, Joan M.; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic–pituitary–adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents. PMID:27468997

  14. Cortisol Stress Response Variability in Early Adolescence: Attachment, Affect and Sex.

    PubMed

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J; Wynne-Edwards, Katherine; Wright, Joan M; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic-pituitary-adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents.

  15. A network of amygdala connections predict individual differences in trait anxiety.

    PubMed

    Greening, Steven G; Mitchell, Derek G V

    2015-12-01

    In this study we demonstrate that the pattern of an amygdala-centric network contributes to individual differences in trait anxiety. Individual differences in trait anxiety were predicted using maximum likelihood estimates of amygdala structural connectivity to multiple brain targets derived from diffusion-tensor imaging (DTI) and probabilistic tractography on 72 participants. The prediction was performed using a stratified sixfold cross validation procedure using a regularized least square regression model. The analysis revealed a reliable network of regions predicting individual differences in trait anxiety. Higher trait anxiety was associated with stronger connections between the amygdala and dorsal anterior cingulate cortex, an area implicated in the generation of emotional reactions, and inferior temporal gyrus and paracentral lobule, areas associated with perceptual and sensory processing. In contrast, higher trait anxiety was associated with weaker connections between amygdala and regions implicated in extinction learning such as medial orbitofrontal cortex, and memory encoding and environmental context recognition, including posterior cingulate cortex and parahippocampal gyrus. Thus, trait anxiety is not only associated with reduced amygdala connectivity with prefrontal areas associated with emotion modulation, but also enhanced connectivity with sensory areas. This work provides novel anatomical insight into potential mechanisms behind information processing biases observed in disorders of emotion. © 2015 Wiley Periodicals, Inc.

  16. Interactive effects of trait and state affect on top-down control of attention.

    PubMed

    Hur, Juyoen; Miller, Gregory A; McDavitt, Jenika R B; Spielberg, Jeffrey M; Crocker, Laura D; Infantolino, Zachary P; Towers, David N; Warren, Stacie L; Heller, Wendy

    2015-08-01

    Few studies have investigated how attentional control is affected by transient affective states while taking individual differences in affective traits into consideration. In this study, participants completed a color-word Stroop task immediately after undergoing a positive, neutral or negative affective context manipulation (ACM). Behavioral performance was unaffected by any ACM considered in isolation. For individuals high in trait negative affect (NA), performance was impaired by the negative but not the positive or neutral ACM. Neuroimaging results indicate that activity in primarily top-down control regions of the brain (inferior frontal gyrus and dorsal anterior cingulate cortex) was suppressed in the presence of emotional arousal (both negative and positive ACMs). This effect appears to have been exacerbated or offset by co-occurring activity in other top-down control regions (parietal) and emotion processing regions (orbitofrontal cortex, amygdala and nucleus accumbens) as a function of the valence of state affect (positive or negative) and trait affect (trait NA or trait PA). Neuroimaging results are consistent with behavioral findings. In combination, they indicate both additive and interactive influences of trait and state affect on top-down control of attention. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Five species, many genotypes, broad phenotypic diversity: When agronomy meets functional ecology.

    PubMed

    Prieto, Ivan; Litrico, Isabelle; Violle, Cyrille; Barre, Philippe

    2017-01-01

    Current ecological theory can provide insight into the causes and impacts of plant domestication. However, just how domestication has impacted intraspecific genetic variability (ITV) is unknown. We used 50 ecotypes and 35 cultivars from five grassland species to explore how selection drives functional trait coordination and genetic differentiation. We quantified the extent of genetic diversity among different sets of functional traits and determined how much genetic diversity has been generated within populations of natural ecotypes and selected cultivars. In general, the cultivars were larger (e.g., greater height, faster growth rates) and had larger and thinner leaves (greater SLA). We found large (average 63%) and trait-dependent (ranging from 14% for LNC to 95.8% for growth rate) genetic variability. The relative extent of genetic variability was greater for whole-plant than for organ-level traits. This pattern was consistent within ecotypes and within cultivars. However, ecotypes presented greater ITV variability. The results indicated that genetic diversity is large in domesticated species with contrasting levels of heritability among functional traits and that selection for high yield has led to indirect selection of some associated leaf traits. These findings open the way to define which target traits should be the focus in selection programs, especially in the context of community-level selection. © 2017 Botanical Society of America.

  18. Greater Perceived Similarity between Self and Own-Age Others in Older than Young Adults

    PubMed Central

    Lin, Tian; Ankudowich, Elizabeth; Ebner, Natalie C.

    2017-01-01

    As people age, they increasingly incorporate age-stereotypes into their self-view. Based on this evidence we propose that older compared to young adults identify to a greater extent with their own-age group on personality traits, an effect that may be particularly pronounced for positive traits. Two studies tested these hypotheses by examining associations in young and older adults between evaluations of self and own-age others on personality traits that varied on valence. In both studies, young and older participants rated personality trait adjectives on age typicality, valence, and self typicality. Converging results across both studies showed that older compared to young participants were more likely to endorse personality traits as self-typical when those traits were also perceived as more typical for their own-age group, independent of whether age was made salient to participants prior to evaluation. In addition, there was evidence that the association between evaluations of self and own-age others in older participants was greater for more positive personality traits. This age-differential pattern is discussed in the context of increased age salience in aging and its effect on the similarity between evaluations of self and own-age others in older compared to young adults. PMID:28471216

  19. Detection of expression quantitative trait Loci in complex mouse crosses: impact and alleviation of data quality and complex population substructure.

    PubMed

    Iancu, Ovidiu D; Darakjian, Priscila; Kawane, Sunita; Bottomly, Daniel; Hitzemann, Robert; McWeeney, Shannon

    2012-01-01

    Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F(2) intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection.

  20. L2 Willingness to Communicate, Openness to Experience, Extraversion, and L2 Unwillingness to Communicate: The Iranian EFL Context

    ERIC Educational Resources Information Center

    Khany, Reza; Nejad, Ali Mansouri

    2017-01-01

    This study examines the relationship between L2 willingness to communicate (L2WTC), L2 unwillingness to communicate (L2UWTC) and the personality traits of openness to experience and extraversion in an Iranian context. The Pearson correlation and descriptive statistics were used to analyse the results from a study with 217 English major students. A…

  1. How environment and genes shape the adolescent brain.

    PubMed

    Paus, Tomáš

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". This review provides a conceptual framework for the study of factors--in our genes and environment--that shape the adolescent brain. I start by pointing out that brain phenotypes obtained with magnetic resonance imaging are complex traits reflecting the interplay of genes and the environment. In some cases, variations in the structural phenotypes observed during adolescence have their origin in the pre-natal or early post-natal periods. I then emphasize the bidirectional nature of brain-behavior relationships observed during this period of human development, where function may be more likely to influence structure rather than vice versa. In the main part of this article, I review our ongoing work on the influence of gonadal hormones on the adolescent brain. I also discuss the importance of social context and brain plasticity on shaping the relevant neural circuits. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    PubMed

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  3. Immunity in a variable world

    PubMed Central

    Lazzaro, Brian P.; Little, Tom J.

    2008-01-01

    Immune function is likely to be a critical determinant of an organism's fitness, yet most natural animal and plant populations exhibit tremendous genetic variation for immune traits. Accumulating evidence suggests that environmental heterogeneity may retard the long-term efficiency of natural selection and even maintain polymorphism, provided alternative host genotypes are favoured under different environmental conditions. ‘Environment’ in this context refers to abiotic factors such as ambient temperature or availability of nutrient resources, genetic diversity of pathogens or competing physiological demands on the host. These factors are generally controlled in laboratory experiments measuring immune performance, but variation in them is likely to be very important in the evolution of resistance to infection. Here, we review some of the literature emphasizing the complexity of natural selection on immunity. Our aim is to describe how environmental and genetic heterogeneities, often excluded from experimentation as ‘noise’, may determine the evolutionary potential of populations or the potential for interacting species to coevolve. PMID:18926975

  4. Virtues and humanitarian ethics.

    PubMed

    Löfquist, Lars

    2017-01-01

    This paper analyses the contribution of virtue ethics, the study of good character traits, to the humanitarian context. It argues that a virtue ethics perspective paints a realistic picture of the use of ethical standards in morally complex circumstances. Virtuous relief workers can employ standards in their thinking, but they are also committed to professional excellence that goes beyond any formal code. The concept of virtue ethics places a stress on moral development, which can be facilitated by role models that impart modest and feasible ideals. However, virtue ethics cannot provide simple guidelines on how to resolve difficult situations. It is possible that two virtuous persons can disagree on what should be done in a particular instance. In addition, a virtue ethics perspective emphasises the need for both individuals and organisations to discuss the actual purpose of relief work in order to pinpoint the virtues of a good relief professional. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  5. With whom do you feel most intimate?: Exploring the quality of Facebook friendships in relation to similarities and interaction behaviors.

    PubMed

    Wee, Jieun; Lee, Joonhwan

    2017-01-01

    It is widely accepted that people tend to associate more and feel closer to those who share similar attributes with themselves. Most of the research on the phenomenon has been carried out in face-to-face contexts. However, it is necessary to study the phenomenon in computer-mediated contexts as well. Exploring Facebook is important in that friendships within the network indicate a broader spectrum of friends, ranging from complete strangers to confiding relations. Also, since diverse communication methods are available on Facebook, which method a user adopts to interact with a "friend" could influence the quality of the relationship, i.e. intimacy. Thus, current research aims to test whether people in computer-mediated contexts do perceive more intimacy toward friends who share similar traits, and further, aims to examine which interaction methods influence the closeness of relationship by collecting activity data of users on Facebook. Results from current study show traits related to intimacy in the online context of Facebook. Moreover, in addition to the interaction type itself, direction of the interaction influenced how intimate users feel towards their friends. Overall findings suggest that further investigation on the dynamics of online communication methods used in developing and maintaining relationships is necessary.

  6. With whom do you feel most intimate?: Exploring the quality of Facebook friendships in relation to similarities and interaction behaviors

    PubMed Central

    Wee, Jieun; Lee, Joonhwan

    2017-01-01

    It is widely accepted that people tend to associate more and feel closer to those who share similar attributes with themselves. Most of the research on the phenomenon has been carried out in face-to-face contexts. However, it is necessary to study the phenomenon in computer-mediated contexts as well. Exploring Facebook is important in that friendships within the network indicate a broader spectrum of friends, ranging from complete strangers to confiding relations. Also, since diverse communication methods are available on Facebook, which method a user adopts to interact with a “friend” could influence the quality of the relationship, i.e. intimacy. Thus, current research aims to test whether people in computer-mediated contexts do perceive more intimacy toward friends who share similar traits, and further, aims to examine which interaction methods influence the closeness of relationship by collecting activity data of users on Facebook. Results from current study show traits related to intimacy in the online context of Facebook. Moreover, in addition to the interaction type itself, direction of the interaction influenced how intimate users feel towards their friends. Overall findings suggest that further investigation on the dynamics of online communication methods used in developing and maintaining relationships is necessary. PMID:28453526

  7. Software errors and complexity: An empirical investigation

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Perricone, Berry T.

    1983-01-01

    The distributions and relationships derived from the change data collected during the development of a medium scale satellite software project show that meaningful results can be obtained which allow an insight into software traits and the environment in which it is developed. Modified and new modules were shown to behave similarly. An abstract classification scheme for errors which allows a better understanding of the overall traits of a software project is also shown. Finally, various size and complexity metrics are examined with respect to errors detected within the software yielding some interesting results.

  8. Software errors and complexity: An empirical investigation

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Perricone, B. T.

    1982-01-01

    The distributions and relationships derived from the change data collected during the development of a medium scale satellite software project show that meaningful results can be obtained which allow an insight into software traits and the environment in which it is developed. Modified and new modules were shown to behave similarly. An abstract classification scheme for errors which allows a better understanding of the overall traits of a software project is also shown. Finally, various size and complexity metrics are examined with respect to errors detected within the software yielding some interesting results.

  9. Predictors and moderators of biopsychological social stress responses following brief self-compassion meditation training.

    PubMed

    Arch, Joanna J; Landy, Lauren N; Brown, Kirk Warren

    2016-07-01

    Arch et al. (2014) demonstrated that brief self-compassion meditation training (SCT) dampened sympathetic (salivary alpha-amylase) and subjective anxiety responses to the Trier Social Stress Test (TSST), relative to attention and no-instruction control conditions. The present study examined baseline predictors and moderators of these SCT intervention effects. Baseline characteristics included two stress vulnerability traits (social anxiety and rumination) and two potential resiliency traits (non-attachment and self-compassion). We investigated how these traits moderated the effects of SCT on response to the TSST, relative to the control conditions. We also tested how these individual differences predicted TSST responses across conditions in order to uncover characteristics that confer increased vulnerability and resiliency to social stressors. Trait non-attachment, rumination (for sympathetic TSST response only), and social anxiety (for subjective TSST response only) interacted with training condition to moderate TSST responses such that following SCT, lower attachment and lower social anxiety predicted lower TSST stress responses, relative to those scoring higher on these traits. In contrast, trait self-compassion neither moderated nor predicted responses to the TSST. Thus, although SCT had robust effects on buffering stress across individuals with varying levels of trait self-compassion, other psychological traits enhanced or dampened the effect of SCT on TSST responses. These findings support the importance of examining the role of relevant baseline psychological traits to predict sympathetic and subjective responses to social evaluative threat, particularly in the context of resiliency training. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Relation Between Trait Anger and Impulse Control in Forensic Psychiatric Patients: An EEG Study.

    PubMed

    Lievaart, Marien; van der Veen, Frederik M; Huijding, Jorg; Hovens, Johannes E; Franken, Ingmar H A

    2018-06-01

    Inhibitory control is considered to be one of the key factors in explaining individual differences in trait anger and reactive aggression. Yet, only a few studies have assessed electroencephalographic (EEG) activity with respect to response inhibition in high trait anger individuals. The main goal of this study was therefore to investigate whether individual differences in trait anger in forensic psychiatric patients are associated with individual differences in anger-primed inhibitory control using behavioral and electrophysiological measures of response inhibition. Thirty-eight forensic psychiatric patients who had a medium to high risk of recidivism of violent and/or non-violent behaviors performed an affective Go/NoGo task while EEG was recorded. On the behavioral level, we found higher scores on trait anger to be accompanied by lower accuracy on NoGo trials, especially when anger was primed. With respect to the physiological data we found, as expected, a significant inverse relation between trait anger and the error related negativity amplitudes. Contrary to expectation, trait anger was not related to the stimulus-locked event related potentials (i.e., N2/P3). The results of this study support the notion that in a forensic population trait anger is inversely related to impulse control, particularly in hostile contexts. Moreover, our data suggest that higher scores on trait anger are associated with deficits in automatic error-processing which may contribute the continuation of impulsive angry behaviors despite their negative consequences.

  11. Evolution of helping and harming in heterogeneous groups.

    PubMed

    Rodrigues, António M M; Gardner, Andy

    2013-08-01

    Social groups are often composed of individuals who differ in many respects. Theoretical studies on the evolution of helping and harming behaviors have largely focused upon genetic differences between individuals. However, nongenetic variation between group members is widespread in natural populations, and may mediate differences in individuals' social behavior. Here, we develop a framework to study how variation in individual quality mediates the evolution of unconditional and conditional social traits. We investigate the scope for the evolution of social traits that are conditional on the quality of the actor and/or recipients. We find that asymmetries in individual quality can lead to the evolution of plastic traits with different individuals expressing helping and harming traits within the same group. In this context, population viscosity can mediate the evolution of social traits, and local competition can promote both helping and harming behaviors. Furthermore, asymmetries in individual quality can lead to the evolution of competition-like traits between clonal individuals. Overall, we highlight the importance of asymmetries in individual quality, including differences in reproductive value and the ability to engage in successful social interactions, in mediating the evolution of helping and harming behaviors. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  12. Measuring workload in collaborative contexts: trait versus state perspectives.

    PubMed

    Helton, William S; Funke, Gregory J; Knott, Benjamin A

    2014-03-01

    In the present study, we explored the state versus trait aspects of measures of task and team workload in a disaster simulation. There is often a need to assess workload in both individual and collaborative settings. Researchers in this field often use the NASATask Load Index (NASA-TLX) as a global measure of workload by aggregating the NASA-TLX's component items. Using this practice, one may overlook the distinction between traits and states. Fifteen dyadic teams (11 inexperienced, 4 experienced) completed five sessions of a tsunami disaster simulator. After every session, individuals completed a modified version of the NASA-TLX that included team workload measures.We then examined the workload items by using a between-subjects and within-subjects perspective. Between-subjects and within-subjects correlations among the items indicated the workload items are more independent within subjects (as states) than between subjects (as traits). Correlations between the workload items and simulation performance were also different at the trait and state levels. Workload may behave differently at trait (between-subjects) and state (within-subjects) levels. Researchers interested in workload measurement as a state should take a within-subjects perspective in their analyses.

  13. What Students Think They Feel Differs from What They Really Feel – Academic Self-Concept Moderates the Discrepancy between Students’ Trait and State Emotional Self-Reports

    PubMed Central

    Bieg, Madeleine; Goetz, Thomas; Lipnevich, Anastasiya A.

    2014-01-01

    This study investigated whether there is a discrepancy pertaining to trait and state academic emotions and whether self-concept of ability moderates this discrepancy. A total of 225 secondary school students from two different countries enrolled in grades 8 and 11 (German sample; n = 94) and grade 9 (Swiss sample; n = 131) participated. Students’ trait academic emotions of enjoyment, pride, anger, and anxiety in mathematics were assessed with a self-report questionnaire, whereas to assess their state academic emotions experience-sampling method was employed. The results revealed that students’ scores on the trait assessment of emotions were generally higher than their scores on the state assessment. Further, as expected, students’ academic self-concept in the domain of mathematics was shown to partly explain the discrepancy between scores on trait and state emotions. Our results indicate that there is a belief-driven discrepancy between what students think they feel (trait assessment) and what they really feel (state assessment). Implications with regard to the assessment of self-reported emotions in future studies and practical implications for the school context are discussed. PMID:24647760

  14. Personality and performance are affected by age and early life parameters in a small primate.

    PubMed

    Zablocki-Thomas, Pauline B; Herrel, Anthony; Hardy, Isabelle; Rabardel, Lucile; Perret, Martine; Aujard, Fabienne; Pouydebat, Emmanuelle

    2018-05-01

    A whole suite of parameters is likely to influence the behavior and performance of individuals as adults, including correlations between phenotypic traits or an individual's developmental context. Here, we ask the question whether behavior and physical performance traits are correlated and how early life parameters such as birth weight, litter size, and growth can influence these traits as measured during adulthood. We studied 486 captive gray mouse lemurs ( Microcebus murinus ) and measured two behavioral traits and two performance traits potentially involved in two functions: exploration behavior with pull strength and agitation score with bite force. We checked for the existence of behavioral consistency in behaviors and explored correlations between behavior, performance, morphology. We analyzed the effect of birth weight, growth, and litter size, while controlling for age, sex, and body weight. Behavior and performance were not correlated with one another, but were both influenced by age. Growth rate had a positive effect on adult morphology, and birth weight significantly affected emergence latency and bite force. Grip strength was not directly affected by early life traits, but bite performance and exploration behavior were impacted by birth weight. This study shows how early life parameters impact personality and performance.

  15. Invasion complexity at large spatial scales is an emergent property of interactions among landscape characteristics and invader traits

    PubMed Central

    Jordan, Nicholas R.; Forester, James D.

    2018-01-01

    Invasion potential should be part of the evaluation of candidate species for any species introduction. However, estimating invasion risks remains a challenging problem, particularly in complex landscapes. Certain plant traits are generally considered to increase invasive potential and there is an understanding that landscapes influence invasions dynamics, but little research has been done to explore how those drivers of invasions interact. We evaluate the relative roles of, and potential interactions between, plant invasiveness traits and landscape characteristics on invasions with a case study using a model parameterized for the potentially invasive biomass crop, Miscanthus × giganteus. Using that model we simulate invasions on 1000 real landscapes to evaluate how landscape characteristics, including both composition and spatial structure, affect invasion outcomes. We conducted replicate simulations with differing strengths of plant invasiveness traits (dispersal ability, establishment ability, population growth rate, and the ability to utilize dispersal corridors) to evaluate how the importance of landscape characteristics for predicting invasion patterns changes depending on the invader details. Analysis of simulations showed that the presence of highly suitable habitat (e.g., grasslands) is generally the strongest determinant of invasion dynamics but that there are also more subtle interactions between landscapes and invader traits. These effects can also vary between different aspects of invasion dynamics (short vs. long time scales and population size vs. spatial extent). These results illustrate that invasions are complex emergent processes with multiple drivers and effective management needs to reflect the ecology of the species of interest and the particular goals or risks for which efforts need to be optimized. PMID:29771923

  16. Relations between female students' personality traits and reported handicaps to rhythmic gymnastics performance.

    PubMed

    Ferrand, Claude; Champely, Stephane; Brunel, Philippe C

    2005-04-01

    The present study evaluated the relative contributions of Self-esteem, Trait anxiety, and Public Self-consciousness to self-handicapping on a sex-typed task, within a specific academic sport context. Prior to the competitive examination used to recruit French Physical Education Teachers, female sport students (N = 74) were asked to list and rate on a 7-point scale handicaps which could be disruptive to their Rhythmic Gymnastics performance. Self-esteem did not account for significant variance in any category of handicaps. Trait Anxiety was negatively related to handicaps related to Rhythmic Gymnastics and to Social and Work Commitments. Public Self-consciousness was significantly related to endorsement of Friends and Family Commitments handicaps. These results were discussed in relation to the literature.

  17. Floral trait variation and integration as a function of sexual deception in Gorteria diffusa.

    PubMed

    Ellis, Allan G; Brockington, Samuel F; de Jager, Marinus L; Mellers, Gregory; Walker, Rachel H; Glover, Beverley J

    2014-08-19

    Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach.

    PubMed

    Mora, Freddy; Quitral, Yerko A; Matus, Ivan; Russell, Joanne; Waugh, Robbie; Del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint.

  19. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease.

    PubMed

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A

    2018-03-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.

  20. SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach

    PubMed Central

    Mora, Freddy; Quitral, Yerko A.; Matus, Ivan; Russell, Joanne; Waugh, Robbie; del Pozo, Alejandro

    2016-01-01

    This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5–22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5–35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint. PMID:27446139

  1. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease

    PubMed Central

    Gray, Alan; Neyton, Lucile P. A.; Barrett, Jeffrey; Stahl, Eli A.; Tenesa, Albert; Andersson, Robin; Brown, J. Ben; Faulkner, Geoffrey J.; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Kawaji, Hideya; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A.; Hacohen, Nir; Freeman, Thomas C.; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Hume, David A.

    2018-01-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits. PMID:29494619

  2. The bidirectional associations between state anger and rumination and the role of trait mindfulness.

    PubMed

    Borders, Ashley; Lu, Shou-En

    2017-07-01

    Rumination is associated with exacerbated angry mood. Angry moods may also trigger rumination. However, research has not empirically tested the bidirectional associations of state rumination and anger, as experience sampling methodology can do. We predicted that state anger and rumination would be bi-directionally associated, both concurrently and over time, even controlling for trait anger and rumination. In addition, because mindfulness is associated with rumination and anger at the bivariate level, we examined the effect of trait mindfulness on the bidirectional association between state rumination and anger. We examined two hypotheses: (i) state rumination mediates the effect of trait mindfulness on state anger; and (ii) trait mindfulness weakens, or moderates, the bidirectional associations between state rumination and anger. In an experience-sampling study, 200 college students reported their current ruminative thinking and angry mood several times a day for 7 days. Mixed model analyses indicated that state anger and rumination predicted each other concurrently. In cross-lagged analyses, previous anger did not uniquely predict current rumination; previous rumination predicted current anger, although the effect was small. In support of our hypothesis, state rumination mediated the association between trait mindfulness and state anger. Additionally, trait mindfulness moderated the concurrent and cross-lagged associations between state rumination and anger, although the results were complex. This study contributes new information about the complex interplay of rumination and anger. Findings also add support to the theory that mindfulness decreases emotional reactivity. Aggr. Behav. 43:342-351, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Trait-based plant ecology: moving towards a unifying species coexistence theory : Features of the Special Section.

    PubMed

    Escudero, Adrián; Valladares, Fernando

    2016-04-01

    Functional traits are the center of recent attempts to unify key ecological theories on species coexistence and assembling in populations and communities. While the plethora of studies on the role of functional traits to explain patterns and dynamics of communities has rendered a complex picture due to the idiosyncrasies of each study system and approach, there is increasing evidence on their actual relevance when aspects such as different spatial scales, intraspecific variability and demography are considered.

  4. COMP-1 promotes competitive advantage of nematode sperm.

    PubMed

    Hansen, Jody M; Chavez, Daniela R; Stanfield, Gillian M

    2015-03-19

    Competition among sperm to fertilize oocytes is a ubiquitous feature of sexual reproduction as well as a profoundly important aspect of sexual selection. However, little is known about the cellular mechanisms sperm use to gain competitive advantage or how these mechanisms are regulated genetically. In this study, we utilize a forward genetic screen in Caenorhabditis elegans to identify a gene, comp-1, whose function is specifically required in competitive contexts. We show that comp-1 functions in sperm to modulate their migration through and localization within the reproductive tract, thereby promoting their access to oocytes. Contrary to previously described models, comp-1 mutant sperm show no defects in size or velocity, thereby defining a novel pathway for preferential usage. Our results indicate not only that sperm functional traits can influence the outcome of sperm competition, but also that these traits can be modulated in a context-dependent manner depending on the presence of competing sperm.

  5. Stability of the guinea pigs personality - cognition - linkage over time.

    PubMed

    Brust, Vera; Guenther, Anja

    2017-01-01

    In human psychological research, personality traits as well as cognitive traits are usually validated for both, their stability over time and contexts. While stability over time gives an estimate on how genetically fixated a trait can be, correlations across traits have the power to reveal linkages or trade - offs. In animals, these validations have widely been done for personality but not for cognitive traits. We tested guinea pigs in four consecutive discrimination tasks using four unique pairs of objects with two objects of the same form but different size in each pair. The same animals were tested twice each for three personality traits, i.e. boldness, aggression and sociopositive behaviour. The animals did not learn to "always choose the larger item" in the cognitive task but learned to discriminate the two objects of each stimulus pair anew, so that we did test for learning speed in four slightly different task setups. Performance over the four tasks was significantly repeatable as well as all tested personality traits. A stable linkage over time was found between sociopositive behaviour and learning performance, probably indicating an ecological relevance for a correlation between these two traits. Still, not all traits seem to be connected amongst each other, as in our case boldness and aggression are both not linked to individual learning performance. Future studies will hopefully further investigate the repeatability of various cognitive traits in several species and thus lead to a better understanding of the interdependence of personality and cognition. This will help to unravel which suites of traits facilitate individual life histories and hence improve our understanding of the emergence and maintenance of individual differences. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Associations of children's appetitive traits with weight and dietary behaviours in the context of general parenting.

    PubMed

    Rodenburg, Gerda; Kremers, Stef P J; Oenema, Anke; van de Mheen, Dike

    2012-01-01

    Individual variations in child weight can be explained by genetic and behavioural susceptibility to obesity. Behavioural susceptibility can be expressed in appetite-related traits, e.g. food responsiveness. Research into such behavioural factors is important, as it can provide starting points for (preventive) interventions. To examine associations of children's appetitive traits with weight and with fruit, snack and sugar-sweetened beverage intake, and to examine whether parenting style interacts with appetite in determining child weight/intake. Data were used from 1275 children participating in the INPACT study in 2009-2010, with a mean age of 9 years in 2009. Their height and weight were measured to calculate body mass index (BMI). Parents completed a questionnaire to measure children's appetitive traits, children's dietary intake and parenting style. Child BMI z-scores, fruit, snack and sugar-sweetened beverage intake were regressed on appetitive traits. Moderation by parenting style was tested by adding interaction terms to the regression analyses. Food-approaching appetitive traits were positively, and food-avoidant appetitive traits were negatively related to child BMI z-scores and to child fruit intake. There were no or less consistent associations for snack and sugar-sweetened beverage intake. Authoritative parenting voided the negative association between food fussiness and fruit intake, while neglecting parenting strengthened the positive association between food-approaching appetitive traits and weight. Early assessment of appetitive traits could be used to identify children at risk for overweight. As parenting style can moderate the associations between appetitive traits and weight/intake in a favourable way, parents are a promising target group for preventive interventions aimed at influencing the effect of appetitive traits on children.

  7. Associations of Children’s Appetitive Traits with Weight and Dietary Behaviours in the Context of General Parenting

    PubMed Central

    Rodenburg, Gerda; Kremers, Stef P. J.; Oenema, Anke; van de Mheen, Dike

    2012-01-01

    Background Individual variations in child weight can be explained by genetic and behavioural susceptibility to obesity. Behavioural susceptibility can be expressed in appetite-related traits, e.g. food responsiveness. Research into such behavioural factors is important, as it can provide starting points for (preventive) interventions. Objectives To examine associations of children’s appetitive traits with weight and with fruit, snack and sugar-sweetened beverage intake, and to examine whether parenting style interacts with appetite in determining child weight/intake. Methods Data were used from 1275 children participating in the INPACT study in 2009–2010, with a mean age of 9 years in 2009. Their height and weight were measured to calculate body mass index (BMI). Parents completed a questionnaire to measure children’s appetitive traits, children’s dietary intake and parenting style. Child BMI z-scores, fruit, snack and sugar-sweetened beverage intake were regressed on appetitive traits. Moderation by parenting style was tested by adding interaction terms to the regression analyses. Results Food-approaching appetitive traits were positively, and food-avoidant appetitive traits were negatively related to child BMI z-scores and to child fruit intake. There were no or less consistent associations for snack and sugar-sweetened beverage intake. Authoritative parenting voided the negative association between food fussiness and fruit intake, while neglecting parenting strengthened the positive association between food-approaching appetitive traits and weight. Conclusions Early assessment of appetitive traits could be used to identify children at risk for overweight. As parenting style can moderate the associations between appetitive traits and weight/intake in a favourable way, parents are a promising target group for preventive interventions aimed at influencing the effect of appetitive traits on children. PMID:23227194

  8. [Complex of psycho-hygienic correction measures of personality features of hiv-infected men and evaluation of their efficiency].

    PubMed

    Serheta, Ihor V; Dudarenko, Oksana B; Mostova, Olha P; Lobastova, Tetiana V; Andriichuk, Vitalii M; Vakolyuk, Larysa M; Yakubovska, Olha M

    2018-01-01

    Introduction: In addition to adequate diagnosis and treatment of HIV-infected individuals, development, scientific substantiation and implementation of psycho-hygienic measures aimed at correcting the processes of forming personality traits and improving the psycho-emotional state of HIV-infected individuals are of particular importance. The aim: The purpose of the scientific research was to determine the most significant changes of situational and personal anxiety indicators, the degree of gravity of the asthenic state and depressive manifestations that were recorded in the context of the introduction of a number of measures for psycho-hygienic correction. Materials and methods: To determine the peculiarities of the impact of the proposed measures of psycho-hygienic correction and the study of the consequences of their implementation, two groups of comparison were created: a control group and an intervention group. 30 HIV-infected men who used a complex of measures for psycho-hygienic correction of personality traits and improvement of psycho-emotional state in their daily activities were included in the intervention group; 30 HIV-infected men who did not use this complex in their daily activities were included in the control group. Diagnosis and assessment of the anxiety of HIV-infected persons were carried out on the basis of The State-Trait Anxiety Inventory (STAI). The absence or presence of manifestations of an asthenic personality disorder in the subjects was determined by means of a test method created by L. Malkova for assessing asthenia. In order to determine the degree of manifestation of this characteristic, the psychic state of a person, as a level of expression of a depressive state, the psychometric Zung Depression Rating Scale was used to assess depression. Results: Studies have found that there was a statistically valid decrease of the level of indicators of situational anxiety among the representatives of the intervention group which reduced from 51,56 ±1,69 to 43,36 ±1,05 (p<0,001). The degree of expression of asthenic manifestations significantly decreased from 87,23±3,00 points (p<0,01) at the beginning of the observation period to 77,76±1,54 points towards the end of the period, the level of indicators of depression declined from 59,13±1,09 to 55,13±0,79 points (p<0,01). Conclusions: The use of a complex of measures of psycho-hygienic correction provides the appearance of extremely favorable changes on the part of such personality characteristics as indicators of situational anxiety (p<0,001), the severity of asthenic (p<0,01) and depressive (p<0,01) states.

  9. A recoding scheme for X-linked and pseudoautosomal loci to be used with computer programs for autosomal LOD-score analysis.

    PubMed

    Strauch, Konstantin; Baur, Max P; Wienker, Thomas F

    2004-01-01

    We present a recoding scheme that allows for a parametric multipoint X-chromosomal linkage analysis of dichotomous traits in the context of a computer program for autosomes that can use trait models with imprinting. Furthermore, with this scheme, it is possible to perform a joint multipoint analysis of X-linked and pseudoautosomal loci. It is required that (1) the marker genotypes of all female nonfounders are available and that (2) there are no male nonfounders who have daughters in the pedigree. The second requirement does not apply if the trait locus is pseudoautosomal. The X-linked marker loci are recorded by adding a dummy allele to the males' hemizygous genotypes. For modelling an X-linked trait locus, five different liability classes are defined, in conjunction with a paternal imprinting model for male nonfounders. The formulation aims at the mapping of a diallelic trait locus relative to an arbitrary number of codominant markers with known genetic distances, in cases where a program for a genuine X-chromosomal analysis is not available. 2004 S. Karger AG, Basel.

  10. Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study.

    PubMed

    Du, Xiongming; Liu, Shouye; Sun, Junling; Zhang, Gengyun; Jia, Yinhua; Pan, Zhaoe; Xiang, Haitao; He, Shoupu; Xia, Qiuju; Xiao, Songhua; Shi, Weijun; Quan, Zhiwu; Liu, Jianguang; Ma, Jun; Pang, Baoyin; Wang, Liru; Sun, Gaofei; Gong, Wenfang; Jenkins, Johnie N; Lou, Xiangyang; Zhu, Jun; Xu, Haiming

    2018-06-13

    Cottonseed is one of the most important raw materials for plant protein, oil and alternative biofuel for diesel engines. Understanding the complex genetic basis of cottonseed traits is requisite for achieving efficient genetic improvement of the traits. However, it is not yet clear about their genetic architecture in genomic level. GWAS has been an effective way to explore genetic basis of quantitative traits in human and many crops. This study aims to dissect genetic mechanism seven cottonseed traits by a GWAS for genetic improvement. A genome-wide association study (GWAS) based on a full gene model with gene effects as fixed and gene-environment interaction as random, was conducted for protein, oil and 5 fatty acids using 316 accessions and ~ 390 K SNPs. Totally, 124 significant quantitative trait SNPs (QTSs), consisting of 16, 21, 87 for protein, oil and fatty acids (palmitic, linoleic, oleic, myristic, stearic), respectively, were identified and the broad-sense heritability was estimated from 71.62 to 93.43%; no QTS-environment interaction was detected for the protein, the palmitic and the oleic contents; the protein content was predominantly controlled by epistatic effects accounting for 65.18% of the total variation, but the oil content and the fatty acids except the palmitic were mainly determined by gene main effects and no epistasis was detected for the myristic and the stearic. Prediction of superior pure line and hybrid revealed the potential of the QTSs in the improvement of cottonseed traits, and the hybrid could achieve higher or lower genetic values compared with pure lines. This study revealed complex genetic architecture of seven cottonseed traits at whole genome-wide by mixed linear model approach; the identified genetic variants and estimated genetic component effects of gene, gene-gene and gene-environment interaction provide cotton geneticist or breeders new knowledge on the genetic mechanism of the traits and the potential molecular breeding design strategy.

  11. GWAS and fine-mapping of 35 production, reproduction and conformation traits with imputed sequences of 27K Holstein bulls

    USDA-ARS?s Scientific Manuscript database

    Fine-mapping of causal variants is becoming feasible for complex traits in livestock GWAS, as an increasing number of animals are sequenced. Imputation has been routinely applied to ascertain sequence variants in large genotyped populations based on small reference populations of sequenced animals. ...

  12. The Relationship between Confidence and Self-Concept--Towards a Model of Response Confidence

    ERIC Educational Resources Information Center

    Kroner, Stephan; Biermann, Antje

    2007-01-01

    According to Stankov [Stankov, L. (2000). Complexity, metacognition and fluid intelligence. Intelligence, 28, 121-143.] response confidence in cognitive tests reflects a trait on the boundary of personality and abilities. However, several studies failed in relating confidence scores to other known traits, including self-concept. A model of…

  13. Approaches for geospatial processing of field-based high-throughput plant phenomics data from ground vehicle platforms

    USDA-ARS?s Scientific Manuscript database

    Understanding the genetic basis of complex plant traits requires connecting genotype to phenotype information, known as the “G2P question.” In the last three decades, genotyping methods have become highly developed. Much less innovation has occurred for measuring plant traits (phenotyping), particul...

  14. Multimedia Case-Based Instruction in Literacy: Pedagogy, Effectiveness, and Perceptions

    ERIC Educational Resources Information Center

    Baker, Elizabeth A.

    2009-01-01

    Effective literacy teachers share a variety of instructional traits such as the ability to kidwatch, pedagogically reflect, and make informed decisions based on ill-structured and complex data. Teacher educators face the challenge of helping preservice teachers develop such traits so as to prepare them to be successful literacy teachers. One…

  15. Association genetics in Pinus taeda L. I. wood property traits

    Treesearch

    Santiago C. Gonzalez-Martinez; Nicholas C. Wheeler; Elhan Ersoz; C. Dana Nelson; David B. Neale

    2007-01-01

    Genetic association is a powerful method for dissecting complex adaptive traits due to (i) fine-scale mapping resulting from historical recombination, (ii) wide coverage of phenotypic and genotypic variation within a single experiment, and (iii) the simultaneous discovery of loci and alleles. In this article, genetic association among single nucleotide polymorphisms (...

  16. Accounting for genotype–by-environment interactions and non-additive genetic variation in genomic selection for water-soluble carbohydrate concentration in wheat

    USDA-ARS?s Scientific Manuscript database

    Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat un...

  17. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq.

    PubMed

    Wang, Jun; Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu

    2017-01-01

    Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet.

  18. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq

    PubMed Central

    Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu

    2017-01-01

    Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet. PMID:28644843

  19. Individual differences in components of impulsivity and effortful control moderate the relation between borderline personality disorder traits and emotion recognition in a sample of university students.

    PubMed

    Preti, Emanuele; Richetin, Juliette; Suttora, Chiara; Pisani, Alberto

    2016-04-30

    Dysfunctions in social cognition characterize personality disorders. However, mixed results emerged from literature on emotion processing. Borderline Personality Disorder (BPD) traits are either associated with enhanced emotion recognition, impairments, or equal functioning compared to controls. These apparent contradictions might result from the complexity of emotion recognition tasks used and from individual differences in impulsivity and effortful control. We conducted a study in a sample of undergraduate students (n=80), assessing BPD traits, using an emotion recognition task that requires the processing of only visual information or both visual and acoustic information. We also measured individual differences in impulsivity and effortful control. Results demonstrated the moderating role of some components of impulsivity and effortful control on the capability of BPD traits in predicting anger and happiness recognition. We organized the discussion around the interaction between different components of regulatory functioning and task complexity for a better understanding of emotion recognition in BPD samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Models of Cultural Niche Construction with Selection and Assortative Mating

    PubMed Central

    Feldman, Marcus W.

    2012-01-01

    Niche construction is a process through which organisms modify their environment and, as a result, alter the selection pressures on themselves and other species. In cultural niche construction, one or more cultural traits can influence the evolution of other cultural or biological traits by affecting the social environment in which the latter traits may evolve. Cultural niche construction may include either gene-culture or culture-culture interactions. Here we develop a model of this process and suggest some applications of this model. We examine the interactions between cultural transmission, selection, and assorting, paying particular attention to the complexities that arise when selection and assorting are both present, in which case stable polymorphisms of all cultural phenotypes are possible. We compare our model to a recent model for the joint evolution of religion and fertility and discuss other potential applications of cultural niche construction theory, including the evolution and maintenance of large-scale human conflict and the relationship between sex ratio bias and marriage customs. The evolutionary framework we introduce begins to address complexities that arise in the quantitative analysis of multiple interacting cultural traits. PMID:22905167

Top