Dissection of complex adult traits in a mouse synthetic population.
Burke, David T; Kozloff, Kenneth M; Chen, Shu; West, Joshua L; Wilkowski, Jodi M; Goldstein, Steven A; Miller, Richard A; Galecki, Andrzej T
2012-08-01
Finding the causative genetic variations that underlie complex adult traits is a significant experimental challenge. The unbiased search strategy of genome-wide association (GWAS) has been used extensively in recent human population studies. These efforts, however, typically find only a minor fraction of the genetic loci that are predicted to affect variation. As an experimental model for the analysis of adult polygenic traits, we measured a mouse population for multiple phenotypes and conducted a genome-wide search for effector loci. Complex adult phenotypes, related to body size and bone structure, were measured as component phenotypes, and each subphenotype was associated with a genomic spectrum of candidate effector loci. The strategy successfully detected several loci for the phenotypes, at genome-wide significance, using a single, modest-sized population (N = 505). The effector loci each explain 2%-10% of the measured trait variation and, taken together, the loci can account for over 25% of a trait's total population variation. A replicate population (N = 378) was used to confirm initially observed loci for one trait (femur length), and, when the two groups were merged, the combined population demonstrated increased power to detect loci. In contrast to human population studies, our mouse genome-wide searches find loci that individually explain a larger fraction of the observed variation. Also, the additive effects of our detected mouse loci more closely match the predicted genetic component of variation. The genetic loci discovered are logical candidates for components of the genetic networks having evolutionary conservation with human biology.
Monir, Md. Mamun; Zhu, Jun
2017-01-01
Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101
Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait.
Maurer, Matthew J; Sutardja, Lawrence; Pinel, Dominic; Bauer, Stefan; Muehlbauer, Amanda L; Ames, Tyler D; Skerker, Jeffrey M; Arkin, Adam P
2017-03-17
Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.
Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III
Kathleen D. Jermstad; Daniel L. Bassoni; Keith S. Jech; Gary A. Ritchie; Nicholas C. Wheeler; David B. Neale
2003-01-01
Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring...
Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi
2017-08-24
Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.
Genome wide association mapping for grain shape traits in indica rice.
Feng, Yue; Lu, Qing; Zhai, Rongrong; Zhang, Mengchen; Xu, Qun; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wei, Xinghua
2016-10-01
Using genome-wide association mapping, 47 SNPs within 27 significant loci were identified for four grain shape traits, and 424 candidate genes were predicted from public database. Grain shape is a key determinant of grain yield and quality in rice (Oryza sativa L.). However, our knowledge of genes controlling rice grain shape remains limited. Genome-wide association mapping based on linkage disequilibrium (LD) has recently emerged as an effective approach for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, association mapping based on 5291 single nucleotide polymorphisms (SNPs) was conducted to identify significant loci associated with grain shape traits in a global collection of 469 diverse rice accessions. A total of 47 SNPs were located in 27 significant loci for four grain traits, and explained ~44.93-65.90 % of the phenotypic variation for each trait. In total, 424 candidate genes within a 200 kb extension region (±100 kb of each locus) of these loci were predicted. Of them, the cloned genes GS3 and qSW5 showed very strong effects on grain length and grain width in our study. Comparing with previously reported QTLs for grain shape traits, we found 11 novel loci, including 3, 3, 2 and 3 loci for grain length, grain width, grain length-width ratio and thousand grain weight, respectively. Validation of these new loci would be performed in the future studies. These results revealed that besides GS3 and qSW5, multiple novel loci and mechanisms were involved in determining rice grain shape. These findings provided valuable information for understanding of the genetic control of grain shape and molecular marker assistant selection (MAS) breeding in rice.
Ma, Yansong; Tian, Long; Li, Xinxiu; Li, Ying-Hui; Guan, Rongxia; Guo, Yong; Qiu, Li-Juan
2016-01-01
Soybean seed coat exists in a range of colors from yellow, green, brown, black, to bicolor. Classical genetic analysis suggested that soybean seed color was a moderately complex trait controlled by multi-loci. However, only a couple of loci could be detected using a single biparental segregating population. In this study, a combination of association mapping and bulk segregation analysis was employed to identify genes/loci governing this trait in soybean. A total of 14 loci, including nine novel and five previously reported ones, were identified using 176,065 coding SNPs selected from entire SNP dataset among 56 soybean accessions. Four of these loci were confirmed and further mapped using a biparental population developed from the cross between ZP95-5383 (yellow seed color) and NY279 (brown seed color), in which different seed coat colors were further dissected into simple trait pairs (green/yellow, green/black, green/brown, yellow/black, yellow/brown, and black/brown) by continuously developing residual heterozygous lines. By genotyping entire F2 population using flanking markers located in fine-mapping regions, the genetic basis of seed coat color was fully dissected and these four loci could explain all variations of seed colors in this population. These findings will be useful for map-based cloning of genes as well as marker-assisted breeding in soybean. This work also provides an alternative strategy for systematically isolating genes controlling relative complex trait by association analysis followed by biparental mapping. PMID:27404272
Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits
Deming, Yuetiva; Xia, Jian; Cai, Yefei; Lord, Jenny; Del-Aguila, Jorge L.; Fernandez, Maria Victoria; Carrell, David; Black, Kathleen; Budde, John; Ma, ShengMei; Saef, Benjamin; Howells, Bill; Bertelsen, Sarah; Bailey, Matthew; Ridge, Perry G.; Hefti, Franz; Fillit, Howard; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Carrillo, Maria; Fleisher, Adam; Reeder, Stephanie; Trncic, Nadira; Burke, Anna; Tariot, Pierre; Reiman, Eric M.; Chen, Kewei; Sabbagh, Marwan N.; Beiden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Green, Robert C.; Marshall, Gad; Johnson, Keith A.; Sperling, Reisa A.; Snyder, Peter; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Bernick, Charles; Munic, Donna; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Relkin, Norman; Chaing, Gloria; Ravdin, Lisa; Paul, Steven; Flashman, Laura A.; Seltzer, Marc; Hynes, Mary L.; Santulli, Robert B.; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Friedl, Karl; Murali Doraiswamy, P.; Petrella, Jeffrey R.; Borges-Neto, Salvador; James, Olga; Wong, Terence; Coleman, Edward; Schwartz, Adam; Cellar, Janet S.; Levey, Allan L.; Lah, James J.; Behan, Kelly; Scott Turner, Raymond; Johnson, Kathleen; Reynolds, Brigid; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Obisesan, Thomas O.; Wolday, Saba; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Tatsuoka, Curtis; Fatica, Parianne; Farlow, Martin R.; Saykin, Andrew J.; Foroud, Tatiana M.; Shen, Li; Faber, Kelly; Kim, Sungeun; Nho, Kwangsik; Marie Hake, Ann; Matthews, Brandy R.; Brosch, Jared R.; Herring, Scott; Hunt, Cynthia; Albert, Marilyn; Onyike, Chiadi; D’Agostino, Daniel; Kielb, Stephanie; Graff-Radford, Neill R; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Petersen, Ronald; Jack, Clifford R.; Bernstein, Matthew; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Chertkow, Howard; Hosein, Chris; Mintzer, Jacob; Spicer, Kenneth; Bachman, David; Grossman, Hillel; Mitsis, Effie; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Potter, William; Buckholtz, Neil; Hsiao, John; Kittur, Smita; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Pogorelec, Dana M.; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Johnson, Nancy; Chuang-Kuo; Kerwin, Diana; Bonakdarpour, Borna; Weintraub, Sandra; Grafman, Jordan; Lipowski, Kristine; Mesulam, Marek-Marsel; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Kaye, Jeffrey; Quinn, Joseph; Silbert, Lisa; Lind, Betty; Carter, Raina; Dolen, Sara; Borrie, Michael; Lee, T-Y; Bartha, Rob; Martinez, Walter; Villena, Teresa; Sadowsky, Carl; Khachaturian, Zaven; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Frank, Richard; Fleischman, Debra; Arfanakis, Konstantinos; Shah, Raj C.; deToledo-Morrell, Leyla; Sorensen, Greg; Finger, Elizabeth; Pasternack, Stephen; Rachinsky, Irina; Drost, Dick; Rogers, John; Kertesz, Andrew; Furst, Ansgar J.; Chad, Stevan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Mudge, Benita; Assaly, Michele; Fox, Nick; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Ekstam Smith, Karen; Burns, Jeffrey M.; Swerdlow, Russell H.; Brooks, William M.; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Natelson Love, Marissa; DeCarli, Charles; Carmichael, Owen; Olichney, John; Maillard, Pauline; Fletcher, Evan; Nguyen, Dana; Preda, Andrian; Potkin, Steven; Mulnard, Ruth A.; Thai, Gaby; McAdams-Ortiz, Catherine; Landau, Susan; Jagust, William; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H.S.; Lu, Po H.; Bartzokis, George; Thompson, Paul; Donohue, Michael; Thomas, Ronald G.; Walter, Sarah; Gessert, Devon; Brewer, James; Vanderswag, Helen; Sather, Tamie; Jiminez, Gus; Balasubramanian, Archana B.; Mason, Jennifer; Sim, Iris; Aisen, Paul; Davis, Melissa; Morrison, Rosemary; Harvey, Danielle; Thal, Lean; Beckett, Laurel; Neylan, Thomas; Finley, Shannon; Weiner, Michael W.; Hayes, Jacqueline; Rosen, Howard J.; Miller, Bruce L.; Perry, David; Massoglia, Dino; Brawman-Mentzer, Olga; Schuff, Norbert; Smith, Charles D.; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Koeppe, Robert A.; Lord, Joanne L.; Heidebrink, Judith L.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Clark, Christopher M.; Trojanowki, John Q.; Shaw, Leslie M.; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Foster, Norm; Montine, Tom; Fruehling, J. Jay; Harding, Sandra; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Petrie, Eric C.; Peskind, Elaine; Li, Gail; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Smith, Amanda; Ashok Raj, Balebail; Fargher, Kristin; Kuller, Lew; Mathis, Chet; Ann Oakley, Mary; Lopez, Oscar L.; Simpson, Donna M.; Sink, Kaycee M.; Gordineer, Leslie; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Cairns, Nigel J.; Raichle, Marc; Morris, John C.; Householder, Erin; Taylor-Reinwald, Lisa; Holtzman, David; Ances, Beau; Carroll, Maria; Creech, Mary L.; Franklin, Erin; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Varma, Pradeep; MacAvoy, Martha G.; Carson, Richard E.; van Dyck, Christopher H.; Davies, Peter; Holtzman, David; Morris, John C.; Bales, Kelly; Pickering, Eve H.; Lee, Jin-Moo; Heitsch, Laura; Kauwe, John; Goate, Alison; Piccio, Laura; Cruchaga, Carlos
2016-01-01
Genome-wide association studies of 146 plasma protein levels in 818 individuals revealed 56 genome-wide significant associations (28 novel) with 47 analytes. Loci associated with plasma levels of 39 proteins tested have been previously associated with various complex traits such as heart disease, inflammatory bowel disease, Type 2 diabetes, and multiple sclerosis. These data suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits. We found three potential pleiotropic genes: ABO for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels, and APOE for ApoE and CRP levels. We also found multiple independent signals in loci associated with plasma levels of ApoH, CA19-9, FetuinA, IL6r, and LPa. Our study highlights the power of biological traits for genetic studies to identify genetic variants influencing clinically relevant traits, potential pleiotropic effects, and complex disease associations in the same locus.
Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.
Georges, Michel
2007-01-01
Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.
Complex disease and phenotype mapping in the domestic dog
Hayward, Jessica J.; Castelhano, Marta G.; Oliveira, Kyle C.; Corey, Elizabeth; Balkman, Cheryl; Baxter, Tara L.; Casal, Margret L.; Center, Sharon A.; Fang, Meiying; Garrison, Susan J.; Kalla, Sara E.; Korniliev, Pavel; Kotlikoff, Michael I.; Moise, N. S.; Shannon, Laura M.; Simpson, Kenneth W.; Sutter, Nathan B.; Todhunter, Rory J.; Boyko, Adam R.
2016-01-01
The domestic dog is becoming an increasingly valuable model species in medical genetics, showing particular promise to advance our understanding of cancer and orthopaedic disease. Here we undertake the largest canine genome-wide association study to date, with a panel of over 4,200 dogs genotyped at 180,000 markers, to accelerate mapping efforts. For complex diseases, we identify loci significantly associated with hip dysplasia, elbow dysplasia, idiopathic epilepsy, lymphoma, mast cell tumour and granulomatous colitis; for morphological traits, we report three novel quantitative trait loci that influence body size and one that influences fur length and shedding. Using simulation studies, we show that modestly larger sample sizes and denser marker sets will be sufficient to identify most moderate- to large-effect complex disease loci. This proposed design will enable efficient mapping of canine complex diseases, most of which have human homologues, using far fewer samples than required in human studies. PMID:26795439
Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.
2012-01-01
Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596
Ensemble learning of QTL models improves prediction of complex traits
USDA-ARS?s Scientific Manuscript database
Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability, but are less useful for genetic prediction due to difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage ...
Mancuso, Nicholas; Shi, Huwenbo; Goddard, Pagé; Kichaev, Gleb; Gusev, Alexander; Pasaniuc, Bogdan
2017-03-02
Although genome-wide association studies (GWASs) have identified thousands of risk loci for many complex traits and diseases, the causal variants and genes at these loci remain largely unknown. Here, we introduce a method for estimating the local genetic correlation between gene expression and a complex trait and utilize it to estimate the genetic correlation due to predicted expression between pairs of traits. We integrated gene expression measurements from 45 expression panels with summary GWAS data to perform 30 multi-tissue transcriptome-wide association studies (TWASs). We identified 1,196 genes whose expression is associated with these traits; of these, 168 reside more than 0.5 Mb away from any previously reported GWAS significant variant. We then used our approach to find 43 pairs of traits with significant genetic correlation at the level of predicted expression; of these, eight were not found through genetic correlation at the SNP level. Finally, we used bi-directional regression to find evidence that BMI causally influences triglyceride levels and that triglyceride levels causally influence low-density lipoprotein. Together, our results provide insight into the role of gene expression in the susceptibility of complex traits and diseases. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Ried, Janina S.; Jeff M., Janina; Chu, Audrey Y.; Bragg-Gresham, Jennifer L.; van Dongen, Jenny; Huffman, Jennifer E.; Ahluwalia, Tarunveer S.; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F.; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L.; Jackson, Anne U.; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L.; Nolte, Ilja M.; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M.; Salvi, Erika; Smith, Megan T.; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W.; Wang, Sophie R.; Wild, Sarah H.; Willems, Sara M.; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J. L.; Barlassina, Cristina; Bartz, Traci M.; Beilby, John; Bellis, Claire; Bergman, Richard N.; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W. K.; Chines, Peter S.; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J .C.; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G.; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G.; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S.; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G.; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L.; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E.; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M.; Kinnunen, Leena; Knekt, Paul B.; Koistinen, Heikki A.; Kolcic, Ivana; Kooner, Ishminder K.; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M.; Lichtner, Peter; Lindgren, Cecilia M.; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L.; Mcknight, Barbara; Mohlke, Karen L.; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E.; Morris, Andrew P.; Müller, Gabriele; Musk, Arthur W.; Narisu, Narisu; Ong, Ken K.; Oostra, Ben A.; Osmond, Clive; Palotie, Aarno; Pankow, James S.; Paternoster, Lavinia; Penninx, Brenda W.; Pichler, Irene; Pilia, Maria G.; Polašek, Ozren; Pramstaller, Peter P.; Raitakari, Olli T; Rankinen, Tuomo; Rao, D. C.; Rayner, Nigel W.; Ribel-Madsen, Rasmus; Rice, Treva K.; Richards, Marcus; Ridker, Paul M.; Rivadeneira, Fernando; Ryan, Kathy A.; Sanna, Serena; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P.; Strauch, Konstantin; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M.; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W.; Wright, Alan F.; Yerges-Armstrong, Laura M.; Hua Zhao, Jing; Carola Zillikens, M.; Boomsma, Dorret I.; Bouchard, Claude; Chambers, John C.; Chasman, Daniel I.; Cusi, Daniele; Gansevoort, Ron T.; Gieger, Christian; Hansen, Torben; Hicks, Andrew A.; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S.; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Palmer, Lyle J.; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M.; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E. H.; Shudiner, Alan R.; Smit, Jan H.; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Zeggini, Eleftheria; Abecasis, Goncalo R.; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; van Duijn, Cornelia M.; Fox, Caroline; Groop, Leif C.; Heid, Iris M.; Hunter, David J.; Kaplan, Robert C.; McCarthy, Mark I.; North, Kari E.; O'Connell, Jeffrey R.; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P.; Frayling, Timothy; Hirschhorn, Joel N.; Müller-Nurasyid, Martina; Loos, Ruth J. F.
2016-01-01
Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways. PMID:27876822
USDA-ARS?s Scientific Manuscript database
In rice (Oryza sativa L.), end-use/cooking quality is vital for producers and millions of consumers worldwide. Grain quality is a complex trait with interacting genetic and environmental factors. Deciphering the complex genetic architecture associated with grain quality, will provide vital informati...
Gordon, Erynn S; Gordish Dressman, Heather A; Hoffman, Eric P
2005-10-01
Much of the vast diversity we see in animals and people is governed by genetic loci that have quantitative effects of phenotype (quantitative trait loci; QTLs). Here we review the current knowledge of the genetics of atrophy and hypertrophy in both animal husbandry (meat quantity and quality), and humans (muscle size and performance). The selective breeding of animals for meat has apparently led to a few genetic loci with strong effects, with different loci in different animals. In humans, muscle quantitative trait loci (QTLs) appear to be more complex, with few "major" loci identified to date, although this is likely to change in the near future. We describe how the same phenotypic traits we see as positive, greater lean muscle mass in cattle or a better exercise results in humans, can also have negative "side effects" given specific environmental challenges. We also discuss the strength and limitations of single nucleotide polymorphisms (SNP) association studies; what the reader should look for and expect in a published study. Lastly we discuss the ethical and societal implications of this genetic information. As more and more research into the genetic loci that dictate phenotypic traits become available, the ethical implications of testing for these loci become increasingly important. As a society, most accept testing for genetic diseases or susceptibility, but do we as easily accept testing to determine one's athletic potential to be an Olympic endurance runner, or quarterback on the high school football team.
USDA-ARS?s Scientific Manuscript database
Wheat quality is defined by culinary end-uses and processing characteristics. Wheat breeders are interested to identify quantitative trait loci for grain, milling, and end-use quality traits because it is imperative to understand the genetic complexity underlying quantitatively inherited traits to ...
Krystkowiak, Karolina; Langner, Monika; Adamski, Tadeusz; Salmanowicz, Bolesław P; Kaczmarek, Zygmunt; Krajewski, Paweł; Surma, Maria
2017-02-01
The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.
Sonah, Humira; O'Donoughue, Louise; Cober, Elroy; Rajcan, Istvan; Belzile, François
2015-02-01
Soya bean is a major source of edible oil and protein for human consumption as well as animal feed. Understanding the genetic basis of different traits in soya bean will provide important insights for improving breeding strategies for this crop. A genome-wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of agronomic traits in soya bean. A genotyping-by-sequencing (GBS) approach was used to provide dense genome-wide marker coverage (>47,000 SNPs) for a panel of 304 short-season soya bean lines. A subset of 139 lines, representative of the diversity among these, was characterized phenotypically for eight traits under six environments (3 sites × 2 years). Marker coverage proved sufficient to ensure highly significant associations between the genes known to control simple traits (flower, hilum and pubescence colour) and flanking SNPs. Between one and eight genomic loci associated with more complex traits (maturity, plant height, seed weight, seed oil and protein) were also identified. Importantly, most of these GWAS loci were located within genomic regions identified by previously reported quantitative trait locus (QTL) for these traits. In some cases, the reported QTLs were also successfully validated by additional QTL mapping in a biparental population. This study demonstrates that integrating GBS and GWAS can be used as a powerful complementary approach to classical biparental mapping for dissecting complex traits in soya bean. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, Elizabeth R.; Lowry, David B.; Juenger, Thomas E.
2016-01-01
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes. PMID:27613751
Kessner, Darren; Novembre, John
2015-01-01
Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748
3D sorghum reconstructions from depth images identify QTL regulating shoot architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.
Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less
3D sorghum reconstructions from depth images identify QTL regulating shoot architecture
Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.
2016-08-15
Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less
Chen, Lin; An, Yixin; Li, Yong-xiang; Li, Chunhui; Shi, Yunsu; Song, Yanchun; Zhang, Dengfeng; Wang, Tianyu; Li, Yu
2017-01-01
Maize grain yield and related traits are complex and are controlled by a large number of genes of small effect or quantitative trait loci (QTL). Over the years, a large number of yield-related QTLs have been identified in maize and deposited in public databases. However, integrating and re-analyzing these data and mining candidate loci for yield-related traits has become a major issue in maize. In this study, we collected information on QTLs conferring maize yield-related traits from 33 published studies. Then, 999 of these QTLs were iteratively projected and subjected to meta-analysis to obtain metaQTLs (MQTLs). A total of 76 MQTLs were found across the maize genome. Based on a comparative genomics strategy, several maize orthologs of rice yield-related genes were identified in these MQTL regions. Furthermore, three potential candidate genes (Gene ID: GRMZM2G359974, GRMZM2G301884, and GRMZM2G083894) associated with kernel size and weight within three MQTL regions were identified using regional association mapping, based on the results of the meta-analysis. This strategy, combining MQTL analysis and regional association mapping, is helpful for functional marker development and rapid identification of candidate genes or loci. PMID:29312420
Comparative analysis of genetic architectures for nine developmental traits of rye.
Masojć, Piotr; Milczarski, P; Kruszona, P
2017-08-01
Genetic architectures of plant height, stem thickness, spike length, awn length, heading date, thousand-kernel weight, kernel length, leaf area and chlorophyll content were aligned on the DArT-based high-density map of the 541 × Ot1-3 RILs population of rye using the genes interaction assorting by divergent selection (GIABDS) method. Complex sets of QTL for particular traits contained 1-5 loci of the epistatic D class and 10-28 loci of the hypostatic, mostly R and E classes controlling traits variation through D-E or D-R types of two-loci interactions. QTL were distributed on each of the seven rye chromosomes in unique positions or as a coinciding loci for 2-8 traits. Detection of considerable numbers of the reversed (D', E' and R') classes of QTL might be attributed to the transgression effects observed for most of the studied traits. First examples of E* and F QTL classes, defined in the model, are reported for awn length, leaf area, thousand-kernel weight and kernel length. The results of this study extend experimental data to 11 quantitative traits (together with pre-harvest sprouting and alpha-amylase activity) for which genetic architectures fit the model of mechanism underlying alleles distribution within tails of bi-parental populations. They are also a valuable starting point for map-based search of genes underlying detected QTL and for planning advanced marker-assisted multi-trait breeding strategies.
Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits
Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël
2007-01-01
Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
2016-09-09
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
Shao, Yafang; Jin, Liang; Zhang, Gan; Lu, Yan; Shen, Yun; Bao, Jinsong
2011-03-01
Phytochemicals such as phenolics and flavonoids in rice grain are antioxidants that are associated with reduced risk of developing chronic diseases including cardiovascular disease, type-2 diabetes and some cancers. Understanding the genetic basis of these traits is necessary for the improvement of nutritional quality by breeding. Association mapping based on linkage disequilibrium has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, genome-wide association mapping using models controlling both population structure (Q) and relative kinship (K) were performed to identify the marker loci/QTLs underlying the naturally occurring variations of grain color and nutritional quality traits in 416 rice germplasm accessions including red and black rice. A total of 41 marker loci were identified for all the traits, and it was confirmed that Ra (i.e., Prp-b for purple pericarp) and Rc (brown pericarp and seed coat) genes were main-effect loci for rice grain color and nutritional quality traits. RM228, RM339, fgr (fragrance gene) and RM316 were important markers associated with most of the traits. Association mapping for the traits of the 361 white or non-pigmented rice accessions (i.e., excluding the red and black rice) revealed a total of 11 markers for four color parameters, and one marker (RM346) for phenolic content. Among them, Wx gene locus was identified for the color parameters of lightness (L*), redness (a*) and hue angle (H (o)). Our study suggested that the markers identified in this study can feasibly be used to improve nutritional quality or health benefit properties of rice by marker-assisted selection if the co-segregations of the marker-trait associations are validated in segregating populations.
Oxley, Peter R; Spivak, Marla; Oldroyd, Benjamin P
2010-04-01
Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait.
Systems genetics approaches to understand complex traits
Civelek, Mete; Lusis, Aldons J.
2014-01-01
Systems genetics is an approach to understand the flow of biological information that underlies complex traits. It uses a range of experimental and statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein or metabolite levels, in populations that vary for traits of interest. Systems genetics studies have provided the first global view of the molecular architecture of complex traits and are useful for the identification of genes, pathways and networks that underlie common human diseases. Given the urgent need to understand how the thousands of loci that have been identified in genome-wide association studies contribute to disease susceptibility, systems genetics is likely to become an increasingly important approach to understanding both biology and disease. PMID:24296534
Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.
2012-01-01
Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999
A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea
Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D.; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C.L.L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23–47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea. PMID:26058368
Abou-Elnaga, Ahmed F; Torigoe, Daisuke; Fouda, Mohamed M; Darwish, Ragab A; Abou-Ismail, Usama A; Morimatsu, Masami; Agui, Takashi
2015-05-01
Depression is one of the most famous psychiatric disorders in humans in all over the countries and considered a complex neurobehavioral trait and difficult to identify causal genes. Tail suspension test (TST) and forced swimming test (FST) are widely used for assessing depression-like behavior and antidepressant activity in mice. A variety of antidepressant agents are known to reduce immobility time in both TST and FST. To identify genetic determinants of immobility duration in both tests, we analyzed 101 F2 mice from an intercross between C57BL/6 and DBA/2 strains. Quantitative trait locus (QTL) mapping using 106 microsatellite markers revealed three loci (two significant and one suggestive) and five suggestive loci controlling immobility time in the TST and FST, respectively. Results of QTL analysis suggest a broad description of the genetic architecture underlying depression, providing underpinnings for identifying novel molecular targets for antidepressants to clear the complex genetic mechanisms of depressive disorders.
[Fine mapping of complex disease susceptibility loci].
Song, Qingfeng; Zhang, Hongxing; Ma, Yilong; Zhou, Gangqiao
2014-01-01
Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers have identified more than 3800 susceptibility loci for more than 660 diseases or traits. However, the most significantly associated variants or causative variants in these loci and their biological functions have remained to be clarified. These causative variants can help to elucidate the pathogenesis and discover new biomarkers of complex diseases. One of the main goals in the post-GWAS era is to identify the causative variants and susceptibility genes, and clarify their functional aspects by fine mapping. For common variants, imputation or re-sequencing based strategies were implemented to increase the number of analyzed variants and help to identify the most significantly associated variants. In addition, functional element, expression quantitative trait locus (eQTL) and haplotype analyses were performed to identify functional common variants and susceptibility genes. For rare variants, fine mapping was carried out by re-sequencing, rare haplotype analysis, family-based analysis, burden test, etc.This review summarizes the strategies and problems for fine mapping.
Atanur, Santosh S; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R; Kaisaki, Pamela J; Otto, Georg W; Ma, Man Chun John; Keane, Thomas M; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J
2013-08-01
Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Atanur, Santosh S.; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R.; Kaisaki, Pamela J.; Otto, Georg W.; Ma, Man Chun John; Keane, Thomas M.; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R.; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J.; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J.
2013-01-01
Summary Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. PaperClip PMID:23890820
Association genetics in Pinus taeda L. I. wood property traits
Santiago C. Gonzalez-Martinez; Nicholas C. Wheeler; Elhan Ersoz; C. Dana Nelson; David B. Neale
2007-01-01
Genetic association is a powerful method for dissecting complex adaptive traits due to (i) fine-scale mapping resulting from historical recombination, (ii) wide coverage of phenotypic and genotypic variation within a single experiment, and (iii) the simultaneous discovery of loci and alleles. In this article, genetic association among single nucleotide polymorphisms (...
A powerful approach reveals numerous expression quantitative trait haplotypes in multiple tissues.
Ying, Dingge; Li, Mulin Jun; Sham, Pak Chung; Li, Miaoxin
2018-04-26
Recently many studies showed single nucleotide polymorphisms (SNPs) affect gene expression and contribute to development of complex traits/diseases in a tissue context-dependent manner. However, little is known about haplotype's influence on gene expression and complex traits, which reflects the interaction effect between SNPs. In the present study, we firstly proposed a regulatory region guided eQTL haplotype association analysis approach, and then systematically investigate the expression quantitative trait loci (eQTL) haplotypes in 20 different tissues by the approach. The approach has a powerful design of reducing computational burden by the utilization of regulatory predictions for candidate SNP selection and multiple testing corrections on non-independent haplotypes. The application results in multiple tissues showed that haplotype-based eQTLs not only increased the number of eQTL genes in a tissue specific manner, but were also enriched in loci that associated with complex traits in a tissue-matched manner. In addition, we found that tag SNPs of eQTL haplotypes from whole blood were selectively enriched in certain combination of regulatory elements (e.g. promoters and enhancers) according to predicted chromatin states. In summary, this eQTL haplotype detection approach, together with the application results, shed insights into synergistic effect of sequence variants on gene expression and their susceptibility to complex diseases. The executable application "eHaplo" is implemented in Java and is publicly available at http://grass.cgs.hku.hk/limx/ehaplo/. jonsonfox@gmail.com, limiaoxin@mail.sysu.edu.cn. Supplementary data are available at Bioinformatics online.
Population- and individual-specific regulatory variation in Sardinia.
Pala, Mauro; Zappala, Zachary; Marongiu, Mara; Li, Xin; Davis, Joe R; Cusano, Roberto; Crobu, Francesca; Kukurba, Kimberly R; Gloudemans, Michael J; Reinier, Frederic; Berutti, Riccardo; Piras, Maria G; Mulas, Antonella; Zoledziewska, Magdalena; Marongiu, Michele; Sorokin, Elena P; Hess, Gaelen T; Smith, Kevin S; Busonero, Fabio; Maschio, Andrea; Steri, Maristella; Sidore, Carlo; Sanna, Serena; Fiorillo, Edoardo; Bassik, Michael C; Sawcer, Stephen J; Battle, Alexis; Novembre, John; Jones, Chris; Angius, Andrea; Abecasis, Gonçalo R; Schlessinger, David; Cucca, Francesco; Montgomery, Stephen B
2017-05-01
Genetic studies of complex traits have mainly identified associations with noncoding variants. To further determine the contribution of regulatory variation, we combined whole-genome and transcriptome data for 624 individuals from Sardinia to identify common and rare variants that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 new QTLs. We identified high-frequency QTLs and found evidence of selection near genes involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z score of 2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into the effects of regulatory variants and their relationship to population history and individual genetic risk.
Zhu, Xiaofeng; Feng, Tao; Tayo, Bamidele O; Liang, Jingjing; Young, J Hunter; Franceschini, Nora; Smith, Jennifer A; Yanek, Lisa R; Sun, Yan V; Edwards, Todd L; Chen, Wei; Nalls, Mike; Fox, Ervin; Sale, Michele; Bottinger, Erwin; Rotimi, Charles; Liu, Yongmei; McKnight, Barbara; Liu, Kiang; Arnett, Donna K; Chakravati, Aravinda; Cooper, Richard S; Redline, Susan
2015-01-08
Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple-even distinct-traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10(-8)) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10(-7)) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Costantini, Laura; Battilana, Juri; Lamaj, Flutura; Fanizza, Girolamo; Grando, Maria Stella
2008-01-01
Background The timing of grape ripening initiation, length of maturation period, berry size and seed content are target traits in viticulture. The availability of early and late ripening varieties is desirable for staggering harvest along growing season, expanding production towards periods when the fruit gets a higher value in the market and ensuring an optimal plant adaptation to climatic and geographic conditions. Berry size determines grape productivity; seedlessness is especially demanded in the table grape market and is negatively correlated to fruit size. These traits result from complex developmental processes modified by genetic, physiological and environmental factors. In order to elucidate their genetic determinism we carried out a quantitative analysis in a 163 individuals-F1 segregating progeny obtained by crossing two table grape cultivars. Results Molecular linkage maps covering most of the genome (2n = 38 for Vitis vinifera) were generated for each parent. Eighteen pairs of homologous groups were integrated into a consensus map spanning over 1426 cM with 341 markers (mainly microsatellite, AFLP and EST-derived markers) and an average map distance between loci of 4.2 cM. Segregating traits were evaluated in three growing seasons by recording flowering, veraison and ripening dates and by measuring berry size, seed number and weight. QTL (Quantitative Trait Loci) analysis was carried out based on single marker and interval mapping methods. QTLs were identified for all but one of the studied traits, a number of them steadily over more than one year. Clusters of QTLs for different characters were detected, suggesting linkage or pleiotropic effects of loci, as well as regions affecting specific traits. The most interesting QTLs were investigated at the gene level through a bioinformatic analysis of the underlying Pinot noir genomic sequence. Conclusion Our results revealed novel insights into the genetic control of relevant grapevine features. They provide a basis for performing marker-assisted selection and testing the role of specific genes in trait variation. PMID:18419811
The genetic architecture of Drosophila sensory bristle number.
Dilda, Christy L; Mackay, Trudy F C
2002-01-01
We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits. PMID:12524340
Identification of genetic loci shared between schizophrenia and the Big Five personality traits.
Smeland, Olav B; Wang, Yunpeng; Lo, Min-Tzu; Li, Wen; Frei, Oleksandr; Witoelar, Aree; Tesli, Martin; Hinds, David A; Tung, Joyce Y; Djurovic, Srdjan; Chen, Chi-Hua; Dale, Anders M; Andreassen, Ole A
2017-05-22
Schizophrenia is associated with differences in personality traits, and recent studies suggest that personality traits and schizophrenia share a genetic basis. Here we aimed to identify specific genetic loci shared between schizophrenia and the Big Five personality traits using a Bayesian statistical framework. Using summary statistics from genome-wide association studies (GWAS) on personality traits in the 23andMe cohort (n = 59,225) and schizophrenia in the Psychiatric Genomics Consortium cohort (n = 82,315), we evaluated overlap in common genetic variants. The Big Five personality traits neuroticism, extraversion, openness, agreeableness and conscientiousness were measured using a web implementation of the Big Five Inventory. Applying the conditional false discovery rate approach, we increased discovery of genetic loci and identified two loci shared between neuroticism and schizophrenia and six loci shared between openness and schizophrenia. The study provides new insights into the relationship between personality traits and schizophrenia by highlighting genetic loci involved in their common genetic etiology.
Liu, Ching-Ti; Raghavan, Sridharan; Maruthur, Nisa; Kabagambe, Edmond Kato; Hong, Jaeyoung; Ng, Maggie C Y; Hivert, Marie-France; Lu, Yingchang; An, Ping; Bentley, Amy R; Drolet, Anne M; Gaulton, Kyle J; Guo, Xiuqing; Armstrong, Loren L; Irvin, Marguerite R; Li, Man; Lipovich, Leonard; Rybin, Denis V; Taylor, Kent D; Agyemang, Charles; Palmer, Nicholette D; Cade, Brian E; Chen, Wei-Min; Dauriz, Marco; Delaney, Joseph A C; Edwards, Todd L; Evans, Daniel S; Evans, Michele K; Lange, Leslie A; Leong, Aaron; Liu, Jingmin; Liu, Yongmei; Nayak, Uma; Patel, Sanjay R; Porneala, Bianca C; Rasmussen-Torvik, Laura J; Snijder, Marieke B; Stallings, Sarah C; Tanaka, Toshiko; Yanek, Lisa R; Zhao, Wei; Becker, Diane M; Bielak, Lawrence F; Biggs, Mary L; Bottinger, Erwin P; Bowden, Donald W; Chen, Guanjie; Correa, Adolfo; Couper, David J; Crawford, Dana C; Cushman, Mary; Eicher, John D; Fornage, Myriam; Franceschini, Nora; Fu, Yi-Ping; Goodarzi, Mark O; Gottesman, Omri; Hara, Kazuo; Harris, Tamara B; Jensen, Richard A; Johnson, Andrew D; Jhun, Min A; Karter, Andrew J; Keller, Margaux F; Kho, Abel N; Kizer, Jorge R; Krauss, Ronald M; Langefeld, Carl D; Li, Xiaohui; Liang, Jingling; Liu, Simin; Lowe, William L; Mosley, Thomas H; North, Kari E; Pacheco, Jennifer A; Peyser, Patricia A; Patrick, Alan L; Rice, Kenneth M; Selvin, Elizabeth; Sims, Mario; Smith, Jennifer A; Tajuddin, Salman M; Vaidya, Dhananjay; Wren, Mary P; Yao, Jie; Zhu, Xiaofeng; Ziegler, Julie T; Zmuda, Joseph M; Zonderman, Alan B; Zwinderman, Aeilko H; Adeyemo, Adebowale; Boerwinkle, Eric; Ferrucci, Luigi; Hayes, M Geoffrey; Kardia, Sharon L R; Miljkovic, Iva; Pankow, James S; Rotimi, Charles N; Sale, Michele M; Wagenknecht, Lynne E; Arnett, Donna K; Chen, Yii-Der Ida; Nalls, Michael A; Province, Michael A; Kao, W H Linda; Siscovick, David S; Psaty, Bruce M; Wilson, James G; Loos, Ruth J F; Dupuis, Josée; Rich, Stephen S; Florez, Jose C; Rotter, Jerome I; Morris, Andrew P; Meigs, James B
2016-07-07
Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci. Copyright © 2016 American Society of Human Genetics. All rights reserved.
Contribution of Large Region Joint Associations to Complex Traits Genetics
Paré, Guillaume; Asma, Senay; Deng, Wei Q.
2015-01-01
A polygenic model of inheritance, whereby hundreds or thousands of weakly associated variants contribute to a trait’s heritability, has been proposed to underlie the genetic architecture of complex traits. However, relatively few genetic variants have been positively identified so far and they collectively explain only a small fraction of the predicted heritability. We hypothesized that joint association of multiple weakly associated variants over large chromosomal regions contributes to complex traits variance. Confirmation of such regional associations can help identify new loci and lead to a better understanding of known ones. To test this hypothesis, we first characterized the ability of commonly used genetic association models to identify large region joint associations. Through theoretical derivation and simulation, we showed that multivariate linear models where multiple SNPs are included as independent predictors have the most favorable association profile. Based on these results, we tested for large region association with height in 3,740 European participants from the Health and Retirement Study (HRS) study. Adjusting for SNPs with known association with height, we demonstrated clustering of weak associations (p = 2x10-4) in regions extending up to 433.0 Kb from known height loci. The contribution of regional associations to phenotypic variance was estimated at 0.172 (95% CI 0.063-0.279; p < 0.001), which compared favorably to 0.129 explained by known height variants. Conversely, we showed that suggestively associated regions are enriched for known height loci. To extend our findings to other traits, we also tested BMI, HDLc and CRP for large region associations, with consistent results for CRP. Our results demonstrate the presence of large region joint associations and suggest these can be used to pinpoint weakly associated SNPs. PMID:25856144
Wang, Jun; Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu
2017-01-01
Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet.
Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu
2017-01-01
Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet. PMID:28644843
Mapping of epistatic quantitative trait loci in four-way crosses.
He, Xiao-Hong; Qin, Hongde; Hu, Zhongli; Zhang, Tianzhen; Zhang, Yuan-Ming
2011-01-01
Four-way crosses (4WC) involving four different inbred lines often appear in plant and animal commercial breeding programs. Direct mapping of quantitative trait loci (QTL) in these commercial populations is both economical and practical. However, the existing statistical methods for mapping QTL in a 4WC population are built on the single-QTL genetic model. This simple genetic model fails to take into account QTL interactions, which play an important role in the genetic architecture of complex traits. In this paper, therefore, we attempted to develop a statistical method to detect epistatic QTL in 4WC population. Conditional probabilities of QTL genotypes, computed by the multi-point single locus method, were used to sample the genotypes of all putative QTL in the entire genome. The sampled genotypes were used to construct the design matrix for QTL effects. All QTL effects, including main and epistatic effects, were simultaneously estimated by the penalized maximum likelihood method. The proposed method was confirmed by a series of Monte Carlo simulation studies and real data analysis of cotton. The new method will provide novel tools for the genetic dissection of complex traits, construction of QTL networks, and analysis of heterosis.
Use of Multivariate Linkage Analysis for Dissection of a Complex Cognitive Trait
Marlow, Angela J.; Fisher, Simon E.; Francks, Clyde; MacPhie, I. Laurence; Cherny, Stacey S.; Richardson, Alex J.; Talcott, Joel B.; Stein, John F.; Monaco, Anthony P.; Cardon, Lon R.
2003-01-01
Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. PMID:12587094
Progress of genome wide association study in domestic animals
2012-01-01
Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL) responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS), which utilizes high-density single-nucleotide polymorphism (SNP), provides a new way to tackle this issue. Encouraging achievements in dissection of the genetic mechanisms of complex diseases in humans have resulted from the use of GWAS. At present, GWAS has been applied to the field of domestic animal breeding and genetics, and some advances have been made. Many genes or markers that affect economic traits of interest in domestic animals have been identified. In this review, advances in the use of GWAS in domestic animals are described. PMID:22958308
Stanaway, Ian B.; Gamazon, Eric R.; Smith, Joshua D.; Mirkov, Snezana; Ramirez, Jacqueline; Liu, Wanqing; Lin, Yvonne S.; Moloney, Cliona; Aldred, Shelly Force; Trinklein, Nathan D.; Schuetz, Erin; Nickerson, Deborah A.; Thummel, Ken E.; Rieder, Mark J.; Rettie, Allan E.; Ratain, Mark J.; Cox, Nancy J.; Brown, Christopher D.
2011-01-01
The discovery of expression quantitative trait loci (“eQTLs”) can help to unravel genetic contributions to complex traits. We identified genetic determinants of human liver gene expression variation using two independent collections of primary tissue profiled with Agilent (n = 206) and Illumina (n = 60) expression arrays and Illumina SNP genotyping (550K), and we also incorporated data from a published study (n = 266). We found that ∼30% of SNP-expression correlations in one study failed to replicate in either of the others, even at thresholds yielding high reproducibility in simulations, and we quantified numerous factors affecting reproducibility. Our data suggest that drug exposure, clinical descriptors, and unknown factors associated with tissue ascertainment and analysis have substantial effects on gene expression and that controlling for hidden confounding variables significantly increases replication rate. Furthermore, we found that reproducible eQTL SNPs were heavily enriched near gene starts and ends, and subsequently resequenced the promoters and 3′UTRs for 14 genes and tested the identified haplotypes using luciferase assays. For three genes, significant haplotype-specific in vitro functional differences correlated directly with expression levels, suggesting that many bona fide eQTLs result from functional variants that can be mechanistically isolated in a high-throughput fashion. Finally, given our study design, we were able to discover and validate hundreds of liver eQTLs. Many of these relate directly to complex traits for which liver-specific analyses are likely to be relevant, and we identified dozens of potential connections with disease-associated loci. These included previously characterized eQTL contributors to diabetes, drug response, and lipid levels, and they suggest novel candidates such as a role for NOD2 expression in leprosy risk and C2orf43 in prostate cancer. In general, the work presented here will be valuable for future efforts to precisely identify and functionally characterize genetic contributions to a variety of complex traits. PMID:21637794
Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair
2011-01-01
Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease. PMID:21249183
Sharma, Amitabh; Gulbahce, Natali; Pevzner, Samuel J.; Menche, Jörg; Ladenvall, Claes; Folkersen, Lasse; Eriksson, Per; Orho-Melander, Marju; Barabási, Albert-László
2013-01-01
Genome wide association studies (GWAS) identify susceptibility loci for complex traits, but do not identify particular genes of interest. Integration of functional and network information may help in overcoming this limitation and identifying new susceptibility loci. Using GWAS and comorbidity data, we present a network-based approach to predict candidate genes for lipid and lipoprotein traits. We apply a prediction pipeline incorporating interactome, co-expression, and comorbidity data to Global Lipids Genetics Consortium (GLGC) GWAS for four traits of interest, identifying phenotypically coherent modules. These modules provide insights regarding gene involvement in complex phenotypes with multiple susceptibility alleles and low effect sizes. To experimentally test our predictions, we selected four candidate genes and genotyped representative SNPs in the Malmö Diet and Cancer Cardiovascular Cohort. We found significant associations with LDL-C and total-cholesterol levels for a synonymous SNP (rs234706) in the cystathionine beta-synthase (CBS) gene (p = 1 × 10−5 and adjusted-p = 0.013, respectively). Further, liver samples taken from 206 patients revealed that patients with the minor allele of rs234706 had significant dysregulation of CBS (p = 0.04). Despite the known biological role of CBS in lipid metabolism, SNPs within the locus have not yet been identified in GWAS of lipoprotein traits. Thus, the GWAS-based Comorbidity Module (GCM) approach identifies candidate genes missed by GWAS studies, serving as a broadly applicable tool for the investigation of other complex disease phenotypes. PMID:23882023
Advances in cereal genomics and applications in crop breeding.
Varshney, Rajeev K; Hoisington, David A; Tyagi, Akhilesh K
2006-11-01
Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of the genes that are linked to key agronomically important traits. These studies have used molecular genetic mapping of quantitative trait loci (QTL) of several complex traits that are important in breeding. The identification and molecular cloning of genes underlying QTLs offers the possibility to examine the naturally occurring allelic variation for respective complex traits. Novel alleles, identified by functional genomics or haplotype analysis, can enrich the genetic basis of cultivated crops to improve productivity. Advances made in cereal genomics research in recent years thus offer the opportunities to enhance the prediction of phenotypes from genotypes for cereal breeding.
Tilting at Quixotic Trait Loci (QTL): An Evolutionary Perspective on Genetic Causation
Weiss, Kenneth M.
2008-01-01
Recent years have seen great advances in generating and analyzing data to identify the genetic architecture of biological traits. Human disease has understandably received intense research focus, and the genes responsible for most Mendelian diseases have successfully been identified. However, the same advances have shown a consistent if less satisfying pattern, in which complex traits are affected by variation in large numbers of genes, most of which have individually minor or statistically elusive effects, leaving the bulk of genetic etiology unaccounted for. This pattern applies to diverse and unrelated traits, not just disease, in basically all species, and is consistent with evolutionary expectations, raising challenging questions about the best way to approach and understand biological complexity. PMID:18711218
Glater, Elizabeth E.; Rockman, Matthew V.; Bargmann, Cornelia I.
2013-01-01
The nematode Caenorhabditis elegans can use olfaction to discriminate among different kinds of bacteria, its major food source. We asked how natural genetic variation contributes to choice behavior, focusing on differences in olfactory preference behavior between two wild-type C. elegans strains. The laboratory strain N2 strongly prefers the odor of Serratia marcescens, a soil bacterium that is pathogenic to C. elegans, to the odor of Escherichia coli, a commonly used laboratory food source. The divergent Hawaiian strain CB4856 has a weaker attraction to Serratia than the N2 strain, and this behavioral difference has a complex genetic basis. At least three quantitative trait loci (QTLs) from the CB4856 Hawaii strain (HW) with large effect sizes lead to reduced Serratia preference when introgressed into an N2 genetic background. These loci interact and have epistatic interactions with at least two antagonistic QTLs from HW that increase Serratia preference. The complex genetic architecture of this C. elegans trait is reminiscent of the architecture of mammalian metabolic and behavioral traits. PMID:24347628
USDA-ARS?s Scientific Manuscript database
As a first step towards the genetic mapping of quantitative trait loci (QTL) affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol using Bayesian methods in large full-sib families of rainbow trout. ...
Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice
Pavlicev, Mihaela; Wagner, Günter P.; Noonan, James P.; Hallgrímsson, Benedikt; Cheverud, James M.
2013-01-01
Divergence of serially homologous elements of organisms is a common evolutionary pattern contributing to increased phenotypic complexity. Here, we study the genomic intervals affecting the variational independence of fore- and hind limb traits within an experimental mouse population. We use an advanced intercross of inbred mouse strains to map the loci associated with the degree of autonomy between fore- and hind limb long bone lengths (loci affecting the relationship between traits, relationship quantitative trait loci [rQTL]). These loci have been proposed to interact locally with the products of pleiotropic genes, thereby freeing the local trait from the variational constraint due to pleiotropic mutations. Using the known polymorphisms (single nucleotide polymorphisms [SNPs]) between the parental strains, we characterized and compared the genomic regions in which the rQTL, as well as their interaction partners (intQTL), reside. We find that these two classes of QTL intervals harbor different kinds of molecular variation. SNPs in rQTL intervals more frequently reside in limb-specific cis-regulatory regions than SNPs in intQTL intervals. The intQTL loci modified by the rQTL, in contrast, show the signature of protein-coding variation. This result is consistent with the widely accepted view that protein-coding mutations have broader pleiotropic effects than cis-regulatory polymorphisms. For both types of QTL intervals, the underlying candidate genes are enriched for genes involved in protein binding. This finding suggests that rQTL effects are caused by local interactions among the products of the causal genes harbored in rQTL and intQTL intervals. This is the first study to systematically document the population-level molecular variation underlying the evolution of character individuation. PMID:24065733
The impact of low-frequency and rare variants on lipid levels
Surakka, Ida; Horikoshi, Momoko; Mägi, Reedik; Sarin, Antti-Pekka; Mahajan, Anubha; Lagou, Vasiliki; Marullo, Letizia; Ferreira, Teresa; Miraglio, Benjamin; Timonen, Sanna; Kettunen, Johannes; Pirinen, Matti; Karjalainen, Juha; Thorleifsson, Gudmar; Hägg, Sara; Hottenga, Jouke-Jan; Isaacs, Aaron; Ladenvall, Claes; Beekman, Marian; Esko, Tõnu; Ried, Janina S; Nelson, Christopher P; Willenborg, Christina; Gustafsson, Stefan; Westra, Harm-Jan; Blades, Matthew; de Craen, Anton JM; de Geus, Eco J; Deelen, Joris; Grallert, Harald; Hamsten, Anders; Havulinna, Aki S.; Hengstenberg, Christian; Houwing-Duistermaat, Jeanine J; Hyppönen, Elina; Karssen, Lennart C; Lehtimäki, Terho; Lyssenko, Valeriya; Magnusson, Patrik KE; Mihailov, Evelin; Müller-Nurasyid, Martina; Mpindi, John-Patrick; Pedersen, Nancy L; Penninx, Brenda WJH; Perola, Markus; Pers, Tune H; Peters, Annette; Rung, Johan; Smit, Johannes H; Steinthorsdottir, Valgerdur; Tobin, Martin D; Tsernikova, Natalia; van Leeuwen, Elisabeth M; Viikari, Jorma S; Willems, Sara M; Willemsen, Gonneke; Schunkert, Heribert; Erdmann, Jeanette; Samani, Nilesh J; Kaprio, Jaakko; Lind, Lars; Gieger, Christian; Metspalu, Andres; Slagboom, P Eline; Groop, Leif; van Duijn, Cornelia M; Eriksson, Johan G; Jula, Antti; Salomaa, Veikko; Boomsma, Dorret I; Power, Christine; Raitakari, Olli T; Ingelsson, Erik; Järvelin, Marjo-Riitta; Stefansson, Kari; Franke, Lude; Ikonen, Elina; Kallioniemi, Olli; Pietiäinen, Vilja; Lindgren, Cecilia M; Thorsteinsdottir, Unnur; Palotie, Aarno; McCarthy, Mark I; Morris, Andrew P; Prokopenko, Inga; Ripatti, Samuli
2016-01-01
Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes imputation in 62,166 samples, we identify association to lipids in 93 loci including 79 previously identified loci with new lead-SNPs, 10 new loci, 15 loci with a low-frequency and 10 loci with missense lead-SNPs, and, 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC, and APOE), or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2), explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for LDL-C and TC. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to re-sequencing. PMID:25961943
Lorenz, Kim; Cohen, Barak A.
2012-01-01
Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative trait nucleotides (QTN) have been genetically fixed we identify small-effect QTL that explain approximately half of the remaining variation not explained by the major effects. We find that small-effect QTL are often physically linked to large-effect QTL and that there are extensive genetic interactions between small- and large-effect QTL. A more complete understanding of quantitative traits will require a better understanding of the numbers, effect sizes, and genetic interactions of small-effect QTL. PMID:22942125
Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.
Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D; Flint-Garcia, Sherry A
2016-08-09
Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. Copyright © 2016 Liu et al.
Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations
Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D.; Flint-Garcia, Sherry A.
2016-01-01
Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. PMID:27317774
Iancu, Ovidiu D; Darakjian, Priscila; Kawane, Sunita; Bottomly, Daniel; Hitzemann, Robert; McWeeney, Shannon
2012-01-01
Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F(2) intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection.
Genome-wide association analysis of metabolic traits in a birth cohort from a founder population.
Sabatti, Chiara; Service, Susan K; Hartikainen, Anna-Liisa; Pouta, Anneli; Ripatti, Samuli; Brodsky, Jae; Jones, Chris G; Zaitlen, Noah A; Varilo, Teppo; Kaakinen, Marika; Sovio, Ulla; Ruokonen, Aimo; Laitinen, Jaana; Jakkula, Eveliina; Coin, Lachlan; Hoggart, Clive; Collins, Andrew; Turunen, Hannu; Gabriel, Stacey; Elliot, Paul; McCarthy, Mark I; Daly, Mark J; Järvelin, Marjo-Riitta; Freimer, Nelson B; Peltonen, Leena
2009-01-01
Genome-wide association studies (GWAS) of longitudinal birth cohorts enable joint investigation of environmental and genetic influences on complex traits. We report GWAS results for nine quantitative metabolic traits (triglycerides, high-density lipoprotein, low-density lipoprotein, glucose, insulin, C-reactive protein, body mass index, and systolic and diastolic blood pressure) in the Northern Finland Birth Cohort 1966 (NFBC1966), drawn from the most genetically isolated Finnish regions. We replicate most previously reported associations for these traits and identify nine new associations, several of which highlight genes with metabolic functions: high-density lipoprotein with NR1H3 (LXRA), low-density lipoprotein with AR and FADS1-FADS2, glucose with MTNR1B, and insulin with PANK1. Two of these new associations emerged after adjustment of results for body mass index. Gene-environment interaction analyses suggested additional associations, which will require validation in larger samples. The currently identified loci, together with quantified environmental exposures, explain little of the trait variation in NFBC1966. The association observed between low-density lipoprotein and an infrequent variant in AR suggests the potential of such a cohort for identifying associations with both common, low-impact and rarer, high-impact quantitative trait loci.
Huang, Dandan; Yi, Xianfu; Zhang, Shijie; Zheng, Zhanye; Wang, Panwen; Xuan, Chenghao; Sham, Pak Chung; Wang, Junwen; Li, Mulin Jun
2018-05-16
Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants.
Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A
2018-03-01
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.
Gray, Alan; Neyton, Lucile P. A.; Barrett, Jeffrey; Stahl, Eli A.; Tenesa, Albert; Andersson, Robin; Brown, J. Ben; Faulkner, Geoffrey J.; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Kawaji, Hideya; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A.; Hacohen, Nir; Freeman, Thomas C.; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Hume, David A.
2018-01-01
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits. PMID:29494619
Justice, Anne E; Winkler, Thomas W; Feitosa, Mary F; Graff, Misa; Fisher, Virginia A; Young, Kristin; Barata, Llilda; Deng, Xuan; Czajkowski, Jacek; Hadley, David; Ngwa, Julius S; Ahluwalia, Tarunveer S; Chu, Audrey Y; Heard-Costa, Nancy L; Lim, Elise; Perez, Jeremiah; Eicher, John D; Kutalik, Zoltán; Xue, Luting; Mahajan, Anubha; Renström, Frida; Wu, Joseph; Qi, Qibin; Ahmad, Shafqat; Alfred, Tamuno; Amin, Najaf; Bielak, Lawrence F; Bonnefond, Amelie; Bragg, Jennifer; Cadby, Gemma; Chittani, Martina; Coggeshall, Scott; Corre, Tanguy; Direk, Nese; Eriksson, Joel; Fischer, Krista; Gorski, Mathias; Neergaard Harder, Marie; Horikoshi, Momoko; Huang, Tao; Huffman, Jennifer E; Jackson, Anne U; Justesen, Johanne Marie; Kanoni, Stavroula; Kinnunen, Leena; Kleber, Marcus E; Komulainen, Pirjo; Kumari, Meena; Lim, Unhee; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Mangino, Massimo; Manichaikul, Ani; Marten, Jonathan; Middelberg, Rita P S; Müller-Nurasyid, Martina; Navarro, Pau; Pérusse, Louis; Pervjakova, Natalia; Sarti, Cinzia; Smith, Albert Vernon; Smith, Jennifer A; Stančáková, Alena; Strawbridge, Rona J; Stringham, Heather M; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van der Most, Peter J; Van Vliet-Ostaptchouk, Jana V; Vedantam, Sailaja L; Verweij, Niek; Vink, Jacqueline M; Vitart, Veronique; Wu, Ying; Yengo, Loic; Zhang, Weihua; Hua Zhao, Jing; Zimmermann, Martina E; Zubair, Niha; Abecasis, Gonçalo R; Adair, Linda S; Afaq, Saima; Afzal, Uzma; Bakker, Stephan J L; Bartz, Traci M; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L; Bottinger, Erwin; Braga, Daniele; Buckley, Brendan M; Buyske, Steve; Campbell, Harry; Chambers, John C; Collins, Francis S; Curran, Joanne E; de Borst, Gert J; de Craen, Anton J M; de Geus, Eco J C; Dedoussis, George; Delgado, Graciela E; den Ruijter, Hester M; Eiriksdottir, Gudny; Eriksson, Anna L; Esko, Tõnu; Faul, Jessica D; Ford, Ian; Forrester, Terrence; Gertow, Karl; Gigante, Bruna; Glorioso, Nicola; Gong, Jian; Grallert, Harald; Grammer, Tanja B; Grarup, Niels; Haitjema, Saskia; Hallmans, Göran; Hamsten, Anders; Hansen, Torben; Harris, Tamara B; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas D; Heath, Andrew C; Hernandez, Dena; Hindorff, Lucia; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Homuth, Georg; Jan Hottenga, Jouke; Huang, Jie; Hung, Joseph; Hutri-Kähönen, Nina; Ingelsson, Erik; James, Alan L; Jansson, John-Olov; Jarvelin, Marjo-Riitta; Jhun, Min A; Jørgensen, Marit E; Juonala, Markus; Kähönen, Mika; Karlsson, Magnus; Koistinen, Heikki A; Kolcic, Ivana; Kolovou, Genovefa; Kooperberg, Charles; Krämer, Bernhard K; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Leander, Karin; Lee, Nanette R; Lind, Lars; Lindgren, Cecilia M; Linneberg, Allan; Lobbens, Stephane; Loh, Marie; Lorentzon, Mattias; Luben, Robert; Lubke, Gitta; Ludolph-Donislawski, Anja; Lupoli, Sara; Madden, Pamela A F; Männikkö, Reija; Marques-Vidal, Pedro; Martin, Nicholas G; McKenzie, Colin A; McKnight, Barbara; Mellström, Dan; Menni, Cristina; Montgomery, Grant W; Musk, Aw Bill; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Oldehinkel, Albertine J; Olden, Matthias; Ong, Ken K; Padmanabhan, Sandosh; Peyser, Patricia A; Pisinger, Charlotta; Porteous, David J; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rasmussen-Torvik, Laura J; Rawal, Rajesh; Rice, Treva; Ridker, Paul M; Rose, Lynda M; Bien, Stephanie A; Rudan, Igor; Sanna, Serena; Sarzynski, Mark A; Sattar, Naveed; Savonen, Kai; Schlessinger, David; Scholtens, Salome; Schurmann, Claudia; Scott, Robert A; Sennblad, Bengt; Siemelink, Marten A; Silbernagel, Günther; Slagboom, P Eline; Snieder, Harold; Staessen, Jan A; Stott, David J; Swertz, Morris A; Swift, Amy J; Taylor, Kent D; Tayo, Bamidele O; Thorand, Barbara; Thuillier, Dorothee; Tuomilehto, Jaakko; Uitterlinden, Andre G; Vandenput, Liesbeth; Vohl, Marie-Claude; Völzke, Henry; Vonk, Judith M; Waeber, Gérard; Waldenberger, Melanie; Westendorp, R G J; Wild, Sarah; Willemsen, Gonneke; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zhao, Wei; Zillikens, M Carola; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Böger, Carsten A; Boomsma, Dorret I; Bouchard, Claude; Bruinenberg, Marcel; Chasman, Daniel I; Chen, Yii-DerIda; Chines, Peter S; Cooper, Richard S; Cucca, Francesco; Cusi, Daniele; Faire, Ulf de; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Gordon-Larsen, Penny; Grabe, Hans-Jörgen; Gudnason, Vilmundur; Haiman, Christopher A; Hayward, Caroline; Hveem, Kristian; Johnson, Andrew D; Wouter Jukema, J; Kardia, Sharon L R; Kivimaki, Mika; Kooner, Jaspal S; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Marchand, Loic Le; März, Winfried; McCarthy, Mark I; Metspalu, Andres; Morris, Andrew P; Ohlsson, Claes; Palmer, Lyle J; Pasterkamp, Gerard; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Smith, Blair H; Sørensen, Thorkild I A; Strauch, Konstantin; Tiemeier, Henning; Tremoli, Elena; van der Harst, Pim; Vestergaard, Henrik; Vollenweider, Peter; Wareham, Nicholas J; Weir, David R; Whitfield, John B; Wilson, James F; Tyrrell, Jessica; Frayling, Timothy M; Barroso, Inês; Boehnke, Michael; Deloukas, Panagiotis; Fox, Caroline S; Hirschhorn, Joel N; Hunter, David J; Spector, Tim D; Strachan, David P; van Duijn, Cornelia M; Heid, Iris M; Mohlke, Karen L; Marchini, Jonathan; Loos, Ruth J F; Kilpeläinen, Tuomas O; Liu, Ching-Ti; Borecki, Ingrid B; North, Kari E; Cupples, L Adrienne
2017-04-26
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
Justice, Anne E.; Winkler, Thomas W.; Feitosa, Mary F.; Graff, Misa; Fisher, Virginia A.; Young, Kristin; Barata, Llilda; Deng, Xuan; Czajkowski, Jacek; Hadley, David; Ngwa, Julius S.; Ahluwalia, Tarunveer S.; Chu, Audrey Y.; Heard-Costa, Nancy L.; Lim, Elise; Perez, Jeremiah; Eicher, John D.; Kutalik, Zoltán; Xue, Luting; Mahajan, Anubha; Renström, Frida; Wu, Joseph; Qi, Qibin; Ahmad, Shafqat; Alfred, Tamuno; Amin, Najaf; Bielak, Lawrence F.; Bonnefond, Amelie; Bragg, Jennifer; Cadby, Gemma; Chittani, Martina; Coggeshall, Scott; Corre, Tanguy; Direk, Nese; Eriksson, Joel; Fischer, Krista; Gorski, Mathias; Neergaard Harder, Marie; Horikoshi, Momoko; Huang, Tao; Huffman, Jennifer E.; Jackson, Anne U.; Justesen, Johanne Marie; Kanoni, Stavroula; Kinnunen, Leena; Kleber, Marcus E.; Komulainen, Pirjo; Kumari, Meena; Lim, Unhee; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Mangino, Massimo; Manichaikul, Ani; Marten, Jonathan; Middelberg, Rita P. S.; Müller-Nurasyid, Martina; Navarro, Pau; Pérusse, Louis; Pervjakova, Natalia; Sarti, Cinzia; Smith, Albert Vernon; Smith, Jennifer A.; Stančáková, Alena; Strawbridge, Rona J.; Stringham, Heather M.; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W.; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vedantam, Sailaja L.; Verweij, Niek; Vink, Jacqueline M.; Vitart, Veronique; Wu, Ying; Yengo, Loic; Zhang, Weihua; Hua Zhao, Jing; Zimmermann, Martina E.; Zubair, Niha; Abecasis, Gonçalo R.; Adair, Linda S.; Afaq, Saima; Afzal, Uzma; Bakker, Stephan J. L.; Bartz, Traci M.; Beilby, John; Bergman, Richard N.; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L.; Bottinger, Erwin; Braga, Daniele; Buckley, Brendan M.; Buyske, Steve; Campbell, Harry; Chambers, John C.; Collins, Francis S.; Curran, Joanne E.; de Borst, Gert J.; de Craen, Anton J. M.; de Geus, Eco J. C.; Dedoussis, George; Delgado, Graciela E.; den Ruijter, Hester M.; Eiriksdottir, Gudny; Eriksson, Anna L.; Esko, Tõnu; Faul, Jessica D.; Ford, Ian; Forrester, Terrence; Gertow, Karl; Gigante, Bruna; Glorioso, Nicola; Gong, Jian; Grallert, Harald; Grammer, Tanja B.; Grarup, Niels; Haitjema, Saskia; Hallmans, Göran; Hamsten, Anders; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas D.; Heath, Andrew C.; Hernandez, Dena; Hindorff, Lucia; Hocking, Lynne J.; Hollensted, Mette; Holmen, Oddgeir L.; Homuth, Georg; Jan Hottenga, Jouke; Huang, Jie; Hung, Joseph; Hutri-Kähönen, Nina; Ingelsson, Erik; James, Alan L.; Jansson, John-Olov; Jarvelin, Marjo-Riitta; Jhun, Min A.; Jørgensen, Marit E.; Juonala, Markus; Kähönen, Mika; Karlsson, Magnus; Koistinen, Heikki A.; Kolcic, Ivana; Kolovou, Genovefa; Kooperberg, Charles; Krämer, Bernhard K.; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Leander, Karin; Lee, Nanette R.; Lind, Lars; Lindgren, Cecilia M.; Linneberg, Allan; Lobbens, Stephane; Loh, Marie; Lorentzon, Mattias; Luben, Robert; Lubke, Gitta; Ludolph-Donislawski, Anja; Lupoli, Sara; Madden, Pamela A. F.; Männikkö, Reija; Marques-Vidal, Pedro; Martin, Nicholas G.; McKenzie, Colin A.; McKnight, Barbara; Mellström, Dan; Menni, Cristina; Montgomery, Grant W.; Musk, AW (Bill); Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M.; Oldehinkel, Albertine J.; Olden, Matthias; Ong, Ken K.; Padmanabhan, Sandosh; Peyser, Patricia A.; Pisinger, Charlotta; Porteous, David J.; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rasmussen-Torvik, Laura J.; Rawal, Rajesh; Rice, Treva; Ridker, Paul M.; Rose, Lynda M.; Bien, Stephanie A.; Rudan, Igor; Sanna, Serena; Sarzynski, Mark A.; Sattar, Naveed; Savonen, Kai; Schlessinger, David; Scholtens, Salome; Schurmann, Claudia; Scott, Robert A.; Sennblad, Bengt; Siemelink, Marten A.; Silbernagel, Günther; Slagboom, P Eline; Snieder, Harold; Staessen, Jan A.; Stott, David J.; Swertz, Morris A.; Swift, Amy J.; Taylor, Kent D.; Tayo, Bamidele O.; Thorand, Barbara; Thuillier, Dorothee; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vandenput, Liesbeth; Vohl, Marie-Claude; Völzke, Henry; Vonk, Judith M.; Waeber, Gérard; Waldenberger, Melanie; Westendorp, R. G. J.; Wild, Sarah; Willemsen, Gonneke; Wolffenbuttel, Bruce H. R.; Wong, Andrew; Wright, Alan F.; Zhao, Wei; Zillikens, M Carola; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Böger, Carsten A.; Boomsma, Dorret I.; Bouchard, Claude; Bruinenberg, Marcel; Chasman, Daniel I.; Chen, Yii-DerIda; Chines, Peter S.; Cooper, Richard S.; Cucca, Francesco; Cusi, Daniele; Faire, Ulf de; Ferrucci, Luigi; Franks, Paul W.; Froguel, Philippe; Gordon-Larsen, Penny; Grabe, Hans- Jörgen; Gudnason, Vilmundur; Haiman, Christopher A.; Hayward, Caroline; Hveem, Kristian; Johnson, Andrew D.; Wouter Jukema, J; Kardia, Sharon L. R.; Kivimaki, Mika; Kooner, Jaspal S.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Marchand, Loic Le; März, Winfried; McCarthy, Mark I.; Metspalu, Andres; Morris, Andrew P.; Ohlsson, Claes; Palmer, Lyle J.; Pasterkamp, Gerard; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Smith, Blair H.; Sørensen, Thorkild I. A.; Strauch, Konstantin; Tiemeier, Henning; Tremoli, Elena; van der Harst, Pim; Vestergaard, Henrik; Vollenweider, Peter; Wareham, Nicholas J.; Weir, David R.; Whitfield, John B.; Wilson, James F.; Tyrrell, Jessica; Frayling, Timothy M.; Barroso, Inês; Boehnke, Michael; Deloukas, Panagiotis; Fox, Caroline S.; Hirschhorn, Joel N.; Hunter, David J.; Spector, Tim D.; Strachan, David P.; van Duijn, Cornelia M.; Heid, Iris M.; Mohlke, Karen L.; Marchini, Jonathan; Loos, Ruth J. F.; Kilpeläinen, Tuomas O.; Liu, Ching-Ti; Borecki, Ingrid B.; North, Kari E.; Cupples, L Adrienne
2017-01-01
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution. PMID:28443625
Berndt, Sonja I.; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F.; Justice, Anne E.; Monda, Keri L.; Croteau-Chonka, Damien C.; Day, Felix R.; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U.; Luan, Jian’an; Randall, Joshua C.; Vedantam, Sailaja; Willer, Cristen J.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L.; Neale, Benjamin M.; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L.; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E.; König, Inke R.; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L.; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S.; Nolte, Ilja M.; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J.; Preuss, Michael; Rose, Lynda M.; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J.; Surakka, Ida; Teumer, Alexander; Trip, Mieke D.; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Waite, Lindsay L.; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W.; Atalay, Mustafa; Attwood, Antony P.; Balmforth, Anthony J.; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L.; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Connell, John M.; Cookson, William; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M.; Farrall, Martin; Ferrario, Marco M.; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V.; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S.; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L.; Heath, Andrew C.; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B.; Hunt, Sarah E.; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B.; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimaki, Mika; Koenig, Wolfgang; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H.; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A.; Magnusson, Patrik K.; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E.; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W.; Mooser, Vincent; Mühleisen, Thomas W.; Munroe, Patricia B.; Musk, Arthur W.; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A.; Ong, Ken K.; Oostra, Ben A.; Palmer, Colin N.A.; Palotie, Aarno; Peden, John F.; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P.; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E.; Sambrook, Jennifer G.; Sanders, Alan R.; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C.; Stirrups, Kathleen; Stolk, Ronald P.; Stumvoll, Michael; Swift, Amy J.; Theodoraki, Eirini V.; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M.; van Meurs, Joyce B.J.; Vermeulen, Sita H.; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Witteman, Jacqueline C.M.; Wolffenbuttel, Bruce H.R.; Wong, Andrew; Wright, Alan F.; Zillikens, M. Carola; Amouyel, Philippe; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Cupples, L. Adrienne; Cusi, Daniele; Dedoussis, George V.; Erdmann, Jeanette; Eriksson, Johan G.; Franks, Paul W.; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F.; Martin, Nicholas G.; Metspalu, Andres; Morris, Andrew D.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Ouwehand, Willem H.; Palmer, Lyle J.; Penninx, Brenda; Power, Chris; Province, Michael A.; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M.; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J.; Snieder, Harold; Sørensen, Thorkild I.A.; Spector, Timothy D.; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunian, Talin; Heid, Iris M.; Hunter, David; Kaplan, Robert C.; Karpe, Fredrik; Moffatt, Miriam; Mohlke, Karen L.; O’Connell, Jeffrey R.; Pawitan, Yudi; Schadt, Eric E.; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Visscher, Peter M.; Di Blasio, Anna Maria; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Morris, Andrew P.; Meyre, David; Scherag, André; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Loos, Ruth J.F.; Ingelsson, Erik
2014-01-01
Approaches exploiting extremes of the trait distribution may reveal novel loci for common traits, but it is unknown whether such loci are generalizable to the general population. In a genome-wide search for loci associated with upper vs. lower 5th percentiles of body mass index, height and waist-hip ratio, as well as clinical classes of obesity including up to 263,407 European individuals, we identified four new loci (IGFBP4, H6PD, RSRC1, PPP2R2A) influencing height detected in the tails and seven new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) for clinical classes of obesity. Further, we show that there is large overlap in terms of genetic structure and distribution of variants between traits based on extremes and the general population and little etiologic heterogeneity between obesity subgroups. PMID:23563607
E-Index for Differentiating Complex Dynamic Traits
Qi, Jiandong; Sun, Jianfeng; Wang, Jianxin
2016-01-01
While it is a daunting challenge in current biology to understand how the underlying network of genes regulates complex dynamic traits, functional mapping, a tool for mapping quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs), has been applied in a variety of cases to tackle this challenge. Though useful and powerful, functional mapping performs well only when one or more model parameters are clearly responsible for the developmental trajectory, typically being a logistic curve. Moreover, it does not work when the curves are more complex than that, especially when they are not monotonic. To overcome this inadaptability, we therefore propose a mathematical-biological concept and measurement, E-index (earliness-index), which cumulatively measures the earliness degree to which a variable (or a dynamic trait) increases or decreases its value. Theoretical proofs and simulation studies show that E-index is more general than functional mapping and can be applied to any complex dynamic traits, including those with logistic curves and those with nonmonotonic curves. Meanwhile, E-index vector is proposed as well to capture more subtle differences of developmental patterns. PMID:27064292
Randall, Joshua C; Winkler, Thomas W; Kutalik, Zoltán; Berndt, Sonja I; Jackson, Anne U; Monda, Keri L; Kilpeläinen, Tuomas O; Esko, Tõnu; Mägi, Reedik; Li, Shengxu; Workalemahu, Tsegaselassie; Feitosa, Mary F; Croteau-Chonka, Damien C; Day, Felix R; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Locke, Adam E; Mathieson, Iain; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R; Liang, Liming; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Dermitzakis, Emmanouil T; Dimas, Antigone S; Karpe, Fredrik; Min, Josine L; Nicholson, George; Clegg, Deborah J; Person, Thomas; Krohn, Jon P; Bauer, Sabrina; Buechler, Christa; Eisinger, Kristina; Bonnefond, Amélie; Froguel, Philippe; Hottenga, Jouke-Jan; Prokopenko, Inga; Waite, Lindsay L; Harris, Tamara B; Smith, Albert Vernon; Shuldiner, Alan R; McArdle, Wendy L; Caulfield, Mark J; Munroe, Patricia B; Grönberg, Henrik; Chen, Yii-Der Ida; Li, Guo; Beckmann, Jacques S; Johnson, Toby; Thorsteinsdottir, Unnur; Teder-Laving, Maris; Khaw, Kay-Tee; Wareham, Nicholas J; Zhao, Jing Hua; Amin, Najaf; Oostra, Ben A; Kraja, Aldi T; Province, Michael A; Cupples, L Adrienne; Heard-Costa, Nancy L; Kaprio, Jaakko; Ripatti, Samuli; Surakka, Ida; Collins, Francis S; Saramies, Jouko; Tuomilehto, Jaakko; Jula, Antti; Salomaa, Veikko; Erdmann, Jeanette; Hengstenberg, Christian; Loley, Christina; Schunkert, Heribert; Lamina, Claudia; Wichmann, H Erich; Albrecht, Eva; Gieger, Christian; Hicks, Andrew A; Johansson, Asa; Pramstaller, Peter P; Kathiresan, Sekar; Speliotes, Elizabeth K; Penninx, Brenda; Hartikainen, Anna-Liisa; Jarvelin, Marjo-Riitta; Gyllensten, Ulf; Boomsma, Dorret I; Campbell, Harry; Wilson, James F; Chanock, Stephen J; Farrall, Martin; Goel, Anuj; Medina-Gomez, Carolina; Rivadeneira, Fernando; Estrada, Karol; Uitterlinden, André G; Hofman, Albert; Zillikens, M Carola; den Heijer, Martin; Kiemeney, Lambertus A; Maschio, Andrea; Hall, Per; Tyrer, Jonathan; Teumer, Alexander; Völzke, Henry; Kovacs, Peter; Tönjes, Anke; Mangino, Massimo; Spector, Tim D; Hayward, Caroline; Rudan, Igor; Hall, Alistair S; Samani, Nilesh J; Attwood, Antony Paul; Sambrook, Jennifer G; Hung, Joseph; Palmer, Lyle J; Lokki, Marja-Liisa; Sinisalo, Juha; Boucher, Gabrielle; Huikuri, Heikki; Lorentzon, Mattias; Ohlsson, Claes; Eklund, Niina; Eriksson, Johan G; Barlassina, Cristina; Rivolta, Carlo; Nolte, Ilja M; Snieder, Harold; Van der Klauw, Melanie M; Van Vliet-Ostaptchouk, Jana V; Gejman, Pablo V; Shi, Jianxin; Jacobs, Kevin B; Wang, Zhaoming; Bakker, Stephan J L; Mateo Leach, Irene; Navis, Gerjan; van der Harst, Pim; Martin, Nicholas G; Medland, Sarah E; Montgomery, Grant W; Yang, Jian; Chasman, Daniel I; Ridker, Paul M; Rose, Lynda M; Lehtimäki, Terho; Raitakari, Olli; Absher, Devin; Iribarren, Carlos; Basart, Hanneke; Hovingh, Kees G; Hyppönen, Elina; Power, Chris; Anderson, Denise; Beilby, John P; Hui, Jennie; Jolley, Jennifer; Sager, Hendrik; Bornstein, Stefan R; Schwarz, Peter E H; Kristiansson, Kati; Perola, Markus; Lindström, Jaana; Swift, Amy J; Uusitupa, Matti; Atalay, Mustafa; Lakka, Timo A; Rauramaa, Rainer; Bolton, Jennifer L; Fowkes, Gerry; Fraser, Ross M; Price, Jackie F; Fischer, Krista; Krjutå Kov, Kaarel; Metspalu, Andres; Mihailov, Evelin; Langenberg, Claudia; Luan, Jian'an; Ong, Ken K; Chines, Peter S; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Edkins, Sarah; Franks, Paul W; Hallmans, Göran; Shungin, Dmitry; Morris, Andrew David; Palmer, Colin N A; Erbel, Raimund; Moebus, Susanne; Nöthen, Markus M; Pechlivanis, Sonali; Hveem, Kristian; Narisu, Narisu; Hamsten, Anders; Humphries, Steve E; Strawbridge, Rona J; Tremoli, Elena; Grallert, Harald; Thorand, Barbara; Illig, Thomas; Koenig, Wolfgang; Müller-Nurasyid, Martina; Peters, Annette; Boehm, Bernhard O; Kleber, Marcus E; März, Winfried; Winkelmann, Bernhard R; Kuusisto, Johanna; Laakso, Markku; Arveiler, Dominique; Cesana, Giancarlo; Kuulasmaa, Kari; Virtamo, Jarmo; Yarnell, John W G; Kuh, Diana; Wong, Andrew; Lind, Lars; de Faire, Ulf; Gigante, Bruna; Magnusson, Patrik K E; Pedersen, Nancy L; Dedoussis, George; Dimitriou, Maria; Kolovou, Genovefa; Kanoni, Stavroula; Stirrups, Kathleen; Bonnycastle, Lori L; Njølstad, Inger; Wilsgaard, Tom; Ganna, Andrea; Rehnberg, Emil; Hingorani, Aroon; Kivimaki, Mika; Kumari, Meena; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunians, Talin; Hunter, David; Ingelsson, Erik; Kaplan, Robert; Mohlke, Karen L; O'Connell, Jeffrey R; Schlessinger, David; Strachan, David P; Stefansson, Kari; van Duijn, Cornelia M; Abecasis, Gonçalo R; McCarthy, Mark I; Hirschhorn, Joel N; Qi, Lu; Loos, Ruth J F; Lindgren, Cecilia M; North, Kari E; Heid, Iris M
2013-06-01
Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10(-8)), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.
Jackson, Anne U.; Monda, Keri L.; Kilpeläinen, Tuomas O.; Esko, Tõnu; Mägi, Reedik; Li, Shengxu; Workalemahu, Tsegaselassie; Feitosa, Mary F.; Croteau-Chonka, Damien C.; Day, Felix R.; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Locke, Adam E.; Mathieson, Iain; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R.; Liang, Liming; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Dermitzakis, Emmanouil T.; Dimas, Antigone S.; Karpe, Fredrik; Min, Josine L.; Nicholson, George; Clegg, Deborah J.; Person, Thomas; Krohn, Jon P.; Bauer, Sabrina; Buechler, Christa; Eisinger, Kristina; Bonnefond, Amélie; Froguel, Philippe; Hottenga, Jouke-Jan; Prokopenko, Inga; Waite, Lindsay L.; Harris, Tamara B.; Smith, Albert Vernon; Shuldiner, Alan R.; McArdle, Wendy L.; Caulfield, Mark J.; Munroe, Patricia B.; Grönberg, Henrik; Chen, Yii-Der Ida; Li, Guo; Beckmann, Jacques S.; Johnson, Toby; Thorsteinsdottir, Unnur; Teder-Laving, Maris; Khaw, Kay-Tee; Wareham, Nicholas J.; Zhao, Jing Hua; Amin, Najaf; Oostra, Ben A.; Kraja, Aldi T.; Province, Michael A.; Cupples, L. Adrienne; Heard-Costa, Nancy L.; Kaprio, Jaakko; Ripatti, Samuli; Surakka, Ida; Collins, Francis S.; Saramies, Jouko; Tuomilehto, Jaakko; Jula, Antti; Salomaa, Veikko; Erdmann, Jeanette; Hengstenberg, Christian; Loley, Christina; Schunkert, Heribert; Lamina, Claudia; Wichmann, H. Erich; Albrecht, Eva; Gieger, Christian; Hicks, Andrew A.; Johansson, Åsa; Pramstaller, Peter P.; Kathiresan, Sekar; Speliotes, Elizabeth K.; Penninx, Brenda; Hartikainen, Anna-Liisa; Jarvelin, Marjo-Riitta; Gyllensten, Ulf; Boomsma, Dorret I.; Campbell, Harry; Wilson, James F.; Chanock, Stephen J.; Farrall, Martin; Goel, Anuj; Medina-Gomez, Carolina; Rivadeneira, Fernando; Estrada, Karol; Uitterlinden, André G.; Hofman, Albert; Zillikens, M. Carola; den Heijer, Martin; Kiemeney, Lambertus A.; Maschio, Andrea; Hall, Per; Tyrer, Jonathan; Teumer, Alexander; Völzke, Henry; Kovacs, Peter; Tönjes, Anke; Mangino, Massimo; Spector, Tim D.; Hayward, Caroline; Rudan, Igor; Hall, Alistair S.; Samani, Nilesh J.; Attwood, Antony Paul; Sambrook, Jennifer G.; Hung, Joseph; Palmer, Lyle J.; Lokki, Marja-Liisa; Sinisalo, Juha; Boucher, Gabrielle; Huikuri, Heikki; Lorentzon, Mattias; Ohlsson, Claes; Eklund, Niina; Eriksson, Johan G.; Barlassina, Cristina; Rivolta, Carlo; Nolte, Ilja M.; Snieder, Harold; Van der Klauw, Melanie M.; Van Vliet-Ostaptchouk, Jana V.; Gejman, Pablo V.; Shi, Jianxin; Jacobs, Kevin B.; Wang, Zhaoming; Bakker, Stephan J. L.; Mateo Leach, Irene; Navis, Gerjan; van der Harst, Pim; Martin, Nicholas G.; Medland, Sarah E.; Montgomery, Grant W.; Yang, Jian; Chasman, Daniel I.; Ridker, Paul M.; Rose, Lynda M.; Lehtimäki, Terho; Raitakari, Olli; Absher, Devin; Iribarren, Carlos; Basart, Hanneke; Hovingh, Kees G.; Hyppönen, Elina; Power, Chris; Anderson, Denise; Beilby, John P.; Hui, Jennie; Jolley, Jennifer; Sager, Hendrik; Bornstein, Stefan R.; Schwarz, Peter E. H.; Kristiansson, Kati; Perola, Markus; Lindström, Jaana; Swift, Amy J.; Uusitupa, Matti; Atalay, Mustafa; Lakka, Timo A.; Rauramaa, Rainer; Bolton, Jennifer L.; Fowkes, Gerry; Fraser, Ross M.; Price, Jackie F.; Fischer, Krista; KrjutÅ¡kov, Kaarel; Metspalu, Andres; Mihailov, Evelin; Langenberg, Claudia; Luan, Jian'an; Ong, Ken K.; Chines, Peter S.; Keinanen-Kiukaanniemi, Sirkka M.; Saaristo, Timo E.; Edkins, Sarah; Franks, Paul W.; Hallmans, Göran; Shungin, Dmitry; Morris, Andrew David; Palmer, Colin N. A.; Erbel, Raimund; Moebus, Susanne; Nöthen, Markus M.; Pechlivanis, Sonali; Hveem, Kristian; Narisu, Narisu; Hamsten, Anders; Humphries, Steve E.; Strawbridge, Rona J.; Tremoli, Elena; Grallert, Harald; Thorand, Barbara; Illig, Thomas; Koenig, Wolfgang; Müller-Nurasyid, Martina; Peters, Annette; Boehm, Bernhard O.; Kleber, Marcus E.; März, Winfried; Winkelmann, Bernhard R.; Kuusisto, Johanna; Laakso, Markku; Arveiler, Dominique; Cesana, Giancarlo; Kuulasmaa, Kari; Virtamo, Jarmo; Yarnell, John W. G.; Kuh, Diana; Wong, Andrew; Lind, Lars; de Faire, Ulf; Gigante, Bruna; Magnusson, Patrik K. E.; Pedersen, Nancy L.; Dedoussis, George; Dimitriou, Maria; Kolovou, Genovefa; Kanoni, Stavroula; Stirrups, Kathleen; Bonnycastle, Lori L.; Njølstad, Inger; Wilsgaard, Tom; Ganna, Andrea; Rehnberg, Emil; Hingorani, Aroon; Kivimaki, Mika; Kumari, Meena; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunians, Talin; Hunter, David; Ingelsson, Erik; Kaplan, Robert; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Abecasis, Gonçalo R.; McCarthy, Mark I.; Hirschhorn, Joel N.; Qi, Lu; Loos, Ruth J. F.; Lindgren, Cecilia M.; North, Kari E.; Heid, Iris M.
2013-01-01
Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10−8), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits. PMID:23754948
Xia, Charley; Amador, Carmen; Huffman, Jennifer; Trochet, Holly; Campbell, Archie; Porteous, David; Hastie, Nicholas D; Hayward, Caroline; Vitart, Veronique; Navarro, Pau; Haley, Chris S
2016-02-01
Genome-wide association studies have successfully identified thousands of loci for a range of human complex traits and diseases. The proportion of phenotypic variance explained by significant associations is, however, limited. Given the same dense SNP panels, mixed model analyses capture a greater proportion of phenotypic variance than single SNP analyses but the total is generally still less than the genetic variance estimated from pedigree studies. Combining information from pedigree relationships and SNPs, we examined 16 complex anthropometric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000 individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related individuals provides the opportunity to also estimate the genetic variance associated with pedigree as well as the effects of common family environment. Trait variation was partitioned into SNP-associated and pedigree-associated genetic variation, shared nuclear family environment, shared couple (partner) environment and shared full-sibling environment. Results demonstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and pedigree-associated genetic effects each explain around half the genetic variance. For most traits the recently-shared environment of couples is also significant, accounting for ~11% of the phenotypic variance on average. On the other hand, the environment shared largely in the past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings point to appropriate models to use in future studies as pedigree-associated genetic effects and couple environmental effects have seldom been taken into account in genotype-based analyses. Appropriate description of the trait variation could help understand causes of intra-individual variation and in the detection of contributing loci and environmental factors.
High-precision genetic mapping of behavioral traits in the diversity outbred mouse population
Logan, R W; Robledo, R F; Recla, J M; Philip, V M; Bubier, J A; Jay, J J; Harwood, C; Wilcox, T; Gatti, D M; Bult, C J; Churchill, G A; Chesler, E J
2013-01-01
Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine-mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild-derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open-field, light–dark box, tail-suspension and visual-cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety- and activity-related traits. Half of the QTLs are associated with wild-derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild-alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high-precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics PMID:23433259
New insights from monogenic diabetes for “common” type 2 diabetes
Tallapragada, Divya Sri Priyanka; Bhaskar, Seema; Chandak, Giriraj R.
2015-01-01
Boundaries between monogenic and complex genetic diseases are becoming increasingly blurred, as a result of better understanding of phenotypes and their genetic determinants. This had a large impact on the way complex disease genetics is now being investigated. Starting with conventional approaches like familial linkage, positional cloning and candidate genes strategies, the scope of complex disease genetics has grown exponentially with scientific and technological advances in recent times. Despite identification of multiple loci harboring common and rare variants associated with complex diseases, interpreting and evaluating their functional role has proven to be difficult. Information from monogenic diseases, especially related to the intermediate traits associated with complex diseases comes handy. The significant overlap between traits and phenotypes of monogenic diseases with related complex diseases provides a platform to understand the disease biology better. In this review, we would discuss about one such complex disease, type 2 diabetes, which shares marked similarity of intermediate traits with different forms of monogenic diabetes. PMID:26300908
USDA-ARS?s Scientific Manuscript database
Fruit quality traits and dayneutrality are two major foci of several strawberry breeding programs. The identification of quantitative trait loci (QTL) and molecular markers linked to these traits could improve breeding efficiency. In this work, an F1 population derived from the cross ‘Delmarvel’ × ...
Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize
Brown, Patrick J.; Upadyayula, Narasimham; Mahone, Gregory S.; Tian, Feng; Bradbury, Peter J.; Myles, Sean; Holland, James B.; Flint-Garcia, Sherry; McMullen, Michael D.; Buckler, Edward S.; Rocheford, Torbert R.
2011-01-01
We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same population. Inflorescence loci have larger effects than flowering and leaf loci, and ear effects are larger than tassel effects. Ear trait models also have lower predictive ability than tassel, flowering, or leaf trait models. Pleiotropic loci were identified that control elongation of ear and tassel, consistent with their common developmental origin. For these pleiotropic loci, the ear effects are larger than tassel effects even though the same causal polymorphisms are likely involved. This implies that the observed differences in genetic architecture are not due to distinct features of the underlying polymorphisms. Our results support the hypothesis that genetic architecture is a function of trait stability over evolutionary time, since the traits that changed most during the relatively recent domestication of maize have the largest effects. PMID:22125498
Lucas, Lauren K; Nice, Chris C; Gompert, Zachariah
2018-03-13
Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems. © 2018 John Wiley & Sons Ltd.
Genome-wide analysis identifies 12 loci influencing human reproductive behavior.
Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J; Tropf, Felix C; Shen, Xia; Wilson, James F; Chasman, Daniel I; Nolte, Ilja M; Tragante, Vinicius; van der Laan, Sander W; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J; Gieger, Christian; Gunderson, Erica P; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F; McMahon, George; Meddens, S Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A; Monnereau, Claire; van der Most, Peter J; Myhre, Ronny; Nalls, Mike A; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B; Rich-Edwards, Janet; Rietveld, Cornelius A; Robino, Antonietta; Rose, Lynda M; Rueedi, Rico; Ryan, Kathleen A; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I; Buring, Julie E; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M; de Geus, Eco J C; Eriksson, Johan G; Evans, Denis A; Faul, Jessica D; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; de Haan, Hugoline G; Haerting, Johannes; Harris, Tamara B; Heath, Andrew C; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia M; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McQuillan, Ruth; Medland, Sarah E; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M; Ring, Susan M; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D; Starr, John M; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tung, Joyce Y; Uitterlinden, André G; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G; Wang, Jie Jin; Wareham, Nicholas J; Weir, David R; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F; Zondervan, Krina T; Stefansson, Kari; Krueger, Robert F; Lee, James J; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C
2016-12-01
The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.
Rheumatoid arthritis: identifying and characterising polymorphisms using rat models
2016-01-01
ABSTRACT Rheumatoid arthritis is a chronic inflammatory joint disorder characterised by erosive inflammation of the articular cartilage and by destruction of the synovial joints. It is regulated by both genetic and environmental factors, and, currently, there is no preventative treatment or cure for this disease. Genome-wide association studies have identified ∼100 new loci associated with rheumatoid arthritis, in addition to the already known locus within the major histocompatibility complex II region. However, together, these loci account for only a modest fraction of the genetic variance associated with this disease and very little is known about the pathogenic roles of most of the risk loci identified. Here, we discuss how rat models of rheumatoid arthritis are being used to detect quantitative trait loci that regulate different arthritic traits by genetic linkage analysis and to positionally clone the underlying causative genes using congenic strains. By isolating specific loci on a fixed genetic background, congenic strains overcome the challenges of genetic heterogeneity and environmental interactions associated with human studies. Most importantly, congenic strains allow functional experimental studies be performed to investigate the pathological consequences of natural genetic polymorphisms, as illustrated by the discovery of several major disease genes that contribute to arthritis in rats. We discuss how these advances have provided new biological insights into arthritis in humans. PMID:27736747
Lovell, John T; Mullen, Jack L; Lowry, David B; Awole, Kedija; Richards, James H; Sen, Saunak; Verslues, Paul E; Juenger, Thomas E; McKay, John K
2015-04-01
Soil water availability represents one of the most important selective agents for plants in nature and the single greatest abiotic determinant of agricultural productivity, yet the genetic bases of drought acclimation responses remain poorly understood. Here, we developed a systems-genetic approach to characterize quantitative trait loci (QTLs), physiological traits and genes that affect responses to soil moisture deficit in the TSUxKAS mapping population of Arabidopsis thaliana. To determine the effects of candidate genes underlying QTLs, we analyzed gene expression as a covariate within the QTL model in an effort to mechanistically link markers, RNA expression, and the phenotype. This strategy produced ranked lists of candidate genes for several drought-associated traits, including water use efficiency, growth, abscisic acid concentration (ABA), and proline concentration. As a proof of concept, we recovered known causal loci for several QTLs. For other traits, including ABA, we identified novel loci not previously associated with drought. Furthermore, we documented natural variation at two key steps in proline metabolism and demonstrated that the mitochondrial genome differentially affects genomic QTLs to influence proline accumulation. These findings demonstrate that linking genome, transcriptome, and phenotype data holds great promise to extend the utility of genetic mapping, even when QTL effects are modest or complex. © 2015 American Society of Plant Biologists. All rights reserved.
Yap, John Stephen; Fan, Jianqing; Wu, Rongling
2009-12-01
Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.
Wang, Xinchen; Tucker, Nathan R; Rizki, Gizem; Mills, Robert; Krijger, Peter HL; de Wit, Elzo; Subramanian, Vidya; Bartell, Eric; Nguyen, Xinh-Xinh; Ye, Jiangchuan; Leyton-Mange, Jordan; Dolmatova, Elena V; van der Harst, Pim; de Laat, Wouter; Ellinor, Patrick T; Newton-Cheh, Christopher; Milan, David J; Kellis, Manolis; Boyer, Laurie A
2016-01-01
Genetic variants identified by genome-wide association studies explain only a modest proportion of heritability, suggesting that meaningful associations lie 'hidden' below current thresholds. Here, we integrate information from association studies with epigenomic maps to demonstrate that enhancers significantly overlap known loci associated with the cardiac QT interval and QRS duration. We apply functional criteria to identify loci associated with QT interval that do not meet genome-wide significance and are missed by existing studies. We demonstrate that these 'sub-threshold' signals represent novel loci, and that epigenomic maps are effective at discriminating true biological signals from noise. We experimentally validate the molecular, gene-regulatory, cellular and organismal phenotypes of these sub-threshold loci, demonstrating that most sub-threshold loci have regulatory consequences and that genetic perturbation of nearby genes causes cardiac phenotypes in mouse. Our work provides a general approach for improving the detection of novel loci associated with complex human traits. DOI: http://dx.doi.org/10.7554/eLife.10557.001 PMID:27162171
Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F; Justice, Anne E; Monda, Keri L; Croteau-Chonka, Damien C; Day, Felix R; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U; Luan, Jian'an; Randall, Joshua C; Vedantam, Sailaja; Willer, Cristen J; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L; Neale, Benjamin M; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E; König, Inke R; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S; Nolte, Ilja M; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J; Preuss, Michael; Rose, Lynda M; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J; Surakka, Ida; Teumer, Alexander; Trip, Mieke D; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Waite, Lindsay L; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W; Atalay, Mustafa; Attwood, Antony P; Balmforth, Anthony J; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Connell, John M; Cookson, William O; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M; Farrall, Martin; Ferrario, Marco M; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L; Heath, Andrew C; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B; Hunt, Sarah E; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A; Magnusson, Patrik K; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W; Mooser, Vincent; Mühleisen, Thomas W; Munroe, Patricia B; Musk, Arthur W; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A; Ong, Ken K; Oostra, Ben A; Palmer, Colin N A; Palotie, Aarno; Peden, John F; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E; Sambrook, Jennifer G; Sanders, Alan R; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C; Stirrups, Kathleen; Stolk, Ronald P; Stumvoll, Michael; Swift, Amy J; Theodoraki, Eirini V; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M; van Meurs, Joyce B J; Vermeulen, Sita H; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Winkelmann, Bernhard R; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zillikens, M Carola; Amouyel, Philippe; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Chanock, Stephen J; Cupples, L Adrienne; Cusi, Daniele; Dedoussis, George V; Erdmann, Jeanette; Eriksson, Johan G; Franks, Paul W; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F; Martin, Nicholas G; Metspalu, Andres; Morris, Andrew D; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Ouwehand, Willem H; Palmer, Lyle J; Penninx, Brenda; Power, Chris; Province, Michael A; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J; Snieder, Harold; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunian, Talin; Heid, Iris M; Hunter, David; Kaplan, Robert C; Karpe, Fredrik; Moffatt, Miriam F; Mohlke, Karen L; O'Connell, Jeffrey R; Pawitan, Yudi; Schadt, Eric E; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Visscher, Peter M; Di Blasio, Anna Maria; Hirschhorn, Joel N; Lindgren, Cecilia M; Morris, Andrew P; Meyre, David; Scherag, André; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Loos, Ruth J F; Ingelsson, Erik
2013-05-01
Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
Yeo, Seungeun; Hodgkinson, Colin A; Zhou, Zhifeng; Jung, Jeesun; Leung, Ming; Yuan, Qiaoping; Goldman, David
2016-08-11
Genome-wide surveys have detected cis-acting quantitative trait loci altering levels of RNA transcripts (RNA-eQTLs) by associating SNV alleles to transcript levels. However, the sensitivity and specificity of detection of cis- expression quantitative trait loci (eQTLs) by genetic approaches, reliant as it is on measurements of transcript levels in recombinant inbred strains or offspring from arranged crosses, is unknown, as is their relationship to QTL's for complex phenotypes. We used transcriptome-wide differential allele expression (DAE) to detect cis-eQTLs in forebrain and kidney from reciprocal crosses between three mouse inbred strains, 129S1/SvlmJ, DBA/2J, and CAST/EiJ and C57BL/6 J. Two of these crosses were previously characterized for cis-eQTLs and QTLs for various complex phenotypes by genetic analysis of recombinant inbred (RI) strains. 5.4 %, 1.9 % and 1.5 % of genes assayed in forebrain of B6/129SF1, B6/DBAF1, and B6/CASTF1 mice, respectively, showed differential allelic expression, indicative of cis-acting alleles at these genes. Moreover, the majority of DAE QTLs were observed to be tissue-specific with only a small fraction showing cis-effects in both tissues. Comparing DAE QTLs in F1 mice to cis-eQTLs previously mapped in RI strains we observed that many of the cis-eQTLs were not confirmed by DAE. Additionally several novel DAE-QTLs not identified as cis-eQTLs were identified suggesting that there are differences in sensitivity and specificity for QTL detection between the two methodologies. Strain specific DAE QTLs in B6/DBAF1 mice were located in excess at candidate genes for alcohol use disorders, seizures, and angiogenesis previously implicated by genetic linkage in C57BL/6J × DBA/2JF2 mice or BXD RI strains. Via a survey for differential allele expression in F1 mice, a substantial proportion of genes were found to have alleles altering expression in cis-acting fashion. Comparing forebrain and kidney, many or most of these alleles were tissue-specific in action. The identification of strain specific DAE QTLs, can assist in assessment of candidate genes located within the large intervals associated with trait QTLs.
Exploiting induced variation to dissect quantitative traits in barley.
Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie
2010-04-01
The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.
Mapping complex traits as a dynamic system
Sun, Lidan; Wu, Rongling
2017-01-01
Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a “system” in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states. PMID:25772476
Dhariwal, Raman; Fedak, George; Dion, Yves; Pozniak, Curtis; Laroche, André; Eudes, François; Randhawa, Harpinder Singh
2018-01-01
Triticale (xTriticosecale Wittmack) is an important feed crop which suffers severe yield, grade and end-use quality losses due to Fusarium head blight (FHB). Development of resistant triticale cultivars is hindered by lack of effective genetic resistance sources. To dissect FHB resistance, a doubled haploid spring triticale population produced from the cross TMP16315/AC Ultima using a microspore culture method, was phenotyped for FHB incidence, severity, visual rating index (VRI), deoxynivalenol (DON) and some associated traits (ergot, grain protein content, test weight, yield, plant height and lodging) followed by single nucleotide polymorphism (SNP) genotyping. A high-density map consisting of 5274 SNPs, mapped on all 21 chromosomes with a map density of 0.48 cM/SNP, was constructed. Together, 17 major quantitative trait loci were identified for FHB on chromosomes 1A, 2B, 3A, 4A, 4R, 5A, 5R and 6B; two of incidence loci (on 2B and 5R) also co-located with loci for severity and VRI, and two other loci of VRI (on 1A and 4R) with DON accumulation. Major and minor loci were also identified for all other traits in addition to many epistasis loci. This study provides new insight into the genetic basis of FHB resistance and their association with other traits in triticale. PMID:29304028
Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia
2012-01-01
Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302
Smith, Andrew J P; Deloukas, Panos; Munroe, Patricia B
2018-04-13
Over the last decade, genome-wide association studies (GWAS) have propelled the discovery of thousands of loci associated with complex diseases. The focus is now turning towards the function of these association signals, determining the causal variant(s) amongst those in strong linkage disequilibrium, and identifying their underlying mechanisms, such as long-range gene regulation. Genome-editing techniques utilising zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs) and clustered regularly-interspaced short palindromic repeats with Cas9 nuclease (CRISPR-Cas9), are becoming the tools of choice to establish functionality for these variants, due to the ability to assess effects of single variants in vivo. This review will discuss examples of how these technologies have begun to aid functional analysis of GWAS loci for complex traits such as cardiovascular disease, type 2 diabetes, cancer, obesity and autoimmune disease. We focus on analysis of variants occurring within non-coding genomic regions, as these comprise the majority of GWAS variants, providing the greatest challenges to determining functionality, and compare editing strategies that provide different levels of evidence for variant functionality. The review describes molecular insights into some of these potentially causal variants, and how these may relate to the pathology of the trait, and look towards future directions for these technologies in post-GWAS analysis, such as base-editing.
Digital Quantification of Human Eye Color Highlights Genetic Association of Three New Loci
Liu, Fan; Wollstein, Andreas; Hysi, Pirro G.; Ankra-Badu, Georgina A.; Spector, Timothy D.; Park, Daniel; Zhu, Gu; Larsson, Mats; Duffy, David L.; Montgomery, Grant W.; Mackey, David A.; Walsh, Susan; Lao, Oscar; Hofman, Albert; Rivadeneira, Fernando; Vingerling, Johannes R.; Uitterlinden, André G.; Martin, Nicholas G.; Hammond, Christopher J.; Kayser, Manfred
2010-01-01
Previous studies have successfully identified genetic variants in several genes associated with human iris (eye) color; however, they all used simplified categorical trait information. Here, we quantified continuous eye color variation into hue and saturation values using high-resolution digital full-eye photographs and conducted a genome-wide association study on 5,951 Dutch Europeans from the Rotterdam Study. Three new regions, 1q42.3, 17q25.3, and 21q22.13, were highlighted meeting the criterion for genome-wide statistically significant association. The latter two loci were replicated in 2,261 individuals from the UK and in 1,282 from Australia. The LYST gene at 1q42.3 and the DSCR9 gene at 21q22.13 serve as promising functional candidates. A model for predicting quantitative eye colors explained over 50% of trait variance in the Rotterdam Study. Over all our data exemplify that fine phenotyping is a useful strategy for finding genes involved in human complex traits. PMID:20463881
Identification of female-specific QTLs affecting an emotionality-related behavior in rats.
Ramos, A; Moisan, M P; Chaouloff, F; Mormède, C; Mormède, P
1999-09-01
The influence of genetic factors on psychological traits and disorders has been repeatedly demonstrated; however, the molecular mechanisms underlying such an influence remain largely unknown. Anxiety-related disorders constitute the most common class of mental disorder in humans, with women being diagnosed far more frequently than men. A better understanding of the genetic and gender-related mechanisms mediating anxiety traits should enable the development of more rational methods for preventing and treating anxiety disorders. In this study we have aimed to identify, for the first time, quantitative trait loci (QTL) influencing anxiety/emotionality-related traits in rats. To this end, two strains-Lewis (LEW) and Spontaneously Hypertensive Rats (SHR)-that differ for several behavioral measures of anxiety/emotionality were intercrossed. A QTL analysis of the F2 population revealed suggestive loci for various traits, including behaviors in the elevated plus-maze and blood pressure. In addition, one major QTL explaining 50.4% of the total variance (LOD = 7.22) was identified on chromosome 4 for the locomotion in the central and aversive area of the open field. Two other relevant QTLs have been recently mapped near this chromosomic region in the rat, which also harbors Tac1r, the gene encoding for the substance P receptor. Our major QTL affected females but not males and its effect depended on the type of cross (LEW or SHR grandmothers). The present results reveal a complex genetic basis underlying emotional behaviors and they confirm the existence of interactions between genetic factors and sex for this kind of trait. Further investigation of the loci identified herein may give clues to the pathophysiology of psychiatric disorders such as anxiety-related ones.
Macé, Aurélien; Tuke, Marcus A; Deelen, Patrick; Kristiansson, Kati; Mattsson, Hannele; Nõukas, Margit; Sapkota, Yadav; Schick, Ursula; Porcu, Eleonora; Rüeger, Sina; McDaid, Aaron F; Porteous, David; Winkler, Thomas W; Salvi, Erika; Shrine, Nick; Liu, Xueping; Ang, Wei Q; Zhang, Weihua; Feitosa, Mary F; Venturini, Cristina; van der Most, Peter J; Rosengren, Anders; Wood, Andrew R; Beaumont, Robin N; Jones, Samuel E; Ruth, Katherine S; Yaghootkar, Hanieh; Tyrrell, Jessica; Havulinna, Aki S; Boers, Harmen; Mägi, Reedik; Kriebel, Jennifer; Müller-Nurasyid, Martina; Perola, Markus; Nieminen, Markku; Lokki, Marja-Liisa; Kähönen, Mika; Viikari, Jorma S; Geller, Frank; Lahti, Jari; Palotie, Aarno; Koponen, Päivikki; Lundqvist, Annamari; Rissanen, Harri; Bottinger, Erwin P; Afaq, Saima; Wojczynski, Mary K; Lenzini, Petra; Nolte, Ilja M; Sparsø, Thomas; Schupf, Nicole; Christensen, Kaare; Perls, Thomas T; Newman, Anne B; Werge, Thomas; Snieder, Harold; Spector, Timothy D; Chambers, John C; Koskinen, Seppo; Melbye, Mads; Raitakari, Olli T; Lehtimäki, Terho; Tobin, Martin D; Wain, Louise V; Sinisalo, Juha; Peters, Annette; Meitinger, Thomas; Martin, Nicholas G; Wray, Naomi R; Montgomery, Grant W; Medland, Sarah E; Swertz, Morris A; Vartiainen, Erkki; Borodulin, Katja; Männistö, Satu; Murray, Anna; Bochud, Murielle; Jacquemont, Sébastien; Rivadeneira, Fernando; Hansen, Thomas F; Oldehinkel, Albertine J; Mangino, Massimo; Province, Michael A; Deloukas, Panos; Kooner, Jaspal S; Freathy, Rachel M; Pennell, Craig; Feenstra, Bjarke; Strachan, David P; Lettre, Guillaume; Hirschhorn, Joel; Cusi, Daniele; Heid, Iris M; Hayward, Caroline; Männik, Katrin; Beckmann, Jacques S; Loos, Ruth J F; Nyholt, Dale R; Metspalu, Andres; Eriksson, Johan G; Weedon, Michael N; Salomaa, Veikko; Franke, Lude; Reymond, Alexandre; Frayling, Timothy M; Kutalik, Zoltán
2017-09-29
There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01-0.2%), with large effects on height (>2.4 cm), weight (>5 kg), and body mass index (BMI) (>3.5 kg/m 2 ). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m 2 for each Mb of total deletion burden (P = 2.5 × 10 -10 , 6.0 × 10 -5 , and 2.9 × 10 -3 ). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders.Individual SNPs have small effects on anthropometric traits, yet the impact of CNVs has remained largely unknown. Here, Kutalik and co-workers perform a large-scale genome-wide meta-analysis of structural variation and find rare CNVs associated with height, weight and BMI with large effect sizes.
Byrne, P F; McMullen, M D; Snook, M E; Musket, T A; Theuri, J M; Widstrom, N W; Wiseman, B R; Coe, E H
1996-01-01
Interpretation of quantitative trait locus (QTL) studies of agronomic traits is limited by lack of knowledge of biochemical pathways leading to trait expression. To more fully elucidate the biological significance of detected QTL, we chose a trait that is the product of a well-characterized pathway, namely the concentration of maysin, a C-glycosyl flavone, in silks of maize, Zea mays L. Maysin is a host-plant resistance factor against the corn earworm, Helicoverpa zea (Boddie). We determined silk maysin concentrations and restriction fragment length polymorphism genotypes at flavonoid pathway loci or linked markers for 285 F2 plants derived from the cross of lines GT114 and GT119. Single-factor analysis of variance indicated that the p1 region on chromosome 1 accounted for 58.0% of the phenotypic variance and showed additive gene action. The p1 locus is a transcription activator for portions of the flavonoid pathway. A second QTL, represented by marker umc 105a near the brown pericarp1 locus on chromosome 9, accounted for 10.8% of the variance. Gene action of this region was dominant for low maysin, but was only expressed in the presence of a functional p1 allele. The model explaining the greatest proportion of phenotypic variance (75.9%) included p1, umc105a, umc166b (chromosome 1), r1 (chromosome 10), and two epistatic interaction terms, p1 x umc105a and p1 x r1. Our results provide evidence that regulatory loci have a central role and that there is a complex interplay among different branches of the flavonoid pathway in the expression of this trait. PMID:11607699
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segrè, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Mägi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Åsa; Zillikens, M.Carola; Feitosa, Mary F.; Esko, Tõnu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Glazer, Nicole L.; Hayward, Caroline; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Knowles, Joshua W.; Kutalik, Zoltán; Monda, Keri L.; Polasek, Ozren; Preuss, Michael; Rayner, Nigel W.; Robertson, Neil R.; Steinthorsdottir, Valgerdur; Tyrer, Jonathan P.; Voight, Benjamin F.; Wiklund, Fredrik; Xu, Jianfeng; Zhao, Jing Hua; Nyholt, Dale R.; Pellikka, Niina; Perola, Markus; Perry, John R.B.; Surakka, Ida; Tammesoo, Mari-Liis; Altmaier, Elizabeth L.; Amin, Najaf; Aspelund, Thor; Bhangale, Tushar; Boucher, Gabrielle; Chasman, Daniel I.; Chen, Constance; Coin, Lachlan; Cooper, Matthew N.; Dixon, Anna L.; Gibson, Quince; Grundberg, Elin; Hao, Ke; Junttila, M. Juhani; Kaplan, Lee M.; Kettunen, Johannes; König, Inke R.; Kwan, Tony; Lawrence, Robert W.; Levinson, Douglas F.; Lorentzon, Mattias; McKnight, Barbara; Morris, Andrew P.; Müller, Martina; Ngwa, Julius Suh; Purcell, Shaun; Rafelt, Suzanne; Salem, Rany M.; Salvi, Erika; Sanna, Serena; Shi, Jianxin; Sovio, Ulla; Thompson, John R.; Turchin, Michael C.; Vandenput, Liesbeth; Verlaan, Dominique J.; Vitart, Veronique; White, Charles C.; Ziegler, Andreas; Almgren, Peter; Balmforth, Anthony J.; Campbell, Harry; Citterio, Lorena; De Grandi, Alessandro; Dominiczak, Anna; Duan, Jubao; Elliott, Paul; Elosua, Roberto; Eriksson, Johan G.; Freimer, Nelson B.; Geus, Eco J.C.; Glorioso, Nicola; Haiqing, Shen; Hartikainen, Anna-Liisa; Havulinna, Aki S.; Hicks, Andrew A.; Hui, Jennie; Igl, Wilmar; Illig, Thomas; Jula, Antti; Kajantie, Eero; Kilpeläinen, Tuomas O.; Koiranen, Markku; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Laitinen, Jaana; Liu, Jianjun; Lokki, Marja-Liisa; Marusic, Ana; Maschio, Andrea; Meitinger, Thomas; Mulas, Antonella; Paré, Guillaume; Parker, Alex N.; Peden, John F.; Petersmann, Astrid; Pichler, Irene; Pietiläinen, Kirsi H.; Pouta, Anneli; Ridderstråle, Martin; Rotter, Jerome I.; Sambrook, Jennifer G.; Sanders, Alan R.; Schmidt, Carsten Oliver; Sinisalo, Juha; Smit, Jan H.; Stringham, Heather M.; Walters, G.Bragi; Widen, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Zagato, Laura; Zgaga, Lina; Zitting, Paavo; Alavere, Helene; Farrall, Martin; McArdle, Wendy L.; Nelis, Mari; Peters, Marjolein J.; Ripatti, Samuli; van Meurs, Joyce B.J.; Aben, Katja K.; Ardlie, Kristin G; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Collins, Francis S.; Cusi, Daniele; den Heijer, Martin; Eiriksdottir, Gudny; Gejman, Pablo V.; Hall, Alistair S.; Hamsten, Anders; Huikuri, Heikki V.; Iribarren, Carlos; Kähönen, Mika; Kaprio, Jaakko; Kathiresan, Sekar; Kiemeney, Lambertus; Kocher, Thomas; Launer, Lenore J.; Lehtimäki, Terho; Melander, Olle; Mosley, Tom H.; Musk, Arthur W.; Nieminen, Markku S.; O'Donnell, Christopher J.; Ohlsson, Claes; Oostra, Ben; Palmer, Lyle J.; Raitakari, Olli; Ridker, Paul M.; Rioux, John D.; Rissanen, Aila; Rivolta, Carlo; Schunkert, Heribert; Shuldiner, Alan R.; Siscovick, David S.; Stumvoll, Michael; Tönjes, Anke; Tuomilehto, Jaakko; van Ommen, Gert-Jan; Viikari, Jorma; Heath, Andrew C.; Martin, Nicholas G.; Montgomery, Grant W.; Province, Michael A.; Kayser, Manfred; Arnold, Alice M.; Atwood, Larry D.; Boerwinkle, Eric; Chanock, Stephen J.; Deloukas, Panos; Gieger, Christian; Grönberg, Henrik; Hall, Per; Hattersley, Andrew T.; Hengstenberg, Christian; Hoffman, Wolfgang; Lathrop, G.Mark; Salomaa, Veikko; Schreiber, Stefan; Uda, Manuela; Waterworth, Dawn; Wright, Alan F.; Assimes, Themistocles L.; Barroso, Inês; Hofman, Albert; Mohlke, Karen L.; Boomsma, Dorret I.; Caulfield, Mark J.; Cupples, L.Adrienne; Erdmann, Jeanette; Fox, Caroline S.; Gudnason, Vilmundur; Gyllensten, Ulf; Harris, Tamara B.; Hayes, Richard B.; Jarvelin, Marjo-Riitta; Mooser, Vincent; Munroe, Patricia B.; Ouwehand, Willem H.; Penninx, Brenda W.; Pramstaller, Peter P.; Quertermous, Thomas; Rudan, Igor; Samani, Nilesh J.; Spector, Timothy D.; Völzke, Henry; Watkins, Hugh; Wilson, James F.; Groop, Leif C.; Haritunians, Talin; Hu, Frank B.; Kaplan, Robert C.; Metspalu, Andres; North, Kari E.; Schlessinger, David; Wareham, Nicholas J.; Hunter, David J.; O'Connell, Jeffrey R.; Strachan, David P.; Wichmann, H.-Erich; Borecki, Ingrid B.; van Duijn, Cornelia M.; Schadt, Eric E.; Thorsteinsdottir, Unnur; Peltonen, Leena; Uitterlinden, André; Visscher, Peter M.; Chatterjee, Nilanjan; Loos, Ruth J.F.; Boehnke, Michael; McCarthy, Mark I.; Ingelsson, Erik; Lindgren, Cecilia M.; Abecasis, Gonçalo R.; Stefansson, Kari; Frayling, Timothy M.; Hirschhorn, Joel N
2010-01-01
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence phenotype. Genome-wide association (GWA) studies have identified >600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the utility of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P=0.016), and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants, and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented amongst variants that alter amino acid structure of proteins and expression levels of nearby genes. Our data explain ∼10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to ∼16% of phenotypic variation (∼20% of heritable variation). Although additional approaches are needed to fully dissect the genetic architecture of polygenic human traits, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways. PMID:20881960
Genome-wide analysis identifies 12 loci influencing human reproductive behavior
Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.
2017-01-01
The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette
As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We havemore » applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. Furthermore, a more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.« less
Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; ...
2017-01-17
As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We havemore » applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. Furthermore, a more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.« less
Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; Fierro, Ana C; Mansfield, Shawn D; Davis, Mark F; Gjersing, Erica; Tuskan, Gerald A; Van Montagu, Marc; Van de Peer, Yves; Marchal, Kathleen; Myburg, Alexander A
2017-01-31
As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We have applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. A more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahani, Poupak; Chiu, Sally; Bowlus, Christopher L.
Obesity is a complex disease. To date, over 100 chromosomal loci for body weight, body fat, regional white adipose tissue weight, and other obesity-related traits have been identified in humans and in animal models. For most loci, the underlying genes are not yet identified; some of these chromosomal loci will be alleles of known obesity genes, whereas many will represent alleles of unknown genes. Microarray analysis allows simultaneous multiple gene and pathway discovery. cDNA and oligonucleotide arrays are commonly used to identify differentially expressed genes by surveys of large numbers of known and unnamed genes. Two papers previously identified genesmore » differentially expressed in adipose tissue of mouse models of obesity and diabetes by analysis of hybridization to Affymetrix oligonucleotide chips.« less
Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung
2007-01-01
Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene x gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene x gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.
Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung
2007-01-01
Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms. PMID:18466570
Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits.
Wu, Yang; Zeng, Jian; Zhang, Futao; Zhu, Zhihong; Qi, Ting; Zheng, Zhili; Lloyd-Jones, Luke R; Marioni, Riccardo E; Martin, Nicholas G; Montgomery, Grant W; Deary, Ian J; Wray, Naomi R; Visscher, Peter M; McRae, Allan F; Yang, Jian
2018-03-02
The identification of genes and regulatory elements underlying the associations discovered by GWAS is essential to understanding the aetiology of complex traits (including diseases). Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at GWAS loci for follow-up functional studies. We perform an integrative analysis that uses summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites associated with gene expression and phenotype through shared genetic effects (i.e., pleiotropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes. These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped to distal genes. Further pleiotropic association analyses, which link both the methylome and transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by genetic regulation of transcription through DNAm.
Davis, G L; McMullen, M D; Baysdorfer, C; Musket, T; Grant, D; Staebell, M; Xu, G; Polacco, M; Koster, L; Melia-Hancock, S; Houchins, K; Chao, S; Coe, E H
1999-01-01
We have constructed a 1736-locus maize genome map containing1156 loci probed by cDNAs, 545 probed by random genomic clones, 16 by simple sequence repeats (SSRs), 14 by isozymes, and 5 by anonymous clones. Sequence information is available for 56% of the loci with 66% of the sequenced loci assigned functions. A total of 596 new ESTs were mapped from a B73 library of 5-wk-old shoots. The map contains 237 loci probed by barley, oat, wheat, rice, or tripsacum clones, which serve as grass genome reference points in comparisons between maize and other grass maps. Ninety core markers selected for low copy number, high polymorphism, and even spacing along the chromosome delineate the 100 bins on the map. The average bin size is 17 cM. Use of bin assignments enables comparison among different maize mapping populations and experiments including those involving cytogenetic stocks, mutants, or quantitative trait loci. Integration of nonmaize markers in the map extends the resources available for gene discovery beyond the boundaries of maize mapping information into the expanse of map, sequence, and phenotype information from other grass species. This map provides a foundation for numerous basic and applied investigations including studies of gene organization, gene and genome evolution, targeted cloning, and dissection of complex traits. PMID:10388831
Zheng, Xianhu; Kuang, Youyi; Lv, Weihua; Cao, Dingchen; Sun, Zhipeng; Sun, Xiaowen
2016-01-01
Muscle fat content is an important phenotypic trait in fish, as it affects the nutritional, technical and sensory qualities of flesh. To identify loci and candidate genes associated with muscle fat content and abdominal fat traits, we performed a genome-wide association study (GWAS) using the common carp 250 K SNP assay in a common carp F2 resource population. A total of 18 loci surpassing the genome-wide suggestive significance level were detected for 4 traits: fat content in dorsal muscle (MFdo), fat content in abdominal muscle (MFab), abdominal fat weight (AbFW), and AbFW as a percentage of eviscerated weight (AbFP). Among them, one SNP (carp089419) affecting both AbFW and AbFP reached the genome-wide significance level. Ten of those loci were harbored in or near known genes. Furthermore, relative expressions of 5 genes related to MFdo were compared using dorsal muscle samples with high and low phenotypic values. The results showed that 4 genes were differentially expressed between the high and low phenotypic groups. These genes are, therefore, prospective candidate genes for muscle fat content: ankyrin repeat domain 10a (ankrd10a), tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 (tanc2), and four jointed box 1 (fjx1) and choline kinase alpha (chka). These results offer valuable insights into the complex genetic basis of fat metabolism and deposition. PMID:28030623
Architecture of energy balance traits in emerging lines of the Collaborative Cross
Aylor, David L.; Miller, Darla R.; Churchill, Gary A.; Chesler, Elissa J.; de Villena, Fernando Pardo-Manuel; Threadgill, David W.; Pomp, Daniel
2011-01-01
The potential utility of the Collaborative Cross (CC) mouse resource was evaluated to better understand complex traits related to energy balance. A primary focus was to examine if genetic diversity in emerging CC lines (pre-CC) would translate into equivalent phenotypic diversity. Second, we mapped quantitative trait loci (QTL) for 15 metabolism- and exercise-related phenotypes in this population. We evaluated metabolic and voluntary exercise traits in 176 pre-CC lines, revealing phenotypic variation often exceeding that seen across the eight founder strains from which the pre-CC was derived. Many phenotypic correlations existing within the founder strains were no longer significant in the pre-CC population, potentially representing reduced linkage disequilibrium (LD) of regions harboring multiple genes with effects on energy balance or disruption of genetic structure of extant inbred strains with substantial shared ancestry. QTL mapping revealed five significant and eight suggestive QTL for body weight (Chr 4, 7.54 Mb; CI 3.32–10.34 Mb; Bwq14), body composition, wheel running (Chr 16, 33.2 Mb; CI 32.5–38.3 Mb), body weight change in response to exercise (1: Chr 6, 77.7Mb; CI 72.2–83.4 Mb and 2: Chr 6, 42.8 Mb; CI 39.4–48.1 Mb), and food intake during exercise (Chr 12, 85.1 Mb; CI 82.9–89.0 Mb). Some QTL overlapped with previously mapped QTL for similar traits, whereas other QTL appear to represent novel loci. These results suggest that the CC will be a powerful, high-precision tool for examining the genetic architecture of complex traits such as those involved in regulation of energy balance. PMID:21427413
Cao, Zhe; Guo, Yufang; Yang, Qian; He, Yanhong; Fetouh, Mohammed; Warner, Ryan M; Deng, Zhanao
2018-05-15
A major bottleneck in plant breeding has been the much limited genetic base and much reduced genetic diversity in domesticated, cultivated germplasm. Identification and utilization of favorable gene loci or alleles from wild or progenitor species can serve as an effective approach to increasing genetic diversity and breaking this bottleneck in plant breeding. This study was conducted to identify quantitative trait loci (QTL) in wild or progenitor petunia species that can be used to improve important horticultural traits in garden petunia. An F 7 recombinant inbred population derived between Petunia axillaris and P. exserta was phenotyped for plant height, plant spread, plant size, flower counts, flower diameter, flower length, and days to anthesis, in Florida in two consecutive years. Transgressive segregation was observed for all seven traits in both years. The broad-sense heritability estimates for the traits ranged from 0.20 (days to anthesis) to 0.62 (flower length). A genome-wide genetic linkage map consisting 368 single nucleotide polymorphism bins and extending over 277 cM was searched to identify QTL for these traits. Nineteen QTL were identified and localized to five linkage groups. Eleven of the loci were identified consistently in both years; several loci explained up to 34.0% and 24.1% of the phenotypic variance for flower length and flower diameter, respectively. Multiple loci controlling different traits are co-localized in four intervals in four linkage groups. These intervals contain desirable alleles that can be introgressed into commercial petunia germplasm to expand the genetic base and improve plant performance and flower characteristics in petunia. Copyright © 2018, G3: Genes, Genomes, Genetics.
Andriantahina, Farafidy; Liu, Xiaolin; Huang, Hao
2013-01-01
Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL) have been regarded as useful for marker-assisted selection (MAS) in complex traits as growth. Using an intermediate F2 cross of slow and fast growth parents, a genetic linkage map of Pacific whiteleg shrimp, Litopenaeusvannamei , based on amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers was constructed. Meanwhile, QTL analysis was performed for growth-related traits. The linkage map consisted of 451 marker loci (429 AFLPs and 22 SSRs) which formed 49 linkage groups with an average marker space of 7.6 cM; they spanned a total length of 3627.6 cM, covering 79.50% of estimated genome size. 14 QTLs were identified for growth-related traits, including three QTLs for body weight (BW), total length (TL) and partial carapace length (PCL), two QTLs for body length (BL), one QTL for first abdominal segment depth (FASD), third abdominal segment depth (TASD) and first abdominal segment width (FASW), which explained 2.62 to 61.42% of phenotypic variation. Moreover, comparison of linkage maps between L . vannamei and Penaeus japonicus was applied, providing a new insight into the genetic base of QTL affecting the growth-related traits. The new results will be useful for conducting MAS breeding schemes in L . vannamei . PMID:24086466
Wang, Hui; Drake, Thomas A; Lusis, Aldons J
2006-01-01
The integration of expression profiling with linkage analysis has increasingly been used to identify genes underlying complex phenotypes. The effects of gender on the regulation of many physiological traits are well documented; however, “genetical genomic” analyses have not yet addressed the degree to which their conclusions are affected by sex. We constructed and densely genotyped a large F2 intercross derived from the inbred mouse strains C57BL/6J and C3H/HeJ on an apolipoprotein E null (ApoE−/−) background. This BXH.ApoE−/− population recapitulates several “metabolic syndrome” phenotypes. The cross consists of 334 animals of both sexes, allowing us to specifically test for the dependence of linkage on sex. We detected several thousand liver gene expression quantitative trait loci, a significant proportion of which are sex-biased. We used these analyses to dissect the genetics of gonadal fat mass, a complex trait with sex-specific regulation. We present evidence for a remarkably high degree of sex-dependence on both the cis and trans regulation of gene expression. We demonstrate how these analyses can be applied to the study of the genetics underlying gonadal fat mass, a complex trait showing significantly female-biased heritability. These data have implications on the potential effects of sex on the genetic regulation of other complex traits. PMID:16462940
Yu, Long-Xi
2017-01-01
Alfalfa is a worldwide grown forage crop and is important due to its high biomass production and nutritional value. However, the production of alfalfa is challenged by adverse environmental factors such as drought and other stresses. Developing drought resistance alfalfa is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. In the present study, we used genotyping-by-sequencing and genome-wide association to identify marker loci associated with biomass yield under drought in the field in a panel of diverse germplasm of alfalfa. A total of 28 markers at 22 genetic loci were associated with yield under water deficit, whereas only four markers associated with the same trait under well-watered condition. Comparisons of marker-trait associations between water deficit and well-watered conditions showed non-similarity except one. Most of the markers were identical across harvest periods within the treatment, although different levels of significance were found among the three harvests. The loci associated with biomass yield under water deficit located throughout all chromosomes in the alfalfa genome agreed with previous reports. Our results suggest that biomass yield under drought is a complex quantitative trait with polygenic inheritance and may involve a different mechanism compared to that of non-stress. BLAST searches of the flanking sequences of the associated loci against DNA databases revealed several stress-responsive genes linked to the drought resistance loci, including leucine-rich repeat receptor-like kinase, B3 DNA-binding domain protein, translation initiation factor IF2, and phospholipase-like protein. With further investigation, those markers closely linked to drought resistance can be used for MAS to accelerate the development of new alfalfa cultivars with improved resistance to drought and other abiotic stresses. PMID:28706532
Linkage disequilibrium interval mapping of quantitative trait loci.
Boitard, Simon; Abdallah, Jihad; de Rochambeau, Hubert; Cierco-Ayrolles, Christine; Mangin, Brigitte
2006-03-16
For many years gene mapping studies have been performed through linkage analyses based on pedigree data. Recently, linkage disequilibrium methods based on unrelated individuals have been advocated as powerful tools to refine estimates of gene location. Many strategies have been proposed to deal with simply inherited disease traits. However, locating quantitative trait loci is statistically more challenging and considerable research is needed to provide robust and computationally efficient methods. Under a three-locus Wright-Fisher model, we derived approximate expressions for the expected haplotype frequencies in a population. We considered haplotypes comprising one trait locus and two flanking markers. Using these theoretical expressions, we built a likelihood-maximization method, called HAPim, for estimating the location of a quantitative trait locus. For each postulated position, the method only requires information from the two flanking markers. Over a wide range of simulation scenarios it was found to be more accurate than a two-marker composite likelihood method. It also performed as well as identity by descent methods, whilst being valuable in a wider range of populations. Our method makes efficient use of marker information, and can be valuable for fine mapping purposes. Its performance is increased if multiallelic markers are available. Several improvements can be developed to account for more complex evolution scenarios or provide robust confidence intervals for the location estimates.
Liu, Lei; Ang, Keng Pee; Elliott, J A K; Kent, Matthew Peter; Lien, Sigbjørn; MacDonald, Danielle; Boulding, Elizabeth Grace
2017-03-01
Comparative genome scans can be used to identify chromosome regions, but not traits, that are putatively under selection. Identification of targeted traits may be more likely in recently domesticated populations under strong artificial selection for increased production. We used a North American Atlantic salmon 6K SNP dataset to locate genome regions of an aquaculture strain (Saint John River) that were highly diverged from that of its putative wild founder population (Tobique River). First, admixed individuals with partial European ancestry were detected using STRUCTURE and removed from the dataset. Outlier loci were then identified as those showing extreme differentiation between the aquaculture population and the founder population. All Arlequin methods identified an overlapping subset of 17 outlier loci, three of which were also identified by BayeScan. Many outlier loci were near candidate genes and some were near published quantitative trait loci (QTLs) for growth, appetite, maturity, or disease resistance. Parallel comparisons using a wild, nonfounder population (Stewiacke River) yielded only one overlapping outlier locus as well as a known maturity QTL. We conclude that genome scans comparing a recently domesticated strain with its wild founder population can facilitate identification of candidate genes for traits known to have been under strong artificial selection.
Identification of seedling vigor-associated quantitative trait loci in temperate japonica rice
USDA-ARS?s Scientific Manuscript database
A quantitative trait loci (QTL) analysis of seedling vigor traits was conducted under dry-seeded conditions using 176 recombinant inbred lines developed from a cross of two California temperate japonica rice varieties M-203 and M-206. Height at early seedling (HES) and late seedling (HLS) stage, gro...
USDA-ARS?s Scientific Manuscript database
Cotton cultivars with reduced fiber-seed attachment force have the potential to be ginned faster with less energy. The objective of this study was to identify quantitative trait loci (QTL) for net ginning energy (NGE) requirement, and its relationship with other fiber quality traits in upland cotton...
Ferris, Kathleen G; Barnett, Laryssa L; Blackman, Benjamin K; Willis, John H
2017-01-01
The genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci. In this study, we investigate the genetic architecture of divergence in flowering time, mating system-related traits, and leaf shape between Mimulus laciniatus and a sympatric population of its close relative M. guttatus. These three traits are probably involved in M. laciniatus' adaptation to a dry, exposed granite outcrop environment. Flowering time and mating system differences are also reproductive isolating barriers making them 'magic traits'. Phenotypic hybrids in this population provide evidence of recent gene flow. Using next-generation sequencing, we generate dense SNP markers across the genome and map quantitative trait loci (QTLs) involved in flowering time, flower size and leaf shape. We find that interspecific divergence in all three traits is due to few QTL of large effect including a highly pleiotropic QTL on chromosome 8. This QTL region contains the pleiotropic candidate gene TCP4 and is involved in ecologically important phenotypes in other Mimulus species. Our results are consistent with theory, indicating that local adaptation and reproductive isolation with gene flow should be due to few loci with large and pleiotropic effects. © 2016 John Wiley & Sons Ltd.
Mägi, Reedik; Suleimanov, Yury V; Clarke, Geraldine M; Kaakinen, Marika; Fischer, Krista; Prokopenko, Inga; Morris, Andrew P
2017-01-11
Genome-wide association studies (GWAS) of single nucleotide polymorphisms (SNPs) have been successful in identifying loci contributing genetic effects to a wide range of complex human diseases and quantitative traits. The traditional approach to GWAS analysis is to consider each phenotype separately, despite the fact that many diseases and quantitative traits are correlated with each other, and often measured in the same sample of individuals. Multivariate analyses of correlated phenotypes have been demonstrated, by simulation, to increase power to detect association with SNPs, and thus may enable improved detection of novel loci contributing to diseases and quantitative traits. We have developed the SCOPA software to enable GWAS analysis of multiple correlated phenotypes. The software implements "reverse regression" methodology, which treats the genotype of an individual at a SNP as the outcome and the phenotypes as predictors in a general linear model. SCOPA can be applied to quantitative traits and categorical phenotypes, and can accommodate imputed genotypes under a dosage model. The accompanying META-SCOPA software enables meta-analysis of association summary statistics from SCOPA across GWAS. Application of SCOPA to two GWAS of high-and low-density lipoprotein cholesterol, triglycerides and body mass index, and subsequent meta-analysis with META-SCOPA, highlighted stronger association signals than univariate phenotype analysis at established lipid and obesity loci. The META-SCOPA meta-analysis also revealed a novel signal of association at genome-wide significance for triglycerides mapping to GPC5 (lead SNP rs71427535, p = 1.1x10 -8 ), which has not been reported in previous large-scale GWAS of lipid traits. The SCOPA and META-SCOPA software enable discovery and dissection of multiple phenotype association signals through implementation of a powerful reverse regression approach.
A. Groover; M. Devey; T. Fiddler; J. Lee; R. Megraw; T. Mitchel-Olds; B. Sherman; S. Vujcic; C. Williams; D. Neale
1994-01-01
We report the identification of quantitative trait loci (QTL) influencing wood specific gravity (WSG) in an outbred pedigree of loblolly pine (Pinus taeda L.) . QTL mapping in an outcrossing species is complicated by the presence of multiple alleles (>2) at QTL and marker loci. Multiple alleles at QTL allow the examination of interaction among...
A novel iterative mixed model to remap three complex orthopedic traits in dogs
Huang, Meng; Hayward, Jessica J.; Corey, Elizabeth; Garrison, Susan J.; Wagner, Gabriela R.; Krotscheck, Ursula; Hayashi, Kei; Schweitzer, Peter A.; Lust, George; Boyko, Adam R.; Todhunter, Rory J.
2017-01-01
Hip dysplasia (HD), elbow dysplasia (ED), and rupture of the cranial (anterior) cruciate ligament (RCCL) are the most common complex orthopedic traits of dogs and all result in debilitating osteoarthritis. We reanalyzed previously reported data: the Norberg angle (a quantitative measure of HD) in 921 dogs, ED in 113 cases and 633 controls, and RCCL in 271 cases and 399 controls and their genotypes at ~185,000 single nucleotide polymorphisms. A novel fixed and random model with a circulating probability unification (FarmCPU) function, with marker-based principal components and a kinship matrix to correct for population stratification, was used. A Bonferroni correction at p<0.01 resulted in a P< 6.96 ×10−8. Six loci were identified; three for HD and three for RCCL. An associated locus at CFA28:34,369,342 for HD was described previously in the same dogs using a conventional mixed model. No loci were identified for RCCL in the previous report but the two loci for ED in the previous report did not reach genome-wide significance using the FarmCPU model. These results were supported by simulation which demonstrated that the FarmCPU held no power advantage over the linear mixed model for the ED sample but provided additional power for the HD and RCCL samples. Candidate genes for HD and RCCL are discussed. When using FarmCPU software, we recommend a resampling test, that a positive control be used to determine the optimum pseudo quantitative trait nucleotide-based covariate structure of the model, and a negative control be used consisting of permutation testing and the identical resampling test as for the non-permuted phenotypes. PMID:28614352
Thanyasiriwat, T; Sraphet, S; Whankaew, S; Boonseng, O; Bao, J; Lightfoot, D A; Tangphatsornruang, S; Triwitayakorn, K
2014-01-01
Starch pasting viscosity is an important quality trait in cassava (Manihot esculenta Crantz) cultivars. The aim here was to identify loci and candidate genes associated with the starch pasting viscosity. Quantitative trait loci (QTL) mapping for seven pasting viscosity parameters was carried out using 100 lines of an F1 mapping population from a cross between two cassava cultivars Huay Bong 60 and Hanatee. Starch samples were obtained from roots of cassava grown in 2008 and 2009 at Rayong, and in 2009 at Lop Buri province, Thailand. The traits showed continuous distribution among the F1 progeny with transgressive variation. Fifteen QTL were identified from mean trait data, with Logarithm of Odds (LOD) values from 2.77-13.01 and phenotype variations explained (PVE) from10.0-48.4%. In addition, 48 QTL were identified in separate environments. The LOD values ranged from 2.55-8.68 and explained 6.6-43.7% of phenotype variation. The loci were located on 19 linkage groups. The most important QTL for pasting temperature (PT) (qPT.1LG1) from mean trait values showed largest effect with highest LOD value (13.01) and PVE (48.4%). The QTL co-localised with PT and pasting time (PTi) loci that were identified in separate environments. Candidate genes were identified within the QTL peak regions. However, the major genes of interest, encoding the family of glycosyl or glucosyl transferases and hydrolases, were located at the periphery of QTL peaks. The loci identified could be effectively applied in breeding programmes to improve cassava starch quality. Alleles of candidate genes should be further studied in order to better understand their effects on starch quality traits. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu
2016-04-11
Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.
Body mass index (BMI) has been implicated as a primary factor influencing cancer development. However, understanding the relationship between these two complex traits has been confounded by both environmental and genetic heterogeneity. Analysis of QTL linked to tumorigenesis and BMI identified several loci associated with both phenotypes. Exploring these loci in greater detail revealed a novel relationship between the Pannexin 3 gene (Panx3) and both BMI and tumorigenesis. Panx3 is positively associated with BMI and is strongly tied to a lipid metabolism gene expression network.
Plants with useful traits and related methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, Sally Ann; De la Rosa Santamaria, Roberto
The present invention provides methods for obtaining plants that exhibit useful traits by transient suppression of the MSH1 gene of the plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants.
Plants with useful traits and related methods
Mackenzie, Sally Ann; De la Rosa Santamaria, Roberto
2017-07-18
The present invention provides methods for obtaining plants that exhibit useful traits by transient suppression of the MSH1 gene of the plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants.
Sherlock: Detecting Gene-Disease Associations by Matching Patterns of Expression QTL and GWAS
He, Xin; Fuller, Chris K.; Song, Yi; Meng, Qingying; Zhang, Bin; Yang, Xia; Li, Hao
2013-01-01
Genetic mapping of complex diseases to date depends on variations inside or close to the genes that perturb their activities. A strong body of evidence suggests that changes in gene expression play a key role in complex diseases and that numerous loci perturb gene expression in trans. The information in trans variants, however, has largely been ignored in the current analysis paradigm. Here we present a statistical framework for genetic mapping by utilizing collective information in both cis and trans variants. We reason that for a disease-associated gene, any genetic variation that perturbs its expression is also likely to influence the disease risk. Thus, the expression quantitative trait loci (eQTL) of the gene, which constitute a unique “genetic signature,” should overlap significantly with the set of loci associated with the disease. We translate this idea into a computational algorithm (named Sherlock) to search for gene-disease associations from GWASs, taking advantage of independent eQTL data. Application of this strategy to Crohn disease and type 2 diabetes predicts a number of genes with possible disease roles, including several predictions supported by solid experimental evidence. Importantly, predicted genes are often implicated by multiple trans eQTL with moderate associations. These genes are far from any GWAS association signals and thus cannot be identified from the GWAS alone. Our approach allows analysis of association data from a new perspective and is applicable to any complex phenotype. It is readily generalizable to molecular traits other than gene expression, such as metabolites, noncoding RNAs, and epigenetic modifications. PMID:23643380
Adrenal cortex expression quantitative trait loci in a German Holstein × Charolais cross.
Brand, Bodo; Scheinhardt, Markus O; Friedrich, Juliane; Zimmer, Daisy; Reinsch, Norbert; Ponsuksili, Siriluck; Schwerin, Manfred; Ziegler, Andreas
2016-10-06
The importance of the adrenal gland in regard to lactation and reproduction in cattle has been recognized early. Caused by interest in animal welfare and the impact of stress on economically important traits in farm animals the adrenal gland and its function within the stress response is of increasing interest. However, the molecular mechanisms and pathways involved in stress-related effects on economically important traits in farm animals are not fully understood. Gene expression is an important mechanism underlying complex traits, and genetic variants affecting the transcript abundance are thought to influence the manifestation of an expressed phenotype. We therefore investigated the genetic background of adrenocortical gene expression by applying an adaptive linear rank test to identify genome-wide expression quantitative trait loci (eQTL) for adrenal cortex transcripts in cattle. A total of 10,986 adrenal cortex transcripts and 37,204 single nucleotide polymorphisms (SNPs) were analysed in 145 F2 cows of a Charolais × German Holstein cross. We identified 505 SNPs that were associated with the abundance of 129 transcripts, comprising 482 cis effects and 17 trans effects. These SNPs were located on all chromosomes but X, 16, 24 and 28. Associated genes are mainly involved in molecular and cellular functions comprising free radical scavenging, cellular compromise, cell morphology and lipid metabolism, including genes such as CYP27A1 and LHCGR that have been shown to affect economically important traits in cattle. In this study we showed that adrenocortical eQTL affect the expression of genes known to contribute to the phenotypic manifestation in cattle. Furthermore, some of the identified genes and related molecular pathways were previously shown to contribute to the phenotypic variation of behaviour, temperament and growth at the onset of puberty in the same population investigated here. We conclude that eQTL analysis appears to be a useful approach providing insight into the molecular and genetic background of complex traits in cattle and will help to understand molecular networks involved.
Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu
2016-12-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.
Yadav, Anupama; Dhole, Kaustubh
2016-01-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852
Auer, Paul L.; Johnsen, Jill M.; Johnson, Andrew D.; Logsdon, Benjamin A.; Lange, Leslie A.; Nalls, Michael A.; Zhang, Guosheng; Franceschini, Nora; Fox, Keolu; Lange, Ethan M.; Rich, Stephen S.; O’Donnell, Christopher J.; Jackson, Rebecca D.; Wallace, Robert B.; Chen, Zhao; Graubert, Timothy A.; Wilson, James G.; Tang, Hua; Lettre, Guillaume; Reiner, Alex P.; Ganesh, Santhi K.; Li, Yun
2012-01-01
Researchers have successfully applied exome sequencing to discover causal variants in selected individuals with familial, highly penetrant disorders. We demonstrate the utility of exome sequencing followed by imputation for discovering low-frequency variants associated with complex quantitative traits. We performed exome sequencing in a reference panel of 761 African Americans and then imputed newly discovered variants into a larger sample of more than 13,000 African Americans for association testing with the blood cell traits hemoglobin, hematocrit, white blood count, and platelet count. First, we illustrate the feasibility of our approach by demonstrating genome-wide-significant associations for variants that are not covered by conventional genotyping arrays; for example, one such association is that between higher platelet count and an MPL c.117G>T (p.Lys39Asn) variant encoding a p.Lys39Asn amino acid substitution of the thrombpoietin receptor gene (p = 1.5 × 10−11). Second, we identified an association between missense variants of LCT and higher white blood count (p = 4 × 10−13). Third, we identified low-frequency coding variants that might account for allelic heterogeneity at several known blood cell-associated loci: MPL c.754T>C (p.Tyr252His) was associated with higher platelet count; CD36 c.975T>G (p.Tyr325∗) was associated with lower platelet count; and several missense variants at the α-globin gene locus were associated with lower hemoglobin. By identifying low-frequency missense variants associated with blood cell traits not previously reported by genome-wide association studies, we establish that exome sequencing followed by imputation is a powerful approach to dissecting complex, genetically heterogeneous traits in large population-based studies. PMID:23103231
USDA-ARS?s Scientific Manuscript database
Zinc transporter 7 (Znt7, Slc30a7) knockout (KO) mice display abnormalities in body weight gain and body adiposity. Regulation of body weight and fatness is complex, involving multiple genetic and environmental factors. To understand how zinc homeostasis influences body weight gain and fat deposit a...
K.D. Jermstad; D.L. Bassoni; N.C. Wheeler; T.S. Anekonda; S.N. Aitken; W.T. Adams; D.B. Neale
2001-01-01
Abstract Quantitative trait loci (QTLs) affecting fall and spring cold-hardiness were identified in a three-generation outbred pedigree of coastal Douglas-fir [Pseudotsuga meniziesii (Mirb.) Franco var. menziesii]. Eleven QTLs controlling fall cold-hardiness were detected on four linkage groups, and 15 QTLs controlling spring cold-hardiness were detected on four...
Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits.
Adriaens, M E; Bezzina, C R
2018-06-22
Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.
Improving breeding efficiency in potato using molecular and quantitative genetics.
Slater, Anthony T; Cogan, Noel O I; Hayes, Benjamin J; Schultz, Lee; Dale, M Finlay B; Bryan, Glenn J; Forster, John W
2014-11-01
Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.
Nielsen, Merlyn K.; Thorn, Stephanie R.; Valdar, William; Pomp, Daniel
2014-01-01
Obesity in human populations, currently a serious health concern, is considered to be the consequence of an energy imbalance in which more energy in calories is consumed than is expended. We used interval mapping techniques to investigate the genetic basis of a number of energy balance traits in an F11 advanced intercross population of mice created from an original intercross of lines selected for increased and decreased heat loss. We uncovered a total of 137 quantitative trait loci (QTLs) for these traits at 41 unique sites on 18 of the 20 chromosomes in the mouse genome, with X-linked QTLs being most prevalent. Two QTLs were found for the selection target of heat loss, one on distal chromosome 1 and another on proximal chromosome 2. The number of QTLs affecting the various traits generally was consistent with previous estimates of heritabilities in the same population, with the most found for two bone mineral traits and the least for feed intake and several body composition traits. QTLs were generally additive in their effects, and some, especially those affecting the body weight traits, were sex-specific. Pleiotropy was extensive within trait groups (body weights, adiposity and organ weight traits, bone traits) and especially between body composition traits adjusted and not adjusted for body weight at sacrifice. Nine QTLs were found for one or more of the adiposity traits, five of which appeared to be unique. The confidence intervals among all QTLs averaged 13.3 Mb, much smaller than usually observed in an F2 cross, and in some cases this allowed us to make reasonable inferences about candidate genes underlying these QTLs. This study combined QTL mapping with genetic parameter analysis in a large segregating population, and has advanced our understanding of the genetic architecture of complex traits related to obesity. PMID:24918027
Mapping Genetic Variants Associated with Beta-Adrenergic Responses in Inbred Mice
Hersch, Micha; Peter, Bastian; Kang, Hyun Min; Schüpfer, Fanny; Abriel, Hugues; Pedrazzini, Thierry; Eskin, Eleazar; Beckmann, Jacques S.
2012-01-01
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β 1-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10−8). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10−6). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied. PMID:22859963
Li, Xiaokai; Guo, Zilong; Lv, Yan; Cen, Xiang; Ding, Xipeng; Wu, Hua; Li, Xianghua; Huang, Jianping
2017-01-01
A variety of adverse conditions including drought stress severely affect rice production. Root system plays a critical role in drought avoidance, which is one of the major mechanisms of drought resistance. In this study, we adopted genome-wide association study (GWAS) to dissect the genetic basis controlling various root traits by using a natural population consisting of 529 representative rice accessions. A total of 413 suggestive associations, containing 143 significant associations, were identified for 21 root traits, such as maximum root length, root volume, and root dry weight under normal and drought stress conditions at the maturation stage. More than 80 percent of the suggestive loci were located in the region of reported QTLs for root traits, while about 20 percent of suggestive loci were novel loci detected in this study. Besides, 11 reported root-related genes, including DRO1, WOX11, and OsPID, were found to co-locate with the association loci. We further proved that the association results can facilitate the efficient identification of causal genes for root traits by the two case studies of Nal1 and OsJAZ1. These loci and their candidate causal genes provide an important basis for the genetic improvement of root traits and drought resistance. PMID:28686596
Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.
2016-01-01
The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206
Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait.
Olofsson, Jill K; Bianconi, Matheus; Besnard, Guillaume; Dunning, Luke T; Lundgren, Marjorie R; Holota, Helene; Vorontsova, Maria S; Hidalgo, Oriane; Leitch, Ilia J; Nosil, Patrik; Osborne, Colin P; Christin, Pascal-Antoine
2016-12-01
Physiological novelties are often studied at macro-evolutionary scales such that their micro-evolutionary origins remain poorly understood. Here, we test the hypothesis that key components of a complex trait can evolve in isolation and later be combined by gene flow. We use C 4 photosynthesis as a study system, a derived physiology that increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata includes C 4 and non-C 4 genotypes, with some populations using laterally acquired C 4 -adaptive loci, providing an outstanding system to track the spread of novel adaptive mutations. Using genome data from C 4 and non-C 4 A. semialata individuals spanning the species' range, we infer and date past migrations of different parts of the genome. Our results show that photosynthetic types initially diverged in isolated populations, where key C 4 components were acquired. However, rare but recurrent subsequent gene flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally acquired genes for key C 4 functions were rapidly passed between populations with otherwise distinct genomic backgrounds. Thus, our intraspecific study of C 4 -related genomic variation indicates that components of adaptive traits can evolve separately and later be combined through secondary gene flow, leading to the assembly and optimization of evolutionary innovations. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Bennett, Brian J.; Davis, Richard C.; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R. Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C.; Hazen, Stanley L.; Gargalovic, Peter S.; Lusis, Aldons J.
2015-01-01
Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression showed that the combined variations in plasma metabolites, including LDL/VLDL-cholesterol, trimethylamine N-oxide (TMAO), arginine, glucose and insulin, account for approximately 30 to 40% of the variation in atherosclerotic lesion area. Overall, our data provide a rich resource for studies of complex interactions underlying atherosclerosis. PMID:26694027
Knoll, A T; Jiang, K; Levitt, P
2018-06-01
Humans exhibit broad heterogeneity in affiliative social behavior. Twin and family studies show that individual differences in core dimensions of social behavior are heritable, yet there are knowledge gaps in understanding the underlying genetic and neurobiological mechanisms. Animal genetic reference panels (GRPs) provide a tractable strategy for examining the behavioral and genetic architecture of complex traits. Here, using males from 50 mouse strains from the BXD GRP, 4 domains of affiliative social behavior-social approach, social recognition, direct social interaction (DSI) (partner sniffing) and vocal communication-were examined in 2 widely used behavioral tasks-the 3-chamber and DSI tasks. There was continuous and broad variation in social and nonsocial traits, with moderate to high heritability of social approach sniff preference (0.31), ultrasonic vocalization (USV) count (0.39), partner sniffing (0.51), locomotor activity (0.54-0.66) and anxiety-like behavior (0.36). Principal component analysis shows that variation in social and nonsocial traits are attributable to 5 independent factors. Genome-wide mapping identified significant quantitative trait loci for USV count on chromosome (Chr) 18 and locomotor activity on Chr X, with suggestive loci and candidate quantitative trait genes identified for all traits with one notable exception-partner sniffing in the DSI task. The results show heritable variation in sociability, which is independent of variation in activity and anxiety-like traits. In addition, a highly heritable and ethological domain of affiliative sociability-partner sniffing-appears highly polygenic. These findings establish a basis for identifying functional natural variants, leading to a new understanding typical and atypical sociability. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
Molecularly tagged genes and quantitative trait loci in cucumber
USDA-ARS?s Scientific Manuscript database
Since the release of the cucumber draft genome, significant progress has been made in molecular mapping, tagging or cloning of horticulturally important genes and quantitative trait loci (QTLs) in cucumber, which provides the foundation for practicing marker-assisted selection in cucumber breeding. ...
Imamura, Minako; Takahashi, Atsushi; Yamauchi, Toshimasa; Hara, Kazuo; Yasuda, Kazuki; Grarup, Niels; Zhao, Wei; Wang, Xu; Huerta-Chagoya, Alicia; Hu, Cheng; Moon, Sanghoon; Long, Jirong; Kwak, Soo Heon; Rasheed, Asif; Saxena, Richa; Ma, Ronald C. W.; Okada, Yukinori; Iwata, Minoru; Hosoe, Jun; Shojima, Nobuhiro; Iwasaki, Minaka; Fujita, Hayato; Suzuki, Ken; Danesh, John; Jørgensen, Torben; Jørgensen, Marit E.; Witte, Daniel R.; Brandslund, Ivan; Christensen, Cramer; Hansen, Torben; Mercader, Josep M.; Flannick, Jason; Moreno-Macías, Hortensia; Burtt, Noël P.; Zhang, Rong; Kim, Young Jin; Zheng, Wei; Singh, Jai Rup; Tam, Claudia H. T.; Hirose, Hiroshi; Maegawa, Hiroshi; Ito, Chikako; Kaku, Kohei; Watada, Hirotaka; Tanaka, Yasushi; Tobe, Kazuyuki; Kawamori, Ryuzo; Kubo, Michiaki; Cho, Yoon Shin; Chan, Juliana C. N.; Sanghera, Dharambir; Frossard, Philippe; Park, Kyong Soo; Shu, Xiao-Ou; Kim, Bong-Jo; Florez, Jose C.; Tusié-Luna, Teresa; Jia, Weiping; Tai, E Shyong; Pedersen, Oluf; Saleheen, Danish; Maeda, Shiro; Kadowaki, Takashi
2016-01-01
Genome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery and subsequent validation analyses (23,399 T2D cases and 31,722 controls) identify 7 new loci with genome-wide significance (P<5 × 10−8), rs1116357 near CCDC85A, rs147538848 in FAM60A, rs1575972 near DMRTA1, rs9309245 near ASB3, rs67156297 near ATP8B2, rs7107784 near MIR4686 and rs67839313 near INAFM2. Of these, the association of 4 loci with T2D is replicated in multi-ethnic populations other than Japanese (up to 65,936 T2Ds and 158,030 controls, P<0.007). These results indicate that expansion of single ethnic GWAS is still useful to identify novel susceptibility loci to complex traits not only for ethnicity-specific loci but also for common loci across different ethnicities. PMID:26818947
K.D. Jermstad; D.L. Bassoni; K.S. Jech; N.C. Wheeler; D.B. Neale
2001-01-01
Abstract Thirty three unique quantitative trait loci (QTLs) affecting the timing of spring bud flush have been identified in an intraspecific mapping population of coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii]. Both terminal and lateral bud flush were measured over a 4-year period on clonal replicates at two test sites, allowing for the...
Statistical genetics and evolution of quantitative traits
NASA Astrophysics Data System (ADS)
Neher, Richard A.; Shraiman, Boris I.
2011-10-01
The distribution and heritability of many traits depends on numerous loci in the genome. In general, the astronomical number of possible genotypes makes the system with large numbers of loci difficult to describe. Multilocus evolution, however, greatly simplifies in the limit of weak selection and frequent recombination. In this limit, populations rapidly reach quasilinkage equilibrium (QLE) in which the dynamics of the full genotype distribution, including correlations between alleles at different loci, can be parametrized by the allele frequencies. This review provides a simplified exposition of the concept and mathematics of QLE which is central to the statistical description of genotypes in sexual populations. Key results of quantitative genetics such as the generalized Fisher’s “fundamental theorem,” along with Wright’s adaptive landscape, are shown to emerge within QLE from the dynamics of the genotype distribution. This is followed by a discussion under what circumstances QLE is applicable, and what the breakdown of QLE implies for the population structure and the dynamics of selection. Understanding the fundamental aspects of multilocus evolution obtained through simplified models may be helpful in providing conceptual and computational tools to address the challenges arising in the studies of complex quantitative phenotypes of practical interest.
Age at menarche and age at natural menopause in East Asian women: a genome-wide association study.
Shi, Jiajun; Zhang, Ben; Choi, Ji-Yeob; Gao, Yu-Tang; Li, Huaixing; Lu, Wei; Long, Jirong; Kang, Daehee; Xiang, Yong-Bing; Wen, Wanqing; Park, Sue K; Ye, Xingwang; Noh, Dong-Young; Zheng, Ying; Wang, Yiqin; Chung, Seokang; Lin, Xu; Cai, Qiuyin; Shu, Xiao-Ou
2016-12-01
Age at menarche (AM) and age at natural menopause (ANM) are complex traits with a high heritability. Abnormal timing of menarche or menopause is associated with a reduced span of fertility and risk for several age-related diseases including breast, endometrial and ovarian cancer, cardiovascular disease, and osteoporosis. To identify novel genetic loci for AM or ANM in East Asian women and to replicate previously identified loci primarily in women of European ancestry by genome-wide association studies (GWASs), we conducted a two-stage GWAS. Stage I aimed to discover promising novel AM and ANM loci using GWAS data of 8073 women from Shanghai, China. The Stage II replication study used the data from another Chinese GWAS (n = 1230 for AM and n = 1458 for ANM), a Korean GWAS (n = 4215 for AM and n = 1739 for ANM), and de novo genotyping of 2877 additional Chinese women. Previous GWAS-identified loci for AM and ANM were also evaluated. We identified two suggestive menarcheal age loci tagged by rs79195475 at 10q21.3 (beta = -0.118 years, P = 3.4 × 10 -6 ) and rs1023935 at 4p15.1 (beta = -0.145 years, P = 4.9 × 10 -6 ) and one menopausal age locus tagged by rs3818134 at 22q12.2 (beta = -0.276 years, P = 8.8 × 10 -6 ). These suggestive loci warrant a further validation in independent populations. Although limited by low statistical power, we replicated 19 of the 98 menarche loci and 5 of the 20 menopause loci previously identified in women of European ancestry in East Asian women, suggesting a shared genetic architecture for these two traits across populations.
Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche
Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Zhao, Jing Hua; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J. Margriet; Couch, Fergus J; Couper, David; Coveillo, Andrea D; Cox, Angela; Czene, Kamila; D’adamo, Adamo Pio; Smith, George Davey; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco EJ; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul DP; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce HR; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth JF; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild IA; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F
2014-01-01
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality1. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation2,3, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P<5×10−8) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1/WDR25, MKRN3/MAGEL2 and KCNK9) demonstrating parent-of-origin specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signaling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition. PMID:25231870
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Perry, John Rb; Day, Felix; Elks, Cathy E; Sulem, Patrick; Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Zhao, Jing Hua; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J Margriet; Couch, Fergus J; Couper, David; Coveillo, Andrea D; Cox, Angela; Czene, Kamila; D'adamo, Adamo Pio; Smith, George Davey; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco Ej; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul Dp; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce Hr; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth Jf; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild Ia; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F; Stefansson, Kari; Murabito, Joanne M; Ong, Ken K
2014-10-02
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.
Ge, Bing; Tayo, Bamidele; Mathias, Rasika A.; Ding, Jingzhong; Nalls, Michael A.; Adeyemo, Adebowale; Adoue, Véronique; Ambrosone, Christine B.; Atwood, Larry; Bandera, Elisa V.; Becker, Lewis C.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Boerwinkle, Eric; Britton, Angela; Casey, Graham; Chanock, Stephen J.; Demerath, Ellen; Deming, Sandra L.; Diver, W. Ryan; Fox, Caroline; Harris, Tamara B.; Hernandez, Dena G.; Hu, Jennifer J.; Ingles, Sue A.; John, Esther M.; Johnson, Craig; Keating, Brendan; Kittles, Rick A.; Kolonel, Laurence N.; Kritchevsky, Stephen B.; Le Marchand, Loic; Lohman, Kurt; Liu, Jiankang; Millikan, Robert C.; Murphy, Adam; Musani, Solomon; Neslund-Dudas, Christine; North, Kari E.; Nyante, Sarah; Ogunniyi, Adesola; Ostrander, Elaine A.; Papanicolaou, George; Patel, Sanjay; Pettaway, Curtis A.; Press, Michael F.; Redline, Susan; Rodriguez-Gil, Jorge L.; Rotimi, Charles; Rybicki, Benjamin A.; Salako, Babatunde; Schreiner, Pamela J.; Signorello, Lisa B.; Singleton, Andrew B.; Stanford, Janet L.; Stram, Alex H.; Stram, Daniel O.; Strom, Sara S.; Suktitipat, Bhoom; Thun, Michael J.; Witte, John S.; Yanek, Lisa R.; Ziegler, Regina G.; Zheng, Wei; Zhu, Xiaofeng; Zmuda, Joseph M.; Zonderman, Alan B.; Evans, Michele K.; Liu, Yongmei; Becker, Diane M.; Cooper, Richard S.; Pastinen, Tomi; Henderson, Brian E.; Hirschhorn, Joel N.; Lettre, Guillaume; Haiman, Christopher A.
2011-01-01
Adult height is a classic polygenic trait of high heritability (h 2 ∼0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ∼10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10−12 and 2p14-rs4315565, P = 1.2×10−8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10−4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits. PMID:21998595
Kelly, Scott A.; Hua, Kunjie; Pomp, Daniel
2012-01-01
Driven by the recent obesity epidemic, interest in understanding the complex genetic and environmental basis of body weight and composition is great. We investigated this by searching for quantitative trait loci (QTLs) affecting a number of weight and adiposity traits in a G10 advanced intercross population produced from crosses of mice in inbred strain C57BL/6J with those in a strain selected for high voluntary wheel running. The mice in this population were fed either a high-fat or a control diet throughout the study and also measured for four exercise traits prior to death, allowing us to test for pre- and postexercise QTLs as well as QTL-by-diet and QTL-by-exercise interactions. Our genome scan uncovered a number of QTLs, of which 40% replicated QTLs previously found for similar traits in an earlier (G4) generation. For those replicated QTLs, the confidence intervals were reduced from an average of 19 Mb in the G4 to 8 Mb in the G10. Four QTLs on chromosomes 3, 8, 13, and 18 were especially prominent in affecting the percentage of fat in the mice. About of all QTLs showed interactions with diet, exercise, or both, their genotypic effects on the traits showing a variety of patterns depending on the diet or level of exercise. It was concluded that the indirect effects of these QTLs provide an underlying genetic basis for the considerable variability in weight or fat loss typically found among individuals on the same diet and/or exercise regimen. PMID:23048196
Kato, S; Ishii, A; Nishi, A; Kuriki, S; Koide, T
2014-01-01
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs. PMID:24781804
Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci.
Burgess-Herbert, Sarah L; Cox, Allison; Tsaih, Shirng-Wern; Paigen, Beverly
2008-12-01
Dissecting the genes involved in complex traits can be confounded by multiple factors, including extensive epistatic interactions among genes, the involvement of epigenetic regulators, and the variable expressivity of traits. Although quantitative trait locus (QTL) analysis has been a powerful tool for localizing the chromosomal regions underlying complex traits, systematically identifying the causal genes remains challenging. Here, through its application to plasma levels of high-density lipoprotein cholesterol (HDL) in mice, we demonstrate a strategy for narrowing QTL that utilizes comparative genomics and bioinformatics techniques. We show how QTL detected in multiple crosses are subjected to both combined cross analysis and haplotype block analysis; how QTL from one species are mapped to the concordant regions in another species; and how genomewide scans associating haplotype groups with their phenotypes can be used to prioritize the narrowed regions. Then we illustrate how these individual methods for narrowing QTL can be systematically integrated for mouse chromosomes 12 and 15, resulting in a significantly reduced number of candidate genes, often from hundreds to <10. Finally, we give an example of how additional bioinformatics resources can be combined with experiments to determine the most likely quantitative trait genes.
Major Quantitative Trait Loci Affecting Honey Bee Foraging Behavior
Hunt, G. J.; Page-Jr., R. E.; Fondrk, M. K.; Dullum, C. J.
1995-01-01
We identified two genomic regions that affect the amount of pollen stored in honey bee colonies and influence whether foragers will collect pollen or nectar. We selected for the amount of pollen stored in combs of honey bee colonies, a colony-level trait, and then used random amplified polymorphic DNA (RAPD) markers and interval mapping procedures with data from backcross colonies to identify two quantitative trait loci (pln1 and pln2, LOD 3.1 and 2.3, respectively). Quantitative trait loci effects were confirmed in a separate cross by demonstrating the cosegregation of marker alleles with the foraging behavior of individual workers. Both pln1 and pln2 had an effect on the amount of pollen carried by foragers returning to the colony, as inferred by the association between linked RAPD marker alleles, D8-.3f and 301-.55, and the individual pollen load weights of returning foragers. The alleles of the two marker loci were nonrandomly distributed with respect to foraging task. The two loci appeared to have different effects on foraging behavior. Individuals with alternative alleles for the marker linked to pln2 (but not pln1) differed with respect to the nectar sugar concentration of their nectar loads. PMID:8601492
Design of microarray experiments for genetical genomics studies.
Bueno Filho, Júlio S S; Gilmour, Steven G; Rosa, Guilherme J M
2006-10-01
Microarray experiments have been used recently in genetical genomics studies, as an additional tool to understand the genetic mechanisms governing variation in complex traits, such as for estimating heritabilities of mRNA transcript abundances, for mapping expression quantitative trait loci, and for inferring regulatory networks controlling gene expression. Several articles on the design of microarray experiments discuss situations in which treatment effects are assumed fixed and without any structure. In the case of two-color microarray platforms, several authors have studied reference and circular designs. Here, we discuss the optimal design of microarray experiments whose goals refer to specific genetic questions. Some examples are used to illustrate the choice of a design for comparing fixed, structured treatments, such as genotypic groups. Experiments targeting single genes or chromosomic regions (such as with transgene research) or multiple epistatic loci (such as within a selective phenotyping context) are discussed. In addition, microarray experiments in which treatments refer to families or to subjects (within family structures or complex pedigrees) are presented. In these cases treatments are more appropriately considered to be random effects, with specific covariance structures, in which the genetic goals relate to the estimation of genetic variances and the heritability of transcriptional abundances.
Chak Han Im; Young-Hoon Park; Kenneth E. Hammel; Bokyung Park; Soon Wook Kwon; Hojin Ryu; Jae-San Ryu
2016-01-01
Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type...
Quantitative trait loci associated with anthracnose resistance in sorghum
USDA-ARS?s Scientific Manuscript database
With an aim to develop a durable resistance to the fungal disease anthracnose, two unique genetic sources of resistance were selected to create genetic mapping populations to identify regions of the sorghum genome that encode anthracnose resistance. A series of quantitative trait loci were identifi...
Quantitative trait loci associated with the tocochromanol (vitamin E) pathway in barley
USDA-ARS?s Scientific Manuscript database
In this study, the Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- alpha-, beta-, delta-, gamma-tocopherol and tocotrienol- were assayed. We found...
Xie, Dongwei; Dai, Zhigang; Yang, Zemao; Sun, Jian; Zhao, Debao; Yang, Xue; Zhang, Liguo; Tang, Qing; Su, Jianguang
2018-01-01
Flax (Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits. PMID:29375606
Xie, Dongwei; Dai, Zhigang; Yang, Zemao; Sun, Jian; Zhao, Debao; Yang, Xue; Zhang, Liguo; Tang, Qing; Su, Jianguang
2017-01-01
Flax ( Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.
Nazarian, Alireza; Gezan, Salvador A
2016-03-01
The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bink, Marco CAM; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe
2016-01-01
Background Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. Results The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. Conclusions This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program. PMID:27806077
Bartholomé, Jérôme; Bink, Marco Cam; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe
2016-01-01
Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.
New genetic loci link adipose and insulin biology to body fat distribution.
Shungin, Dmitry; Winkler, Thomas W; Croteau-Chonka, Damien C; Ferreira, Teresa; Locke, Adam E; Mägi, Reedik; Strawbridge, Rona J; Pers, Tune H; Fischer, Krista; Justice, Anne E; Workalemahu, Tsegaselassie; Wu, Joseph M W; Buchkovich, Martin L; Heard-Costa, Nancy L; Roman, Tamara S; Drong, Alexander W; Song, Ci; Gustafsson, Stefan; Day, Felix R; Esko, Tonu; Fall, Tove; Kutalik, Zoltán; Luan, Jian'an; Randall, Joshua C; Scherag, André; Vedantam, Sailaja; Wood, Andrew R; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B; Feitosa, Mary F; Goel, Anuj; Jackson, Anne U; Johnson, Toby; Kleber, Marcus E; Kristiansson, Kati; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Stančáková, Alena; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V; Yengo, Loïc; Zhang, Weihua; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Böhringer, Stefan; Bonnet, Fabrice; Böttcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B; Caspersen, Ida H; Clarke, Robert; Daw, E Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex Sf; Eklund, Niina; Erdos, Michael R; Estrada, Karol; Eury, Elodie; Friedrich, Nele; Garcia, Melissa E; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grewal, Jagvir; Groves, Christopher J; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heikkilä, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L; Holmen, Oddgeir; Hunt, Steven C; Isaacs, Aaron; Ittermann, Till; James, Alan L; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Mach, François; Magnusson, Patrik Ke; Mahajan, Anubha; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Keri L; Mooijaart, Simon P; Mühleisen, Thomas W; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M; Olden, Matthias; Rayner, Nigel W; Renstrom, Frida; Ried, Janina S; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M; Smith, Albert Vernon; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor Va; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Zhang, Qunyuan; Zhao, Jing Hua; Brennan, Eoin P; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G; Hedman, Åsa K; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McKnight, Amy J; McPherson, Ruth; Metspalu, Andres; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Olsson, Christian; Perry, John Rb; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Schadt, Eric E; Scott, Robert A; Stolk, Lisette; Vallejo, Edgar E; Westra, Harm-Jan; Zondervan, Krina T; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan Jl; Beilby, John; Bergman, Richard N; Blangero, John; Brown, Morris J; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chines, Peter S; Claudi-Boehm, Simone; Collins, Francis S; Crawford, Dana C; Danesh, John; de Faire, Ulf; de Geus, Eco Jc; Dörr, Marcus; Erbel, Raimund; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A; Harris, Tamara B; Hattersley, Andrew T; Heliövaara, Markku; Hicks, Andrew A; Hingorani, Aroon D; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E; Hyppönen, Elina; Illig, Thomas; Jarvelin, Marjo-Riitta; Johansen, Berit; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Musk, Arthur W; Möhlenkamp, Stefan; Morris, Andrew D; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Palmer, Lyle J; Penninx, Brenda W; Peters, Annette; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Ridker, Paul M; Ritchie, Marylyn D; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter Eh; Shuldiner, Alan R; Staessen, Jan A; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Vohl, Marie-Claude; Völker, Uwe; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Adair, Linda S; Bochud, Murielle; Boehm, Bernhard O; Bornstein, Stefan R; Bouchard, Claude; Cauchi, Stéphane; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Cooper, Richard S; Dedoussis, George; Ferrucci, Luigi; Froguel, Philippe; Grabe, Hans-Jörgen; Hamsten, Anders; Hui, Jennie; Hveem, Kristian; Jöckel, Karl-Heinz; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; März, Winfried; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin Na; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sinisalo, Juha; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Veronesi, Giovanni; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Abecasis, Goncalo R; Assimes, Themistocles L; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Franke, Lude; Frayling, Timothy M; Groop, Leif C; Hunter, David J; Kaplan, Robert C; O'Connell, Jeffrey R; Qi, Lu; Schlessinger, David; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Willer, Cristen J; Visscher, Peter M; Yang, Jian; Hirschhorn, Joel N; Zillikens, M Carola; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Fox, Caroline S; Barroso, Inês; Franks, Paul W; Ingelsson, Erik; Heid, Iris M; Loos, Ruth Jf; Cupples, L Adrienne; Morris, Andrew P; Lindgren, Cecilia M; Mohlke, Karen L
2015-02-12
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
New genetic loci link adipose and insulin biology to body fat distribution
Strawbridge, Rona J; Pers, Tune H; Fischer, Krista; Justice, Anne E; Workalemahu, Tsegaselassie; Wu, Joseph M.W.; Buchkovich, Martin L; Heard-Costa, Nancy L; Roman, Tamara S; Drong, Alexander W; Song, Ci; Gustafsson, Stefan; Day, Felix R; Esko, Tonu; Fall, Tove; Kutalik, Zoltán; Luan, Jian’an; Randall, Joshua C; Scherag, André; Vedantam, Sailaja; Wood, Andrew R; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B; Feitosa, Mary F; Goel, Anuj; Jackson, Anne U; Johnson, Toby; Kleber, Marcus E; Kristiansson, Kati; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Stančáková, Alena; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V; Yengo, Loïc; Zhang, Weihua; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Böhringer, Stefan; Bonnet, Fabrice; Böttcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B; Caspersen, Ida H; Clarke, Robert; Daw, E Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex SF; Eklund, Niina; Erdos, Michael R; Estrada, Karol; Eury, Elodie; Friedrich, Nele; Garcia, Melissa E; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grewal, Jagvir; Groves, Christopher J; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heikkilä, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L; Holmen, Oddgeir; Hunt, Steven C; Isaacs, Aaron; Ittermann, Till; James, Alan L; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Mach, François; Magnusson, Patrik KE; Mahajan, Anubha; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Keri L; Mooijaart, Simon P; Mühleisen, Thomas W; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M; Olden, Matthias; Rayner, Nigel W; Renstrom, Frida; Ried, Janina S; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M; Smith, Albert Vernon; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor VA; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Zhang, Qunyuan; Zhao, Jing Hua; Brennan, Eoin P.; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G; Hedman, Åsa K; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McKnight, Amy J; McPherson, Ruth; Metspalu, Andres; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Olsson, Christian; Perry, John RB; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Schadt, Eric E; Scott, Robert A; Stolk, Lisette; Vallejo, Edgar E.; Westra, Harm-Jan; Zondervan, Krina T; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan JL; Beilby, John; Bergman, Richard N; Blangero, John; Brown, Morris J; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chines, Peter S; Claudi-Boehm, Simone; Collins, Francis S; Crawford, Dana C; Danesh, John; de Faire, Ulf; de Geus, Eco JC; Dörr, Marcus; Erbel, Raimund; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A; Harris, Tamara B; Hattersley, Andrew T; Heliövaara, Markku; Hicks, Andrew A; Hingorani, Aroon D; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E; Hyppönen, Elina; Illig, Thomas; Jarvelin, Marjo-Riitta; Johansen, Berit; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Musk, Arthur W; Möhlenkamp, Stefan; Morris, Andrew D; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Palmer, Lyle J; Penninx, Brenda W; Peters, Annette; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, DC; Rice, Treva K; Ridker, Paul M; Ritchie, Marylyn D.; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter EH; Shuldiner, Alan R; Staessen, Jan A; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Vohl, Marie-Claude; Völker, Uwe; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Adair, Linda S; Bochud, Murielle; Boehm, Bernhard O; Bornstein, Stefan R; Bouchard, Claude; Cauchi, Stéphane; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Cooper, Richard S; Dedoussis, George; Ferrucci, Luigi; Froguel, Philippe; Grabe, Hans-Jörgen; Hamsten, Anders; Hui, Jennie; Hveem, Kristian; Jöckel, Karl-Heinz; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; März, Winfried; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin NA; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sinisalo, Juha; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Veronesi, Giovanni; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Abecasis, Goncalo R; Assimes, Themistocles L; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Franke, Lude; Frayling, Timothy M; Groop, Leif C; Hunter, David J.; Kaplan, Robert C; O’Connell, Jeffrey R; Qi, Lu; Schlessinger, David; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Willer, Cristen J; Visscher, Peter M; Yang, Jian; Hirschhorn, Joel N; Zillikens, M Carola; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Fox, Caroline S; Barroso, Inês; Franks, Paul W; Ingelsson, Erik; Heid, Iris M; Loos, Ruth JF; Cupples, L Adrienne; Morris, Andrew P; Lindgren, Cecilia M; Mohlke, Karen L
2014-01-01
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms. PMID:25673412
Rozzo, Stephen J.; Vyse, Timothy J.; Drake, Charles G.; Kotzin, Brian L.
1996-01-01
Autoimmune diseases such as systemic lupus erythematosus are complex genetic traits with contributions from major histocompatibility complex (MHC) genes and multiple unknown non-MHC genes. Studies of animal models of lupus have provided important insight into the immunopathogenesis of disease, and genetic analyses of these models overcome certain obstacles encountered when studying human patients. Genome-wide scans of different genetic crosses have been used to map several disease-linked loci in New Zealand hybrid mice. Although some consensus exists among studies mapping the New Zealand Black (NZB) and New Zealand White (NZW) loci that contribute to lupus-like disease, considerable variability is also apparent. A variable in these studies is the genetic background of the non-autoimmune strain, which could influence genetic contributions from the affected strain. A direct examination of this question was undertaken in the present study by mapping NZB nephritis-linked loci in backcrosses involving different non-autoimmune backgrounds. In a backcross with MHC-congenic C57BL/6J mice, H2z appeared to be the strongest genetic determinant of severe lupus nephritis, whereas in a backcross with congenic BALB/cJ mice, H2z showed no influence on disease expression. NZB loci on chromosomes 1, 4, 11, and 14 appeared to segregate with disease in the BALB/cJ cross, but only the influence of the chromosome 1 locus spanned both crosses and showed linkage with disease when all mice were considered. Thus, the results indicate that contributions from disease-susceptibility loci, including MHC, may vary markedly depending on the non-autoimmune strain used in a backcross analysis. These studies provide insight into variables that affect genetic heterogeneity and add an important dimension of complexity for linkage analyses of human autoimmune disease. PMID:8986781
Evaluation and Quantitative trait loci mapping of resistance to powdery mildew in lettuce
USDA-ARS?s Scientific Manuscript database
Lettuce (Lactuca sativa L.) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. We mapped quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions in an interspecific population derived from a cross betw...
Molecular mapping and breeding with microsatellite markers.
Lightfoot, David A; Iqbal, Muhammad J
2013-01-01
In genetics databases for crop plant species across the world, there are thousands of mapped loci that underlie quantitative traits, oligogenic traits, and simple traits recognized by association mapping in populations. The number of loci will increase as new phenotypes are measured in more diverse genotypes and genetic maps based on saturating numbers of markers are developed. A period of locus reevaluation will decrease the number of important loci as those underlying mega-environmental effects are recognized. A second wave of reevaluation of loci will follow from developmental series analysis, especially for harvest traits like seed yield and composition. Breeding methods to properly use the accurate maps of QTL are being developed. New methods to map, fine map, and isolate the genes underlying the loci will be critical to future advances in crop biotechnology. Microsatellite markers are the most useful tool for breeders. They are codominant, abundant in all genomes, highly polymorphic so useful in many populations, and both economical and technically easy to use. The selective genotyping approaches, including genotype ranking (indexing) based on partial phenotype data combined with favorable allele data and bulked segregation event (segregant) analysis (BSA), will be increasingly important uses for microsatellites. Examples of the methods for developing and using microsatellites derived from genomic sequences are presented for monogenic, oligogenic, and polygenic traits. Examples of successful mapping, fine mapping, and gene isolation are given. When combined with high-throughput methods for genotyping and a genome sequence, the use of association mapping with microsatellite markers will provide critical advances in the analysis of crop traits.
Liang, Jingjing; Le, Thu H.; Edwards, Digna R. Velez; Tayo, Bamidele O.; Gaulton, Kyle J.; Lu, Yingchang; Jensen, Richard A.; Chen, Guanjie; Schwander, Karen; McKenzie, Colin A.; Fox, Ervin; Nalls, Michael A.; Young, J. Hunter; Lane, Jacqueline M.; Zhou, Jie; Tang, Hua; Fornage, Myriam; Musani, Solomon K.; Wang, Heming; Forrester, Terrence; Chu, Pei-Lun; Evans, Michele K.; Morrison, Alanna C.; Martin, Lisa W.; Wiggins, Kerri L.; Hui, Qin; Zhao, Wei; Jackson, Rebecca D.; Faul, Jessica D.; Reiner, Alex P.; Bray, Michael; Denny, Joshua C.; Mosley, Thomas H.; Palmas, Walter; Guo, Xiuqing; Polak, Joseph F.; Taylor, Ken D.; Boerwinkle, Eric; Bottinger, Erwin P.; Liu, Kiang; Risch, Neil; Hunt, Steven C.; Kooperberg, Charles; Zonderman, Alan B.; Becker, Diane M.; Cai, Jianwen; Loos, Ruth J. F.; Psaty, Bruce M.; Weir, David R.; Kardia, Sharon L. R.; Arnett, Donna K.; Won, Sungho; Edwards, Todd L.; Redline, Susan; Cooper, Richard S.; Rao, D. C.; Rotimi, Charles; Levy, Daniel; Chakravarti, Aravinda
2017-01-01
Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P < 1.25×10−8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension. PMID:28498854
Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
Voight, Benjamin F; Scott, Laura J; Steinthorsdottir, Valgerdur; Morris, Andrew P; Dina, Christian; Welch, Ryan P; Zeggini, Eleftheria; Huth, Cornelia; Aulchenko, Yurii S; Thorleifsson, Gudmar; McCulloch, Laura J; Ferreira, Teresa; Grallert, Harald; Amin, Najaf; Wu, Guanming; Willer, Cristen J; Raychaudhuri, Soumya; McCarroll, Steve A; Langenberg, Claudia; Hofmann, Oliver M; Dupuis, Josée; Qi, Lu; Segrè, Ayellet V; van Hoek, Mandy; Navarro, Pau; Ardlie, Kristin; Balkau, Beverley; Benediktsson, Rafn; Bennett, Amanda J; Blagieva, Roza; Boerwinkle, Eric; Bonnycastle, Lori L; Boström, Kristina Bengtsson; Bravenboer, Bert; Bumpstead, Suzannah; Burtt, Noisël P; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn; Couper, David J; Crawford, Gabe; Doney, Alex S F; Elliott, Katherine S; Elliott, Amanda L; Erdos, Michael R; Fox, Caroline S; Franklin, Christopher S; Ganser, Martha; Gieger, Christian; Grarup, Niels; Green, Todd; Griffin, Simon; Groves, Christopher J; Guiducci, Candace; Hadjadj, Samy; Hassanali, Neelam; Herder, Christian; Isomaa, Bo; Jackson, Anne U; Johnson, Paul R V; Jørgensen, Torben; Kao, Wen H L; Klopp, Norman; Kong, Augustine; Kraft, Peter; Kuusisto, Johanna; Lauritzen, Torsten; Li, Man; Lieverse, Aloysius; Lindgren, Cecilia M; Lyssenko, Valeriya; Marre, Michel; Meitinger, Thomas; Midthjell, Kristian; Morken, Mario A; Narisu, Narisu; Nilsson, Peter; Owen, Katharine R; Payne, Felicity; Perry, John R B; Petersen, Ann-Kristin; Platou, Carl; Proença, Christine; Prokopenko, Inga; Rathmann, Wolfgang; Rayner, N William; Robertson, Neil R; Rocheleau, Ghislain; Roden, Michael; Sampson, Michael J; Saxena, Richa; Shields, Beverley M; Shrader, Peter; Sigurdsson, Gunnar; Sparsø, Thomas; Strassburger, Klaus; Stringham, Heather M; Sun, Qi; Swift, Amy J; Thorand, Barbara; Tichet, Jean; Tuomi, Tiinamaija; van Dam, Rob M; van Haeften, Timon W; van Herpt, Thijs; van Vliet-Ostaptchouk, Jana V; Walters, G Bragi; Weedon, Michael N; Wijmenga, Cisca; Witteman, Jacqueline; Bergman, Richard N; Cauchi, Stephane; Collins, Francis S; Gloyn, Anna L; Gyllensten, Ulf; Hansen, Torben; Hide, Winston A; Hitman, Graham A; Hofman, Albert; Hunter, David J; Hveem, Kristian; Laakso, Markku; Mohlke, Karen L; Morris, Andrew D; Palmer, Colin N A; Pramstaller, Peter P; Rudan, Igor; Sijbrands, Eric; Stein, Lincoln D; Tuomilehto, Jaakko; Uitterlinden, Andre; Walker, Mark; Wareham, Nicholas J; Watanabe, Richard M; Abecasis, Gonçalo R; Boehm, Bernhard O; Campbell, Harry; Daly, Mark J; Hattersley, Andrew T; Hu, Frank B; Meigs, James B; Pankow, James S; Pedersen, Oluf; Wichmann, H-Erich; Barroso, Inês; Florez, Jose C; Frayling, Timothy M; Groop, Leif; Sladek, Rob; Thorsteinsdottir, Unnur; Wilson, James F; Illig, Thomas; Froguel, Philippe; van Duijn, Cornelia M; Stefansson, Kari; Altshuler, David; Boehnke, Michael; McCarthy, Mark I
2011-01-01
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits. PMID:20581827
A novel eQTL-based analysis reveals the biology of breast cancer risk loci
Li, Qiyuan; Seo, Ji-Heui; Stranger, Barbara; McKenna, Aaron; Pe'er, Itsik; LaFramboise, Thomas; Brown, Myles; Tyekucheva, Svitlana; Freedman, Matthew L.
2014-01-01
Summary Germline determinants of gene expression in tumors are less studied due to the complexity of transcript regulation caused by somatically acquired alterations. We performed expression quantitative trait locus (eQTL) based analyses using the multi-level information provided in The Cancer Genome Atlas (TCGA). Of the factors we measured, cis-acting eQTL saccounted for 1.2% of the total variation of tumor gene expression, while somatic copy number alteration and CpG methylation accounted for 7.3% and 3.3%, respectively. eQTL analyses of 15 previously reported breast cancer risk loci resulted in discovery of three variants that are significantly associated with transcript levels (FDR<0.1). In a novel trans- based analysis, an additional three risk loci were identified to act through ESR1, MYC, and KLF4. These findings provide a more comprehensive picture of gene expression determinants in breast cancer as well as insights into the underlying biology of breast cancer risk loci. PMID:23374354
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Ake; Aerts, Andrea; Asiegbu, Fred
Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H.more » irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.« less
Smith, H A; White, B J; Kundert, P; Cheng, C; Romero-Severson, J; Andolfatto, P; Besansky, N J
2015-01-01
Although freshwater (FW) is the ancestral habitat for larval mosquitoes, multiple species independently evolved the ability to survive in saltwater (SW). Here, we use quantitative trait locus (QTL) mapping to investigate the genetic architecture of osmoregulation in Anopheles mosquitoes, vectors of human malaria. We analyzed 1134 backcross progeny from a cross between the obligate FW species An. coluzzii, and its closely related euryhaline sibling species An. merus. Tests of 2387 markers with Bayesian interval mapping and machine learning (random forests) yielded six genomic regions associated with SW tolerance. Overlap in QTL regions from both approaches enhances confidence in QTL identification. Evidence exists for synergistic as well as disruptive epistasis among loci. Intriguingly, one QTL region containing ion transporters spans the 2Rop chromosomal inversion that distinguishes these species. Rather than a simple trait controlled by one or a few loci, our data are most consistent with a complex, polygenic mode of inheritance. PMID:25920668
Lachowiec, Jennifer; Shen, Xia; Queitsch, Christine; Carlborg, Örjan
2015-01-01
Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance explains the insignificant narrow-sense and significant broad-sense heritability by using a combination of careful statistical epistatic analyses and functional genetic experiments.
Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian'an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tõnu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês
2012-09-01
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês
2012-01-01
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924
Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W; Gretarsdottir, Solveig; Anderson, Christopher D; Chong, Michael; Adams, Hieab H H; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M; Benavente, Oscar R; Bevan, Steve; Boncoraglio, Giorgio B; Brown, Robert D; Butterworth, Adam S; Carrera, Caty; Carty, Cara L; Chasman, Daniel I; Chen, Wei-Min; Cole, John W; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I W; DeStefano, Anita L; den Hoed, Marcel; Duan, Qing; Engelter, Stefan T; Falcone, Guido J; Gottesman, Rebecca F; Grewal, Raji P; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B; Hassan, Ahamad; Havulinna, Aki S; Heckbert, Susan R; Holliday, Elizabeth G; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I; Ikram, M Arfan; Ingelsson, Erik; Irvin, Marguerite R; Jian, Xueqiu; Jiménez-Conde, Jordi; Johnson, Julie A; Jukema, J Wouter; Kanai, Masahiro; Keene, Keith L; Kissela, Brett M; Kleindorfer, Dawn O; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M; Lin, Wei-Yu; Lindgren, Arne G; Lorentzen, Erik; Magnusson, Patrik K; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F; Meschia, James F; Mitchell, Braxton D; Mosley, Thomas H; Nalls, Michael A; Ninomiya, Toshiharu; O'Donnell, Martin J; Psaty, Bruce M; Pulit, Sara L; Rannikmäe, Kristiina; Reiner, Alexander P; Rexrode, Kathryn M; Rice, Kenneth; Rich, Stephen S; Ridker, Paul M; Rost, Natalia S; Rothwell, Peter M; Rotter, Jerome I; Rundek, Tatjana; Sacco, Ralph L; Sakaue, Saori; Sale, Michele M; Salomaa, Veikko; Sapkota, Bishwa R; Schmidt, Reinhold; Schmidt, Carsten O; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L M; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D; Thijs, Vincent N S; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M; Walters, Matthew; Wareham, Nicholas J; Wassertheil-Smoller, Sylvia; Wilson, James G; Wiggins, Kerri L; Yang, Qiong; Yusuf, Salim; Bis, Joshua C; Pastinen, Tomi; Ruusalepp, Arno; Schadt, Eric E; Koplev, Simon; Björkegren, Johan L M; Codoni, Veronica; Civelek, Mete; Smith, Nicholas L; Trégouët, David A; Christophersen, Ingrid E; Roselli, Carolina; Lubitz, Steven A; Ellinor, Patrick T; Tai, E Shyong; Kooner, Jaspal S; Kato, Norihiro; He, Jiang; van der Harst, Pim; Elliott, Paul; Chambers, John C; Takeuchi, Fumihiko; Johnson, Andrew D; Sanghera, Dharambir K; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W T; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B; Kittner, Steven J; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S; Howson, Joanna M M; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin; Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W; Gretarsdottir, Solveig; Anderson, Christopher D; Chong, Michael; Adams, Hieab H H; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M; Benavente, Oscar R; Bevan, Steve; Boncoraglio, Giorgio B; Brown, Robert D; Butterworth, Adam S; Carrera, Caty; Carty, Cara L; Chasman, Daniel I; Chen, Wei-Min; Cole, John W; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I W; DeStefano, Anita L; Hoed, Marcel den; Duan, Qing; Engelter, Stefan T; Falcone, Guido J; Gottesman, Rebecca F; Grewal, Raji P; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B; Hassan, Ahamad; Havulinna, Aki S; Heckbert, Susan R; Holliday, Elizabeth G; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I; Ikram, M Arfan; Ingelsson, Erik; Irvin, Marguerite R; Jian, Xueqiu; Jiménez-Conde, Jordi; Johnson, Julie A; Jukema, J Wouter; Kanai, Masahiro; Keene, Keith L; Kissela, Brett M; Kleindorfer, Dawn O; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M; Lin, Wei-Yu; Lindgren, Arne G; Lorentzen, Erik; Magnusson, Patrik K; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F; Meschia, James F; Mitchell, Braxton D; Mosley, Thomas H; Nalls, Michael A; Ninomiya, Toshiharu; O'Donnell, Martin J; Psaty, Bruce M; Pulit, Sara L; Rannikmäe, Kristiina; Reiner, Alexander P; Rexrode, Kathryn M; Rice, Kenneth; Rich, Stephen S; Ridker, Paul M; Rost, Natalia S; Rothwell, Peter M; Rotter, Jerome I; Rundek, Tatjana; Sacco, Ralph L; Sakaue, Saori; Sale, Michele M; Salomaa, Veikko; Sapkota, Bishwa R; Schmidt, Reinhold; Schmidt, Carsten O; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L M; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D; Thijs, Vincent N S; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M; Walters, Matthew; Wareham, Nicholas J; Wassertheil-Smoller, Sylvia; Wilson, James G; Wiggins, Kerri L; Yang, Qiong; Yusuf, Salim; Amin, Najaf; Aparicio, Hugo S; Arnett, Donna K; Attia, John; Beiser, Alexa S; Berr, Claudine; Buring, Julie E; Bustamante, Mariana; Caso, Valeria; Cheng, Yu-Ching; Choi, Seung Hoan; Chowhan, Ayesha; Cullell, Natalia; Dartigues, Jean-François; Delavaran, Hossein; Delgado, Pilar; Dörr, Marcus; Engström, Gunnar; Ford, Ian; Gurpreet, Wander S; Hamsten, Anders; Heitsch, Laura; Hozawa, Atsushi; Ibanez, Laura; Ilinca, Andreea; Ingelsson, Martin; Iwasaki, Motoki; Jackson, Rebecca D; Jood, Katarina; Jousilahti, Pekka; Kaffashian, Sara; Kalra, Lalit; Kamouchi, Masahiro; Kitazono, Takanari; Kjartansson, Olafur; Kloss, Manja; Koudstaal, Peter J; Krupinski, Jerzy; Labovitz, Daniel L; Laurie, Cathy C; Levi, Christopher R; Li, Linxin; Lind, Lars; Lindgren, Cecilia M; Lioutas, Vasileios; Liu, Yong Mei; Lopez, Oscar L; Makoto, Hirata; Martinez-Majander, Nicolas; Matsuda, Koichi; Minegishi, Naoko; Montaner, Joan; Morris, Andrew P; Muiño, Elena; Müller-Nurasyid, Martina; Norrving, Bo; Ogishima, Soichi; Parati, Eugenio A; Peddareddygari, Leema Reddy; Pedersen, Nancy L; Pera, Joanna; Perola, Markus; Pezzini, Alessandro; Pileggi, Silvana; Rabionet, Raquel; Riba-Llena, Iolanda; Ribasés, Marta; Romero, Jose R; Roquer, Jaume; Rudd, Anthony G; Sarin, Antti-Pekka; Sarju, Ralhan; Sarnowski, Chloe; Sasaki, Makoto; Satizabal, Claudia L; Satoh, Mamoru; Sattar, Naveed; Sawada, Norie; Sibolt, Gerli; Sigurdsson, Ásgeir; Smith, Albert; Sobue, Kenji; Soriano-Tárraga, Carolina; Stanne, Tara; Stine, O Colin; Stott, David J; Strauch, Konstantin; Takai, Takako; Tanaka, Hideo; Tanno, Kozo; Teumer, Alexander; Tomppo, Liisa; Torres-Aguila, Nuria P; Touze, Emmanuel; Tsugane, Shoichiro; Uitterlinden, Andre G; Valdimarsson, Einar M; van der Lee, Sven J; Völzke, Henry; Wakai, Kenji; Weir, David; Williams, Stephen R; Wolfe, Charles D A; Wong, Quenna; Xu, Huichun; Yamaji, Taiki; Sanghera, Dharambir K; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W T; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B; Kittner, Steven J; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S; Howson, Joanna M M; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin
2018-04-01
Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.
Malik, Rainer; Chauhan, Ganesh; Traylor, Matthew; Sargurupremraj, Muralidharan; Okada, Yukinori; Mishra, Aniket; Rutten-Jacobs, Loes; Giese, Anne-Katrin; van der Laan, Sander W.; Gretarsdottir, Solveig; Anderson, Christopher D.; Chong, Michael; Adams, Hieab H. H.; Ago, Tetsuro; Almgren, Peter; Amouyel, Philippe; Ay, Hakan; Bartz, Traci M.; Benavente, Oscar R.; Bevan, Steve; Boncoraglio, Giorgio B.; Brown, Robert D.; Butterworth, Adam S.; Carrera, Caty; Carty, Cara L.; Chasman, Daniel I.; Chen, Wei-Min; Cole, John W.; Correa, Adolfo; Cotlarciuc, Ioana; Cruchaga, Carlos; Danesh, John; de Bakker, Paul I. W.; DeStefano, Anita L.; den Hoed, Marcel; Duan, Qing; Engelter, Stefan T.; Falcone, Guido J.; Gottesman, Rebecca F.; Grewal, Raji P.; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeffrey; Harris, Tamara B.; Hassan, Ahamad; Havulinna, Aki S.; Heckbert, Susan R.; Holliday, Elizabeth G.; Howard, George; Hsu, Fang-Chi; Hyacinth, Hyacinth I.; Ikram, M. Arfan; ingelsson, Erik; Irvin, Marguerite R.; Jian, Xueqiu; Jimenez-Conde, Jordi; Johnson, Julie A.; Jukema, J. Wouter; Kanai, Masahiro; Keene, Keith L.; Kissela, Brett M.; Kleindorfer, Dawn O.; Kooperberg, Charles; Kubo, Michiaki; Lange, Leslie A.; Langefeld, Carl D.; Langenberg, Claudia; Launer, Lenore J.; Lee, Jin-Moo; Lemmens, Robin; Leys, Didier; Lewis, Cathryn M.; Lin, Wei-Yu; Lindgren, Arne G.; Lorentzen, Erik; Magnusson, Patrik K.; Maguire, Jane; Manichaikul, Ani; McArdle, Patrick F.; Meschia, James F.; Mitchell, Braxton D.; Mosley, Thomas H.; Nalls, Michael A.; Ninomiya, Toshiharu; O’Donnell, Martin J.; Psaty, Bruce M.; Pulit, Sara L.; Rannikmäe, Kristiina; Reiner, Alexander P.; Rexrode, Kathryn M.; Rice, Kenneth; Rich, Stephen S.; Ridker, Paul M.; Rost, Natalia S.; Rothwell, Peter M.; Rotter, Jerome I.; Rundek, Tatjana; Sacco, Ralph L.; Sakaue, Saori; Sale, Michele M.; Salomaa, Veikko; Sapkota, Bishwa R.; Schmidt, Reinhold; Schmidt, Carsten O.; Schminke, Ulf; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L. M.; Tanislav, Christian; Tatlisumak, Turgut; Taylor, Kent D.; Thijs, Vincent N. S.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiedt, Steffen; Trompet, Stella; Tzourio, Christophe; van Duijn, Cornelia M.; Walters, Matthew; Wareham, Nicholas J.; Wassertheil-Smoller, Sylvia; Wilson, James G.; Wiggins, Kerri L.; Yang, Qiong; Yusuf, Salim; Bis, Joshua C.; Pastinen, Tomi; Ruusalepp, Arno; Schadt, Eric E.; Koplev, Simon; Björkegren, Johan L. M.; Codoni, Veronica; Civelek, Mete; Smith, Nicholas L.; Tregouet, David A.; Christophersen, Ingrid E.; Roselli, Carolina; Lubitz, Steven A.; Ellinor, Patrick T.; Tai, E. Shyong; Kooner, Jaspal S.; Kato, Norihiro; He, Jiang; van der Harst, Pim; Elliott, Paul; Chambers, John C.; Takeuchi, Fumihiko; Johnson, Andrew D.; Sanghera, Dharambir K.; Melander, Olle; Jern, Christina; Strbian, Daniel; Fernandez-Cadenas, Israel; Longstreth, W. T.; Rolfs, Arndt; Hata, Jun; Woo, Daniel; Rosand, Jonathan; Pare, Guillaume; Hopewell, Jemma C.; Saleheen, Danish; Stefansson, Kari; Worrall, Bradford B.; Kittner, Steven J.; Seshadri, Sudha; Fornage, Myriam; Markus, Hugh S.; Howson, Joanna M. M.; Kamatani, Yoichiro; Debette, Stephanie; Dichgans, Martin
2018-01-01
Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy. PMID:29531354
USDA-ARS?s Scientific Manuscript database
Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufm. & Gerd. and flooding can limit growth and productivity, of soybean [Glycine max (L.) Merr.], especially on poorly drained soils. The primary objective of this research project was to map quantitative trait loci (QTL) associated with f...
CBCL Pediatric Bipolar Disorder Profile and ADHD: Comorbidity and Quantitative Trait Loci Analysis
ERIC Educational Resources Information Center
McGough, James J.; Loo, Sandra K.; McCracken, James T.; Dang, Jeffery; Clark, Shaunna; Nelson, Stanley F.; Smalley, Susan L.
2008-01-01
The pediatric bipolar disorder profile of the Child Behavior checklist is used to differentiate patterns of comorbidity and to search for quantitative trait loci in multiple affected ADHD sibling pairs. The CBCL-PBD profiling identified 8 percent of individuals with severe psychopathology and increased rates of oppositional defiant, conduct and…
USDA-ARS?s Scientific Manuscript database
Perennial grasses cover diverse soils throughout the world, including sites contaminated with heavy metals, producing forages that must be safe for livestock and wildlife. Chromosome regions known as quantitative trait loci (QTLs) controlling forage mineral concentrations were mapped in a populatio...
USDA-ARS?s Scientific Manuscript database
Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), and southwestern corn borer (SWCB), Diatraea grandiosella Dyar are damaging insect pests of maize resulting in significant yield and economic losses. A previous study identified quantitative trait loci (QTL) that contribute to reduced leaf-fe...
Lo, Min-Tzu; Hinds, David A.; Tung, Joyce Y.; Franz, Carol; Fan, Chun-Chieh; Wang, Yunpeng; Smeland, Olav B.; Schork, Andrew; Holland, Dominic; Kauppi, Karolina; Sanyal, Nilotpal; Escott-Price, Valentina; Smith, Daniel J.; O'Donovan, Michael; Stefansson, Hreinn; Bjornsdottir, Gyda; Thorgeirsson, Thorgeir E.; Stefansson, Kari; McEvoy, Linda K.; Dale, Anders M.; Andreassen, Ole A.; Chen, Chi-Hua
2017-01-01
Summary Personality is influenced by genetic and environmental factors1, and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N=123,132–260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N=5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit/hyperactivity disorder (ADHD), and between openness and schizophrenia/bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression/anxiety). PMID:27918536
Lo, Min-Tzu; Hinds, David A; Tung, Joyce Y; Franz, Carol; Fan, Chun-Chieh; Wang, Yunpeng; Smeland, Olav B; Schork, Andrew; Holland, Dominic; Kauppi, Karolina; Sanyal, Nilotpal; Escott-Price, Valentina; Smith, Daniel J; O'Donovan, Michael; Stefansson, Hreinn; Bjornsdottir, Gyda; Thorgeirsson, Thorgeir E; Stefansson, Kari; McEvoy, Linda K; Dale, Anders M; Andreassen, Ole A; Chen, Chi-Hua
2017-01-01
Personality is influenced by genetic and environmental factors and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132-260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422-18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit-hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).
Genetic Basis of Haloperidol Resistance in Saccharomyces cerevisiae Is Complex and Dose Dependent
Wang, Xin; Kruglyak, Leonid
2014-01-01
The genetic basis of most heritable traits is complex. Inhibitory compounds and their effects in model organisms have been used in many studies to gain insights into the genetic architecture underlying quantitative traits. However, the differential effect of compound concentration has not been studied in detail. In this study, we used a large segregant panel from a cross between two genetically divergent yeast strains, BY4724 (a laboratory strain) and RM11_1a (a vineyard strain), to study the genetic basis of variation in response to different doses of a drug. Linkage analysis revealed that the genetic architecture of resistance to the small-molecule therapeutic drug haloperidol is highly dose-dependent. Some of the loci identified had effects only at low doses of haloperidol, while other loci had effects primarily at higher concentrations of the drug. We show that a major QTL affecting resistance across all concentrations of haloperidol is caused by polymorphisms in SWH1, a homologue of human oxysterol binding protein. We identify a complex set of interactions among the alleles of the genes SWH1, MKT1, and IRA2 that are most pronounced at a haloperidol dose of 200 µM and are only observed when the remainder of the genome is of the RM background. Our results provide further insight into the genetic basis of drug resistance. PMID:25521586
Li, Li; Paulo, Maria-João; van Eeuwijk, Fred
2010-01-01
Association mapping using DNA-based markers is a novel tool in plant genetics for the analysis of complex traits. Potato tuber yield, starch content, starch yield and chip color are complex traits of agronomic relevance, for which carbohydrate metabolism plays an important role. At the functional level, the genes and biochemical pathways involved in carbohydrate metabolism are among the best studied in plants. Quantitative traits such as tuber starch and sugar content are therefore models for association genetics in potato based on candidate genes. In an association mapping experiment conducted with a population of 243 tetraploid potato varieties and breeding clones, we previously identified associations between individual candidate gene alleles and tuber starch content, starch yield and chip quality. In the present paper, we tested 190 DNA markers at 36 loci scored in the same association mapping population for pairwise statistical epistatic interactions. Fifty marker pairs were associated mainly with tuber starch content and/or starch yield, at a cut-off value of q ≤ 0.20 for the experiment-wide false discovery rate (FDR). Thirteen marker pairs had an FDR of q ≤ 0.10. Alleles at loci encoding ribulose-bisphosphate carboxylase/oxygenase activase (Rca), sucrose phosphate synthase (Sps) and vacuolar invertase (Pain1) were most frequently involved in statistical epistatic interactions. The largest effect on tuber starch content and starch yield was observed for the paired alleles Pain1-8c and Rca-1a, explaining 9 and 10% of the total variance, respectively. The combination of these two alleles increased the means of tuber starch content and starch yield. Biological models to explain the observed statistical epistatic interactions are discussed. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1389-3) contains supplementary material, which is available to authorized users. PMID:20603706
Bürger, R; Gimelfarb, A
1999-01-01
Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination. PMID:10353920
Byars, Sean G; Huang, Qin Qin; Gray, Lesley-Ann; Bakshi, Andrew; Ripatti, Samuli; Abraham, Gad; Stearns, Stephen C; Inouye, Michael
2017-06-01
Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD.
Complex Genetics of Behavior: BXDs in the Automated Home-Cage.
Loos, Maarten; Verhage, Matthijs; Spijker, Sabine; Smit, August B
2017-01-01
This chapter describes a use case for the genetic dissection and automated analysis of complex behavioral traits using the genetically diverse panel of BXD mouse recombinant inbred strains. Strains of the BXD resource differ widely in terms of gene and protein expression in the brain, as well as in their behavioral repertoire. A large mouse resource opens the possibility for gene finding studies underlying distinct behavioral phenotypes, however, such a resource poses a challenge in behavioral phenotyping. To address the specifics of large-scale screening we describe how to investigate: (1) how to assess mouse behavior systematically in addressing a large genetic cohort, (2) how to dissect automation-derived longitudinal mouse behavior into quantitative parameters, and (3) how to map these quantitative traits to the genome, deriving loci underlying aspects of behavior.
Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic
2015-05-01
Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone.
Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.
van Heerwaarden, Joost; van Zanten, Martijn; Kruijer, Willem
2015-10-01
Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation.
Uricchio, Lawrence H; Zaitlen, Noah A; Ye, Chun Jimmie; Witte, John S; Hernandez, Ryan D
2016-07-01
The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. © 2016 Uricchio et al.; Published by Cold Spring Harbor Laboratory Press.
Male pregnancy and the evolution of body segmentation in seahorses and pipefishes.
Hoffman, Eric A; Mobley, Kenyon B; Jones, Adam G
2006-02-01
The evolution of complex traits, which are specified by the interplay of multiple genetic loci and environmental effects, is a topic of central importance in evolutionary biology. Here, we show that body and tail vertebral numbers in fishes of the pipefish and seahorse family (Syngnathidae) can serve as a model for studies of quantitative trait evolution. A quantitative genetic analysis of body and tail vertebrae from field-collected families of the Gulf pipefish, Syngnathus scovelli, shows that both traits exhibit significantly positive additive genetic variance, with heritabilities of 0.75 +/- 0.13 (mean +/- standard error) and 0.46 +/- 0.18, respectively. We do not find any evidence for either phenotypic or genetic correlations between the two traits. Pipefish are characterized by male pregnancy, and phylogenetic consideration of body proportions suggests that the position of eggs on the pregnant male's body may have contributed to the evolution of vertebral counts. In terms of numbers of vertebrae, tail-brooding males have longer tails for a given trunk size than do trunk-brooding males. Overall, these results suggest that vertebral counts in pipefish are heritable traits, capable of a response to selection, and they may have experienced an interesting history of selection due to the phenomenon of male pregnancy. Given that these traits vary among populations within species as well as among species, they appear to provide an excellent model for further research on complex trait evolution. Body segmentation may thus afford excellent opportunities for comparative study of homologous complex traits among disparate vertebrate taxa.
Saastamoinen, Marjo; Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W; Fronhofer, Emanuel A; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M; Travis, Justin M J; Donohue, Kathleen; Bullock, James M; Del Mar Delgado, Maria
2018-02-01
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W.; Fronhofer, Emanuel A.; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M.; Travis, Justin M. J.; Donohue, Kathleen; Bullock, James M.; del Mar Delgado, Maria
2017-01-01
ABSTRACT Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. PMID:28776950
Portis, Ezio; Scaglione, Davide; Acquadro, Alberto; Mauromicale, Giovanni; Mauro, Rosario; Knapp, Steven J; Lanteri, Sergio
2012-05-23
The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach. A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species' haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance. The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection.
Neutral mutation as the source of genetic variation in life history traits.
Brcić-Kostić, Krunoslav
2005-08-01
The mechanism underlying the maintenance of adaptive genetic variation is a long-standing question in evolutionary genetics. There are two concepts (mutation-selection balance and balancing selection) which are based on the phenotypic differences between alleles. Mutation - selection balance and balancing selection cannot properly explain the process of gene substitution, i.e. the molecular evolution of quantitative trait loci affecting fitness. I assume that such loci have non-essential functions (small effects on fitness), and that they have the potential to evolve into new functions and acquire new adaptations. Here I show that a high amount of neutral polymorphism at these loci can exist in real populations. Consistent with this, I propose a hypothesis for the maintenance of genetic variation in life history traits which can be efficient for the fixation of alleles with very small selective advantage. The hypothesis is based on neutral polymorphism at quantitative trait loci and both neutral and adaptive gene substitutions. The model of neutral - adaptive conversion (NAC) assumes that neutral alleles are not neutral indefinitely, and that in specific and very rare situations phenotypic (relative fitness) differences between them can appear. In this paper I focus on NAC due to phenotypic plasticity of neutral alleles. The important evolutionary consequence of NAC could be the increased adaptive potential of a population. Loci responsible for adaptation should be fast evolving genes with minimally discernible phenotypic effects, and the recent discovery of genes with such characteristics implicates them as suitable candidates for loci involved in adaptation.
Phan, Huyen T. T.; Ellwood, Simon R.; Adhikari, Kedar; Nelson, Matthew N.; Oliver, Richard P.
2007-01-01
Abstract We report the first genetic linkage map of white lupin (Lupinus albus L.). An F8 recombinant inbred line population developed from Kiev mutant × P27174 was mapped with 220 amplified fragment length polymorphism and 105 gene-based markers. The genetic map consists of 28 main linkage groups (LGs) that varied in length from 22.7 cM to 246.5 cM and spanned a total length of 2951 cM. There were seven additional pairs and 15 unlinked markers, and 12.8% of markers showed segregation distortion at P < 0.05. Syntenic relationships between Medicago truncatula and L. albus were complex. Forty-five orthologous markers that mapped between M. truncatula and L. albus identified 17 small syntenic blocks, and each M. truncatula chromosome aligned to between one and six syntenic blocks in L. albus. Genetic mapping of three important traits: anthracnose resistance, flowering time, and alkaloid content allowed loci governing these traits to be defined. Two quantitative trait loci (QTLs) with significant effects were identified for anthracnose resistance on LG4 and LG17, and two QTLs were detected for flowering time on the top of LG1 and LG3. Alkaloid content was mapped as a Mendelian trait to LG11. PMID:17526914
Dechaine, Jennifer M; Brock, Marcus T; Iniguez-Luy, Federico L; Weinig, Cynthia
2014-01-01
Growth in plants occurs via the addition of repeating modules, suggesting that the genetic architecture of similar subunits may vary between earlier- and later-developing modules. These complex environment × ontogeny interactions are not well elucidated, as studies examining quantitative trait loci (QTLs) expression over ontogeny have not included multiple environments. Here, we characterized the genetic architecture of vegetative traits and onset of reproduction over ontogeny in recombinant inbred lines of Brassica rapa in the field and glasshouse. The magnitude of genetic variation in plasticity of seedling internodes was greater than in those produced later in ontogeny. We correspondingly detected that QTLs for seedling internode length were environment-specific, whereas later in ontogeny the majority of QTLs affected internode lengths in all treatments. The relationship between internode traits and onset of reproduction varied with environment and ontogenetic stage. This relationship was observed only in the glasshouse environment and was largely attributable to one environment-specific QTL. Our results provide the first evidence of a QTL × environment × ontogeny interaction, and provide QTL resolution for differences between early- and later-stage plasticity for stem elongation. These results also suggest potential constraints on morphological evolution in early vs later modules as a result of associations with reproductive timing. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Tang, Zhihong; Guo, Li; Liu, Yang; Shao, Changwei; Chen, Songlin; Yang, Guanpin
2016-11-01
A cultured female half-smooth tongue sole ( Cynoglossus semilaevis) was crossed with a wild male, yielding the first filial generation of pseudo-testcrossing from which 200 fish were randomly selected to locate the Vibrio anguillarum resistance trait in half-smooth tongue sole at its microsatellite linkage map. In total, 129 microsatellites were arrayed into 18 linkage groups, ≥4 each. The map reconstructed was 852.85 cM in length with an average spacing of 7.68 cM, covering 72.07% of that expected (1 183.35 cM). The V. anguillarum resistance trait was a composite rather than a unit trait, which was tentatively partitioned into Survival time in Hours After V. anguillarum Infection (SHAVI) and Immunity of V. Anguillarum Infection (IVAI). Above a logarithm of the odds (LOD) threshold of 2.5, 18 loci relative to SHAVI and 3 relative to IVAI were identified. The 3 loci relative to IVAI explained 18.78%, 5.87% and 6.50% of the total phenotypic variation in immunity. The microsatellites bounding the 3 quantitative trait loci (QTLs) of IVAI may in future aid to the selection of V. anguillarum-immune half-smooth tongue sole varieties, and facilitate cloning the gene(s) controlling such immunity.
Single-Nucleotide-Polymorphism-Based Association Mapping of Dog Stereotypes
Jones, Paul; Chase, Kevin; Martin, Alan; Davern, Pluis; Ostrander, Elaine A.; Lark, Karl G.
2008-01-01
Phenotypic stereotypes are traits, often polygenic, that have been stringently selected to conform to specific criteria. In dogs, Canis familiaris, stereotypes result from breed standards set for conformation, performance (behaviors), etc. As a consequence, phenotypic values measured on a few individuals are representative of the breed stereotype. We used DNA samples isolated from 148 dog breeds to associate SNP markers with breed stereotypes. Using size as a trait to test the method, we identified six significant quantitative trait loci (QTL) on five chromosomes that include candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Less well-documented data for behavioral stereotypes tentatively identified loci for herding, pointing, boldness, and trainability. Four significant loci were identified for longevity, a breed characteristic not under direct selection, but inversely correlated with breed size. The strengths and limitations of the approach are discussed as well as its potential to identify loci regulating the within-breed incidence of specific polygenic diseases. PMID:18505865
ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae.
López-Martínez, Gema; Margalef-Català, Mar; Salinas, Francisco; Liti, Gianni; Cordero-Otero, Ricardo
2015-01-01
Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype.
Recent advancements to study flowering time in almond and other Prunus species
Sánchez-Pérez, Raquel; Del Cueto, Jorge; Dicenta, Federico; Martínez-Gómez, Pedro
2014-01-01
Flowering time is an important agronomic trait in almond since it is decisive to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. Consequently, flowering time has to be studied for several years to have statistical significant results. This trait is the result of the interaction between chilling and heat requirements. Flowering time is a polygenic trait with high heritability, although a major gene Late blooming (Lb) was described in “Tardy Nonpareil.” Molecular studies at DNA level confirmed this polygenic nature identifying several genome regions (Quantitative Trait Loci, QTL) involved. Studies about regulation of gene expression are scarcer although several transcription factors have been described as responsible for flowering time. From the metabolomic point of view, the integrated analysis of the mechanisms of accumulation of cyanogenic glucosides and flowering regulation through transcription factors open new possibilities in the analysis of this complex trait in almond and in other Prunus species (apricot, cherry, peach, plum). New opportunities are arising from the integration of recent advancements including phenotypic, genetic, genomic, transcriptomic, and metabolomics studies from the beginning of dormancy until flowering. PMID:25071812
ATG18 and FAB1 Are Involved in Dehydration Stress Tolerance in Saccharomyces cerevisiae
López-Martínez, Gema; Margalef-Català, Mar; Salinas, Francisco; Liti, Gianni; Cordero-Otero, Ricardo
2015-01-01
Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype. PMID:25803831
Use of single nucleotide polymorphisms (SNP) to fine-map quantitative trait loci (QTL) in swine
USDA-ARS?s Scientific Manuscript database
Mapping quantitative trait loci (QTL) in swine at the US Meat Animal Research Center has relied heavily on linkage mapping in either F2 or Backcross families. QTL identified in the initial scans typically have very broad confidence intervals and further refinement of the QTL’s position is needed bef...
Educational Software for Mapping Quantitative Trait Loci (QTL)
ERIC Educational Resources Information Center
Helms, T. C.; Doetkott, C.
2007-01-01
This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…
The IQ Quantitative Trait Loci Project: A Critique.
ERIC Educational Resources Information Center
King, David
1998-01-01
Describes the IQ Quantitative Trait Loci (QTL) project, an attempt to identify genes underlying IQ score variations using maps from the Human Genome Project. The essay argues against funding the IQ QTL project because it will end the debates about the genetic basis of intelligence and may lead directly to eugenic programs of genetic testing. (SLD)
USDA-ARS?s Scientific Manuscript database
In this study, quantitative trait loci (QTLs) affecting the concentrations of 16 elements in whole, unmilled rice (Oryza sativa L.) grain were identified. Two rice mapping populations, the ‘Lemont’ x ‘TeQing’ recombinant inbred lines (LT-RILs), and the TeQing-into-Lemont backcross introgression lin...
USDA-ARS?s Scientific Manuscript database
Isoflavones from soybeans (Glycine max L. Merr.) have significant impact on human health in reducing the risk of several major diseases. Breeding soybean for high isoflavones content in the seed is possible through marker assisted selection (MAS), which can be based on quantitative trait loci (QTL)....
Baker, Lauren A.; Kirkpatrick, Brian; Rosa, Guilherme J. M.; Gianola, Daniel; Valente, Bruno; Sumner, Julia P.; Baltzer, Wendy; Hao, Zhengling; Binversie, Emily E.; Volstad, Nicola; Piazza, Alexander; Sample, Susannah J.
2017-01-01
Anterior cruciate ligament (ACL) rupture is a common condition that can be devastating and life changing, particularly in young adults. A non-contact mechanism is typical. Second ACL ruptures through rupture of the contralateral ACL or rupture of a graft repair is also common. Risk of rupture is increased in females. ACL rupture is also common in dogs. Disease prevalence exceeds 5% in several dog breeds, ~100 fold higher than human beings. We provide insight into the genetic etiology of ACL rupture by genome-wide association study (GWAS) in a high-risk breed using 98 case and 139 control Labrador Retrievers. We identified 129 single nucleotide polymorphisms (SNPs) within 99 risk loci. Associated loci (P<5E-04) explained approximately half of phenotypic variance in the ACL rupture trait. Two of these loci were located in uncharacterized or non-coding regions of the genome. A chromosome 24 locus containing nine genes with diverse functions met genome-wide significance (P = 3.63E-0.6). GWAS pathways were enriched for c-type lectins, a gene set that includes aggrecan, a gene set encoding antimicrobial proteins, and a gene set encoding membrane transport proteins with a variety of physiological functions. Genotypic risk estimated for each dog based on the risk contributed by each GWAS locus showed clear separation of ACL rupture cases and controls. Power analysis of the GWAS data set estimated that ~172 loci explain the genetic contribution to ACL rupture in the Labrador Retriever. Heritability was estimated at 0.48. We conclude ACL rupture is a moderately heritable highly polygenic complex trait. Our results implicate c-type lectin pathways in ACL homeostasis. PMID:28379989
Muraya, Moses M; Chu, Jianting; Zhao, Yusheng; Junker, Astrid; Klukas, Christian; Reif, Jochen C; Altmann, Thomas
2017-01-01
Hitherto, most quantitative trait loci of maize growth and biomass yield have been identified for a single time point, usually the final harvest stage. Through this approach cumulative effects are detected, without considering genetic factors causing phase-specific differences in growth rates. To assess the genetics of growth dynamics, we employed automated non-invasive phenotyping to monitor the plant sizes of 252 diverse maize inbred lines at 11 different developmental time points; 50 k SNP array genotype data were used for genome-wide association mapping and genomic selection. The heritability of biomass was estimated to be over 71%, and the average prediction accuracy amounted to 0.39. Using the individual time point data, 12 main effect marker-trait associations (MTAs) and six pairs of epistatic interactions were detected that displayed different patterns of expression at various developmental time points. A subset of them also showed significant effects on relative growth rates in different intervals. The detected MTAs jointly explained up to 12% of the total phenotypic variation, decreasing with developmental progression. Using non-parametric functional mapping and multivariate mapping approaches, four additional marker loci affecting growth dynamics were detected. Our results demonstrate that plant biomass accumulation is a complex trait governed by many small effect loci, most of which act at certain restricted developmental phases. This highlights the need for investigation of stage-specific growth affecting genes to elucidate important processes operating at different developmental phases. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Soybean cyst nematode caused by Heterodera glycines is the most devastating pest in soybean [Glycine max (L.) Merr.]. Resistance to SCN is complex, polygenic, race-cultivar specific, and controlled by several QTL. Our objective was to identify and map QTL for SCN resistance to races 3 and 5 using a ...
GWAMA: software for genome-wide association meta-analysis.
Mägi, Reedik; Morris, Andrew P
2010-05-28
Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.
Byars, Sean G.; Gray, Lesley-Ann; Ripatti, Samuli; Stearns, Stephen C.; Inouye, Michael
2017-01-01
Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD. PMID:28640878
Bocianowski, Jan
2013-03-01
Epistasis, an additive-by-additive interaction between quantitative trait loci, has been defined as a deviation from the sum of independent effects of individual genes. Epistasis between QTLs assayed in populations segregating for an entire genome has been found at a frequency close to that expected by chance alone. Recently, epistatic effects have been considered by many researchers as important for complex traits. In order to understand the genetic control of complex traits, it is necessary to clarify additive-by-additive interactions among genes. Herein we compare estimates of a parameter connected with the additive gene action calculated on the basis of two models: a model excluding epistasis and a model with additive-by-additive interaction effects. In this paper two data sets were analysed: 1) 150 barley doubled haploid lines derived from the Steptoe × Morex cross, and 2) 145 DH lines of barley obtained from the Harrington × TR306 cross. The results showed that in cases when the effect of epistasis was different from zero, the coefficient of determination was larger for the model with epistasis than for the one excluding epistasis. These results indicate that epistatic interaction plays an important role in controlling the expression of complex traits.
USDA-ARS?s Scientific Manuscript database
A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal (GI) nematode resistance was completed using a double backcross sheep population derived from Red Maasai and Dorper ewes bred to F1 rams. These breeds were chosen, because Red Maasai sheep are known to be more tolerant ...
Johnson, Norman A; Porter, Adam H
2007-01-01
Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.
Ye, R; Carneiro, A M D; Han, Q; Airey, D; Sanders-Bush, E; Zhang, B; Lu, L; Williams, R; Blakely, R D
2014-03-01
Presynaptic serotonin (5-hydroxytryptamine, 5-HT) transporters (SERT) regulate 5-HT signaling via antidepressant-sensitive clearance of released neurotransmitter. Polymorphisms in the human SERT gene (SLC6A4) have been linked to risk for multiple neuropsychiatric disorders, including depression, obsessive-compulsive disorder and autism. Using BXD recombinant inbred mice, a genetic reference population that can support the discovery of novel determinants of complex traits, merging collective trait assessments with bioinformatics approaches, we examine phenotypic and molecular networks associated with SERT gene and protein expression. Correlational analyses revealed a network of genes that significantly associated with SERT mRNA levels. We quantified SERT protein expression levels and identified region- and gender-specific quantitative trait loci (QTLs), one of which associated with male midbrain SERT protein expression, centered on the protocadherin-15 gene (Pcdh15), overlapped with a QTL for midbrain 5-HT levels. Pcdh15 was also the only QTL-associated gene whose midbrain mRNA expression significantly associated with both SERT protein and 5-HT traits, suggesting an unrecognized role of the cell adhesion protein in the development or function of 5-HT neurons. To test this hypothesis, we assessed SERT protein and 5-HT traits in the Pcdh15 functional null line (Pcdh15(av-) (3J) ), studies that revealed a strong, negative influence of Pcdh15 on these phenotypes. Together, our findings illustrate the power of multidimensional profiling of recombinant inbred lines in the analysis of molecular networks that support synaptic signaling, and that, as in the case of Pcdh15, can reveal novel relationships that may underlie risk for mental illness. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Improved methods for multi-trait fine mapping of pleiotropic risk loci.
Kichaev, Gleb; Roytman, Megan; Johnson, Ruth; Eskin, Eleazar; Lindström, Sara; Kraft, Peter; Pasaniuc, Bogdan
2017-01-15
Genome-wide association studies (GWAS) have identified thousands of regions in the genome that contain genetic variants that increase risk for complex traits and diseases. However, the variants uncovered in GWAS are typically not biologically causal, but rather, correlated to the true causal variant through linkage disequilibrium (LD). To discern the true causal variant(s), a variety of statistical fine-mapping methods have been proposed to prioritize variants for functional validation. In this work we introduce a new approach, fastPAINTOR, that leverages evidence across correlated traits, as well as functional annotation data, to improve fine-mapping accuracy at pleiotropic risk loci. To improve computational efficiency, we describe an new importance sampling scheme to perform model inference. First, we demonstrate in simulations that by leveraging functional annotation data, fastPAINTOR increases fine-mapping resolution relative to existing methods. Next, we show that jointly modeling pleiotropic risk regions improves fine-mapping resolution compared to standard single trait and pleiotropic fine mapping strategies. We report a reduction in the number of SNPs required for follow-up in order to capture 90% of the causal variants from 23 SNPs per locus using a single trait to 12 SNPs when fine-mapping two traits simultaneously. Finally, we analyze summary association data from a large-scale GWAS of lipids and show that these improvements are largely sustained in real data. The fastPAINTOR framework is implemented in the PAINTOR v3.0 package which is publicly available to the research community http://bogdan.bioinformatics.ucla.edu/software/paintor CONTACT: gkichaev@ucla.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Tao, Yun; Zeng, Zhao-Bang; Li, Jian; Hartl, Daniel L; Laurie, Cathy C
2003-08-01
Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations.
Tao, Yun; Zeng, Zhao-Bang; Li, Jian; Hartl, Daniel L; Laurie, Cathy C
2003-01-01
Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations. PMID:12930748
Zhang, Ge; Karns, Rebekah; Sun, Guangyun; Indugula, Subba Rao; Cheng, Hong; Havas-Augustin, Dubravka; Novokmet, Natalija; Durakovic, Zijad; Missoni, Sasa; Chakraborty, Ranajit; Rudan, Pavao; Deka, Ranjan
2012-01-01
Genome-wide association studies (GWAS) have identified many common variants associated with complex traits in human populations. Thus far, most reported variants have relatively small effects and explain only a small proportion of phenotypic variance, leading to the issues of 'missing' heritability and its explanation. Using height as an example, we examined two possible sources of missing heritability: first, variants with smaller effects whose associations with height failed to reach genome-wide significance and second, allelic heterogeneity due to the effects of multiple variants at a single locus. Using a novel analytical approach we examined allelic heterogeneity of height-associated loci selected from SNPs of different significance levels based on the summary data of the GIANT (stage 1) studies. In a sample of 1,304 individuals collected from an island population of the Adriatic coast of Croatia, we assessed the extent of height variance explained by incorporating the effects of less significant height loci and multiple effective SNPs at the same loci. Our results indicate that approximately half of the 118 loci that achieved stringent genome-wide significance (p-value<5×10(-8)) showed evidence of allelic heterogeneity. Additionally, including less significant loci (i.e., p-value<5×10(-4)) and accounting for effects of allelic heterogeneity substantially improved the variance explained in height.
Bergman, Juraj; Mitrikeski, Petar T.
2015-01-01
Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371
Strauch, Konstantin; Baur, Max P; Wienker, Thomas F
2004-01-01
We present a recoding scheme that allows for a parametric multipoint X-chromosomal linkage analysis of dichotomous traits in the context of a computer program for autosomes that can use trait models with imprinting. Furthermore, with this scheme, it is possible to perform a joint multipoint analysis of X-linked and pseudoautosomal loci. It is required that (1) the marker genotypes of all female nonfounders are available and that (2) there are no male nonfounders who have daughters in the pedigree. The second requirement does not apply if the trait locus is pseudoautosomal. The X-linked marker loci are recorded by adding a dummy allele to the males' hemizygous genotypes. For modelling an X-linked trait locus, five different liability classes are defined, in conjunction with a paternal imprinting model for male nonfounders. The formulation aims at the mapping of a diallelic trait locus relative to an arbitrary number of codominant markers with known genetic distances, in cases where a program for a genuine X-chromosomal analysis is not available. 2004 S. Karger AG, Basel.
Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits
van Zanten, Martijn
2015-01-01
Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492
Combining Genotype, Phenotype, and Environment to Infer Potential Candidate Genes.
Talbot, Benoit; Chen, Ting-Wen; Zimmerman, Shawna; Joost, Stéphane; Eckert, Andrew J; Crow, Taylor M; Semizer-Cuming, Devrim; Seshadri, Chitra; Manel, Stéphanie
2017-03-01
Population genomic analysis can be an important tool in understanding local adaptation. Identification of potential adaptive loci in such analyses is usually based on the survey of a large genomic dataset in combination with environmental variables. Phenotypic data are less commonly incorporated into such studies, although combining a genome scan analysis with a phenotypic trait analysis can greatly improve the insights obtained from each analysis individually. Here, we aimed to identify loci potentially involved in adaptation to climate in 283 Loblolly pine (Pinus taeda) samples from throughout the species' range in the southeastern United States. We analyzed associations between phenotypic, molecular, and environmental variables from datasets of 3082 single nucleotide polymorphism (SNP) loci and 3 categories of phenotypic traits (gene expression, metabolites, and whole-plant traits). We found only 6 SNP loci that displayed potential signals of local adaptation. Five of the 6 identified SNPs are linked to gene expression traits for lignin development, and 1 is linked with whole-plant traits. We subsequently compared the 6 candidate genes with environmental variables and found a high correlation in only 3 of them (R2 > 0.2). Our study highlights the need for a combination of genotypes, phenotypes, and environmental variables, and for an appropriate sampling scheme and study design, to improve confidence in the identification of potential candidate genes. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genetic interactions contribute less than additive effects to quantitative trait variation in yeast
Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid
2015-01-01
Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231
USDA-ARS?s Scientific Manuscript database
Mapping and identification of quantitative trait loci (QTLs) are important for efficient marker-assisted breeding. Diseases such as leaf spots and Tomato spotted wilt virus (TSWV) cause significant loses to peanut growers. The U.S. Peanut Genome Initiative (PGI) was launched in 2004, and expanded to...
C. Weng; Thomas L. Kubisiak; C. Dana Nelson; M. Stine
2002-01-01
Random amplified polymorphic DNA (RAPD) markers were employed to map the genome and quantitative trait loci controlling the early growth of a pine hybrid F1 tree (Pinus palustris Mill. à P. elliottii Engl.) and a recurrent slash pine tree (P. ellottii Engl.) in a (longleaf pine à slash pine...
Freua, Mateus Castelani; Santana, Miguel Henrique de Almeida; Ventura, Ricardo Vieira; Tedeschi, Luis Orlindo; Ferraz, José Bento Sterman
2017-08-01
The interplay between dynamic models of biological systems and genomics is based on the assumption that genetic variation of the complex trait (i.e., outcome of model behavior) arises from component traits (i.e., model parameters) in lower hierarchical levels. In order to provide a proof of concept of this statement for a cattle growth model, we ask whether model parameters map genomic regions that harbor quantitative trait loci (QTLs) already described for the complex trait. We conducted a genome-wide association study (GWAS) with a Bayesian hierarchical LASSO method in two parameters of the Davis Growth Model, a system of three ordinary differential equations describing DNA accretion, protein synthesis and degradation, and fat synthesis. Phenotypic and genotypic data were available for 893 Nellore (Bos indicus) cattle. Computed values for parameter k 1 (DNA accretion rate) ranged from 0.005 ± 0.003 and for α (constant for energy for maintenance requirement) 0.134 ± 0.024. The expected biological interpretation of the parameters is confirmed by QTLs mapped for k 1 and α. QTLs within genomic regions mapped for k 1 are expected to be correlated with the DNA pool: body size and weight. Single nucleotide polymorphisms (SNPs) which were significant for α mapped QTLs that had already been associated with residual feed intake, feed conversion ratio, average daily gain (ADG), body weight, and also dry matter intake. SNPs identified for k 1 were able to additionally explain 2.2% of the phenotypic variability of the complex ADG, even when SNPs for k 1 did not match the genomic regions associated with ADG. Although improvements are needed, our findings suggest that genomic analysis on component traits may help to uncover the genetic basis of more complex traits, particularly when lower biological hierarchies are mechanistically described by mathematical simulation models.
The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.
Croll, Daniel; McDonald, Bruce A
2017-04-01
Local adaptation plays a key role in the evolutionary trajectory of host-pathogen interactions. However, the genetic architecture of local adaptation in host-pathogen systems is poorly understood. Fungal plant pathogens in agricultural ecosystems provide highly tractable models to quantify phenotypes and map traits to corresponding genomic loci. The outcome of crop-pathogen interactions is thought to be governed largely by gene-for-gene interactions. However, recent studies showed that virulence can be governed by quantitative trait loci and that many abiotic factors contribute to the outcome of the interaction. After introducing concepts of local adaptation and presenting examples from wild plant pathosystems, we focus this review on a major pathogen of wheat, Zymoseptoria tritici, to show how a multitude of traits can affect local adaptation. Zymoseptoria tritici adapted to different thermal environments across its distribution range, indicating that thermal adaptation may limit effective dispersal to different climates. The application of fungicides led to the rapid evolution of multiple, independent resistant populations. The degree of colony melanization showed strong pleiotropic effects with other traits, including trade-offs with colony growth rates and fungicide sensitivity. The success of the pathogen on its host can be assessed quantitatively by counting pathogen reproductive structures and measuring host damage based on necrotic lesions. Interestingly, these two traits can be weakly correlated and depend both on host and pathogen genotypes. Quantitative trait mapping studies showed that the genetic architecture of locally adapted traits varies from single loci with large effects to many loci with small individual effects. We discuss how local adaptation could hinder or accelerate the development of epidemics in agricultural ecosystems. © 2016 John Wiley & Sons Ltd.
Selection on domestication traits and quantitative trait loci in crop-wild sunflower hybrids.
Baack, Eric J; Sapir, Yuval; Chapman, Mark A; Burke, John M; Rieseberg, Loren H
2008-01-01
The strength and extent of gene flow from crops into wild populations depends, in part, on the fitness of the crop alleles, as well as that of alleles at linked loci. Interest in crop-wild gene flow has increased with the advent of transgenic plants, but nontransgenic crop-wild hybrids can provide case studies to understand the factors influencing introgression, provided that the genetic architecture and the fitness effects of loci are known. This study used recombinant inbred lines (RILs) generated from a cross between crop and wild sunflowers to assess selection on domestication traits and quantitative trait loci (QTL) in two contrasting environments, in Indiana and Nebraska, USA. Only a small fraction of plants (9%) produced seed in Nebraska, due to adverse weather conditions, while the majority of plants (79%) in Indiana reproduced. Phenotypic selection analysis found that a mixture of crop and wild traits were favoured in Indiana (i.e. had significant selection gradients), including larger leaves, increased floral longevity, larger disk diameter, reduced ray flower size and smaller achene (seed) mass. Selection favouring early flowering was detected in Nebraska. QTLs for fitness were found at the end of linkage groups six (LG6) and nine (LG9) in both field sites, each explaining 11-12% of the total variation. Crop alleles were favoured on LG9, but wild alleles were favoured on LG6. QTLs for numerous domestication traits overlapped with the fitness QTLs, including flowering date, achene mass, head number, and disk diameter. It remains to be seen if these QTL clusters are the product of multiple linked genes, or individual genes with pleiotropic effects. These results indicate that crop trait values and alleles may sometimes be favoured in a noncrop environment and across broad geographical regions.
The MC1R and ASIP Coat Color Loci May Impact Behavior in the Horse
Jacobs, Lauren N.; Staiger, Elizabeth A.; Albright, Julia D.
2016-01-01
Shared signaling pathways utilized by melanocytes and neurons result in pleiotropic traits of coat color and behavior in many mammalian species. For example, in humans polymorphisms at MC1R cause red hair, increased heat sensitivity, and lower pain tolerance. In deer mice, rats, and foxes, ASIP polymorphisms causing black coat color lead to more docile demeanors and reduced activity. Horse (Equus caballus) base coat color is primarily determined by polymorphisms at the Melanocortin-1 Receptor (MC1R) and Agouti Signaling Protein (ASIP) loci, creating a black, bay, or chestnut coat. Our goal was to investigate correlations between genetic loci for coat color and temperament traits in the horse. We genotyped a total of 215 North American Tennessee Walking Horses for the 2 most common alleles at the MC1R (E/e) and ASIP (A/a) loci using previously published PCR and RFLP methods. The horses had a mean age of 10.5 years and comprised 83 geldings, 25 stallions, and 107 mares. To assess behavior, we adapted a previously published survey for handlers to score horses from 1 to 9 on 20 questions related to specific aspects of temperament. We utilized principle component analysis to combine the individual survey scores into 4 factors of variation in temperament phenotype. A factor component detailing self-reliance correlated with genotypes at the ASIP locus; black mares (aa) were more independent than bay mares (A_) (P = 0.0063). These findings illuminate a promising and novel animal model for future study of neuroendocrine mechanisms in complex behavioral phenotypes. PMID:26884605
2012-01-01
Background The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach. Results A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species’ haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance. Conclusion The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection. PMID:22621324
Genomic architecture of heterosis for yield traits in rice.
Huang, Xuehui; Yang, Shihua; Gong, Junyi; Zhao, Qiang; Feng, Qi; Zhan, Qilin; Zhao, Yan; Li, Wenjun; Cheng, Benyi; Xia, Junhui; Chen, Neng; Huang, Tao; Zhang, Lei; Fan, Danlin; Chen, Jiaying; Zhou, Congcong; Lu, Yiqi; Weng, Qijun; Han, Bin
2016-09-29
Increasing grain yield is a long-term goal in crop breeding to meet the demand for global food security. Heterosis, when a hybrid shows higher performance for a trait than both parents, offers an important strategy for crop breeding. To examine the genetic basis of heterosis for yield in rice, here we generate, sequence and record the phenotypes of 10,074 F 2 lines from 17 representative hybrid rice crosses. We classify modern hybrid rice varieties into three groups, representing different hybrid breeding systems. Although we do not find any heterosis-associated loci shared across all lines, within each group, a small number of genomic loci from female parents explain a large proportion of the yield advantage of hybrids over their male parents. For some of these loci, we find support for partial dominance of heterozygous locus for yield-related traits and better-parent heterosis for overall performance when all of the grain-yield traits are considered together. These results inform on the genomic architecture of heterosis and rice hybrid breeding.
Lin, J. Z.; Ritland, K.
1997-01-01
Theoretical predictions about the evolution of selfing depend on the genetic architecture of loci controlling selfing (monogenic vs. polygenic determination, large vs. small effect of alleles, dominance vs. recessiveness), and studies of such architecture are lacking. We inferred the genetic basis of mating system differences between the outbreeding Mimulus guttatus and the inbreeding M. platycalyx by quantitative trait locus (QTL) mapping using random amplified polymorphic DNA and isozyme markers. One to three QTL were detected for each of five mating system characters, and each QTL explained 7.6-28.6% of the phenotypic variance. Taken together, QTL accounted for up to 38% of the variation in mating system characters, and a large proportion of variation was unaccounted for. Inferred QTL often affected more than one trait, contributing to the genetic correlation between those traits. These results are consistent with the hypothesis that quantitative variation in plant mating system characters is primarily controlled by loci with small effect. PMID:9215912
Bonnafous, Fanny; Fievet, Ghislain; Blanchet, Nicolas; Boniface, Marie-Claude; Carrère, Sébastien; Gouzy, Jérôme; Legrand, Ludovic; Marage, Gwenola; Bret-Mestries, Emmanuelle; Munos, Stéphane; Pouilly, Nicolas; Vincourt, Patrick; Langlade, Nicolas; Mangin, Brigitte
2018-02-01
This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.
Chenu, Karine; Chapman, Scott C; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L
2009-12-01
Under drought, substantial genotype-environment (G x E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this "gene-to-phenotype" gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G x E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such "leafy" genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G x E interactions for complex traits such as drought tolerance.
A Simple Test of Class-Level Genetic Association Can Reveal Novel Cardiometabolic Trait Loci.
Qian, Jing; Nunez, Sara; Reed, Eric; Reilly, Muredach P; Foulkes, Andrea S
2016-01-01
Characterizing the genetic determinants of complex diseases can be further augmented by incorporating knowledge of underlying structure or classifications of the genome, such as newly developed mappings of protein-coding genes, epigenetic marks, enhancer elements and non-coding RNAs. We apply a simple class-level testing framework, termed Genetic Class Association Testing (GenCAT), to identify protein-coding gene association with 14 cardiometabolic (CMD) related traits across 6 publicly available genome wide association (GWA) meta-analysis data resources. GenCAT uses SNP-level meta-analysis test statistics across all SNPs within a class of elements, as well as the size of the class and its unique correlation structure, to determine if the class is statistically meaningful. The novelty of findings is evaluated through investigation of regional signals. A subset of findings are validated using recently updated, larger meta-analysis resources. A simulation study is presented to characterize overall performance with respect to power, control of family-wise error and computational efficiency. All analysis is performed using the GenCAT package, R version 3.2.1. We demonstrate that class-level testing complements the common first stage minP approach that involves individual SNP-level testing followed by post-hoc ascribing of statistically significant SNPs to genes and loci. GenCAT suggests 54 protein-coding genes at 41 distinct loci for the 13 CMD traits investigated in the discovery analysis, that are beyond the discoveries of minP alone. An additional application to biological pathways demonstrates flexibility in defining genetic classes. We conclude that it would be prudent to include class-level testing as standard practice in GWA analysis. GenCAT, for example, can be used as a simple, complementary and efficient strategy for class-level testing that leverages existing data resources, requires only summary level data in the form of test statistics, and adds significant value with respect to its potential for identifying multiple novel and clinically relevant trait associations.
Wang, Baohua; Draye, Xavier; Zhuang, Zhimin; Zhang, Zhengsheng; Liu, Min; Lubbers, Edward L; Jones, Don; May, O Lloyd; Paterson, Andrew H; Chee, Peng W
2017-06-01
QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives. The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC 3 F 2 and 12 corresponding BC 3 F 2:3 and BC 3 F 2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype × family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.
Evaluation and application of summary statistic imputation to discover new height-associated loci.
Rüeger, Sina; McDaid, Aaron; Kutalik, Zoltán
2018-05-01
As most of the heritability of complex traits is attributed to common and low frequency genetic variants, imputing them by combining genotyping chips and large sequenced reference panels is the most cost-effective approach to discover the genetic basis of these traits. Association summary statistics from genome-wide meta-analyses are available for hundreds of traits. Updating these to ever-increasing reference panels is very cumbersome as it requires reimputation of the genetic data, rerunning the association scan, and meta-analysing the results. A much more efficient method is to directly impute the summary statistics, termed as summary statistics imputation, which we improved to accommodate variable sample size across SNVs. Its performance relative to genotype imputation and practical utility has not yet been fully investigated. To this end, we compared the two approaches on real (genotyped and imputed) data from 120K samples from the UK Biobank and show that, genotype imputation boasts a 3- to 5-fold lower root-mean-square error, and better distinguishes true associations from null ones: We observed the largest differences in power for variants with low minor allele frequency and low imputation quality. For fixed false positive rates of 0.001, 0.01, 0.05, using summary statistics imputation yielded a decrease in statistical power by 9, 43 and 35%, respectively. To test its capacity to discover novel associations, we applied summary statistics imputation to the GIANT height meta-analysis summary statistics covering HapMap variants, and identified 34 novel loci, 19 of which replicated using data in the UK Biobank. Additionally, we successfully replicated 55 out of the 111 variants published in an exome chip study. Our study demonstrates that summary statistics imputation is a very efficient and cost-effective way to identify and fine-map trait-associated loci. Moreover, the ability to impute summary statistics is important for follow-up analyses, such as Mendelian randomisation or LD-score regression.
Evaluation and application of summary statistic imputation to discover new height-associated loci
2018-01-01
As most of the heritability of complex traits is attributed to common and low frequency genetic variants, imputing them by combining genotyping chips and large sequenced reference panels is the most cost-effective approach to discover the genetic basis of these traits. Association summary statistics from genome-wide meta-analyses are available for hundreds of traits. Updating these to ever-increasing reference panels is very cumbersome as it requires reimputation of the genetic data, rerunning the association scan, and meta-analysing the results. A much more efficient method is to directly impute the summary statistics, termed as summary statistics imputation, which we improved to accommodate variable sample size across SNVs. Its performance relative to genotype imputation and practical utility has not yet been fully investigated. To this end, we compared the two approaches on real (genotyped and imputed) data from 120K samples from the UK Biobank and show that, genotype imputation boasts a 3- to 5-fold lower root-mean-square error, and better distinguishes true associations from null ones: We observed the largest differences in power for variants with low minor allele frequency and low imputation quality. For fixed false positive rates of 0.001, 0.01, 0.05, using summary statistics imputation yielded a decrease in statistical power by 9, 43 and 35%, respectively. To test its capacity to discover novel associations, we applied summary statistics imputation to the GIANT height meta-analysis summary statistics covering HapMap variants, and identified 34 novel loci, 19 of which replicated using data in the UK Biobank. Additionally, we successfully replicated 55 out of the 111 variants published in an exome chip study. Our study demonstrates that summary statistics imputation is a very efficient and cost-effective way to identify and fine-map trait-associated loci. Moreover, the ability to impute summary statistics is important for follow-up analyses, such as Mendelian randomisation or LD-score regression. PMID:29782485
The role of genetic variation of human metabolism for BMI, mental traits and mental disorders.
Hebebrand, Johannes; Peters, Triinu; Schijven, Dick; Hebebrand, Moritz; Grasemann, Corinna; Winkler, Thomas W; Heid, Iris M; Antel, Jochen; Föcker, Manuel; Tegeler, Lisa; Brauner, Lena; Adan, Roger A H; Luykx, Jurjen J; Correll, Christoph U; König, Inke R; Hinney, Anke; Libuda, Lars
2018-06-01
The aim was to assess whether loci associated with metabolic traits also have a significant role in BMI and mental traits/disorders METHODS: We first assessed the number of single nucleotide polymorphisms (SNPs) with genome-wide significance for human metabolism (NHGRI-EBI Catalog). These 516 SNPs (216 independent loci) were looked-up in genome-wide association studies for association with body mass index (BMI) and the mental traits/disorders educational attainment, neuroticism, schizophrenia, well-being, anxiety, depressive symptoms, major depressive disorder, autism-spectrum disorder, attention-deficit/hyperactivity disorder, Alzheimer's disease, bipolar disorder, aggressive behavior, and internalizing problems. A strict significance threshold of p < 6.92 × 10 -6 was based on the correction for 516 SNPs and all 14 phenotypes, a second less conservative threshold (p < 9.69 × 10 -5 ) on the correction for the 516 SNPs only. 19 SNPs located in nine independent loci revealed p-values < 6.92 × 10 -6 ; the less strict criterion was met by 41 SNPs in 24 independent loci. BMI and schizophrenia showed the most pronounced genetic overlap with human metabolism with three loci each meeting the strict significance threshold. Overall, genetic variation associated with estimated glomerular filtration rate showed up frequently; single metabolite SNPs were associated with more than one phenotype. Replications in independent samples were obtained for BMI and educational attainment. Approximately 5-10% of the regions involved in the regulation of blood/urine metabolite levels seem to also play a role in BMI and mental traits/disorders and related phenotypes. If validated in metabolomic studies of the respective phenotypes, the associated blood/urine metabolites may enable novel preventive and therapeutic strategies. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Rabbi, Ismail Y; Udoh, Lovina I; Wolfe, Marnin; Parkes, Elizabeth Y; Gedil, Melaku A; Dixon, Alfred; Ramu, Punna; Jannink, Jean-Luc; Kulakow, Peter
2017-11-01
Cassava is a starchy root crop cultivated in the tropics for fresh consumption and commercial processing. Primary selection objectives in cassava breeding include dry matter content and micronutrient density, particularly provitamin A carotenoids. These traits are negatively correlated in the African germplasm. This study aimed at identifying genetic markers associated with these traits and uncovering whether linkage and/or pleiotropy were responsible for observed negative correlation. A genome-wide association mapping using 672 clones genotyped at 72,279 single nucleotide polymorphism (SNP) loci was performed. Root yellowness was used indirectly to assess variation in carotenoid content. Two major loci for root yellowness were identified on chromosome 1 at positions 24.1 and 30.5 Mbp. A single locus for dry matter content that colocated with the 24.1 Mbp peak for carotenoids was identified. Haplotypes at these loci explained 70 and 37% of the phenotypic variability for root yellowness and dry matter content, respectively. Evidence of megabase-scale linkage disequilibrium (LD) around the major loci of the two traits and detection of the major dry matter locus in independent analysis for the white- and yellow-root subpopulations suggests that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid () and starch biosynthesis ( and ) occurred in the vicinity of the identified locus at 24.1 Mbp. These findings elucidate the genetic architecture of carotenoids and dry matter in cassava and provide an opportunity to accelerate breeding of these traits. Copyright © 2017 Crop Science Society of America.
Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast
Ben-Ari, Giora; Zenvirth, Drora; Sherman, Amir; David, Lior; Klutstein, Michael; Lavi, Uri; Hillel, Jossi; Simchen, Giora
2006-01-01
Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs) is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four “high” sporulation alleles are derived from the “low” sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one “QTL region” that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes. PMID:17112318
New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch.
Francki, M G; Shankar, M; Walker, E; Loughman, R; Golzar, H; Ohm, H
2011-11-01
Stagonospora nodorum blotch (SNB) is a significant disease in some wheat-growing regions of the world. Resistance in wheat to Stagonospora nodorum is complex, whereby genes for seedling, flag leaf, and glume resistance are independent. The aims of this study were to identify alternative genes for flag leaf resistance, to compare and contrast with known quantitative trait loci (QTL) for SNB resistance, and to determine the potential role of host-specific toxins for SNB QTL. Novel QTL for flag leaf resistance were identified on chromosome 2AS inherited from winter wheat parent 'P92201D5' and chromosome 1BS from spring wheat parent 'EGA Blanco'. The chromosomal map position of markers associated with QTL on 1BS and 2AS indicated that they were unlikely to be associated with known host-toxin insensitivity loci. A QTL on chromosome 5BL inherited from EGA Blanco had highly significant association with markers fcp001 and fcp620 based on disease evaluation in 2007 and, therefore, is likely to be associated with Tsn1-ToxA insensitivity for flag leaf resistance. However, fcp001 and fcp620 were not associated with a QTL detected based on disease evaluation in 2008, indicating two linked QTL for flag leaf resistance with multiple genes residing on 5BL. This study identified novel QTL and their effects in controlling flag leaf SNB resistance.
Genetics of rheumatoid arthritis contributes to biology and drug discovery.
Okada, Yukinori; Wu, Di; Trynka, Gosia; Raj, Towfique; Terao, Chikashi; Ikari, Katsunori; Kochi, Yuta; Ohmura, Koichiro; Suzuki, Akari; Yoshida, Shinji; Graham, Robert R; Manoharan, Arun; Ortmann, Ward; Bhangale, Tushar; Denny, Joshua C; Carroll, Robert J; Eyler, Anne E; Greenberg, Jeffrey D; Kremer, Joel M; Pappas, Dimitrios A; Jiang, Lei; Yin, Jian; Ye, Lingying; Su, Ding-Feng; Yang, Jian; Xie, Gang; Keystone, Ed; Westra, Harm-Jan; Esko, Tõnu; Metspalu, Andres; Zhou, Xuezhong; Gupta, Namrata; Mirel, Daniel; Stahl, Eli A; Diogo, Dorothée; Cui, Jing; Liao, Katherine; Guo, Michael H; Myouzen, Keiko; Kawaguchi, Takahisa; Coenen, Marieke J H; van Riel, Piet L C M; van de Laar, Mart A F J; Guchelaar, Henk-Jan; Huizinga, Tom W J; Dieudé, Philippe; Mariette, Xavier; Bridges, S Louis; Zhernakova, Alexandra; Toes, Rene E M; Tak, Paul P; Miceli-Richard, Corinne; Bang, So-Young; Lee, Hye-Soon; Martin, Javier; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Rantapää-Dahlqvist, Solbritt; Arlestig, Lisbeth; Choi, Hyon K; Kamatani, Yoichiro; Galan, Pilar; Lathrop, Mark; Eyre, Steve; Bowes, John; Barton, Anne; de Vries, Niek; Moreland, Larry W; Criswell, Lindsey A; Karlson, Elizabeth W; Taniguchi, Atsuo; Yamada, Ryo; Kubo, Michiaki; Liu, Jun S; Bae, Sang-Cheol; Worthington, Jane; Padyukov, Leonid; Klareskog, Lars; Gregersen, Peter K; Raychaudhuri, Soumya; Stranger, Barbara E; De Jager, Philip L; Franke, Lude; Visscher, Peter M; Brown, Matthew A; Yamanaka, Hisashi; Mimori, Tsuneyo; Takahashi, Atsushi; Xu, Huji; Behrens, Timothy W; Siminovitch, Katherine A; Momohara, Shigeki; Matsuda, Fumihiko; Yamamoto, Kazuhiko; Plenge, Robert M
2014-02-20
A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2 - 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses--as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes--to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
Multiethnic GWAS Reveals Polygenic Architecture of Earlobe Attachment.
Shaffer, John R; Li, Jinxi; Lee, Myoung Keun; Roosenboom, Jasmien; Orlova, Ekaterina; Adhikari, Kaustabh; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; González-José, Rolando; Pfeffer, Paige E; Wollenschlaeger, Christopher A; Hecht, Jacqueline T; Wehby, George L; Moreno, Lina M; Ding, Anan; Jin, Li; Yang, Yajun; Carlson, Jenna C; Leslie, Elizabeth J; Feingold, Eleanor; Marazita, Mary L; Hinds, David A; Cox, Timothy C; Wang, Sijia; Ruiz-Linares, Andrés; Weinberg, Seth M
2017-12-07
The genetic basis of earlobe attachment has been a matter of debate since the early 20 th century, such that geneticists argue both for and against polygenic inheritance. Recent genetic studies have identified a few loci associated with the trait, but large-scale analyses are still lacking. Here, we performed a genome-wide association study of lobe attachment in a multiethnic sample of 74,660 individuals from four cohorts (three with the trait scored by an expert rater and one with the trait self-reported). Meta-analysis of the three expert-rater-scored cohorts revealed six associated loci harboring numerous candidate genes, including EDAR, SP5, MRPS22, ADGRG6 (GPR126), KIAA1217, and PAX9. The large self-reported 23andMe cohort recapitulated each of these six loci. Moreover, meta-analysis across all four cohorts revealed a total of 49 significant (p < 5 × 10 -8 ) loci. Annotation and enrichment analyses of these 49 loci showed strong evidence of genes involved in ear development and syndromes with auricular phenotypes. RNA sequencing data from both human fetal ear and mouse second branchial arch tissue confirmed that genes located among associated loci showed evidence of expression. These results provide strong evidence for the polygenic nature of earlobe attachment and offer insights into the biological basis of normal and abnormal ear development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci
Simpson, Claire L.; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J. M.; Vitart, Veronique; Schache, Maria; Hosseini, S. Mohsen; Hysi, Pirro G.; Raffel, Leslie J.; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E. K.; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M.; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A.; Uitterlinden, André G.; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C.; Vingerling, Johannes R.; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H.-Erich; Wilson, James F.; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M.; Rahi, Jugnoo S.; Hammond, Chris J.; Hayward, Caroline; Wright, Alan F.; Paterson, Andrew D.; Baird, Paul N.; Klaver, Caroline C. W.; Rotter, Jerome I.; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E.; Stambolian, Dwight
2014-01-01
Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10−8), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10−11) and 8q12 (minimum p value 1.82×10−11) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. “Replication-level” association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution. PMID:25233373
Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci.
Simpson, Claire L; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J M; Vitart, Veronique; Schache, Maria; Hosseini, S Mohsen; Hysi, Pirro G; Raffel, Leslie J; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E K; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C; Vingerling, Johannes R; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H-Erich; Wilson, James F; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M; Rahi, Jugnoo S; Hammond, Chris J; Hayward, Caroline; Wright, Alan F; Paterson, Andrew D; Baird, Paul N; Klaver, Caroline C W; Rotter, Jerome I; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E; Stambolian, Dwight
2014-01-01
Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8)), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11)) and 8q12 (minimum p value 1.82×10(-11)) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution.
Mapping quantitative trait loci for binary trait in the F2:3 design.
Zhu, Chengsong; Zhang, Yuan-Ming; Guo, Zhigang
2008-12-01
In the analysis of inheritance of quantitative traits with low heritability, an F(2:3) design that genotypes plants in F(2) and phenotypes plants in F(2:3) progeny is often used in plant genetics. Although statistical approaches for mapping quantitative trait loci (QTL) in the F(2:3) design have been well developed, those for binary traits of biological interest and economic importance are seldom addressed. In this study, an attempt was made to map binary trait loci (BTL) in the F(2:3) design. The fundamental idea was: the F(2) plants were genotyped, all phenotypic values of each F(2:3) progeny were measured for binary trait, and these binary trait values and the marker genotype informations were used to detect BTL under the penetrance and liability models. The proposed method was verified by a series of Monte-Carlo simulation experiments. These results showed that maximum likelihood approaches under the penetrance and liability models provide accurate estimates for the effects and the locations of BTL with high statistical power, even under of low heritability. Moreover, the penetrance model is as efficient as the liability model, and the F(2:3) design is more efficient than classical F(2) design, even though only a single progeny is collected from each F(2:3) family. With the maximum likelihood approaches under the penetrance and the liability models developed in this study, we can map binary traits as we can do for quantitative trait in the F(2:3) design.
Li, Chuang; Gong, Wenbing; Zhang, Lin; Yang, Zhiquan; Nong, Wenyan; Bian, Yinbing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang
2017-01-01
Association mapping is a robust approach for the detection of quantitative trait loci (QTLs). Here, by genotyping 297 genome-wide molecular markers of 89 Lentinula edodes cultivars in China, the genetic diversity, population structure and genetic loci associated with 11 agronomic traits were examined. A total of 873 alleles were detected in the tested strains with a mean of 2.939 alleles per locus, and the Shannon's information index was 0.734. Population structure analysis revealed two robustly differentiated groups among the Chinese L. edodes cultivars (FST = 0.247). Using the mixed linear model, a total of 43 markers were detected to be significantly associated with four traits. The number of markers associated with traits ranged from 9 to 26, and the phenotypic variations explained by each marker varied from 12.07% to 31.32%. Apart from five previously reported markers, the remaining 38 markers were newly reported here. Twenty-one markers were identified as simultaneously linked to two to four traits, and five markers were associated with the same traits in cultivation tests performed in two consecutive years. The 43 traits-associated markers were related to 97 genes, and 24 of them were related to 10 traits-associated markers detected in both years or identified previously, 13 of which had a >2-fold expression change between the mycelium and primordium stages. Our study has provided candidate markers for marker-assisted selection (MAS) and useful clues for understanding the genetic architecture of agronomic traits in the shiitake mushroom. PMID:28261189
USDA-ARS?s Scientific Manuscript database
High-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring the HTAP resistance to stripe rust in a population consisted of 179 F7:8...
Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Wang, Ke; Jiang, Ni; Feng, Hui; Chen, Guoxing; Liu, Qian; Xiong, Lizhong
2015-09-01
Leaves are the plant's solar panel and food factory, and leaf traits are always key issues to investigate in plant research. Traditional methods for leaf trait measurement are time-consuming. In this work, an engineering prototype has been established for high-throughput leaf scoring (HLS) of a large number of Oryza sativa accessions. The mean absolute per cent of errors in traditional measurements versus HLS were below 5% for leaf number, area, shape, and colour. Moreover, HLS can measure up to 30 leaves per minute. To demonstrate the usefulness of HLS in dissecting the genetic bases of leaf traits, a genome-wide association study (GWAS) was performed for 29 leaf traits related to leaf size, shape, and colour at three growth stages using HLS on a panel of 533 rice accessions. Nine associated loci contained known leaf-related genes, such as Nal1 for controlling the leaf width. In addition, a total of 73, 123, and 177 new loci were detected for traits associated with leaf size, colour, and shape, respectively. In summary, after evaluating the performance with a large number of rice accessions, the combination of GWAS and high-throughput leaf phenotyping (HLS) has proven a valuable strategy to identify the genetic loci controlling rice leaf traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Yang, Yi; Shen, Yusen; Li, Shunda; Ge, Xianhong; Li, Zaiyun
2017-01-01
Seeds per silique (SS), seed weight (SW), and silique length (SL) are important determinant traits of seed yield potential in rapeseed ( Brassica napus L.), and are controlled by naturally occurring quantitative trait loci (QTLs). Mapping QTLs to narrow chromosomal regions provides an effective means of characterizing the genetic basis of these complex traits. Orychophragmus violaceus is a crucifer with long siliques, many SS, and heavy seeds. A novel B. napus introgression line with many SS was previously selected from multiple crosses ( B. rapa ssp. chinesis × O. violaceus ) × B. napus . In present study, a doubled haploid (DH) population with 167 lines was established from a cross between the introgression line and a line with far fewer SS, in order to detect QTLs for silique-related traits. By screening with a Brassica 60K single nucleotide polymorphism (SNP) array, a high-density linkage map consisting of 1,153 bins and spanning a cumulative length of 2,209.1 cM was constructed, using 12,602 high-quality polymorphic SNPs in the DH population. The average recombination bin densities of the A and C subgenomes were 1.7 and 2.4 cM, respectively. 45 QTLs were identified for the three traits in all, which explained 4.0-34.4% of the total phenotypic variation; 20 of them were integrated into three unique QTLs by meta-analysis. These unique QTLs revealed a significant positive correlation between SS and SL and a significant negative correlation between SW and SS, and were mapped onto the linkage groups A05, C08, and C09. A trait-by-trait meta-analysis revealed eight, four, and seven consensus QTLs for SS, SW, and SL, respectively, and five major QTLs ( cqSS.A09b, cqSS.C09, cqSW.A05, cqSW.C09 , and cqSL.C09 ) were identified. Five, three, and four QTLs for SS, SW, and SL, respectively, might be novel QTLs because of the existence of alien genetic loci for these traits in the alien introgression. Thirty-eight candidate genes underlying nine QTLs for silique-related traits were identified.
Assessing the complex architecture of polygenic traits in diverged yeast populations.
Cubillos, Francisco A; Billi, Eleonora; Zörgö, Enikö; Parts, Leopold; Fargier, Patrick; Omholt, Stig; Blomberg, Anders; Warringer, Jonas; Louis, Edward J; Liti, Gianni
2011-04-01
Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker's yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain-specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross-combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits. © 2011 Blackwell Publishing Ltd.
Quantitative trait loci and metabolic pathways
McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.
1998-01-01
The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823
Wang, G. L.; Mackill, D. J.; Bonman, J. M.; McCouch, S. R.; Champoux, M. C.; Nelson, R. J.
1994-01-01
Moroberekan, a japonica rice cultivar with durable resistance to blast disease in Asia, was crossed to the highly susceptible indica cultivar, CO39, and 281 F(7) recombinant inbred (RI) lines were produced by single seed descent. The population was evaluated for blast resistance in the greenhouse and the field, and was analyzed with 127 restriction fragment length polymorphism (RFLP) markers. Two dominant loci associated with qualitative resistance to five isolates of the fungus were tentatively named Pi-5(t) and Pi-7(t). They were mapped on chromosomes 4 and 11, respectively. To identify quantitative trait loci (QTLs) affecting partial resistance, RI lines were inoculated with isolate PO6-6 of Pyricularia oryzae in polycyclic tests. Ten chromosomal segments were found to be associated with effects on lesion number (P < 0.0001 and LOD > 6.0). Three of the markers associated with QTLs for partial resistance had been reported to be linked to complete blast resistance in previous studies. QTLs identified in greenhouse tests were good predictors of blast resistance at two field sites. This study illustrates the usefulness of RI lines for mapping a complex trait such as blast resistance and suggests that durable resistance in the traditional variety, Moroberekan, involves a complex of genes associated with both partial and complete resistance. PMID:7912216
Estimation and Partitioning of Heritability in Human Populations using Whole Genome Analysis Methods
Vinkhuyzen, Anna AE; Wray, Naomi R; Yang, Jian; Goddard, Michael E; Visscher, Peter M
2014-01-01
Understanding genetic variation of complex traits in human populations has moved from the quantification of the resemblance between close relatives to the dissection of genetic variation into the contributions of individual genomic loci. But major questions remain unanswered: how much phenotypic variation is genetic, how much of the genetic variation is additive and what is the joint distribution of effect size and allele frequency at causal variants? We review and compare three whole-genome analysis methods that use mixed linear models (MLM) to estimate genetic variation, using the relationship between close or distant relatives based on pedigree or SNPs. We discuss theory, estimation procedures, bias and precision of each method and review recent advances in the dissection of additive genetic variation of complex traits in human populations that are based upon the application of MLM. Using genome wide data, SNPs account for far more of the genetic variation than the highly significant SNPs associated with a trait, but they do not account for all of the genetic variance estimated by pedigree based methods. We explain possible reasons for this ‘missing’ heritability. PMID:23988118
Reed, Laura K; LaFlamme, Brooke A; Markow, Therese A
2008-08-27
The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1) sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F(1) hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F(1) is complex, involving multiple QTL, epistasis, and cytoplasmic effects. The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.
Meta-analysis of sex-specific genome-wide association studies.
Magi, Reedik; Lindgren, Cecilia M; Morris, Andrew P
2010-12-01
Despite the success of genome-wide association studies, much of the genetic contribution to complex human traits is still unexplained. One potential source of genetic variation that may contribute to this "missing heritability" is that which differs in magnitude and/or direction between males and females, which could result from sexual dimorphism in gene expression. Such sex-differentiated effects are common in model organisms, and are becoming increasingly evident in human complex traits through large-scale male- and female-specific meta-analyses. In this article, we review the methodology for meta-analysis of sex-specific genome-wide association studies, and propose a sex-differentiated test of association with quantitative or dichotomous traits, which allows for heterogeneity of allelic effects between males and females. We perform detailed simulations to compare the power of the proposed sex-differentiated meta-analysis with the more traditional "sex-combined" approach, which is ambivalent to gender. The results of this study highlight only a small loss in power for the sex-differentiated meta-analysis when the allelic effects of the causal variant are the same in males and females. However, over a range of models of heterogeneity in allelic effects between genders, our sex-differentiated meta-analysis strategy offers substantial gains in power, and thus has the potential to discover novel loci contributing effects to complex human traits with existing genome-wide association data. © 2010 Wiley-Liss, Inc.
Atkinson, Jonathan A; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E; Griffiths, Marcus; Wells, Darren M
2017-10-01
Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. © The Authors 2017. Published by Oxford University Press.
Atkinson, Jonathan A.; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E.; Griffiths, Marcus
2017-01-01
Abstract Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. PMID:29020748
Biological, clinical and population relevance of 95 loci for blood lipids.
Teslovich, Tanya M; Musunuru, Kiran; Smith, Albert V; Edmondson, Andrew C; Stylianou, Ioannis M; Koseki, Masahiro; Pirruccello, James P; Ripatti, Samuli; Chasman, Daniel I; Willer, Cristen J; Johansen, Christopher T; Fouchier, Sigrid W; Isaacs, Aaron; Peloso, Gina M; Barbalic, Maja; Ricketts, Sally L; Bis, Joshua C; Aulchenko, Yurii S; Thorleifsson, Gudmar; Feitosa, Mary F; Chambers, John; Orho-Melander, Marju; Melander, Olle; Johnson, Toby; Li, Xiaohui; Guo, Xiuqing; Li, Mingyao; Shin Cho, Yoon; Jin Go, Min; Jin Kim, Young; Lee, Jong-Young; Park, Taesung; Kim, Kyunga; Sim, Xueling; Twee-Hee Ong, Rick; Croteau-Chonka, Damien C; Lange, Leslie A; Smith, Joshua D; Song, Kijoung; Hua Zhao, Jing; Yuan, Xin; Luan, Jian'an; Lamina, Claudia; Ziegler, Andreas; Zhang, Weihua; Zee, Robert Y L; Wright, Alan F; Witteman, Jacqueline C M; Wilson, James F; Willemsen, Gonneke; Wichmann, H-Erich; Whitfield, John B; Waterworth, Dawn M; Wareham, Nicholas J; Waeber, Gérard; Vollenweider, Peter; Voight, Benjamin F; Vitart, Veronique; Uitterlinden, Andre G; Uda, Manuela; Tuomilehto, Jaakko; Thompson, John R; Tanaka, Toshiko; Surakka, Ida; Stringham, Heather M; Spector, Tim D; Soranzo, Nicole; Smit, Johannes H; Sinisalo, Juha; Silander, Kaisa; Sijbrands, Eric J G; Scuteri, Angelo; Scott, James; Schlessinger, David; Sanna, Serena; Salomaa, Veikko; Saharinen, Juha; Sabatti, Chiara; Ruokonen, Aimo; Rudan, Igor; Rose, Lynda M; Roberts, Robert; Rieder, Mark; Psaty, Bruce M; Pramstaller, Peter P; Pichler, Irene; Perola, Markus; Penninx, Brenda W J H; Pedersen, Nancy L; Pattaro, Cristian; Parker, Alex N; Pare, Guillaume; Oostra, Ben A; O'Donnell, Christopher J; Nieminen, Markku S; Nickerson, Deborah A; Montgomery, Grant W; Meitinger, Thomas; McPherson, Ruth; McCarthy, Mark I; McArdle, Wendy; Masson, David; Martin, Nicholas G; Marroni, Fabio; Mangino, Massimo; Magnusson, Patrik K E; Lucas, Gavin; Luben, Robert; Loos, Ruth J F; Lokki, Marja-Liisa; Lettre, Guillaume; Langenberg, Claudia; Launer, Lenore J; Lakatta, Edward G; Laaksonen, Reijo; Kyvik, Kirsten O; Kronenberg, Florian; König, Inke R; Khaw, Kay-Tee; Kaprio, Jaakko; Kaplan, Lee M; Johansson, Asa; Jarvelin, Marjo-Riitta; Janssens, A Cecile J W; Ingelsson, Erik; Igl, Wilmar; Kees Hovingh, G; Hottenga, Jouke-Jan; Hofman, Albert; Hicks, Andrew A; Hengstenberg, Christian; Heid, Iris M; Hayward, Caroline; Havulinna, Aki S; Hastie, Nicholas D; Harris, Tamara B; Haritunians, Talin; Hall, Alistair S; Gyllensten, Ulf; Guiducci, Candace; Groop, Leif C; Gonzalez, Elena; Gieger, Christian; Freimer, Nelson B; Ferrucci, Luigi; Erdmann, Jeanette; Elliott, Paul; Ejebe, Kenechi G; Döring, Angela; Dominiczak, Anna F; Demissie, Serkalem; Deloukas, Panagiotis; de Geus, Eco J C; de Faire, Ulf; Crawford, Gabriel; Collins, Francis S; Chen, Yii-der I; Caulfield, Mark J; Campbell, Harry; Burtt, Noel P; Bonnycastle, Lori L; Boomsma, Dorret I; Boekholdt, S Matthijs; Bergman, Richard N; Barroso, Inês; Bandinelli, Stefania; Ballantyne, Christie M; Assimes, Themistocles L; Quertermous, Thomas; Altshuler, David; Seielstad, Mark; Wong, Tien Y; Tai, E-Shyong; Feranil, Alan B; Kuzawa, Christopher W; Adair, Linda S; Taylor, Herman A; Borecki, Ingrid B; Gabriel, Stacey B; Wilson, James G; Holm, Hilma; Thorsteinsdottir, Unnur; Gudnason, Vilmundur; Krauss, Ronald M; Mohlke, Karen L; Ordovas, Jose M; Munroe, Patricia B; Kooner, Jaspal S; Tall, Alan R; Hegele, Robert A; Kastelein, John J P; Schadt, Eric E; Rotter, Jerome I; Boerwinkle, Eric; Strachan, David P; Mooser, Vincent; Stefansson, Kari; Reilly, Muredach P; Samani, Nilesh J; Schunkert, Heribert; Cupples, L Adrienne; Sandhu, Manjinder S; Ridker, Paul M; Rader, Daniel J; van Duijn, Cornelia M; Peltonen, Leena; Abecasis, Gonçalo R; Boehnke, Michael; Kathiresan, Sekar
2010-08-05
Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.
Mapping Quantitative Trait Loci in Crosses between Outbred Lines Using Least Squares
Haley, C. S.; Knott, S. A.; Elsen, J. M.
1994-01-01
The use of genetic maps based upon molecular markers has allowed the dissection of some of the factors underlying quantitative variation in crosses between inbred lines. For many species crossing inbred lines is not a practical proposition, although crosses between genetically very different outbred lines are possible. Here we develop a least squares method for the analysis of crosses between outbred lines which simultaneously uses information from multiple linked markers. The method is suitable for crosses where the lines may be segregating at marker loci but can be assumed to be fixed for alternative alleles at the major quantitative trait loci (QTLs) affecting the traits under analysis (e.g., crosses between divergent selection lines or breeds with different selection histories). The simultaneous use of multiple markers from a linkage group increases the sensitivity of the test statistic, and thus the power for the detection of QTLs, compared to the use of single markers or markers flanking an interval. The gain is greater for more closely spaced markers and for markers of lower information content. Use of multiple markers can also remove the bias in the estimated position and effect of a QTL which may result when different markers in a linkage group vary in their heterozygosity in the F(1) (and thus in their information content) and are considered only singly or a pair at a time. The method is relatively simple to apply so that more complex models can be fitted than is currently possible by maximum likelihood. Thus fixed effects and effects of background genotype can be fitted simultaneously with the exploration of a single linkage group which will increase the power to detect QTLs by reducing the residual variance. More complex models with several QTLs in the same linkage group and two-locus interactions between QTLs can similarly be examined. Thus least squares provides a powerful tool to extend the range of crosses from which QTLs can be dissected whilst at the same time allowing flexible and realistic models to be explored. PMID:8005424
Assessment of Parkinson’s disease risk loci in Greece
Kara, Eleanna; Xiromerisiou, Georgia; Spanaki, Cleanthe; Bozi, Maria; Koutsis, Georgios; Panas, Marios; Dardiotis, Efthimios; Ralli, Styliani; Bras, Jose; Letson, Christopher; Edsall, Connor; Pliner, Hannah; Arepali, Sampath; Kalinderi, Kallirhoe; Fidani, Liana; Bostanjopoulou, Sevasti; Keller, Margaux F; Wood, Nicholas W; Hardy, John; Houlden, Henry; Stefanis, Leonidas; Plaitakis, Andreas; Hernandez, Dena; Hadjigeorgiou, Georgios M; Nalls, Mike A; Singleton, Andrew B
2013-01-01
Genome wide association studies (GWAS) have been shown to be a powerful approach to identify risk loci for neurodegenerative diseases. Recent GWAS in Parkinson’s disease (PD) have been successful in identifying numerous risk variants pointing to novel pathways potentially implicated in the pathogenesis of PD. Contributing to these GWAS efforts, we performed genotyping of previously identified risk alleles in PD patients and controls from Greece. We showed that previously published risk profiles for Northern European and American populations are also applicable to the Greek population. In addition, while we were largely underpowered to detect individual associations we replicated 5 of 32 previously published risk variants with nominal p-values <0.05. Genome-wide complex trait analysis (GCTA) revealed that known risk loci explain disease risk in 1.27% of Greek PD patients. Collectively, these results indicate that there is likely a substantial genetic component to PD in Greece similarly to other worldwide populations that remains to be discovered. PMID:24080174
Valdés-López, Oswaldo; Thibivilliers, Sandra; Qiu, Jing; Xu, Wayne Wenzhong; Nguyen, Tran H.N.; Libault, Marc; Le, Brandon H.; Goldberg, Robert B.; Hill, Curtis B.; Hartman, Glen L.; Diers, Brian; Stacey, Gary
2011-01-01
Microbe-associated molecular pattern-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we report on variation in both the microbe-associated molecular pattern-triggered oxidative burst and gene expression across four soybean (Glycine max) genotypes. Variation in MTI correlated with the level of pathogen resistance for each genotype. A quantitative trait locus analysis on these traits identified four loci that appeared to regulate gene expression during MTI in soybean. Likewise, we observed that both MTI variation and pathogen resistance were quantitatively inherited. The approach utilized in this study may have utility for identifying key resistance loci useful for developing improved soybean cultivars. PMID:21963820
Multi-trait analysis of genome-wide association summary statistics using MTAG.
Turley, Patrick; Walters, Raymond K; Maghzian, Omeed; Okbay, Aysu; Lee, James J; Fontana, Mark Alan; Nguyen-Viet, Tuan Anh; Wedow, Robbee; Zacher, Meghan; Furlotte, Nicholas A; Magnusson, Patrik; Oskarsson, Sven; Johannesson, Magnus; Visscher, Peter M; Laibson, David; Cesarini, David; Neale, Benjamin M; Benjamin, Daniel J
2018-02-01
We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.
USDA-ARS?s Scientific Manuscript database
Genomic analyses have the potential to impact aquaculture production traits by identifying markers as proxies for traits which are expensive or difficult to measure and characterizing genetic variation and biochemical mechanisms underlying phenotypic variation. One such trait is the response of rai...
Guo, Hailin; Ding, Wanwen; Chen, Jingbo; Chen, Xuan; Zheng, Yiqi; Wang, Zhiyong; Liu, Jianxiu
2014-01-01
Zoysiagrass (Zoysia Willd.) is an important warm season turfgrass that is grown in many parts of the world. Salt tolerance is an important trait in zoysiagrass breeding programs. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism markers and random amplified polymorphic DNA markers based on an F1 population comprising 120 progeny derived from a cross between Zoysia japonica Z105 (salt-tolerant accession) and Z061 (salt-sensitive accession). The linkage map covered 1211 cM with an average marker distance of 5.0 cM and contained 24 linkage groups with 242 marker loci (217 sequence-related amplified polymorphism markers and 25 random amplified polymorphic DNA markers). Quantitative trait loci affecting the salt tolerance of zoysiagrass were identified using the constructed genetic linkage map. Two significant quantitative trait loci (qLF-1 and qLF-2) for leaf firing percentage were detected; qLF-1 at 36.3 cM on linkage group LG4 with a logarithm of odds value of 3.27, which explained 13.1% of the total variation of leaf firing and qLF-2 at 42.3 cM on LG5 with a logarithm of odds value of 2.88, which explained 29.7% of the total variation of leaf firing. A significant quantitative trait locus (qSCW-1) for reduced percentage of dry shoot clipping weight was detected at 44.1 cM on LG5 with a logarithm of odds value of 4.0, which explained 65.6% of the total variation. This study provides important information for further functional analysis of salt-tolerance genes in zoysiagrass. Molecular markers linked with quantitative trait loci for salt tolerance will be useful in zoysiagrass breeding programs using marker-assisted selection.
Tromp, Gerard; Kuivaniemi, Helena; Gretarsdottir, Solveig; Baas, Annette F.; Giusti, Betti; Strauss, Ewa; van‘t Hof, Femke N.G.; Webb, Thomas R.; Erdman, Robert; Ritchie, Marylyn D.; Elmore, James R.; Verma, Anurag; Pendergrass, Sarah; Kullo, Iftikhar J.; Ye, Zi; Peissig, Peggy L.; Gottesman, Omri; Verma, Shefali S.; Malinowski, Jennifer; Rasmussen-Torvik, Laura J.; Borthwick, Kenneth M.; Smelser, Diane T.; Crosslin, David R.; de Andrade, Mariza; Ryer, Evan J.; McCarty, Catherine A.; Böttinger, Erwin P.; Pacheco, Jennifer A.; Crawford, Dana C.; Carrell, David S.; Gerhard, Glenn S.; Franklin, David P.; Carey, David J.; Phillips, Victoria L.; Williams, Michael J.A.; Wei, Wenhua; Blair, Ross; Hill, Andrew A.; Vasudevan, Thodor M.; Lewis, David R.; Thomson, Ian A.; Krysa, Jo; Hill, Geraldine B.; Roake, Justin; Merriman, Tony R.; Oszkinis, Grzegorz; Galora, Silvia; Saracini, Claudia; Abbate, Rosanna; Pulli, Raffaele; Pratesi, Carlo; Saratzis, Athanasios; Verissimo, Ana R.; Bumpstead, Suzannah; Badger, Stephen A.; Clough, Rachel E.; Cockerill, Gillian; Hafez, Hany; Scott, D. Julian A.; Futers, T. Simon; Romaine, Simon P.R.; Bridge, Katherine; Griffin, Kathryn J.; Bailey, Marc A.; Smith, Alberto; Thompson, Matthew M.; van Bockxmeer, Frank M.; Matthiasson, Stefan E.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Blankensteijn, Jan D.; Teijink, Joep A.W.; Wijmenga, Cisca; de Graaf, Jacqueline; Kiemeney, Lambertus A.; Lindholt, Jes S.; Hughes, Anne; Bradley, Declan T.; Stirrups, Kathleen; Golledge, Jonathan; Norman, Paul E.; Powell, Janet T.; Humphries, Steve E.; Hamby, Stephen E.; Goodall, Alison H.; Nelson, Christopher P.; Sakalihasan, Natzi; Courtois, Audrey; Ferrell, Robert E.; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Eicher, John D.; Johnson, Andrew D.; Betsholtz, Christer; Ruusalepp, Arno; Franzén, Oscar; Schadt, Eric E.; Björkegren, Johan L.M.; Lipovich, Leonard; Drolet, Anne M.; Verhoeven, Eric L.; Zeebregts, Clark J.; Geelkerken, Robert H.; van Sambeek, Marc R.; van Sterkenburg, Steven M.; de Vries, Jean-Paul; Stefansson, Kari; Thompson, John R.; de Bakker, Paul I.W.; Deloukas, Panos; Sayers, Robert D.; Harrison, Seamus C.; van Rij, Andre M.; Samani, Nilesh J.
2017-01-01
Rationale: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA. Objective: To identify additional AAA risk loci using data from all available genome-wide association studies. Methods and Results: Through a meta-analysis of 6 genome-wide association study data sets and a validation study totaling 10 204 cases and 107 766 controls, we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 (LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches, we observed no new associations between the lead AAA single nucleotide polymorphisms and coronary artery disease, blood pressure, lipids, or diabetes mellitus. Network analyses identified ERG, IL6R, and LDLR as modifiers of MMP9, with a direct interaction between ERG and MMP9. Conclusions: The 4 new risk loci for AAA seem to be specific for AAA compared with other cardiovascular diseases and related traits suggesting that traditional cardiovascular risk factor management may only have limited value in preventing the progression of aneurysmal disease. PMID:27899403
Association Mapping of Main Tomato Fruit Sugars and Organic Acids
Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing
2016-01-01
Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019
Association Mapping of Main Tomato Fruit Sugars and Organic Acids.
Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing
2016-01-01
Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding.
Hsueh, W C; Göring, H H; Blangero, J; Mitchell, B D
2001-01-01
Replication of linkage signals from independent samples is considered an important step toward verifying the significance of linkage signals in studies of complex traits. The purpose of this empirical investigation was to examine the variability in the precision of localizing a quantitative trait locus (QTL) by analyzing multiple replicates of a simulated data set with the use of variance components-based methods. Specifically, we evaluated across replicates the variation in both the magnitude and the location of the peak lod scores. We analyzed QTLs whose effects accounted for 10-37% of the phenotypic variance in the quantitative traits. Our analyses revealed that the precision of QTL localization was directly related to the magnitude of the QTL effect. For a QTL with effect accounting for > 20% of total phenotypic variation, > 90% of the linkage peaks fall within 10 cM from the true gene location. We found no evidence that, for a given magnitude of the lod score, the presence of interaction influenced the precision of QTL localization.
The complex history of the domestication of rice.
Sweeney, Megan; McCouch, Susan
2007-11-01
Rice has been found in archaeological sites dating to 8000 bc, although the date of rice domestication is a matter of continuing debate. Two species of domesticated rice, Oryza sativa (Asian) and Oryza glaberrima (African) are grown globally. Numerous traits separate wild and domesticated rices including changes in: pericarp colour, dormancy, shattering, panicle architecture, tiller number, mating type and number and size of seeds. Genetic studies using diverse methodologies have uncovered a deep population structure within domesticated rice. Two main groups, the indica and japonica subspecies, have been identified with several subpopulations existing within each group. The antiquity of the divide has been estimated at more than 100 000 years ago. This date far precedes domestication, supporting independent domestications of indica and japonica from pre-differentiated pools of the wild ancestor. Crosses between subspecies display sterility and segregate for domestication traits, indicating that different populations are fixed for different networks of alleles conditioning these traits. Numerous domestication QTLs have been identified in crosses between the subspecies and in crosses between wild and domesticated accessions of rice. Many of the QTLs cluster in the same genomic regions, suggesting that a single gene with pleiotropic effects or that closely linked clusters of genes underlie these QTL. Recently, several domestication loci have been cloned from rice, including the gene controlling pericarp colour and two loci for shattering. The distribution and evolutionary history of these genes gives insight into the domestication process and the relationship between the subspecies. The evolutionary history of rice is complex, but recent work has shed light on the genetics of the transition from wild (O. rufipogon and O. nivara) to domesticated (O. sativa) rice. The types of genes involved and the geographic and genetic distribution of alleles will allow scientists to better understand our ancestors and breed better rice for our descendents.
Zorrilla-Fontanesi, Yasmín; Rambla, José-Luis; Cabeza, Amalia; Medina, Juan J.; Sánchez-Sevilla, José F.; Valpuesta, Victoriano; Botella, Miguel A.; Granell, Antonio; Amaya, Iraida
2012-01-01
Improvement of strawberry (Fragaria × ananassa) fruit flavor is an important goal in breeding programs. To investigate genetic factors controlling this complex trait, a strawberry mapping population derived from genotype ‘1392’, selected for its superior flavor, and ‘232’ was profiled for volatile compounds over 4 years by headspace solid phase microextraction coupled to gas chromatography and mass spectrometry. More than 300 volatile compounds were detected, of which 87 were identified by comparison of mass spectrum and retention time to those of pure standards. Parental line ‘1392’ displayed higher volatile levels than ‘232’, and these and many other compounds with similar levels in both parents segregated in the progeny. Cluster analysis grouped the volatiles into distinct chemically related families and revealed a complex metabolic network underlying volatile production in strawberry fruit. Quantitative trait loci (QTL) detection was carried out over 3 years based on a double pseudo-testcross strategy. Seventy QTLs covering 48 different volatiles were detected, with several of them being stable over time and mapped as major QTLs. Loci controlling γ-decalactone and mesifurane content were mapped as qualitative traits. Using a candidate gene approach we have assigned genes that are likely responsible for several of the QTLs. As a proof of concept we show that one homoeolog of the O-methyltransferase gene (FaOMT) is the locus responsible for the natural variation of mesifurane content. Sequence analysis identified 30 bp in the promoter of this FaOMT homoeolog containing putative binding sites for basic/helix-loop-helix, MYB, and BZIP transcription factors. This polymorphism fully cosegregates with both the presence of mesifurane and the high expression of FaOMT during ripening. PMID:22474217
An integrated map of structural variation in 2,504 human genomes.
Sudmant, Peter H; Rausch, Tobias; Gardner, Eugene J; Handsaker, Robert E; Abyzov, Alexej; Huddleston, John; Zhang, Yan; Ye, Kai; Jun, Goo; Fritz, Markus Hsi-Yang; Konkel, Miriam K; Malhotra, Ankit; Stütz, Adrian M; Shi, Xinghua; Casale, Francesco Paolo; Chen, Jieming; Hormozdiari, Fereydoun; Dayama, Gargi; Chen, Ken; Malig, Maika; Chaisson, Mark J P; Walter, Klaudia; Meiers, Sascha; Kashin, Seva; Garrison, Erik; Auton, Adam; Lam, Hugo Y K; Mu, Xinmeng Jasmine; Alkan, Can; Antaki, Danny; Bae, Taejeong; Cerveira, Eliza; Chines, Peter; Chong, Zechen; Clarke, Laura; Dal, Elif; Ding, Li; Emery, Sarah; Fan, Xian; Gujral, Madhusudan; Kahveci, Fatma; Kidd, Jeffrey M; Kong, Yu; Lameijer, Eric-Wubbo; McCarthy, Shane; Flicek, Paul; Gibbs, Richard A; Marth, Gabor; Mason, Christopher E; Menelaou, Androniki; Muzny, Donna M; Nelson, Bradley J; Noor, Amina; Parrish, Nicholas F; Pendleton, Matthew; Quitadamo, Andrew; Raeder, Benjamin; Schadt, Eric E; Romanovitch, Mallory; Schlattl, Andreas; Sebra, Robert; Shabalin, Andrey A; Untergasser, Andreas; Walker, Jerilyn A; Wang, Min; Yu, Fuli; Zhang, Chengsheng; Zhang, Jing; Zheng-Bradley, Xiangqun; Zhou, Wanding; Zichner, Thomas; Sebat, Jonathan; Batzer, Mark A; McCarroll, Steven A; Mills, Ryan E; Gerstein, Mark B; Bashir, Ali; Stegle, Oliver; Devine, Scott E; Lee, Charles; Eichler, Evan E; Korbel, Jan O
2015-10-01
Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.
Campbell, Michael C.; Tishkoff, Sarah A.
2010-01-01
Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304
Roederer, Mario; Quaye, Lydia; Mangino, Massimo; Beddall, Margaret H.; Mahnke, Yolanda; Chattopadhyay, Pratip; Tosi, Isabella; Napolitano, Luca; Barberio, Manuela Terranova; Menni, Cristina; Villanova, Federica; Di Meglio, Paola; Spector, Tim D.; Nestle, Frank O.
2015-01-01
Summary Despite recent discoveries of genetic variants associated with autoimmunity and infection, genetic control of the human immune system during homeostasis is poorly understood. We undertook a comprehensive immunophenotyping approach, analysing 78,000 immune traits in 669 female twins. From the top 151 heritable traits (up to 96% heritable), we used replicated GWAS to obtain 297 SNP associations at 11 genetic loci explaining up to 36% of the variation of 19 traits. We found multiple associations with canonical traits of all major immune cell subsets, and uncovered insights into genetic control for regulatory T cells. This dataset also revealed traits associated with loci known to confer autoimmune susceptibility, providing mechanistic hypotheses linking immune traits with the etiology of disease. Our data establish a bioresource that links genetic control elements associated with normal immune traits to common autoimmune and infectious diseases, providing a shortcut to identifying potential mechanisms of immune-related diseases. PMID:25772697
Roederer, Mario; Quaye, Lydia; Mangino, Massimo; Beddall, Margaret H; Mahnke, Yolanda; Chattopadhyay, Pratip; Tosi, Isabella; Napolitano, Luca; Terranova Barberio, Manuela; Menni, Cristina; Villanova, Federica; Di Meglio, Paola; Spector, Tim D; Nestle, Frank O
2015-04-09
Despite recent discoveries of genetic variants associated with autoimmunity and infection, genetic control of the human immune system during homeostasis is poorly understood. We undertook a comprehensive immunophenotyping approach, analyzing 78,000 immune traits in 669 female twins. From the top 151 heritable traits (up to 96% heritable), we used replicated GWAS to obtain 297 SNP associations at 11 genetic loci, explaining up to 36% of the variation of 19 traits. We found multiple associations with canonical traits of all major immune cell subsets and uncovered insights into genetic control for regulatory T cells. This data set also revealed traits associated with loci known to confer autoimmune susceptibility, providing mechanistic hypotheses linking immune traits with the etiology of disease. Our data establish a bioresource that links genetic control elements associated with normal immune traits to common autoimmune and infectious diseases, providing a shortcut to identifying potential mechanisms of immune-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Genetic Mapping of Fixed Phenotypes: Disease Frequency as a Breed Characteristic
Jones, Paul; Martin, Alan; Ostrander, Elaine A.; Lark, Karl G.
2009-01-01
Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pacreatitis. PMID:19321632
Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic.
Chase, Kevin; Jones, Paul; Martin, Alan; Ostrander, Elaine A; Lark, Karl G
2009-01-01
Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pancreatitis.
Genetic architecture of adiposity and organ weight using combined generation QTL analysis.
Fawcett, Gloria L; Roseman, Charles C; Jarvis, Joseph P; Wang, Bing; Wolf, Jason B; Cheverud, James M
2008-08-01
We present here a detailed study of the genetic contributions to adult body size and adiposity in the LG,SM advanced intercross line (AIL), an obesity model. This study represents a first step in fine-mapping obesity quantitative trait loci (QTLs) in an AIL. QTLs for adiposity in this model were previously isolated to chromosomes 1, 6, 7, 8, 9, 12, 13, and 18. This study focuses on heritable contributions and the genetic architecture of fatpad and organ weights. We analyzed both the F(2) and F(3) generations of the LG,SM AIL population single-nucleotide polymorphism (SNP) genotyped with a marker density of approximately 4 cM. We replicate 88% of the previously identified obesity QTLs and identify 13 new obesity QTLs. Nearly half of the single-trait QTLs were sex-specific. Several broad QTL regions were resolved into multiple, narrower peaks. The 113 single-trait QTLs for organs and body weight clustered into 27 pleiotropic loci. A large number of epistatic interactions are described which begin to elucidate potential interacting molecular networks. We present a relatively rapid means to obtain fine-mapping details from AILs using dense marker maps and consecutive generations. Analysis of the complex genetic architecture underlying fatpad and organ weights in this model may eventually help to elucidate not only heritable contributions to obesity but also common gene sets for obesity and its comorbidities.
Dai, Jiajuan; Wang, Xusheng; Chen, Ying; Wang, Xiaodong; Zhu, Jun; Lu, Lu
2009-11-01
Previous studies have revealed that the subunit alpha 2 (Gabra2) of the gamma-aminobutyric acid receptor plays a critical role in the stress response. However, little is known about the gentetic regulatory network for Gabra2 and the stress response. We combined gene expression microarray analysis and quantitative trait loci (QTL) mapping to characterize the genetic regulatory network for Gabra2 expression in the hippocampus of BXD recombinant inbred (RI) mice. Our analysis found that the expression level of Gabra2 exhibited much variation in the hippocampus across the BXD RI strains and between the parental strains, C57BL/6J, and DBA/2J. Expression QTL (eQTL) mapping showed three microarray probe sets of Gabra2 to have highly significant linkage likelihood ratio statistic (LRS) scores. Gene co-regulatory network analysis showed that 10 genes, including Gria3, Chka, Drd3, Homer1, Grik2, Odz4, Prkag2, Grm5, Gabrb1, and Nlgn1 are directly or indirectly associated with stress responses. Eleven genes were implicated as Gabra2 downstream genes through mapping joint modulation. The genetical genomics approach demonstrates the importance and the potential power of the eQTL studies in identifying genetic regulatory networks that contribute to complex traits, such as stress responses.
Genome-Wide Mapping of Loci Explaining Variance in Scrotal Circumference in Nellore Cattle
Utsunomiya, Yuri T.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Matos, Márcia C.; Zavarez, Ludmilla B.; Ito, Pier K. R. K.; Pérez O'Brien, Ana M.; Sölkner, Johann; Porto-Neto, Laercio R.; Schenkel, Flávio S.; McEwan, John; Cole, John B.; da Silva, Marcos V. G. B.; Van Tassell, Curtis P.; Sonstegard, Tad S.; Garcia, José Fernando
2014-01-01
The reproductive performance of bulls has a high impact on the beef cattle industry. Scrotal circumference (SC) is the most recorded reproductive trait in beef herds, and is used as a major selection criterion to improve precocity and fertility. The characterization of genomic regions affecting SC can contribute to the identification of diagnostic markers for reproductive performance and uncover molecular mechanisms underlying complex aspects of bovine reproductive biology. In this paper, we report a genome-wide scan for chromosome segments explaining differences in SC, using data of 861 Nellore bulls (Bos indicus) genotyped for over 777,000 single nucleotide polymorphisms. Loci that excel from the genome background were identified on chromosomes 4, 6, 7, 10, 14, 18 and 21. The majority of these regions were previously found to be associated with reproductive and body size traits in cattle. The signal on chromosome 14 replicates the pleiotropic quantitative trait locus encompassing PLAG1 that affects male fertility in cattle and stature in several species. Based on intensive literature mining, SP4, MAGEL2, SH3RF2, PDE5A and SNAI2 are proposed as novel candidate genes for SC, as they affect growth and testicular size in other animal models. These findings contribute to linking reproductive phenotypes to gene functions, and may offer new insights on the molecular biology of male fertility. PMID:24558400
Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea.
Lan, T H; Paterson, A H
2000-08-01
The enlarged inflorescence (curd) of cauliflower and broccoli provide not only a popular vegetable for human consumption, but also a unique opportunity for scientists who seek to understand the genetic basis of plant growth and development. By the comparison of quantitative trait loci (QTL) maps constructed from three different F(2) populations, we identified a total of 86 QTL that control eight curd-related traits in Brassica oleracea. The 86 QTL may reflect allelic variation in as few as 67 different genetic loci and 54 ancestral genes. Although the locations of QTL affecting a trait occasionally corresponded between different populations or between different homeologous Brassica chromosomes, our data supported other molecular and morphological data in suggesting that the Brassica genus is rapidly evolving. Comparative data enabled us to identify a number of candidate genes from Arabidopsis that warrant further investigation to determine if some of them might account for Brassica QTL. The Arabidopsis/Brassica system is an important example of both the challenges and opportunities associated with extrapolation of genomic information from facile models to large-genome taxa including major crops.
Ishikawa, Akira
2017-11-27
Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.
Raghavan, Avanthi; Neeli, Hemanth; Jin, Weijun; Badellino, Karen O.; Demissie, Serkalem; Manning, Alisa K.; DerOhannessian, Stephanie L.; Wolfe, Megan L.; Cupples, L. Adrienne; Li, Mingyao; Kathiresan, Sekar; Rader, Daniel J.
2011-01-01
Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 5′ UTR in human subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant associated with HDL-C (rs2000813) is in linkage disequilibrium with a 5′ UTR variant (rs34474737) that decreases LIPG promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory variants are important contributors to the allelic spectrum in complex trait loci. PMID:22174694
Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice.
Kang, Eun Yong; Han, Buhm; Furlotte, Nicholas; Joo, Jong Wha J; Shih, Diana; Davis, Richard C; Lusis, Aldons J; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study.
Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice
Joo, Jong Wha J.; Shih, Diana; Davis, Richard C.; Lusis, Aldons J.; Eskin, Eleazar
2014-01-01
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study. PMID:24415945
Two-locus diseas models with two marker loci: The power of affected-sib-pair tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, M.; Seuchter, S.A.; Bauer, M.P.
1994-11-01
Recently, Schork et al. found that two-trait-locus, two-marker-locus (parametric) linkage analysis can provide substantially more linkage information than can standard one-trait-locus, one-marker-locus methods. However, because of the increased burden of computation, Schork et al. do not expect that their approach will be applied in an initial genome scan. Further, the specification of a suitable two-locus segregation model can be crucial. Affected-sib-pair tests are computationally simple and do not require an explicit specification of the disease model. In the past, however, these tests mainly have been applied to data with a single marker locus. Here, we consider sib-pair tests that makemore » it possible to analyze simultaneously two marker loci. The power of these tests is investigated for different (epistatic and heterogeneous) two-trait-locus models, each trait locus being linked to one of the marker loci. We compare these tests both with the test that is optimal for a certain model and with the strategy that analyzes each marker locus separately. The results indicate that a straightforward extension of the well-known mean test for two marker loci can be much more powerful than single-marker-locus analysis and that its power is only slightly inferior to the power of the optimal test. 21 refs., 5 figs., 2 tabs.« less
Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine
2015-01-01
Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. PMID:26179580
Chenu, Karine; Chapman, Scott C.; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L.
2009-01-01
Under drought, substantial genotype–environment (G × E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this “gene-to-phenotype” gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G × E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such “leafy” genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G × E interactions for complex traits such as drought tolerance. PMID:19786622
Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo
2013-01-01
Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793
The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations1[OPEN
Pan, Qingchun; Xu, Yuancheng; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin
2017-01-01
Plant architecture is a key factor affecting planting density and grain yield in maize (Zea mays). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3, has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. PMID:28838954
Palmer, Nicholette D; Goodarzi, Mark O; Langefeld, Carl D; Wang, Nan; Guo, Xiuqing; Taylor, Kent D; Fingerlin, Tasha E; Norris, Jill M; Buchanan, Thomas A; Xiang, Anny H; Haritunians, Talin; Ziegler, Julie T; Williams, Adrienne H; Stefanovski, Darko; Cui, Jinrui; Mackay, Adrienne W; Henkin, Leora F; Bergman, Richard N; Gao, Xiaoyi; Gauderman, James; Varma, Rohit; Hanis, Craig L; Cox, Nancy J; Highland, Heather M; Below, Jennifer E; Williams, Amy L; Burtt, Noel P; Aguilar-Salinas, Carlos A; Huerta-Chagoya, Alicia; Gonzalez-Villalpando, Clicerio; Orozco, Lorena; Haiman, Christopher A; Tsai, Michael Y; Johnson, W Craig; Yao, Jie; Rasmussen-Torvik, Laura; Pankow, James; Snively, Beverly; Jackson, Rebecca D; Liu, Simin; Nadler, Jerry L; Kandeel, Fouad; Chen, Yii-Der I; Bowden, Donald W; Rich, Stephen S; Raffel, Leslie J; Rotter, Jerome I; Watanabe, Richard M; Wagenknecht, Lynne E
2015-05-01
Insulin sensitivity, insulin secretion, insulin clearance, and glucose effectiveness exhibit strong genetic components, although few studies have examined their genetic architecture or influence on type 2 diabetes (T2D) risk. We hypothesized that loci affecting variation in these quantitative traits influence T2D. We completed a multicohort genome-wide association study to search for loci influencing T2D-related quantitative traits in 4,176 Mexican Americans. Quantitative traits were measured by the frequently sampled intravenous glucose tolerance test (four cohorts) or euglycemic clamp (three cohorts), and random-effects models were used to test the association between loci and quantitative traits, adjusting for age, sex, and admixture proportions (Discovery). Analysis revealed a significant (P < 5.00 × 10(-8)) association at 11q14.3 (MTNR1B) with acute insulin response. Loci with P < 0.0001 among the quantitative traits were examined for translation to T2D risk in 6,463 T2D case and 9,232 control subjects of Mexican ancestry (Translation). Nonparametric meta-analysis of the Discovery and Translation cohorts identified significant associations at 6p24 (SLC35B3/TFAP2A) with glucose effectiveness/T2D, 11p15 (KCNQ1) with disposition index/T2D, and 6p22 (CDKAL1) and 11q14 (MTNR1B) with acute insulin response/T2D. These results suggest that T2D and insulin secretion and sensitivity have both shared and distinct genetic factors, potentially delineating genomic components of these quantitative traits that drive the risk for T2D. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Replication of Caucasian Loci Associated with Osteoporosis-related Traits in East Asians
Kim, Beom-Jun; Ahn, Seong Hee; Kim, Hyeon-Mok; Ikegawa, Shiro; Yang, Tie-Lin; Guo, Yan; Deng, Hong-Wen; Koh, Jung-Min
2016-01-01
Background Most reported genome-wide association studies (GWAS) seeking to identify the loci of osteoporosis-related traits have involved Caucasian populations. We aimed to identify the single nucleotide polymorphisms (SNPs) of osteoporosis-related traits among East Asian populations from the bone mineral density (BMD)-related loci of an earlier GWAS meta-analysis. Methods A total of 95 SNPs, identified at the discovery stage of the largest GWAS meta-analysis of BMD, were tested to determine associations with osteoporosis-related traits (BMD, osteoporosis, or fracture) in Korean subjects (n=1,269). The identified SNPs of osteoporosis-related traits in Korean subjects were included in the replication analysis using Chinese (n=2,327) and Japanese (n=768) cohorts. Results A total of 17 SNPs were associated with low BMD in Korean subjects. Specifically, 9, 6, 9, and 5 SNPs were associated with the presence of osteoporosis, non-vertebral fractures, vertebral fractures, and any fracture, respectively. Collectively, 35 of the 95 SNPs (36.8%) were associated with one or more osteoporosis-related trait in Korean subjects. Of the 35 SNPs, 19 SNPs (54.3%) were also associated with one or more osteoporosis-related traits in East Asian populations. Twelve SNPs were associated with low BMD in the Chinese and Japanese cohorts. Specifically, 3, 4, and 2 SNPs were associated with the presence of hip fractures, vertebral fractures, and any fracture, respectively. Conclusions Our results identified the common SNPs of osteoporosis-related traits in both Caucasian and East Asian populations. These SNPs should be further investigated to assess whether they are true genetic markers of osteoporosis. PMID:27965945
Smeland, Olav B; Frei, Oleksandr; Kauppi, Karolina; Hill, W David; Li, Wen; Wang, Yunpeng; Krull, Florian; Bettella, Francesco; Eriksen, Jon A; Witoelar, Aree; Davies, Gail; Fan, Chun C; Thompson, Wesley K; Lam, Max; Lencz, Todd; Chen, Chi-Hua; Ueland, Torill; Jönsson, Erik G; Djurovic, Srdjan; Deary, Ian J; Dale, Anders M; Andreassen, Ole A
2017-10-01
Schizophrenia is associated with widespread cognitive impairments. Although cognitive deficits are one of the factors most strongly associated with functional outcome in schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To develop more efficient treatment strategies in patients with schizophrenia, a better understanding of the pathogenesis of these cognitive deficits is needed. Accumulating evidence indicates that genetic risk of schizophrenia may contribute to cognitive dysfunction. To identify genomic regions jointly influencing schizophrenia and the cognitive domains of reaction time and verbal-numerical reasoning, as well as general cognitive function, a phenotype that captures the shared variation in performance across cognitive domains. Combining data from genome-wide association studies from multiple phenotypes using conditional false discovery rate analysis provides increased power to discover genetic variants and could elucidate shared molecular genetic mechanisms. Data from the following genome-wide association studies, published from July 24, 2014, to January 17, 2017, were combined: schizophrenia in the Psychiatric Genomics Consortium cohort (n = 79 757 [cases, 34 486; controls, 45 271]); verbal-numerical reasoning (n = 36 035) and reaction time (n = 111 483) in the UK Biobank cohort; and general cognitive function in CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) (n = 53 949) and COGENT (Cognitive Genomics Consortium) (n = 27 888). Genetic loci identified by conditional false discovery rate analysis. Brain messenger RNA expression and brain expression quantitative trait locus functionality were determined. Among the participants in the genome-wide association studies, 21 loci jointly influencing schizophrenia and cognitive traits were identified: 2 loci shared between schizophrenia and verbal-numerical reasoning, 6 loci shared between schizophrenia and reaction time, and 14 loci shared between schizophrenia and general cognitive function. One locus was shared between schizophrenia and 2 cognitive traits and represented the strongest shared signal detected (nearest gene TCF20; chromosome 22q13.2), and was shared between schizophrenia (z score, 5.01; P = 5.53 × 10-7), general cognitive function (z score, -4.43; P = 9.42 × 10-6), and verbal-numerical reasoning (z score, -5.43; P = 5.64 × 10-8). For 18 loci, schizophrenia risk alleles were associated with poorer cognitive performance. The implicated genes are expressed in the developmental and adult human brain. Replicable expression quantitative trait locus functionality was identified for 4 loci in the adult human brain. The discovered loci improve the understanding of the common genetic basis underlying schizophrenia and cognitive function, suggesting novel molecular genetic mechanisms.
Thorwarth, Patrick; Yousef, Eltohamy A A; Schmid, Karl J
2018-02-02
Genetic resources are an important source of genetic variation for plant breeding. Genome-wide association studies (GWAS) and genomic prediction greatly facilitate the analysis and utilization of useful genetic diversity for improving complex phenotypic traits in crop plants. We explored the potential of GWAS and genomic prediction for improving curd-related traits in cauliflower ( Brassica oleracea var. botrytis ) by combining 174 randomly selected cauliflower gene bank accessions from two different gene banks. The collection was genotyped with genotyping-by-sequencing (GBS) and phenotyped for six curd-related traits at two locations and three growing seasons. A GWAS analysis based on 120,693 single-nucleotide polymorphisms identified a total of 24 significant associations for curd-related traits. The potential for genomic prediction was assessed with a genomic best linear unbiased prediction model and BayesB. Prediction abilities ranged from 0.10 to 0.66 for different traits and did not differ between prediction methods. Imputation of missing genotypes only slightly improved prediction ability. Our results demonstrate that GWAS and genomic prediction in combination with GBS and phenotyping of highly heritable traits can be used to identify useful quantitative trait loci and genotypes among genetically diverse gene bank material for subsequent utilization as genetic resources in cauliflower breeding. Copyright © 2018 Thorwarth et al.
Genetic Architecture of a Hormonal Response to Gene Knockdown in Honey Bees
Rueppell, Olav; Huang, Zachary Y.; Wang, Ying; Fondrk, M. Kim; Page, Robert E.; Amdam, Gro V.
2015-01-01
Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general. PMID:25596612
Clerkx, Emile J.M.; El-Lithy, Mohamed E.; Vierling, Elizabeth; Ruys, Gerda J.; Vries, Hetty Blankestijn-De; Groot, Steven P.C.; Vreugdenhil, Dick; Koornneef, Maarten
2004-01-01
Quantitative trait loci (QTL) mapping was used to identify loci controlling various aspects of seed longevity during storage and germination. Similar locations for QTLs controlling different traits might be an indication for a common genetic control of such traits. For this analysis we used a new recombinant inbred line population derived from a cross between the accessions Landsberg erecta (Ler) and Shakdara (Sha). A set of 114 F9 recombinant inbred lines was genotyped with 65 polymerase chain reaction-based markers and the phenotypic marker erecta. The traits analyzed were dormancy, speed of germination, seed sugar content, seed germination after a controlled deterioration test, hydrogen peroxide (H2O2) treatment, and on abscisic acid. Furthermore, the effects of heat stress, salt (NaCl) stress, osmotic (mannitol) stress, and natural aging were analyzed. For all traits one or more QTLs were identified, with some QTLs for different traits colocating. The relevance of colocation for mechanisms underlying the various traits is discussed. PMID:15122038
2010-01-01
Background The information provided by dense genome-wide markers using high throughput technology is of considerable potential in human disease studies and livestock breeding programs. Genome-wide association studies relate individual single nucleotide polymorphisms (SNP) from dense SNP panels to individual measurements of complex traits, with the underlying assumption being that any association is caused by linkage disequilibrium (LD) between SNP and quantitative trait loci (QTL) affecting the trait. Often SNP are in genomic regions of no trait variation. Whole genome Bayesian models are an effective way of incorporating this and other important prior information into modelling. However a full Bayesian analysis is often not feasible due to the large computational time involved. Results This article proposes an expectation-maximization (EM) algorithm called emBayesB which allows only a proportion of SNP to be in LD with QTL and incorporates prior information about the distribution of SNP effects. The posterior probability of being in LD with at least one QTL is calculated for each SNP along with estimates of the hyperparameters for the mixture prior. A simulated example of genomic selection from an international workshop is used to demonstrate the features of the EM algorithm. The accuracy of prediction is comparable to a full Bayesian analysis but the EM algorithm is considerably faster. The EM algorithm was accurate in locating QTL which explained more than 1% of the total genetic variation. A computational algorithm for very large SNP panels is described. Conclusions emBayesB is a fast and accurate EM algorithm for implementing genomic selection and predicting complex traits by mapping QTL in genome-wide dense SNP marker data. Its accuracy is similar to Bayesian methods but it takes only a fraction of the time. PMID:20969788
Wu, Ying; Waite, Lindsay L.; Jackson, Anne U.; Sheu, Wayne H-H.; Buyske, Steven; Absher, Devin; Arnett, Donna K.; Boerwinkle, Eric; Bonnycastle, Lori L.; Carty, Cara L.; Cheng, Iona; Cochran, Barbara; Croteau-Chonka, Damien C.; Dumitrescu, Logan; Eaton, Charles B.; Franceschini, Nora; Guo, Xiuqing; Henderson, Brian E.; Hindorff, Lucia A.; Kim, Eric; Kinnunen, Leena; Komulainen, Pirjo; Lee, Wen-Jane; Le Marchand, Loic; Lin, Yi; Lindström, Jaana; Lingaas-Holmen, Oddgeir; Mitchell, Sabrina L.; Narisu, Narisu; Robinson, Jennifer G.; Schumacher, Fred; Stančáková, Alena; Sundvall, Jouko; Sung, Yun-Ju; Swift, Amy J.; Wang, Wen-Chang; Wilkens, Lynne; Wilsgaard, Tom; Young, Alicia M.; Adair, Linda S.; Ballantyne, Christie M.; Bůžková, Petra; Chakravarti, Aravinda; Collins, Francis S.; Duggan, David; Feranil, Alan B.; Ho, Low-Tone; Hung, Yi-Jen; Hunt, Steven C.; Hveem, Kristian; Juang, Jyh-Ming J.; Kesäniemi, Antero Y.; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lee, I-Te; Leppert, Mark F.; Matise, Tara C.; Moilanen, Leena; Njølstad, Inger; Peters, Ulrike; Quertermous, Thomas; Rauramaa, Rainer; Rotter, Jerome I.; Saramies, Jouko; Tuomilehto, Jaakko; Uusitupa, Matti; Wang, Tzung-Dau; Mohlke, Karen L.
2013-01-01
Genome-wide association studies (GWAS) have identified ∼100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, in individuals of African American (n = 6,832), East Asian (n = 9,449), and European (n = 10,829) ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1×10−4 in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies. PMID:23555291
Mapping of Gene Expression Reveals CYP27A1 as a Susceptibility Gene for Sporadic ALS
van Rheenen, Wouter; Franke, Lude; Jansen, Ritsert C.; van Es, Michael A.; van Vught, Paul W. J.; Blauw, Hylke M.; Groen, Ewout J. N.; Horvath, Steve; Estrada, Karol; Rivadeneira, Fernando; Hofman, Albert; Uitterlinden, Andre G.; Robberecht, Wim; Andersen, Peter M.; Melki, Judith; Meininger, Vincent; Hardiman, Orla; Landers, John E.; Brown, Robert H.; Shatunov, Aleksey; Shaw, Christopher E.; Leigh, P. Nigel; Al-Chalabi, Ammar; Ophoff, Roel A.
2012-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS) have implicated a few susceptibility loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci. Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls) were used to prioritize eQTLs identified in the first stage (162 ALS, 207 controls). These prioritized eQTLs were carried forward to the second sample with both gene-expression and genotyping data (161 ALS, 206 controls). Replicated eQTL SNPs were then tested for association in the second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest significance (lowest p = 1.27×10−51) withstood multiple-testing correction in the second stage and modulated CYP27A1 gene expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible susceptibility gene for ALS. PMID:22509407
‘Particle genetics’: treating every cell as unique
Yvert, Gaël
2014-01-01
Genotype-phenotype relations are usually inferred from a deterministic point of view. For example, quantitative trait loci (QTL), which describe regions of the genome associated with a particular phenotype, are based on a mean trait difference between genotype categories. However, living systems comprise huge numbers of cells (the ‘particles’ of biology). Each cell can exhibit substantial phenotypic individuality, which can have dramatic consequences at the organismal level. Now, with technology capable of interrogating individual cells, it is time to consider how genotypes shape the probability laws of single cell traits. The possibility of mapping single cell probabilistic trait loci (PTL), which link genomic regions to probabilities of cellular traits, is a promising step in this direction. This approach requires thinking about phenotypes in probabilistic terms, a concept that statistical physicists have been applying to particles for a century. Here, I describe PTL and discuss their potential to enlarge our understanding of genotype-phenotype relations. PMID:24315431
Sánchez-Ramos, Irma; Cross, Ismael; Mácha, Jaroslav; Martínez-Rodríguez, Gonzalo; Krylov, Vladimir; Rebordinos, Laureana
2012-01-01
Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL) have been regarded as useful for marker-assisted selection in complex traits as growth. Polymorphisms have been studied in five candidate genes influencing growth in gilthead seabream (Sparus aurata): the growth hormone (GH), insulin-like growth factor-1 (IGF-1), myostatin (MSTN-1), prolactin (PRL), and somatolactin (SL) genes. Specimens evaluated were from a commercial broodstock comprising 131 breeders (from which 36 males and 44 females contributed to the progeny). In all samples eleven gene fragments, covering more than 13,000 bp, generated by PCR-RFLP, were analyzed; tests were made for significant associations between these markers and growth traits. ANOVA results showed a significant association between MSTN-1 gene polymorphism and growth traits. Pairwise tests revealed several RFLPs in the MSTN-1 gene with significant heterogeneity of genotypes among size groups. PRL and MSTN-1 genes presented linkage disequilibrium. The MSTN-1 gene was mapped in the centromeric region of a medium-size acrocentric chromosome pair. PMID:22666112
Frontotemporal dementia and its subtypes: a genome-wide association study
Ferrari, Raffaele; Hernandez, Dena G; Nalls, Michael A; Rohrer, Jonathan D; Ramasamy, Adaikalavan; Kwok, John B J; Dobson-Stone, Carol; Brooks, William S; Schofield, Peter R; Halliday, Glenda M; Hodges, John R; Piguet, Olivier; Bartley, Lauren; Thompson, Elizabeth; Haan, Eric; Hernández, Isabel; Ruiz, Agustín; Boada, Mercè; Borroni, Barbara; Padovani, Alessandro; Cruchaga, Carlos; Cairns, Nigel J; Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta; Forloni, Gianluigi; Galimberti, Daniela; Fenoglio, Chiara; Serpente, Maria; Scarpini, Elio; Clarimón, Jordi; Lleó, Alberto; Blesa, Rafael; Waldö, Maria Landqvist; Nilsson, Karin; Nilsson, Christer; Mackenzie, Ian R A; Hsiung, Ging-Yuek R; Mann, David M A; Grafman, Jordan; Morris, Christopher M; Attems, Johannes; Griffiths, Timothy D; McKeith, Ian G; Thomas, Alan J; Pietrini, P; Huey, Edward D; Wassermann, Eric M; Baborie, Atik; Jaros, Evelyn; Tierney, Michael C; Pastor, Pau; Razquin, Cristina; Ortega-Cubero, Sara; Alonso, Elena; Perneczky, Robert; Diehl-Schmid, Janine; Alexopoulos, Panagiotis; Kurz, Alexander; Rainero, Innocenzo; Rubino, Elisa; Pinessi, Lorenzo; Rogaeva, Ekaterina; George-Hyslop, Peter St; Rossi, Giacomina; Tagliavini, Fabrizio; Giaccone, Giorgio; Rowe, James B; Schlachetzki, J C M; Uphill, James; Collinge, John; Mead, S; Danek, Adrian; Van Deerlin, Vivianna M; Grossman, Murray; Trojanowsk, John Q; van der Zee, Julie; Deschamps, William; Van Langenhove, Tim; Cruts, Marc; Van Broeckhoven, Christine; Cappa, Stefano F; Le Ber, Isabelle; Hannequin, Didier; Golfier, Véronique; Vercelletto, Martine; Brice, Alexis; Nacmias, Benedetta; Sorbi, Sandro; Bagnoli, Silvia; Piaceri, Irene; Nielsen, Jørgen E; Hjermind, Lena E; Riemenschneider, Matthias; Mayhaus, Manuel; Ibach, Bernd; Gasparoni, Gilles; Pichler, Sabrina; Gu, Wei; Rossor, Martin N; Fox, Nick C; Warren, Jason D; Spillantini, Maria Grazia; Morris, Huw R; Rizzu, Patrizia; Heutink, Peter; Snowden, Julie S; Rollinson, Sara; Richardson, Anna; Gerhard, Alexander; Bruni, Amalia C; Maletta, Raffaele; Frangipane, Francesca; Cupidi, Chiara; Bernardi, Livia; Anfossi, Maria; Gallo, Maura; Conidi, Maria Elena; Smirne, Nicoletta; Rademakers, Rosa; Baker, Matt; Dickson, Dennis W; Graff-Radford, Neill R; Petersen, Ronald C; Knopman, David; Josephs, Keith A; Boeve, Bradley F; Parisi, Joseph E; Seeley, William W; Miller, Bruce L; Karydas, Anna M; Rosen, Howard; van Swieten, John C; Dopper, Elise G P; Seelaar, Harro; Pijnenburg, Yolande AL; Scheltens, Philip; Logroscino, Giancarlo; Capozzo, Rosa; Novelli, Valeria; Puca, Annibale A; Franceschi, M; Postiglione, Alfredo; Milan, Graziella; Sorrentino, Paolo; Kristiansen, Mark; Chiang, Huei-Hsin; Graff, Caroline; Pasquier, Florence; Rollin, Adeline; Deramecourt, Vincent; Lebert, Florence; Kapogiannis, Dimitrios; Ferrucci, Luigi; Pickering-Brown, Stuart; Singleton, Andrew B; Hardy, John; Momeni, Parastoo
2014-01-01
Summary Background Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. All participants had European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) and suggestive single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8) that encompassed the HLA locus at 6p21.3 in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC, for the behavioural FTD subtype. Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation incis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and possibly to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/ MRC Centre on Parkinson’s disease, Alzheimer’s Research UK, and Texas Tech University Health Sciences Center. PMID:24943344
Genomic networks of hybrid sterility.
Turner, Leslie M; White, Michael A; Tautz, Diethard; Payseur, Bret A
2014-02-01
Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics.
Genomic Networks of Hybrid Sterility
Turner, Leslie M.; White, Michael A.; Tautz, Diethard; Payseur, Bret A.
2014-01-01
Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci (“Dobzhansky-Muller incompatibilities”). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL—but not cis eQTL—were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad range of organisms and we advocate for widespread adoption of a network-centered approach in speciation genetics. PMID:24586194
Sherman, Natasha A.; Victorine, Anna; Wang, Richard J.; Moyle, Leonie C.
2014-01-01
Despite extensive theory, little is known about the empirical accumulation and evolutionary timing of mutations that contribute to speciation. Here we combined QTL (Quantitative Trait Loci) analyses of reproductive isolation, with information on species evolutionary relationships, to reconstruct the order and timing of mutations contributing to reproductive isolation between three plant (Solanum) species. To evaluate whether reproductive isolation QTL that appear to coincide in more than one species pair are homologous, we used cross-specific tests of allelism and found evidence for both homologous and lineage-specific (non-homologous) alleles at these co-localized loci. These data, along with isolation QTL unique to single species pairs, indicate that >85% of isolation-causing mutations arose later in the history of divergence between species. Phylogenetically explicit analyses of these data support non-linear models of accumulation of hybrid incompatibility, although the specific best-fit model differs between seed (pairwise interactions) and pollen (multi-locus interactions) sterility traits. Our findings corroborate theory that predicts an acceleration (‘snowballing’) in the accumulation of isolation loci as lineages progressively diverge, and suggest different underlying genetic bases for pollen versus seed sterility. Pollen sterility in particular appears to be due to complex genetic interactions, and we show this is consistent with a snowball model where later arising mutations are more likely to be involved in pairwise or multi-locus interactions that specifically involve ancestral alleles, compared to earlier arising mutations. PMID:25211473
Determination of nonlinear genetic architecture using compressed sensing.
Ho, Chiu Man; Hsu, Stephen D H
2015-01-01
One of the fundamental problems of modern genomics is to extract the genetic architecture of a complex trait from a data set of individual genotypes and trait values. Establishing this important connection between genotype and phenotype is complicated by the large number of candidate genes, the potentially large number of causal loci, and the likely presence of some nonlinear interactions between different genes. Compressed Sensing methods obtain solutions to under-constrained systems of linear equations. These methods can be applied to the problem of determining the best model relating genotype to phenotype, and generally deliver better performance than simply regressing the phenotype against each genetic variant, one at a time. We introduce a Compressed Sensing method that can reconstruct nonlinear genetic models (i.e., including epistasis, or gene-gene interactions) from phenotype-genotype (GWAS) data. Our method uses L1-penalized regression applied to nonlinear functions of the sensing matrix. The computational and data resource requirements for our method are similar to those necessary for reconstruction of linear genetic models (or identification of gene-trait associations), assuming a condition of generalized sparsity, which limits the total number of gene-gene interactions. An example of a sparse nonlinear model is one in which a typical locus interacts with several or even many others, but only a small subset of all possible interactions exist. It seems plausible that most genetic architectures fall in this category. We give theoretical arguments suggesting that the method is nearly optimal in performance, and demonstrate its effectiveness on broad classes of nonlinear genetic models using simulated human genomes and the small amount of currently available real data. A phase transition (i.e., dramatic and qualitative change) in the behavior of the algorithm indicates when sufficient data is available for its successful application. Our results indicate that predictive models for many complex traits, including a variety of human disease susceptibilities (e.g., with additive heritability h (2)∼0.5), can be extracted from data sets comprised of n ⋆∼100s individuals, where s is the number of distinct causal variants influencing the trait. For example, given a trait controlled by ∼10 k loci, roughly a million individuals would be sufficient for application of the method.
Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids
Teslovich, Tanya M.; Musunuru, Kiran; Smith, Albert V.; Edmondson, Andrew C.; Stylianou, Ioannis M.; Koseki, Masahiro; Pirruccello, James P.; Ripatti, Samuli; Chasman, Daniel I.; Willer, Cristen J.; Johansen, Christopher T.; Fouchier, Sigrid W.; Isaacs, Aaron; Peloso, Gina M.; Barbalic, Maja; Ricketts, Sally L.; Bis, Joshua C.; Aulchenko, Yurii S.; Thorleifsson, Gudmar; Feitosa, Mary F.; Chambers, John; Orho-Melander, Marju; Melander, Olle; Johnson, Toby; Li, Xiaohui; Guo, Xiuqing; Li, Mingyao; Cho, Yoon Shin; Go, Min Jin; Kim, Young Jin; Lee, Jong-Young; Park, Taesung; Kim, Kyunga; Sim, Xueling; Ong, Rick Twee-Hee; Croteau-Chonka, Damien C.; Lange, Leslie A.; Smith, Joshua D.; Song, Kijoung; Zhao, Jing Hua; Yuan, Xin; Luan, Jian'an; Lamina, Claudia; Ziegler, Andreas; Zhang, Weihua; Zee, Robert Y.L.; Wright, Alan F.; Witteman, Jacqueline C.M.; Wilson, James F.; Willemsen, Gonneke; Wichmann, H-Erich; Whitfield, John B.; Waterworth, Dawn M.; Wareham, Nicholas J.; Waeber, Gérard; Vollenweider, Peter; Voight, Benjamin F.; Vitart, Veronique; Uitterlinden, Andre G.; Uda, Manuela; Tuomilehto, Jaakko; Thompson, John R.; Tanaka, Toshiko; Surakka, Ida; Stringham, Heather M.; Spector, Tim D.; Soranzo, Nicole; Smit, Johannes H.; Sinisalo, Juha; Silander, Kaisa; Sijbrands, Eric J.G.; Scuteri, Angelo; Scott, James; Schlessinger, David; Sanna, Serena; Salomaa, Veikko; Saharinen, Juha; Sabatti, Chiara; Ruokonen, Aimo; Rudan, Igor; Rose, Lynda M.; Roberts, Robert; Rieder, Mark; Psaty, Bruce M.; Pramstaller, Peter P.; Pichler, Irene; Perola, Markus; Penninx, Brenda W.J.H.; Pedersen, Nancy L.; Pattaro, Cristian; Parker, Alex N.; Pare, Guillaume; Oostra, Ben A.; O'Donnell, Christopher J.; Nieminen, Markku S.; Nickerson, Deborah A.; Montgomery, Grant W.; Meitinger, Thomas; McPherson, Ruth; McCarthy, Mark I.; McArdle, Wendy; Masson, David; Martin, Nicholas G.; Marroni, Fabio; Mangino, Massimo; Magnusson, Patrik K.E.; Lucas, Gavin; Luben, Robert; Loos, Ruth J. F.; Lokki, Maisa; Lettre, Guillaume; Langenberg, Claudia; Launer, Lenore J.; Lakatta, Edward G.; Laaksonen, Reijo; Kyvik, Kirsten O.; Kronenberg, Florian; König, Inke R.; Khaw, Kay-Tee; Kaprio, Jaakko; Kaplan, Lee M.; Johansson, Åsa; Jarvelin, Marjo-Riitta; Janssens, A. Cecile J.W.; Ingelsson, Erik; Igl, Wilmar; Hovingh, G. Kees; Hottenga, Jouke-Jan; Hofman, Albert; Hicks, Andrew A.; Hengstenberg, Christian; Heid, Iris M.; Hayward, Caroline; Havulinna, Aki S.; Hastie, Nicholas D.; Harris, Tamara B.; Haritunians, Talin; Hall, Alistair S.; Gyllensten, Ulf; Guiducci, Candace; Groop, Leif C.; Gonzalez, Elena; Gieger, Christian; Freimer, Nelson B.; Ferrucci, Luigi; Erdmann, Jeanette; Elliott, Paul; Ejebe, Kenechi G.; Döring, Angela; Dominiczak, Anna F.; Demissie, Serkalem; Deloukas, Panagiotis; de Geus, Eco J.C.; de Faire, Ulf; Crawford, Gabriel; Collins, Francis S.; Chen, Yii-der I.; Caulfield, Mark J.; Campbell, Harry; Burtt, Noel P.; Bonnycastle, Lori L.; Boomsma, Dorret I.; Boekholdt, S. Matthijs; Bergman, Richard N.; Barroso, Inês; Bandinelli, Stefania; Ballantyne, Christie M.; Assimes, Themistocles L.; Quertermous, Thomas; Altshuler, David; Seielstad, Mark; Wong, Tien Y.; Tai, E-Shyong; Feranil, Alan B.; Kuzawa, Christopher W.; Adair, Linda S.; Taylor, Herman A.; Borecki, Ingrid B.; Gabriel, Stacey B.; Wilson, James G.; Stefansson, Kari; Thorsteinsdottir, Unnur; Gudnason, Vilmundur; Krauss, Ronald M.; Mohlke, Karen L.; Ordovas, Jose M.; Munroe, Patricia B.; Kooner, Jaspal S.; Tall, Alan R.; Hegele, Robert A.; Kastelein, John J.P.; Schadt, Eric E.; Rotter, Jerome I.; Boerwinkle, Eric; Strachan, David P.; Mooser, Vincent; Holm, Hilma; Reilly, Muredach P.; Samani, Nilesh J; Schunkert, Heribert; Cupples, L. Adrienne; Sandhu, Manjinder S.; Ridker, Paul M; Rader, Daniel J.; van Duijn, Cornelia M.; Peltonen, Leena; Abecasis, Gonçalo R.; Boehnke, Michael; Kathiresan, Sekar
2010-01-01
Serum concentrations of total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with serum lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 × 10-8), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (e.g., CYP7A1, NPC1L1, and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and impact lipid traits in three non-European populations (East Asians, South Asians, and African Americans). Our results identify several novel loci associated with serum lipids that are also associated with CAD. Finally, we validated three of the novel genes—GALNT2, PPP1R3B, and TTC39B—with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD. PMID:20686565
Gyawali, Sanjaya; Harrington, Myrtle; Durkin, Jonathan; Horner, Kyla; Parkin, Isobel A P; Hegedus, Dwayne D; Bekkaoui, Diana; Buchwaldt, Lone
The fungal pathogen Sclerotinia sclerotiorum causes stem rot of oilseed rape ( Brassica napus ) worldwide. In preparation for genome-wide association mapping (GWAM) of sclerotinia resistance in B. napus , 152 accessions from diverse geographical regions were screened with a single Canadian isolate, #321. Plants were inoculated by attaching mycelium plugs to the main stem at full flower. Lesion lengths measured 7, 14 and 21 days after inoculation were used to calculate the area under the disease progress curve (AUDPC). Depth of penetration was noted and used to calculate percent soft and collapsed lesions (% s + c). The two disease traits were highly correlated ( r = 0.93). Partially resistant accessions (AUDPC <7 and % s + c <2) were identified primarily from South Korea and Japan with a few from Pakistan, China and Europe. Genotyping of accessions with 84 simple sequence repeat markers provided 690 polymorphic loci for GWAM. The general linear model in TASSEL best fitted the data when adjusted for population structure (STRUCTURE), GLM + Q. After correction for positive false discovery rate, 34 loci were significantly associated with both disease traits of which 21 alleles contributed to resistance, while the remaining enhanced susceptibility. The phenotypic variation explained by the loci ranged from 6 to 25 %. Five loci mapped to published quantitative trait loci conferring sclerotinia resistance in Chinese lines.
Mora, Freddy; Quitral, Yerko A; Matus, Ivan; Russell, Joanne; Waugh, Robbie; Del Pozo, Alejandro
2016-01-01
This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5-22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5-35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint.
Mora, Freddy; Quitral, Yerko A.; Matus, Ivan; Russell, Joanne; Waugh, Robbie; del Pozo, Alejandro
2016-01-01
This study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes. Fifty-seven QTL were detected under rain-fed conditions, which accounted for 5–22% of the phenotypic variation. In full irrigation conditions, 84 SNPs were significantly associated with the traits studied, explaining 5–35% of phenotypic variation. Most of the QTL were co-localized on chromosomes 2H and 3H. Environment-specific genomic regions were detected for 12 of the 15 traits scored. Although most QTL-trait associations were environment and trait specific, some important and stable associations were also detected. In full irrigation conditions, a relatively major genomic region was found underlying hectoliter weight (HW), on chromosome 1H, which explained between 27% (SNP 2711-234) and 35% (SNP 1923-265) of the phenotypic variation. Interestingly, the locus 1923-265 was also detected for grain yield at both environmental conditions, accounting for 9 and 18%, in the rain-fed and irrigation conditions, respectively. Analysis of QTL in this breeding population identified significant genomic regions that can be used for marker-assisted selection (MAS) of barley in areas where drought is a significant constraint. PMID:27446139
Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.)
Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao
2016-01-01
Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al3+ resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley. PMID:27064793
Li, Yaoguo; He, Maoxian
2014-01-01
The pearl oyster, Pinctada fucata (P. fucata), is one of the marine bivalves that is predominantly cultured for pearl production. To obtain more genetic information for breeding purposes, we constructed a high-density linkage map of P. fucata and identified quantitative trait loci (QTL) for growth-related traits. One F1 family, which included the two parents, 48 largest progeny and 50 smallest progeny, was sampled to construct a linkage map using restriction site-associated DNA sequencing (RAD-Seq). With low coverage data, 1956.53 million clean reads and 86,342 candidate RAD loci were generated. A total of 1373 segregating SNPs were used to construct a sex-average linkage map. This spanned 1091.81 centimorgans (cM), with 14 linkage groups and an average marker interval of 1.41 cM. The genetic linkage map coverage, Coa, was 97.24%. Thirty-nine QTL-peak loci, for seven growth-related traits, were identified using the single-marker analysis, nonparametric mapping Kruskal-Wallis (KW) test. Parameters included three for shell height, six for shell length, five for shell width, four for hinge length, 11 for total weight, eight for soft tissue weight and two for shell weight. The QTL peak loci for shell height, shell length and shell weight were all located in linkage group 6. The genotype frequencies of most QTL peak loci showed significant differences between the large subpopulation and the small subpopulation (P<0.05). These results highlight the effectiveness of RAD-Seq as a tool for generation of QTL-targeted and genome-wide marker data in the non-model animal, P. fucata, and its possible utility in marker-assisted selection (MAS). PMID:25369421
Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir
Nicholas C. Wheeler; Kathleen D. Jermstad; Konstantin V. Krutovsky; Sally N. Aitken; Glenn T. Howe; Jodie Krakowski; David B. Neale
2005-01-01
Quantitative trait locus (QTL) analyses are used by geneticists to characterize the genetic architecture of quantitative traits, provide a foundation for marker-aided-selection (MAS), and provide a framework for positional selection of candidate genes. The most useful QTL for breeding applications are those that have been verified in time, space, and/or genetic...
Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production.
Thurber, Carrie S; Ma, Justin M; Higgins, Race H; Brown, Patrick J
2013-06-26
Sorghum is a tropical C4 cereal that recently adapted to temperate latitudes and mechanized grain harvest through selection for dwarfism and photoperiod-insensitivity. Quantitative trait loci for these traits have been introgressed from a dwarf temperate donor into hundreds of diverse sorghum landraces to yield the Sorghum Conversion lines. Here, we report the first comprehensive genomic analysis of the molecular changes underlying this adaptation. We apply genotyping-by-sequencing to 1,160 Sorghum Conversion lines and their exotic progenitors, and map donor introgressions in each Sorghum Conversion line. Many Sorghum Conversion lines carry unexpected haplotypes not found in either presumed parent. Genome-wide mapping of introgression frequencies reveals three genomic regions necessary for temperate adaptation across all Sorghum Conversion lines, containing the Dw1, Dw2, and Dw3 loci on chromosomes 9, 6, and 7 respectively. Association mapping of plant height and flowering time in Sorghum Conversion lines detects significant associations in the Dw1 but not the Dw2 or Dw3 regions. Subpopulation-specific introgression mapping suggests that chromosome 6 contains at least four loci required for temperate adaptation in different sorghum genetic backgrounds. The Dw1 region fractionates into separate quantitative trait loci for plant height and flowering time. Generating Sorghum Conversion lines has been accompanied by substantial unintended gene flow. Sorghum adaptation to temperate-zone grain production involves a small number of genomic regions, each containing multiple linked loci for plant height and flowering time. Further characterization of these loci will accelerate the adaptation of sorghum and related grasses to new production systems for food and fuel.
Meyer, J D F; Snook, M E; Houchins, K E; Rector, B G; Widstrom, N W; McMullen, M D
2007-06-01
Maysin is a naturally occurring C-glycosyl flavone found in maize (Zea mays L.) silk tissue that confers resistance to corn earworm (Helicoverpa zea, Boddie). Recently, two new maize populations were derived for high silk maysin. The two populations were named the exotic populations of maize (EPM) and the southern inbreds of maize (SIM). Quantitative trait locus (QTL) analysis was employed to determine which loci were responsible for elevated maysin levels in inbred lines derived from the EPM and SIM populations. The candidate genes consistent with QTL position included the p (pericarp color), c2 (colorless2), whp1 (white pollen1) and in1 (intensifier1) loci. The role of these loci in controlling high maysin levels in silks was tested by expression analysis and use of the loci as genetic markers onto the QTL populations. These studies support p, c2 and whp1, but not in1, as loci controlling maysin. Through this study, we determined that the p locus regulates whp1 transcription and that increased maysin in these inbred lines was primarily due to alleles at both structural and regulatory loci promoting increased flux through the flavone pathway by increasing chalcone synthase activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongqiang; Chen, Hao; Bao, Lei
2005-01-01
Genetic loci that regulate inherited traits are routinely identified using quantitative trait locus (QTL) mapping methods. However, the genotype-phenotype associations do not provide information on the gene expression program through which the genetic loci regulate the traits. Transcription modules are 'selfconsistent regulatory units' and are closely related to the modular components of gene regulatory network [Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y. and Barkai, N. (2002) Revealing modular organization in the yeast transcriptional network. Nat. Genet., 31, 370-377; Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D. and Friedman, N. (2003) Module networks: identifyingmore » regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 34, 166-176]. We used genome-wide genotype and gene expression data of a genetic reference population that consists of mice of 32 recombinant inbred strains to identify the transcription modules and the genetic loci regulating them. Twenty-nine transcription modules defined by genetic variations were identified. Statistically significant associations between the transcription modules and 18 classical physiological and behavioral traits were found. Genome-wide interval mapping showed that major QTLs regulating the transcription modules are often co-localized with the QTLs regulating the associated classical traits. The association and the possible co-regulation of the classical trait and transcription module indicate that the transcription module may be involved in the gene pathways connecting the QTL and the classical trait. Our results show that a transcription module may associate with multiple seemingly unrelated classical traits and a classical trait may associate with different modules. Literature mining results provided strong independent evidences for the relations among genes of the transcription modules, genes in the regions of the QTLs regulating the transcription modules and the keywords representing the classical traits.« less
Identifying Causal Variants at Loci with Multiple Signals of Association
Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar
2014-01-01
Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20–50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. PMID:25104515
Identifying causal variants at loci with multiple signals of association.
Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar
2014-10-01
Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20-50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. Copyright © 2014 by the Genetics Society of America.
Directional selection can drive the evolution of modularity in complex traits
Melo, Diogo; Marroig, Gabriel
2015-01-01
Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection. PMID:25548154
Directional selection can drive the evolution of modularity in complex traits.
Melo, Diogo; Marroig, Gabriel
2015-01-13
Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.
Long-term selection strategies for complex traits using high-density genetic markers.
Kemper, K E; Bowman, P J; Pryce, J E; Hayes, B J; Goddard, M E
2012-08-01
Selection of animals for breeding ranked on estimated breeding value maximizes genetic gain in the next generation but does not necessarily maximize long-term response. An alternative method, as practiced by plant breeders, is to build a desired genotype by selection on specific loci. Maximal long-term response in animal breeding requires selection on estimated breeding values with constraints on coancestry. In this paper, we compared long-term genetic response using either a genotype building or a genomic estimated breeding value (GEBV) strategy for the Australian Selection Index (ASI), a measure of profit. First, we used real marker effects from the Australian Dairy Herd Improvement Scheme to estimate breeding values for chromosome segments (approximately 25 cM long) for 2,650 Holstein bulls. Second, we selected 16 animals to be founders for a simulated breeding program where, between them, founders contain the best possible combination of 2 segments from 2 animals at each position in the genome. Third, we mated founder animals and their descendants over 30 generations with 2 breeding objectives: (1) to create a population with the "ideal genotype," where the best 2 segments from the founders segregate at each position, or (2) obtain the highest possible response in ASI with coancestry lower than that achieved under breeding objective 1. Results show that genotype building achieved the ideal genotype for breeding objective 1 and obtained a large gain in ASI over the current population (+A$864.99). However, selection on overall GEBV had greater short-term response and almost as much long-term gain (+A$820.42). When coancestry was lowered under breeding objective 2, selection on overall GEBV achieved a higher response in ASI than the genotype building strategy. Selection on overall GEBV seems more flexible in its selection decisions and was therefore better able to precisely control coancestry while maximizing ASI. We conclude that selection on overall GEBV while minimizing average coancestry is the more practical strategy for dairy cattle where selection is for highly polygenic traits, the reproductive rate is relatively low, and there is low tolerance of coancestry. The outcome may be different for traits controlled by few loci of relatively large effects or for different species. In contrast to other simulations, our results indicate that response to selection on overall GEBV may continue for several generations. This is because long-term genetic change in complex traits requires favorable changes to allele frequencies for many loci located throughout the genome. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kozub, N A; Sozinov, I A; sozinov, A A
2004-12-01
The effect of introgression of a chromosome 1D segment from Aegilops cylindrica to winter common wheat on productivity traits in F2 plants was studied using storage protein loci as genetic markers. An allele of the gliadin-coding Gli-D1 locus served as a marker of the introgression. Using of two- and three-locus interaction models, it was shown that the introgression tagged with Gli-D1 affected the manifestation of productivity traits (productive tillering, grain weight per plant and grain number per plant) through interaction with other marker storage protein loci: Glu-B1, Glu-D1, and Gli-B2.
Genome-wide association analysis of seedling root development in maize (Zea mays L.).
Pace, Jordon; Gardner, Candice; Romay, Cinta; Ganapathysubramanian, Baskar; Lübberstedt, Thomas
2015-02-05
Plants rely on the root system for anchorage to the ground and the acquisition and absorption of nutrients critical to sustaining productivity. A genome wide association analysis enables one to analyze allelic diversity of complex traits and identify superior alleles. 384 inbred lines from the Ames panel were genotyped with 681,257 single nucleotide polymorphism markers using Genotyping-by-Sequencing technology and 22 seedling root architecture traits were phenotyped. Utilizing both a general linear model and mixed linear model, a GWAS study was conducted identifying 268 marker trait associations (p ≤ 5.3×10(-7)). Analysis of significant SNP markers for multiple traits showed that several were located within gene models with some SNP markers localized within regions of previously identified root quantitative trait loci. Gene model GRMZM2G153722 located on chromosome 4 contained nine significant markers. This predicted gene is expressed in roots and shoots. This study identifies putatively associated SNP markers associated with root traits at the seedling stage. Some SNPs were located within or near (<1 kb) gene models. These gene models identify possible candidate genes involved in root development at the seedling stage. These and respective linked or functional markers could be targets for breeders for marker assisted selection of seedling root traits.
Li, Jiming; Xiao, Jinhua; Grandillo, Silvana; Jiang, Longying; Wan, Yizhen; Deng, Qiyun; Yuan, Longping; McCouch, Susan R
2004-08-01
An interspecific advanced backcross population derived from a cross between Oryza sativa "V20A" (a popular male-sterile line used in Chinese rice hybrids) and Oryza glaberrima (accession IRGC No. 103544 from Mali) was used to identify quantitative trait loci (QTL) associated with grain quality and grain morphology. A total of 308 BC3F1 hybrid families were evaluated for 16 grain-related traits under field conditions in Changsha, China, and the same families were evaluated for RFLP and SSR marker segregation at Cornell University (Ithaca, N.Y.). Eleven QTL associated with seven traits were detected in six chromosomal regions, with the favorable allele coming from O. glaberrima at eight loci. Favorable O. glaberrima alleles were associated with improvements in grain shape and appearance, resulting in an increase in kernel length, transgressive variation for thinner grains, and increased length to width ratio. Oryza glaberrima alleles at other loci were associated with potential improvements in crude protein content and brown rice yield. These results suggested that genes from O. glaberrima may be useful in improving specific grain quality characteristics in high-yielding O. sativa hybrid cultivars.
Identifying gene networks underlying the neurobiology of ethanol and alcoholism.
Wolen, Aaron R; Miles, Michael F
2012-01-01
For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.
Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment
Le Hellard, Stéphanie; Wang, Yunpeng; Witoelar, Aree; Zuber, Verena; Bettella, Francesco; Hugdahl, Kenneth; Espeseth, Thomas; Steen, Vidar M.; Melle, Ingrid; Desikan, Rahul; Schork, Andrew J.; Thompson, Wesley K.; Dale, Anders M.; Djurovic, Srdjan
2017-01-01
Abstract There is evidence for genetic overlap between cognitive abilities and schizophrenia (SCZ), and genome-wide association studies (GWAS) demonstrate that both SCZ and general cognitive abilities have a strong polygenic component with many single-nucleotide polymorphisms (SNPs) each with a small effect. Here we investigated the shared genetic architecture between SCZ and educational attainment, which is regarded as a “proxy phenotype” for cognitive abilities, but may also reflect other traits. We applied a conditional false discovery rate (condFDR) method to GWAS of SCZ (n = 82 315), college completion (“College,” n = 95 427), and years of education (“EduYears,” n = 101 069). Variants associated with College or EduYears showed enrichment of association with SCZ, demonstrating polygenic overlap. This was confirmed by an increased replication rate in SCZ. By applying a condFDR threshold <0.01, we identified 18 genomic loci associated with SCZ after conditioning on College and 15 loci associated with SCZ after conditioning on EduYears. Ten of these loci overlapped. Using conjunctional FDR, we identified 10 loci shared between SCZ and College, and 29 loci shared between SCZ and EduYears. The majority of these loci had effects in opposite directions. Our results provide evidence for polygenic overlap between SCZ and educational attainment, and identify novel pleiotropic loci. Other studies have reported genetic overlap between SCZ and cognition, or SCZ and educational attainment, with negative correlation. Importantly, our methods enable identification of bi-directional effects, which highlight the complex relationship between SCZ and educational attainment, and support polygenic mechanisms underlying both cognitive dysfunction and creativity in SCZ. PMID:27338279
Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment.
Le Hellard, Stéphanie; Wang, Yunpeng; Witoelar, Aree; Zuber, Verena; Bettella, Francesco; Hugdahl, Kenneth; Espeseth, Thomas; Steen, Vidar M; Melle, Ingrid; Desikan, Rahul; Schork, Andrew J; Thompson, Wesley K; Dale, Anders M; Djurovic, Srdjan; Andreassen, Ole A
2017-05-01
There is evidence for genetic overlap between cognitive abilities and schizophrenia (SCZ), and genome-wide association studies (GWAS) demonstrate that both SCZ and general cognitive abilities have a strong polygenic component with many single-nucleotide polymorphisms (SNPs) each with a small effect. Here we investigated the shared genetic architecture between SCZ and educational attainment, which is regarded as a "proxy phenotype" for cognitive abilities, but may also reflect other traits. We applied a conditional false discovery rate (condFDR) method to GWAS of SCZ (n = 82 315), college completion ("College," n = 95 427), and years of education ("EduYears," n = 101 069). Variants associated with College or EduYears showed enrichment of association with SCZ, demonstrating polygenic overlap. This was confirmed by an increased replication rate in SCZ. By applying a condFDR threshold <0.01, we identified 18 genomic loci associated with SCZ after conditioning on College and 15 loci associated with SCZ after conditioning on EduYears. Ten of these loci overlapped. Using conjunctional FDR, we identified 10 loci shared between SCZ and College, and 29 loci shared between SCZ and EduYears. The majority of these loci had effects in opposite directions. Our results provide evidence for polygenic overlap between SCZ and educational attainment, and identify novel pleiotropic loci. Other studies have reported genetic overlap between SCZ and cognition, or SCZ and educational attainment, with negative correlation. Importantly, our methods enable identification of bi-directional effects, which highlight the complex relationship between SCZ and educational attainment, and support polygenic mechanisms underlying both cognitive dysfunction and creativity in SCZ. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ma, Jianzhong; Amos, Christopher I; Warwick Daw, E
2007-09-01
Although extended pedigrees are often sampled through probands with extreme levels of a quantitative trait, Markov chain Monte Carlo (MCMC) methods for segregation and linkage analysis have not been able to perform ascertainment corrections. Further, the extent to which ascertainment of pedigrees leads to biases in the estimation of segregation and linkage parameters has not been previously studied for MCMC procedures. In this paper, we studied these issues with a Bayesian MCMC approach for joint segregation and linkage analysis, as implemented in the package Loki. We first simulated pedigrees ascertained through individuals with extreme values of a quantitative trait in spirit of the sequential sampling theory of Cannings and Thompson [Cannings and Thompson [1977] Clin. Genet. 12:208-212]. Using our simulated data, we detected no bias in estimates of the trait locus location. However, in addition to allele frequencies, when the ascertainment threshold was higher than or close to the true value of the highest genotypic mean, bias was also found in the estimation of this parameter. When there were multiple trait loci, this bias destroyed the additivity of the effects of the trait loci, and caused biases in the estimation all genotypic means when a purely additive model was used for analyzing the data. To account for pedigree ascertainment with sequential sampling, we developed a Bayesian ascertainment approach and implemented Metropolis-Hastings updates in the MCMC samplers used in Loki. Ascertainment correction greatly reduced biases in parameter estimates. Our method is designed for multiple, but a fixed number of trait loci. Copyright (c) 2007 Wiley-Liss, Inc.
QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep
Poissant, J; Davis, C S; Malenfant, R M; Hogg, J T; Coltman, D W
2012-01-01
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male–male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep. PMID:21847139
Gong, Wen-Bing; Li, Lei; Zhou, Yan; Bian, Yin-Bing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang
2016-06-01
To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.
A trait stacking system via intra-genomic homologous recombination.
Kumar, Sandeep; Worden, Andrew; Novak, Stephen; Lee, Ryan; Petolino, Joseph F
2016-11-01
A gene targeting method has been developed, which allows the conversion of 'breeding stacks', containing unlinked transgenes into a 'molecular stack' and thereby circumventing the breeding challenges associated with transgene segregation. A gene targeting method has been developed for converting two unlinked trait loci into a single locus transgene stack. The method utilizes intra-genomic homologous recombination (IGHR) between stably integrated target and donor loci which share sequence homology and nuclease cleavage sites whereby the donor contains a promoterless herbicide resistance transgene. Upon crossing with a zinc finger nuclease (ZFN)-expressing plant, double-strand breaks (DSB) are created in both the stably integrated target and donor loci. DSBs flanking the donor locus result in intra-genomic mobilization of a promoterless selectable marker-containing donor sequence, which can be utilized as a template for homology-directed repair of a concomitant DSB at the target locus resulting in a functional selectable marker via nuclease-mediated cassette exchange (NMCE). The method was successfully demonstrated in maize using a glyphosate tolerance gene as a donor whereby up to 3.3 % of the resulting progeny embryos cultured on selection medium regenerated plants with the donor sequence integrated into the target locus. The process could be extended to multiple cycles of trait stacking by virtue of a unique intron sequence homology for NMCE between the target and the donor loci. This is the first report that describes NMCE via IGHR, thereby enabling trait stacking using conventional crossing.
Pleiotropic Models of Polygenic Variation, Stabilizing Selection, and Epistasis
Gavrilets, S.; de-Jong, G.
1993-01-01
We show that in polymorphic populations many polygenic traits pleiotropically related to fitness are expected to be under apparent ``stabilizing selection'' independently of the real selection acting on the population. This occurs, for example, if the genetic system is at a stable polymorphic equilibrium determined by selection and the nonadditive contributions of the loci to the trait value either are absent, or are random and independent of those to fitness. Stabilizing selection is also observed if the polygenic system is at an equilibrium determined by a balance between selection and mutation (or migration) when both additive and nonadditive contributions of the loci to the trait value are random and independent of those to fitness. We also compare different viability models that can maintain genetic variability at many loci with respect to their ability to account for the strong stabilizing selection on an additive trait. Let V(m) be the genetic variance supplied by mutation (or migration) each generation, V(g) be the genotypic variance maintained in the population, and n be the number of the loci influencing fitness. We demonstrate that in mutation (migration)-selection balance models the strength of apparent stabilizing selection is order V(m)/V(g). In the overdominant model and in the symmetric viability model the strength of apparent stabilizing selection is approximately 1/(2n) that of total selection on the whole phenotype. We show that a selection system that involves pairwise additive by additive epistasis in maintaining variability can lead to a lower genetic load and genetic variance in fitness (approximately 1/(2n) times) than an equivalent selection system that involves overdominance. We show that, in the epistatic model, the apparent stabilizing selection on an additive trait can be as strong as the total selection on the whole phenotype. PMID:8325491
Wu, Ying; Zou, Meng; Raulerson, Chelsea K.; Jackson, Kayla; Yuan, Wentao; Wang, Haifeng; Shou, Weihua; Wang, Ying; Luo, Jingchun; Lange, Leslie A.; Lange, Ethan M.; Gordon-Larsen, Penny; Du, Shufa; Huang, Wei; Mohlke, Karen L.
2018-01-01
To identify genetic contributions to type 2 diabetes (T2D) and related glycemic traits (fasting glucose, fasting insulin, and HbA1c), we conducted genome-wide association analyses (GWAS) in up to 7,178 Chinese subjects from nine provinces in the China Health and Nutrition Survey (CHNS). We examined patterns of population structure within CHNS and found that allele frequencies differed across provinces, consistent with genetic drift and population substructure. We further validated 32 previously described T2D- and glycemic trait-loci, including G6PC2 and SIX3-SIX2 associated with fasting glucose. At G6PC2, we replicated a known fasting glucose-associated variant (rs34177044) and identified a second signal (rs2232326), a low-frequency (4%), probably damaging missense variant (S324P). A variant within the lead fasting glucose-associated signal at SIX3-SIX2 co-localized with pancreatic islet expression quantitative trait loci (eQTL) for SIX3, SIX2, and three noncoding transcripts. To identify variants functionally responsible for the fasting glucose association at SIX3-SIX2, we tested five candidate variants for allelic differences in regulatory function. The rs12712928-C allele, associated with higher fasting glucose and lower transcript expression level, showed lower transcriptional activity in reporter assays and increased binding to GABP compared to the rs12712928-G, suggesting that rs12712928-C contributes to elevated fasting glucose levels by disrupting an islet enhancer, resulting in reduced gene expression. Taken together, these analyses identified multiple loci associated with glycemic traits across China, and suggest a regulatory mechanism at the SIX3-SIX2 fasting glucose GWAS locus. PMID:29621232
The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations.
Pan, Qingchun; Xu, Yuancheng; Li, Kun; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin; Yan, Jianbing
2017-10-01
Plant architecture is a key factor affecting planting density and grain yield in maize ( Zea mays ). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3 , has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. © 2017 American Society of Plant Biologists. All Rights Reserved.
USDA-ARS?s Scientific Manuscript database
Alfalfa (Medicago sativa L.) is an internationally significant forage crop. Forage yield, lodging resistance and spring vigor are important agronomic traits conditioned by quantitative genetic and environmental effects. The objective of this study was to identify quantitative trait loci (QTL) and mo...
Dissection of Host Susceptibility to Bacterial Infections and Its Toxins.
Nashef, Aysar; Agbaria, Mahmoud; Shusterman, Ariel; Lorè, Nicola Ivan; Bragonzi, Alessandra; Wiess, Ervin; Houri-Haddad, Yael; Iraqi, Fuad A
2017-01-01
Infection is one of the leading causes of human mortality and morbidity. Exposure to microbial agents is obviously required. However, also non-microbial environmental and host factors play a key role in the onset, development and outcome of infectious disease, resulting in large of clinical variability between individuals in a population infected with the same microbe. Controlled and standardized investigations of the genetics of susceptibility to infectious disease are almost impossible to perform in humans whereas mouse models allow application of powerful genomic techniques to identify and validate causative genes underlying human diseases with complex etiologies. Most of current animal models used in complex traits diseases genetic mapping have limited genetic diversity. This limitation impedes the ability to create incorporated network using genetic interactions, epigenetics, environmental factors, microbiota, and other phenotypes. A novel mouse genetic reference population for high-resolution mapping and subsequently identifying genes underlying the QTL, namely the Collaborative Cross (CC) mouse genetic reference population (GRP) was recently developed. In this chapter, we discuss a variety of approaches using CC mice for mapping genes underlying quantitative trait loci (QTL) to dissect the host response to polygenic traits, including infectious disease caused by bacterial agents and its toxins.
Reed, Laura K.; LaFlamme, Brooke A.; Markow, Therese A.
2008-01-01
Background The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Methodology/Principal Findings Isofemale strains of D. mojavensis vary significantly in their production of sterile F1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects. Conclusions/Significance The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation. PMID:18728782
Incorporating gene-environment interaction in testing for association with rare genetic variants.
Chen, Han; Meigs, James B; Dupuis, Josée
2014-01-01
The incorporation of gene-environment interactions could improve the ability to detect genetic associations with complex traits. For common genetic variants, single-marker interaction tests and joint tests of genetic main effects and gene-environment interaction have been well-established and used to identify novel association loci for complex diseases and continuous traits. For rare genetic variants, however, single-marker tests are severely underpowered due to the low minor allele frequency, and only a few gene-environment interaction tests have been developed. We aimed at developing powerful and computationally efficient tests for gene-environment interaction with rare variants. In this paper, we propose interaction and joint tests for testing gene-environment interaction of rare genetic variants. Our approach is a generalization of existing gene-environment interaction tests for multiple genetic variants under certain conditions. We show in our simulation studies that our interaction and joint tests have correct type I errors, and that the joint test is a powerful approach for testing genetic association, allowing for gene-environment interaction. We also illustrate our approach in a real data example from the Framingham Heart Study. Our approach can be applied to both binary and continuous traits, it is powerful and computationally efficient.
Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schork, N.J.; Boehnke, M.; Terwilliger, J.D.
1993-11-01
Nearly all diseases mapped to date follow clear Mendelian, single-locus segregation patterns. In contrast, many common familial diseases such as diabetes, psoriasis, several forms of cancer, and schizophrenia are familial and appear to have a genetic component but do not exhibit simple Mendelian transmission. More complex models are required to explain the genetics of these important diseases. In this paper, the authors explore two-trait-locus, two-marker-locus linkage analysis in which two trait loci are mapped simultaneously to separate genetic markers. The authors compare the utility of this approach to standard one-trait-locus, one-marker-locus linkage analysis with and without allowance for heterogeneity. Themore » authors also compare the utility of the two-trait-locus, two-marker-locus analysis to two-trait-locus, one-marker-locus linkage analysis. For common diseases, pedigrees are often bilineal, with disease genes entering via two or more unrelated pedigree members. Since such pedigrees often are avoided in linkage studies, the authors also investigate the relative information content of unilineal and bilineal pedigrees. For the dominant-or-recessive and threshold models that the authors consider, the authors find that two-trait-locus, two-marker-locus linkage analysis can provide substantially more linkage information, as measured by expected maximum lod score, than standard one-trait-locus, one-marker-locus methods, even allowing for heterogeneity, while, for a dominant-or-dominant generating model, one-locus models that allow for heterogeneity extract essentially as much information as the two-trait-locus methods. For these three models, the authors also find that bilineal pedigrees provide sufficient linkage information to warrant their inclusion in such studies. The authors discuss strategies for assessing the significance of the two linkages assumed in two-trait-locus, two-marker-locus models. 37 refs., 1 fig., 4 tabs.« less
Jagannath, Arun; Sodhi, Yashpal Singh; Gupta, Vibha; Mukhopadhyay, Arundhati; Arumugam, Neelakantan; Singh, Indira; Rohatgi, Soma; Burma, Pradeep Kumar; Pradhan, Akshay Kumar; Pental, Deepak
2011-04-01
Oil content and oil quality fractions (viz., oleic, linoleic and linolenic acid) are strongly influenced by the erucic acid pathway in oilseed Brassicas. Low levels of erucic acid in seed oil increases oleic acid content to nutritionally desirable levels, but also increases the linoleic and linolenic acid fractions and reduces oil content in Indian mustard (Brassica juncea). Analysis of phenotypic variability for oil quality fractions among a high-erucic Indian variety (Varuna), a low-erucic east-European variety (Heera) and a zero-erucic Indian variety (ZE-Varuna) developed by backcross breeding in this study indicated that lower levels of linoleic and linolenic acid in Varuna are due to substrate limitation caused by an active erucic acid pathway and not due to weaker alleles or enzyme limitation. To identify compensatory loci that could be used to increase oil content and maintain desirable levels of oil quality fractions under zero-erucic conditions, we performed Quantitative Trait Loci (QTL) mapping for the above traits on two independent F1 doubled haploid (F1DH) mapping populations developed from a cross between Varuna and Heera. One of the populations comprised plants segregating for erucic acid content (SE) and was used earlier for construction of a linkage map and QTL mapping of several yield-influencing traits in B. juncea. The second population consisted of zero-erucic acid individuals (ZE) for which, an Amplified Fragment Length Polymorphism (AFLP)-based framework linkage map was constructed in the present study. By QTL mapping for oil quality fractions and oil content in the ZE population, we detected novel loci contributing to the above traits. These loci did not co-localize with mapped locations of the fatty acid desaturase 2 (FAD2), fatty acid desaturase 3 (FAD3) or fatty acid elongase (FAE) genes unlike those of the SE population wherein major QTL were found to coincide with mapped locations of the FAE genes. Some of the new loci identified in the ZE population could be detected as 'weak' contributors (with LOD < 2.5) in the SE population in which their contribution to the traits was "masked" due to pleiotropic effects of erucic acid genes. The novel loci identified in this study could now be used to improve oil quality parameters and oil content in B. juncea under zero-erucic conditions.
An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley
Chen, Xinwei; Hackett, Christine A.; Niks, Rients E.; Hedley, Peter E.; Booth, Clare; Druka, Arnis; Marcel, Thierry C.; Vels, Anton; Bayer, Micha; Milne, Iain; Morris, Jenny; Ramsay, Luke; Marshall, David; Cardle, Linda; Waugh, Robbie
2010-01-01
Background Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait loci for partial resistance to leaf rust have been identified in the doubled haploid Steptoe (St)/Morex (Mx) mapping population. Further investigations are required to study the molecular mechanisms underpinning partial resistance and ultimately identify the causal genes. Methodology/Principal Findings We explored partial resistance to barley leaf rust using a genetical genomics approach. We recorded RNA transcript abundance corresponding to each probe on a 15K Agilent custom barley microarray in seedlings from St and Mx and 144 doubled haploid lines of the St/Mx population. A total of 1154 and 1037 genes were, respectively, identified as being P. hordei-responsive among the St and Mx and differentially expressed between P. hordei-infected St and Mx. Normalized ratios from 72 distant-pair hybridisations were used to map the genetic determinants of variation in transcript abundance by expression quantitative trait locus (eQTL) mapping generating 15685 eQTL from 9557 genes. Correlation analysis identified 128 genes that were correlated with resistance, of which 89 had eQTL co-locating with the phenotypic quantitative trait loci (pQTL). Transcript abundance in the parents and conservation of synteny with rice allowed us to prioritise six genes as candidates for Rphq11, the pQTL of largest effect, and highlight one, a phospholipid hydroperoxide glutathione peroxidase (HvPHGPx) for detailed analysis. Conclusions/Significance The eQTL approach yielded information that led to the identification of strong candidate genes underlying pQTL for resistance to leaf rust in barley and on the general pathogen response pathway. The dataset will facilitate a systems appraisal of this host-pathogen interaction and, potentially, for other traits measured in this population. PMID:20066049
Vasan, Ramachandran S; Glazer, Nicole L; Felix, Janine F; Lieb, Wolfgang; Wild, Philipp S; Felix, Stephan B; Watzinger, Norbert; Larson, Martin G; Smith, Nicholas L; Dehghan, Abbas; Grosshennig, Anika; Schillert, Arne; Teumer, Alexander; Schmidt, Reinhold; Kathiresan, Sekar; Lumley, Thomas; Aulchenko, Yurii S; König, Inke R; Zeller, Tanja; Homuth, Georg; Struchalin, Maksim; Aragam, Jayashri; Bis, Joshua C; Rivadeneira, Fernando; Erdmann, Jeanette; Schnabel, Renate B; Dörr, Marcus; Zweiker, Robert; Lind, Lars; Rodeheffer, Richard J; Greiser, Karin Halina; Levy, Daniel; Haritunians, Talin; Deckers, Jaap W; Stritzke, Jan; Lackner, Karl J; Völker, Uwe; Ingelsson, Erik; Kullo, Iftikhar; Haerting, Johannes; O'Donnell, Christopher J; Heckbert, Susan R; Stricker, Bruno H; Ziegler, Andreas; Reffelmann, Thorsten; Redfield, Margaret M; Werdan, Karl; Mitchell, Gary F; Rice, Kenneth; Arnett, Donna K; Hofman, Albert; Gottdiener, John S; Uitterlinden, Andre G; Meitinger, Thomas; Blettner, Maria; Friedrich, Nele; Wang, Thomas J; Psaty, Bruce M; van Duijn, Cornelia M; Wichmann, H-Erich; Munzel, Thomas F; Kroemer, Heyo K; Benjamin, Emelia J; Rotter, Jerome I; Witteman, Jacqueline C; Schunkert, Heribert; Schmidt, Helena; Völzke, Henry; Blankenberg, Stefan
2009-07-08
Echocardiographic measures of left ventricular (LV) structure and function are heritable phenotypes of cardiovascular disease. To identify common genetic variants associated with cardiac structure and function by conducting a meta-analysis of genome-wide association data in 5 population-based cohort studies (stage 1) with replication (stage 2) in 2 other community-based samples. Within each of 5 community-based cohorts comprising the EchoGen consortium (stage 1; n = 12 612 individuals of European ancestry; 55% women, aged 26-95 years; examinations between 1978-2008), we estimated the association between approximately 2.5 million single-nucleotide polymorphisms (SNPs; imputed to the HapMap CEU panel) and echocardiographic traits. In stage 2, SNPs significantly associated with traits in stage 1 were tested for association in 2 other cohorts (n = 4094 people of European ancestry). Using a prespecified P value threshold of 5 x 10(-7) to indicate genome-wide significance, we performed an inverse variance-weighted fixed-effects meta-analysis of genome-wide association data from each cohort. Echocardiographic traits: LV mass, internal dimensions, wall thickness, systolic dysfunction, aortic root, and left atrial size. In stage 1, 16 genetic loci were associated with 5 echocardiographic traits: 1 each with LV internal dimensions and systolic dysfunction, 3 each with LV mass and wall thickness, and 8 with aortic root size. In stage 2, 5 loci replicated (6q22 locus associated with LV diastolic dimensions, explaining <1% of trait variance; 5q23, 12p12, 12q14, and 17p13 associated with aortic root size, explaining 1%-3% of trait variance). We identified 5 genetic loci harboring common variants that were associated with variation in LV diastolic dimensions and aortic root size, but such findings explained a very small proportion of variance. Further studies are required to replicate these findings, identify the causal variants at or near these loci, characterize their functional significance, and determine whether they are related to overt cardiovascular disease.
How does epistasis influence the response to selection?
Barton, N H
2017-01-01
Much of quantitative genetics is based on the ‘infinitesimal model', under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4Ne by the ‘drift load', and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects. PMID:27901509
How does epistasis influence the response to selection?
Barton, N H
2017-01-01
Much of quantitative genetics is based on the 'infinitesimal model', under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4N e by the 'drift load', and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large N e s, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects.
Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice.
Liu, Fengxia; Xu, Wenying; Song, Qian; Tan, Lubin; Liu, Jiayong; Zhu, Zuofeng; Fu, Yongcai; Su, Zhen; Sun, Chuanqing
2013-05-01
Many important agronomic traits, including cold stress resistance, are complex and controlled by quantitative trait loci (QTLs). Isolation of these QTLs will greatly benefit the agricultural industry but it is a challenging task. This study explored an integrated strategy by combining microarray with QTL-mapping in order to identify cold-tolerant QTLs from a cold-tolerant variety IL112 at early-seedling stage. All the early seedlings of IL112 survived normally for 9 d at 4-5°C, while Guichao2 (GC2), an indica cultivar, died after 4 d under the same conditions. Using the F2:3 population derived from the progeny of GC2 and IL112, we identified seven QTLs for cold tolerance. Furthermore, we performed Affymetrix rice whole-genome array hybridization and obtained the expression profiles of IL112 and GC2 under both low-temperature and normal conditions. Four genes were selected as cold QTL-related candidates, based on microarray data mining and QTL-mapping. One candidate gene, LOC_Os07g22494, was shown to be highly associated with cold tolerance in a number of rice varieties and in the F2:3 population, and its overexpression transgenic rice plants displayed strong tolerance to low temperature at early-seedling stage. The results indicated that overexpression of this gene (LOC_Os07g22494) could increase cold tolerance in rice seedlings. Therefore, this study provides a promising strategy for identifying candidate genes in defined QTL regions.
Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice
Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby
2018-01-01
Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits. PMID:29425206
Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby; Frei, Michael
2018-01-01
Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.
Skiba, Thomas; Landi, Nicole; Wagner, Richard
2011-01-01
Reading ability and specific reading disability (SRD) are complex traits involving several cognitive processes and are shaped by a complex interplay of genetic and environmental forces. Linkage studies of these traits have identified several susceptibility loci. Association studies have gone further in detecting candidate genes that might underlie these signals. These results have been obtained in samples of mainly European ancestry, which vary in their languages, inclusion criteria, and phenotype assessments. Such phenotypic heterogeneity across samples makes understanding the relationship between reading (dis)ability and reading-related processes and the genetic factors difficult; in addition, it may negatively influence attempts at replication. In moving forward, the identification of preferable phenotypes for future sample collection may improve the replicability of findings. This review of all published linkage and association results from the past 15 years was conducted to determine if certain phenotypes produce more replicable and consistent results than others. PMID:21243420
Mahajan, Anubha; Go, Min Jin; Zhang, Weihua; Below, Jennifer E; Gaulton, Kyle J; Ferreira, Teresa; Horikoshi, Momoko; Johnson, Andrew D; Ng, Maggie C Y; Prokopenko, Inga; Saleheen, Danish; Wang, Xu; Zeggini, Eleftheria; Abecasis, Goncalo R; Adair, Linda S; Almgren, Peter; Atalay, Mustafa; Aung, Tin; Baldassarre, Damiano; Balkau, Beverley; Bao, Yuqian; Barnett, Anthony H; Barroso, Ines; Basit, Abdul; Been, Latonya F; Beilby, John; Bell, Graeme I; Benediktsson, Rafn; Bergman, Richard N; Boehm, Bernhard O; Boerwinkle, Eric; Bonnycastle, Lori L; Burtt, Noël; Cai, Qiuyin; Campbell, Harry; Carey, Jason; Cauchi, Stephane; Caulfield, Mark; Chan, Juliana C N; Chang, Li-Ching; Chang, Tien-Jyun; Chang, Yi-Cheng; Charpentier, Guillaume; Chen, Chien-Hsiun; Chen, Han; Chen, Yuan-Tsong; Chia, Kee-Seng; Chidambaram, Manickam; Chines, Peter S; Cho, Nam H; Cho, Young Min; Chuang, Lee-Ming; Collins, Francis S; Cornelis, Marylin C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Danesh, John; Das, Debashish; de Faire, Ulf; Dedoussis, George; Deloukas, Panos; Dimas, Antigone S; Dina, Christian; Doney, Alex S; Donnelly, Peter J; Dorkhan, Mozhgan; van Duijn, Cornelia; Dupuis, Josée; Edkins, Sarah; Elliott, Paul; Emilsson, Valur; Erbel, Raimund; Eriksson, Johan G; Escobedo, Jorge; Esko, Tonu; Eury, Elodie; Florez, Jose C; Fontanillas, Pierre; Forouhi, Nita G; Forsen, Tom; Fox, Caroline; Fraser, Ross M; Frayling, Timothy M; Froguel, Philippe; Frossard, Philippe; Gao, Yutang; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Grallert, Harald; Grant, George B; Grrop, Leif C; Groves, Chrisropher J; Grundberg, Elin; Guiducci, Candace; Hamsten, Anders; Han, Bok-Ghee; Hara, Kazuo; Hassanali, Neelam; Hattersley, Andrew T; Hayward, Caroline; Hedman, Asa K; Herder, Christian; Hofman, Albert; Holmen, Oddgeir L; Hovingh, Kees; Hreidarsson, Astradur B; Hu, Cheng; Hu, Frank B; Hui, Jennie; Humphries, Steve E; Hunt, Sarah E; Hunter, David J; Hveem, Kristian; Hydrie, Zafar I; Ikegami, Hiroshi; Illig, Thomas; Ingelsson, Erik; Islam, Muhammed; Isomaa, Bo; Jackson, Anne U; Jafar, Tazeen; James, Alan; Jia, Weiping; Jöckel, Karl-Heinz; Jonsson, Anna; Jowett, Jeremy B M; Kadowaki, Takashi; Kang, Hyun Min; Kanoni, Stavroula; Kao, Wen Hong L; Kathiresan, Sekar; Kato, Norihiro; Katulanda, Prasad; Keinanen-Kiukaanniemi, Kirkka M; Kelly, Ann M; Khan, Hassan; Khaw, Kay-Tee; Khor, Chiea-Chuen; Kim, Hyung-Lae; Kim, Sangsoo; Kim, Young Jin; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Korpi-Hyövälti, Eeva; Kowlessur, Sudhir; Kraft, Peter; Kravic, Jasmina; Kristensen, Malene M; Krithika, S; Kumar, Ashish; Kumate, Jesus; Kuusisto, Johanna; Kwak, Soo Heon; Laakso, Markku; Lagou, Vasiliki; Lakka, Timo A; Langenberg, Claudia; Langford, Cordelia; Lawrence, Robert; Leander, Karin; Lee, Jen-Mai; Lee, Nanette R; Li, Man; Li, Xinzhong; Li, Yun; Liang, Junbin; Liju, Samuel; Lim, Wei-Yen; Lind, Lars; Lindgren, Cecilia M; Lindholm, Eero; Liu, Ching-Ti; Liu, Jian Jun; Lobbens, Stéphane; Long, Jirong; Loos, Ruth J F; Lu, Wei; Luan, Jian'an; Lyssenko, Valeriya; Ma, Ronald C W; Maeda, Shiro; Mägi, Reedik; Männisto, Satu; Matthews, David R; Meigs, James B; Melander, Olle; Metspalu, Andres; Meyer, Julia; Mirza, Ghazala; Mihailov, Evelin; Moebus, Susanne; Mohan, Viswanathan; Mohlke, Karen L; Morris, Andrew D; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Musk, Bill; Nakamura, Jiro; Nakashima, Eitaro; Navarro, Pau; Ng, Peng-Keat; Nica, Alexandra C; Nilsson, Peter M; Njølstad, Inger; Nöthen, Markus M; Ohnaka, Keizo; Ong, Twee Hee; Owen, Katharine R; Palmer, Colin N A; Pankow, James S; Park, Kyong Soo; Parkin, Melissa; Pechlivanis, Sonali; Pedersen, Nancy L; Peltonen, Leena; Perry, John R B; Peters, Annette; Pinidiyapathirage, Janini M; Platou, Carl G; Potter, Simon; Price, Jackie F; Qi, Lu; Radha, Venkatesan; Rallidis, Loukianos; Rasheed, Asif; Rathman, Wolfgang; Rauramaa, Rainer; Raychaudhuri, Soumya; Rayner, N William; Rees, Simon D; Rehnberg, Emil; Ripatti, Samuli; Robertson, Neil; Roden, Michael; Rossin, Elizabeth J; Rudan, Igor; Rybin, Denis; Saaristo, Timo E; Salomaa, Veikko; Saltevo, Juha; Samuel, Maria; Sanghera, Dharambir K; Saramies, Jouko; Scott, James; Scott, Laura J; Scott, Robert A; Segrè, Ayellet V; Sehmi, Joban; Sennblad, Bengt; Shah, Nabi; Shah, Sonia; Shera, A Samad; Shu, Xiao Ou; Shuldiner, Alan R; Sigurđsson, Gunnar; Sijbrands, Eric; Silveira, Angela; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; So, Wing Yee; Stančáková, Alena; Stefansson, Kari; Steinbach, Gerald; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Strawbridge, Rona J; Stringham, Heather M; Sun, Qi; Suo, Chen; Syvänen, Ann-Christine; Takayanagi, Ryoichi; Takeuchi, Fumihiko; Tay, Wan Ting; Teslovich, Tanya M; Thorand, Barbara; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Trakalo, Joseph; Tremoli, Elena; Trip, Mieke D; Tsai, Fuu Jen; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Uitterlinden, Andre G; Valladares-Salgado, Adan; Vedantam, Sailaja; Veglia, Fabrizio; Voight, Benjamin F; Wang, Congrong; Wareham, Nicholas J; Wennauer, Roman; Wickremasinghe, Ananda R; Wilsgaard, Tom; Wilson, James F; Wiltshire, Steven; Winckler, Wendy; Wong, Tien Yin; Wood, Andrew R; Wu, Jer-Yuarn; Wu, Ying; Yamamoto, Ken; Yamauchi, Toshimasa; Yang, Mingyu; Yengo, Loic; Yokota, Mitsuhiro; Young, Robin; Zabaneh, Delilah; Zhang, Fan; Zhang, Rong; Zheng, Wei; Zimmet, Paul Z; Altshuler, David; Bowden, Donald W; Cho, Yoon Shin; Cox, Nancy J; Cruz, Miguel; Hanis, Craig L; Kooner, Jaspal; Lee, Jong-Young; Seielstad, Mark; Teo, Yik Ying; Boehnke, Michael; Parra, Esteban J; Chambers, Jonh C; Tai, E Shyong; McCarthy, Mark I; Morris, Andrew P
2014-03-01
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
2014-01-01
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS) including 26,488 cases and 83,964 controls of European, East Asian, South Asian, and Mexican and Mexican American ancestry. We observed significant excess in directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven novel T2D susceptibility loci. Furthermore, we observed considerable improvements in fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterisation of complex trait loci, and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry. PMID:24509480
Bourret, Vincent; Dionne, Mélanie; Bernatchez, Louis
2014-09-01
Wild populations of Atlantic salmon have declined worldwide. While the causes for this decline may be complex and numerous, increased mortality at sea is predicted to be one of the major contributing factors. Examining the potential changes occurring in the genome-wide composition of populations during this migration has the potential to tease apart some of the factors influencing marine mortality. Here, we genotyped 5568 SNPs in Atlantic salmon populations representing two distinct regional genetic groups and across two cohorts to test for differential allelic and genotypic frequencies between juveniles (smolts) migrating to sea and adults (grilses) returning to freshwater after 1 year at sea. Given the complexity of the traits potentially associated with sea mortality, we contrasted the outcomes of a single-locus F(ST) based genome scan method with a new multilocus framework to test for genetically based differential mortality at sea. While numerous outliers were identified by the single-locus analysis, no evidence for parallel, temporally repeated selection was found. In contrast, the multilocus approach detected repeated patterns of selection for a multilocus group of 34 covarying SNPs in one of the two populations. No significant pattern of selective mortality was detected in the other population, suggesting different causes of mortality among populations. These results first support the hypothesis that selection mainly causes small changes in allele frequencies among many covarying loci rather than a small number of changes in loci with large effects. They also point out that moving away from the a strict 'selective sweep paradigm' towards a multilocus genetics framework may be a more useful approach for studying the genomic signatures of natural selection on complex traits in wild populations. © 2014 John Wiley & Sons Ltd.
Kunihisa, Miyuki; Moriya, Shigeki; Abe, Kazuyuki; Okada, Kazuma; Haji, Takashi; Hayashi, Takeshi; Kim, Hoytaek; Nishitani, Chikako; Terakami, Shingo; Yamamoto, Toshiya
2014-01-01
Many important apple (Malus × domestica Borkh.) fruit quality traits are regulated by multiple genes, and more information about quantitative trait loci (QTLs) for these traits is required for marker-assisted selection. In this study, we constructed genetic linkage maps of the Japanese apple cultivars ‘Orin’ and ‘Akane’ using F1 seedlings derived from a cross between these cultivars. The ‘Orin’ map consisted of 251 loci covering 17 linkage groups (LGs; total length 1095.3 cM), and the ‘Akane’ map consisted of 291 loci covering 18 LGs (total length 1098.2 cM). We performed QTL analysis for 16 important traits, and found that four QTLs related to harvest time explained about 70% of genetic variation, and these will be useful for marker-assisted selection. The QTL for early harvest time in LG15 was located very close to the QTL for preharvest fruit drop. The QTL for skin color depth was located around the position of MYB1 in LG9, which suggested that alleles harbored by ‘Akane’ are regulating red color depth with different degrees of effect. We also analyzed soluble solids and sugar component contents, and found that a QTL for soluble solids content in LG16 could be explained by the amount of sorbitol and fructose. PMID:25320559
Catalog of MicroRNA Seed Polymorphisms in Vertebrates
Calin, George Adrian; Horvat, Simon; Jiang, Zhihua; Dovc, Peter; Kunej, Tanja
2012-01-01
MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms. In the present study, we developed an online tool for the detection of miRNA polymorphisms (miRNA SNiPer) in vertebrates (http://www.integratomics-time.com/miRNA-SNiPer) and generated a catalog of miRNA seed region polymorphisms (miR-seed-SNPs) consisting of 149 SNPs in six species. Although a majority of detected polymorphisms were due to point mutations, two consecutive nucleotide substitutions (double nucleotide polymorphisms, DNPs) were also identified in nine miRNAs. We determined that miR-SNPs are frequently located within the quantitative trait loci (QTL), chromosome fragile sites, and cancer susceptibility loci, indicating their potential role in the genetic control of various complex traits. To test this further, we performed an association analysis between the mmu-miR-717 seed SNP rs30372501, which is polymorphic in a large number of standard inbred strains, and all phenotypic traits in these strains deposited in the Mouse Phenome Database. Analysis showed a significant association between the mmu-miR-717 seed SNP and a diverse array of traits including behavior, blood-clinical chemistry, body weight size and growth, and immune system suggesting that seed SNPs can indeed have major pleiotropic effects. The bioinformatics analyses, data and tools developed in the present study can serve researchers as a starting point in testing more targeted hypotheses and designing experiments using optimal species or strains for further mechanistic studies. PMID:22303453
Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine
2015-09-01
Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Genetic architecture of a hormonal response to gene knockdown in honey bees.
Ihle, Kate E; Rueppell, Olav; Huang, Zachary Y; Wang, Ying; Fondrk, M Kim; Page, Robert E; Amdam, Gro V
2015-01-01
Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general. © The American Genetic Association. 2015.
Jensen, Philip J; Fazio, Gennaro; Altman, Naomi; Praul, Craig; McNellis, Timothy W
2014-04-04
Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Gene expression profiling and trait-associated transcript analysis using an apple F1 population readily identified genes physically linked to powdery mildew disease resistance and woolly apple aphid resistance loci. This result was especially useful in apple, where extreme levels of heterozygosity make the development of reliable DNA markers quite difficult. The results suggest that this approach could prove effective in crops with complicated genetics, or for which few genomic information resources are available.
The genetics of feed conversion efficiency traits in a commercial broiler line
Reyer, Henry; Hawken, Rachel; Murani, Eduard; Ponsuksili, Siriluck; Wimmers, Klaus
2015-01-01
Individual feed conversion efficiency (FCE) is a major trait that influences the usage of energy resources and the ecological footprint of livestock production. The underlying biological processes of FCE are complex and are influenced by factors as diverse as climate, feed properties, gut microbiota, and individual genetic predisposition. To gain an insight to the genetic relationships with FCE traits and to contribute to the improvement of FCE in commercial chicken lines, a genome-wide association study was conducted using a commercial broiler population (n = 859) tested for FCE and weight traits during the finisher period from 39 to 46 days of age. Both single-marker (generalized linear model) and multi-marker (Bayesian approach) analyses were applied to the dataset to detect genes associated with the variability in FCE. The separate analyses revealed 22 quantitative trait loci (QTL) regions on 13 different chromosomes; the integration of both approaches resulted in 7 overlapping QTL regions. The analyses pointed to acylglycerol kinase (AGK) and general transcription factor 2-I (GTF2I) as positional and functional candidate genes. Non-synonymous polymorphisms of both candidate genes revealed evidence for a functional importance of these genes by influencing different biological aspects of FCE. PMID:26552583
A simple genetic architecture underlies morphological variation in dogs.
Boyko, Adam R; Quignon, Pascale; Li, Lin; Schoenebeck, Jeffrey J; Degenhardt, Jeremiah D; Lohmueller, Kirk E; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G; vonHoldt, Bridgett M; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G; Castelhano, Marta; Mosher, Dana S; Sutter, Nathan B; Johnson, Gary S; Novembre, John; Hubisz, Melissa J; Siepel, Adam; Wayne, Robert K; Bustamante, Carlos D; Ostrander, Elaine A
2010-08-10
Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.
A Simple Genetic Architecture Underlies Morphological Variation in Dogs
Schoenebeck, Jeffrey J.; Degenhardt, Jeremiah D.; Lohmueller, Kirk E.; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G.; vonHoldt, Bridgett M.; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G.; Castelhano, Marta; Mosher, Dana S.; Sutter, Nathan B.; Johnson, Gary S.; Novembre, John; Hubisz, Melissa J.; Siepel, Adam; Wayne, Robert K.; Bustamante, Carlos D.; Ostrander, Elaine A.
2010-01-01
Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (≤3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species. PMID:20711490
Trans-ethnic meta-analysis of white blood cell phenotypes
Keller, Margaux F.; Reiner, Alexander P.; Okada, Yukinori; van Rooij, Frank J.A.; Johnson, Andrew D.; Chen, Ming-Huei; Smith, Albert V.; Morris, Andrew P.; Tanaka, Toshiko; Ferrucci, Luigi; Zonderman, Alan B.; Lettre, Guillaume; Harris, Tamara; Garcia, Melissa; Bandinelli, Stefania; Qayyum, Rehan; Yanek, Lisa R.; Becker, Diane M.; Becker, Lewis C.; Kooperberg, Charles; Keating, Brendan; Reis, Jared; Tang, Hua; Boerwinkle, Eric; Kamatani, Yoichiro; Matsuda, Koichi; Kamatani, Naoyuki; Nakamura, Yusuke; Kubo, Michiaki; Liu, Simin; Dehghan, Abbas; Felix, Janine F.; Hofman, Albert; Uitterlinden, André G.; van Duijn, Cornelia M.; Franco, Oscar H.; Longo, Dan L.; Singleton, Andrew B.; Psaty, Bruce M.; Evans, Michelle K.; Cupples, L. Adrienne; Rotter, Jerome I.; O'Donnell, Christopher J.; Takahashi, Atsushi; Wilson, James G.; Ganesh, Santhi K.; Nalls, Mike A.
2014-01-01
White blood cell (WBC) count is a common clinical measure used as a predictor of certain aspects of human health, including immunity and infection status. WBC count is also a complex trait that varies among individuals and ancestry groups. Differences in linkage disequilibrium structure and heterogeneity in allelic effects are expected to play a role in the associations observed between populations. Prior genome-wide association study (GWAS) meta-analyses have identified genomic loci associated with WBC and its subtypes, but much of the heritability of these phenotypes remains unexplained. Using GWAS summary statistics for over 50 000 individuals from three diverse populations (Japanese, African-American and European ancestry), a Bayesian model methodology was employed to account for heterogeneity between ancestry groups. This approach was used to perform a trans-ethnic meta-analysis of total WBC, neutrophil and monocyte counts. Ten previously known associations were replicated and six new loci were identified, including several regions harboring genes related to inflammation and immune cell function. Ninety-five percent credible interval regions were calculated to narrow the association signals and fine-map the putatively causal variants within loci. Finally, a conditional analysis was performed on the most significant SNPs identified by the trans-ethnic meta-analysis (MA), and nine secondary signals within loci previously associated with WBC or its subtypes were identified. This work illustrates the potential of trans-ethnic analysis and ascribes a critical role to multi-ethnic cohorts and consortia in exploring complex phenotypes with respect to variants that lie outside the European-biased GWAS pool. PMID:25096241
Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross
Gralinski, Lisa E.; Ferris, Martin T.; Aylor, David L.; Whitmore, Alan C.; Green, Richard; Frieman, Matthew B.; Deming, Damon; Menachery, Vineet D.; Miller, Darla R.; Buus, Ryan J.; Bell, Timothy A.; Churchill, Gary A.; Threadgill, David W.; Katze, Michael G.; McMillan, Leonard; Valdar, William; Heise, Mark T.; Pardo-Manuel de Villena, Fernando; Baric, Ralph S.
2015-01-01
New systems genetics approaches are needed to rapidly identify host genes and genetic networks that regulate complex disease outcomes. Using genetically diverse animals from incipient lines of the Collaborative Cross mouse panel, we demonstrate a greatly expanded range of phenotypes relative to classical mouse models of SARS-CoV infection including lung pathology, weight loss and viral titer. Genetic mapping revealed several loci contributing to differential disease responses, including an 8.5Mb locus associated with vascular cuffing on chromosome 3 that contained 23 genes and 13 noncoding RNAs. Integrating phenotypic and genetic data narrowed this region to a single gene, Trim55, an E3 ubiquitin ligase with a role in muscle fiber maintenance. Lung pathology and transcriptomic data from mice genetically deficient in Trim55 were used to validate its role in SARS-CoV-induced vascular cuffing and inflammation. These data establish the Collaborative Cross platform as a powerful genetic resource for uncovering genetic contributions of complex traits in microbial disease severity, inflammation and virus replication in models of outbred populations. PMID:26452100
Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H
2017-04-01
Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.
Tommasini, Steven M; Hu, Bin; Nadeau, Joseph H; Jepsen, Karl J
2009-04-01
Conventional approaches to identifying quantitative trait loci (QTLs) regulating bone mass and fragility are limited because they examine cortical and trabecular traits independently. Prior work examining long bones from young adult mice and humans indicated that skeletal traits are functionally related and that compensatory interactions among morphological and compositional traits are critical for establishing mechanical function. However, it is not known whether trait covariation (i.e., phenotypic integration) also is important for establishing mechanical function in more complex, corticocancellous structures. Covariation among trabecular, cortical, and compositional bone traits was examined in the context of mechanical functionality for L(4) vertebral bodies across a panel of 16-wk-old female AXB/BXA recombinant inbred (RI) mouse strains. The unique pattern of randomization of the A/J and C57BL/6J (B6) genome among the RI panel provides a powerful tool that can be used to measure the tendency for different traits to covary and to study the biology of complex traits. We tested the hypothesis that genetic variants affecting vertebral size and mass are buffered by changes in the relative amounts of cortical and trabecular bone and overall mineralization. Despite inheriting random sets of A/J and B6 genomes, the RI strains inherited nonrandom sets of cortical and trabecular bone traits. Path analysis, which is a multivariate analysis that shows how multiple traits covary simultaneously when confounding variables like body size are taken into consideration, showed that RI strains that tended to have smaller vertebrae relative to body size achieved mechanical functionality by increasing mineralization and the relative amounts of cortical and trabecular bone. The interdependence among corticocancellous traits in the vertebral body indicated that variation in trabecular bone traits among inbred mouse strains, which is often thought to arise from genetic factors, is also determined in part by the adaptive response to variation in traits describing the cortical shell. The covariation among corticocancellous traits has important implications for genetic analyses and for interpreting the response of bone to genetic and environmental perturbations.
Congenital Chromosomal Syndromes—A Model for Pathogenesis
Rohde, Russell A.
1965-01-01
The origin of anomalies in the chromosomal syndromes is believed to be both polyetiologic and polypathogenetic. Whereas some malformations quite clearly appear to result from single gene mutations or from genic imbalance due to individual monosomic or trisomic loci, other anomalies (singly or in complex patterns) are better interpreted as originating from disturbances in particular biochemical pathways which affect the development of a variety of traits. Additional phenogenetic studies and the use of sophisticated biochemical analysis in persons with complex patterns of anomalies should provide a truer understanding of disease mechanisms and provide guidance for future studies which are aimed at the treatment and prevention of these intriguing misadventures of Nature. PMID:5318572
USDA-ARS?s Scientific Manuscript database
Selective breeding programs for salmonids typically aim to improve traits associated with growth and disease resistance. It has been established that stressors common to production environments can adversely affect these and other traits which are important to producers and consumers. Previously,...
USDA-ARS?s Scientific Manuscript database
Recent Meta-analysis of quantitative trait loci (QTL) in tetraploid cotton (Gossypium spp.) has identified regions of the genome with high concentrations of various trait QTL called clusters, and specific trait QTL called hotspots. The Meta-analysis included all population types of Gossypium mixing ...
Basile, Kevin J; Johnson, Matthew E; Xia, Qianghua; Grant, Struan F A
2014-01-01
Elucidating the underlying genetic variations influencing various complex diseases is one of the major challenges currently facing clinical genetic research. Although these variations are often difficult to uncover, approaches such as genome-wide association studies (GWASs) have been successful at finding statistically significant associations between specific genomic loci and disease susceptibility. GWAS has been especially successful in elucidating genetic variants that influence type 2 diabetes (T2D) and obesity/body mass index (BMI). Specifically, several GWASs have confirmed that a variant in transcription factor 7-like 2 (TCF7L2) confers risk for T2D, while a variant in fat mass and obesity-associated protein (FTO) confers risk for obesity/BMI; indeed both of these signals are considered the most statistically associated loci discovered for these respective traits to date. The discovery of these two key loci in this context has been invaluable for providing novel insight into mechanisms of heritability and disease pathogenesis. As follow-up studies of TCF7L2 and FTO have typically lead the way in how to follow up a GWAS discovery, we outline what has been learned from such investigations and how they have implications for the myriad of other loci that have been subsequently reported in this disease context.
Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines.
Divilov, Konstantin; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I
2018-05-01
Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F 1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified. Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F 1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate-high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical- or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.
Hori, Kiyosumi; Kataoka, Tomomori; Miura, Kiyoyuki; Yamaguchi, Masayuki; Saka, Norikuni; Nakahara, Takahiro; Sunohara, Yoshihiro; Ebana, Kaworu; Yano, Masahiro
2012-01-01
To identify quantitative trait loci (QTLs) associated with the primary target traits for selection in practical rice breeding programs, backcross inbred lines (BILs) derived from crosses between temperate japonica rice cultivars Nipponbare and Koshihikari were evaluated for 50 agronomic traits at six experimental fields located throughout Japan. Thirty-three of the 50 traits were significantly correlated with heading date. Using a linkage map including 647 single-nucleotide polymorphisms (SNPs), a total of 122 QTLs for 38 traits were mapped on all rice chromosomes except chromosomes 5 and 9. Fifty-eight of the 122 QTLs were detected near the heading date QTLs Hd16 and Hd17 and the remaining 64 QTLs were found in other chromosome regions. QTL analysis of 51 BILs having homozygous for the Koshihikari chromosome segments around Hd16 and Hd17 allowed us to detect 40 QTLs associated with 27 traits; 23 of these QTLs had not been detected in the original analysis. Among the 97 QTLs for the 30 traits measured in multiple environments, the genotype-by-environment interaction was significant for 44 QTLs and not significant for 53 QTLs. These results led us to propose a new selection strategy to improve agronomic performance in temperate japonica rice cultivars. PMID:23226082
Anderson, Carl A; McRae, Allan F; Visscher, Peter M
2006-07-01
Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.
Identification of Nine Novel Loci Associated with White Blood Cell Subtypes in a Japanese Population
Okada, Yukinori; Hirota, Tomomitsu; Kamatani, Yoichiro; Takahashi, Atsushi; Ohmiya, Hiroko; Kumasaka, Natsuhiko; Higasa, Koichiro; Yamaguchi-Kabata, Yumi; Hosono, Naoya; Nalls, Michael A.; Chen, Ming Huei; van Rooij, Frank J. A.; Smith, Albert V.; Tanaka, Toshiko; Couper, David J.; Zakai, Neil A.; Ferrucci, Luigi; Longo, Dan L.; Hernandez, Dena G.; Witteman, Jacqueline C. M.; Harris, Tamara B.; O'Donnell, Christopher J.; Ganesh, Santhi K.; Matsuda, Koichi; Tsunoda, Tatsuhiko; Tanaka, Toshihiro; Kubo, Michiaki; Nakamura, Yusuke; Tamari, Mayumi; Yamamoto, Kazuhiko; Kamatani, Naoyuki
2011-01-01
White blood cells (WBCs) mediate immune systems and consist of various subtypes with distinct roles. Elucidation of the mechanism that regulates the counts of the WBC subtypes would provide useful insights into both the etiology of the immune system and disease pathogenesis. In this study, we report results of genome-wide association studies (GWAS) and a replication study for the counts of the 5 main WBC subtypes (neutrophils, lymphocytes, monocytes, basophils, and eosinophils) using 14,792 Japanese subjects enrolled in the BioBank Japan Project. We identified 12 significantly associated loci that satisfied the genome-wide significance threshold of P<5.0×10−8, of which 9 loci were novel (the CDK6 locus for the neutrophil count; the ITGA4, MLZE, STXBP6 loci, and the MHC region for the monocyte count; the SLC45A3-NUCKS1, GATA2, NAALAD2, ERG loci for the basophil count). We further evaluated associations in the identified loci using 15,600 subjects from Caucasian populations. These WBC subtype-related loci demonstrated a variety of patterns of pleiotropic associations within the WBC subtypes, or with total WBC count, platelet count, or red blood cell-related traits (n = 30,454), which suggests unique and common functional roles of these loci in the processes of hematopoiesis. This study should contribute to the understanding of the genetic backgrounds of the WBC subtypes and hematological traits. PMID:21738478
Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis.
Bentsink, Leónie; Jowett, Jemma; Hanhart, Corrie J; Koornneef, Maarten
2006-11-07
Genetic variation for seed dormancy in nature is a typical quantitative trait controlled by multiple loci on which environmental factors have a strong effect. Finding the genes underlying dormancy quantitative trait loci is a major scientific challenge, which also has relevance for agriculture and ecology. In this study we describe the identification of the DELAY OF GERMINATION 1 (DOG1) gene previously identified as a quantitative trait locus involved in the control of seed dormancy. This gene was isolated by a combination of positional cloning and mutant analysis and is absolutely required for the induction of seed dormancy. DOG1 is a member of a small gene family of unknown molecular function, with five members in Arabidopsis. The functional natural allelic variation present in Arabidopsis is caused by polymorphisms in the cis-regulatory region of the DOG1 gene and results in considerable expression differences between the DOG1 alleles of the accessions analyzed.
Holeski, Liza M; Monnahan, Patrick; Koseva, Boryana; McCool, Nick; Lindroth, Richard L; Kelly, John K
2014-03-13
Genotyping-by-sequencing methods have vastly improved the resolution and accuracy of genetic linkage maps by increasing both the number of marker loci as well as the number of individuals genotyped at these loci. Using restriction-associated DNA sequencing, we construct a dense linkage map for a panel of recombinant inbred lines derived from a cross between divergent ecotypes of Mimulus guttatus. We used this map to estimate recombination rate across the genome and to identify quantitative trait loci for the production of several secondary compounds (PPGs) of the phenylpropanoid pathway implicated in defense against herbivores. Levels of different PPGs are correlated across recombinant inbred lines suggesting joint regulation of the phenylpropanoid pathway. However, the three quantitative trait loci identified in this study each act on a distinct PPG. Finally, we map three putative genomic inversions differentiating the two parental populations, including a previously characterized inversion that contributes to life-history differences between the annual/perennial ecotypes. Copyright © 2014 Holeski et al.
Hastings, A.; Hom, C. L.
1989-01-01
We demonstrate that, in a model incorporating weak Gaussian stabilizing selection on n additively determined characters, at most n loci are polymorphic at a stable equilibrium. The number of characters is defined to be the number of independent components in the Gaussian selection scheme. We also assume linkage equilibrium, and that either the number of loci is large enough that the phenotypic distribution in the population can be approximated as multivariate Gaussian or that selection is weak enough that the mean fitness of the population can be approximated using only the mean and the variance of the characters in the population. Our results appear to rule out antagonistic pleiotropy without epistasis as a major force in maintaining additive genetic variation in a uniform environment. However, they are consistent with the maintenance of variability by genotype-environment interaction if a trait in different environments corresponds to different characters and the number of different environments exceeds the number of polymorphic loci that affect the trait. PMID:2767424
Zhu, Zhaozhong; Anttila, Verneri; Smoller, Jordan W; Lee, Phil H
2018-01-01
Advances in recent genome wide association studies (GWAS) suggest that pleiotropic effects on human complex traits are widespread. A number of classic and recent meta-analysis methods have been used to identify genetic loci with pleiotropic effects, but the overall performance of these methods is not well understood. In this work, we use extensive simulations and case studies of GWAS datasets to investigate the power and type-I error rates of ten meta-analysis methods. We specifically focus on three conditions commonly encountered in the studies of multiple traits: (1) extensive heterogeneity of genetic effects; (2) characterization of trait-specific association; and (3) inflated correlation of GWAS due to overlapping samples. Although the statistical power is highly variable under distinct study conditions, we found the superior power of several methods under diverse heterogeneity. In particular, classic fixed-effects model showed surprisingly good performance when a variant is associated with more than a half of study traits. As the number of traits with null effects increases, ASSET performed the best along with competitive specificity and sensitivity. With opposite directional effects, CPASSOC featured the first-rate power. However, caution is advised when using CPASSOC for studying genetically correlated traits with overlapping samples. We conclude with a discussion of unresolved issues and directions for future research.
Pütter, Carolin; Pechlivanis, Sonali; Nöthen, Markus M; Jöckel, Karl-Heinz; Wichmann, Heinz-Erich; Scherag, André
2011-01-01
Genome-wide association studies have identified robust associations between single nucleotide polymorphisms and complex traits. As the proportion of phenotypic variance explained is still limited for most of the traits, larger and larger meta-analyses are being conducted to detect additional associations. Here we investigate the impact of the study design and the underlying assumption about the true genetic effect in a bimodal mixture situation on the power to detect associations. We performed simulations of quantitative phenotypes analysed by standard linear regression and dichotomized case-control data sets from the extremes of the quantitative trait analysed by standard logistic regression. Using linear regression, markers with an effect in the extremes of the traits were almost undetectable, whereas analysing extremes by case-control design had superior power even for much smaller sample sizes. Two real data examples are provided to support our theoretical findings and to explore our mixture and parameter assumption. Our findings support the idea to re-analyse the available meta-analysis data sets to detect new loci in the extremes. Moreover, our investigation offers an explanation for discrepant findings when analysing quantitative traits in the general population and in the extremes. Copyright © 2011 S. Karger AG, Basel.
A Simple Test Identifies Selection on Complex Traits.
Beissinger, Tim; Kruppa, Jochen; Cavero, David; Ha, Ngoc-Thuy; Erbe, Malena; Simianer, Henner
2018-05-01
Important traits in agricultural, natural, and human populations are increasingly being shown to be under the control of many genes that individually contribute only a small proportion of genetic variation. However, the majority of modern tools in quantitative and population genetics, including genome-wide association studies and selection-mapping protocols, are designed to identify individual genes with large effects. We have developed an approach to identify traits that have been under selection and are controlled by large numbers of loci. In contrast to existing methods, our technique uses additive-effects estimates from all available markers, and relates these estimates to allele-frequency change over time. Using this information, we generate a composite statistic, denoted [Formula: see text] which can be used to test for significant evidence of selection on a trait. Our test requires pre- and postselection genotypic data but only a single time point with phenotypic information. Simulations demonstrate that [Formula: see text] is powerful for identifying selection, particularly in situations where the trait being tested is controlled by many genes, which is precisely the scenario where classical approaches for selection mapping are least powerful. We apply this test to breeding populations of maize and chickens, where we demonstrate the successful identification of selection on traits that are documented to have been under selection. Copyright © 2018 Beissinger et al.
Cavanagh, Colin R; Jonas, Elisabeth; Hobbs, Matthew; Thomson, Peter C; Tammen, Imke; Raadsma, Herman W
2010-09-16
An (Awassi × Merino) × Merino single-sire backcross family with 165 male offspring was used to map quantitative trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two cohorts were created from the experimental progeny to represent alternative maturity classes for body composition assessment. Animals were raised under paddock conditions prior to entering the feedlot for a 90-day fattening phase. Body composition traits were derived in vivo at the end of the experiment prior to slaughter at 2 (cohort 1) and 3.5 (cohort 2) years of age, using computed tomography. Image analysis was used to gain accurate predictions for 13 traits describing major fat depots, lean muscle, bone, body proportions and body weight which were used for single- and two-QTL mapping analysis. Using a maximum-likelihood approach, three highly significant (LOD ≥ 3), 15 significant (LOD ≥ 2), and 11 suggestive QTL (1.7 ≤ LOD < 2) were detected on eleven chromosomes. Regression analysis confirmed 28 of these QTL and an additional 17 suggestive (P < 0.1) and two significant (P < 0.05) QTL were identified using this method. QTL with pleiotropic effects for two or more tissues were identified on chromosomes 1, 6, 10, 14, 16 and 23. No tissue-specific QTL were identified.A meta-assembly of ovine QTL for carcass traits from this study and public domain sources was performed and compared with a corresponding bovine meta-assembly. The assembly demonstrated QTL with effects on carcass composition in homologous regions on OAR1, 2, 6 and 21.
Morrissey, Catherine; Grieve, Ian C; Heinig, Matthias; Atanur, Santosh; Petretto, Enrico; Pravenec, Michal; Hubner, Norbert; Aitman, Timothy J
2011-11-07
The spontaneously hypertensive rat (SHR) is a widely used rodent model of hypertension and metabolic syndrome. Previously we identified thousands of cis-regulated expression quantitative trait loci (eQTLs) across multiple tissues using a panel of rat recombinant inbred (RI) strains derived from Brown Norway and SHR progenitors. These cis-eQTLs represent potential susceptibility loci underlying physiological and pathophysiological traits manifested in SHR. We have prioritized 60 cis-eQTLs and confirmed differential expression between the parental strains by quantitative PCR in 43 (72%) of the eQTL transcripts. Quantitative trait transcript (QTT) analysis in the RI strains showed highly significant correlation between cis-eQTL transcript abundance and clinically relevant traits such as systolic blood pressure and blood glucose, with the physical location of a subset of the cis-eQTLs colocalizing with "physiological" QTLs (pQTLs) for these same traits. These colocalizing correlated cis-eQTLs (c3-eQTLs) are highly attractive as primary susceptibility loci for the colocalizing pQTLs. Furthermore, sequence analysis of the c3-eQTL genes identified single nucleotide polymorphisms (SNPs) that are predicted to affect transcription factor binding affinity, splicing and protein function. These SNPs, which potentially alter transcript abundance and stability, represent strong candidate factors underlying not just eQTL expression phenotypes, but also the correlated metabolic and physiological traits. In conclusion, by integration of genomic sequence, eQTL and QTT datasets we have identified several genes that are strong positional candidates for pathophysiological traits observed in the SHR strain. These findings provide a basis for the functional testing and ultimate elucidation of the molecular basis of these metabolic and cardiovascular phenotypes.
Wallace, Chris; Xue, Ming-Zhan; Newhouse, Stephen J.; Marçano, Ana Carolina B.; Onipinla, Abiodun K.; Burke, Beverley; Gungadoo, Johannie; Dobson, Richard J.; Brown, Morris; Connell, John M.; Dominiczak, Anna; Lathrop, G. Mark; Webster, John; Farrall, Martin; Mein, Charles; Samani, Nilesh J.; Caulfield, Mark J.; Clayton, David G.; Munroe, Patricia B.
2006-01-01
Identification of the genetic influences on human essential hypertension and other complex diseases has proved difficult, partly because of genetic heterogeneity. In many complex-trait resources, additional phenotypic data have been collected, allowing comorbid intermediary phenotypes to be used to characterize more genetically homogeneous subsets. The traditional approach to analyzing covariate-defined subsets has typically depended on researchers’ previous expectations for definition of a comorbid subset and leads to smaller data sets, with a concomitant attrition in power. An alternative is to test for dependence between genetic sharing and covariates across the entire data set. This approach offers the advantage of exploiting the full data set and could be widely applied to complex-trait genome scans. However, existing maximum-likelihood methods can be prohibitively computationally expensive, especially since permutation is often required to determine significance. We developed a less computationally intensive score test and applied it to biometric and biochemical covariate data, from 2,044 sibling pairs with severe hypertension, collected by the British Genetics of Hypertension (BRIGHT) study. We found genomewide-significant evidence for linkage with hypertension and several related covariates. The strongest signals were with leaner-body-mass measures on chromosome 20q (maximum LOD=4.24) and with parameters of renal function on chromosome 5p (maximum LOD=3.71). After correction for the multiple traits and genetic locations studied, our global genomewide P value was .046. This is the first identity-by-descent regression analysis of hypertension to our knowledge, and it demonstrates the value of this approach for the incorporation of additional phenotypic information in genetic studies of complex traits. PMID:16826522
Wallace, Chris; Xue, Ming-Zhan; Newhouse, Stephen J; Marcano, Ana Carolina B; Onipinla, Abiodun K; Burke, Beverley; Gungadoo, Johannie; Dobson, Richard J; Brown, Morris; Connell, John M; Dominiczak, Anna; Lathrop, G Mark; Webster, John; Farrall, Martin; Mein, Charles; Samani, Nilesh J; Caulfield, Mark J; Clayton, David G; Munroe, Patricia B
2006-08-01
Identification of the genetic influences on human essential hypertension and other complex diseases has proved difficult, partly because of genetic heterogeneity. In many complex-trait resources, additional phenotypic data have been collected, allowing comorbid intermediary phenotypes to be used to characterize more genetically homogeneous subsets. The traditional approach to analyzing covariate-defined subsets has typically depended on researchers' previous expectations for definition of a comorbid subset and leads to smaller data sets, with a concomitant attrition in power. An alternative is to test for dependence between genetic sharing and covariates across the entire data set. This approach offers the advantage of exploiting the full data set and could be widely applied to complex-trait genome scans. However, existing maximum-likelihood methods can be prohibitively computationally expensive, especially since permutation is often required to determine significance. We developed a less computationally intensive score test and applied it to biometric and biochemical covariate data, from 2,044 sibling pairs with severe hypertension, collected by the British Genetics of Hypertension (BRIGHT) study. We found genomewide-significant evidence for linkage with hypertension and several related covariates. The strongest signals were with leaner-body-mass measures on chromosome 20q (maximum LOD = 4.24) and with parameters of renal function on chromosome 5p (maximum LOD = 3.71). After correction for the multiple traits and genetic locations studied, our global genomewide P value was .046. This is the first identity-by-descent regression analysis of hypertension to our knowledge, and it demonstrates the value of this approach for the incorporation of additional phenotypic information in genetic studies of complex traits.
Hsu, Yi-Hsiang; Zillikens, M Carola; Wilson, Scott G; Farber, Charles R; Demissie, Serkalem; Soranzo, Nicole; Bianchi, Estelle N; Grundberg, Elin; Liang, Liming; Richards, J Brent; Estrada, Karol; Zhou, Yanhua; van Nas, Atila; Moffatt, Miriam F; Zhai, Guangju; Hofman, Albert; van Meurs, Joyce B; Pols, Huibert A P; Price, Roger I; Nilsson, Olle; Pastinen, Tomi; Cupples, L Adrienne; Lusis, Aldons J; Schadt, Eric E; Ferrari, Serge; Uitterlinden, André G; Rivadeneira, Fernando; Spector, Timothy D; Karasik, David; Kiel, Douglas P
2010-06-10
Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6x10(-8)), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6x10(-13); SOX6, p = 6.4x10(-10)) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the skeletal system in cellular or whole animal models to prioritize candidate genes for further functional validation.
Laiba, Efrat; Glikaite, Ilana; Levy, Yael; Pasternak, Zohar; Fridman, Eyal
2016-04-01
The overdominant model of heterosis explains the superior phenotype of hybrids by synergistic allelic interaction within heterozygous loci. To map such genetic variation in yeast, we used a population doubling time dataset of Saccharomyces cerevisiae 16 × 16 diallel and searched for major contributing heterotic trait loci (HTL). Heterosis was observed for the majority of hybrids, as they surpassed their best parent growth rate. However, most of the local heterozygous loci identified by genome scan were surprisingly underdominant, i.e., reduced growth. We speculated that in these loci adverse effects on growth resulted from incompatible allelic interactions. To test this assumption, we eliminated these allelic interactions by creating hybrids with local hemizygosity for the underdominant HTLs, as well as for control random loci. Growth of hybrids was indeed elevated for most hemizygous to HTL genes but not for control genes, hence validating the results of our genome scan. Assessing the consequences of local heterozygosity by reciprocal hemizygosity and allele replacement assays revealed the influence of genetic background on the underdominant effects of HTLs. Overall, this genome-wide study on a multi-parental hybrid population provides a strong argument against single gene overdominance as a major contributor to heterosis, and favors the dominance complementation model.
Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.
Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C
2014-03-07
To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.
Jiang, Gonghao; Zeng, Jing; He, Yuqing
2014-02-25
Chlorophyll content, one of the most important physiological parameters related to plant photosynthesis, is usually used to predict yield potential. To map the quantitative trait loci (QTLs) underlying the chlorophyll content of rice leaves, a double haploid (DH) population was developed from an indica/japonica (Zhenshan 97/Wuyujing 2) crossing and two backcross populations were established subsequently by backcrossing DH lines with each of their parents. The contents of chlorophyll a and chlorophyll b were determined by using a spectrophotometer to directly measure the leaf chlorophyll extracts. To determine the leaf chlorophyll retention along with maturation, all measurements were performed on the day of heading and were repeated 30 days later. A total of 60 QTLs were resolved for all the traits using these three populations. These QTLs were distributed on 10 rice chromosomes, except chromosomes 5 and 10; the closer the traits, the more clustering of the QTLs residing on common rice chromosomal regions. In general, the majority of QTLs that specify chlorophyll a content also play a role in determining chlorophyll b content. Strangely, chlorophyll content in this study was found mostly to be lacking or to have a negative correlation with yield. In both backcross F1 populations, overdominant (or underdominant) loci were more important than complete or partially dominant loci for main-effect QTLs and epistatic QTLs, thereby supporting previous findings that overdominant effects are the primary genetic basis for depression in inbreeding and heterosis in rice. Copyright © 2013 Elsevier B.V. All rights reserved.
Endurance Exercise Ability in the Horse: A Trait with Complex Polygenic Determinism
Ricard, Anne; Robert, Céline; Blouin, Christine; Baste, Fanny; Torquet, Gwendoline; Morgenthaler, Caroline; Rivière, Julie; Mach, Nuria; Mata, Xavier; Schibler, Laurent; Barrey, Eric
2017-01-01
Endurance horses are able to run at more than 20 km/h for 160 km (in bouts of 30–40 km). This level of performance is based on intense aerobic metabolism, effective body heat dissipation and the ability to endure painful exercise. The known heritabilities of endurance performance and exercise-related physiological traits in Arabian horses suggest that adaptation to extreme endurance exercise is influenced by genetic factors. The objective of the present genome-wide association study (GWAS) was to identify single nucleotide polymorphisms (SNPs) related to endurance racing performance in 597 Arabian horses. The performance traits studied were the total race distance, average race speed and finishing status (qualified, eliminated or retired). We used three mixed models that included a fixed allele or genotype effect and a random, polygenic effect. Quantile-quantile plots were acceptable, and the regression coefficients for actual vs. expected log10 p-values ranged from 0.865 to 1.055. The GWAS revealed five significant quantitative trait loci (QTL) corresponding to 6 SNPs on chromosomes 6, 1, 7, 16, and 29 (two SNPs) with corrected p-values from 1.7 × 10−6 to 1.8 × 10−5. Annotation of these 5 QTL revealed two genes: sortilin-related VPS10-domain-containing receptor 3 (SORCS3) on chromosome 1 is involved in protein trafficking, and solute carrier family 39 member 12 (SLC39A12) on chromosome 29 is active in zinc transport and cell homeostasis. These two coding genes could be involved in neuronal tissues (CNS). The other QTL on chromosomes 6, 7, and 16 may be involved in the regulation of the gene expression through non-coding RNAs, CpG islands and transcription factor binding sites. On chromosome 6, a new candidate equine long non-coding RNA (KCNQ1OT1 ortholog: opposite antisense transcript 1 of potassium voltage-gated channel subfamily Q member 1 gene) was predicted in silico and validated by RT-qPCR in primary cultures of equine myoblasts and fibroblasts. This lncRNA could be one element of the cardiac rhythm regulation. Our GWAS revealed that equine performance during endurance races is a complex polygenic trait, and is partially governed by at least 5 QTL: two coding genes involved in neuronal tissues and three other loci with many regulatory functions such as slowing down heart rate. PMID:28702049
Endurance Exercise Ability in the Horse: A Trait with Complex Polygenic Determinism.
Ricard, Anne; Robert, Céline; Blouin, Christine; Baste, Fanny; Torquet, Gwendoline; Morgenthaler, Caroline; Rivière, Julie; Mach, Nuria; Mata, Xavier; Schibler, Laurent; Barrey, Eric
2017-01-01
Endurance horses are able to run at more than 20 km/h for 160 km (in bouts of 30-40 km). This level of performance is based on intense aerobic metabolism, effective body heat dissipation and the ability to endure painful exercise. The known heritabilities of endurance performance and exercise-related physiological traits in Arabian horses suggest that adaptation to extreme endurance exercise is influenced by genetic factors. The objective of the present genome-wide association study (GWAS) was to identify single nucleotide polymorphisms (SNPs) related to endurance racing performance in 597 Arabian horses. The performance traits studied were the total race distance, average race speed and finishing status (qualified, eliminated or retired). We used three mixed models that included a fixed allele or genotype effect and a random, polygenic effect. Quantile-quantile plots were acceptable, and the regression coefficients for actual vs. expected log 10 p -values ranged from 0.865 to 1.055. The GWAS revealed five significant quantitative trait loci (QTL) corresponding to 6 SNPs on chromosomes 6, 1, 7, 16, and 29 (two SNPs) with corrected p -values from 1.7 × 10 -6 to 1.8 × 10 -5 . Annotation of these 5 QTL revealed two genes: sortilin-related VPS10-domain-containing receptor 3 ( SORCS3 ) on chromosome 1 is involved in protein trafficking, and solute carrier family 39 member 12 ( SLC39A12 ) on chromosome 29 is active in zinc transport and cell homeostasis. These two coding genes could be involved in neuronal tissues (CNS). The other QTL on chromosomes 6, 7, and 16 may be involved in the regulation of the gene expression through non-coding RNAs, CpG islands and transcription factor binding sites. On chromosome 6, a new candidate equine long non-coding RNA ( KCNQ1OT1 ortholog: opposite antisense transcript 1 of potassium voltage-gated channel subfamily Q member 1 gene) was predicted in silico and validated by RT-qPCR in primary cultures of equine myoblasts and fibroblasts. This lncRNA could be one element of the cardiac rhythm regulation. Our GWAS revealed that equine performance during endurance races is a complex polygenic trait, and is partially governed by at least 5 QTL: two coding genes involved in neuronal tissues and three other loci with many regulatory functions such as slowing down heart rate.
Werren, John H.; Cohen, Lorna B.; Gadau, Juergen; Ponce, Rita; Baudry, Emmanuelle; Lynch, Jeremy A.
2016-01-01
The animal head is a complex structure where numerous sensory, structural and alimentary structures are concentrated and integrated, and its ontogeny requires precise and delicate interactions among genes, cells, and tissues. Thus, it is perhaps unsurprising that craniofacial abnormalities are among the most common birth defects in people, or that these defects have a complex genetic basis involving interactions among multiple loci. Developmental processes that depend on such epistatic interactions become exponentially more difficult to study in diploid organisms as the number of genes involved increases. Here, we present hybrid haploid males of the wasp species pair Nasonia vitripennis and Nasonia giraulti, which have distinct male head morphologies, as a genetic model of craniofacial development that possesses the genetic advantages of haploidy, along with many powerful genomic tools. Viable, fertile hybrids can be made between the species, and quantitative trail loci related to shape differences have been identified. In addition, a subset of hybrid males show head abnormalities, including clefting at the midline and asymmetries. Crucially, epistatic interactions among multiple loci underlie several developmental differences and defects observed in the F2 hybrid males. Furthermore, we demonstrate an introgression of a chromosomal region from N. giraulti into N. vitripennis that shows an abnormality in relative eye size, which maps to a region containing a major QTL for this trait. Therefore, the genetic sources of head morphology can, in principle, be identified by positional cloning. Thus, Nasonia is well positioned to be a uniquely powerful model invertebrate system with which to probe both development and complex genetics of craniofacial patterning and defects. PMID:26721604
Larson, Steven R; Kellogg, Elizabeth A; Jensen, Kevin B
2013-01-01
Grass inflorescence and stem branches show recognizable architectural differences among species. The inflorescence branches of Triticeae cereals and grasses, including wheat, barley, and 400-500 wild species, are usually contracted into a spike formation, with the number of flowering branches (spikelets) per node conserved within species and genera. Perennial Triticeae grasses of genus Leymus are unusual in that the number of spikelets per node varies, inflorescences may have panicle branches, and vegetative stems may form subterranean rhizomes. Leymus cinereus and L. triticoides show discrete differences in inflorescence length, branching architecture, node number, and density; number of spikelets per node and florets per spikelet; culm length and width; and perimeter of rhizomatous spreading. Quantitative trait loci controlling these traits were detected in 2 pseudo-backcross populations derived from the interspecific hybrids using a linkage map with 360 expressed gene sequence markers from Leymus tiller and rhizome branch meristems. Alignments of genes, mutations, and quantitative trait loci controlling similar traits in other grass species were identified using the Brachypodium genome reference sequence. Evidence suggests that loci controlling inflorescence and stem branch architecture in Leymus are conserved among the grasses, are governed by natural selection, and can serve as possible gene targets for improving seed, forage, and grain production.
Mariette, Stéphanie; Wong Jun Tai, Fabienne; Roch, Guillaume; Barre, Aurélien; Chague, Aurélie; Decroocq, Stéphane; Groppi, Alexis; Laizet, Yec'han; Lambert, Patrick; Tricon, David; Nikolski, Macha; Audergon, Jean-Marc; Abbott, Albert G; Decroocq, Véronique
2016-01-01
In fruit tree species, many important traits have been characterized genetically by using single-family descent mapping in progenies segregating for the traits. However, most mapped loci have not been sufficiently resolved to the individual genes due to insufficient progeny sizes for high resolution mapping and the previous lack of whole-genome sequence resources of the study species. To address this problem for Plum Pox Virus (PPV) candidate resistance gene identification in Prunus species, we implemented a genome-wide association (GWA) approach in apricot. This study exploited the broad genetic diversity of the apricot (Prunus armeniaca) germplasm containing resistance to PPV, next-generation sequence-based genotyping, and the high-quality peach (Prunus persica) genome reference sequence for single nucleotide polymorphism (SNP) identification. The results of this GWA study validated previously reported PPV resistance quantitative trait loci (QTL) intervals, highlighted other potential resistance loci, and resolved each to a limited set of candidate genes for further study. This work substantiates the association genetics approach for resolution of QTL to candidate genes in apricot and suggests that this approach could simplify identification of other candidate genes for other marked trait intervals in this germplasm. © 2015 INRA, UMR 1332 BFP New Phytologist © 2015 New Phytologist Trust.
Thompson, Wesley K.; McEvoy, Linda K.; Schork, Andrew J.; Zuber, Verena; LeBlanc, Marissa; Bettella, Francesco; Mills, Ian G.; Desikan, Rahul S.; Djurovic, Srdjan; Gautvik, Kaare M.; Dale, Anders M.; Andreassen, Ole A.
2015-01-01
Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity. PMID:26695485
Kurasch, Alena K; Hahn, Volker; Leiser, Willmar L; Vollmann, Johann; Schori, Arnold; Bétrix, Claude-Alain; Mayr, Bernhard; Winkler, Johanna; Mechtler, Klemens; Aper, Jonas; Sudaric, Aleksandra; Pejic, Ivan; Sarcevic, Hrvoje; Jeanson, Patrice; Balko, Christiane; Signor, Marco; Miceli, Fabiano; Strijk, Peter; Rietman, Hendrik; Muresanu, Eugen; Djordjevic, Vuk; Pospišil, Ana; Barion, Giuseppe; Weigold, Peter; Streng, Stefan; Krön, Matthias; Würschum, Tobias
2017-05-01
Soybean cultivation holds great potential for a sustainable agriculture in Europe, but adaptation remains a central issue. In this large mega-environment (MEV) study, 75 European cultivars from five early maturity groups (MGs 000-II) were evaluated for maturity-related traits at 22 locations in 10 countries across Europe. Clustering of the locations based on phenotypic similarity revealed six MEVs in latitudinal direction and suggested several more. Analysis of maturity identified several groups of cultivars with phenotypic similarity that are optimally adapted to the different growing regions in Europe. We identified several haplotypes for the allelic variants at the E1, E2, E3 and E4 genes, with each E haplotype comprising cultivars from different MGs. Cultivars with the same E haplotype can exhibit different flowering and maturity characteristics, suggesting that the genetic control of these traits is more complex and that adaptation involves additional genetic pathways, for example temperature requirement. Taken together, our study allowed the first unified assessment of soybean-growing regions in Europe and illustrates the strong effect of photoperiod on soybean adaptation and MEV classification, as well as the effects of the E maturity loci for soybean adaptation in Europe. © 2017 John Wiley & Sons Ltd.
Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes.
Albertson, R Craig; Streelman, J Todd; Kocher, Thomas D
2003-04-29
East African cichlid fishes represent one of the most striking examples of rapid and convergent evolutionary radiation among vertebrates. Models of ecological speciation would suggest that functional divergence in feeding morphology has contributed to the origin and maintenance of cichlid species diversity. However, definitive evidence for the action of natural selection has been missing. Here we use quantitative genetics to identify regions of the cichlid genome responsible for functionally important shape differences in the oral jaw apparatus. The consistent direction of effects for individual quantitative trait loci suggest that cichlid jaws and teeth evolved in response to strong, divergent selection. Moreover, several chromosomal regions contain a disproportionate number of quantitative trait loci, indicating a prominent role for pleiotropy or genetic linkage in the divergence of this character complex. Of particular interest are genomic intervals with concerted effects on both the length and height of the lower jaw. Coordinated changes in this area of the oral jaw apparatus are predicted to have direct consequences for the speed and strength of jaw movement. Taken together, our results imply that the rapid and replicative nature of cichlid trophic evolution is the result of directional selection on chromosomal packages that encode functionally linked aspects of the craniofacial skeleton.
Integration of QTL and bioinformatic tools to identify candidate genes for triglycerides in mice[S
Leduc, Magalie S.; Hageman, Rachael S.; Verdugo, Ricardo A.; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A.; Paigen, Beverly
2011-01-01
To identify genetic loci influencing lipid levels, we performed quantitative trait loci (QTL) analysis between inbred mouse strains MRL/MpJ and SM/J, measuring triglyceride levels at 8 weeks of age in F2 mice fed a chow diet. We identified one significant QTL on chromosome (Chr) 15 and three suggestive QTL on Chrs 2, 7, and 17. We also carried out microarray analysis on the livers of parental strains of 282 F2 mice and used these data to find cis-regulated expression QTL. We then narrowed the list of candidate genes under significant QTL using a “toolbox” of bioinformatic resources, including haplotype analysis; parental strain comparison for gene expression differences and nonsynonymous coding single nucleotide polymorphisms (SNP); cis-regulated eQTL in livers of F2 mice; correlation between gene expression and phenotype; and conditioning of expression on the phenotype. We suggest Slc25a7 as a candidate gene for the Chr 7 QTL and, based on expression differences, five genes (Polr3 h, Cyp2d22, Cyp2d26, Tspo, and Ttll12) as candidate genes for Chr 15 QTL. This study shows how bioinformatics can be used effectively to reduce candidate gene lists for QTL related to complex traits. PMID:21622629
Leduc, Magalie S; Blair, Rachael Hageman; Verdugo, Ricardo A; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A; Paigen, Beverly
2012-06-01
A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification.
N'Diaye, Amidou; Haile, Jemanesh K; Cory, Aron T; Clarke, Fran R; Clarke, John M; Knox, Ron E; Pozniak, Curtis J
2017-01-01
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.
Zhu, Jingwen; Loos, Ruth J. F.; Lu, Ling; Zong, Geng; Gan, Wei; Ye, Xingwang; Sun, Liang; Li, Huaixing; Lin, Xu
2014-01-01
Background/Objectives Recent large-scale genome-wide association studies have identified multiple loci robustly associated with BMI, predominantly in European ancestry (EA) populations. However, associations of these loci with obesity and related traits have not been well described in Chinese Hans. This study aimed to investigate whether BMI-associated loci are, individually and collectively, associated with adiposity-related traits and obesity in Chinese Hans and whether these associations are modified by physical activity (PA). Subjects/Methods We genotyped 28 BMI-associated single nucleotide polymorphisms (SNPs) in a population-based cohort including 2,894 unrelated Han Chinese. Genetic risk score (GRS), EA and East Asian ancestry (EAA) GRSs were calculated by adding BMI-increasing alleles based on all, EA and EAA identified SNPs, respectively. Interactions of GRS and PA were examined by including the interaction-term in the regression model. Results Individually, 26 of 28 SNPs showed directionally consistent effects on BMI, and associations of four loci (TMEM18, PCSK1, BDNF and MAP2K5) reached nominal significance (P<0.05). The GRS was associated with increased BMI, trunk fat and body fat percentages; and increased risk of obesity and overweight (all P<0.05). Effect sizes (0.11 vs. 0.17 kg/m2) and explained variance (0.90% vs. 1.45%) of GRS for BMI tended to be lower in Chinese Hans than in Europeans. The EA GRS and EAA GRS were associated with 0.11 and 0.13 kg/m2 higher BMI, respectively. In addition, we found that PA attenuated the effect of the GRS on BMI (P interaction = 0.022). Conclusions Our observations suggest that the combined effect of obesity-susceptibility loci on BMI tended to be lower in Han Chinese than in EA. The overall, EA and EAA GRSs exert similar effects on adiposity traits. Genetic predisposition to increased BMI is attenuated by PA in this population of Han Chinese. PMID:24626232
van Vliet-Ostaptchouk, J V; den Hoed, M; Luan, J; Zhao, J H; Ong, K K; van der Most, P J; Wong, A; Hardy, R; Kuh, D; van der Klauw, M M; Bruinenberg, M; Khaw, K T; Wolffenbuttel, B H R; Wareham, N J; Snieder, H; Loos, R J F
2013-10-01
Genetic pleiotropy may contribute to the clustering of obesity and metabolic conditions. We assessed whether genetic variants that are robustly associated with BMI and waist-to-hip ratio (WHR) also influence metabolic and cardiovascular traits, independently of obesity-related traits, in meta-analyses of up to 37,874 individuals from six European population-based studies. We examined associations of 32 BMI and 14 WHR loci, individually and combined in two genetic predisposition scores (GPSs), with glycaemic traits, blood lipids and BP, with and without adjusting for BMI and/or WHR. We observed significant associations of BMI-increasing alleles at five BMI loci with lower levels of 2 h glucose (RBJ [also known as DNAJC27], QPTCL: effect sizes -0.068 and -0.107 SD, respectively), HDL-cholesterol (SLC39A8: -0.065 SD, MTCH2: -0.039 SD), and diastolic BP (SLC39A8: -0.069 SD), and higher and lower levels of LDL- and total cholesterol (QPTCL: 0.041 and 0.042 SDs, respectively, FLJ35779 [also known as POC5]: -0.042 and -0.041 SDs, respectively) (all p < 2.4 × 10(-4)), independent of BMI. The WHR-increasing alleles at two WHR loci were significantly associated with higher proinsulin (GRB14: 0.069 SD) and lower fasting glucose levels (CPEB4: -0.049 SD), independent of BMI and WHR. A higher GPS-BMI was associated with lower systolic BP (-0.005 SD), diastolic BP (-0.006 SD) and 2 h glucose (-0.013 SD), while a higher GPS-WHR was associated with lower HDL-cholesterol (-0.015 SD) and higher triacylglycerol levels (0.014 SD) (all p < 2.9 × 10(-3)), independent of BMI and/or WHR. These pleiotropic effects of obesity-susceptibility loci provide novel insights into mechanisms that link obesity with metabolic abnormalities.
Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.)
2013-01-01
Background Genetic linkage maps are important tools for many genetic applications including mapping of quantitative trait loci (QTLs), identifying DNA markers for fingerprinting, and map-based gene cloning. Carnation (Dianthus caryophyllus L.) is an important ornamental flower worldwide. We previously reported a random amplified polymorphic DNA (RAPD)-based genetic linkage map derived from Dianthus capitatus ssp. andrezejowskianus and a simple sequence repeat (SSR)-based genetic linkage map constructed using data from intraspecific F2 populations; however, the number of markers was insufficient, and so the number of linkage groups (LGs) did not coincide with the number of chromosomes (x = 15). Therefore, we aimed to produce a high-density genetic map to improve its usefulness for breeding purposes and genetic research. Results We improved the SSR-based genetic linkage map using SSR markers derived from a genomic library, expression sequence tags, and RNA-seq data. Linkage analysis revealed that 412 SSR loci (including 234 newly developed SSR loci) could be mapped to 17 linkage groups (LGs) covering 969.6 cM. Comparison of five minor LGs covering less than 50 cM with LGs in our previous RAPD-based genetic map suggested that four LGs could be integrated into two LGs by anchoring common SSR loci. Consequently, the number of LGs corresponded to the number of chromosomes (x = 15). We added 192 new SSRs, eight RAPD, and two sequence-tagged site loci to refine the RAPD-based genetic linkage map, which comprised 15 LGs consisting of 348 loci covering 978.3 cM. The two maps had 125 SSR loci in common, and most of the positions of markers were conserved between them. We identified 635 loci in carnation using the two linkage maps. We also mapped QTLs for two traits (bacterial wilt resistance and anthocyanin pigmentation in the flower) and a phenotypic locus for flower-type by analyzing previously reported genotype and phenotype data. Conclusions The improved genetic linkage maps and SSR markers developed in this study will serve as reference genetic linkage maps for members of the genus Dianthus, including carnation, and will be useful for mapping QTLs associated with various traits, and for improving carnation breeding programs. PMID:24160306
Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.).
Yagi, Masafumi; Yamamoto, Toshiya; Isobe, Sachiko; Hirakawa, Hideki; Tabata, Satoshi; Tanase, Koji; Yamaguchi, Hiroyasu; Onozaki, Takashi
2013-10-26
Genetic linkage maps are important tools for many genetic applications including mapping of quantitative trait loci (QTLs), identifying DNA markers for fingerprinting, and map-based gene cloning. Carnation (Dianthus caryophyllus L.) is an important ornamental flower worldwide. We previously reported a random amplified polymorphic DNA (RAPD)-based genetic linkage map derived from Dianthus capitatus ssp. andrezejowskianus and a simple sequence repeat (SSR)-based genetic linkage map constructed using data from intraspecific F2 populations; however, the number of markers was insufficient, and so the number of linkage groups (LGs) did not coincide with the number of chromosomes (x = 15). Therefore, we aimed to produce a high-density genetic map to improve its usefulness for breeding purposes and genetic research. We improved the SSR-based genetic linkage map using SSR markers derived from a genomic library, expression sequence tags, and RNA-seq data. Linkage analysis revealed that 412 SSR loci (including 234 newly developed SSR loci) could be mapped to 17 linkage groups (LGs) covering 969.6 cM. Comparison of five minor LGs covering less than 50 cM with LGs in our previous RAPD-based genetic map suggested that four LGs could be integrated into two LGs by anchoring common SSR loci. Consequently, the number of LGs corresponded to the number of chromosomes (x = 15). We added 192 new SSRs, eight RAPD, and two sequence-tagged site loci to refine the RAPD-based genetic linkage map, which comprised 15 LGs consisting of 348 loci covering 978.3 cM. The two maps had 125 SSR loci in common, and most of the positions of markers were conserved between them. We identified 635 loci in carnation using the two linkage maps. We also mapped QTLs for two traits (bacterial wilt resistance and anthocyanin pigmentation in the flower) and a phenotypic locus for flower-type by analyzing previously reported genotype and phenotype data. The improved genetic linkage maps and SSR markers developed in this study will serve as reference genetic linkage maps for members of the genus Dianthus, including carnation, and will be useful for mapping QTLs associated with various traits, and for improving carnation breeding programs.
Raffler, Johannes; Friedrich, Nele; Arnold, Matthias; Kacprowski, Tim; Rueedi, Rico; Altmaier, Elisabeth; Bergmann, Sven; Budde, Kathrin; Gieger, Christian; Homuth, Georg; Pietzner, Maik; Römisch-Margl, Werner; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wallaschofski, Henri; Nauck, Matthias; Völker, Uwe; Kastenmüller, Gabi; Suhre, Karsten
2015-01-01
Genome-wide association studies with metabolic traits (mGWAS) uncovered many genetic variants that influence human metabolism. These genetically influenced metabotypes (GIMs) contribute to our metabolic individuality, our capacity to respond to environmental challenges, and our susceptibility to specific diseases. While metabolic homeostasis in blood is a well investigated topic in large mGWAS with over 150 known loci, metabolic detoxification through urinary excretion has only been addressed by few small mGWAS with only 11 associated loci so far. Here we report the largest mGWAS to date, combining targeted and non-targeted 1H NMR analysis of urine samples from 3,861 participants of the SHIP-0 cohort and 1,691 subjects of the KORA F4 cohort. We identified and replicated 22 loci with significant associations with urinary traits, 15 of which are new (HIBCH, CPS1, AGXT, XYLB, TKT, ETNPPL, SLC6A19, DMGDH, SLC36A2, GLDC, SLC6A13, ACSM3, SLC5A11, PNMT, SLC13A3). Two-thirds of the urinary loci also have a metabolite association in blood. For all but one of the 6 loci where significant associations target the same metabolite in blood and urine, the genetic effects have the same direction in both fluids. In contrast, for the SLC5A11 locus, we found increased levels of myo-inositol in urine whereas mGWAS in blood reported decreased levels for the same genetic variant. This might indicate less effective re-absorption of myo-inositol in the kidneys of carriers. In summary, our study more than doubles the number of known loci that influence urinary phenotypes. It thus allows novel insights into the relationship between blood homeostasis and its regulation through excretion. The newly discovered loci also include variants previously linked to chronic kidney disease (CPS1, SLC6A13), pulmonary hypertension (CPS1), and ischemic stroke (XYLB). By establishing connections from gene to disease via metabolic traits our results provide novel hypotheses about molecular mechanisms involved in the etiology of diseases. PMID:26352407
Moscou, Matthew J; Lauter, Nick; Steffenson, Brian; Wise, Roger P
2011-07-01
Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement of R-gene mediated resistance.
Moscou, Matthew J.; Lauter, Nick; Steffenson, Brian; Wise, Roger P.
2011-01-01
Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host–pathogen interaction with enhancement of R-gene mediated resistance. PMID:21829384
Xu, Zhenzhen; Zhang, Chaojun; Ge, Xiaoyang; Wang, Ni; Zhou, Kehai; Yang, Xiaojie; Wu, Zhixia; Zhang, Xueyan; Liu, Chuanliang; Yang, Zuoren; Li, Changfeng; Liu, Kun; Yang, Zhaoen; Qian, Yuyuan; Li, Fuguang
2015-07-01
The first high-density linkage map was constructed to identify quantitative trait loci (QTLs) for somatic embryogenesis (SE) in cotton ( Gossypium hirsutum L.) using leaf petioles as explants. Cotton transformation is highly limited by only a few regenerable genotypes and the lack of understanding of the genetic and molecular basis of somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.). To construct a more saturated linkage map and further identify quantitative trait loci (QTLs) for SE using leaf petioles as explants, a high embryogenesis frequency line (W10) from the commercial Chinese cotton cultivar CRI24 was crossed with TM-1, a genetic standard upland cotton with no embryogenesis frequency. The genetic map spanned 2300.41 cM in genetic distance and contained 411 polymorphic simple sequence repeat (SSR) loci. Of the 411 mapped loci, 25 were developed from unigenes identified for SE in our previous study. Six QTLs for SE were detected by composite interval mapping method, each explaining 6.88-37.07% of the phenotypic variance. Single marker analysis was also performed to verify the reliability of QTLs detection, and the SSR markers NAU3325 and DPL0209 were detected by the two methods. Further studies on the relatively stable and anchoring QTLs/markers for SE in an advanced population of W10 × TM-1 and other cross combinations with different SE abilities may shed light on the genetic and molecular mechanism of SE in cotton.
In silico mapping of quantitative trait loci in maize.
Parisseaux, B; Bernardo, R
2004-08-01
Quantitative trait loci (QTL) are most often detected through designed mapping experiments. An alternative approach is in silico mapping, whereby genes are detected using existing phenotypic and genomic databases. We explored the usefulness of in silico mapping via a mixed-model approach in maize (Zea mays L.). Specifically, our objective was to determine if the procedure gave results that were repeatable across populations. Multilocation data were obtained from the 1995-2002 hybrid testing program of Limagrain Genetics in Europe. Nine heterotic patterns comprised 22,774 single crosses. These single crosses were made from 1,266 inbreds that had data for 96 simple sequence repeat (SSR) markers. By a mixed-model approach, we estimated the general combining ability effects associated with marker alleles in each heterotic pattern. The numbers of marker loci with significant effects--37 for plant height, 24 for smut [Ustilago maydis (DC.) Cda.] resistance, and 44 for grain moisture--were consistent with previous results from designed mapping experiments. Each trait had many loci with small effects and few loci with large effects. For smut resistance, a marker in bin 8.05 on chromosome 8 had a significant effect in seven (out of a maximum of 18) instances. For this major QTL, the maximum effect of an allele substitution ranged from 5.4% to 41.9%, with an average of 22.0%. We conclude that in silico mapping via a mixed-model approach can detect associations that are repeatable across different populations. We speculate that in silico mapping will be more useful for gene discovery than for selection in plant breeding programs. Copyright 2004 Springer-Verlag
Medina-Gomez, Carolina; Kemp, John P; Dimou, Niki L; Kreiner, Eskil; Chesi, Alessandra; Zemel, Babette S; Bønnelykke, Klaus; Boer, Cindy G; Ahluwalia, Tarunveer S; Bisgaard, Hans; Evangelou, Evangelos; Heppe, Denise H M; Bonewald, Lynda F; Gorski, Jeffrey P; Ghanbari, Mohsen; Demissie, Serkalem; Duque, Gustavo; Maurano, Matthew T; Kiel, Douglas P; Hsu, Yi-Hsiang; C J van der Eerden, Bram; Ackert-Bicknell, Cheryl; Reppe, Sjur; Gautvik, Kaare M; Raastad, Truls; Karasik, David; van de Peppel, Jeroen; Jaddoe, Vincent W V; Uitterlinden, André G; Tobias, Jonathan H; Grant, Struan F A; Bagos, Pantelis G; Evans, David M; Rivadeneira, Fernando
2017-07-25
Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% (95% CI: 34-52%) for TBLH-BMD, and 39% (95% CI: 30-48%) for TB-LM, with a shared genetic component of 43% (95% CI: 29-56%). We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5. Variants in the TOM1L2/SREBF1 locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that SREBF1 is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass.Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total body lean mass and bone mass density in children, and show genetic loci with pleiotropic effects on both traits.
Kujala, S T; Knürr, T; Kärkkäinen, K; Neale, D B; Sillanpää, M J; Savolainen, O
2017-05-01
Local adaptation is a common feature of plant and animal populations. Adaptive phenotypic traits are genetically differentiated along environmental gradients, but the genetic basis of such adaptation is still poorly known. Genetic association studies of local adaptation combine data over populations. Correcting for population structure in these studies can be problematic since both selection and neutral demographic events can create similar allele frequency differences between populations. Correcting for demography with traditional methods may lead to eliminating some true associations. We developed a new Bayesian approach for identifying the loci underlying an adaptive trait in a multipopulation situation in the presence of possible double confounding due to population stratification and adaptation. With this method we studied the genetic basis of timing of bud set, a surrogate trait for timing of yearly growth cessation that confers local adaptation to the populations of Scots pine (Pinus sylvestris). Population means of timing of bud set were highly correlated with latitude. Most effects at individual loci were small. Interestingly, we found genetic heterogeneity (that is, different sets of loci associated with the trait) between the northern and central European parts of the cline. We also found indications of stronger stabilizing selection toward the northern part of the range. The harsh northern conditions may impose greater selective pressure on timing of growth cessation, and the relative importance of different environmental cues used for tracking the seasons might differ depending on latitude of origin.
Defays, Raquel; Bertoli, Carlos Ignacio
2012-12-01
Alcohol, a drug widely abused, impacts the central nervous system functioning of diverse organisms. The behavioral responses to acute alcohol exposure are remarkably similar among humans and fruit flies. In its natural environment, rich in fermentation products, the fruit fly Drosophila melanogaster encounters relatively high levels of ethanol. The effects of ethanol and its metabolites on Drosophila have been studied for decades, as a model for adaptive evolution. Although extensive work has been done for elucidating patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie the genetic variation of this important trait. To identify regions containing genes involved in the responses to ethanol, we used a mapping population of recombinant inbred (RIL) lines to map quantitative trait loci (QTL) that affect variation in resistance and recovery from ethanol sedation in adults and ethanol resistance in larvae. We mapped fourteen QTL affecting the response to ethanol on the three chromosomes. Seven of the QTL influence the resistance to ethanol in adults, two QTL are related to ethanol-coma recovery in adults and five affect the survival to ethanol in larvae. Most of the QTL were trait specific, suggesting that overlapping but generally unique genetic architectures underlie each trait. Each QTL explained up to 16.8% of the genetic variance among lines. Potential candidate loci contained within our QTL regions were identified and analyzed. Copyright © 2012 Elsevier Inc. All rights reserved.
Genome-Wide Delineation of Natural Variation for Pod Shatter Resistance in Brassica napus
Raman, Harsh; Raman, Rosy; Kilian, Andrzej; Detering, Frank; Carling, Jason; Coombes, Neil; Diffey, Simon; Kadkol, Gururaj; Edwards, David; McCully, Margaret; Ruperao, Pradeep; Parkin, Isobel A. P.; Batley, Jacqueline; Luckett, David J.; Wratten, Neil
2014-01-01
Resistance to pod shattering (shatter resistance) is a target trait for global rapeseed (canola, Brassica napus L.), improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL) control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified. PMID:25006804
Zhao, Lan-Juan; Xiao, Peng; Liu, Yong-Jun; Xiong, Dong-Hai; Shen, Hui; Recker, Robert R; Deng, Hong-Wen
2007-03-01
To identify quantitative trait loci (QTLs) that contribute to obesity, we performed a large-scale whole genome linkage scan (WGS) involving 4,102 individuals from 434 Caucasian families. The most pronounced linkage evidence was found at the genomic region 20p11-12 for fat mass (LOD = 3.31) and percentage fat mass (PFM) (LOD = 2.92). We also identified several regions showing suggestive linkage signals (threshold LOD = 1.9) for obesity phenotypes, including 5q35, 8q13, 10p12, and 17q11.
52 Genetic Loci Influencing Myocardial Mass
van der Harst, Pim; van Setten, Jessica; Verweij, Niek; Vogler, Georg; Franke, Lude; Maurano, Matthew T.; Wang, Xinchen; Leach, Irene Mateo; Eijgelsheim, Mark; Sotoodehnia, Nona; Hayward, Caroline; Sorice, Rossella; Meirelles, Osorio; Lyytikäinen, Leo-Pekka; Polašek, Ozren; Tanaka, Toshiko; Arking, Dan E.; Ulivi, Sheila; Trompet, Stella; Müller-Nurasyid, Martina; Smith, Albert V.; Dörr, Marcus; Kerr, Kathleen F.; Magnani, Jared W.; Fabiola Del Greco, M.; Zhang, Weihua; Nolte, Ilja M.; Silva, Claudia T.; Padmanabhan, Sandosh; Tragante, Vinicius; Esko, Tõnu; Abecasis, Gonçalo R.; Adriaens, Michiel E.; Andersen, Karl; Barnett, Phil; Bis, Joshua C.; Bodmer, Rolf; Buckley, Brendan M.; Campbell, Harry; Cannon, Megan V.; Chakravarti, Aravinda; Chen, Lin Y.; Delitala, Alessandro; Devereux, Richard B.; Doevendans, Pieter A.; Dominiczak, Anna F.; Ferrucci, Luigi; Ford, Ian; Gieger, Christian; Harris, Tamara B.; Haugen, Eric; Heinig, Matthias; Hernandez, Dena G.; Hillege, Hans L.; Hirschhorn, Joel N.; Hofman, Albert; Hubner, Norbert; Hwang, Shih-Jen; Iorio, Annamaria; Kähönen, Mika; Kellis, Manolis; Kolcic, Ivana; Kooner, Ishminder K.; Kooner, Jaspal S.; Kors, Jan A.; Lakatta, Edward G.; Lage, Kasper; Launer, Lenore J.; Levy, Daniel; Lundby, Alicia; Macfarlane, Peter W.; May, Dalit; Meitinger, Thomas; Metspalu, Andres; Nappo, Stefania; Naitza, Silvia; Neph, Shane; Nord, Alex S.; Nutile, Teresa; Okin, Peter M.; Olsen, Jesper V.; Oostra, Ben A.; Penninger, Josef M.; Pennacchio, Len A.; Pers, Tune H.; Perz, Siegfried; Peters, Annette; Pinto, Yigal M.; Pfeufer, Arne; Pilia, Maria Grazia; Pramstaller, Peter P.; Prins, Bram P.; Raitakari, Olli T.; Raychaudhuri, Soumya; Rice, Ken M.; Rossin, Elizabeth J.; Rotter, Jerome I.; Schafer, Sebastian; Schlessinger, David; Schmidt, Carsten O.; Sehmi, Jobanpreet; Silljé, Herman H.W.; Sinagra, Gianfranco; Sinner, Moritz F.; Slowikowski, Kamil; Soliman, Elsayed Z.; Spector, Timothy D.; Spiering, Wilko; Stamatoyannopoulos, John A.; Stolk, Ronald P.; Strauch, Konstantin; Tan, Sian-Tsung; Tarasov, Kirill V.; Trinh, Bosco; Uitterlinden, Andre G.; van den Boogaard, Malou; van Duijn, Cornelia M.; van Gilst, Wiek H.; Viikari, Jorma S.; Visscher, Peter M.; Vitart, Veronique; Völker, Uwe; Waldenberger, Melanie; Weichenberger, Christian X.; Westra, Harm-Jan; Wijmenga, Cisca; Wolffenbuttel, Bruce H.; Yang, Jian; Bezzina, Connie R.; Munroe, Patricia B.; Snieder, Harold; Wright, Alan F.; Rudan, Igor; Boyer, Laurie A.; Asselbergs, Folkert W.; van Veldhuisen, Dirk J.; Stricker, Bruno H.; Psaty, Bruce M.; Ciullo, Marina; Sanna, Serena; Lehtimäki, Terho; Wilson, James F.; Bandinelli, Stefania; Alonso, Alvaro; Gasparini, Paolo; Jukema, J. Wouter; Kääb, Stefan; Gudnason, Vilmundur; Felix, Stephan B.; Heckbert, Susan R.; de Boer, Rudolf A.; Newton-Cheh, Christopher; Hicks, Andrew A.; Chambers, John C.; Jamshidi, Yalda; Visel, Axel; Christoffels, Vincent M.; Isaacs, Aaron; Samani, Nilesh J.; de Bakker, Paul I.W.
2017-01-01
BACKGROUND Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10−8. These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets. PMID:27659466
Green, Nancy S.; Ender, Katherine L.; Pashankar, Farzana; Driscoll, Catherine; Giardina, Patricia J.; Mullen, Craig A.; Clark, Lorraine N.; Manwani, Deepa; Crotty, Jennifer; Kisselev, Sergey; Neville, Kathleen A.; Hoppe, Carolyn; Barral, Sandra
2013-01-01
Background Fetal hemoglobin level is a heritable complex trait that strongly correlates swith the clinical severity of sickle cell disease. Only few genetic loci have been identified as robustly associated with fetal hemoglobin in patients with sickle cell disease, primarily adults. The sole approved pharmacologic therapy for this disease is hydroxyurea, with effects largely attributable to induction of fetal hemoglobin. Methodology/Principal Findings In a multi-site observational analysis of children with sickle cell disease, candidate single nucleotide polymorphisms associated with baseline fetal hemoglobin levels in adult sickle cell disease were examined in children at baseline and induced by hydroxyurea therapy. For baseline levels, single marker analysis demonstrated significant association with BCL11A and the beta and epsilon globin loci (HBB and HBE, respectively), with an additive attributable variance from these loci of 23%. Among a subset of children on hydroxyurea, baseline fetal hemoglobin levels explained 33% of the variance in induced levels. The variant in HBE accounted for an additional 13% of the variance in induced levels, while variants in the HBB and BCL11A loci did not contribute beyond baseline levels. Conclusions/Significance These findings clarify the overlap between baseline and hydroxyurea-induced fetal hemoglobin levels in pediatric disease. Studies assessing influences of specific sequence variants in these and other genetic loci in larger populations and in unusual hydroxyurea responders are needed to further understand the maintenance and therapeutic induction of fetal hemoglobin in pediatric sickle cell disease. PMID:23409025
Ancot, Frédéric; Lemay, Philippe; Knowler, Susan P; Kennedy, Karen; Griffiths, Sandra; Cherubini, Giunio Bruto; Sykes, Jane; Mandigers, Paul J J; Rouleau, Guy A; Rusbridge, Clare; Kibar, Zoha
2018-03-22
Syringomyelia (SM) is a common condition affecting brachycephalic toy breed dogs and is characterized by the development of fluid-filled cavities within the spinal cord. It is often concurrent with a complex developmental malformation of the skull and craniocervical vertebrae called Chiari-like malformation (CM) characterized by a conformational change and overcrowding of the brain and cervical spinal cord particularly at the craniocervical junction. CM and SM have a polygenic mode of inheritance with variable penetrance. We identified six cranial T1-weighted sagittal MRI measurements that were associated to maximum transverse diameter of the syrinx cavity. Increased syrinx transverse diameter has been correlated previously with increased likelihood of behavioral signs of pain. We next conducted a whole genome association study of these traits in 65 Cavalier King Charles Spaniel (CKCS) dogs (33 controls, 32 with extreme phenotypes). Two loci on CFA22 and CFA26 were found to be significantly associated to two traits associated with a reduced volume and altered orientation of the caudal cranial fossa. Their reconstructed haplotypes defined two associated regions that harbor only two genes: PCDH17 on CFA22 and ZWINT on CFA26. PCDH17 codes for a cell adhesion molecule expressed specifically in the brain and spinal cord. ZWINT plays a role in chromosome segregation and its expression is increased with the onset of neuropathic pain. Targeted genomic sequencing of these regions identified respectively 37 and 339 SNPs with significantly associated P values. Genotyping of tagSNPs selected from these 2 candidate loci in an extended cohort of 461 CKCS (187 unaffected, 274 SM affected) identified 2 SNPs on CFA22 that were significantly associated to SM strengthening the candidacy of this locus in SM development. We identified 2 loci on CFA22 and CFA26 that contained only 2 genes, PCDH17 and ZWINT, significantly associated to two traits associated with syrinx transverse diameter. The locus on CFA22 was significantly associated to SM secondary to CM in the CKCS dog breed strengthening its candidacy for this disease. This study will provide an entry point for identification of the genetic factors predisposing to this condition and its underlying pathogenic mechanisms.
Genome-wide association mapping of canopy wilting in diverse soybean genotypes
USDA-ARS?s Scientific Manuscript database
Drought stress is a major global constraint for crop production, and slow canopy wilting has been shown to be a promising trait for improving drought tolerance. The objective of this study was to identify genetic loci associated with canopy wilting and confirm those loci with previously reported can...
Nested association mapping of stem rust resistance in wheat using genotyping by sequencing
USDA-ARS?s Scientific Manuscript database
Nested association mapping is an approach to map trait loci in which families within populations are interconnected by a common parent. By implementing joint-linkage association analysis, this approach is able to map causative loci with higher power and resolution compared to biparental linkage mapp...
EM Algorithm for Mapping Quantitative Trait Loci in Multivalent Tetraploids
USDA-ARS?s Scientific Manuscript database
Multivalent tetraploids that include many plant species, such as potato, sugarcane and rose, are of paramount importance to agricultural production and biological research. Quantitative trait locus (QTL) mapping in multivalent tetraploids is challenged by their unique cytogenetic properties, such ...
A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity
Bailey, Matthew; Kauwe, John S. K.; Maxwell, Taylor J.
2014-01-01
Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene-by-gene (GxG), or gene-by-environment (GxE) interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRTMV) or either effect alone (LRTM or LRTV) in the presence of covariates. Using extensive simulations for our method and others we found that all parametric tests were sensitive to non-normality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean-only functional variant we demonstrate how linkage disequilibrium (LD) can produce variance-heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D’ and relatively low r2 values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect gene-by-gene interactions and also how vQTL are related to relationship loci (rQTL) and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait. PMID:24482837
Bai, Xufeng; Zhao, Hu; Huang, Yong; Xie, Weibo; Han, Zhongmin; Zhang, Bo; Guo, Zilong; Yang, Lin; Dong, Haijiao; Xue, Weiya; Li, Guangwei; Hu, Gang; Hu, Yong; Xing, Yongzhong
2016-07-01
Panicle architecture determines the number of spikelets per panicle (SPP) and is highly associated with grain yield in rice ( L.). Understanding the genetic basis of panicle architecture is important for improving the yield of rice grain. In this study, we dissected panicle architecture traits into eight components, which were phenotyped from a germplasm collection of 529 cultivars. Multiple regression analysis revealed that the number of secondary branch (NSB) was the major factor that contributed to SPP. Genome-wide association analysis was performed independently for the eight particle architecture traits observed in the and rice subpopulations compared with the whole rice population. In total, 30 loci were associated with these traits. Of these, 13 loci were closely linked to known panicle architecture genes, and 17 novel loci were repeatedly identified in different environments. An association signal cluster was identified for NSB and number of spikelets per secondary branch (NSSB) in the region of 31.6 to 31.7 Mb on chromosome 4. In addition to the common associations detected in both and subpopulations, many associated loci were unique to one subpopulation. For example, and were specifically associated with panicle length (PL) in and rice, respectively. Moreover, the -mediated flowering genes and were associated with the formation of panicle architecture in rice. These results suggest that different gene networks regulate panicle architecture in and rice. Copyright © 2016 Crop Science Society of America.
Thomson, M J; Tai, T H; McClung, A M; Lai, X-H; Hinga, M E; Lobos, K B; Xu, Y; Martinez, C P; McCouch, S R
2003-08-01
An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.
Miller, Charlotte N; Harper, Andrea L; Trick, Martin; Werner, Peter; Waldron, Keith; Bancroft, Ian
2016-07-16
The current approach to reducing the tendency for wheat grown under high fertilizer conditions to collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes. However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the improvement of stem mechanical strength provides a further way through which lodging can be reduced. To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066 Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions. This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled with the more traditional sequence-based markers, provides the power required to understand the biological context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to accumulate regarding gene function and plant adaptation, but also provides breeders with the information required to make more informed decisions regarding the potential consequences of incorporating the use of particular markers into future breeding programmes.
Olave, Melisa; Avila, Luciano J; Sites, Jack W; Morando, Mariana
2017-02-01
Currently, Liolaemus is the second most species-rich reptile genus in the world (257 species), and predictions of its real diversity suggest that it may be the most diverse genus. Originally, Liolaemus species were described as widely distributed and morphologically variable taxa, but extensive sampling in previously unexplored geographic areas, coupled with molecular and more extensive morphological studies, have discovered an unexpectedly high number of previously undetected species. Here, we study the level of molecular vs. morphological divergence within the L. rothi complex, combining a total of 14 loci (2 mitochondrial and 12 nuclear loci) for 97 individuals, as well as morphological data (nine morphometric and 15 color pattern variables), that represent all six described species of the L. rothi complex, plus two candidate species. We use the multi-coalescent species delimitation program iBPP and resolve strong differences in molecular divergence; and each species is inferred as an independent lineage supported by high posterior probabilities. However, morphological differences are not that clear, and our modeling of morphological characters suggests differential selection pressures implying some level of morphological stasis. We discuss the role of natural selection on phenotypic traits, which may be an important factor in "hiding" the real diversity of the genus. Copyright © 2016. Published by Elsevier Inc.
Epistatic Effects Contribute to Variation in BMD in Fischer 344 × Lewis F2 Rats
Koller, Daniel L; Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J; Foroud, Tatiana; Turner, Charles H
2008-01-01
To further delineate the factors underlying the complex genetic architecture of BMD in the rat model, a genome screen for epistatic interactions was conducted. Several significant interactions were identified, involving both previously identified and novel QTLs. Introduction The variation in several of the risk factors for osteoporotic fracture, including BMD, has been shown to be caused largely by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We have previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 595 female F2 progeny of Fischer 344 and Lewis rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Materials and Methods Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted BMD (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine a genome-wide significance threshold for the epistasis or interaction LOD score corresponding to an α level of 0.01. Results and Conclusions Novel loci on chromosomes 12 and 15 showed a strong epistatic effect on total BMD at the femoral midshaft by pQCT (LOD = 5.4). A previously reported QTL on chromosome 7 was found to interact with a novel locus on chromosome 20 to affect whole lumbar BMD by pQCT (LOD = 6.2). These results provide new information regarding the mode of action of previously identified rat QTLs, as well as identifying novel loci that act in combination with known QTLs or with other novel loci to contribute to the risk factors for osteoporotic fracture. PMID:17907919
Epistatic effects contribute to variation in BMD in Fischer 344 x Lewis F2 rats.
Koller, Daniel L; Liu, Lixiang; Alam, Imranul; Sun, Qiwei; Econs, Michael J; Foroud, Tatiana; Turner, Charles H
2008-01-01
To further delineate the factors underlying the complex genetic architecture of BMD in the rat model, a genome screen for epistatic interactions was conducted. Several significant interactions were identified, involving both previously identified and novel QTLs. The variation in several of the risk factors for osteoporotic fracture, including BMD, has been shown to be caused largely by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We have previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 595 female F(2) progeny of Fischer 344 and Lewis rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted BMD (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine a genome-wide significance threshold for the epistasis or interaction LOD score corresponding to an alpha level of 0.01. Novel loci on chromosomes 12 and 15 showed a strong epistatic effect on total BMD at the femoral midshaft by pQCT (LOD = 5.4). A previously reported QTL on chromosome 7 was found to interact with a novel locus on chromosome 20 to affect whole lumbar BMD by pQCT (LOD = 6.2). These results provide new information regarding the mode of action of previously identified rat QTLs, as well as identifying novel loci that act in combination with known QTLs or with other novel loci to contribute to the risk factors for osteoporotic fracture.
Quantitative trait loci controlling leaf venation in Arabidopsis.
Rishmawi, Louai; Bühler, Jonas; Jaegle, Benjamin; Hülskamp, Martin; Koornneef, Maarten
2017-08-01
Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning. © 2017 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Groat oil content and composition are important determinants of oat quality. We investigated these traits in a population of 146 recombinant inbred lines from a cross between 'Dal' (high oil) and 'Exeter' (low oil). A linkage map consisting of 475 DArT markers spanning 1271.8 cM across 40 linkage gr...
USDA-ARS?s Scientific Manuscript database
Identifying new quantitative trait loci (QTLs) and alleles in exotic germplasm is paramount for further improvement of quality traits in wheat. In the present study, a population of recombinant inbred lines (RILs) developed from a cross between an elite wheat line (WCB414) and an exotic genotype wi...
Tamilselvan, Anandhan; Lawas, Lovely M.F.; Quinones, Cherryl; Bahuguna, Rajeev N.; Dingkuhn, Michael
2017-01-01
Elucidating the genetic control of rooting behavior under water-deficit stress is essential to breed climate-robust rice (Oryza sativa) cultivars. Using a diverse panel of 274 indica genotypes grown under control and water-deficit conditions during vegetative growth, we phenotyped 35 traits, mostly related to root morphology and anatomy, involving 45,000 root-scanning images and nearly 25,000 cross sections from the root-shoot junction. The phenotypic plasticity of these traits was quantified as the relative change in trait value under water-deficit compared with control conditions. We then carried out a genome-wide association analysis on these traits and their plasticity, using 45,608 high-quality single-nucleotide polymorphisms. One hundred four significant loci were detected for these traits under control conditions, 106 were detected under water-deficit stress, and 76 were detected for trait plasticity. We predicted 296 (control), 284 (water-deficit stress), and 233 (plasticity) a priori candidate genes within linkage disequilibrium blocks for these loci. We identified key a priori candidate genes regulating root growth and development and relevant alleles that, upon validation, can help improve rice adaptation to water-deficit stress. PMID:28600346
Genome-wide QTL analysis for anxiety trait in bipolar disorder type I.
Contreras, J; Hare, E; Chavarría-Soley, G; Raventós, H
2018-07-01
Genetic studies have been consistent that bipolar disorder type I (BPI) runs in families and that this familial aggregation is strongly influenced by genes. In a preliminary study, we proved that anxiety trait meets endophenotype criteria for BPI. We assessed 619 individuals from the Central Valley of Costa Rica (CVCR) who have received evaluation for anxiety following the same methodological procedure used for the initial pilot study. Our goal was to conduct a multipoint quantitative trait linkage analysis to identify quantitative trait loci (QTLs) related to anxiety trait in subjects with BPI. We conducted the statistical analyses using Quantitative Trait Loci method (Variance-components models), implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR), using 5606 single nucleotide polymorphism (SNPs). We identified a suggestive linkage signal with a LOD score of 2.01 at chromosome 2 (2q13-q14). Since confounding factors such as substance abuse, medical illness and medication history were not assessed in our study, these conclusions should be taken as preliminary. We conclude that region 2q13-q14 may harbor a candidate gene(s) with an important role in the pathophysiology of BPI and anxiety. Published by Elsevier B.V.
Sabidó, Eduard; Bosch, Elena
2016-01-01
Essential trace elements possess vital functions at molecular, cellular, and physiological levels in health and disease, and they are tightly regulated in the human body. In order to assess variability and potential adaptive evolution of trace element homeostasis, we quantified 18 trace elements in 150 liver samples, together with the expression levels of 90 genes and abundances of 40 proteins involved in their homeostasis. Additionally, we genotyped 169 single nucleotide polymorphism (SNPs) in the same sample set. We detected significant associations for 8 protein quantitative trait loci (pQTL), 10 expression quantitative trait loci (eQTLs), and 15 micronutrient quantitative trait loci (nutriQTL). Six of these exceeded the false discovery rate cutoff and were related to essential trace elements: 1) one pQTL for GPX2 (rs10133290); 2) two previously described eQTLs for HFE (rs12346) and SELO (rs4838862) expression; and 3) three nutriQTLs: The pathogenic C282Y mutation at HFE affecting iron (rs1800562), and two SNPs within several clustered metallothionein genes determining selenium concentration (rs1811322 and rs904773). Within the complete set of significant QTLs (which involved 30 SNPs and 20 gene regions), we identified 12 SNPs with extreme patterns of population differentiation (FST values in the top 5% percentile in at least one HapMap population pair) and significant evidence for selective sweeps involving QTLs at GPX1, SELENBP1, GPX3, SLC30A9, and SLC39A8. Overall, this detailed study of various molecular phenotypes illustrates the role of regulatory variants in explaining differences in trace element homeostasis among populations and in the human adaptive response to environmental pressures related to micronutrients. PMID:26582562
Implications of discoveries from genome-wide association studies in current cardiovascular practice
Jeemon, Panniyammakal; Pettigrew, Kerry; Sainsbury, Christopher; Prabhakaran, Dorairaj; Padmanabhan, Sandosh
2011-01-01
Genome-wide association studies (GWAS) have identified several genetic variants associated with coronary heart disease (CHD), and variations in plasma lipoproteins and blood pressure (BP). Loci corresponding to CDKN2A/CDKN2B/ANRIL, MTHFD1L, CELSR2, PSRC1 and SORT1 genes have been associated with CHD, and TMEM57, DOCK7, CELSR2, APOB, ABCG5, HMGCR, TRIB1, FADS2/S3, LDLR, NCAN and TOMM40-APOE with total cholesterol. Similarly, CELSR2-PSRC1-SORT1, PCSK9, APOB, HMGCR, NCAN-CILP2-PBX4, LDLR, TOMM40-APOE, and APOC1-APOE are associated with variations in low-density lipoprotein cholesterol levels. Altogether, forty, forty three and twenty loci have been associated with high-density lipoprotein cholesterol, triglycerides and BP phenotypes, respectively. Some of these identified loci are common for all the traits, some do not map to functional genes, and some are located in genes that encode for proteins not previously known to be involved in the biological pathway of the trait. GWAS have been successful at identifying new and unexpected genetic loci common to diseases and traits, thus rapidly providing key novel insights into disease biology. Since genotype information is fixed, with minimum biological variability, it is useful in early life risk prediction. However, these variants explain only a small proportion of the observed variance of these traits. Therefore, the utility of genetic determinants in assessing risk at later stages of life has limited immediate clinical impact. The future application of genetic screening will be in identifying risk groups early in life to direct targeted preventive measures. PMID:21860704
A hot topic: the genetics of adaptation to geothermal vents in Mimulus guttatus.
Ferris, Kathleen G
2016-11-01
Identifying the individual loci and mutations that underlie adaptation to extreme environments has long been a goal of evolutionary biology. However, finding the genes that underlie adaptive traits is difficult for several reasons. First, because many traits and genes evolve simultaneously as populations diverge, it is difficult to disentangle adaptation from neutral demographic processes. Second, finding the individual loci involved in any trait is challenging given the respective limitations of quantitative and population genetic methods. In this issue of Molecular Ecology, Hendrick et al. (2016) overcome these difficulties and determine the genetic basis of microgeographic adaptation between geothermal vent and nonthermal populations of Mimulus guttatus in Yellowstone National Park. The authors accomplish this by combining population and quantitative genetic techniques, a powerful, but labour-intensive, strategy for identifying individual causative adaptive loci that few studies have used (Stinchcombe & Hoekstra ). In a previous common garden experiment (Lekberg et al. 2012), thermal M. guttatus populations were found to differ from their closely related nonthermal neighbours in various adaptive phenotypes including trichome density. Hendrick et al. (2016) combine quantitative trait loci (QTL) mapping, population genomic scans for selection and admixture mapping to identify a single genetic locus underlying differences in trichome density between thermal and nonthermal M. guttatus. The candidate gene, R2R3 MYB, is homologous to genes involved in trichome development across flowering plants. The major trichome QTL, Tr14, is also involved in trichome density differences in an independent M. guttatus population comparison (Holeski et al. 2010) making this an example of parallel genetic evolution. © 2016 John Wiley & Sons Ltd.
Identification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping
Font i Forcada, Carolina; Oraguzie, Nnadozie; Reyes-Chin-Wo, Sebastian; Espiau, Maria Teresa; Socias i Company, Rafael; Fernández i Martí, Angel
2015-01-01
To design an appropriate association study, we need to understand population structure and the structure of linkage disequilibrium within and among populations as well as in different regions of the genome in an organism. In this study, we have used a total of 98 almond accessions, from five continents located and maintained at the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA; Spain), and 40 microsatellite markers. Population structure analysis performed in ‘Structure’ grouped the accessions into two principal groups; the Mediterranean (Western-Europe) and the non-Mediterranean, with K = 3, being the best fit for our data. There was a strong subpopulation structure with linkage disequilibrium decaying with increasing genetic distance resulting in lower levels of linkage disequilibrium between more distant markers. A significant impact of population structure on linkage disequilibrium in the almond cultivar groups was observed. The mean r2 value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits, five models comprising both general linear models and mixed linear models were selected to test the marker trait associations. The mixed linear model (MLM) approach using co-ancestry values from population structure and kinship estimates (K model) as covariates identified a maximum of 16 significant associations for chemical traits and 12 for physical traits. This study reports for the first time the use of association mapping for determining marker-locus trait associations in a world-wide almond germplasm collection. It is likely that association mapping will have the most immediate and largest impact on the tier of crops such as almond with the greatest economic value. PMID:26111146
Identification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping.
Font i Forcada, Carolina; Oraguzie, Nnadozie; Reyes-Chin-Wo, Sebastian; Espiau, Maria Teresa; Socias i Company, Rafael; Fernández i Martí, Angel
2015-01-01
To design an appropriate association study, we need to understand population structure and the structure of linkage disequilibrium within and among populations as well as in different regions of the genome in an organism. In this study, we have used a total of 98 almond accessions, from five continents located and maintained at the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA; Spain), and 40 microsatellite markers. Population structure analysis performed in 'Structure' grouped the accessions into two principal groups; the Mediterranean (Western-Europe) and the non-Mediterranean, with K = 3, being the best fit for our data. There was a strong subpopulation structure with linkage disequilibrium decaying with increasing genetic distance resulting in lower levels of linkage disequilibrium between more distant markers. A significant impact of population structure on linkage disequilibrium in the almond cultivar groups was observed. The mean r2 value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits, five models comprising both general linear models and mixed linear models were selected to test the marker trait associations. The mixed linear model (MLM) approach using co-ancestry values from population structure and kinship estimates (K model) as covariates identified a maximum of 16 significant associations for chemical traits and 12 for physical traits. This study reports for the first time the use of association mapping for determining marker-locus trait associations in a world-wide almond germplasm collection. It is likely that association mapping will have the most immediate and largest impact on the tier of crops such as almond with the greatest economic value.
Strong signatures of selection in the domestic pig genome.
Rubin, Carl-Johan; Megens, Hendrik-Jan; Martinez Barrio, Alvaro; Maqbool, Khurram; Sayyab, Shumaila; Schwochow, Doreen; Wang, Chao; Carlborg, Örjan; Jern, Patric; Jørgensen, Claus B; Archibald, Alan L; Fredholm, Merete; Groenen, Martien A M; Andersson, Leif
2012-11-27
Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig--the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.
Strong signatures of selection in the domestic pig genome
Rubin, Carl-Johan; Megens, Hendrik-Jan; Barrio, Alvaro Martinez; Maqbool, Khurram; Sayyab, Shumaila; Schwochow, Doreen; Wang, Chao; Carlborg, Örjan; Jern, Patric; Jørgensen, Claus B.; Archibald, Alan L.; Fredholm, Merete; Groenen, Martien A. M.; Andersson, Leif
2012-01-01
Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection. PMID:23151514
USDA-ARS?s Scientific Manuscript database
More knowledge about diversity of Quantitative Trait Loci (QTL) controlling polygenic disease resistance in natural genetic variation of crop species is required for durably improving plant genetic resistances to pathogens. Polygenic partial resistance to Aphanomyces root rot, due to Aphanomcyces eu...
USDA-ARS?s Scientific Manuscript database
Greenbug infestations to sorghum can cause severe and above economic threshold damage in the Great Plains of the United States. This study was to identify quantitative trait loci (QTL) and potential candidate genes residing within the QTL region responsible for greenbug resistance in an advanced ma...
PLAG1 and NCAPG-LCORL in livestock.
Takasuga, Akiko
2016-02-01
A recent progress on stature genetics has revealed simple genetic architecture in livestock animals in contrast to that in humans. PLAG1 and/or NCAPG-LCORL, both of which are known as a locus for adult human height, have been detected for association with body weight/height in cattle and horses, and for selective sweep in dogs and pigs. The findings indicate a significant impact of these loci on mammalian growth or body size and usefulness of the natural variants for selective breeding. However, association with an unfavorable trait, such as late puberty or risk for a neuropathic disease, was also reported for the respective loci, indicating an importance to discriminate between causality and association. Here I review the recent findings on quantitative trait loci (QTL) for stature in livestock animals, mainly focusing on the PLAG1 and NCAPG-LCORL loci. I also describe our recent efforts to identify the causative variation for the third major locus for carcass weight in Japanese Black cattle. © 2015 The Authors. Animal Science Journal published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Society of Animal Science.
Desgroux, Aurore; Baudais, Valentin N; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie
2017-01-01
Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes ( PsLE, PsTFL1 ) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6 , was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches . This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.
Desgroux, Aurore; Baudais, Valentin N.; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie
2018-01-01
Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties. PMID:29354146
Prince, Silvas J; Valliyodan, Babu; Ye, Heng; Yang, Ming; Tai, Shuaishuai; Hu, Wushu; Murphy, Mackensie; Durnell, Lorellin A; Song, Li; Joshi, Trupti; Liu, Yang; Van de Velde, Jan; Vandepoele, Klaas; Grover Shannon, J; Nguyen, Henry T
2018-05-10
Developing crops with better root systems is a promising strategy to ensure productivity in both optimum and stress environments. Root system architectural (RSA) traits in 397 soybean accessions were characterized and a high-density single nucleotide polymorphisms (SNP) based genome-wide association study was performed to identify the underlying genes associated with root structure. SNPs associated with root architectural traits specific to landraces and elite germplasm pools were detected. Four loci were detected in landraces for lateral root number (LRN) and distribution of root thickness in diameter class I with a major locus on chromosome 16. This major loci was detected in the coding region of unknown protein, and subsequent analyses demonstrated that root traits are affected with mutated haplotypes of the gene. In elite germplasm pool, three significant SNPs in alanine-glyoxalate aminotransferase, Leucine-Rich Repeat receptor/No apical meristem and unknown functional genes were found to govern multiple traits including root surface area and volume. However, no major loci were detected for LRN in elite germplasm. Nucleotide diversity analysis found evidence of selective sweeps around the landraces LRN gene. Soybean accessions with minor and mutated allelic variants of LRN gene were found to perform better in both water-limited and optimal field conditions. This article is protected by copyright. All rights reserved.
Topdar, N; Kundu, A; Sinha, M K; Sarkar, D; Das, M; Banerjee, S; Kar, C S; Satya, P; Balyan, H S; Mahapatra, B S; Gupta, P K
2013-01-01
We report the first complete microsatellite genetic map of jute (Corchorus olitorius L.; 2n = 2x = 14) using an F6 recombinant inbred population. Of the 403 microsatellite markers screened, 82 were mapped on the seven linkage groups (LGs) that covered a total genetic distance of 799.9 cM, with an average marker interval of 10.7 cM. LG5 had the longest and LG7 the shortest genetic lengths, whereas LG1 had the maximum and LG7 the minimum number of markers. Segregation distortion of microsatellite loci was high (61%), with the majority of them (76%) skewed towards the female parent. Genomewide non-parametric single-marker analysis in combination with multiple quantitative trait loci (QTL)-models (MQM) mapping detected 26 definitive QTLs for bast fibre quality, yield and yield-related traits. These were unevenly distributed on six LGs, as colocalized clusters, at genomic sectors marked by 15 microsatellite loci. LG1 was the QTL-richest map sector, with the densest colocalized clusters of QTLs governing fibre yield, yield-related traits and tensile strength. Expectedly, favorable QTLs were derived from the desirable parents, except for nearly all of those of fibre fineness, which might be due to the creation of new gene combinations. Our results will be a good starting point for further genome analyses in jute.
Quantitative genetics and sex-specific selection on sexually dimorphic traits in bighorn sheep
Poissant, Jocelyn; Wilson, Alastair J; Festa-Bianchet, Marco; Hogg, John T; Coltman, David W
2008-01-01
Sexual conflict at loci influencing traits shared between the sexes occurs when sex-specific selection pressures are antagonistic relative to the genetic correlation between the sexes. To assess whether there is sexual conflict over shared traits, we estimated heritability and intersexual genetic correlations for highly sexually dimorphic traits (horn volume and body mass) in a wild population of bighorn sheep (Ovis canadensis) and quantified sex-specific selection using estimates of longevity and lifetime reproductive success. Body mass and horn volume showed significant additive genetic variance in both sexes, and intersexual genetic correlations were 0.24±0.28 for horn volume and 0.63±0.30 for body mass. For horn volume, selection coefficients did not significantly differ from zero in either sex. For body weight, selection coefficients were positive in females but did not differ from zero in males. The absence of detectable sexually antagonistic selection suggests that currently there are no sexual conflicts at loci influencing horn volume and body mass. PMID:18211870
Genetics of Adiposity in Large Animal Models for Human Obesity-Studies on Pigs and Dogs.
Stachowiak, M; Szczerbal, I; Switonski, M
2016-01-01
The role of domestic mammals in the development of human biomedical sciences has been widely documented. Among these model species the pig and dog are of special importance. Both are useful for studies on the etiology of human obesity. Genome sequences of both species are known and advanced genetic tools [eg, microarray SNP for genome wide association studies (GWAS), next generation sequencing (NGS), etc.] are commonly used in such studies. In the domestic pig the accumulation of adipose tissue is an important trait, which influences meat quality and fattening efficiency. Numerous quantitative trait loci (QTLs) for pig fatness traits were identified, while gene polymorphisms associated with these traits were also described. The situation is different in dog population. Generally, excessive accumulation of adipose tissue is considered, similar to humans, as a complex disease. However, research on the genetic background of canine obesity is still in its infancy. Between-breed differences in terms of adipose tissue accumulation are well known in both animal species. In this review we show recent advances of studies on adipose tissue accumulation in pigs and dogs, and their potential importance for studies on human obesity. Copyright © 2016 Elsevier Inc. All rights reserved.
Genome-wide association study identifies multiple loci influencing human serum metabolite levels
Kettunen, Johannes; Tukiainen, Taru; Sarin, Antti-Pekka; Ortega-Alonso, Alfredo; Tikkanen, Emmi; Lyytikäinen, Leo-Pekka; Kangas, Antti J; Soininen, Pasi; Würtz, Peter; Silander, Kaisa; Dick, Danielle M; Rose, Richard J; Savolainen, Markku J; Viikari, Jorma; Kähönen, Mika; Lehtimäki, Terho; Pietiläinen, Kirsi H; Inouye, Michael; McCarthy, Mark I; Jula, Antti; Eriksson, Johan; Raitakari, Olli T; Salomaa, Veikko; Kaprio, Jaakko; Järvelin, Marjo-Riitta; Peltonen, Leena; Perola, Markus; Freimer, Nelson B; Ala-Korpela, Mika; Palotie, Aarno; Ripatti, Samuli
2013-01-01
Nuclear magnetic resonance assays allow for measurement of a wide range of metabolic phenotypes. We report here the results of a GWAS on 8,330 Finnish individuals genotyped and imputed at 7.7 million SNPs for a range of 216 serum metabolic phenotypes assessed by NMR of serum samples. We identified significant associations (P < 2.31 × 10−10) at 31 loci, including 11 for which there have not been previous reports of associations to a metabolic trait or disorder. Analyses of Finnish twin pairs suggested that the metabolic measures reported here show higher heritability than comparable conventional metabolic phenotypes. In accordance with our expectations, SNPs at the 31 loci associated with individual metabolites account for a greater proportion of the genetic component of trait variance (up to 40%) than is typically observed for conventional serum metabolic phenotypes. The identification of such associations may provide substantial insight into cardiometabolic disorders. PMID:22286219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georges, M.; Nielsen, D.; Mackinnon, M.
1995-02-01
We have exploited {open_quotes}progeny testing{close_quotes} to map quantitative trait loci (QTL) underlying the genetic variation of milk production in a selected dairy cattle population. A total of 1,518 sires, with progeny tests based on the milking performances of >150,000 daughters jointly, was genotyped for 159 autosomal microsatellites bracketing 1645 centimorgan or approximately two thirds of the bovine genome. Using a maximum likelihood multilocus linkage analysis accounting for variance heterogeneity of the phenotypes, we identified five chromosomes giving very strong evidence (LOD score {ge} 3) for the presence of a QTL controlling milk production: chromosomes 1, 6, 9, 10 and 20.more » These findings demonstrate that loci with considerable effects on milk production are still segregating in highly selected populations and pave the way toward marker-assisted selection in dairy cattle breeding. 44 refs., 4 figs., 3 tabs.« less
Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A; Silva, Kathleen A; Kennedy, Victoria E; Cario, Clinton L; Richardson, Matthew A; Chase, Thomas H; Schofield, Paul N; Uitto, Jouni; Sundberg, John P
2016-06-01
Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10(-13)) and Chr 4 at 122 Mb (P < 10(-11)) and 134 Mb (P < 10(-7)). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits.
Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A.; Silva, Kathleen A.; Kennedy, Victoria E.; Cario, Clinton L; Richardson, Matthew A.; Chase, Thomas H.; Schofield, Paul N.; Uitto, Jouni; Sundberg, John P.
2017-01-01
Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscal loci 1 through 4. Here we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10−13) and Chr 4 at 122 Mb (P < 10−11) and 134 Mb (P < 10−7). At the Chr 15 locus Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximate 6 Mb away from the Dyscal 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits. PMID:27126641
Quantitative trait loci for maternal performance for offspring survival in mice.
Peripato, Andréa C; De Brito, Reinaldo A; Vaughn, Ty T; Pletscher, L Susan; Matioli, Sergio R; Cheverud, James M
2002-01-01
Maternal performance refers to the effect that the environment provided by mothers has on their offspring's phenotypes, such as offspring survival and growth. Variations in maternal behavior and physiology are responsible for variations in maternal performance, which in turn affects offspring survival. In our study we found females that failed to nurture their offspring and showed abnormal maternal behaviors. The genetic architecture of maternal performance for offspring survival was investigated in 241 females of an F(2) intercross of the SM/J and LG/J inbred mouse strains. Using interval-mapping methods we found two quantitative trait loci (QTL) affecting maternal performance at D2Mit17 + 6 cM and D7Mit21 + 2 cM on chromosomes 2 and 7, respectively. In a two-way genome-wide epistasis scan we found 15 epistatic interactions involving 23 QTL distributed across all chromosomes except 12, 16, and 17. These loci form several small sets of interacting QTL, suggesting a complex set of mechanisms operating to determine maternal performance for offspring survival. Taken all together and correcting for the large number of significant factors, QTL and their interactions explain almost 35% of the phenotypic variation for maternal performance for offspring survival in this cross. This study allowed the identification of many possible candidate genes, as well as the relative size of gene effects and patterns of gene action affecting maternal performance in mice. Detailed behavior observation of mothers from later generations suggests that offspring survival in the first week is related to maternal success in building nests, grooming their pups, providing milk, and/or manifesting aggressive behavior against intruders. PMID:12454078
Discovery and fine mapping of serum protein loci through transethnic meta-analysis.
Franceschini, Nora; van Rooij, Frank J A; Prins, Bram P; Feitosa, Mary F; Karakas, Mahir; Eckfeldt, John H; Folsom, Aaron R; Kopp, Jeffrey; Vaez, Ahmad; Andrews, Jeanette S; Baumert, Jens; Boraska, Vesna; Broer, Linda; Hayward, Caroline; Ngwa, Julius S; Okada, Yukinori; Polasek, Ozren; Westra, Harm-Jan; Wang, Ying A; Del Greco M, Fabiola; Glazer, Nicole L; Kapur, Karen; Kema, Ido P; Lopez, Lorna M; Schillert, Arne; Smith, Albert V; Winkler, Cheryl A; Zgaga, Lina; Bandinelli, Stefania; Bergmann, Sven; Boban, Mladen; Bochud, Murielle; Chen, Y D; Davies, Gail; Dehghan, Abbas; Ding, Jingzhong; Doering, Angela; Durda, J Peter; Ferrucci, Luigi; Franco, Oscar H; Franke, Lude; Gunjaca, Grog; Hofman, Albert; Hsu, Fang-Chi; Kolcic, Ivana; Kraja, Aldi; Kubo, Michiaki; Lackner, Karl J; Launer, Lenore; Loehr, Laura R; Li, Guo; Meisinger, Christa; Nakamura, Yusuke; Schwienbacher, Christine; Starr, John M; Takahashi, Atsushi; Torlak, Vesela; Uitterlinden, André G; Vitart, Veronique; Waldenberger, Melanie; Wild, Philipp S; Kirin, Mirna; Zeller, Tanja; Zemunik, Tatijana; Zhang, Qunyuan; Ziegler, Andreas; Blankenberg, Stefan; Boerwinkle, Eric; Borecki, Ingrid B; Campbell, Harry; Deary, Ian J; Frayling, Timothy M; Gieger, Christian; Harris, Tamara B; Hicks, Andrew A; Koenig, Wolfgang; O' Donnell, Christopher J; Fox, Caroline S; Pramstaller, Peter P; Psaty, Bruce M; Reiner, Alex P; Rotter, Jerome I; Rudan, Igor; Snieder, Harold; Tanaka, Toshihiro; van Duijn, Cornelia M; Vollenweider, Peter; Waeber, Gerard; Wilson, James F; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wright, Alan F; Wu, Qingyu; Liu, Yongmei; Jenny, Nancy S; North, Kari E; Felix, Janine F; Alizadeh, Behrooz Z; Cupples, L Adrienne; Perry, John R B; Morris, Andrew P
2012-10-05
Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p < 5 × 10(-8)) for serum albumin (HPN-SCN1B, GCKR-FNDC4, SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMD5-WDR76, and RPS11-FCGRT, in up to 53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Maxwell, Taylor J.; Ballantyne, Christie M.; Cheverud, James M.; Guild, Cameron S.; Ndumele, Chiadi E.; Boerwinkle, Eric
2013-01-01
Relationship loci (rQTL) exist when the correlation between multiple traits varies by genotype. rQTL often occur due to gene-by-gene (G × G) or gene-by-environmental interactions, making them a powerful tool for detecting G × G. Here we present an empirical analysis of apolipoprotein E (APOE) with respect to lipid traits and incident CHD leading to the discovery of loci that interact with APOE to affect these traits. We found that the relationship between total cholesterol (TC) and triglycerides (ln TG) varies by APOE isoform genotype in African-American (AA) and European-American (EA) populations. The e2 allele is associated with strong correlation between ln TG and TC while the e4 allele leads to little or no correlation. This led to a priori hypotheses that APOE genotypes affect the relationship of TC and/or ln TG with incident CHD. We found that APOE*TC was significant (P = 0.016) for AA but not EA while APOE*ln TG was significant for EA (P = 0.027) but not AA. In both cases, e2e2 and e2e3 had strong relationships between TC and ln TG with CHD while e2e4 and e4e4 results in little or no relationship between TC and ln TG with CHD. Using ARIC GWAS data, scans for loci that significantly interact with APOE produced four loci for African Americans (one CHD, one TC, and two HDL). These interactions contribute to the rQTL pattern. rQTL are a powerful tool to identify loci that modify the relationship between risk factors and disease and substantially increase statistical power for detecting G × G. PMID:24097412
Horikoshi, Momoko; Mӓgi, Reedik; van de Bunt, Martijn; Surakka, Ida; Sarin, Antti-Pekka; Mahajan, Anubha; Marullo, Letizia; Thorleifsson, Gudmar; Hӓgg, Sara; Hottenga, Jouke-Jan; Ladenvall, Claes; Ried, Janina S; Winkler, Thomas W; Willems, Sara M; Pervjakova, Natalia; Esko, Tõnu; Beekman, Marian; Nelson, Christopher P; Willenborg, Christina; Wiltshire, Steven; Ferreira, Teresa; Fernandez, Juan; Gaulton, Kyle J; Steinthorsdottir, Valgerdur; Hamsten, Anders; Magnusson, Patrik K E; Willemsen, Gonneke; Milaneschi, Yuri; Robertson, Neil R; Groves, Christopher J; Bennett, Amanda J; Lehtimӓki, Terho; Viikari, Jorma S; Rung, Johan; Lyssenko, Valeriya; Perola, Markus; Heid, Iris M; Herder, Christian; Grallert, Harald; Müller-Nurasyid, Martina; Roden, Michael; Hypponen, Elina; Isaacs, Aaron; van Leeuwen, Elisabeth M; Karssen, Lennart C; Mihailov, Evelin; Houwing-Duistermaat, Jeanine J; de Craen, Anton J M; Deelen, Joris; Havulinna, Aki S; Blades, Matthew; Hengstenberg, Christian; Erdmann, Jeanette; Schunkert, Heribert; Kaprio, Jaakko; Tobin, Martin D; Samani, Nilesh J; Lind, Lars; Salomaa, Veikko; Lindgren, Cecilia M; Slagboom, P Eline; Metspalu, Andres; van Duijn, Cornelia M; Eriksson, Johan G; Peters, Annette; Gieger, Christian; Jula, Antti; Groop, Leif; Raitakari, Olli T; Power, Chris; Penninx, Brenda W J H; de Geus, Eco; Smit, Johannes H; Boomsma, Dorret I; Pedersen, Nancy L; Ingelsson, Erik; Thorsteinsdottir, Unnur; Stefansson, Kari; Ripatti, Samuli; Prokopenko, Inga; McCarthy, Mark I; Morris, Andrew P
2015-07-01
Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.
Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation
van de Bunt, Martijn; Surakka, Ida; Sarin, Antti-Pekka; Mahajan, Anubha; Marullo, Letizia; Thorleifsson, Gudmar; Hӓgg, Sara; Hottenga, Jouke-Jan; Ladenvall, Claes; Ried, Janina S.; Winkler, Thomas W.; Willems, Sara M.; Pervjakova, Natalia; Esko, Tõnu; Beekman, Marian; Nelson, Christopher P.; Willenborg, Christina; Ferreira, Teresa; Fernandez, Juan; Gaulton, Kyle J.; Steinthorsdottir, Valgerdur; Hamsten, Anders; Magnusson, Patrik K. E.; Willemsen, Gonneke; Milaneschi, Yuri; Robertson, Neil R.; Groves, Christopher J.; Bennett, Amanda J.; Lehtimӓki, Terho; Viikari, Jorma S.; Rung, Johan; Lyssenko, Valeriya; Perola, Markus; Heid, Iris M.; Herder, Christian; Grallert, Harald; Müller-Nurasyid, Martina; Roden, Michael; Hypponen, Elina; Isaacs, Aaron; van Leeuwen, Elisabeth M.; Karssen, Lennart C.; Mihailov, Evelin; Houwing-Duistermaat, Jeanine J.; de Craen, Anton J. M.; Deelen, Joris; Havulinna, Aki S.; Blades, Matthew; Hengstenberg, Christian; Erdmann, Jeanette; Schunkert, Heribert; Kaprio, Jaakko; Tobin, Martin D.; Samani, Nilesh J.; Lind, Lars; Salomaa, Veikko; Lindgren, Cecilia M.; Slagboom, P. Eline; Metspalu, Andres; van Duijn, Cornelia M.; Eriksson, Johan G.; Peters, Annette; Gieger, Christian; Jula, Antti; Groop, Leif; Raitakari, Olli T.; Power, Chris; Penninx, Brenda W. J. H.; de Geus, Eco; Smit, Johannes H.; Boomsma, Dorret I.; Pedersen, Nancy L.; Ingelsson, Erik; Thorsteinsdottir, Unnur; Stefansson, Kari; Ripatti, Samuli; Prokopenko, Inga; McCarthy, Mark I.; Morris, Andrew P.
2015-01-01
Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated. PMID:26132169
Rouse, Matthew N; Talbert, Luther E; Singh, Davinder; Sherman, Jamie D
2014-07-01
Quantitative trait loci conferring adult plant resistance to Ug99 stem rust in Thatcher wheat display complementary gene action suggesting multiple quantitative trait loci are needed for effective resistance. Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is desirable because this resistance can be Pgt race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent Pgt race TTKSK (Ug99) when combined with stem rust resistance gene Sr57 (Lr34). To identify the loci conferring APR in Thatcher, we evaluated 160 RILs derived from Thatcher crossed to susceptible cultivar McNeal for field stem rust reaction in Kenya for two seasons and in St. Paul for one season. All RILs and parents were susceptible as seedlings to race TTKSK. However, adult plant stem rust severities in Kenya varied from 5 to 80 %. Composite interval mapping identified four quantitative trait loci (QTL). Three QTL were inherited from Thatcher and one, Sr57, was inherited from McNeal. The markers closest to the QTL peaks were used in an ANOVA to determine the additive and epistatic effects. A QTL on 3BS was detected in all three environments and explained 27-35 % of the variation. The peak of this QTL was at the same location as the Sr12 seedling resistance gene effective to race SCCSC. Epistatic interactions were significant between Sr12 and QTL on chromosome arms 1AL and 2BS. Though Sr12 cosegregated with the largest effect QTL, lines with Sr12 were not always resistant. The data suggest that Sr12 or a linked gene, though not effective to race TTKSK alone, confers APR when combined with other resistance loci.
Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).
Jiang, Congcong; Shi, Jiaqin; Li, Ruiyuan; Long, Yan; Wang, Hao; Li, Dianrong; Zhao, Jianyi; Meng, Jinling
2014-04-01
This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.
Fourteen Years of R/qtl: Just Barely Sustainable
Broman, Karl W.
2014-01-01
R/qtl is an R package for mapping quantitative trait loci (genetic loci that contribute to variation in quantitative traits) in experimental crosses. Its development began in 2000. There have been 38 software releases since 2001. The latest release contains 35k lines of R code and 24k lines of C code, plus 15k lines of code for the documentation. Challenges in the development and maintenance of the software are discussed. A key to the success of R/qtl is that it remains a central tool for the chief developer's own research work, and so its maintenance is of selfish importance. PMID:25364504
Branham, Sandra E; Stansell, Zachary J; Couillard, David M; Farnham, Mark W
2017-03-01
Five quantitative trait loci and one epistatic interaction were associated with heat tolerance in a doubled haploid population of broccoli evaluated in three summer field trials. Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yield. Breeding for heat tolerance in broccoli has potential to both expand viable production areas and extend the growing season but breeding efficiency is constrained by limited genetic information. A doubled haploid (DH) broccoli population segregating for heat tolerance was evaluated for head quality in three summer fields in Charleston, SC, USA. Multiple quantitative trait loci (QTL) mapping of 1,423 single nucleotide polymorphisms developed through genotyping-by-sequencing identified five QTL and one positive epistatic interaction that explained 62.1% of variation in heat tolerance. The QTL identified here can be used to develop markers for marker-assisted selection and to increase our understanding of the molecular mechanisms underlying plant response to heat stress.
Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat
Sung, Yun Ju; Pérusse, Louis; Sarzynski, Mark A.; Fornage, Myriam; Sidney, Steve; Sternfeld, Barbara; Rice, Treva; Terry, Gregg; Jacobs, David R.; Katzmarzyk, Peter; Curran, Joanne E; Carr, John Jeffrey; Blangero, John; Ghosh, Sujoy; Després, Jean-Pierre; Rankinen, Tuomo; Rao, D.C.; Bouchard, Claude
2015-01-01
Background To identify loci associated with abdominal fat and replicate prior findings, we performed genome-wide association (GWA) studies of abdominal fat traits: subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), total adipose tissue (TAT) and visceral to subcutaneous adipose tissue ratio (VSR). Subjects and Methods Sex-combined and sex-stratified analyses were performed on each trait with (TRAIT-BMI) or without (TRAIT) adjustment for BMI, and cohort-specific results were combined via a fixed effects meta-analysis. A total of 2,513 subjects of European descent were available for the discovery phase. For replication, 2,171 European Americans and 772 African Americans were available. Results A total of 52 SNPs encompassing 7 loci showed suggestive evidence of association (p < 1.0 × 10−6) with abdominal fat in the sex-combined analyses. The strongest evidence was found on chromosome 7p14.3 between a SNP near BBS9 gene and VAT (rs12374818; p= 1.10 × 10−7), an association that was replicated (p = 0.02). For the BMI-adjusted trait, the strongest evidence of association was found between a SNP near CYCSP30 and VAT-BMI (rs10506943; p= 2.42 × 10−7). Our sex-specific analyses identified one genome-wide significant (p < 5.0 × 10−8) locus for SAT in women with 11 SNPs encompassing the MLLT10, DNAJC1 and EBLN1 genes on chromosome 10p12.31 (p = 3.97 × 10−8 to 1.13 × 10−8). The THNSL2 gene previously associated with VAT in women was also replicated (p= 0.006). The six gene/loci showing the strongest evidence of association with VAT or VAT-BMI were interrogated for their functional links with obesity and inflammation using the Biograph knowledge-mining software. Genes showing the closest functional links with obesity and inflammation were ADCY8 and KCNK9, respectively. Conclusions Our results provide evidence for new loci influencing abdominal visceral (BBS9, ADCY8, KCNK9) and subcutaneous (MLLT10/DNAJC1/EBLN1) fat, and confirmed a locus (THNSL2) previously reported to be associated with abdominal fat in women. PMID:26480920
Loci and pathways associated with uterine capacity for pregnancy and fertility in beef cattle.
Neupane, Mahesh; Geary, Thomas W; Kiser, Jennifer N; Burns, Gregory W; Hansen, Peter J; Spencer, Thomas E; Neibergs, Holly L
2017-01-01
Infertility and subfertility negatively impact the economics and reproductive performance of cattle. Of note, significant pregnancy loss occurs in cattle during the first month of pregnancy, yet little is known about the genetic loci influencing pregnancy success and loss in cattle. To identify quantitative trait loci (QTL) with large effects associated with early pregnancy loss, Angus crossbred heifers were classified based on day 28 pregnancy outcomes to serial embryo transfer. A genome wide association analysis (GWAA) was conducted comparing 30 high fertility heifers with 100% success in establishing pregnancy to 55 subfertile heifers with 25% or less success. A gene set enrichment analysis SNP (GSEA-SNP) was performed to identify gene sets and leading edge genes influencing pregnancy loss. The GWAA identified 22 QTL (p < 1 x 10-5), and GSEA-SNP identified 9 gene sets (normalized enrichment score > 3.0) with 253 leading edge genes. Network analysis identified TNF (tumor necrosis factor), estrogen, and TP53 (tumor protein 53) as the top of 671 upstream regulators (p < 0.001), whereas the SOX2 (SRY [sex determining region Y]-box 2) and OCT4 (octamer-binding transcription factor 4) complex was the top master regulator out of 773 master regulators associated with fertility (p < 0.001). Identification of QTL and genes in pathways that improve early pregnancy success provides critical information for genomic selection to increase fertility in cattle. The identified genes and regulators also provide insight into the complex biological mechanisms underlying pregnancy establishment in cattle.
Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.
Pound, Michael P; Atkinson, Jonathan A; Townsend, Alexandra J; Wilson, Michael H; Griffiths, Marcus; Jackson, Aaron S; Bulat, Adrian; Tzimiropoulos, Georgios; Wells, Darren M; Murchie, Erik H; Pridmore, Tony P; French, Andrew P
2017-10-01
In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part of a plant phenotyping pipeline. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature identification and localization. We use fully automated trait identification using deep learning to identify quantitative trait loci in root architecture datasets. The majority (12 out of 14) of manually identified quantitative trait loci were also discovered using our automated approach based on deep learning detection to locate plant features. We have shown deep learning-based phenotyping to have very good detection and localization accuracy in validation and testing image sets. We have shown that such features can be used to derive meaningful biological traits, which in turn can be used in quantitative trait loci discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based phenotyping bought about by such deep learning approaches, given sufficient training sets. © The Authors 2017. Published by Oxford University Press.
Zhou, Yong; Dong, Guichun; Tao, Yajun; Chen, Chen; Yang, Bin; Wu, Yue; Yang, Zefeng; Liang, Guohua; Wang, Baohe; Wang, Yulong
2016-01-01
Identification of quantitative trait loci (QTLs) associated with rice root morphology provides useful information for avoiding drought stress and maintaining yield production under the irrigation condition. In this study, a set of chromosome segment substitution lines derived from 9311 as the recipient and Nipponbare as donor, were used to analysis root morphology. By combining the resequencing-based bin-map with a multiple linear regression analysis, QTL identification was conducted on root number (RN), total root length (TRL), root dry weight (RDW), maximum root length (MRL), root thickness (RTH), total absorption area (TAA) and root vitality (RV), using the CSSL population grown under hydroponic conditions. A total of thirty-eight QTLs were identified: six for TRL, six for RDW, eight for the MRL, four for RTH, seven for RN, two for TAA, and five for RV. Phenotypic effect variance explained by these QTLs ranged from 2.23% to 37.08%, and four single QTLs had more than 10% phenotypic explanations on three root traits. We also detected the correlations between grain yield (GY) and root traits, and found that TRL, RTH and MRL had significantly positive correlations with GY. However, TRL, RDW and MRL had significantly positive correlations with biomass yield (BY). Several QTLs identified in our population were co-localized with some loci for grain yield or biomass. This information may be immediately exploited for improving rice water and fertilizer use efficiency for molecular breeding of root system architectures.
Villarreal A, Juan Carlos; Crandall-Stotler, Barbara J; Hart, Michelle L; Long, David G; Forrest, Laura L
2016-03-01
We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures. A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Relative rates were estimated using local clocks. Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than for other liverwort lineages, except for two annual lineages. Most genera diverged in the Cretaceous. Marchantia polymorpha diversified in the Late Miocene, giving a minimum age estimate for the evolution of its sex chromosomes. The complex thalloid ancestor, excluding Blasiales, is reconstructed as a plant with a carpocephalum, with filament-less air chambers opening via compound pores, and without pegged rhizoids. Our comprehensive study of the group provides a temporal framework for the analysis of the evolution of critical traits essential for plants during land colonization. © 2015 Royal Botanic Garden Edinburgh. New Phytologist © 2015 New Phytologist Trust.
2011-01-01
Background The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology. Results Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed. Conclusions Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general. PMID:21489230
2014-01-01
Background Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Results Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Conclusions Gene expression profiling and trait-associated transcript analysis using an apple F1 population readily identified genes physically linked to powdery mildew disease resistance and woolly apple aphid resistance loci. This result was especially useful in apple, where extreme levels of heterozygosity make the development of reliable DNA markers quite difficult. The results suggest that this approach could prove effective in crops with complicated genetics, or for which few genomic information resources are available. PMID:24708064
Yu, Jiwen; Zhang, Ke; Li, Shuaiyang; Yu, Shuxun; Zhai, Honghong; Wu, Man; Li, Xingli; Fan, Shuli; Song, Meizhen; Yang, Daigang; Li, Yunhai; Zhang, Jinfa
2013-01-01
Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65-25.27% of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12%) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.
Im, Chak Han; Park, Young-Hoon; Hammel, Kenneth E; Park, Bokyung; Kwon, Soon Wook; Ryu, Hojin; Ryu, Jae-San
2016-07-01
Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type factors, and 28 insertion/deletion (InDel) markers were mapped. The map consisted of 12 linkage groups (LGs) spanning 1047.8cM, with an average interval length of 4.09cM. Four independent populations (Pd3, Pd8, Pd14, and Pd15) derived from crossing between four monokaryons from KNR2532 as a tester strain and 98 monokaryons from KNR2312 were used to characterize quantitative trait loci (QTL) for nine traits such as yield, quality, cap color, and earliness. Using composite interval mapping (CIM), 71 QTLs explaining between 5.82% and 33.17% of the phenotypic variations were identified. Clusters of more than five QTLs for various traits were identified in three genomic regions, on LGs 1, 7 and 9. Regardless of the population, 6 of the 9 traits studied and 18 of the 71 QTLs found in this study were identified in the largest cluster, LG1, in the range from 65.4 to 110.4cM. The candidate genes for yield encoding transcription factor, signal transduction, mycelial growth and hydrolase are suggested by using manual and computational analysis of genome sequence corresponding to QTL region with the highest likelihood odds (LOD) for yield. The genetic map and the QTLs established in this study will help breeders and geneticists to develop selection markers for agronomically important characteristics of mushrooms and to identify the corresponding genes. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo
Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less
Estimation of Additive, Dominance, and Imprinting Genetic Variance Using Genomic Data
Lopes, Marcos S.; Bastiaansen, John W. M.; Janss, Luc; Knol, Egbert F.; Bovenhuis, Henk
2015-01-01
Traditionally, exploration of genetic variance in humans, plants, and livestock species has been limited mostly to the use of additive effects estimated using pedigree data. However, with the development of dense panels of single-nucleotide polymorphisms (SNPs), the exploration of genetic variation of complex traits is moving from quantifying the resemblance between family members to the dissection of genetic variation at individual loci. With SNPs, we were able to quantify the contribution of additive, dominance, and imprinting variance to the total genetic variance by using a SNP regression method. The method was validated in simulated data and applied to three traits (number of teats, backfat, and lifetime daily gain) in three purebred pig populations. In simulated data, the estimates of additive, dominance, and imprinting variance were very close to the simulated values. In real data, dominance effects account for a substantial proportion of the total genetic variance (up to 44%) for these traits in these populations. The contribution of imprinting to the total phenotypic variance of the evaluated traits was relatively small (1–3%). Our results indicate a strong relationship between additive variance explained per chromosome and chromosome length, which has been described previously for other traits in other species. We also show that a similar linear relationship exists for dominance and imprinting variance. These novel results improve our understanding of the genetic architecture of the evaluated traits and shows promise to apply the SNP regression method to other traits and species, including human diseases. PMID:26438289
USDA-ARS?s Scientific Manuscript database
Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...
Cousminer, Diana L; Berry, Diane J; Timpson, Nicholas J; Ang, Wei; Thiering, Elisabeth; Byrne, Enda M; Taal, H Rob; Huikari, Ville; Bradfield, Jonathan P; Kerkhof, Marjan; Groen-Blokhuis, Maria M; Kreiner-Møller, Eskil; Marinelli, Marcella; Holst, Claus; Leinonen, Jaakko T; Perry, John R B; Surakka, Ida; Pietiläinen, Olli; Kettunen, Johannes; Anttila, Verneri; Kaakinen, Marika; Sovio, Ulla; Pouta, Anneli; Das, Shikta; Lagou, Vasiliki; Power, Chris; Prokopenko, Inga; Evans, David M; Kemp, John P; St Pourcain, Beate; Ring, Susan; Palotie, Aarno; Kajantie, Eero; Osmond, Clive; Lehtimäki, Terho; Viikari, Jorma S; Kähönen, Mika; Warrington, Nicole M; Lye, Stephen J; Palmer, Lyle J; Tiesler, Carla M T; Flexeder, Claudia; Montgomery, Grant W; Medland, Sarah E; Hofman, Albert; Hakonarson, Hakon; Guxens, Mònica; Bartels, Meike; Salomaa, Veikko; Murabito, Joanne M; Kaprio, Jaakko; Sørensen, Thorkild I A; Ballester, Ferran; Bisgaard, Hans; Boomsma, Dorret I; Koppelman, Gerard H; Grant, Struan F A; Jaddoe, Vincent W V; Martin, Nicholas G; Heinrich, Joachim; Pennell, Craig E; Raitakari, Olli T; Eriksson, Johan G; Smith, George Davey; Hyppönen, Elina; Järvelin, Marjo-Riitta; McCarthy, Mark I; Ripatti, Samuli; Widén, Elisabeth
2013-07-01
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10(-8)) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.
Cousminer, Diana L.; Berry, Diane J.; Timpson, Nicholas J.; Ang, Wei; Thiering, Elisabeth; Byrne, Enda M.; Taal, H. Rob; Huikari, Ville; Bradfield, Jonathan P.; Kerkhof, Marjan; Groen-Blokhuis, Maria M.; Kreiner-Møller, Eskil; Marinelli, Marcella; Holst, Claus; Leinonen, Jaakko T.; Perry, John R.B.; Surakka, Ida; Pietiläinen, Olli; Kettunen, Johannes; Anttila, Verneri; Kaakinen, Marika; Sovio, Ulla; Pouta, Anneli; Das, Shikta; Lagou, Vasiliki; Power, Chris; Prokopenko, Inga; Evans, David M.; Kemp, John P.; St Pourcain, Beate; Ring, Susan; Palotie, Aarno; Kajantie, Eero; Osmond, Clive; Lehtimäki, Terho; Viikari, Jorma S.; Kähönen, Mika; Warrington, Nicole M.; Lye, Stephen J.; Palmer, Lyle J.; Tiesler, Carla M.T.; Flexeder, Claudia; Montgomery, Grant W.; Medland, Sarah E.; Hofman, Albert; Hakonarson, Hakon; Guxens, Mònica; Bartels, Meike; Salomaa, Veikko; Murabito, Joanne M.; Kaprio, Jaakko; Sørensen, Thorkild I.A.; Ballester, Ferran; Bisgaard, Hans; Boomsma, Dorret I.; Koppelman, Gerard H.; Grant, Struan F.A.; Jaddoe, Vincent W.V.; Martin, Nicholas G.; Heinrich, Joachim; Pennell, Craig E.; Raitakari, Olli T.; Eriksson, Johan G.; Smith, George Davey; Hyppönen, Elina; Järvelin, Marjo-Riitta; McCarthy, Mark I.; Ripatti, Samuli; Widén, Elisabeth
2013-01-01
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10−8) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits. PMID:23449627
USDA-ARS?s Scientific Manuscript database
Popped grain sorghum has developed a niche among specialty snack-food consumers. In contrast to popcorn, sorghum has not benefited from persistent selective breeding for popping efficiency and kernel expansion ratio. While recent studies have already demonstrated that popping characteristics are h...
USDA-ARS?s Scientific Manuscript database
Chilling requirement (CR), together with heat requirement (HR), determines blooming date (BD) and climatic distribution of genotypes of temperate tree species. However, information on the genetic components underlying these important traits remains unknown or fragmentary. Here the identification o...
USDA-ARS?s Scientific Manuscript database
Low temperature germinability (LTG) is an important trait for breeding of varieties for use in direct-seeding rice production systems. Although rice (Oryza sativa L.) is generally sensitive to low temperatures, genetic variation for LTG exists and several quantitative trait loci (QTLs) have been rep...
USDA-ARS?s Scientific Manuscript database
Multi-locus genome-wide association studies has become the state-of-the-art procedure to identify quantitative trait loci (QTL) associated with traits simultaneously. However, implementation of multi-locus model is still difficult. In this study, we integrated least angle regression with empirical B...
Oppenheim, Sara J.; Gould, Fred; Hopper, Keith R.
2012-01-01
We used genetic mapping to examine the genetic architecture of differences in host plant use between two species of noctuid moths, Heliothis subflexa, a specialist on Physalis spp., and its close relative, the broad generalist H. virescens. We introgressed H. subflexa chromosomes into the H. virescens background and analyzed 1,462 backcross insects. The effects of H. subflexa-origin chromosomes were small when measured as the percent variation explained in backcross populations (0.2 to 5%), but were larger when considered in relation to the interspecific difference explained (1.5 to 165%). Most significant chromosomes had effects on more than one trait, and their effects varied between years, sexes, and genetic backgrounds. Different chromosomes could produce similar phenotypes, suggesting that the same trait might be controlled by different chromosomes in different backcross populations. It appears that many loci of small effect contribute to the use of Physalis by H. subflexa. We hypothesize that behavioral changes may have paved the way for physiological adaptation to Physalis by the generalist ancestor of H. subflexa and H. virescens. PMID:23106701
Hawks, Brian W.; Li, Wei; Garlow, Steven J.
2009-01-01
Cocaine-Amphetamine Regulated Transcript (CART) peptides are implicated in a wide range of behaviors including in the reinforcing properties of psychostimulants, feeding and energy balance and stress and anxiety responses. We conducted a complex trait analysis to examine natural variation in the regulation of CART transcript abundance (CARTta) in the hypothalamus. CART transcript abundance was measured in total hypothalamic RNA from 26 BxD recombinant inbred (RI) mouse strains and in the C57BL/6 (B6) and DBA/2J (D2) progenitor strains. The strain distribution pattern for CARTta was continuous across the RI panel, which is consistent with this being a quantitative trait. Marker regression and interval mapping revealed significant quantitative trait loci (QTL) on mouse chromosome 4 (around 58.2cM) and chromosome 11 (between 20–36cM) that influence CARTta and account for 31% of the between strain variance in this phenotype. There are numerous candidate genes and QTL in these chromosomal regions that may indicate shared genetic regulation between CART expression and other neurobiological processes referable to known actions of this neuropeptide. PMID:18199428
Peptide biomarkers used for the selective breeding of a complex polygenic trait in honey bees.
Guarna, M Marta; Hoover, Shelley E; Huxter, Elizabeth; Higo, Heather; Moon, Kyung-Mee; Domanski, Dominik; Bixby, Miriam E F; Melathopoulos, Andony P; Ibrahim, Abdullah; Peirson, Michael; Desai, Suresh; Micholson, Derek; White, Rick; Borchers, Christoph H; Currie, Robert W; Pernal, Stephen F; Foster, Leonard J
2017-08-21
We present a novel way to select for highly polygenic traits. For millennia, humans have used observable phenotypes to selectively breed stronger or more productive livestock and crops. Selection on genotype, using single-nucleotide polymorphisms (SNPs) and genome profiling, is also now applied broadly in livestock breeding programs; however, selection on protein/peptide or mRNA expression markers has not yet been proven useful. Here we demonstrate the utility of protein markers to select for disease-resistant hygienic behavior in the European honey bee (Apis mellifera L.). Robust, mechanistically-linked protein expression markers, by integrating cis- and trans- effects from many genomic loci, may overcome limitations of genomic markers to allow for selection. After three generations of selection, the resulting marker-selected stock outperformed an unselected benchmark stock in terms of hygienic behavior, and had improved survival when challenged with a bacterial disease or a parasitic mite, similar to bees selected using a phenotype-based assessment for this trait. This is the first demonstration of the efficacy of protein markers for industrial selective breeding in any agricultural species, plant or animal.
Kähönen, Mika; Raitakari, Olli; Laaksonen, Marika; Sievänen, Harri; Viikari, Jorma; Lyytikäinen, Leo-Pekka; Mellström, Dan; Karlsson, Magnus; Ljunggren, Östen; Grundberg, Elin; Kemp, John P.; Sayers, Adrian; Nethander, Maria; Evans, David M.; Vandenput, Liesbeth; Tobias, Jon H.; Ohlsson, Claes
2013-01-01
Most previous genetic epidemiology studies within the field of osteoporosis have focused on the genetics of the complex trait areal bone mineral density (aBMD), not being able to differentiate genetic determinants of cortical volumetric BMD (vBMD), trabecular vBMD, and bone microstructural traits. The objective of this study was to separately identify genetic determinants of these bone traits as analysed by peripheral quantitative computed tomography (pQCT). Separate GWA meta-analyses for cortical and trabecular vBMDs were performed. The cortical vBMD GWA meta-analysis (n = 5,878) followed by replication (n = 1,052) identified genetic variants in four separate loci reaching genome-wide significance (RANKL, rs1021188, p = 3.6×10−14; LOC285735, rs271170, p = 2.7×10−12; OPG, rs7839059, p = 1.2×10−10; and ESR1/C6orf97, rs6909279, p = 1.1×10−9). The trabecular vBMD GWA meta-analysis (n = 2,500) followed by replication (n = 1,022) identified one locus reaching genome-wide significance (FMN2/GREM2, rs9287237, p = 1.9×10−9). High-resolution pQCT analyses, giving information about bone microstructure, were available in a subset of the GOOD cohort (n = 729). rs1021188 was significantly associated with cortical porosity while rs9287237 was significantly associated with trabecular bone fraction. The genetic variant in the FMN2/GREM2 locus was associated with fracture risk in the MrOS Sweden cohort (HR per extra T allele 0.75, 95% confidence interval 0.60–0.93) and GREM2 expression in human osteoblasts. In conclusion, five genetic loci associated with trabecular or cortical vBMD were identified. Two of these (FMN2/GREM2 and LOC285735) are novel bone-related loci, while the other three have previously been reported to be associated with aBMD. The genetic variants associated with cortical and trabecular bone parameters differed, underscoring the complexity of the genetics of bone parameters. We propose that a genetic variant in the RANKL locus influences cortical vBMD, at least partly, via effects on cortical porosity, and that a genetic variant in the FMN2/GREM2 locus influences GREM2 expression in osteoblasts and thereby trabecular number and thickness as well as fracture risk. PMID:23437003
Peters, James E.; Lyons, Paul A.; Lee, James C.; Richard, Arianne C.; Fortune, Mary D.; Newcombe, Paul J.; Richardson, Sylvia; Smith, Kenneth G. C.
2016-01-01
Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases. PMID:27015630
Leduc, Magalie S.; Blair, Rachael Hageman; Verdugo, Ricardo A.; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A.; Paigen, Beverly
2012-01-01
A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification. PMID:22498810
Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.
Law, Matthew H; Bishop, D Timothy; Lee, Jeffrey E; Brossard, Myriam; Martin, Nicholas G; Moses, Eric K; Song, Fengju; Barrett, Jennifer H; Kumar, Rajiv; Easton, Douglas F; Pharoah, Paul D P; Swerdlow, Anthony J; Kypreou, Katerina P; Taylor, John C; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A; Andresen, Per A; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M; Dębniak, Tadeusz; Duffy, David L; Elder, David E; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M; Goldstein, Alisa M; Gruis, Nelleke A; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A; Chen, Wei V; Landi, Maria Teresa; Lang, Julie; Lathrop, G Mark; Lubiński, Jan; Mackie, Rona M; Mann, Graham J; Molven, Anders; Montgomery, Grant W; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A; Radford-Smith, Graham L; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C; Craig, Jamie E; Schadendorf, Dirk; Simms, Lisa A; Burdon, Kathryn P; Nyholt, Dale R; Pooley, Karen A; Orr, Nick; Stratigos, Alexander J; Cust, Anne E; Ward, Sarah V; Hayward, Nicholas K; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M; Bishop, Julia A Newton; Demenais, Florence; Amos, Christopher I; MacGregor, Stuart; Iles, Mark M
2015-09-01
Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.
Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma
Law, Matthew H.; Bishop, D. Timothy; Martin, Nicholas G.; Moses, Eric K.; Song, Fengju; Barrett, Jennifer H.; Kumar, Rajiv; Easton, Douglas F.; Pharoah, Paul D. P.; Swerdlow, Anthony J.; Kypreou, Katerina P.; Taylor, John C.; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A.; Andresen, Per A.; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M.; Dębniak, Tadeusz; Duffy, David L.; Elder, David E.; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M.; Goldstein, Alisa M.; Gruis, Nelleke A.; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A.; Chen, Wei V.; Landi, Maria Teresa; Lang, Julie; Lathrop, G. Mark; Lubiński, Jan; Mackie, Rona M.; Mann, Graham J.; Molven, Anders; Montgomery, Grant W.; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A.; Radford-Smith, Graham L.; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C.; Craig, Jamie E.; Schadendorf, Dirk; Simms, Lisa A.; Burdon, Kathryn P.; Nyholt, Dale R.; Pooley, Karen A.; Orr, Nick; Stratigos, Alexander J.; Cust, Anne E.; Ward, Sarah V.; Hayward, Nicholas K.; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M.; Bishop, Julia A. Newton; MacGregor, Stuart; Iles, Mark M.
2015-01-01
Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5×10–8), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology. PMID:26237428
Weikard, Rosemarie; Altmaier, Elisabeth; Suhre, Karsten; Weinberger, Klaus M; Hammon, Harald M; Albrecht, Elke; Setoguchi, Kouji; Takasuga, Akiko; Kühn, Christa
2010-10-01
Identifying trait-associated genetic variation offers new prospects to reveal novel physiological pathways modulating complex traits. Taking advantage of a unique animal model, we identified the I442M mutation in the non-SMC condensin I complex, subunit G (NCAPG) gene and the Q204X mutation in the growth differentiation factor 8 (GDF8) gene as substantial modulators of pre- and/or postnatal growth in cattle. In a combined metabolomic and genotype association approach, which is the first respective study in livestock, we surveyed the specific physiological background of the effects of both loci on body-mass gain and lipid deposition. Our data provided confirming evidence from two historically and geographically distant cattle populations that the onset of puberty is the key interval of divergent growth. The locus-specific metabolic patterns obtained from monitoring 201 plasma metabolites at puberty mirror the particular NCAPG I442M and GDF8 Q204X effects and represent biosignatures of divergent physiological pathways potentially modulating effects on proportional and disproportional growth, respectively. While the NCAPG I442M mutation affected the arginine metabolism, the 204X allele in the GDF8 gene predominantly raised the carnitine level and had concordant effects on glycerophosphatidylcholines and sphingomyelins. Our study provides a conclusive link between the well-described growth-regulating functions of arginine metabolism and the previously unknown specific physiological role of the NCAPG protein in mammalian metabolism. Owing to the confirmed effect of the NCAPG/LCORL locus on human height in genome-wide association studies, the results obtained for bovine NCAPG might add valuable, comparative information on the physiological background of genetically determined divergent mammalian growth.
Haile, Jemanesh K.; Cory, Aron T.; Clarke, Fran R.; Clarke, John M.; Knox, Ron E.; Pozniak, Curtis J.
2017-01-01
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat. PMID:28135299
Bolormaa, Sunduimijid; Pryce, Jennie E.; Reverter, Antonio; Zhang, Yuandan; Barendse, William; Kemper, Kathryn; Tier, Bruce; Savin, Keith; Hayes, Ben J.; Goddard, Michael E.
2014-01-01
Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t'V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups. PMID:24675618
2011-01-01
Background Most agronomic plant traits result from complex molecular networks involving multiple genes and from environmental factors. One such trait is the enzymatic discoloration of fruit and tuber tissues initiated by mechanical impact (bruising). Tuber susceptibility to bruising is a complex trait of the cultivated potato (Solanum tuberosum) that is crucial for crop quality. As phenotypic evaluation of bruising is cumbersome, the application of diagnostic molecular markers would empower the selection of low bruising potato varieties. The genetic factors and molecular networks underlying enzymatic tissue discoloration are sparsely known. Hitherto there is no association study dealing with tuber bruising and diagnostic markers for enzymatic discoloration are rare. Results The natural genetic diversity for bruising susceptibility was evaluated in elite middle European potato germplasm in order to elucidate its molecular basis. Association genetics using a candidate gene approach identified allelic variants in genes that function in tuber bruising and enzymatic browning. Two hundred and five tetraploid potato varieties and breeding clones related by descent were evaluated for two years in six environments for tuber bruising susceptibility, specific gravity, yield, shape and plant maturity. Correlations were found between different traits. In total 362 polymorphic DNA fragments, derived from 33 candidate genes and 29 SSR loci, were scored in the population and tested for association with the traits using a mixed model approach, which takes into account population structure and kinship. Twenty one highly significant (p < 0.001) and robust marker-trait associations were identified. Conclusions The observed trait correlations and associated marker fragments provide new insight in the molecular basis of bruising susceptibility and its natural variation. The markers diagnostic for increased or decreased bruising susceptibility will facilitate the combination of superior alleles in breeding programs. In addition, this study presents novel candidates that might control enzymatic tissue discoloration and tuber bruising. Their validation and characterization will increase the knowledge about the underlying biological processes. PMID:21208436
Larraya, Luis M.; Idareta, Eneko; Arana, Dani; Ritter, Enrique; Pisabarro, Antonio G.; Ramírez, Lucia
2002-01-01
Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information. PMID:11872457
Kim, Young Jin; Go, Min Jin; Hu, Cheng; Hong, Chang Bum; Kim, Yun Kyoung; Lee, Ji Young; Hwang, Joo-Yeon; Oh, Ji Hee; Kim, Dong-Joon; Kim, Nam Hee; Kim, Soeui; Hong, Eun Jung; Kim, Ji-Hyun; Min, Haesook; Kim, Yeonjung; Zhang, Rong; Jia, Weiping; Okada, Yukinori; Takahashi, Atsushi; Kubo, Michiaki; Tanaka, Toshihiro; Kamatani, Naoyuki; Matsuda, Koichi; Park, Taesung; Oh, Bermseok; Kimm, Kuchan; Kang, Daehee; Shin, Chol; Cho, Nam H; Kim, Hyung-Lae; Han, Bok-Ghee; Lee, Jong-Young; Cho, Yoon Shin
2011-09-11
To identify the genetic bases for nine metabolic traits, we conducted a meta-analysis combining Korean genome-wide association results from the KARE project (n = 8,842) and the HEXA shared control study (n = 3,703). We verified the associations of the loci selected from the discovery meta-analysis in the replication stage (30,395 individuals from the BioBank Japan genome-wide association study and individuals comprising the Health2 and Shanghai Jiao Tong University Diabetes cohorts). We identified ten genome-wide significant signals newly associated with traits from an overall meta-analysis. The most compelling associations involved 12q24.11 (near MYL2) and 12q24.13 (in C12orf51) for high-density lipoprotein cholesterol, 2p21 (near SIX2-SIX3) for fasting plasma glucose, 19q13.33 (in RPS11) and 6q22.33 (in RSPO3) for renal traits, and 12q24.11 (near MYL2), 12q24.13 (in C12orf51 and near OAS1), 4q31.22 (in ZNF827) and 7q11.23 (near TBL2-BCL7B) for hepatic traits. These findings highlight previously unknown biological pathways for metabolic traits investigated in this study.
Grattapaglia, D.; Bertolucci, FLG.; Penchel, R.; Sederoff, R. R.
1996-01-01
Quantitative trait loci (QTL) mapping of forest productivity traits was performed using an open pollinated half-sib family of Eucalyptus grandis. For volume growth, a sequential QTL mapping approach was applied using bulk segregant analysis (BSA), selective genotyping (SG) and cosegregation analysis (CSA). Despite the low heritability of this trait and the heterogeneous genetic background employed for mapping. BSA detected one putative QTL and SG two out of the three later found by CSA. The three putative QTL for volume growth were found to control 13.7% of the phenotypic variation, corresponding to an estimated 43.7% of the genetic variation. For wood specific gravity five QTL were identified controlling 24.7% of the phenotypic variation corresponding to 49% of the genetic variation. Overlapping QTL for CBH, WSG and percentage dry weight of bark were observed. A significant case of digenic epistasis was found, involving unlinked QTL for volume. Our results demonstrate the applicability of the within half-sib design for QTL mapping in forest trees and indicate the existence of major genes involved in the expression of economically important traits related to forest productivity in Eucalyptus grandis. These findings have important implications for marker-assisted tree breeding. PMID:8913761
Pauli, Duke; Andrade-Sanchez, Pedro; Carmo-Silva, A. Elizabete; Gazave, Elodie; French, Andrew N.; Heun, John; Hunsaker, Douglas J.; Lipka, Alexander E.; Setter, Tim L.; Strand, Robert J.; Thorp, Kelly R.; Wang, Sam; White, Jeffrey W.; Gore, Michael A.
2016-01-01
The application of high-throughput plant phenotyping (HTPP) to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotton (Gossypium hirsutum L.) recombinant inbred line mapping population. The evaluation trials were conducted under well-watered and water-limited conditions in a replicated field experiment at a hot, arid location in central Arizona, with trait measurements taken at different times on multiple days across 2010–2012. Canopy temperature, normalized difference vegetation index (NDVI), height, and leaf area index (LAI) displayed moderate-to-high broad-sense heritabilities, as well as varied interactions among genotypes with water regime and time of day. Distinct temporal patterns of quantitative trait loci (QTL) expression were mostly observed for canopy temperature and NDVI, and varied across plant developmental stages. In addition, the strength of correlation between HTPP canopy traits and agronomic traits, such as lint yield, displayed a time-dependent relationship. We also found that the genomic position of some QTL controlling HTPP canopy traits were shared with those of QTL identified for agronomic and physiological traits. This work demonstrates the novel use of a field-based HTPP system to study the genetic basis of stress-adaptive traits in cotton, and these results have the potential to facilitate the development of stress-resilient cotton cultivars. PMID:26818078
van Rheenen, Wouter; Shatunov, Aleksey; Dekker, Annelot M; McLaughlin, Russell L; Diekstra, Frank P; Pulit, Sara L; van der Spek, Rick A A; Võsa, Urmo; de Jong, Simone; Robinson, Matthew R; Yang, Jian; Fogh, Isabella; van Doormaal, Perry TC; Tazelaar, Gijs H P; Koppers, Max; Blokhuis, Anna M; Sproviero, William; Jones, Ashley R; Kenna, Kevin P; van Eijk, Kristel R; Harschnitz, Oliver; Schellevis, Raymond D; Brands, William J; Medic, Jelena; Menelaou, Androniki; Vajda, Alice; Ticozzi, Nicola; Lin, Kuang; Rogelj, Boris; Vrabec, Katarina; Ravnik-Glavač, Metka; Koritnik, Blaž; Zidar, Janez; Leonardis, Lea; Grošelj, Leja Dolenc; Millecamps, Stéphanie; Salachas, François; Meininger, Vincent; de Carvalho, Mamede; Pinto, Susana; Mora, Jesus S; Rojas-García, Ricardo; Polak, Meraida; Chandran, Siddharthan; Colville, Shuna; Swingler, Robert; Morrison, Karen E; Shaw, Pamela J; Hardy, John; Orrell, Richard W; Pittman, Alan; Sidle, Katie; Fratta, Pietro; Malaspina, Andrea; Topp, Simon; Petri, Susanne; Abdulla, Susanne; Drepper, Carsten; Sendtner, Michael; Meyer, Thomas; Ophoff, Roel A; Staats, Kim A; Wiedau-Pazos, Martina; Lomen-Hoerth, Catherine; Van Deerlin, Vivianna M; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Basak, A Nazli; Tunca, Ceren; Hamzeiy, Hamid; Parman, Yesim; Meitinger, Thomas; Lichtner, Peter; Radivojkov-Blagojevic, Milena; Andres, Christian R; Maurel, Cindy; Bensimon, Gilbert; Landwehrmeyer, Bernhard; Brice, Alexis; Payan, Christine A M; Saker-Delye, Safaa; Dürr, Alexandra; Wood, Nicholas W; Tittmann, Lukas; Lieb, Wolfgang; Franke, Andre; Rietschel, Marcella; Cichon, Sven; Nöthen, Markus M; Amouyel, Philippe; Tzourio, Christophe; Dartigues, Jean-François; Uitterlinden, Andre G; Rivadeneira, Fernando; Estrada, Karol; Hofman, Albert; Curtis, Charles; Blauw, Hylke M; van der Kooi, Anneke J; de Visser, Marianne; Goris, An; Weber, Markus; Shaw, Christopher E; Smith, Bradley N; Pansarasa, Orietta; Cereda, Cristina; Bo, Roberto Del; Comi, Giacomo P; D’Alfonso, Sandra; Bertolin, Cinzia; Sorarù, Gianni; Mazzini, Letizia; Pensato, Viviana; Gellera, Cinzia; Tiloca, Cinzia; Ratti, Antonia; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Arcuti, Simona; Capozzo, Rosa; Zecca, Chiara; Lunetta, Christian; Penco, Silvana; Riva, Nilo; Padovani, Alessandro; Filosto, Massimiliano; Muller, Bernard; Stuit, Robbert Jan; Blair, Ian; Zhang, Katharine; McCann, Emily P; Fifita, Jennifer A; Nicholson, Garth A; Rowe, Dominic B; Pamphlett, Roger; Kiernan, Matthew C; Grosskreutz, Julian; Witte, Otto W; Ringer, Thomas; Prell, Tino; Stubendorff, Beatrice; Kurth, Ingo; Hübner, Christian A; Leigh, P Nigel; Casale, Federico; Chio, Adriano; Beghi, Ettore; Pupillo, Elisabetta; Tortelli, Rosanna; Logroscino, Giancarlo; Powell, John; Ludolph, Albert C; Weishaupt, Jochen H; Robberecht, Wim; Van Damme, Philip; Franke, Lude; Pers, Tune H; Brown, Robert H; Glass, Jonathan D; Landers, John E; Hardiman, Orla; Andersen, Peter M; Corcia, Philippe; Vourc’h, Patrick; Silani, Vincenzo; Wray, Naomi R; Visscher, Peter M; de Bakker, Paul I W; van Es, Michael A; Pasterkamp, R Jeroen; Lewis, Cathryn M; Breen, Gerome; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan H
2017-01-01
To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1–10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk. PMID:27455348
Current and future developments in patents for quantitative trait loci in dairy cattle.
Weller, Joel I
2007-01-01
Many studies have proposed that rates of genetic gain in dairy cattle can be increased by direct selection on the individual quantitative loci responsible for the genetic variation in these traits, or selection on linked genetic markers. The development of DNA-level genetic markers has made detection of QTL nearly routine in all major livestock species. The studies that attempted to detect genes affecting quantitative traits can be divided into two categories: analysis of candidate genes, and genome scans based on within-family genetic linkage. To date, 12 patent cooperative treaty (PCT) and US patents have been registered for DNA sequences claimed to be associated with effects on economic traits in dairy cattle. All claim effects on milk production, but other traits are also included in some of the claims. Most of the sequences found by the candidate gene approach are of dubious validity, and have been repeated in only very few independent studies. The two missense mutations on chromosomes 6 and 14 affecting milk concentration derived from genome scans are more solidly based, but the claims are also disputed. A few PCT in dairy cattle are commercialized as genetic tests where commercial dairy farmers are the target market.
An optimal strategy for functional mapping of dynamic trait loci.
Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling
2010-02-01
As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values.
The genetic architecture of photosynthesis and plant growth-related traits in tomato.
de Oliveira Silva, Franklin Magnum; Lichtenstein, Gabriel; Alseekh, Saleh; Rosado-Souza, Laise; Conte, Mariana; Suguiyama, Vanessa Fuentes; Lira, Bruno Silvestre; Fanourakis, Dimitrios; Usadel, Björn; Bhering, Leonardo Lopes; DaMatta, Fábio M; Sulpice, Ronan; Araújo, Wagner L; Rossi, Magdalena; de Setta, Nathalia; Fernie, Alisdair R; Carrari, Fernando; Nunes-Nesi, Adriano
2018-02-01
To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs. Eight BINs were identified that were associated with higher assimilation rates than the recurrent parent M82. Two and 10 genomic regions were related to shoot and root dry matter accumulation, respectively. Nine genomic regions were associated with starch levels, whereas 12 BINs were associated with the levels of other metabolites. Additionally, a comprehensive and detailed annotation of the genomic regions spanning these quantitative trait loci allowed us to identify 87 candidate genes that putatively control the investigated traits. We confirmed 8 of these at the level of variance in gene expression. Taken together, our results allowed the identification of candidate genes that most likely regulate photosynthesis, primary metabolism, and plant growth and as such provide new avenues for crop improvement. © 2017 John Wiley & Sons Ltd.
Demissie, Serkalem; Soranzo, Nicole; Bianchi, Estelle N.; Grundberg, Elin; Liang, Liming; Richards, J. Brent; Estrada, Karol; Zhou, Yanhua; van Nas, Atila; Moffatt, Miriam F.; Zhai, Guangju; Hofman, Albert; van Meurs, Joyce B.; Pols, Huibert A. P.; Price, Roger I.; Nilsson, Olle; Pastinen, Tomi; Cupples, L. Adrienne; Lusis, Aldons J.; Schadt, Eric E.; Ferrari, Serge; Uitterlinden, André G.
2010-01-01
Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6×10−8), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6×10−13; SOX6, p = 6.4×10−10) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the skeletal system in cellular or whole animal models to prioritize candidate genes for further functional validation. PMID:20548944