Sample records for complex user interfaces

  1. Spatial issues in user interface design from a graphic design perspective

    NASA Technical Reports Server (NTRS)

    Marcus, Aaron

    1989-01-01

    The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.

  2. User interface support

    NASA Technical Reports Server (NTRS)

    Lewis, Clayton; Wilde, Nick

    1989-01-01

    Space construction will require heavy investment in the development of a wide variety of user interfaces for the computer-based tools that will be involved at every stage of construction operations. Using today's technology, user interface development is very expensive for two reasons: (1) specialized and scarce programming skills are required to implement the necessary graphical representations and complex control regimes for high-quality interfaces; (2) iteration on prototypes is required to meet user and task requirements, since these are difficult to anticipate with current (and foreseeable) design knowledge. We are attacking this problem by building a user interface development tool based on extensions to the spreadsheet model of computation. The tool provides high-level support for graphical user interfaces and permits dynamic modification of interfaces, without requiring conventional programming concepts and skills.

  3. Developing A Web-based User Interface for Semantic Information Retrieval

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  4. Multi-modal virtual environment research at Armstrong Laboratory

    NASA Technical Reports Server (NTRS)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  5. Transportable Applications Environment (TAE) Plus: A NASA tool for building and managing graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1991-01-01

    The Transportable Applications Environment (TAE) Plus, developed at GSFC, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUI's), supports prototyping, allows applications to be ported easily between different platforms and encourages appropriate levels of user interface consistency between applications. The following topics are discussed: the capabilities of the TAE Plus tool; how the implementation has utilized state-of-the-art technologies within graphic workstations; and how it has been used both within and outside of NASA.

  6. Command and control interfaces for advanced neuroprosthetic applications.

    PubMed

    Scott, T R; Haugland, M

    2001-10-01

    Command and control interfaces permit the intention and situation of the user to influence the operation of the neural prosthesis. The wishes of the user are communicated via command interfaces to the neural prosthesis and the situation of the user by feedback control interfaces. Both these interfaces have been reviewed separately and are discussed in light of the current state of the art and projections for the future. It is apparent that as system functional complexity increases, the need for simpler command interfaces will increase. Such systems will demand more information to function effectively in order not to unreasonably increase user attention overhead. This will increase the need for bioelectric and biomechanical signals in a comprehensible form via elegant feedback control interfaces. Implementing such systems will also increase the computational demand on such neural prostheses.

  7. Demonstration of a Spoken Dialogue Interface for Planning Activities of a Semi-autonomous Robot

    NASA Technical Reports Server (NTRS)

    Dowding, John; Frank, Jeremy; Hockey, Beth Ann; Jonsson, Ari; Aist, Gregory

    2002-01-01

    Planning and scheduling in the face of uncertainty and change pushes the capabilities of both planning and dialogue technologies by requiring complex negotiation to arrive at a workable plan. Planning for use of semi-autonomous robots involves negotiation among multiple participants with competing scientific and engineering goals to co-construct a complex plan. In NASA applications this plan construction is done under severe time pressure so having a dialogue interface to the plan construction tools can aid rapid completion of the process. But, this will put significant demands on spoken dialogue technology, particularly in the areas of dialogue management and generation. The dialogue interface will need to be able to handle the complex dialogue strategies that occur in negotiation dialogues, including hypotheticals and revisions, and the generation component will require an ability to summarize complex plans. This demonstration will describe a work in progress towards building a spoken dialogue interface to the EUROPA planner for the purposes of planning and scheduling the activities of a semi-autonomous robot. A prototype interface has been built for planning the schedule of the Personal Satellite Assistant (PSA), a mobile robot designed for micro-gravity environments that is intended for use on the Space Shuttle and International Space Station. The spoken dialogue interface gives the user the capability to ask for a description of the plan, ask specific questions about the plan, and update or modify the plan. We anticipate that a spoken dialogue interface to the planner will provide a natural augmentation or alternative to the visualization interface, in situations in which the user needs very targeted information about the plan, in situations where natural language can express complex ideas more concisely than GUI actions, or in situations in which a graphical user interface is not appropriate.

  8. Development of a simulated smart pump interface.

    PubMed

    Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus

    2014-01-01

    Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform.

  9. Rapid Prototyping of Hydrologic Model Interfaces with IPython

    NASA Astrophysics Data System (ADS)

    Farthing, M. W.; Winters, K. D.; Ahmadia, A. J.; Hesser, T.; Howington, S. E.; Johnson, B. D.; Tate, J.; Kees, C. E.

    2014-12-01

    A significant gulf still exists between the state of practice and state of the art in hydrologic modeling. Part of this gulf is due to the lack of adequate pre- and post-processing tools for newly developed computational models. The development of user interfaces has traditionally lagged several years behind the development of a particular computational model or suite of models. As a result, models with mature interfaces often lack key advancements in model formulation, solution methods, and/or software design and technology. Part of the problem has been a focus on developing monolithic tools to provide comprehensive interfaces for the entire suite of model capabilities. Such efforts require expertise in software libraries and frameworks for creating user interfaces (e.g., Tcl/Tk, Qt, and MFC). These tools are complex and require significant investment in project resources (time and/or money) to use. Moreover, providing the required features for the entire range of possible applications and analyses creates a cumbersome interface. For a particular site or application, the modeling requirements may be simplified or at least narrowed, which can greatly reduce the number and complexity of options that need to be accessible to the user. However, monolithic tools usually are not adept at dynamically exposing specific workflows. Our approach is to deliver highly tailored interfaces to users. These interfaces may be site and/or process specific. As a result, we end up with many, customized interfaces rather than a single, general-use tool. For this approach to be successful, it must be efficient to create these tailored interfaces. We need technology for creating quality user interfaces that is accessible and has a low barrier for integration into model development efforts. Here, we present efforts to leverage IPython notebooks as tools for rapid prototyping of site and application-specific user interfaces. We provide specific examples from applications in near-shore environments as well as levee analysis. We discuss our design decisions and methodology for developing customized interfaces, strategies for delivery of the interfaces to users in various computing environments, as well as implications for the design/implementation of simulation models.

  10. Spatial Modeling Tools for Cell Biology

    DTIC Science & Technology

    2006-10-01

    multiphysics modeling expertise. A graphical user interface (GUI) for CoBi, JCoBi, was written in Java and interactive 3D graphics. CoBi has been...tools (C++ and Java ) to simulate complex cell and organ biology problems. CoBi has been designed to interact with the other Bio-SPICE software...fall of 2002. VisIt supports C++, Python and Java interfaces. The C++ and Java interfaces make it possible to provide alternate user interfaces for

  11. Computerized procedures system

    DOEpatents

    Lipner, Melvin H.; Mundy, Roger A.; Franusich, Michael D.

    2010-10-12

    An online data driven computerized procedures system that guides an operator through a complex process facility's operating procedures. The system monitors plant data, processes the data and then, based upon this processing, presents the status of the current procedure step and/or substep to the operator. The system supports multiple users and a single procedure definition supports several interface formats that can be tailored to the individual user. Layered security controls access privileges and revisions are version controlled. The procedures run on a server that is platform independent of the user workstations that the server interfaces with and the user interface supports diverse procedural views.

  12. Hypertext-based design of a user interface for scheduling

    NASA Technical Reports Server (NTRS)

    Woerner, Irene W.; Biefeld, Eric

    1993-01-01

    Operations Mission Planner (OMP) is an ongoing research project at JPL that utilizes AI techniques to create an intelligent, automated planning and scheduling system. The information space reflects the complexity and diversity of tasks necessary in most real-world scheduling problems. Thus the problem of the user interface is to present as much information as possible at a given moment and allow the user to quickly navigate through the various types of displays. This paper describes a design which applies the hypertext model to solve these user interface problems. The general paradigm is to provide maps and search queries to allow the user to quickly find an interesting conflict or problem, and then allow the user to navigate through the displays in a hypertext fashion.

  13. Transportable Applications Environment (TAE) Plus - A NASA productivity tool used to develop graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1991-01-01

    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUIs), supports prototyping, allows applications to be oported easily between different platforms, and encourages appropriate levels of user interface consistency between applications. This paper discusses the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUIs easier for the application developers. The paper also explains how tools like TAE Plus provide for reusability and ensure reliability of UI software components, as well as how they aid in the reduction of development and maintenance costs.

  14. Computer-Based Tools for Evaluating Graphical User Interfaces

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  15. A user-system interface agent

    NASA Technical Reports Server (NTRS)

    Wakim, Nagi T.; Srivastava, Sadanand; Bousaidi, Mehdi; Goh, Gin-Hua

    1995-01-01

    Agent-based technologies answer to several challenges posed by additional information processing requirements in today's computing environments. In particular, (1) users desire interaction with computing devices in a mode which is similar to that used between people, (2) the efficiency and successful completion of information processing tasks often require a high-level of expertise in complex and multiple domains, (3) information processing tasks often require handling of large volumes of data and, therefore, continuous and endless processing activities. The concept of an agent is an attempt to address these new challenges by introducing information processing environments in which (1) users can communicate with a system in a natural way, (2) an agent is a specialist and a self-learner and, therefore, it qualifies to be trusted to perform tasks independent of the human user, and (3) an agent is an entity that is continuously active performing tasks that are either delegated to it or self-imposed. The work described in this paper focuses on the development of an interface agent for users of a complex information processing environment (IPE). This activity is part of an on-going effort to build a model for developing agent-based information systems. Such systems will be highly applicable to environments which require a high degree of automation, such as, flight control operations and/or processing of large volumes of data in complex domains, such as the EOSDIS environment and other multidisciplinary, scientific data systems. The concept of an agent as an information processing entity is fully described with emphasis on characteristics of special interest to the User-System Interface Agent (USIA). Issues such as agent 'existence' and 'qualification' are discussed in this paper. Based on a definition of an agent and its main characteristics, we propose an architecture for the development of interface agents for users of an IPE that is agent-oriented and whose resources are likely to be distributed and heterogeneous in nature. The architecture of USIA is outlined in two main components: (1) the user interface which is concerned with issues as user dialog and interaction, user modeling, and adaptation to user profile, and (2) the system interface part which deals with identification of IPE capabilities, task understanding and feasibility assessment, and task delegation and coordination of assistant agents.

  16. User-Centered Design, Experience, and Usability of an Electronic Consent User Interface to Facilitate Informed Decision-Making in an HIV Clinic.

    PubMed

    Ramos, S Raquel

    2017-11-01

    Health information exchange is the electronic accessibility and transferability of patient medical records across various healthcare settings and providers. In some states, patients have to formally give consent to allow their medical records to be electronically shared. The purpose of this study was to apply a novel user-centered, multistep, multiframework approach to design and test an electronic consent user interface, so patients with HIV can make more informed decisions about electronically sharing their health information. This study consisted of two steps. Step 1 was a cross-sectional, descriptive, qualitative study that used user-centric design interviews to create the user interface. This informed Step 2. Step 2 consisted of a one group posttest to examine perceptions of usefulness, ease of use, preference, and comprehension of a health information exchange electronic consent user interface. More than half of the study population had college experience, but challenges remained with overall comprehension regarding consent. The user interface was not independently successful, suggesting that in addition to an electronic consent user interface, human interaction may also be necessary to address the complexities associated with consenting to electronically share health information. Comprehension is key factor in the ability to make informed decisions.

  17. Teleoperation of Robonaut Using Finger Tracking

    NASA Technical Reports Server (NTRS)

    Champoux, Rachel G.; Luo, Victor

    2012-01-01

    With the advent of new finger tracking systems, the idea of a more expressive and intuitive user interface is being explored and implemented. One practical application for this new kind of interface is that of teleoperating a robot. For humanoid robots, a finger tracking interface is required due to the level of complexity in a human-like hand, where a joystick isn't accurate. Moreover, for some tasks, using one's own hands allows the user to communicate their intentions more effectively than other input. The purpose of this project was to develop a natural user interface for someone to teleoperate a robot that is elsewhere. Specifically, this was designed to control Robonaut on the international space station to do tasks too dangerous and/or too trivial for human astronauts. This interface was developed by integrating and modifying 3Gear's software, which includes a library of gestures and the ability to track hands. The end result is an interface in which the user can manipulate objects in real time in the user interface. then, the information is relayed to a simulator, the stand in for Robonaut, at a slight delay.

  18. Model-Driven Development of Interactive Multimedia Applications with MML

    NASA Astrophysics Data System (ADS)

    Pleuss, Andreas; Hussmann, Heinrich

    There is an increasing demand for high-quality interactive applications which combine complex application logic with a sophisticated user interface, making use of individual media objects like graphics, animations, 3D graphics, audio or video. Their development is still challenging as it requires the integration of software design, user interface design, and media design.

  19. Designing Search: Effective Search Interfaces for Academic Library Web Sites

    ERIC Educational Resources Information Center

    Teague-Rector, Susan; Ghaphery, Jimmy

    2008-01-01

    Academic libraries customize, support, and provide access to myriad information systems, each with complex graphical user interfaces. The number of possible information entry points on an academic library Web site is both daunting to the end-user and consistently challenging to library Web site designers. Faced with the challenges inherent in…

  20. Spying on Search Strategies

    ERIC Educational Resources Information Center

    Tenopir, Carol

    2004-01-01

    Only the most dedicated super-searchers are motivated to learn and control command systems, like DialogClassic, that rely on the user to input complex search strategies. Infrequent searchers and most end users choose interfaces that do some of the work for them and make the search process appear easy. However, the easier a good interface seems to…

  1. Independent Verification and Validation of Complex User Interfaces: A Human Factors Approach

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Berman, Andrea; Chmielewski, Cynthia

    1996-01-01

    The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center has identified and evaluated a potential automated software interface inspection tool capable of assessing the degree to which space-related critical and high-risk software system user interfaces meet objective human factors standards across each NASA program and project. Testing consisted of two distinct phases. Phase 1 compared analysis times and similarity of results for the automated tool and for human-computer interface (HCI) experts. In Phase 2, HCI experts critiqued the prototype tool's user interface. Based on this evaluation, it appears that a more fully developed version of the tool will be a promising complement to a human factors-oriented independent verification and validation (IV&V) process.

  2. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  3. Graphical Language for Data Processing

    NASA Technical Reports Server (NTRS)

    Alphonso, Keith

    2011-01-01

    A graphical language for processing data allows processing elements to be connected with virtual wires that represent data flows between processing modules. The processing of complex data, such as lidar data, requires many different algorithms to be applied. The purpose of this innovation is to automate the processing of complex data, such as LIDAR, without the need for complex scripting and programming languages. The system consists of a set of user-interface components that allow the user to drag and drop various algorithmic and processing components onto a process graph. By working graphically, the user can completely visualize the process flow and create complex diagrams. This innovation supports the nesting of graphs, such that a graph can be included in another graph as a single step for processing. In addition to the user interface components, the system includes a set of .NET classes that represent the graph internally. These classes provide the internal system representation of the graphical user interface. The system includes a graph execution component that reads the internal representation of the graph (as described above) and executes that graph. The execution of the graph follows the interpreted model of execution in that each node is traversed and executed from the original internal representation. In addition, there are components that allow external code elements, such as algorithms, to be easily integrated into the system, thus making the system infinitely expandable.

  4. Building a Smart Portal for Astronomy

    NASA Astrophysics Data System (ADS)

    Derriere, S.; Boch, T.

    2011-07-01

    The development of a portal for accessing astronomical resources is not an easy task. The ever-increasing complexity of the data products can result in very complex user interfaces, requiring a lot of effort and learning from the user in order to perform searches. This is often a design choice, where the user must explicitly set many constraints, while the portal search logic remains simple. We investigated a different approach, where the query interface is kept as simple as possible (ideally, a simple text field, like for Google search), and the search logic is made much more complex to interpret the query in a relevant manner. We will present the implications of this approach in terms of interpretation and categorization of the query parameters (related to astronomical vocabularies), translation (mapping) of these concepts into the portal components metadata, identification of query schemes and use cases matching the input parameters, and delivery of query results to the user.

  5. Experimental setup for evaluating an adaptive user interface for teleoperation control

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.

    2017-05-01

    A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.

  6. A Web Interface for Eco System Modeling

    NASA Astrophysics Data System (ADS)

    McHenry, K.; Kooper, R.; Serbin, S. P.; LeBauer, D. S.; Desai, A. R.; Dietze, M. C.

    2012-12-01

    We have developed the Predictive Ecosystem Analyzer (PEcAn) as an open-source scientific workflow system and ecoinformatics toolbox that manages the flow of information in and out of regional-scale terrestrial biosphere models, facilitates heterogeneous data assimilation, tracks data provenance, and enables more effective feedback between models and field research. The over-arching goal of PEcAn is to make otherwise complex analyses transparent, repeatable, and accessible to a diverse array of researchers, allowing both novice and expert users to focus on using the models to examine complex ecosystems rather than having to deal with complex computer system setup and configuration questions in order to run the models. Through the developed web interface we hide much of the data and model details and allow the user to simply select locations, ecosystem models, and desired data sources as inputs to the model. Novice users are guided by the web interface through setting up a model execution and plotting the results. At the same time expert users are given enough freedom to modify specific parameters before the model gets executed. This will become more important as more and more models are added to the PEcAn workflow as well as more and more data that will become available as NEON comes online. On the backend we support the execution of potentially computationally expensive models on different High Performance Computers (HPC) and/or clusters. The system can be configured with a single XML file that gives it the flexibility needed for configuring and running the different models on different systems using a combination of information stored in a database as well as pointers to files on the hard disk. While the web interface usually creates this configuration file, expert users can still directly edit it to fine tune the configuration.. Once a workflow is finished the web interface will allow for the easy creation of plots over result data while also allowing the user to download the results for further processing. The current workflow in the web interface is a simple linear workflow, but will be expanded to allow for more complex workflows. We are working with Kepler and Cyberintegrator to allow for these more complex workflows as well as collecting provenance of the workflow being executed. This provenance regarding model executions is stored in a database along with the derived results. All of this information is then accessible using the BETY database web frontend. The PEcAn interface.

  7. Design Guidelines and Criteria for User/Operator Transactions with Battlefield Automated Systems. Volume 5. Background Literature

    DTIC Science & Technology

    1981-02-01

    the machine . ARI’s efforts in this area focus on human perfor- mance problems related to interactions with command and control centers, and on issues...improvement of the user- machine interface. Lacking consistent design principles, current practice results in a fragmented and unsystematic approach to system...complexity in the user- machine interface of BAS, ARI supported this effort for develop- me:nt of an online language for Army tactical intelligence

  8. Everyone Wants One...A Slightly Different One: The Process of Introducing a User Interface System into an Online Public Access Catalog Network.

    ERIC Educational Resources Information Center

    Jenkins, Darrell L.

    The development, testing, introduction, evaluation, and refinement of a user interface for a statewide, multi-library online public access catalog network can be a very involved and politically complex enterprise. A multitude of perspectives, assumptions, preferences, and needs accompanies the multitude of players involved, i.e., library…

  9. Design and implementation of a status at a glance user interface for a power distribution expert system

    NASA Technical Reports Server (NTRS)

    Liberman, Eugene M.; Manner, David B.; Dolce, James L.; Mellor, Pamela A.

    1993-01-01

    A user interface to the power distribution expert system for Space Station Freedom is discussed. The importance of features which simplify assessing system status and which minimize navigating through layers of information are examined. Design rationale and implementation choices are also presented. The amalgamation of such design features as message linking arrows, reduced information content screens, high salience anomaly icons, and color choices with failure detection and diagnostic explanation from an expert system is shown to provide an effective status-at-a-glance monitoring system for power distribution. This user interface design offers diagnostic reasoning without compromising the monitoring of current events. The display can convey complex concepts in terms that are clear to its users.

  10. Transportable Applications Environment (TAE) Plus: A NASA tool for building and managing graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1993-01-01

    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development which simplifies the process of creating and managing complex application graphical user interfaces (GUI's). TAE Plus supports the rapid prototyping of GUI's and allows applications to be ported easily between different platforms. This paper will discuss the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUI's easier for application developers. TAE Plus is being applied to many types of applications, and this paper discusses how it has been used both within and outside NASA.

  11. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    PubMed

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  12. Motofit - integrating neutron reflectometry acquisition, reduction and analysis into one, easy to use, package

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew

    2010-11-01

    The efficient use of complex neutron scattering instruments is often hindered by the complex nature of their operating software. This complexity exists at each experimental step: data acquisition, reduction and analysis, with each step being as important as the previous. For example, whilst command line interfaces are powerful at automated acquisition they often reduce accessibility by novice users and sometimes reduce the efficiency for advanced users. One solution to this is the development of a graphical user interface which allows the user to operate the instrument by a simple and intuitive "push button" approach. This approach was taken by the Motofit software package for analysis of multiple contrast reflectometry data. Here we describe the extension of this package to cover the data acquisition and reduction steps for the Platypus time-of-flight neutron reflectometer. Consequently, the complete operation of an instrument is integrated into a single, easy to use, program, leading to efficient instrument usage.

  13. NLEdit: A generic graphical user interface for Fortran programs

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.

    1994-01-01

    NLEdit is a generic graphical user interface for the preprocessing of Fortran namelist input files. The interface consists of a menu system, a message window, a help system, and data entry forms. A form is generated for each namelist. The form has an input field for each namelist variable along with a one-line description of that variable. Detailed help information, default values, and minimum and maximum allowable values can all be displayed via menu picks. Inputs are processed through a scientific calculator program that allows complex equations to be used instead of simple numeric inputs. A custom user interface is generated simply by entering information about the namelist input variables into an ASCII file. There is no need to learn a new graphics system or programming language. NLEdit can be used as a stand-alone program or as part of a larger graphical user interface. Although NLEdit is intended for files using namelist format, it can be easily modified to handle other file formats.

  14. Software systems for modeling articulated figures

    NASA Technical Reports Server (NTRS)

    Phillips, Cary B.

    1989-01-01

    Research in computer animation and simulation of human task performance requires sophisticated geometric modeling and user interface tools. The software for a research environment should present the programmer with a powerful but flexible substrate of facilities for displaying and manipulating geometric objects, yet insure that future tools have a consistent and friendly user interface. Jack is a system which provides a flexible and extensible programmer and user interface for displaying and manipulating complex geometric figures, particularly human figures in a 3D working environment. It is a basic software framework for high-performance Silicon Graphics IRIS workstations for modeling and manipulating geometric objects in a general but powerful way. It provides a consistent and user-friendly interface across various applications in computer animation and simulation of human task performance. Currently, Jack provides input and control for applications including lighting specification and image rendering, anthropometric modeling, figure positioning, inverse kinematics, dynamic simulation, and keyframe animation.

  15. Draper Station Analysis Tool

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Jang, Jiann-Woei; McCants, Edward; Omohundro, Zachary; Ring, Tom; Templeton, Jeremy; Zoss, Jeremy; Wallace, Jonathan; Ziegler, Philip

    2011-01-01

    Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems.

  16. GUIdock: Using Docker Containers with a Common Graphics User Interface to Address the Reproducibility of Research

    PubMed Central

    Yeung, Ka Yee

    2016-01-01

    Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface. PMID:27045593

  17. GUIdock: Using Docker Containers with a Common Graphics User Interface to Address the Reproducibility of Research.

    PubMed

    Hung, Ling-Hong; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee

    2016-01-01

    Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface.

  18. Discrete Abstractions of Hybrid Systems: Verification of Safety and Application to User-Interface Design

    NASA Technical Reports Server (NTRS)

    Oishi, Meeko; Tomlin, Claire; Degani, Asaf

    2003-01-01

    Human interaction with complex hybrid systems involves the user, the automation's discrete mode logic, and the underlying continuous dynamics of the physical system. Often the user-interface of such systems displays a reduced set of information about the entire system. In safety-critical systems, how can we identify user-interface designs which do not have adequate information, or which may confuse the user? Here we describe a methodology, based on hybrid system analysis, to verify that a user-interface contains information necessary to safely complete a desired procedure or task. Verification within a hybrid framework allows us to account for the continuous dynamics underlying the simple, discrete representations displayed to the user. We provide two examples: a car traveling through a yellow light at an intersection and an aircraft autopilot in a landing/go-around maneuver. The examples demonstrate the general nature of this methodology, which is applicable to hybrid systems (not fully automated) which have operational constraints we can pose in terms of safety. This methodology differs from existing work in hybrid system verification in that we directly account for the user's interactions with the system.

  19. The SHIP: A SIP to HTTP Interaction Protocol

    NASA Astrophysics Data System (ADS)

    Zeiß, Joachim; Gabner, Rene; Bessler, Sandford; Happenhofer, Marco

    IMS is capable of providing a wide range of services. As a result, terminal software becomes more and more complex to deliver network intelligence to user applications. Currently mobile terminal software needs to be permanently updated so that the latest network services and functionality can be delivered to the user. In the Internet, browser based user interfaces assure that an interface is made available to the user which offers the latest services in the net immediately. Our approach combines the benefits of the Session Initiation Protocol (SIP) and those of the HTTP protocol to bring the same type of user interfacing to IMS. SIP (IMS) realizes authentication, session management, charging and Quality of Service (QoS), HTTP provides access to Internet services and allows the user interface of an application to run on a mobile terminal while processing and orchestration is done on the server. A SHIP enabled IMS client only needs to handle data transport and session management via SIP, HTTP and RTP and render streaming media, HTML and Javascript. SHIP allows new kinds of applications, which combine audio, video and data within a single multimedia session.

  20. User needs analysis and usability assessment of DataMed - a biomedical data discovery index.

    PubMed

    Dixit, Ram; Rogith, Deevakar; Narayana, Vidya; Salimi, Mandana; Gururaj, Anupama; Ohno-Machado, Lucila; Xu, Hua; Johnson, Todd R

    2017-11-30

    To present user needs and usability evaluations of DataMed, a Data Discovery Index (DDI) that allows searching for biomedical data from multiple sources. We conducted 2 phases of user studies. Phase 1 was a user needs analysis conducted before the development of DataMed, consisting of interviews with researchers. Phase 2 involved iterative usability evaluations of DataMed prototypes. We analyzed data qualitatively to document researchers' information and user interface needs. Biomedical researchers' information needs in data discovery are complex, multidimensional, and shaped by their context, domain knowledge, and technical experience. User needs analyses validate the need for a DDI, while usability evaluations of DataMed show that even though aggregating metadata into a common search engine and applying traditional information retrieval tools are promising first steps, there remain challenges for DataMed due to incomplete metadata and the complexity of data discovery. Biomedical data poses distinct problems for search when compared to websites or publications. Making data available is not enough to facilitate biomedical data discovery: new retrieval techniques and user interfaces are necessary for dataset exploration. Consistent, complete, and high-quality metadata are vital to enable this process. While available data and researchers' information needs are complex and heterogeneous, a successful DDI must meet those needs and fit into the processes of biomedical researchers. Research directions include formalizing researchers' information needs, standardizing overviews of data to facilitate relevance judgments, implementing user interfaces for concept-based searching, and developing evaluation methods for open-ended discovery systems such as DDIs. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Workshop AccessibleTV "Accessible User Interfaces for Future TV Applications"

    NASA Astrophysics Data System (ADS)

    Hahn, Volker; Hamisu, Pascal; Jung, Christopher; Heinrich, Gregor; Duarte, Carlos; Langdon, Pat

    Approximately half of the elderly people over 55 suffer from some type of typically mild visual, auditory, motor or cognitive impairment. For them interaction, especially with PCs and other complex devices is sometimes challenging, although accessible ICT applications could make much of a difference for their living quality. Basically they have the potential to enable or simplify participation and inclusion in their surrounding private and professional communities. However, the availability of accessible user interfaces being capable to adapt to the specific needs and requirements of users with individual impairments is very limited. Although there are a number of APIs [1, 2, 3, 4] available for various platforms that allow developers to provide accessibility features within their applications, today none of them provides features for the automatic adaptation of multimodal interfaces being capable to automatically fit the individual requirements of users with different kinds of impairments. Moreover, the provision of accessible user interfaces is still expensive and risky for application developers, as they need special experience and effort for user tests. Today many implementations simply neglect the needs of elderly people, thus locking out a large portion of their potential users. The workshop is organized as part of the dissemination activity for the European-funded project GUIDE "Gentle user interfaces for elderly people", which aims to address this situation with a comprehensive approach for the realization of multimodal user interfaces being capable to adapt to the needs of users with different kinds of mild impairments. As application platform, GUIDE will mainly target TVs and Set-Top Boxes, such as the emerging Connected-TV or WebTV platforms, as they have the potential to address the needs of the elderly users with applications such as for home automation, communication or continuing education.

  2. A Graphical User-Interface for Propulsion System Analysis

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Ryall, Kathleen

    1992-01-01

    NASA LeRC uses a series of computer codes to calculate installed propulsion system performance and weight. The need to evaluate more advanced engine concepts with a greater degree of accuracy has resulted in an increase in complexity of this analysis system. Therefore, a graphical user interface was developed to allow the analyst to more quickly and easily apply these codes. The development of this interface and the rationale for the approach taken are described. The interface consists of a method of pictorially representing and editing the propulsion system configuration, forms for entering numerical data, on-line help and documentation, post processing of data, and a menu system to control execution.

  3. A graphical user-interface for propulsion system analysis

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Ryall, Kathleen

    1993-01-01

    NASA LeRC uses a series of computer codes to calculate installed propulsion system performance and weight. The need to evaluate more advanced engine concepts with a greater degree of accuracy has resulted in an increase in complexity of this analysis system. Therefore, a graphical user interface was developed to allow the analyst to more quickly and easily apply these codes. The development of this interface and the rationale for the approach taken are described. The interface consists of a method of pictorially representing and editing the propulsion system configuration, forms for entering numerical data, on-line help and documentation, post processing of data, and a menu system to control execution.

  4. A software architecture for automating operations processes

    NASA Technical Reports Server (NTRS)

    Miller, Kevin J.

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed a software architecture based on an integrated toolkit approach for simplifying and automating mission operations tasks. The toolkit approach is based on building adaptable, reusable graphical tools that are integrated through a combination of libraries, scripts, and system-level user interface shells. The graphical interface shells are designed to integrate and visually guide a user through the complex steps in an operations process. They provide a user with an integrated system-level picture of an overall process, defining the required inputs and possible output through interactive on-screen graphics. The OEL has developed the software for building these process-oriented graphical user interface (GUI) shells. The OEL Shell development system (OEL Shell) is an extension of JPL's Widget Creation Library (WCL). The OEL Shell system can be used to easily build user interfaces for running complex processes, applications with extensive command-line interfaces, and tool-integration tasks. The interface shells display a logical process flow using arrows and box graphics. They also allow a user to select which output products are desired and which input sources are needed, eliminating the need to know which program and its associated command-line parameters must be executed in each case. The shells have also proved valuable for use as operations training tools because of the OEL Shell hypertext help environment. The OEL toolkit approach is guided by several principles, including the use of ASCII text file interfaces with a multimission format, Perl scripts for mission-specific adaptation code, and programs that include a simple command-line interface for batch mode processing. Projects can adapt the interface shells by simple changes to the resources configuration file. This approach has allowed the development of sophisticated, automated software systems that are easy, cheap, and fast to build. This paper will discuss our toolkit approach and the OEL Shell interface builder in the context of a real operations process example. The paper will discuss the design and implementation of a Ulysses toolkit for generating the mission sequence of events. The Sequence of Events Generation (SEG) system provides an adaptable multimission toolkit for producing a time-ordered listing and timeline display of spacecraft commands, state changes, and required ground activities.

  5. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  6. Diverse applications of advanced man-telerobot interfaces

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A.

    1991-01-01

    Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.

  7. Simulated breeding with QU-GENE graphical user interface.

    PubMed

    Hathorn, Adrian; Chapman, Scott; Dieters, Mark

    2014-01-01

    Comparing the efficiencies of breeding methods with field experiments is a costly, long-term process. QU-GENE is a highly flexible genetic and breeding simulation platform capable of simulating the performance of a range of different breeding strategies and for a continuum of genetic models ranging from simple to complex. In this chapter we describe some of the basic mechanics behind the QU-GENE user interface and give a simplified example of how it works.

  8. E-Learning

    ERIC Educational Resources Information Center

    Buzzi, Marina, Ed.

    2010-01-01

    E-Learning is a vast and complex research topic that poses many challenges in every aspect: educational and pedagogical strategies and techniques and the tools for achieving them; usability, accessibility and user interface design; knowledge sharing and collaborative environments; technologies, architectures, and protocols; user activity…

  9. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  10. Versatile clinical information system design for emergency departments.

    PubMed

    Amouh, Teh; Gemo, Monica; Macq, Benoît; Vanderdonckt, Jean; El Gariani, Abdul Wahed; Reynaert, Marc S; Stamatakis, Lambert; Thys, Frédéric

    2005-06-01

    Compared to other hospital units, the emergency department presents some distinguishing characteristics of its own. Emergency health-care delivery is a collaborative process involving the contribution of several individuals who accomplish their tasks while working autonomously under pressure and sometimes with limited resources. Effective computerization of the emergency department information system presents a real challenge due to the complexity of the scenario. Current computerized support suffers from several problems, including inadequate data models, clumsy user interfaces, and poor integration with other clinical information systems. To tackle such complexity, we propose an approach combining three points of view, namely the transactions (in and out of the department), the (mono and multi) user interfaces and data management. Unlike current systems, we pay particular attention to the user-friendliness and versatility of our system. This means that intuitive user interfaces have been conceived and specific software modeling methodologies have been applied to provide our system with the flexibility and adaptability necessary for the individual and group coordinated tasks. Our approach has been implemented by prototyping a web-based, multiplatform, multiuser, and versatile clinical information system built upon multitier software architecture, using the Java programming language.

  11. User Interface Design in Medical Distributed Web Applications.

    PubMed

    Serban, Alexandru; Crisan-Vida, Mihaela; Mada, Leonard; Stoicu-Tivadar, Lacramioara

    2016-01-01

    User interfaces are important to facilitate easy learning and operating with an IT application especially in the medical world. An easy to use interface has to be simple and to customize the user needs and mode of operation. The technology in the background is an important tool to accomplish this. The present work aims to creating a web interface using specific technology (HTML table design combined with CSS3) to provide an optimized responsive interface for a complex web application. In the first phase, the current icMED web medical application layout is analyzed, and its structure is designed using specific tools, on source files. In the second phase, a new graphic adaptable interface to different mobile terminals is proposed, (using HTML table design (TD) and CSS3 method) that uses no source files, just lines of code for layout design, improving the interaction in terms of speed and simplicity. For a complex medical software application a new prototype layout was designed and developed using HTML tables. The method uses a CSS code with only CSS classes applied to one or multiple HTML table elements, instead of CSS styles that can be applied to just one DIV tag at once. The technique has the advantage of a simplified CSS code, and a better adaptability to different media resolutions compared to DIV-CSS style method. The presented work is a proof that adaptive web interfaces can be developed just using and combining different types of design methods and technologies, using HTML table design, resulting in a simpler to learn and use interface, suitable for healthcare services.

  12. Automatic User Interface Generation for Visualizing Big Geoscience Data

    NASA Astrophysics Data System (ADS)

    Yu, H.; Wu, J.; Zhou, Y.; Tang, Z.; Kuo, K. S.

    2016-12-01

    Along with advanced computing and observation technologies, geoscience and its related fields have been generating a large amount of data at an unprecedented growth rate. Visualization becomes an increasingly attractive and feasible means for researchers to effectively and efficiently access and explore data to gain new understandings and discoveries. However, visualization has been challenging due to a lack of effective data models and visual representations to tackle the heterogeneity of geoscience data. We propose a new geoscience data visualization framework by leveraging the interface automata theory to automatically generate user interface (UI). Our study has the following three main contributions. First, geoscience data has its unique hierarchy data structure and complex formats, and therefore it is relatively easy for users to get lost or confused during their exploration of the data. By applying interface automata model to the UI design, users can be clearly guided to find the exact visualization and analysis that they want. In addition, from a development perspective, interface automaton is also easier to understand than conditional statements, which can simplify the development process. Second, it is common that geoscience data has discontinuity in its hierarchy structure. The application of interface automata can prevent users from suffering automation surprises, and enhance user experience. Third, for supporting a variety of different data visualization and analysis, our design with interface automata could also make applications become extendable in that a new visualization function or a new data group could be easily added to an existing application, which reduces the overhead of maintenance significantly. We demonstrate the effectiveness of our framework using real-world applications.

  13. TIGER: A user-friendly interactive grid generation system for complicated turbomachinery and axis-symmetric configurations

    NASA Technical Reports Server (NTRS)

    Shih, Ming H.; Soni, Bharat K.

    1993-01-01

    The issue of time efficiency in grid generation is addressed by developing a user friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis-symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the nonuniform rational b-spline (NURBS) representation. A customized interactive grid generation code, TIGER, has been developed to facilitate the grid generation process for complicated internal, external, and internal-external turbomachinery fields simulations. The FORMS Library is utilized to build user-friendly graphical interface. The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation with accurate geometric definition. TIGER's features include multiblock, multiduct/shroud, multiblade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries, as well as rocket and missile configurations.

  14. Simplified Interface to Complex Memory Hierarchies 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Michael; Ionkov, Latchesar; Williams, Sean

    2017-02-21

    Memory systems are expected to get evermore complicated in the coming years, and it isn't clear exactly what form that complexity will take. On the software side, a simple, flexible way of identifying and working with memory pools is needed. Additionally, most developers seek code portability and do not want to learn the intricacies of complex memory. Hence, we believe that a library for interacting with complex memory systems should expose two kinds of abstraction: First, a low-level, mechanism-based interface designed for the runtime or advanced user that wants complete control, with its focus on simplified representation but with allmore » decisions left to the caller. Second, a high-level, policy-based interface designed for ease of use for the application developer, in which we aim for best-practice decisions based on application intent. We have developed such a library, called SICM: Simplified Interface to Complex Memory.« less

  15. Towards User-Friendly Spelling with an Auditory Brain-Computer Interface: The CharStreamer Paradigm

    PubMed Central

    Höhne, Johannes; Tangermann, Michael

    2014-01-01

    Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI) aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP) of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: “CharStreamer”. The speller can be used with an instruction as simple as “please attend to what you want to spell”. The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions) is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10) of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences. PMID:24886978

  16. An intelligent multi-media human-computer dialogue system

    NASA Technical Reports Server (NTRS)

    Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.

    1988-01-01

    Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.

  17. Twinlist: novel user interface designs for medication reconciliation.

    PubMed

    Plaisant, Catherine; Chao, Tiffany; Wu, Johnny; Hettinger, A Zach; Herskovic, Jorge R; Johnson, Todd R; Bernstam, Elmer V; Markowitz, Eliz; Powsner, Seth; Shneiderman, Ben

    2013-01-01

    Medication reconciliation is an important and complex task for which careful user interface design has the potential to help reduce errors and improve quality of care. In this paper we focus on the hospital discharge scenario and first describe a novel interface called Twinlist. Twinlist illustrates the novel use of spatial layout combined with multi-step animation, to help medical providers see what is different and what is similar between the lists (e.g., intake list and hospital list), and rapidly choose the drugs they want to include in the reconciled list. We then describe a series of variant designs and discuss their comparative advantages and disadvantages. Finally we report on a pilot study that suggests that animation might help users learn new spatial layouts such as the one used in Twinlist.

  18. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rajeev; Mahadevan, Vijay

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing.more » RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.« less

  19. A Randomized Trial Comparing Classical Participatory Design to VandAID, an Interactive CrowdSourcing Platform to Facilitate User-centered Design.

    PubMed

    Dufendach, Kevin R; Koch, Sabine; Unertl, Kim M; Lehmann, Christoph U

    2017-10-26

    Early involvement of stakeholders in the design of medical software is particularly important due to the need to incorporate complex knowledge and actions associated with clinical work. Standard user-centered design methods include focus groups and participatory design sessions with individual stakeholders, which generally limit user involvement to a small number of individuals due to the significant time investments from designers and end users. The goal of this project was to reduce the effort for end users to participate in co-design of a software user interface by developing an interactive web-based crowdsourcing platform. In a randomized trial, we compared a new web-based crowdsourcing platform to standard participatory design sessions. We developed an interactive, modular platform that allows responsive remote customization and design feedback on a visual user interface based on user preferences. The responsive canvas is a dynamic HTML template that responds in real time to user preference selections. Upon completion, the design team can view the user's interface creations through an administrator portal and download the structured selections through a REDCap interface. We have created a software platform that allows users to customize a user interface and see the results of that customization in real time, receiving immediate feedback on the impact of their design choices. Neonatal clinicians used the new platform to successfully design and customize a neonatal handoff tool. They received no specific instruction and yet were able to use the software easily and reported high usability. VandAID, a new web-based crowdsourcing platform, can involve multiple users in user-centered design simultaneously and provides means of obtaining design feedback remotely. The software can provide design feedback at any stage in the design process, but it will be of greatest utility for specifying user requirements and evaluating iterative designs with multiple options.

  20. Extreme C2 and Multi-Touch, Multi-User Collaborative User Interfaces

    DTIC Science & Technology

    2008-06-01

    Organization: Office of the Chief Engineer , Space and Naval Warfare Systems Center Charleston Address: PO Box 190022 N. Charleston, SC 29419 843...collaborative development technique can increase the adaptability and quality of software, something of high value in the complex domain of enterprise...concept to C2 should be able to produce similar benefits for planning in military operations, particularly complex, multi- faceted operations. This

  1. CodeSlinger: a case study in domain-driven interactive tool design for biomedical coding scheme exploration and use.

    PubMed

    Flowers, Natalie L

    2010-01-01

    CodeSlinger is a desktop application that was developed to aid medical professionals in the intertranslation, exploration, and use of biomedical coding schemes. The application was designed to provide a highly intuitive, easy-to-use interface that simplifies a complex business problem: a set of time-consuming, laborious tasks that were regularly performed by a group of medical professionals involving manually searching coding books, searching the Internet, and checking documentation references. A workplace observation session with a target user revealed the details of the current process and a clear understanding of the business goals of the target user group. These goals drove the design of the application's interface, which centers on searches for medical conditions and displays the codes found in the application's database that represent those conditions. The interface also allows the exploration of complex conceptual relationships across multiple coding schemes.

  2. The Application of Current User Interface Technology to Interactive Wargaming Systems.

    DTIC Science & Technology

    1987-09-01

    components is essential to the Macintosh interface. Apple states that "Consistent visual communication is very powerful in delivering complex messages...interface. A visual interface uses visual objects as the basis of communication. "A visual communication object is some combination S. of text and...graphics used for communication under a system of inter- pretation, or visual language." The benefit of visual communication is V 45 "When humans are faced

  3. CE-SAM: a conversational interface for ISR mission support

    NASA Astrophysics Data System (ADS)

    Pizzocaro, Diego; Parizas, Christos; Preece, Alun; Braines, Dave; Mott, David; Bakdash, Jonathan Z.

    2013-05-01

    There is considerable interest in natural language conversational interfaces. These allow for complex user interactions with systems, such as fulfilling information requirements in dynamic environments, without requiring extensive training or a technical background (e.g. in formal query languages or schemas). To leverage the advantages of conversational interactions we propose CE-SAM (Controlled English Sensor Assignment to Missions), a system that guides users through refining and satisfying their information needs in the context of Intelligence, Surveillance, and Reconnaissance (ISR) operations. The rapidly-increasing availability of sensing assets and other information sources poses substantial challenges to effective ISR resource management. In a coalition context, the problem is even more complex, because assets may be "owned" by different partners. We show how CE-SAM allows a user to refine and relate their ISR information needs to pre-existing concepts in an ISR knowledge base, via conversational interaction implemented on a tablet device. The knowledge base is represented using Controlled English (CE) - a form of controlled natural language that is both human-readable and machine processable (i.e. can be used to implement automated reasoning). Users interact with the CE-SAM conversational interface using natural language, which the system converts to CE for feeding-back to the user for confirmation (e.g. to reduce misunderstanding). We show that this process not only allows users to access the assets that can support their mission needs, but also assists them in extending the CE knowledge base with new concepts.

  4. Design Optimization Toolkit: Users' Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLABmore » command window.« less

  5. Is the GUI approach to Computer Development (For Example, Mac, and Windows Technology) a Threat to Computer Users Who Are Blind?

    ERIC Educational Resources Information Center

    Melrose, S.; And Others

    1995-01-01

    In this point/counterpoint feature, S. Melrose contends that complex graphical user interfaces (GUIs) threaten the independence and equal employment of individuals with blindness. D. Wakefield then points out that access to the Windows software program for blind computer users is extremely unpredictable, and J. Gill describes a major European…

  6. High-level user interfaces for transfer function design with semantics.

    PubMed

    Salama, Christof Rezk; Keller, Maik; Kohlmann, Peter

    2006-01-01

    Many sophisticated techniques for the visualization of volumetric data such as medical data have been published. While existing techniques are mature from a technical point of view, managing the complexity of visual parameters is still difficult for non-expert users. To this end, this paper presents new ideas to facilitate the specification of optical properties for direct volume rendering. We introduce an additional level of abstraction for parametric models of transfer functions. The proposed framework allows visualization experts to design high-level transfer function models which can intuitively be used by non-expert users. The results are user interfaces which provide semantic information for specialized visualization problems. The proposed method is based on principal component analysis as well as on concepts borrowed from computer animation.

  7. Write, read and answer emails with a dry 'n' wireless brain-computer interface system.

    PubMed

    Pinegger, Andreas; Deckert, Lisa; Halder, Sebastian; Barry, Norbert; Faller, Josef; Käthner, Ivo; Hintermüller, Christoph; Wriessnegger, Selina C; Kübler, Andrea; Müller-Putz, Gernot R

    2014-01-01

    Brain-computer interface (BCI) users can control very complex applications such as multimedia players or even web browsers. Therefore, different biosignal acquisition systems are available to noninvasively measure the electrical activity of the brain, the electroencephalogram (EEG). To make BCIs more practical, hardware and software are nowadays designed more user centered and user friendly. In this paper we evaluated one of the latest innovations in the area of BCI: A wireless EEG amplifier with dry electrode technology combined with a web browser which enables BCI users to use standard webmail. With this system ten volunteers performed a daily life task: Write, read and answer an email. Experimental results of this study demonstrate the power of the introduced BCI system.

  8. A web interface for easy flexible protein-protein docking with ATTRACT.

    PubMed

    de Vries, Sjoerd J; Schindler, Christina E M; Chauvot de Beauchêne, Isaure; Zacharias, Martin

    2015-02-03

    Protein-protein docking programs can give valuable insights into the structure of protein complexes in the absence of an experimental complex structure. Web interfaces can facilitate the use of docking programs by structural biologists. Here, we present an easy web interface for protein-protein docking with the ATTRACT program. While aimed at nonexpert users, the web interface still covers a considerable range of docking applications. The web interface supports systematic rigid-body protein docking with the ATTRACT coarse-grained force field, as well as various kinds of protein flexibility. The execution of a docking protocol takes up to a few hours on a standard desktop computer. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Integration of an expert system into a user interface language demonstration

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.

    1986-01-01

    The need for a User Interface Language (UIL) has been recognized by the Space Station Program Office as a necessary tool to aid in minimizing the cost of software generation by multiple users. Previous history in the Space Shuttle Program has shown that many different areas of software generation, such as operations, integration, testing, etc., have each used a different user command language although the types of operations being performed were similar in many respects. Since the Space Station represents a much more complex software task, a common user command language--a user interface language--is required to support the large spectrum of space station software developers and users. To assist in the selection of an appropriate set of definitions for a UIL, a series of demonstration programs was generated with which to test UIL concepts against specific Space Station scenarios using operators for the astronaut and scientific community. Because of the importance of expert system in the space station, it was decided that an expert system should be embedded in the UIL. This would not only provide insight into the UIL components required but would indicate the effectiveness with which an expert system could function in such an environment.

  10. A Review and Reappraisal of Adaptive Human-Computer Interfaces in Complex Control Systems

    DTIC Science & Technology

    2006-08-01

    maneuverability measures. The cost elements were expressed as fuzzy membership functions. Figure 9 shows the flowchart of the route planner. A fuzzy navigator...and updating of the user model, which contains information about three generic stereotypes ( beginner , intermediate and expert users) plus an

  11. CRAX. Cassandra Exoskeleton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, D.G.; Eubanks, L.

    1998-03-01

    This software assists the engineering designer in characterizing the statistical uncertainty in the performance of complex systems as a result of variations in manufacturing processes, material properties, system geometry or operating environment. The software is composed of a graphical user interface that provides the user with easy access to Cassandra uncertainty analysis routines. Together this interface and the Cassandra routines are referred to as CRAX (CassandRA eXoskeleton). The software is flexible enough, that with minor modification, it is able to interface with large modeling and analysis codes such as heat transfer or finite element analysis software. The current version permitsmore » the user to manually input a performance function, the number of random variables and their associated statistical characteristics: density function, mean, coefficients of variation. Additional uncertainity analysis modules are continuously being added to the Cassandra core.« less

  12. Cassandra Exoskeleton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robiinson, David G.

    1999-02-20

    This software assists the engineering designer in characterizing the statistical uncertainty in the performance of complex systems as a result of variations in manufacturing processes, material properties, system geometry or operating environment. The software is composed of a graphical user interface that provides the user with easy access to Cassandra uncertainty analysis routines. Together this interface and the Cassandra routines are referred to as CRAX (CassandRA eXoskeleton). The software is flexible enough, that with minor modification, it is able to interface with large modeling and analysis codes such as heat transfer or finite element analysis software. The current version permitsmore » the user to manually input a performance function, the number of random variables and their associated statistical characteristics: density function, mean, coefficients of variation. Additional uncertainity analysis modules are continuously being added to the Cassandra core.« less

  13. bioboxes v510

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Michael; Droge, Johannes; Belmann, Peter

    2017-06-22

    Software is now both central and essential to modern biology, yet lack of availability, difficult installations, and complex user interfaces make software hard to obtain and use. Containerisation, as exemplified by the Docker platform, has the potential to solve the problems associated with sharing software. The developers propose bioboxes: containers with standardised interfaces to make bioinformatics software interchangeable.

  14. MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization.

    PubMed

    Guner, Huseyin; Close, Patrick L; Cai, Wenxuan; Zhang, Han; Peng, Ying; Gregorich, Zachery R; Ge, Ying

    2014-03-01

    The rapid advancements in mass spectrometry (MS) instrumentation, particularly in Fourier transform (FT) MS, have made the acquisition of high-resolution and high-accuracy mass measurements routine. However, the software tools for the interpretation of high-resolution MS data are underdeveloped. Although several algorithms for the automatic processing of high-resolution MS data are available, there is still an urgent need for a user-friendly interface with functions that allow users to visualize and validate the computational output. Therefore, we have developed MASH Suite, a user-friendly and versatile software interface for processing high-resolution MS data. MASH Suite contains a wide range of features that allow users to easily navigate through data analysis, visualize complex high-resolution MS data, and manually validate automatically processed results. Furthermore, it provides easy, fast, and reliable interpretation of top-down, middle-down, and bottom-up MS data. MASH Suite is convenient, easily operated, and freely available. It can greatly facilitate the comprehensive interpretation and validation of high-resolution MS data with high accuracy and reliability.

  15. Novel Virtual User Models of Mild Cognitive Impairment for Simulating Dementia

    PubMed Central

    Segkouli, Sofia; Tzovaras, Dimitrios; Tsakiris, Thanos; Tsolaki, Magda; Karagiannidis, Charalampos

    2015-01-01

    Virtual user modeling research has attempted to address critical issues of human-computer interaction (HCI) such as usability and utility through a large number of analytic, usability-oriented approaches as cognitive models in order to provide users with experiences fitting to their specific needs. However, there is demand for more specific modules embodied in cognitive architecture that will detect abnormal cognitive decline across new synthetic task environments. Also, accessibility evaluation of graphical user interfaces (GUIs) requires considerable effort for enhancing ICT products accessibility for older adults. The main aim of this study is to develop and test virtual user models (VUM) simulating mild cognitive impairment (MCI) through novel specific modules, embodied at cognitive models and defined by estimations of cognitive parameters. Well-established MCI detection tests assessed users' cognition, elaborated their ability to perform multitasks, and monitored the performance of infotainment related tasks to provide more accurate simulation results on existing conceptual frameworks and enhanced predictive validity in interfaces' design supported by increased tasks' complexity to capture a more detailed profile of users' capabilities and limitations. The final outcome is a more robust cognitive prediction model, accurately fitted to human data to be used for more reliable interfaces' evaluation through simulation on the basis of virtual models of MCI users. PMID:26339282

  16. Integrating UIMA annotators in a web-based text processing framework.

    PubMed

    Chen, Xiang; Arnold, Corey W

    2013-01-01

    The Unstructured Information Management Architecture (UIMA) [1] framework is a growing platform for natural language processing (NLP) applications. However, such applications may be difficult for non-technical users deploy. This project presents a web-based framework that wraps UIMA-based annotator systems into a graphical user interface for researchers and clinicians, and a web service for developers. An annotator that extracts data elements from lung cancer radiology reports is presented to illustrate the use of the system. Annotation results from the web system can be exported to multiple formats for users to utilize in other aspects of their research and workflow. This project demonstrates the benefits of a lay-user interface for complex NLP applications. Efforts such as this can lead to increased interest and support for NLP work in the clinical domain.

  17. A framework for analyzing the cognitive complexity of computer-assisted clinical ordering.

    PubMed

    Horsky, Jan; Kaufman, David R; Oppenheim, Michael I; Patel, Vimla L

    2003-01-01

    Computer-assisted provider order entry is a technology that is designed to expedite medical ordering and to reduce the frequency of preventable errors. This paper presents a multifaceted cognitive methodology for the characterization of cognitive demands of a medical information system. Our investigation was informed by the distributed resources (DR) model, a novel approach designed to describe the dimensions of user interfaces that introduce unnecessary cognitive complexity. This method evaluates the relative distribution of external (system) and internal (user) representations embodied in system interaction. We conducted an expert walkthrough evaluation of a commercial order entry system, followed by a simulated clinical ordering task performed by seven clinicians. The DR model was employed to explain variation in user performance and to characterize the relationship of resource distribution and ordering errors. The analysis revealed that the configuration of resources in this ordering application placed unnecessarily heavy cognitive demands on the user, especially on those who lacked a robust conceptual model of the system. The resources model also provided some insight into clinicians' interactive strategies and patterns of associated errors. Implications for user training and interface design based on the principles of human-computer interaction in the medical domain are discussed.

  18. The Philosophy of User Interfaces in HELIO and the Importance of CASSIS

    NASA Astrophysics Data System (ADS)

    Bonnin, X.; Aboudarham, J.; Renié, C.; Csillaghy, A.; Messerotti, M.; Bentley, R. D.

    2012-09-01

    HELIO is a European project funded under FP7 (Project No. 238969). One of its goals as a Heliospheric Virtual Observatory is to provide an easy access to many datasets scattered all over the world, in the fields of Solar physics, Heliophysics, and Planetary magnetospheres. The efficiency of such a tool is very much related to the quality of the user interface. HELIO infrastructure is based on a Service Oriented Architecture (SOA), regrouping a network of standalone components, which allows four main types of interfaces: - HELIO Front End (HFE) is a browser-based user interface, which offers a centralized access to the HELIO main functionalities. Especially, it provides the possibility to reach data directly, or to refine selection by determination of observing characteristics, such as which instrument was observing at that time, which instrument was at this location, etc. - Many services/components provide their own standalone graphical user interface. While one can directly access individually each of these interfaces, they can also be connected together. - Most services also provide direct access for any tools through a public interface. A small java library, called Java API, simplifies this access by providing client stubs for services and shields the user from security, discovery and failover issues. - Workflows capabilities are available in HELIO, allowing complex combination of queries over several services. We want the user to be able to navigate easily, at his needs, through the various interfaces, and possibly use a specific one in order to make much-dedicated queries. We will also emphasize the importance of the CASSIS project (Coordination Action for the integration of Solar System Infrastructure and Science) in encouraging the interoperability necessary to undertake scientific studies that span disciplinary boundaries. If related projects follow the guidelines being developed by CASSIS then using external resources with HELIO will be greatly simplified.

  19. Hiding the system from the user: Moving from complex mental models to elegant metaphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis W. Nielsen; David J. Bruemmer

    2007-08-01

    In previous work, increased complexity of robot behaviors and the accompanying interface design often led to operator confusion and/or a fight for control between the robot and operator. We believe the reason for the conflict was that the design of the interface and interactions presented too much of the underlying robot design model to the operator. Since the design model includes the implementation of sensors, behaviors, and sophisticated algorithms, the result was that the operator’s cognitive efforts were focused on understanding the design of the robot system as opposed to focusing on the task at hand. This paper illustrates howmore » this very problem emerged at the INL and how the implementation of new metaphors for interaction has allowed us to hide the design model from the user and allow the user to focus more on the task at hand. Supporting the user’s focus on the task rather than on the design model allows increased use of the system and significant performance improvement in a search task with novice users.« less

  20. Evaluation of a wireless wearable tongue–computer interface by individuals with high-level spinal cord injuries

    PubMed Central

    Huo, Xueliang; Ghovanloo, Maysam

    2010-01-01

    The tongue drive system (TDS) is an unobtrusive, minimally invasive, wearable and wireless tongue–computer interface (TCI), which can infer its users' intentions, represented in their volitional tongue movements, by detecting the position of a small permanent magnetic tracer attached to the users' tongues. Any specific tongue movements can be translated into user-defined commands and used to access and control various devices in the users' environments. The latest external TDS (eTDS) prototype is built on a wireless headphone and interfaced to a laptop PC and a powered wheelchair. Using customized sensor signal processing algorithms and graphical user interface, the eTDS performance was evaluated by 13 naive subjects with high-level spinal cord injuries (C2–C5) at the Shepherd Center in Atlanta, GA. Results of the human trial show that an average information transfer rate of 95 bits/min was achieved for computer access with 82% accuracy. This information transfer rate is about two times higher than the EEG-based BCIs that are tested on human subjects. It was also demonstrated that the subjects had immediate and full control over the powered wheelchair to the extent that they were able to perform complex wheelchair navigation tasks, such as driving through an obstacle course. PMID:20332552

  1. Interaction design challenges and solutions for ALMA operations monitoring and control

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar

    2012-09-01

    The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.

  2. A distributed, graphical user interface based, computer control system for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  3. A distributed, graphical user interface based, computer control system for atomic physics experiments.

    PubMed

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  4. Specialized Environmental Chamber Test Complex: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Michael E.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Specialized Environmental Test Complex. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  5. Bioboxes: standardised containers for interchangeable bioinformatics software.

    PubMed

    Belmann, Peter; Dröge, Johannes; Bremges, Andreas; McHardy, Alice C; Sczyrba, Alexander; Barton, Michael D

    2015-01-01

    Software is now both central and essential to modern biology, yet lack of availability, difficult installations, and complex user interfaces make software hard to obtain and use. Containerisation, as exemplified by the Docker platform, has the potential to solve the problems associated with sharing software. We propose bioboxes: containers with standardised interfaces to make bioinformatics software interchangeable.

  6. The North Carolina State University Libraries Search Experience: Usability Testing Tabbed Search Interfaces for Academic Libraries

    ERIC Educational Resources Information Center

    Teague-Rector, Susan; Ballard, Angela; Pauley, Susan K.

    2011-01-01

    Creating a learnable, effective, and user-friendly library Web site hinges on providing easy access to search. Designing a search interface for academic libraries can be particularly challenging given the complexity and range of searchable library collections, such as bibliographic databases, electronic journals, and article search silos. Library…

  7. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories

    PubMed Central

    2014-01-01

    Background Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes. PMID:25077693

  8. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories.

    PubMed

    Abdel-Azeim, Safwat; Chermak, Edrisse; Vangone, Anna; Oliva, Romina; Cavallo, Luigi

    2014-01-01

    Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.

  9. Instrumentino: An Open-Source Software for Scientific Instruments.

    PubMed

    Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C

    2015-01-01

    Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.

  10. Tele-rehabilitation using in-house wearable ankle rehabilitation robot.

    PubMed

    Jamwal, Prashant K; Hussain, Shahid; Mir-Nasiri, Nazim; Ghayesh, Mergen H; Xie, Sheng Q

    2018-01-01

    This article explores wide-ranging potential of the wearable ankle robot for in-house rehabilitation. The presented robot has been conceptualized following a brief analysis of the existing technologies, systems, and solutions for in-house physical ankle rehabilitation. Configuration design analysis and component selection for ankle robot have been discussed as part of the conceptual design. The complexities of human robot interaction are closely encountered while maneuvering a rehabilitation robot. We present a fuzzy logic-based controller to perform the required robot-assisted ankle rehabilitation treatment. Designs of visual haptic interfaces have also been discussed, which will make the treatment interesting, and the subject will be motivated to exert more and regain lost functions rapidly. The complex nature of web-based communication between user and remotely sitting physiotherapy staff has also been discussed. A high-level software architecture appended with robot ensures user-friendly operations. This software is made up of three important components: patient-related database, graphical user interface (GUI), and a library of exercises creating virtual reality-specifically developed for ankle rehabilitation.

  11. Do Haptic Representations Help Complex Molecular Learning?

    ERIC Educational Resources Information Center

    Bivall, Petter; Ainsworth, Shaaron; Tibell, Lena A. E.

    2011-01-01

    This study explored whether adding a haptic interface (that provides users with somatosensory information about virtual objects by force and tactile feedback) to a three-dimensional (3D) chemical model enhanced students' understanding of complex molecular interactions. Two modes of the model were compared in a between-groups pre- and posttest…

  12. Human factors aspects of control room design

    NASA Technical Reports Server (NTRS)

    Jenkins, J. P.

    1983-01-01

    A plan for the design and analysis of a multistation control room is reviewed. It is found that acceptance of the computer based information system by the uses in the control room is mandatory for mission and system success. Criteria to improve computer/user interface include: match of system input/output with user; reliability, compatibility and maintainability; easy to learn and little training needed; self descriptive system; system under user control; transparent language, format and organization; corresponds to user expectations; adaptable to user experience level; fault tolerant; dialog capability user communications needs reflected in flexibility, complexity, power and information load; integrated system; and documentation.

  13. A Distributed Value of Information (VoI)-Based Approach for Mission-Adaptive Context-Aware Information Management and Presentation

    DTIC Science & Technology

    2016-05-16

    metrics involve regulating automation of complex systems , such as aircraft .12 Additionally, adaptive management of content in user interfaces has also...both the user and environmental context would aid in deciding how to present the information to the Warfighter. The prototype system currently...positioning system , and rate sensors can provide user - specific context to disambiguate physiologic data. The consumer “quantified self” market has driven

  14. The use of analytical models in human-computer interface design

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo

    1993-01-01

    Recently, a large number of human-computer interface (HCI) researchers have investigated building analytical models of the user, which are often implemented as computer models. These models simulate the cognitive processes and task knowledge of the user in ways that allow a researcher or designer to estimate various aspects of an interface's usability, such as when user errors are likely to occur. This information can lead to design improvements. Analytical models can supplement design guidelines by providing designers rigorous ways of analyzing the information-processing requirements of specific tasks (i.e., task analysis). These models offer the potential of improving early designs and replacing some of the early phases of usability testing, thus reducing the cost of interface design. This paper describes some of the many analytical models that are currently being developed and evaluates the usefulness of analytical models for human-computer interface design. This paper will focus on computational, analytical models, such as the GOMS model, rather than less formal, verbal models, because the more exact predictions and task descriptions of computational models may be useful to designers. The paper also discusses some of the practical requirements for using analytical models in complex design organizations such as NASA.

  15. Phast4Windows: A 3D graphical user interface for the reactive-transport simulator PHAST

    USGS Publications Warehouse

    Charlton, Scott R.; Parkhurst, David L.

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties—the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones—and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport.

  16. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  17. User's Manual for the Object User Interface (OUI): An Environmental Resource Modeling Framework

    USGS Publications Warehouse

    Markstrom, Steven L.; Koczot, Kathryn M.

    2008-01-01

    The Object User Interface is a computer application that provides a framework for coupling environmental-resource models and for managing associated temporal and spatial data. The Object User Interface is designed to be easily extensible to incorporate models and data interfaces defined by the user. Additionally, the Object User Interface is highly configurable through the use of a user-modifiable, text-based control file that is written in the eXtensible Markup Language. The Object User Interface user's manual provides (1) installation instructions, (2) an overview of the graphical user interface, (3) a description of the software tools, (4) a project example, and (5) specifications for user configuration and extension.

  18. The Simple Concurrent Online Processing System (SCOPS) - An open-source interface for remotely sensed data processing

    NASA Astrophysics Data System (ADS)

    Warren, M. A.; Goult, S.; Clewley, D.

    2018-06-01

    Advances in technology allow remotely sensed data to be acquired with increasingly higher spatial and spectral resolutions. These data may then be used to influence government decision making and solve a number of research and application driven questions. However, such large volumes of data can be difficult to handle on a single personal computer or on older machines with slower components. Often the software required to process data is varied and can be highly technical and too advanced for the novice user to fully understand. This paper describes an open-source tool, the Simple Concurrent Online Processing System (SCOPS), which forms part of an airborne hyperspectral data processing chain that allows users accessing the tool over a web interface to submit jobs and process data remotely. It is demonstrated using Natural Environment Research Council Airborne Research Facility (NERC-ARF) instruments together with other free- and open-source tools to take radiometrically corrected data from sensor geometry into geocorrected form and to generate simple or complex band ratio products. The final processed data products are acquired via an HTTP download. SCOPS can cut data processing times and introduce complex processing software to novice users by distributing jobs across a network using a simple to use web interface.

  19. ECCE Toolkit: Prototyping Sensor-Based Interaction.

    PubMed

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-02-23

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  20. Evaluating and extending user-level fault tolerance in MPI applications

    DOE PAGES

    Laguna, Ignacio; Richards, David F.; Gamblin, Todd; ...

    2016-01-11

    The user-level failure mitigation (ULFM) interface has been proposed to provide fault-tolerant semantics in the Message Passing Interface (MPI). Previous work presented performance evaluations of ULFM; yet questions related to its programability and applicability, especially to non-trivial, bulk synchronous applications, remain unanswered. In this article, we present our experiences on using ULFM in a case study with a large, highly scalable, bulk synchronous molecular dynamics application to shed light on the advantages and difficulties of this interface to program fault-tolerant MPI applications. We found that, although ULFM is suitable for master–worker applications, it provides few benefits for more common bulkmore » synchronous MPI applications. Furthermore, to address these limitations, we introduce a new, simpler fault-tolerant interface for complex, bulk synchronous MPI programs with better applicability and support than ULFM for application-level recovery mechanisms, such as global rollback.« less

  1. ECCE Toolkit: Prototyping Sensor-Based Interaction

    PubMed Central

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma

    2017-01-01

    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit. PMID:28241502

  2. Web-based metabolic network visualization with a zooming user interface

    PubMed Central

    2011-01-01

    Background Displaying complex metabolic-map diagrams, for Web browsers, and allowing users to interact with them for querying and overlaying expression data over them is challenging. Description We present a Web-based metabolic-map diagram, which can be interactively explored by the user, called the Cellular Overview. The main characteristic of this application is the zooming user interface enabling the user to focus on appropriate granularities of the network at will. Various searching commands are available to visually highlight sets of reactions, pathways, enzymes, metabolites, and so on. Expression data from single or multiple experiments can be overlaid on the diagram, which we call the Omics Viewer capability. The application provides Web services to highlight the diagram and to invoke the Omics Viewer. This application is entirely written in JavaScript for the client browsers and connect to a Pathway Tools Web server to retrieve data and diagrams. It uses the OpenLayers library to display tiled diagrams. Conclusions This new online tool is capable of displaying large and complex metabolic-map diagrams in a very interactive manner. This application is available as part of the Pathway Tools software that powers multiple metabolic databases including Biocyc.org: The Cellular Overview is accessible under the Tools menu. PMID:21595965

  3. Is There a Chance for a Standardised User Interface?

    ERIC Educational Resources Information Center

    Fletcher, Liz

    1993-01-01

    Issues concerning the implementation of standard user interfaces for CD-ROMs are discussed, including differing perceptions of the ideal interface, graphical user interfaces, user needs, and the standard protocols. It is suggested users should be able to select from a variety of user interfaces on each CD-ROM. (EA)

  4. Development of a User Interface for a Regression Analysis Software Tool

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.

  5. Comparing Text-based and Graphic User Interfaces for Novice and Expert Users

    PubMed Central

    Chen, Jung-Wei; Zhang, Jiajie

    2007-01-01

    Graphic User Interface (GUI) is commonly considered to be superior to Text-based User Interface (TUI). This study compares GUI and TUI in an electronic dental record system. Several usability analysis techniques compared the relative effectiveness of a GUI and a TUI. Expert users and novice users were evaluated in time required and steps needed to complete the task. A within-subject design was used to evaluate if the experience with either interface will affect task performance. The results show that the GUI interface was not better than the TUI for expert users. GUI interface was better for novice users. For novice users there was a learning transfer effect from TUI to GUI. This means a user interface is user-friendly or not depending on the mapping between the user interface and tasks. GUI by itself may or may not be better than TUI. PMID:18693811

  6. Comparing Text-based and Graphic User Interfaces for novice and expert users.

    PubMed

    Chen, Jung-Wei; Zhang, Jiajie

    2007-10-11

    Graphic User Interface (GUI) is commonly considered to be superior to Text-based User Interface (TUI). This study compares GUI and TUI in an electronic dental record system. Several usability analysis techniques compared the relative effectiveness of a GUI and a TUI. Expert users and novice users were evaluated in time required and steps needed to complete the task. A within-subject design was used to evaluate if the experience with either interface will affect task performance. The results show that the GUI interface was not better than the TUI for expert users. GUI interface was better for novice users. For novice users there was a learning transfer effect from TUI to GUI. This means a user interface is user-friendly or not depending on the mapping between the user interface and tasks. GUI by itself may or may not be better than TUI.

  7. Internet Technology in Magnetic Resonance: A Common Gateway Interface Program for the World-Wide Web NMR Spectrometer

    NASA Astrophysics Data System (ADS)

    Buszko, Marian L.; Buszko, Dominik; Wang, Daniel C.

    1998-04-01

    A custom-written Common Gateway Interface (CGI) program for remote control of an NMR spectrometer using a World Wide Web browser has been described. The program, running on a UNIX workstation, uses multiple processes to handle concurrent tasks of interacting with the user and with the spectrometer. The program's parent process communicates with the browser and sends out commands to the spectrometer; the child process is mainly responsible for data acquisition. Communication between the processes is via the shared memory mechanism. The WWW pages that have been developed for the system make use of the frames feature of web browsers. The CGI program provides an intuitive user interface to the NMR spectrometer, making, in effect, a complex system an easy-to-use Web appliance.

  8. Project Ukko - Design of a climate service visualisation interface for seasonal wind forecasts

    NASA Astrophysics Data System (ADS)

    Hemment, Drew; Stefaner, Moritz; Makri, Stephann; Buontempo, Carlo; Christel, Isadora; Torralba-Fernandez, Veronica; Gonzalez-Reviriego, Nube; Doblas-Reyes, Francisco; de Matos, Paula; Dykes, Jason

    2016-04-01

    Project Ukko is a prototype climate service to visually communicate probabilistic seasonal wind forecasts for the energy sector. In Project Ukko, an interactive visualisation enhances the accessibility and readability to the latests advances in seasonal wind speed predictions developed as part of the RESILIENCE prototype of the EUPORIAS (EC FP7) project. Climate services provide made-to-measure climate information, tailored to the specific requirements of different users and industries. In the wind energy sector, understanding of wind conditions in the next few months has high economic value, for instance, for the energy traders. Current energy practices use retrospective climatology, but access to reliable seasonal predictions based in the recent advances in global climate models has potential to improve their resilience to climate variability and change. Despite their potential benefits, a barrier to the development of commercially viable services is the complexity of the probabilistic forecast information, and the challenge of communicating complex and uncertain information to decision makers in industry. Project Ukko consists of an interactive climate service interface for wind energy users to explore probabilistic wind speed predictions for the coming season. This interface enables fast visual detection and exploration of interesting features and regions likely to experience unusual changes in wind speed in the coming months.The aim is not only to support users to better understand the future variability in wind power resources, but also to bridge the gap between practitioners' traditional approach and the advanced prediction systems developed by the climate science community. Project Ukko is presented as a case study of cross-disciplinary collaboration between climate science and design, for the development of climate services that are useful, usable and effective for industry users. The presentation will reflect on the challenge of developing a climate service for industry users in the wind energy sector, the background to this challenge, our approach, and the evaluation of the visualisation interface.

  9. Steamer II: Steamer prototype component inventory and user interface commands. Technical report, 1988-1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickieson, J.L.; Thode, W.F.; Newbury, K.

    1988-12-01

    Over the last several years, Navy Personnel Research and Development has produced a prototype simulation of a 1200-psi steam plant. This simulation, called Steamer, is installed on an expensive Symbolics minicomputer at the Surface Warfare Officers School, Pacific Coronado, California. The fundamental research goal of the Steamer prototype system was to evaluate the potential of, what was then, new artificial intelligence (AI) hardware and software technology for supporting the construction of computer-based training systems using graphic representations of complex, dynamic systems. The area of propulsion engineering was chosen for a number of reasons. This document describes the Steamer prototype systemmore » components and user interface commands and establishes a starting point for designing, developing, and implementing Steamer II. Careful examination of the actual program code produced an inventory that describes the hardware, system software, application software, and documentation for the Steamer prototype system. Exercising all menu options systematically produced an inventory of all Steamer prototype user interface commands.« less

  10. IAIMS Architecture

    PubMed Central

    Hripcsak, George

    1997-01-01

    Abstract An information system architecture defines the components of a system and the interfaces among the components. A good architecture is essential for creating an Integrated Advanced Information Management System (IAIMS) that works as an integrated whole yet is flexible enough to accommodate many users and roles, multiple applications, changing vendors, evolving user needs, and advancing technology. Modularity and layering promote flexibility by reducing the complexity of a system and by restricting the ways in which components may interact. Enterprise-wide mediation promotes integration by providing message routing, support for standards, dictionary-based code translation, a centralized conceptual data schema, business rule implementation, and consistent access to databases. Several IAIMS sites have adopted a client-server architecture, and some have adopted a three-tiered approach, separating user interface functions, application logic, and repositories. PMID:9067884

  11. Dakota Graphical User Interface v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman-Hill, Ernest; Glickman, Matthew; Gibson, Marcus

    Graphical analysis environment for Sandia’s Dakota software for optimization and uncertainty quantification. The Dakota GUI is an interactive graphical analysis environment for creating, running, and interpreting Dakota optimization and uncertainty quantification studies. It includes problem (Dakota study) set-up, option specification, simulation interfacing, analysis execution, and results visualization. Through the use of wizards, templates, and views, Dakota GUI helps uses navigate Dakota’s complex capability landscape.

  12. JAva GUi for Applied Research (JAGUAR) v 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JAGUAR is a Java software tool for automatically rendering a graphical user interface (GUI) from a structured input specification. It is designed as a plug-in to the Eclipse workbench to enable users to create, edit, and externally execute analysis application input decks and then view the results. JAGUAR serves as a GUI for Sandia's DAKOTA software toolkit for optimization and uncertainty quantification. It will include problem (input deck)set-up, option specification, analysis execution, and results visualization. Through the use of wizards, templates, and views, JAGUAR helps uses navigate the complexity of DAKOTA's complete input specification. JAGUAR is implemented in Java, leveragingmore » Eclipse extension points and Eclipse user interface. JAGUAR parses a DAKOTA NIDR input specification and presents the user with linked graphical and plain text representations of problem set-up and option specification for DAKOTA studies. After the data has been input by the user, JAGUAR generates one or more input files for DAKOTA, executes DAKOTA, and captures and interprets the results« less

  13. A PDA-based system for online recording and analysis of concurrent events in complex behavioral processes.

    PubMed

    Held, Jürgen; Manser, Tanja

    2005-02-01

    This article outlines how a Palm- or Newton-based PDA (personal digital assistant) system for online event recording was used to record and analyze concurrent events. We describe the features of this PDA-based system, called the FIT-System (flexible interface technique), and its application to the analysis of concurrent events in complex behavioral processes--in this case, anesthesia work processes. The patented FIT-System has a unique user interface design allowing the user to design an interface template with a pencil and paper or using a transparency film. The template usually consists of a drawing or sketch that includes icons or symbols that depict the observer's representation of the situation to be observed. In this study, the FIT-System allowed us to create a design for fast, intuitive online recording of concurrent events using a set of 41 observation codes. An analysis of concurrent events leads to a description of action density, and our results revealed a characteristic distribution of action density during the administration of anesthesia in the operating room. This distribution indicated the central role of the overlapping operations in the action sequences of medical professionals as they deal with the varying requirements of this complex task. We believe that the FIT-System for online recording of concurrent events in complex behavioral processes has the potential to be useful across a broad spectrum of research areas.

  14. A usability evaluation of a SNOMED CT based compositional interface terminology for intensive care.

    PubMed

    Bakhshi-Raiez, F; de Keizer, N F; Cornet, R; Dorrepaal, M; Dongelmans, D; Jaspers, M W M

    2012-05-01

    To evaluate the usability of a large compositional interface terminology based on SNOMED CT and the terminology application for registration of the reasons for intensive care admission in a Patient Data Management System. Observational study with user-based usability evaluations before and 3 months after the system was implemented and routinely used. Usability was defined by five aspects: effectiveness, efficiency, learnability, overall user satisfaction, and experienced usability problems. Qualitative (the Think-Aloud user testing method) and quantitative (the System Usability Scale questionnaire and Time-on-Task analyses) methods were used to examine these usability aspects. The results of the evaluation study revealed that the usability of the interface terminology fell short (SUS scores before and after implementation of 47.2 out of 100 and 37.5 respectively out of 100). The qualitative measurements revealed a high number (n=35) of distinct usability problems, leading to ineffective and inefficient registration of reasons for admission. The effectiveness and efficiency of the system did not change over time. About 14% (n=5) of the revealed usability problems were related to the terminology content based on SNOMED CT, while the remaining 86% (n=30) was related to the terminology application. The problems related to the terminology content were more severe than the problems related to the terminology application. This study provides a detailed insight into how clinicians interact with a controlled compositional terminology through a terminology application. The extensiveness, complexity of the hierarchy, and the language usage of an interface terminology are defining for its usability. Carefully crafted domain-specific subsets and a well-designed terminology application are needed to facilitate the use of a complex compositional interface terminology based on SNOMED CT. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. C-quence: a tool for analyzing qualitative sequential data.

    PubMed

    Duncan, Starkey; Collier, Nicholson T

    2002-02-01

    C-quence is a software application that matches sequential patterns of qualitative data specified by the user and calculates the rate of occurrence of these patterns in a data set. Although it was designed to facilitate analyses of face-to-face interaction, it is applicable to any data set involving categorical data and sequential information. C-quence queries are constructed using a graphical user interface. The program does not limit the complexity of the sequential patterns specified by the user.

  16. Semi-automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

    PubMed Central

    Jurrus, Elizabeth; Watanabe, Shigeki; Giuly, Richard J.; Paiva, Antonio R. C.; Ellisman, Mark H.; Jorgensen, Erik M.; Tasdizen, Tolga

    2013-01-01

    Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes. PMID:22644867

  17. Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurrus, Elizabeth R.; Watanabe, Shigeki; Giuly, Richard J.

    2013-01-01

    Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated processmore » first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.« less

  18. New web technologies for astronomy

    NASA Astrophysics Data System (ADS)

    Sprimont, P.-G.; Ricci, D.; Nicastro, L.

    2014-12-01

    Thanks to the new HTML5 capabilities and the huge improvements of the JavaScript language, it is now possible to design very complex and interactive web user interfaces. On top of that, the once monolithic and file-server oriented web servers are evolving into easily programmable server applications capable to cope with the complex interactions made possible by the new generation of browsers. We believe that the whole community of amateur and professionals astronomers can benefit from the potential of these new technologies. New web interfaces can be designed to provide the user with a large deal of much more intuitive and interactive tools. Accessing astronomical data archives, schedule, control and monitor observatories, and in particular robotic telescopes, supervising data reduction pipelines, all are capabilities that can now be implemented in a JavaScript web application. In this paper we describe the Sadira package we are implementing exactly to this aim.

  19. A process for prototyping onboard payload displays for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1992-01-01

    Significant advances have been made in the area of Human-Computer Interface design. However, there is no well-defined process for going from user interface requirements to user interface design. Developing and designing a clear and consistent user interface for medium to large scale systems is a very challenging and complex task. The task becomes increasingly difficult when there is very little guidance and procedures on how the development process should flow from one stage to the next. Without a specific sequence of development steps each design becomes difficult to repeat, to evaluate, to improve, and to articulate to others. This research contributes a process which identifies the phases of development and products produced as a result of each phase for a rapid prototyping process to be used to develop requirements for the onboard payload displays for Space Station Freedom. The functional components of a dynamic prototyping environment in which this process can be carried out is also discussed. Some of the central questions which are answered here include: How does one go from specifications to an actual prototype? How is a prototype evaluated? How is usability defined and thus measured? How do we use the information from evaluation in redesign of an interface? and Are there techniques which allow for convergence on a design?

  20. Effect of alignment perturbations in a trans-tibial prosthesis user: A pilot study.

    PubMed

    Courtney, Anna; Orendurff, Michael S; Buis, Arjan

    2016-04-01

    A recurring complication in trans-tibial prosthetic limb users is "poor socket fit" with painful residuum-socket interfaces, a consequence of excess pressure. This is due to both poor socket fit and poor socket alignment; however, the interaction of these factors has not been quantified. Through evaluation of kinetic data this study aimed to articulate an interaction uniting socket design, alignment and interface pressures. The results will help to refine future studies and will hopefully help determine whether sockets can be designed, fitted and aligned to maximize mobility whilst minimizing injurious forces. Interface pressures were recorded throughout ambulation in one user with "optimal (reference) alignment" followed by 5 malalignments in a patellar tendon-bearing and a hydrocast socket. Marked differences in pressure distribution were discovered when equating the patellar tendon-bearing against the hydrocast socket and when comparing interface pressures from reference with offset alignment. Patellar tendon-bearing sockets were found to be more sensitive to alignment perturbations than hydrocast sockets. A complex interaction was found, with the most prominent finding demonstrating the requisite for attainment of optimal alignment: a translational alignment error of 10 mm can increase maximum peak pressures by 227% (mean 17.5%). Refinements for future trials are described and the necessity for future research into socket design, alignment and interface pressures has been estabilished.

  1. User interface for a tele-operated robotic hand system

    DOEpatents

    Crawford, Anthony L

    2015-03-24

    Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.

  2. Pulser: user-friendly, graphical user-interface based software for controlling stimuli during data acquisition with Spike2 for Windows.

    PubMed

    Lidierth, Malcolm

    2005-02-15

    This paper describes software that runs in the Spike2 for Windows environment and provides a versatile tool for generating stimuli during data acquisition from the 1401 family of interfaces (CED, UK). A graphical user interface (GUI) is used to provide dynamic control of stimulus timing. Both single stimuli and trains of stimuli can be generated. The pulse generation routines make use of programmable variables within the interface and allow these to be rapidly changed during an experiment. The routines therefore provide the ease-of-use associated with external, stand-alone pulse generators. Complex stimulus protocols can be loaded from an external text file and facilities are included to create these files through the GUI. The software consists of a Spike2 script that runs in the host PC, and accompanying routines written in the 1401 sequencer control code, that run in the 1401 interface. Handshaking between the PC and the interface card are built into the routines and provides for full integration of sampling, analysis and stimulus generation during an experiment. Control of the 1401 digital-to-analogue converters is also provided; this allows control of stimulus amplitude as well as timing and also provides a sample-hold feature that may be used to remove DC offsets and drift from recorded data.

  3. Phast4Windows: a 3D graphical user interface for the reactive-transport simulator PHAST.

    PubMed

    Charlton, Scott R; Parkhurst, David L

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties-the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones-and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  4. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands

    PubMed Central

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system’s complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs. PMID:26069961

  5. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.

    PubMed

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system's complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs.

  6. Sketching Uncertainty into Simulations.

    PubMed

    Ribicic, H; Waser, J; Gurbat, R; Sadransky, B; Groller, M E

    2012-12-01

    In a variety of application areas, the use of simulation steering in decision making is limited at best. Research focusing on this problem suggests that most user interfaces are too complex for the end user. Our goal is to let users create and investigate multiple, alternative scenarios without the need for special simulation expertise. To simplify the specification of parameters, we move from a traditional manipulation of numbers to a sketch-based input approach. Users steer both numeric parameters and parameters with a spatial correspondence by sketching a change onto the rendering. Special visualizations provide immediate visual feedback on how the sketches are transformed into boundary conditions of the simulation models. Since uncertainty with respect to many intertwined parameters plays an important role in planning, we also allow the user to intuitively setup complete value ranges, which are then automatically transformed into ensemble simulations. The interface and the underlying system were developed in collaboration with experts in the field of flood management. The real-world data they have provided has allowed us to construct scenarios used to evaluate the system. These were presented to a variety of flood response personnel, and their feedback is discussed in detail in the paper. The interface was found to be intuitive and relevant, although a certain amount of training might be necessary.

  7. Force Control and Nonlinear Master-Slave Force Profile to Manage an Admittance Type Multi-Fingered Haptic User Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony L. Crawford

    2012-08-01

    Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in remote and/or hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space to name a few. In order to achieve this end the research presented in this paper has developed an admittance type exoskeleton like multi-fingered haptic hand user interface that secures the user’s palm and provides 3-dimensional force feedback to the user’s fingertips. Atypical to conventional haptic hand user interfaces that limit themselves to integrating the human hand’s characteristics just into the system’smore » mechanical design this system also perpetuates that inspiration into the designed user interface’s controller. This is achieved by manifesting the property differences of manipulation and grasping activities as they pertain to the human hand into a nonlinear master-slave force relationship. The results presented in this paper show that the admittance-type system has sufficient bandwidth that it appears nearly transparent to the user when the user is in free motion and when the system is subjected to a manipulation task, increased performance is achieved using the nonlinear force relationship compared to the traditional linear scaling techniques implemented in the vast majority of systems.« less

  8. High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE

    PubMed Central

    Moriya, Toshio; Saur, Michael; Stabrin, Markus; Merino, Felipe; Voicu, Horatiu; Huang, Zhong; Penczek, Pawel A.; Raunser, Stefan; Gatsogiannis, Christos

    2017-01-01

    SPHIRE (SPARX for High-Resolution Electron Microscopy) is a novel open-source, user-friendly software suite for the semi-automated processing of single particle electron cryo-microscopy (cryo-EM) data. The protocol presented here describes in detail how to obtain a near-atomic resolution structure starting from cryo-EM micrograph movies by guiding users through all steps of the single particle structure determination pipeline. These steps are controlled from the new SPHIRE graphical user interface and require minimum user intervention. Using this protocol, a 3.5 Å structure of TcdA1, a Tc toxin complex from Photorhabdus luminescens, was derived from only 9500 single particles. This streamlined approach will help novice users without extensive processing experience and a priori structural information, to obtain noise-free and unbiased atomic models of their purified macromolecular complexes in their native state. PMID:28570515

  9. PRince: a web server for structural and physicochemical analysis of protein-RNA interface.

    PubMed

    Barik, Amita; Mishra, Abhishek; Bahadur, Ranjit Prasad

    2012-07-01

    We have developed a web server, PRince, which analyzes the structural features and physicochemical properties of the protein-RNA interface. Users need to submit a PDB file containing the atomic coordinates of both the protein and the RNA molecules in complex form (in '.pdb' format). They should also mention the chain identifiers of interacting protein and RNA molecules. The size of the protein-RNA interface is estimated by measuring the solvent accessible surface area buried in contact. For a given protein-RNA complex, PRince calculates structural, physicochemical and hydration properties of the interacting surfaces. All these parameters generated by the server are presented in a tabular format. The interacting surfaces can also be visualized with software plug-in like Jmol. In addition, the output files containing the list of the atomic coordinates of the interacting protein, RNA and interface water molecules can be downloaded. The parameters generated by PRince are novel, and users can correlate them with the experimentally determined biophysical and biochemical parameters for better understanding the specificity of the protein-RNA recognition process. This server will be continuously upgraded to include more parameters. PRince is publicly accessible and free for use. Available at http://www.facweb.iitkgp.ernet.in/~rbahadur/prince/home.html.

  10. Internet Technology in Magnetic Resonance: A Common Gateway Interface Program for the World-Wide Web NMR Spectrometer

    PubMed

    Buszko; Buszko; Wang

    1998-04-01

    A custom-written Common Gateway Interface (CGI) program for remote control of an NMR spectrometer using a World Wide Web browser has been described. The program, running on a UNIX workstation, uses multiple processes to handle concurrent tasks of interacting with the user and with the spectrometer. The program's parent process communicates with the browser and sends out commands to the spectrometer; the child process is mainly responsible for data acquisition. Communication between the processes is via the shared memory mechanism. The WWW pages that have been developed for the system make use of the frames feature of web browsers. The CGI program provides an intuitive user interface to the NMR spectrometer, making, in effect, a complex system an easy-to-use Web appliance. Copyright 1998 Academic Press.

  11. DNAproDB: an interactive tool for structural analysis of DNA–protein complexes

    PubMed Central

    Sagendorf, Jared M.

    2017-01-01

    Abstract Many biological processes are mediated by complex interactions between DNA and proteins. Transcription factors, various polymerases, nucleases and histones recognize and bind DNA with different levels of binding specificity. To understand the physical mechanisms that allow proteins to recognize DNA and achieve their biological functions, it is important to analyze structures of DNA–protein complexes in detail. DNAproDB is a web-based interactive tool designed to help researchers study these complexes. DNAproDB provides an automated structure-processing pipeline that extracts structural features from DNA–protein complexes. The extracted features are organized in structured data files, which are easily parsed with any programming language or viewed in a browser. We processed a large number of DNA–protein complexes retrieved from the Protein Data Bank and created the DNAproDB database to store this data. Users can search the database by combining features of the DNA, protein or DNA–protein interactions at the interface. Additionally, users can upload their own structures for processing privately and securely. DNAproDB provides several interactive and customizable tools for creating visualizations of the DNA–protein interface at different levels of abstraction that can be exported as high quality figures. All functionality is documented and freely accessible at http://dnaprodb.usc.edu. PMID:28431131

  12. HyFinBall: A Two-Handed, Hybrid 2D/3D Desktop VR Interface for Visualization

    DTIC Science & Technology

    2013-01-01

    user study . This is done in the context of a rich, visual analytics interface containing coordinated views with 2D and 3D visualizations and...the user interface (hardware and software), the design space, as well as preliminary results of a formal user study . This is done in the context of a ... virtual reality , user interface , two-handed interface , hybrid user interface , multi-touch, gesture,

  13. Python-based geometry preparation and simulation visualization toolkits for STEPS

    PubMed Central

    Chen, Weiliang; De Schutter, Erik

    2014-01-01

    STEPS is a stochastic reaction-diffusion simulation engine that implements a spatial extension of Gillespie's Stochastic Simulation Algorithm (SSA) in complex tetrahedral geometries. An extensive Python-based interface is provided to STEPS so that it can interact with the large number of scientific packages in Python. However, a gap existed between the interfaces of these packages and the STEPS user interface, where supporting toolkits could reduce the amount of scripting required for research projects. This paper introduces two new supporting toolkits that support geometry preparation and visualization for STEPS simulations. PMID:24782754

  14. Graphical user interface simplifies infusion pump programming and enhances the ability to detect pump-related faults.

    PubMed

    Syroid, Noah; Liu, David; Albert, Robert; Agutter, James; Egan, Talmage D; Pace, Nathan L; Johnson, Ken B; Dowdle, Michael R; Pulsipher, Daniel; Westenskow, Dwayne R

    2012-11-01

    Drug administration errors are frequent and are often associated with the misuse of IV infusion pumps. One source of these errors may be the infusion pump's user interface. We used failure modes-and-effects analyses to identify programming errors and to guide the design of a new syringe pump user interface. We designed the new user interface to clearly show the pump's operating state simultaneously in more than 1 monitoring location. We evaluated anesthesia residents in laboratory and simulated environments on programming accuracy and error detection between the new user interface and the user interface of a commercially available infusion pump. With the new user interface, we observed the number of programming errors reduced by 81%, the number of keystrokes per task reduced from 9.2 ± 5.0 to 7.5 ± 5.5 (mean ± SD), the time required per task reduced from 18.1 ± 14.1 seconds to 10.9 ± 9.5 seconds and significantly less perceived workload. Residents detected 38 of 70 (54%) of the events with the new user interface and 37 of 70 (53%) with the existing user interface, despite no experience with the new user interface and extensive experience with the existing interface. The number of programming errors and workload were reduced partly because it took less time and fewer keystrokes to program the pump when using the new user interface. Despite minimal training, residents quickly identified preexisting infusion pump problems with the new user interface. Intuitive and easy-to-program infusion pump interfaces may reduce drug administration errors and infusion pump-related adverse events.

  15. Method and apparatus for managing transactions with connected computers

    DOEpatents

    Goldsmith, Steven Y.; Phillips, Laurence R.; Spires, Shannon V.

    2003-01-01

    The present invention provides a method and apparatus that make use of existing computer and communication resources and that reduce the errors and delays common to complex transactions such as international shipping. The present invention comprises an agent-based collaborative work environment that assists geographically distributed commercial and government users in the management of complex transactions such as the transshipment of goods across the U.S.-Mexico border. Software agents can mediate the creation, validation and secure sharing of shipment information and regulatory documentation over the Internet, using the World-Wide Web to interface with human users.

  16. The use of Graphic User Interface for development of a user-friendly CRS-Stack software

    NASA Astrophysics Data System (ADS)

    Sule, Rachmat; Prayudhatama, Dythia; Perkasa, Muhammad D.; Hendriyana, Andri; Fatkhan; Sardjito; Adriansyah

    2017-04-01

    The development of a user-friendly Common Reflection Surface (CRS) Stack software that has been built by implementing Graphical User Interface (GUI) is described in this paper. The original CRS-Stack software developed by WIT Consortium is compiled in the unix/linux environment, which is not a user-friendly software, so that a user must write the commands and parameters manually in a script file. Due to this limitation, the CRS-Stack become a non popular method, although applying this method is actually a promising way in order to obtain better seismic sections, which have better reflector continuity and S/N ratio. After obtaining successful results that have been tested by using several seismic data belong to oil companies in Indonesia, it comes to an idea to develop a user-friendly software in our own laboratory. Graphical User Interface (GUI) is a type of user interface that allows people to interact with computer programs in a better way. Rather than typing commands and module parameters, GUI allows the users to use computer programs in much simple and easy. Thus, GUI can transform the text-based interface into graphical icons and visual indicators. The use of complicated seismic unix shell script can be avoided. The Java Swing GUI library is used to develop this CRS-Stack GUI. Every shell script that represents each seismic process is invoked from Java environment. Besides developing interactive GUI to perform CRS-Stack processing, this CRS-Stack GUI is design to help geophysicists to manage a project with complex seismic processing procedures. The CRS-Stack GUI software is composed by input directory, operators, and output directory, which are defined as a seismic data processing workflow. The CRS-Stack processing workflow involves four steps; i.e. automatic CMP stack, initial CRS-Stack, optimized CRS-Stack, and CRS-Stack Supergather. Those operations are visualized in an informative flowchart with self explanatory system to guide the user inputting the parameter values for each operation. The knowledge of CRS-Stack processing procedure is still preserved in the software, which is easy and efficient to be learned. The software will still be developed in the future. Any new innovative seismic processing workflow will also be added into this GUI software.

  17. Making intelligent systems team players: Case studies and design issues. Volume 1: Human-computer interaction design

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.

    1991-01-01

    Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.

  18. Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.

    PubMed

    Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou

    2012-01-01

    Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.

  19. 'Fly Like This': Natural Language Interface for UAV Mission Planning

    NASA Technical Reports Server (NTRS)

    Chandarana, Meghan; Meszaros, Erica L.; Trujillo, Anna; Allen, B. Danette

    2017-01-01

    With the increasing presence of unmanned aerial vehicles (UAVs) in everyday environments, the user base of these powerful and potentially intelligent machines is expanding beyond exclusively highly trained vehicle operators to include non-expert system users. Scientists seeking to augment costly and often inflexible methods of data collection historically used are turning towards lower cost and reconfigurable UAVs. These new users require more intuitive and natural methods for UAV mission planning. This paper explores two natural language interfaces - gesture and speech - for UAV flight path generation through individual user studies. Subjects who participated in the user studies also used a mouse-based interface for a baseline comparison. Each interface allowed the user to build flight paths from a library of twelve individual trajectory segments. Individual user studies evaluated performance, efficacy, and ease-of-use of each interface using background surveys, subjective questionnaires, and observations on time and correctness. Analysis indicates that natural language interfaces are promising alternatives to traditional interfaces. The user study data collected on the efficacy and potential of each interface will be used to inform future intuitive UAV interface design for non-expert users.

  20. Development of a task analysis tool to facilitate user interface design

    NASA Technical Reports Server (NTRS)

    Scholtz, Jean C.

    1992-01-01

    A good user interface is one that facilitates the user in carrying out his task. Such interfaces are difficult and costly to produce. The most important aspect in producing a good interface is the ability to communicate to the software designers what the user's task is. The Task Analysis Tool is a system for cooperative task analysis and specification of the user interface requirements. This tool is intended to serve as a guide to development of initial prototypes for user feedback.

  1. Implementing virtual reality interfaces for the geosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, W.; Jacobsen, J.; Austin, A.

    1996-06-01

    For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter threemore » or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.« less

  2. Acquisition and production of skilled behavior in dynamic decision-making tasks. Semiannual Status Report M.S. Thesis - Georgia Inst. of Tech., Nov. 1992

    NASA Technical Reports Server (NTRS)

    Kirlik, Alex; Kossack, Merrick Frank

    1993-01-01

    This status report consists of a thesis entitled 'Ecological Task Analysis: A Method for Display Enhancements.' Previous use of various analysis processes for the purpose of display interface design or enhancement has run the risk of failing to improve user performance due to the analysis resulting in only a sequencial listing of user tasks. Adopting an ecological approach to performing the task analysis, however, may result in the necessary modeling of an unpredictable and variable task domain required to improve user performance. Kirlik has proposed an Ecological Task Analysis framework which is designed for this purpose. It is the purpose of this research to measure this framework's effectiveness at enhancing display interfaces in order to improve user performance. Following the proposed framework, an ecological task analysis of experienced users of a complex and dynamic laboratory task, Star Cruiser, was performed. Based on this analysis, display enhancements were proposed and implemented. An experiment was then conducted to compare this new version of Star Cruiser to the original. By measuring user performance at different tasks, it was determined that during early sessions, use of the enhanced display contributed to better user performance compared to that achieved using the original display. Furthermore, the results indicate that the enhancements proposed as a result of the ecological task analysis affected user performance differently depending on whether they are enhancements which aid in the selection of a possible action or in the performance of an action. Generalizations of these findings to larger, more complex systems were avoided since the analysis was only performed on this one particular system.

  3. Formal analysis and automatic generation of user interfaces: approach, methodology, and an algorithm.

    PubMed

    Heymann, Michael; Degani, Asaf

    2007-04-01

    We present a formal approach and methodology for the analysis and generation of user interfaces, with special emphasis on human-automation interaction. A conceptual approach for modeling, analyzing, and verifying the information content of user interfaces is discussed. The proposed methodology is based on two criteria: First, the interface must be correct--that is, given the interface indications and all related information (user manuals, training material, etc.), the user must be able to successfully perform the specified tasks. Second, the interface and related information must be succinct--that is, the amount of information (mode indications, mode buttons, parameter settings, etc.) presented to the user must be reduced (abstracted) to the minimum necessary. A step-by-step procedure for generating the information content of the interface that is both correct and succinct is presented and then explained and illustrated via two examples. Every user interface is an abstract description of the underlying system. The correspondence between the abstracted information presented to the user and the underlying behavior of a given machine can be analyzed and addressed formally. The procedure for generating the information content of user interfaces can be automated, and a software tool for its implementation has been developed. Potential application areas include adaptive interface systems and customized/personalized interfaces.

  4. NONLINEAR FORCE PROFILE USED TO INCREASE THE PERFORMANCE OF A HAPTIC USER INTERFACE FOR TELEOPERATING A ROBOTIC HAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony L. Crawford

    MODIFIED PAPER TITLE AND ABSTRACT DUE TO SLIGHTLY MODIFIED SCOPE: TITLE: Nonlinear Force Profile Used to Increase the Performance of a Haptic User Interface for Teleoperating a Robotic Hand Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space. The research associated with this paper hypothesizes that a user interface and complementary radiation compatible robotic hand that integrates the human hand’s anthropometric properties, speed capability, nonlinear strength profile, reduction of active degrees of freedommore » during the transition from manipulation to grasping, and just noticeable difference force sensation characteristics will enhance a user’s teleoperation performance. The main contribution of this research is in that a system that concisely integrates all these factors has yet to be developed and furthermore has yet to be applied to a hazardous environment as those referenced above. In fact, the most prominent slave manipulator teleoperation technology in use today is based on a design patented in 1945 (Patent 2632574) [1]. The robotic hand/user interface systems of similar function as the one being developed in this research limit their design input requirements in the best case to only complementing the hand’s anthropometric properties, speed capability, and linearly scaled force application relationship (e.g. robotic force is a constant, 4 times that of the user). In this paper a nonlinear relationship between the force experienced between the user interface and the robotic hand was devised based on property differences of manipulation and grasping activities as they pertain to the human hand. The results show that such a relationship when subjected to a manipulation task and grasping task produces increased performance compared to the traditional linear scaling techniques used by other systems. Key Words: Teleoperation, Robotic Hand, Robotic Force Scaling« less

  5. Intelligent user interface concept for space station

    NASA Technical Reports Server (NTRS)

    Comer, Edward; Donaldson, Cameron; Bailey, Elizabeth; Gilroy, Kathleen

    1986-01-01

    The space station computing system must interface with a wide variety of users, from highly skilled operations personnel to payload specialists from all over the world. The interface must accommodate a wide variety of operations from the space platform, ground control centers and from remote sites. As a result, there is a need for a robust, highly configurable and portable user interface that can accommodate the various space station missions. The concept of an intelligent user interface executive, written in Ada, that would support a number of advanced human interaction techniques, such as windowing, icons, color graphics, animation, and natural language processing is presented. The user interface would provide intelligent interaction by understanding the various user roles, the operations and mission, the current state of the environment and the current working context of the users. In addition, the intelligent user interface executive must be supported by a set of tools that would allow the executive to be easily configured and to allow rapid prototyping of proposed user dialogs. This capability would allow human engineering specialists acting in the role of dialog authors to define and validate various user scenarios. The set of tools required to support development of this intelligent human interface capability is discussed and the prototyping and validation efforts required for development of the Space Station's user interface are outlined.

  6. Hybrid Electron Microscopy Normal Mode Analysis graphical interface and protocol.

    PubMed

    Sorzano, Carlos Oscar S; de la Rosa-Trevín, José Miguel; Tama, Florence; Jonić, Slavica

    2014-11-01

    This article presents an integral graphical interface to the Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) approach that was developed for capturing continuous motions of large macromolecular complexes from single-particle EM images. HEMNMA was shown to be a good approach to analyze multiple conformations of a macromolecular complex but it could not be widely used in the EM field due to a lack of an integral interface. In particular, its use required switching among different software sources as well as selecting modes for image analysis was difficult without the graphical interface. The graphical interface was thus developed to simplify the practical use of HEMNMA. It is implemented in the open-source software package Xmipp 3.1 (http://xmipp.cnb.csic.es) and only a small part of it relies on MATLAB that is accessible through the main interface. Such integration provides the user with an easy way to perform the analysis of macromolecular dynamics and forms a direct connection to the single-particle reconstruction process. A step-by-step HEMNMA protocol with the graphical interface is given in full details in Supplementary material. The graphical interface will be useful to experimentalists who are interested in studies of continuous conformational changes of macromolecular complexes beyond the modeling of continuous heterogeneity in single particle reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. GRASP/Ada 95: Reverse Engineering Tools for Ada

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1996-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped an algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD), and a new visualization for a fine-grained complexity metric called the Complexity Profile Graph (CPG). By synchronizing the CSD and the CPG, the CSD view of control structure, nesting, and source code is directly linked to the corresponding visualization of statement level complexity in the CPG. GRASP has been integrated with GNAT, the GNU Ada 95 Translator to provide a comprehensive graphical user interface and development environment for Ada 95. The user may view, edit, print, and compile source code as a CSD with no discernible addition to storage or computational overhead. The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada 95 source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. The current update has focused on the design and implementation of a new Motif compliant user interface, and a new CSD generator consisting of a tagger and renderer. The Complexity Profile Graph (CPG) is based on a set of functions that describes the context, content, and the scaling for complexity on a statement by statement basis. When combined graphicafly, the result is a composite profile of complexity for the program unit. Ongoing research includes the development and refinement of the associated functions, and the development of the CPG generator prototype. The current Version 5.0 prototype provides the capability for the user to generate CSDs and CPGs from Ada 95 source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application. This report provides an overview of the GRASP/Ada project with an emphasis on the current update.

  8. Electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and graphical user interface platform for aviation industries training purposes

    NASA Astrophysics Data System (ADS)

    Burhan, I.; Azman, A. A.; Othman, R.

    2016-10-01

    An electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and Visual Basic (VB) platform is fabricated as a supporting tool to existing teaching and learning process, and to achieve the objectives and learning outcomes towards enhancing the student's knowledge and hands-on skill, especially in electro pneumatic devices. The existing learning process for electro pneumatic courses conducted in the classroom does not emphasize on simulation and complex practical aspects. VB is used as the platform for graphical user interface (GUI) while PIC as the interface circuit between the GUI and hardware of electro pneumatic apparatus. Fabrication of electro pneumatic trainer interfacing between PIC and VB has been designed and improved by involving multiple types of electro pneumatic apparatus such as linear drive, air motor, semi rotary motor, double acting cylinder and single acting cylinder. Newly fabricated electro pneumatic trainer microcontroller interface can be programmed and re-programmed for numerous combination of tasks. Based on the survey to 175 student participants, 97% of the respondents agreed that the newly fabricated trainer is user friendly, safe and attractive, and 96.8% of the respondents strongly agreed that there is improvement in knowledge development and also hands-on skill in their learning process. Furthermore, the Lab Practical Evaluation record has indicated that the respondents have improved their academic performance (hands-on skills) by an average of 23.5%.

  9. State of the art in nuclear telerobotics: focus on the man/machine connection

    NASA Astrophysics Data System (ADS)

    Greaves, Amna E.

    1995-12-01

    The interface between the human controller and remotely operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface, or UI, is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality, and multi degree-of-freedom input devices lend us the ability to augment the man/machine interface, and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of 3-D input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that lead to the next generation of telerobotic interface systems.

  10. TOTAL user manual

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.; Boerschlein, David P.

    1994-01-01

    Semi-Markov models can be used to analyze the reliability of virtually any fault-tolerant system. However, the process of delineating all of the states and transitions in the model of a complex system can be devastatingly tedious and error-prone. Even with tools such as the Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST), the user must describe a system by specifying the rules governing the behavior of the system in order to generate the model. With the Table Oriented Translator to the ASSIST Language (TOTAL), the user can specify the components of a typical system and their attributes in the form of a table. The conditions that lead to system failure are also listed in a tabular form. The user can also abstractly specify dependencies with causes and effects. The level of information required is appropriate for system designers with little or no background in the details of reliability calculations. A menu-driven interface guides the user through the system description process, and the program updates the tables as new information is entered. The TOTAL program automatically generates an ASSIST input description to match the system description.

  11. Standards for the user interface - Developing a user consensus. [for Space Station Information System

    NASA Technical Reports Server (NTRS)

    Moe, Karen L.; Perkins, Dorothy C.; Szczur, Martha R.

    1987-01-01

    The user support environment (USE) which is a set of software tools for a flexible standard interactive user interface to the Space Station systems, platforms, and payloads is described in detail. Included in the USE concept are a user interface language, a run time environment and user interface management system, support tools, and standards for human interaction methods. The goals and challenges of the USE are discussed as well as a methodology based on prototype demonstrations for involving users in the process of validating the USE concepts. By prototyping the key concepts and salient features of the proposed user interface standards, the user's ability to respond is greatly enhanced.

  12. A Climate Information Platform for Copernicus (CLIPC): managing the data flood

    NASA Astrophysics Data System (ADS)

    Juckes, Martin; Swart, Rob; Bärring, Lars; Groot, Annemarie; Thysse, Peter; Som de Cerff, Wim; Costa, Luis; Lückenkötter, Johannes; Callaghan, Sarah; Bennett, Victoria

    2016-04-01

    The FP7 project "Climate Information Platform for Copernicus" (CLIPC) is developing a demonstration portal for the Copernicus Climate Change Service (C3S). The project confronts many problems associated with the huge diversity of underlying data, complex multi-layered uncertainties and extremely complex and evolving user requirements. The infrastructure is founded on a comprehensive approach to managing data and documentation, using global domain independent standards where possible. An extensive thesaurus of terms provides both a robust and flexible foundation for data discovery services and accessible definitions to support users. It is, of course, essential to provide information to users through an interface which reflects their expectations rather than the intricacies of abstract data models. CLIPC has reviewed user engagement activities from other collaborative European projects, conducted user polls, interviews and meetings and is now entering an evaluation phase in which users discuss new features and options in the portal design. The CLIPC portal will provide access to raw climate science data and climate impact indicators derived from that data. The portal needs the flexibility to support access to extremely large datasets as well as providing means to manipulate data and explore complex products interactively.

  13. Transparent Information Systems through Gateways, Front Ends, Intermediaries, and Interfaces.

    ERIC Educational Resources Information Center

    Williams, Martha E.

    1986-01-01

    Provides overview of design requirements for transparent information retrieval (implies that user sees through complexity of retrieval activities sequence). Highlights include need for transparent systems; history of transparent retrieval research; information retrieval functions (automated converters, routers, selectors, evaluators/analyzers);…

  14. Distributed user interfaces for clinical ubiquitous computing applications.

    PubMed

    Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik

    2005-08-01

    Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.

  15. A Cloud-Based Simulation Architecture for Pandemic Influenza Simulation

    PubMed Central

    Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas

    2011-01-01

    High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089

  16. BIOLOGICAL NETWORK EXPLORATION WITH CYTOSCAPE 3

    PubMed Central

    Su, Gang; Morris, John H.; Demchak, Barry; Bader, Gary D.

    2014-01-01

    Cytoscape is one of the most popular open-source software tools for the visual exploration of biomedical networks composed of protein, gene and other types of interactions. It offers researchers a versatile and interactive visualization interface for exploring complex biological interconnections supported by diverse annotation and experimental data, thereby facilitating research tasks such as predicting gene function and pathway construction. Cytoscape provides core functionality to load, visualize, search, filter and save networks, and hundreds of Apps extend this functionality to address specific research needs. The latest generation of Cytoscape (version 3.0 and later) has substantial improvements in function, user interface and performance relative to previous versions. This protocol aims to jump-start new users with specific protocols for basic Cytoscape functions, such as installing Cytoscape and Cytoscape Apps, loading data, visualizing and navigating the network, visualizing network associated data (attributes) and identifying clusters. It also highlights new features that benefit experienced users. PMID:25199793

  17. AutoAssemblyD: a graphical user interface system for several genome assemblers.

    PubMed

    Veras, Adonney Allan de Oliveira; de Sá, Pablo Henrique Caracciolo Gomes; Azevedo, Vasco; Silva, Artur; Ramos, Rommel Thiago Jucá

    2013-01-01

    Next-generation sequencing technologies have increased the amount of biological data generated. Thus, bioinformatics has become important because new methods and algorithms are necessary to manipulate and process such data. However, certain challenges have emerged, such as genome assembly using short reads and high-throughput platforms. In this context, several algorithms have been developed, such as Velvet, Abyss, Euler-SR, Mira, Edna, Maq, SHRiMP, Newbler, ALLPATHS, Bowtie and BWA. However, most such assemblers do not have a graphical interface, which makes their use difficult for users without computing experience given the complexity of the assembler syntax. Thus, to make the operation of such assemblers accessible to users without a computing background, we developed AutoAssemblyD, which is a graphical tool for genome assembly submission and remote management by multiple assemblers through XML templates. AssemblyD is freely available at https://sourceforge.net/projects/autoassemblyd. It requires Sun jdk 6 or higher.

  18. A flexible, interactive software tool for fitting the parameters of neuronal models.

    PubMed

    Friedrich, Péter; Vella, Michael; Gulyás, Attila I; Freund, Tamás F; Káli, Szabolcs

    2014-01-01

    The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible) the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation) of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problems of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire) neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting tool.

  19. A flexible, interactive software tool for fitting the parameters of neuronal models

    PubMed Central

    Friedrich, Péter; Vella, Michael; Gulyás, Attila I.; Freund, Tamás F.; Káli, Szabolcs

    2014-01-01

    The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible) the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation) of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problems of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire) neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting tool. PMID:25071540

  20. Vibrotactile Feedback for Brain-Computer Interface Operation

    PubMed Central

    Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.

    2007-01-01

    To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury), we compared vibrotactile and visual feedback, addressing: (I) the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II) the compatibility of this form of feedback in presence of a visual distracter; (III) the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users. PMID:18354734

  1. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.

    PubMed

    Brown, David K; Penkler, David L; Musyoka, Thommas M; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.

  2. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing

    PubMed Central

    Brown, David K.; Penkler, David L.; Musyoka, Thommas M.; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS. PMID:26280450

  3. Important ingredients for health adaptive information systems.

    PubMed

    Senathirajah, Yalini; Bakken, Suzanne

    2011-01-01

    Healthcare information systems frequently do not truly meet clinician needs, due to the complexity, variability, and rapid change in medical contexts. Recently the internet world has been transformed by approaches commonly termed 'Web 2.0'. This paper proposes a Web 2.0 model for a healthcare adaptive architecture. The vision includes creating modular, user-composable systems which aim to make all necessary information from multiple internal and external sources available via a platform, for the user to use, arrange, recombine, author, and share at will, using rich interfaces where advisable. Clinicians can create a set of 'widgets' and 'views' which can transform data, reflect their domain knowledge and cater to their needs, using simple drag and drop interfaces without the intervention of programmers. We have built an example system, MedWISE, embodying the user-facing parts of the model. This approach to HIS is expected to have several advantages, including greater suitability to user needs (reflecting clinician rather than programmer concepts and priorities), incorporation of multiple information sources, agile reconfiguration to meet emerging situations and new treatment deployment, capture of user domain expertise and tacit knowledge, efficiencies due to workflow and human-computer interaction improvements, and greater user acceptance.

  4. Neuronvisio: A Graphical User Interface with 3D Capabilities for NEURON.

    PubMed

    Mattioni, Michele; Cohen, Uri; Le Novère, Nicolas

    2012-01-01

    The NEURON simulation environment is a commonly used tool to perform electrical simulation of neurons and neuronal networks. The NEURON User Interface, based on the now discontinued InterViews library, provides some limited facilities to explore models and to plot their simulation results. Other limitations include the inability to generate a three-dimensional visualization, no standard mean to save the results of simulations, or to store the model geometry within the results. Neuronvisio (http://neuronvisio.org) aims to address these deficiencies through a set of well designed python APIs and provides an improved UI, allowing users to explore and interact with the model. Neuronvisio also facilitates access to previously published models, allowing users to browse, download, and locally run NEURON models stored in ModelDB. Neuronvisio uses the matplotlib library to plot simulation results and uses the HDF standard format to store simulation results. Neuronvisio can be viewed as an extension of NEURON, facilitating typical user workflows such as model browsing, selection, download, compilation, and simulation. The 3D viewer simplifies the exploration of complex model structure, while matplotlib permits the plotting of high-quality graphs. The newly introduced ability of saving numerical results allows users to perform additional analysis on their previous simulations.

  5. Graphical User Interface Programming in Introductory Computer Science.

    ERIC Educational Resources Information Center

    Skolnick, Michael M.; Spooner, David L.

    Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…

  6. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    NASA Astrophysics Data System (ADS)

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  7. 3D Displays And User Interface Design For A Radiation Therapy Treatment Planning CAD Tool

    NASA Astrophysics Data System (ADS)

    Mosher, Charles E.; Sherouse, George W.; Chaney, Edward L.; Rosenman, Julian G.

    1988-06-01

    The long term goal of the project described in this paper is to improve local tumor control through the use of computer-aided treatment design methods that can result in selection of better treatment plans compared with conventional planning methods. To this end, a CAD tool for the design of radiation treatment beams is described. Crucial to the effectiveness of this tool are high quality 3D display techniques. We have found that 2D and 3D display methods dramatically improve the comprehension of the complex spatial relationships between patient anatomy, radiation beams, and dose distributions. In order to take full advantage of these displays, an intuitive and highly interactive user interface was created. If the system is to be used by physicians unfamiliar with computer systems, it is essential that a user interface is incorporated that allows the user to navigate through each step of the design process in a manner similar to what they are used to. Compared with conventional systems, we believe our display and CAD tools will allow the radiotherapist to achieve more accurate beam targetting leading to a better radiation dose configuration to the tumor volume. This would result in a reduction of the dose to normal tissue.

  8. Customizable scientific web-portal for DIII-D nuclear fusion experiment

    NASA Astrophysics Data System (ADS)

    Abla, G.; Kim, E. N.; Schissel, D. P.

    2010-04-01

    Increasing utilization of the Internet and convenient web technologies has made the web-portal a major application interface for remote participation and control of scientific instruments. While web-portals have provided a centralized gateway for multiple computational services, the amount of visual output often is overwhelming due to the high volume of data generated by complex scientific instruments and experiments. Since each scientist may have different priorities and areas of interest in the experiment, filtering and organizing information based on the individual user's need can increase the usability and efficiency of a web-portal. DIII-D is the largest magnetic nuclear fusion device in the US. A web-portal has been designed to support the experimental activities of DIII-D researchers worldwide. It offers a customizable interface with personalized page layouts and list of services for users to select. Each individual user can create a unique working environment to fit his own needs and interests. Customizable services are: real-time experiment status monitoring, diagnostic data access, interactive data analysis and visualization. The web-portal also supports interactive collaborations by providing collaborative logbook, and online instant announcement services. The DIII-D web-portal development utilizes multi-tier software architecture, and Web 2.0 technologies and tools, such as AJAX and Django, to develop a highly-interactive and customizable user interface.

  9. An advanced web query interface for biological databases

    PubMed Central

    Latendresse, Mario; Karp, Peter D.

    2010-01-01

    Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for building precise queries for biological DBs that can construct much more precise queries than most web-based query forms, yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs. Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than 500 Pathway/Genome DBs. PMID:20624715

  10. Visualization-by-Sketching: An Artist's Interface for Creating Multivariate Time-Varying Data Visualizations.

    PubMed

    Schroeder, David; Keefe, Daniel F

    2016-01-01

    We present Visualization-by-Sketching, a direct-manipulation user interface for designing new data visualizations. The goals are twofold: First, make the process of creating real, animated, data-driven visualizations of complex information more accessible to artists, graphic designers, and other visual experts with traditional, non-technical training. Second, support and enhance the role of human creativity in visualization design, enabling visual experimentation and workflows similar to what is possible with traditional artistic media. The approach is to conceive of visualization design as a combination of processes that are already closely linked with visual creativity: sketching, digital painting, image editing, and reacting to exemplars. Rather than studying and tweaking low-level algorithms and their parameters, designers create new visualizations by painting directly on top of a digital data canvas, sketching data glyphs, and arranging and blending together multiple layers of animated 2D graphics. This requires new algorithms and techniques to interpret painterly user input relative to data "under" the canvas, balance artistic freedom with the need to produce accurate data visualizations, and interactively explore large (e.g., terabyte-sized) multivariate datasets. Results demonstrate a variety of multivariate data visualization techniques can be rapidly recreated using the interface. More importantly, results and feedback from artists support the potential for interfaces in this style to attract new, creative users to the challenging task of designing more effective data visualizations and to help these users stay "in the creative zone" as they work.

  11. Building intuitive 3D interfaces for virtual reality systems

    NASA Astrophysics Data System (ADS)

    Vaidya, Vivek; Suryanarayanan, Srikanth; Seitel, Mathias; Mullick, Rakesh

    2007-03-01

    An exploration of techniques for developing intuitive, and efficient user interfaces for virtual reality systems. Work seeks to understand which paradigms from the better-understood world of 2D user interfaces remain viable within 3D environments. In order to establish this a new user interface was created that applied various understood principles of interface design. A user study was then performed where it was compared with an earlier interface for a series of medical visualization tasks.

  12. A web based Radiation Oncology Dose Manager with a rich User Interface developed using AJAX, ruby, dynamic XHTML and the new Yahoo/EXT User Interface Library.

    PubMed

    Vali, Faisal; Hong, Robert

    2007-10-11

    With the evolution of AJAX, ruby on rails, advanced dynamic XHTML technologies and the advent of powerful user interface libraries for javascript (EXT, Yahoo User Interface Library), developers now have the ability to provide truly rich interfaces within web browsers, with reasonable effort and without third-party plugins. We designed and developed an example of such a solution. The User Interface allows radiation oncology practices to intuitively manage different dose fractionation schemes by helping estimate total dose to irradiated organs.

  13. Clinician user involvement in the real world: Designing an electronic tool to improve interprofessional communication and collaboration in a hospital setting.

    PubMed

    Tang, Terence; Lim, Morgan E; Mansfield, Elizabeth; McLachlan, Alexander; Quan, Sherman D

    2018-02-01

    User involvement is vital to the success of health information technology implementation. However, involving clinician users effectively and meaningfully in complex healthcare organizations remains challenging. The objective of this paper is to share our real-world experience of applying a variety of user involvement methods in the design and implementation of a clinical communication and collaboration platform aimed at facilitating care of complex hospitalized patients by an interprofessional team of clinicians. We designed and implemented an electronic clinical communication and collaboration platform in a large community teaching hospital. The design team consisted of both technical and healthcare professionals. Agile software development methodology was used to facilitate rapid iterative design and user input. We involved clinician users at all stages of the development lifecycle using a variety of user-centered, user co-design, and participatory design methods. Thirty-six software releases were delivered over 24 months. User involvement has resulted in improvement in user interface design, identification of software defects, creation of new modules that facilitated workflow, and identification of necessary changes to the scope of the project early on. A variety of user involvement methods were complementary and benefited the design and implementation of a complex health IT solution. Combining these methods with agile software development methodology can turn designs into functioning clinical system to support iterative improvement. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Integrating a local database into the StarView distributed user interface

    NASA Technical Reports Server (NTRS)

    Silberberg, D. P.

    1992-01-01

    A distributed user interface to the Space Telescope Data Archive and Distribution Service (DADS) known as StarView is being developed. The DADS architecture consists of the data archive as well as a relational database catalog describing the archive. StarView is a client/server system in which the user interface is the front-end client to the DADS catalog and archive servers. Users query the DADS catalog from the StarView interface. Query commands are transmitted via a network and evaluated by the database. The results are returned via the network and are displayed on StarView forms. Based on the results, users decide which data sets to retrieve from the DADS archive. Archive requests are packaged by StarView and sent to DADS, which returns the requested data sets to the users. The advantages of distributed client/server user interfaces over traditional one-machine systems are well known. Since users run software on machines separate from the database, the overall client response time is much faster. Also, since the server is free to process only database requests, the database response time is much faster. Disadvantages inherent in this architecture are slow overall database access time due to the network delays, lack of a 'get previous row' command, and that refinements of a previously issued query must be submitted to the database server, even though the domain of values have already been returned by the previous query. This architecture also does not allow users to cross correlate DADS catalog data with other catalogs. Clearly, a distributed user interface would be more powerful if it overcame these disadvantages. A local database is being integrated into StarView to overcome these disadvantages. When a query is made through a StarView form, which is often composed of fields from multiple tables, it is translated to an SQL query and issued to the DADS catalog. At the same time, a local database table is created to contain the resulting rows of the query. The returned rows are displayed on the form as well as inserted into the local database table. Identical results are produced by reissuing the query to either the DADS catalog or to the local table. Relational databases do not provide a 'get previous row' function because of the inherent complexity of retrieving previous rows of multiple-table joins. However, since this function is easily implemented on a single table, StarView uses the local table to retrieve the previous row. Also, StarView issues subsequent query refinements to the local table instead of the DADS catalog, eliminating the network transmission overhead. Finally, other catalogs can be imported into the local database for cross correlation with local tables. Overall, it is believe that this is a more powerful architecture for distributed, database user interfaces.

  15. Methods for Improving the User-Computer Interface. Technical Report.

    ERIC Educational Resources Information Center

    McCann, Patrick H.

    This summary of methods for improving the user-computer interface is based on a review of the pertinent literature. Requirements of the personal computer user are identified and contrasted with computer designer perspectives towards the user. The user's psychological needs are described, so that the design of the user-computer interface may be…

  16. Interface Metaphors for Interactive Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Robert J.; Blaha, Leslie M.

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be usedmore » in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.« less

  17. Representing Graphical User Interfaces with Sound: A Review of Approaches

    ERIC Educational Resources Information Center

    Ratanasit, Dan; Moore, Melody M.

    2005-01-01

    The inability of computer users who are visually impaired to access graphical user interfaces (GUIs) has led researchers to propose approaches for adapting GUIs to auditory interfaces, with the goal of providing access for visually impaired people. This article outlines the issues involved in nonvisual access to graphical user interfaces, reviews…

  18. Stand-alone digital data storage control system including user control interface

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D. (Inventor); Gray, David L. (Inventor)

    1994-01-01

    A storage control system includes an apparatus and method for user control of a storage interface to operate a storage medium to store data obtained by a real-time data acquisition system. Digital data received in serial format from the data acquisition system is first converted to a parallel format and then provided to the storage interface. The operation of the storage interface is controlled in accordance with instructions based on user control input from a user. Also, a user status output is displayed in accordance with storage data obtained from the storage interface. By allowing the user to control and monitor the operation of the storage interface, a stand-alone, user-controllable data storage system is provided for storing the digital data obtained by a real-time data acquisition system.

  19. Natural Language Based Multimodal Interface for UAV Mission Planning

    NASA Technical Reports Server (NTRS)

    Chandarana, Meghan; Meszaros, Erica L.; Trujillo, Anna; Allen, B. Danette

    2017-01-01

    As the number of viable applications for unmanned aerial vehicle (UAV) systems increases at an exponential rate, interfaces that reduce the reliance on highly skilled engineers and pilots must be developed. Recent work aims to make use of common human communication modalities such as speech and gesture. This paper explores a multimodal natural language interface that uses a combination of speech and gesture input modalities to build complex UAV flight paths by defining trajectory segment primitives. Gesture inputs are used to define the general shape of a segment while speech inputs provide additional geometric information needed to fully characterize a trajectory segment. A user study is conducted in order to evaluate the efficacy of the multimodal interface.

  20. Planetary Data Workshop, Part 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Technical aspects of the Planetary Data System (PDS) are addressed. Methods and tools for maintaining and accessing large, complex sets of data are discussed. The specific software and applications needed for processing imaging and non-imaging science data are reviewed. The need for specific software that provides users with information on the location and geometry of scientific observations is discussed. Computer networks and user interface to the PDS are covered along with Computer hardware available to this data system.

  1. Usability evaluation of in-housed developed ERP system

    NASA Astrophysics Data System (ADS)

    Faisal, Chaudhry Muhammad Nadeem; Shakeel Faridi, Muhammad; Javed, Zahid

    2011-10-01

    Enterprise Resource Planning systems are the combination of different business IS (Information System) applications that are designed according to the organization requirements. Generally ERP systems are suffering from complex user interface issues. Recent research shows that there is a need for improvement concerning, the user interface from their perspectives. In order to design the software applications that are easy to use, memorize and apply to new problems, we must know the users philosophy and something about learning, reminiscence and problems solving. The Usability engineering is the only way to study the deeds of users while interacting with ERP (Enterprise Resource & Planning). This paper will focus on the users' experiences view of financial module in ERP system. The HCI research method, explicitly survey questionnaire method was adopted to gather users understanding in order to evaluate the selected modules for in-housed ERP system. The study involved group of users from two industries, the results can not be generalized as a whole. The study was first time successfully applied Usability evaluation on in-housed ERP in local industry (Masood Textile Mills, Interloop Ltd) in Pakistan. The results may hopefully opened-up an area of research and methodology that could provide considerable further benefits to Industry in developments of Industrial information systems.

  2. Comparing two anesthesia information management system user interfaces: a usability evaluation.

    PubMed

    Wanderer, Jonathan P; Rao, Anoop V; Rothwell, Sarah H; Ehrenfeld, Jesse M

    2012-11-01

    Anesthesia information management systems (AIMS) have been developed by multiple vendors and are deployed in thousands of operating rooms around the world, yet not much is known about measuring and improving AIMS usability. We developed a methodology for evaluating AIMS usability in a low-fidelity simulated clinical environment and used it to compare an existing user interface with a revised version. We hypothesized that the revised user interface would be more useable. In a low-fidelity simulated clinical environment, twenty anesthesia providers documented essential anesthetic information for the start of the case using both an existing and a revised user interface. Participants had not used the revised user interface previously and completed a brief training exercise prior to the study task. All participants completed a workload assessment and a satisfaction survey. All sessions were recorded. Multiple usability metrics were measured. The primary outcome was documentation accuracy. Secondary outcomes were perceived workload, number of documentation steps, number of user interactions, and documentation time. The interfaces were compared and design problems were identified by analyzing recorded sessions and survey results. Use of the revised user interface was shown to improve documentation accuracy from 85.1% to 92.4%, a difference of 7.3% (95% confidence interval [CI] for the difference 1.8 to 12.7). The revised user interface decreased the number of user interactions by 6.5 for intravenous documentation (95% CI 2.9 to 10.1) and by 16.1 for airway documentation (95% CI 11.1 to 21.1). The revised user interface required 3.8 fewer documentation steps (95% CI 2.3 to 5.4). Airway documentation time was reduced by 30.5 seconds with the revised workflow (95% CI 8.5 to 52.4). There were no significant time differences noted in intravenous documentation or in total task time. No difference in perceived workload was found between the user interfaces. Two user interface design problems were identified in the revised user interface. The usability of anesthesia information management systems can be evaluated using a low-fidelity simulated clinical environment. User testing of the revised user interface showed improvement in some usability metrics and highlighted areas for further revision. Vendors of AIMS and those who use them should consider adopting methods to evaluate and improve AIMS usability.

  3. Starting Over: Current Issues in Online Catalog User Interface Design.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1992-01-01

    Discussion of online catalogs focuses on issues in interface design. Issues addressed include understanding the user base; common user access (CUA) with personal computers; common command language (CCL); hyperlinks; screen design issues; differences from card catalogs; indexes; graphic user interfaces (GUIs); color; online help; and remote users.…

  4. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    NASA Astrophysics Data System (ADS)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  5. Integrated Model for E-Learning Acceptance

    NASA Astrophysics Data System (ADS)

    Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.

    2016-01-01

    E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.

  6. Scientific Workflow Management in Proteomics

    PubMed Central

    de Bruin, Jeroen S.; Deelder, André M.; Palmblad, Magnus

    2012-01-01

    Data processing in proteomics can be a challenging endeavor, requiring extensive knowledge of many different software packages, all with different algorithms, data format requirements, and user interfaces. In this article we describe the integration of a number of existing programs and tools in Taverna Workbench, a scientific workflow manager currently being developed in the bioinformatics community. We demonstrate how a workflow manager provides a single, visually clear and intuitive interface to complex data analysis tasks in proteomics, from raw mass spectrometry data to protein identifications and beyond. PMID:22411703

  7. User Interface Technology for Formal Specification Development

    NASA Technical Reports Server (NTRS)

    Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Formal specification development and modification are an essential component of the knowledge-based software life cycle. User interface technology is needed to empower end-users to create their own formal specifications. This paper describes the advanced user interface for AMPHION1 a knowledge-based software engineering system that targets scientific subroutine libraries. AMPHION is a generic, domain-independent architecture that is specialized to an application domain through a declarative domain theory. Formal specification development and reuse is made accessible to end-users through an intuitive graphical interface that provides semantic guidance in creating diagrams denoting formal specifications in an application domain. The diagrams also serve to document the specifications. Automatic deductive program synthesis ensures that end-user specifications are correctly implemented. The tables that drive AMPHION's user interface are automatically compiled from a domain theory; portions of the interface can be customized by the end-user. The user interface facilitates formal specification development by hiding syntactic details, such as logical notation. It also turns some of the barriers for end-user specification development associated with strongly typed formal languages into active sources of guidance, without restricting advanced users. The interface is especially suited for specification modification. AMPHION has been applied to the domain of solar system kinematics through the development of a declarative domain theory. Testing over six months with planetary scientists indicates that AMPHION's interactive specification acquisition paradigm enables users to develop, modify, and reuse specifications at least an order of magnitude more rapidly than manual program development.

  8. A study of usability principles and interface design for mobile e-books.

    PubMed

    Wang, Chao-Ming; Huang, Ching-Hua

    2015-01-01

    This study examined usability principles and interface designs in order to understand the relationship between the intentions of mobile e-book interface designs and users' perceptions. First, this study summarised 4 usability principles and 16 interface attributes, in order to conduct usability testing and questionnaire survey by referring to Nielsen (1993), Norman (2002), and Yeh (2010), who proposed the usability principles. Second, this study used the interviews to explore the perceptions and behaviours of user operations through senior users of multi-touch prototype devices. The results of this study are as follows: (1) users' behaviour of operating an interactive interface is related to user prior experience; (2) users' rating of the visibility principle is related to users' subjective perception but not related to user prior experience; however, users' ratings of the ease, efficiency, and enjoyment principles are related to user prior experience; (3) the interview survey reveals that the key attributes affecting users' behaviour of operating an interface include aesthetics, achievement, and friendliness. This study conducts experiments to explore the effects of users’ prior multi-touch experience on users’ behaviour of operating a mobile e-book interface and users’ rating of usability principles. Both qualitative and quantitative data analyses were performed. By applying protocol analysis, key attributes affecting users’ behaviour of operation were determined.

  9. How to Develop a User Interface That Your Real Users Will Love

    ERIC Educational Resources Information Center

    Phillips, Donald

    2012-01-01

    A "user interface" is the part of an interactive system that bridges the user and the underlying functionality of the system. But people sometimes forget that the best interfaces will provide a platform to optimize the users' interactions so that they support and extend the users' activities in effective, useful, and usable ways. To look at it…

  10. Make E-Learning Effortless! Impact of a Redesigned User Interface on Usability through the Application of an Affordance Design Approach

    ERIC Educational Resources Information Center

    Park, Hyungjoo; Song, Hae-Deok

    2015-01-01

    Given that a user interface interacts with users, a critical factor to be considered in improving the usability of an e-learning user interface is user-friendliness. Affordances enable users to more easily approach and engage in learning tasks because they strengthen positive, activating emotions. However, most studies on affordances limit…

  11. Role-Based And Adaptive User Interface Designs In A Teledermatology Consult System: A Way To Secure And A Way To Enhance

    PubMed Central

    Lin, Yi-Jung; Speedie, Stuart

    2003-01-01

    User interface design is one of the most important parts of developing applications. Nowadays, a quality user interface must not only accommodate interaction between machines and users, but also needs to recognize the differences and provide functionalities for users from role-to-role or even individual-to-individual. With the web-based application of our Teledermatology consult system, the development environment provides us highly useful opportunities to create dynamic user interfaces, which lets us to gain greater access control and has the potential to increase efficiency of the system. We will describe the two models of user interfaces in our system: Role-based and Adaptive. PMID:14728419

  12. Towards automation of user interface design

    NASA Technical Reports Server (NTRS)

    Gastner, Rainer; Kraetzschmar, Gerhard K.; Lutz, Ernst

    1992-01-01

    This paper suggests an approach to automatic software design in the domain of graphical user interfaces. There are still some drawbacks in existing user interface management systems (UIMS's) which basically offer only quantitative layout specifications via direct manipulation. Our approach suggests a convenient way to get a default graphical user interface which may be customized and redesigned easily in further prototyping cycles.

  13. Designing the user interface: strategies for effective human-computer interaction

    NASA Astrophysics Data System (ADS)

    Shneiderman, B.

    1998-03-01

    In revising this popular book, Ben Shneiderman again provides a complete, current and authoritative introduction to user-interface design. The user interface is the part of every computer system that determines how people control and operate that system. When the interface is well designed, it is comprehensible, predictable, and controllable; users feel competent, satisfied, and responsible for their actions. Shneiderman discusses the principles and practices needed to design such effective interaction. Based on 20 years experience, Shneiderman offers readers practical techniques and guidelines for interface design. He also takes great care to discuss underlying issues and to support conclusions with empirical results. Interface designers, software engineers, and product managers will all find this book an invaluable resource for creating systems that facilitate rapid learning and performance, yield low error rates, and generate high user satisfaction. Coverage includes the human factors of interactive software (with a new discussion of diverse user communities), tested methods to develop and assess interfaces, interaction styles such as direct manipulation for graphical user interfaces, and design considerations such as effective messages, consistent screen design, and appropriate color.

  14. Predicting Language Proficiency Based on the Use of Multimedia Interfaces for Transcription Tasks.

    ERIC Educational Resources Information Center

    Crosby, Martha E.; And Others

    1996-01-01

    Describes a controlled experiment conducted to determine the differences between native and nonnative speakers' strategies for transcribing dialogs, from the simple to the complex. Results confirmed that there were significant differences among three categories of the users' interactions with a computerized transcription system. (seven references)…

  15. Open access for ALICE analysis based on virtualization technology

    NASA Astrophysics Data System (ADS)

    Buncic, P.; Gheata, M.; Schutz, Y.

    2015-12-01

    Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modification factor in Pb-Pb collisions. The interface can be easily extended to include an arbitrary number of additional analysis modules. We present the current status of the tools used by ALICE through the CERN open access portal, and the plans for future extensions of this system.

  16. Nuclear data made easily accessible through the Notre Dame Nuclear Database

    NASA Astrophysics Data System (ADS)

    Khouw, Timothy; Lee, Kevin; Fasano, Patrick; Mumpower, Matthew; Aprahamian, Ani

    2014-09-01

    In 1994, the NNDC revolutionized nuclear research by providing a colorful, clickable, searchable database over the internet. Over the last twenty years, web technology has evolved dramatically. Our project, the Notre Dame Nuclear Database, aims to provide a more comprehensive and broadly searchable interactive body of data. The database can be searched by an array of filters which includes metadata such as the facility where a measurement is made, the author(s), or date of publication for the datum of interest. The user interface takes full advantage of HTML, a web markup language, CSS (cascading style sheets to define the aesthetics of the website), and JavaScript, a language that can process complex data. A command-line interface is supported that interacts with the database directly on a user's local machine which provides single command access to data. This is possible through the use of a standardized API (application programming interface) that relies upon well-defined filtering variables to produce customized search results. We offer an innovative chart of nuclides utilizing scalable vector graphics (SVG) to deliver users an unsurpassed level of interactivity supported on all computers and mobile devices. We will present a functional demo of our database at the conference.

  17. Mining the SDSS SkyServer SQL queries log

    NASA Astrophysics Data System (ADS)

    Hirota, Vitor M.; Santos, Rafael; Raddick, Jordan; Thakar, Ani

    2016-05-01

    SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) astronomic catalog, provides a set of tools that allows data access for astronomers and scientific education. One of SkyServer data access interfaces allows users to enter ad-hoc SQL statements to query the catalog. SkyServer also presents some template queries that can be used as basis for more complex queries. This interface has logged over 330 million queries submitted since 2001. It is expected that analysis of this data can be used to investigate usage patterns, identify potential new classes of queries, find similar queries, etc. and to shed some light on how users interact with the Sloan Digital Sky Survey data and how scientists have adopted the new paradigm of e-Science, which could in turn lead to enhancements on the user interfaces and experience in general. In this paper we review some approaches to SQL query mining, apply the traditional techniques used in the literature and present lessons learned, namely, that the general text mining approach for feature extraction and clustering does not seem to be adequate for this type of data, and, most importantly, we find that this type of analysis can result in very different queries being clustered together.

  18. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks.

    PubMed

    Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo

    2011-01-01

    This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE

  19. Emotion-prints: interaction-driven emotion visualization on multi-touch interfaces

    NASA Astrophysics Data System (ADS)

    Cernea, Daniel; Weber, Christopher; Ebert, Achim; Kerren, Andreas

    2015-01-01

    Emotions are one of the unique aspects of human nature, and sadly at the same time one of the elements that our technological world is failing to capture and consider due to their subtlety and inherent complexity. But with the current dawn of new technologies that enable the interpretation of emotional states based on techniques involving facial expressions, speech and intonation, electrodermal response (EDS) and brain-computer interfaces (BCIs), we are finally able to access real-time user emotions in various system interfaces. In this paper we introduce emotion-prints, an approach for visualizing user emotional valence and arousal in the context of multi-touch systems. Our goal is to offer a standardized technique for representing user affective states in the moment when and at the location where the interaction occurs in order to increase affective self-awareness, support awareness in collaborative and competitive scenarios, and offer a framework for aiding the evaluation of touch applications through emotion visualization. We show that emotion-prints are not only independent of the shape of the graphical objects on the touch display, but also that they can be applied regardless of the acquisition technique used for detecting and interpreting user emotions. Moreover, our representation can encode any affective information that can be decomposed or reduced to Russell's two-dimensional space of valence and arousal. Our approach is enforced by a BCI-based user study and a follow-up discussion of advantages and limitations.

  20. Multi-focused geospatial analysis using probes.

    PubMed

    Butkiewicz, Thomas; Dou, Wenwen; Wartell, Zachary; Ribarsky, William; Chang, Remco

    2008-01-01

    Traditional geospatial information visualizations often present views that restrict the user to a single perspective. When zoomed out, local trends and anomalies become suppressed and lost; when zoomed in for local inspection, spatial awareness and comparison between regions become limited. In our model, coordinated visualizations are integrated within individual probe interfaces, which depict the local data in user-defined regions-of-interest. Our probe concept can be incorporated into a variety of geospatial visualizations to empower users with the ability to observe, coordinate, and compare data across multiple local regions. It is especially useful when dealing with complex simulations or analyses where behavior in various localities differs from other localities and from the system as a whole. We illustrate the effectiveness of our technique over traditional interfaces by incorporating it within three existing geospatial visualization systems: an agent-based social simulation, a census data exploration tool, and an 3D GIS environment for analyzing urban change over time. In each case, the probe-based interaction enhances spatial awareness, improves inspection and comparison capabilities, expands the range of scopes, and facilitates collaboration among multiple users.

  1. Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online

    NASA Astrophysics Data System (ADS)

    Romano, C.; Graff, P. V.; Runco, S.

    2017-12-01

    Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online?Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image.Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project:• Concise explanation of the project, its context, and its purpose;• Including a mention of the funding agency (in this case, NASA);• A preview of the specific tasks required of participants;• A dedicated user interface for the actual citizen science interaction.In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.

  2. Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online

    NASA Technical Reports Server (NTRS)

    Romano, Cia; Graff, Paige V.; Runco, Susan

    2017-01-01

    Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online? Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image. Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project: (1) Concise explanation of the project, its context, and its purpose; (2) Including a mention of the funding agency (in this case, NASA); (3) A preview of the specific tasks required of participants; (4) A dedicated user interface for the actual citizen science interaction. In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.

  3. Earthdata 3.0: A Unified Experience and Platform for Earth Science Discovery

    NASA Astrophysics Data System (ADS)

    Plofchan, P.; McLaughlin, B. D.

    2015-12-01

    NASA's EOSDIS (Earth Observing System Data and Information System) as a multitude of websites and applications focused on serving the Earth Science community's extensive data needs. With no central user interface, theme, or mechanism for accessing that data, interrelated systems are confusing and potentially disruptive in users' searches for EOSDIS data holdings. In an effort to bring consistency across these systems, an effort was undertaken to develop Earthdata 3.0: a complete information architecture overhaul of the Earthdata website, a significant update to the Earthdata user experience and user interface, and an increased focus on searching across EOSDIS data holdings, including those housed and made available through DAAC websites. As part of this effort, and in a desire to unify the user experience across related websites, the Earthdata User Interface (EUI) was developed. The EUI is a collection of responsive design components and layouts geared toward creating websites and applications within the Earthdata ecosystem. Each component and layout has been designed specifically for Earth science-related projects which eliminates some of the complexities of building a website or application from the ground up. Its adoption will ensure both consistent markup and a unified look and feel for end users, thereby increasing usability and accessibility. Additionally, through the user of a Google Search Appliance, custom Clojure code, and in cooperation with DAACs, Earthdata 3.0 presents a variety of search results upon a user's keyword(s) entry. These results are not just textual links, but also direct links to downloadable datasets, visualizations of datasets and collections of data, and related articles and videos for further research. The end result of the development of the EUI and the enhanced multi-response type search is a consistent and usable platform for Earth scientists and users to navigate and locate data to further their research.

  4. Multiple-Objective Stepwise Calibration Using Luca

    USGS Publications Warehouse

    Hay, Lauren E.; Umemoto, Makiko

    2007-01-01

    This report documents Luca (Let us calibrate), a multiple-objective, stepwise, automated procedure for hydrologic model calibration and the associated graphical user interface (GUI). Luca is a wizard-style user-friendly GUI that provides an easy systematic way of building and executing a calibration procedure. The calibration procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any model compiled with the U.S. Geological Survey's Modular Modeling System. This process assures that intermediate and final states of the model are simulated consistently with measured values.

  5. Servicing capability for the evolutionary Space Station

    NASA Technical Reports Server (NTRS)

    Thomas, Edward F.; Grems, Edward G., III; Corbo, James E.

    1990-01-01

    Since the beginning of the Space Station Freedom (SSF) program the concept of on-orbit servicing of user hardware has been an integral part of the program implementation. The user servicing system architecture has been divided into a baseline and a growth phase. The baseline system consists of the following hardware elements that will support user servicing - flight telerobotic servicer, crew and equipment translation aid, crew intravehicular and extravehicular servicing support, logistics supply system, mobile servicing center, and the special purpose dextrous manipulator. The growth phase incorporates a customer servicing facility (CSF), a station-based orbital maneuvering vehicle and an orbital spacecraft consumables resupply system. The requirements for user servicing were derived from the necessity to service attached payloads, free flyers and coorbiting platforms. These requirements include: orbital replacement units (ORU) and instrument changeout, National Space Transportation System cargo bay loading and unloading, contamination control and monitoring, thermal protection, payload berthing, storage, access to SSF distributed systems, functional checkout, and fluid replenishment. The baseline user servicing capabilities accommodate ORU and instrument changeout. However, this service is limited to attached payloads, either in situ or at a locally adjacent site. The growth phase satisfies all identified user servicing requirements by expanding servicing capabilities to include complex servicing tasks for attached payloads, free-flyers and coorbiting platforms at a dedicated, protected Servicing site. To provide a smooth evolution of user servicing the SSF interfaces that are necessary to accommodate the growth phase have been identified. The interface requirements on SSF have been greatly simplified by accommodating the growth servicing support elements within the CSF. This results in a single SSF interface: SSF to the CSF.

  6. ASSIST user manual

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.; Boerschlein, David P.

    1995-01-01

    Semi-Markov models can be used to analyze the reliability of virtually any fault-tolerant system. However, the process of delineating all the states and transitions in a complex system model can be devastatingly tedious and error prone. The Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST) computer program allows the user to describe the semi-Markov model in a high-level language. Instead of listing the individual model states, the user specifies the rules governing the behavior of the system, and these are used to generate the model automatically. A few statements in the abstract language can describe a very large, complex model. Because no assumptions are made about the system being modeled, ASSIST can be used to generate models describing the behavior of any system. The ASSIST program and its input language are described and illustrated by examples.

  7. Adaptive Interfaces

    DTIC Science & Technology

    1990-11-01

    to design and implement an adaptive intelligent interface for a command-and-control-style domain. The primary functionality of the resulting...technical tasks, as follows: 1. Analysis of Current Interface Technologies 2. Dejineation of User Roles 3. Development of User Models 4. Design of Interface...Management Association (FEMA). In the initial version of the prototype, two distin-t user models were designed . One type of user modeled by the system is

  8. Customization of user interfaces to reduce errors and enhance user acceptance.

    PubMed

    Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram

    2014-03-01

    Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. User interface issues in supporting human-computer integrated scheduling

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.; Biefeld, Eric W.

    1991-01-01

    The topics are presented in view graph form and include the following: characteristics of Operations Mission Planner (OMP) schedule domain; OMP architecture; definition of a schedule; user interface dimensions; functional distribution; types of users; interpreting user interaction; dynamic overlays; reactive scheduling; and transitioning the interface.

  10. The new Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Martinez, Santa; Besse, Sebastien; Heather, Dave; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Rios, Carlos; Vallejo, Fran; Saiz, Jaime; ESDC (European Space Data Centre) Team

    2016-10-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://archives.esac.esa.int/psa. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more specialised views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will be also up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). This contribution will introduce the new PSA, its key features and access interfaces.

  11. ForTrilinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Katherine J; Johnson, Seth R; Prokopenko, Andrey V

    'ForTrilinos' is related to The Trilinos Project, which contains a large and growing collection of solver capabilities that can utilize next-generation platforms, in particular scalable multicore, manycore, accelerator and heterogeneous systems. Trilinos is primarily written in C++, including its user interfaces. While C++ is advantageous for gaining access to the latest programming environments, it limits Trilinos usage via Fortran. Sever ad hoc translation interfaces exist to enable Fortran usage of Trilinos, but none of these interfaces is general-purpose or written for reusable and sustainable external use. 'ForTrilinos' provides a seamless pathway for large and complex Fortran-based codes to access Trilinosmore » without C/C++ interface code. This access includes Fortran versions of Kokkos abstractions for code execution and data management.« less

  12. Understanding and managing trust at the climate science-policy interface

    NASA Astrophysics Data System (ADS)

    Lacey, Justine; Howden, Mark; Cvitanovic, Christopher; Colvin, R. M.

    2018-01-01

    Climate change effects are accelerating, making the need for appropriate actions informed by sound climate knowledge ever more pressing. A strong climate science-policy relationship facilitates the effective integration of climate knowledge into local, national and global policy processes, increases society's responsiveness to a changing climate, and aligns research activity to policy needs. This complex science-policy relationship requires trust between climate science `producers' and `users', but our understanding of trust at this interface remains largely uncritical. To assist climate scientists and policymakers, this Perspective provides insights into how trust develops and operates at the interface of climate science and policy, and examines the extent to which trust can manage — or even create — risk at this interface.

  13. Payload/GSE/data system interface: Users guide for the VPF (Vertical Processing Facility)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Payload/GSE/data system interface users guide for the Vertical Processing Facility is presented. The purpose of the document is three fold. First, the simulated Payload and Ground Support Equipment (GSE) Data System Interface, which is also known as the payload T-0 (T-Zero) System is described. This simulated system is located with the Cargo Integration Test Equipment (CITE) in the Vertical Processing Facility (VPF) that is located in the KSC Industrial Area. The actual Payload T-0 System consists of the Orbiter, Mobile Launch Platforms (MLPs), and Launch Complex (LC) 39A and B. This is referred to as the Pad Payload T-0 System (Refer to KSC-DL-116 for Pad Payload T-0 System description). Secondly, information is provided to the payload customer of differences between this simulated system and the actual system. Thirdly, a reference guide of the VPF Payload T-0 System for both KSC and payload customer personnel is provided.

  14. CAD/CAM interface design of excimer laser micro-processing system

    NASA Astrophysics Data System (ADS)

    Jing, Liang; Chen, Tao; Zuo, Tiechuan

    2005-12-01

    Recently CAD/CAM technology has been gradually used in the field of laser processing. The excimer laser micro-processing system just identified G instruction before CAD/CAM interface was designed. However the course of designing a part with G instruction for users is too hard. The efficiency is low and probability of making errors is high. By secondary development technology of AutoCAD with Visual Basic, an application was developed to pick-up each entity's information in graph and convert them to each entity's processing parameters. Also an additional function was added into former controlling software to identify these processing parameters of each entity and realize continue processing of graphic. Based on the above CAD/CAM interface, Users can design a part in AutoCAD instead of using G instruction. The period of designing a part is sharply shortened. This new way of design greatly guarantees the processing parameters of the part is right and exclusive. The processing of complex novel bio-chip has been realized by this new function.

  15. On Abstractions and Simplifications in the Design of Human-Automation Interfaces

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Degani, Asaf; Shafto, Michael; Meyer, George; Clancy, Daniel (Technical Monitor)

    2001-01-01

    This report addresses the design of human-automation interaction from a formal perspective that focuses on the information content of the interface, rather than the design of the graphical user interface. It also addresses the, issue of the information provided to the user (e.g., user-manuals, training material, and all other resources). In this report, we propose a formal procedure for generating interfaces and user-manuals. The procedure is guided by two criteria: First, the interface must be correct, i.e., that with the given interface the user will be able to perform the specified tasks correctly. Second, the interface should be as succinct as possible. The report discusses the underlying concepts and the formal methods for this approach. Several examples are used to illustrate the procedure. The algorithm for constructing interfaces can be automated, and a preliminary software system for its implementation has been developed.

  16. On Abstractions and Simplifications in the Design of Human-Automation Interfaces

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Degani, Asaf; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This report addresses the design of human-automation interaction from a formal perspective that focuses on the information content of the interface, rather than the design of the graphical user interface. It also addresses the issue of the information provided to the user (e.g., user-manuals, training material, and all other resources). In this report, we propose a formal procedure for generating interfaces and user-manuals. The procedure is guided by two criteria: First, the interface must be correct, that is, with the given interface the user will be able to perform the specified tasks correctly. Second, the interface should be succinct. The report discusses the underlying concepts and the formal methods for this approach. Two examples are used to illustrate the procedure. The algorithm for constructing interfaces can be automated, and a preliminary software system for its implementation has been developed.

  17. Suitability of Unidata Metapps for Incorporation in Platform-Independent User-Customized Aviation Weather Products Generation Software

    DTIC Science & Technology

    2002-03-08

    Figure 7. Standard, simplified view of the Facade software design pattern. Adapted from an original diagram by Shalloway and Trott (Shalloway...and Trott , 2002). 31 set of interfaces. The motivation behind using this design pattern is that it helps reduce complexity and minimizes the...libraries and in turn built more complex components. Although brave and innovative , these forays into the cutting edge of geophysical

  18. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.

    PubMed

    Arico, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Babiloni, Fabio

    2017-07-01

    This minireview aims to highlight recent important aspects to consider and evaluate when passive brain-computer interface (pBCI) systems would be developed and used in operational environments, and remarks future directions of their applications. Electroencephalography (EEG) based pBCI has become an important tool for real-time analysis of brain activity since it could potentially provide covertly-without distracting the user from the main task-and objectively-not affected by the subjective judgment of an observer or the user itself-information about the operator cognitive state. Different examples of pBCI applications in operational environments and new adaptive interface solutions have been presented and described. In addition, a general overview regarding the correct use of machine learning techniques (e.g., which algorithm to use, common pitfalls to avoid, etc.) in the pBCI field has been provided. Despite recent innovations on algorithms and neurotechnology, pBCI systems are not completely ready to enter the market yet, mainly due to limitations of the EEG electrodes technology, and algorithms reliability and capability in real settings. High complexity and safety critical systems (e.g., airplanes, ATM interfaces) should adapt their behaviors and functionality accordingly to the user' actual mental state. Thus, technologies (i.e., pBCIs) able to measure in real time the user's mental states would result very useful in such "high risk" environments to enhance human machine interaction, and so increase the overall safety.

  19. CARE 3 user-friendly interface user's guide

    NASA Technical Reports Server (NTRS)

    Martensen, A. L.

    1987-01-01

    CARE 3 predicts the unreliability of highly reliable reconfigurable fault-tolerant systems that include redundant computers or computer systems. CARE3MENU is a user-friendly interface used to create an input for the CARE 3 program. The CARE3MENU interface has been designed to minimize user input errors. Although a CARE3MENU session may be successfully completed and all parameters may be within specified limits or ranges, the CARE 3 program is not guaranteed to produce meaningful results if the user incorrectly interprets the CARE 3 stochastic model. The CARE3MENU User Guide provides complete information on how to create a CARE 3 model with the interface. The CARE3MENU interface runs under the VAX/VMS operating system.

  20. Tags Extarction from Spatial Documents in Search Engines

    NASA Astrophysics Data System (ADS)

    Borhaninejad, S.; Hakimpour, F.; Hamzei, E.

    2015-12-01

    Nowadays the selective access to information on the Web is provided by search engines, but in the cases which the data includes spatial information the search task becomes more complex and search engines require special capabilities. The purpose of this study is to extract the information which lies in spatial documents. To that end, we implement and evaluate information extraction from GML documents and a retrieval method in an integrated approach. Our proposed system consists of three components: crawler, database and user interface. In crawler component, GML documents are discovered and their text is parsed for information extraction; storage. The database component is responsible for indexing of information which is collected by crawlers. Finally the user interface component provides the interaction between system and user. We have implemented this system as a pilot system on an Application Server as a simulation of Web. Our system as a spatial search engine provided searching capability throughout the GML documents and thus an important step to improve the efficiency of search engines has been taken.

  1. Route Advising in a Dynamic Environment - A High-Tech Approach

    NASA Astrophysics Data System (ADS)

    Firdhous, M. F. M.; Basnayake, D. L.; Kodithuwakku, K. H. L.; Hatthalla, N. K.; Charlin, N. W.; Bandara, P. M. R. I. K.

    Finding the optimal path between two locations in the Colombo city is not a straight forward task, because of the complex road system and the huge traffic jams etc. This paper presents a system to find the optimal driving direction between two locations within the Colombo city, considering road rules (one way, two ways or fully closed in both directions). The system contains three main modules - core module, web module and mobile module, additionally there are two user interfaces one for normal users and the other for administrative users. Both these interfaces can be accessed using a web browser or a GPRS enabled mobile phone. The system is developed based on the Geographic Information System (GIS) technology. GIS is considered as the best option to integrate hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information. The core of the system is MapServer (MS4W) used along with the other supporting technologies such as PostGIS, PostgreSQL, pgRouting, ASP.NET and C#.

  2. Research in image management and access

    NASA Technical Reports Server (NTRS)

    Vondran, Raymond F.; Barron, Billy J.

    1993-01-01

    Presently, the problem of over-all library system design has been compounded by the accretion of both function and structure to a basic framework of requirements. While more device power has led to increased functionality, opportunities for reducing system complexity at the user interface level have not always been pursued with equal zeal. The purpose of this book is therefore to set forth and examine these opportunities, within the general framework of human factors research in man-machine interfaces. Human factors may be viewed as a series of trade-off decisions among four polarized objectives: machine resources and user specifications; functionality and user requirements. In the past, a limiting factor was the availability of systems. However, in the last two years, over one hundred libraries supported by many different software configurations have been added to the Internet. This document includes a statistical analysis of human responses to five Internet library systems by key features, development of the ideal online catalog system, and ideal online catalog systems for libraries and information centers.

  3. Simulated Breeding

    NASA Astrophysics Data System (ADS)

    Unemi, Tatsuo

    This chapter describes a basic framework of simulated breeding, a type of interactive evolutionary computing to breed artifacts, whose origin is Blind Watchmaker by Dawkins. These methods make it easy for humans to design a complex object adapted to his/her subjective criteria, just similarly to agricultural products we have been developing over thousands of years. Starting from randomly initialized genome, the solution candidates are improved through several generations with artificial selection. The graphical user interface helps the process of breeding with techniques of multifield user interface and partial breeding. The former improves the diversity of individuals that prevents being trapped at local optimum. The latter makes it possible for the user to fix features he/she already satisfied. These methods were examined through artistic applications by the author: SBART for graphics art and SBEAT for music. Combining with a direct genome editor and exportation to another graphical or musical tool on the computer, they can be powerful tools for artistic creation. These systems may contribute to the creation of a type of new culture.

  4. Visualization for Hyper-Heuristics. Front-End Graphical User Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroenung, Lauren

    Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. While such automated design has great advantages, it can often be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address thesemore » issues of usability by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics to support practitioners, as well as scientific visualization of the produced automated designs. My contributions to this project are exhibited in the user-facing portion of the developed system and the detailed scientific visualizations created from back-end data.« less

  5. AirShow 1.0 CFD Software Users' Guide

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2005-01-01

    AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.

  6. Bringing a Realistic Global Climate Modeling Experience to a Broader Audience

    NASA Astrophysics Data System (ADS)

    Sohl, L. E.; Chandler, M. A.; Zhou, J.

    2010-12-01

    EdGCM, the Educational Global Climate Model, was developed with the goal of helping students learn about climate change and climate modeling by giving them the ability to run a genuine NASA global climate model (GCM) on a desktop computer. Since EdGCM was first publicly released in January 2005, tens of thousands of users on seven continents have downloaded the software. EdGCM has been utilized by climate science educators from middle school through graduate school levels, and on occasion even by researchers who otherwise do not have ready access to climate model at national labs in the U.S. and elsewhere. The EdGCM software is designed to walk users through the same process a climate scientist would use in designing and running simulations, and analyzing and visualizing GCM output. Although the current interface design gives users a clear view of some of the complexities involved in using a climate model, it can be daunting for users whose main focus is on climate science rather than modeling per se. As part of the work funded by NASA’s Global Climate Change Education (GCCE) program, we will begin modifications to the user interface that will improve the accessibility of EdGCM to a wider array of users, especially at the middle school and high school levels, by: 1) Developing an automated approach (a “wizard”) to simplify the user experience in setting up new climate simulations; 2) Produce a catalog of “rediscovery experiments” that allow users to reproduce published climate model results, and in some cases compare model projections to real world data; and 3) Enhance distance learning and online learning opportunities through the development of a web-based interface. The prototypes for these modifications will then be presented to educators belonging to an EdGCM Users Group for feedback, so that we can further refine the EdGCM software, and thus deliver the tools and materials educators want and need across a wider range of learning environments.

  7. The Evaluation of Two CDU Concepts and Their Effects on FMS Training

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1995-01-01

    One of the biggest challenges for a pilot in the transition to a "glass" cockpit is understanding the Flight Management System (FMS). This is due to both the complex nature of the FMS and to the pilot-FMS interface. For these reasons, a large portion of transition training is devoted to the FMS. The intent of the current study was to examine the impact of the primary pilot-FMS interface, the Control Display Unit (CDU), on FMS training. The hypothesis of this study was that the interface design could have a significant impact on training. An FMS simulation was developed with two separate interfaces. One interface was similar to a current-generation design and the other was a multi-windows CDU based on graphical user interface techniques. For both application and evaluation reasons, constraints were applied to the graphical CDU design to maintain as much similarity as possible with the conventional CDU.

  8. TangibleCubes — Implementation of Tangible User Interfaces through the Usage of Microcontroller and Sensor Technology

    NASA Astrophysics Data System (ADS)

    Setscheny, Stephan

    The interaction between human beings and technology builds a central aspect in human life. The most common form of this human-technology interface is the graphical user interface which is controlled through the mouse and the keyboard. In consequence of continuous miniaturization and the increasing performance of microcontrollers and sensors for the detection of human interactions, developers receive new possibilities for realising innovative interfaces. As far as this movement is concerned, the relevance of computers in the common sense and graphical user interfaces is decreasing. Especially in the area of ubiquitous computing and the interaction through tangible user interfaces a highly impact of this technical evolution can be seen. Apart from this, tangible and experience able interaction offers users the possibility of an interactive and intuitive method for controlling technical objects. The implementation of microcontrollers for control functions and sensors enables the realisation of these experience able interfaces. Besides the theories about tangible user interfaces, the consideration about sensors and the Arduino platform builds a main aspect of this work.

  9. User interface design principles for the SSM/PMAD automated power system

    NASA Technical Reports Server (NTRS)

    Jakstas, Laura M.; Myers, Chris J.

    1991-01-01

    Martin Marietta has developed a user interface for the space station module power management and distribution (SSM/PMAD) automated power system testbed which provides human access to the functionality of the power system, as well as exemplifying current techniques in user interface design. The testbed user interface was designed to enable an engineer to operate the system easily without having significant knowledge of computer systems, as well as provide an environment in which the engineer can monitor and interact with the SSM/PMAD system hardware. The design of the interface supports a global view of the most important data from the various hardware and software components, as well as enabling the user to obtain additional or more detailed data when needed. The components and representations of the SSM/PMAD testbed user interface are examined. An engineer's interactions with the system are also described.

  10. Creating Complex Repository Collections, Such as Journals, with Manakin

    ERIC Educational Resources Information Center

    Koenig, Jack; Mikeal, Adam

    2010-01-01

    Purpose: The purpose of this paper is to report on a devised method of collection organisation within a DSpace repository using a Manakin theme and descriptive metadata. Design/methodology/approach: Using a Manakin theme, a user interface for a repository collection containing the contents of a serial was created to divide the collection into…

  11. Applying Video Game Interaction Design to Business Performance, Round 2.

    ERIC Educational Resources Information Center

    Shirinian, Ara; Dickelman, Erik

    2002-01-01

    Discusses software design for enterprise systems and for video games, and describes difficulties with enterprise tools, including interface complexity, training costs, and user frustration. Examines the world of tools and games from the human perspective and suggests ways in which game design can be successfully transferred to the enterprise tool…

  12. A Natural Interaction Interface for UAVs Using Intuitive Gesture Recognition

    NASA Technical Reports Server (NTRS)

    Chandarana, Meghan; Trujillo, Anna; Shimada, Kenji; Allen, Danette

    2016-01-01

    The popularity of unmanned aerial vehicles (UAVs) is increasing as technological advancements boost their favorability for a broad range of applications. One application is science data collection. In fields like Earth and atmospheric science, researchers are seeking to use UAVs to augment their current portfolio of platforms and increase their accessibility to geographic areas of interest. By increasing the number of data collection platforms UAVs will significantly improve system robustness and allow for more sophisticated studies. Scientists would like be able to deploy an available fleet of UAVs to fly a desired flight path and collect sensor data without needing to understand the complex low-level controls required to describe and coordinate such a mission. A natural interaction interface for a Ground Control System (GCS) using gesture recognition is developed to allow non-expert users (e.g., scientists) to define a complex flight path for a UAV using intuitive hand gesture inputs from the constructed gesture library. The GCS calculates the combined trajectory on-line, verifies the trajectory with the user, and sends it to the UAV controller to be flown.

  13. Developing a Graphical User Interface for the ALSS Crop Planning Tool

    NASA Technical Reports Server (NTRS)

    Koehlert, Erik

    1997-01-01

    The goal of my project was to create a graphical user interface for a prototype crop scheduler. The crop scheduler was developed by Dr. Jorge Leon and Laura Whitaker for the ALSS (Advanced Life Support System) program. The addition of a system-independent graphical user interface to the crop planning tool will make the application more accessible to a wider range of users and enhance its value as an analysis, design, and planning tool. My presentation will demonstrate the form and functionality of this interface. This graphical user interface allows users to edit system parameters stored in the file system. Data on the interaction of the crew, crops, and waste processing system with the available system resources is organized and labeled. Program output, which is stored in the file system, is also presented to the user in performance-time plots and organized charts. The menu system is designed to guide the user through analysis and decision making tasks, providing some help if necessary. The Java programming language was used to develop this interface in hopes of providing portability and remote operation.

  14. An Execution Service for Grid Computing

    NASA Technical Reports Server (NTRS)

    Smith, Warren; Hu, Chaumin

    2004-01-01

    This paper describes the design and implementation of the IPG Execution Service that reliably executes complex jobs on a computational grid. Our Execution Service is part of the IPG service architecture whose goal is to support location-independent computing. In such an environment, once n user ports an npplicntion to one or more hardware/software platfrms, the user can describe this environment to the grid the grid can locate instances of this platfrm, configure the platfrm as required for the application, and then execute the application. Our Execution Service runs jobs that set up such environments for applications and executes them. These jobs consist of a set of tasks for executing applications and managing data. The tasks have user-defined starting conditions that allow users to specih complex dependencies including task to execute when tasks fail, afiequent occurrence in a large distributed system, or are cancelled. The execution task provided by our service also configures the application environment exactly as specified by the user and captures the exit code of the application, features that many grid execution services do not support due to dflculties interfacing to local scheduling systems.

  15. UIVerify: A Web-Based Tool for Verification and Automatic Generation of User Interfaces

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar; Degani, Asaf; Heymann, Michael

    2004-01-01

    In this poster, we describe a web-based tool for verification and automatic generation of user interfaces. The verification component of the tool accepts as input a model of a machine and a model of its interface, and checks that the interface is adequate (correct). The generation component of the tool accepts a model of a given machine and the user's task, and then generates a correct and succinct interface. This write-up will demonstrate the usefulness of the tool by verifying the correctness of a user interface to a flight-control system. The poster will include two more examples of using the tool: verification of the interface to an espresso machine, and automatic generation of a succinct interface to a large hypothetical machine.

  16. Overview of Graphical User Interfaces.

    ERIC Educational Resources Information Center

    Hulser, Richard P.

    1993-01-01

    Discussion of graphical user interfaces for online public access catalogs (OPACs) covers the history of OPACs; OPAC front-end design, including examples from Indiana University and the University of Illinois; and planning and implementation of a user interface. (10 references) (EA)

  17. CLIPS application user interface for the PC

    NASA Technical Reports Server (NTRS)

    Jenkins, Jim; Holbrook, Rebecca; Shewhart, Mark; Crouse, Joey; Yarost, Stuart

    1991-01-01

    The majority of applications that utilize expert system development programs for their knowledge representation and inferencing capability require some form of interface with the end user. This interface is more than likely an interaction through the computer screen. When building an application the user interface can prove to be the most difficult and time consuming aspect to program. Commercial products currently exist which address this issue. To keep pace C Language Integrated Production System (CLIPS) will need to find a solution for their lack of an easy to use Application User Interface (AUI). This paper represents a survey of the DoD CLIPS' user community and provides the backbone of a possible solution.

  18. A user interface development tool for space science systems Transportable Applications Environment (TAE) Plus

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1990-01-01

    The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.

  19. Simplifying HL7 Version 3 messages.

    PubMed

    Worden, Robert; Scott, Philip

    2011-01-01

    HL7 Version 3 offers a semantically robust method for healthcare interoperability but has been criticized as overly complex to implement. This paper reviews initiatives to simplify HL7 Version 3 messaging and presents a novel approach based on semantic mapping. Based on user-defined definitions, precise transforms between simple and full messages are automatically generated. Systems can be interfaced with the simple messages and achieve interoperability with full Version 3 messages through the transforms. This reduces the costs of HL7 interfacing and will encourage better uptake of HL7 Version 3 and CDA.

  20. Human/Computer Interfacing in Educational Environments.

    ERIC Educational Resources Information Center

    Sarti, Luigi

    1992-01-01

    This discussion of educational applications of user interfaces covers the benefits of adopting database techniques in organizing multimedia materials; the evolution of user interface technology, including teletype interfaces, analogic overlay graphics, window interfaces, and adaptive systems; application design problems, including the…

  1. Developing the Multimedia User Interface Component (MUSIC) for the Icarus Presentation System (IPS)

    DTIC Science & Technology

    1993-12-01

    AD-A276 341 In-House Report December 1993 DEVELOPING THE MULTIMEDIA USER INTERFACE COMPONENT ( MUSIC ) FOR THE ICARUS PRESENTATION SYSTEM (IPS) Ingrid...DATEs COVERED 7 December 1993 Ina-House Jun - Aug 93 4 TWLE AM SL1sM1E & FUNDING NUMBERS DEVELOPING THE MULTIMEDIA USER INTERFACE COMPONENT ( MUSIC ) PE...the Multimedia User Interface Component ( MUSIC ). This report documents the initial research, design and implementation of a prototype of the MUSIC

  2. Model-Driven Useware Engineering

    NASA Astrophysics Data System (ADS)

    Meixner, Gerrit; Seissler, Marc; Breiner, Kai

    User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.

  3. A methodology for the design and evaluation of user interfaces for interactive information systems. Ph.D. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Farooq, Mohammad U.

    1986-01-01

    The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information.

  4. Development and evaluation of nursing user interface screens using multiple methods.

    PubMed

    Hyun, Sookyung; Johnson, Stephen B; Stetson, Peter D; Bakken, Suzanne

    2009-12-01

    Building upon the foundation of the Structured Narrative Electronic Health Record (EHR) model, we applied theory-based (combined Technology Acceptance Model and Task-Technology Fit Model) and user-centered methods to explore nurses' perceptions of functional requirements for an electronic nursing documentation system, design user interface screens reflective of the nurses' perspectives, and assess nurses' perceptions of the usability of the prototype user interface screens. The methods resulted in user interface screens that were perceived to be easy to use, potentially useful, and well-matched to nursing documentation tasks associated with Nursing Admission Assessment, Blood Administration, and Nursing Discharge Summary. The methods applied in this research may serve as a guide for others wishing to implement user-centered processes to develop or extend EHR systems. In addition, some of the insights obtained in this study may be informative to the development of safe and efficient user interface screens for nursing document templates in EHRs.

  5. Cooperative processing user interfaces for AdaNET

    NASA Technical Reports Server (NTRS)

    Gutzmann, Kurt M.

    1991-01-01

    A cooperative processing user interface (CUI) system shares the task of graphical display generation and presentation between the user's computer and a remote host. The communications link between the two computers is typically a modem or Ethernet. The two main purposes of a CUI are reduction of the amount of data transmitted between user and host machines, and provision of a graphical user interface system to make the system easier to use.

  6. DEC Ada interface to Screen Management Guidelines (SMG)

    NASA Technical Reports Server (NTRS)

    Laomanachareon, Somsak; Lekkos, Anthony A.

    1986-01-01

    DEC's Screen Management Guidelines are the Run-Time Library procedures that perform terminal-independent screen management functions on a VT100-class terminal. These procedures assist users in designing, composing, and keeping track of complex images on a video screen. There are three fundamental elements in the screen management model: the pasteboard, the virtual display, and the virtual keyboard. The pasteboard is like a two-dimensional area on which a user places and manipulates screen displays. The virtual display is a rectangular part of the terminal screen to which a program writes data with procedure calls. The virtual keyboard is a logical structure for input operation associated with a physical keyboard. SMG can be called by all major VAX languages. Through Ada, predefined language Pragmas are used to interface with SMG. These features and elements of SMG are briefly discussed.

  7. Investigation of the applicability of a functional programming model to fault-tolerant parallel processing for knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Harper, Richard

    1989-01-01

    In a fault-tolerant parallel computer, a functional programming model can facilitate distributed checkpointing, error recovery, load balancing, and graceful degradation. Such a model has been implemented on the Draper Fault-Tolerant Parallel Processor (FTPP). When used in conjunction with the FTPP's fault detection and masking capabilities, this implementation results in a graceful degradation of system performance after faults. Three graceful degradation algorithms have been implemented and are presented. A user interface has been implemented which requires minimal cognitive overhead by the application programmer, masking such complexities as the system's redundancy, distributed nature, variable complement of processing resources, load balancing, fault occurrence and recovery. This user interface is described and its use demonstrated. The applicability of the functional programming style to the Activation Framework, a paradigm for intelligent systems, is then briefly described.

  8. Combining fuzzy mathematics with fuzzy logic to solve business management problems

    NASA Astrophysics Data System (ADS)

    Vrba, Joseph A.

    1993-12-01

    Fuzzy logic technology has been applied to control problems with great success. Because of this, many observers fell that fuzzy logic is applicable only in the control arena. However, business management problems almost never deal with crisp values. Fuzzy systems technology--a combination of fuzzy logic, fuzzy mathematics and a graphical user interface--is a natural fit for developing software to assist in typical business activities such as planning, modeling and estimating. This presentation discusses how fuzzy logic systems can be extended through the application of fuzzy mathematics and the use of a graphical user interface to make the information contained in fuzzy numbers accessible to business managers. As demonstrated through examples from actual deployed systems, this fuzzy systems technology has been employed successfully to provide solutions to the complex real-world problems found in the business environment.

  9. Reducing Missed Laboratory Results: Defining Temporal Responsibility, Generating User Interfaces for Test Process Tracking, and Retrospective Analyses to Identify Problems

    PubMed Central

    Tarkan, Sureyya; Plaisant, Catherine; Shneiderman, Ben; Hettinger, A. Zachary

    2011-01-01

    Researchers have conducted numerous case studies reporting the details on how laboratory test results of patients were missed by the ordering medical providers. Given the importance of timely test results in an outpatient setting, there is limited discussion of electronic versions of test result management tools to help clinicians and medical staff with this complex process. This paper presents three ideas to reduce missed results with a system that facilitates tracking laboratory tests from order to completion as well as during follow-up: (1) define a workflow management model that clarifies responsible agents and associated time frame, (2) generate a user interface for tracking that could eventually be integrated into current electronic health record (EHR) systems, (3) help identify common problems in past orders through retrospective analyses. PMID:22195201

  10. Interactive Design and the Mythical "Intuitive User Interface."

    ERIC Educational Resources Information Center

    Bielenberg, Daniel R.

    1993-01-01

    Discusses the design of graphical user interfaces. Highlights include conceptual models, including user needs, content, and what multimedia can do; and tools for building the users' mental models, including metaphor, natural mappings, prompts, feedback, and user testing. (LRW)

  11. User Interface Design for Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Kortenkamp, Ulrich; Dohrmann, Christian

    2010-01-01

    In this article we describe long-standing user interface issues with Dynamic Geometry Software and common approaches to address them. We describe first prototypes of multi-touch-capable DGS. We also give some hints on the educational benefits of proper user interface design.

  12. The development of an intelligent user interface for NASA's scientific databases

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Roelofs, Larry H.

    1986-01-01

    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has as one of its components, the development of an Intelligent User Interface (IUI). The intent of the IUI effort is to develop a friendly and intelligent user interface service that is based on expert systems and natural language processing technologies. This paper presents the design concepts, development approach and evaluation of performance of a prototype Intelligent User Interface Subsystem (IUIS) supporting an operational database.

  13. A parallel coordinates style interface for exploratory volume visualization.

    PubMed

    Tory, Melanie; Potts, Simeon; Möller, Torsten

    2005-01-01

    We present a user interface, based on parallel coordinates, that facilitates exploration of volume data. By explicitly representing the visualization parameter space, the interface provides an overview of rendering options and enables users to easily explore different parameters. Rendered images are stored in an integrated history bar that facilitates backtracking to previous visualization options. Initial usability testing showed clear agreement between users and experts of various backgrounds (usability, graphic design, volume visualization, and medical physics) that the proposed user interface is a valuable data exploration tool.

  14. SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.

    PubMed

    Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi

    2010-01-01

    Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.

  15. Web mapping system for complex processing and visualization of environmental geospatial datasets

    NASA Astrophysics Data System (ADS)

    Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor

    2016-04-01

    Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.

  16. Earthdata User Interface Patterns: Building Usable Web Interfaces Through a Shared UI Pattern Library

    NASA Astrophysics Data System (ADS)

    Siarto, J.

    2014-12-01

    As more Earth science software tools and services move to the web--the design and usability of those tools become ever more important. A good user interface is becoming expected and users are becoming increasingly intolerant of websites and web applications that work against them. The Earthdata UI Pattern Library attempts to give these scientists and developers the design tools they need to make usable, compelling user interfaces without the associated overhead of using a full design team. Patterns are tested and functional user interface elements targeted specifically at the Earth science community and will include web layouts, buttons, tables, typography, iconography, mapping and visualization/graphing widgets. These UI elements have emerged as the result of extensive user testing, research and software development within the NASA Earthdata team over the past year.

  17. Detailed requirements document for the integrated structural analysis system, phase B

    NASA Technical Reports Server (NTRS)

    Rainey, J. A.

    1976-01-01

    The requirements are defined for a software system entitled integrated Structural Analysis System (ISAS) Phase B which is being developed to provide the user with a tool by which a complete and detailed analysis of a complex structural system can be performed. This software system will allow for automated interface with numerous structural analysis batch programs and for user interaction in the creation, selection, and validation of data. This system will include modifications to the 4 functions developed for ISAS, and the development of 25 new functions. The new functions are described.

  18. MOO in Your Face: Researching, Designing, and Programming a User-Friendly Interface.

    ERIC Educational Resources Information Center

    Haas, Mark; Gardner, Clinton

    1999-01-01

    Suggests the learning curve of a multi-user, object-oriented domain (MOO) blockades effective use. Discusses use of an IBM/PC-compatible interface that allows developers to modify the interface to provide a sense of presence for the user. Concludes that work in programming a variety of interfaces has led to a more intuitive environment for…

  19. Grasp specific and user friendly interface design for myoelectric hand prostheses.

    PubMed

    Mohammadi, Alireza; Lavranos, Jim; Howe, Rob; Choong, Peter; Oetomo, Denny

    2017-07-01

    This paper presents the design and characterisation of a hand prosthesis and its user interface, focusing on performing the most commonly used grasps in activities of daily living (ADLs). Since the operation of a multi-articulated powered hand prosthesis is difficult to learn and master, there is a significant rate of abandonment by amputees in preference for simpler devices. In choosing so, amputees chose to live with fewer features in their prosthesis that would more reliably perform the basic operations. In this paper, we look simultaneously at a hand prosthesis design method that aims for a small number of grasps, a low complexity user interface and an alternative method to the current use of EMG as a preshape selection method through the use of a simple button; to enable amputees to get to and execute the intended hand movements intuitively, quickly and reliably. An experiment is reported at the end of the paper comparing the speed and accuracy with which able-bodied naive subjects are able to select the intended preshapes through the use of a simplified EMG method and a simple button. It is shown that the button was significantly superior in the speed of successful task completion and marginally superior in accuracy (success of first attempt).

  20. Layered approach to workstation design for medical image viewing

    NASA Astrophysics Data System (ADS)

    Haynor, David R.; Zick, Gregory L.; Heritage, Marcus B.; Kim, Yongmin

    1992-07-01

    Software engineering principles suggest that complex software systems are best constructed from independent, self-contained modules, thereby maximizing the portability, maintainability and modifiability of the produced code. This principal is important in the design of medical imaging workstations, where further developments in technology (CPU, memory, interface devices, displays, network connections) are required for clinically acceptable workstations, and it is desirable to provide different hardware platforms with the ''same look and feel'' for the user. In addition, the set of desired functions is relatively well understood, but the optimal user interface for delivering these functions on a clinically acceptable workstation is still different depending on department, specialty, or individual preference. At the University of Washington, we are developing a viewing station based on the IBM RISC/6000 computer and on new technologies that are just becoming commercially available. These include advanced voice recognition systems and an ultra-high-speed network. We are developing a set of specifications and a conceptual design for the workstation, and will be producing a prototype. This paper presents our current concepts concerning the architecture and software system design of the future prototype. Our conceptual design specifies requirements for a Database Application Programming Interface (DBAPI) and for a User API (UAPI). The DBAPI consists of a set of subroutine calls that define the admissible transactions between the workstation and an image archive. The UAPI describes the requests a user interface program can make of the workstation. It incorporates basic display and image processing functions, yet is specifically designed to allow extensions to the basic set at the application level. We will discuss the fundamental elements of the two API''s and illustrate their application to workstation design.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, B.P.

    This report presents a historical perspective of the difficulties associated with user interface design and a review of interface design techniques. Included in the report is an application using rapid-interface-prototyping to the development of CAMP's user interface. 24 refs., 2 tabs.

  2. A Question of Interface Design: How Do Online Service GUIs Measure Up?

    ERIC Educational Resources Information Center

    Head, Alison J.

    1997-01-01

    Describes recent improvements in graphical user interfaces (GUIs) offered by online services. Highlights include design considerations, including computer engineering capabilities and users' abilities; fundamental GUI design principles; user empowerment; visual communication and interaction; and an evaluation of online search interfaces. (LRW)

  3. The GUI OPAC: Approach with Caution.

    ERIC Educational Resources Information Center

    Hildreth, Charles R.

    1995-01-01

    Discusses the graphical user interface (GUI) online public access catalog (OPAC), a user interface that uses images to represent options. Topics include user interface design for information retrieval; designing effective bibliographic displays, including subject headings; two design principles; and what GUIs can bring to OPACs. (LRW)

  4. The Graphical User Interface: Crisis, Danger, and Opportunity.

    ERIC Educational Resources Information Center

    Boyd, L. H.; And Others

    1990-01-01

    This article describes differences between the graphical user interface and traditional character-based interface systems, identifies potential problems posed by graphic computing environments for blind computer users, and describes some programs and strategies that are being developed to provide access to those environments. (Author/JDD)

  5. A simple and reliable health monitoring system for shoulder health: proposal.

    PubMed

    Liu, Shuo-Fang; Lee, Yann-Long

    2014-02-26

    The current health care system is complex and inefficient. A simple and reliable health monitoring system that can help patients perform medical self-diagnosis is seldom readily available. Because the medical system is vast and complex, it has hampered or delayed patients in seeking medical advice or treatment in a timely manner, which may potentially affect the patient's chances of recovery, especially those with severe sicknesses such as cancer, and heart disease. The purpose of this paper is to propose a methodology in designing a simple, low cost, Internet-based health-screening platform. This health-screening platform will enable patients to perform medical self-diagnosis over the Internet. Historical data has shown the importance of early detection to ensure patients receive proper treatment and speedy recovery. The platform is designed with special emphasis on the user interface. Standard Web-based user-interface design is adopted so the user feels ease to operate in a familiar Web environment. In addition, graphics such as charts and graphs are used generously to help users visualize and understand the result of the diagnostic. The system is developed using hypertext preprocessor (PHP) programming language. One important feature of this system platform is that it is built to be a stand-alone platform, which tends to have better user privacy security. The prototype system platform was developed by the National Cheng Kung University Ergonomic and Design Laboratory. The completed prototype of this system platform was submitted to the Taiwan Medical Institute for evaluation. The evaluation of 120 participants showed that this platform system is a highly effective tool in health-screening applications, and has great potential for improving the medical care quality for the general public.

  6. Eye-gaze and intent: Application in 3D interface control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.C.; Goldberg, J.H.

    1993-06-01

    Computer interface control is typically accomplished with an input ``device`` such as keyboard, mouse, trackball, etc. An input device translates a users input actions, such as mouse clicks and key presses, into appropriate computer commands. To control the interface, the user must first convert intent into the syntax of the input device. A more natural means of computer control is possible when the computer can directly infer user intent, without need of intervening input devices. We describe an application of eye-gaze-contingent control of an interactive three-dimensional (3D) user interface. A salient feature of the user interface is natural input, withmore » a heightened impression of controlling the computer directly by the mind. With this interface, input of rotation and translation are intuitive, whereas other abstract features, such as zoom, are more problematic to match with user intent. This paper describes successes with implementation to date, and ongoing efforts to develop a more sophisticated intent inferencing methodology.« less

  7. Eye-gaze and intent: Application in 3D interface control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.C.; Goldberg, J.H.

    1993-01-01

    Computer interface control is typically accomplished with an input device'' such as keyboard, mouse, trackball, etc. An input device translates a users input actions, such as mouse clicks and key presses, into appropriate computer commands. To control the interface, the user must first convert intent into the syntax of the input device. A more natural means of computer control is possible when the computer can directly infer user intent, without need of intervening input devices. We describe an application of eye-gaze-contingent control of an interactive three-dimensional (3D) user interface. A salient feature of the user interface is natural input, withmore » a heightened impression of controlling the computer directly by the mind. With this interface, input of rotation and translation are intuitive, whereas other abstract features, such as zoom, are more problematic to match with user intent. This paper describes successes with implementation to date, and ongoing efforts to develop a more sophisticated intent inferencing methodology.« less

  8. Development of an intelligent interface for adding spatial objects to a knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Goettsche, Craig

    1989-01-01

    Earth Scientists lack adequate tools for quantifying complex relationships between existing data layers and studying and modeling the dynamic interactions of these data layers. There is a need for an earth systems tool to manipulate multi-layered, heterogeneous data sets that are spatially indexed, such as sensor imagery and maps, easily and intelligently in a single system. The system can access and manipulate data from multiple sensor sources, maps, and from a learned object hierarchy using an advanced knowledge-based geographical information system. A prototype Knowledge-Based Geographic Information System (KBGIS) was recently constructed. Many of the system internals are well developed, but the system lacks an adequate user interface. A methodology is described for developing an intelligent user interface and extending KBGIS to interconnect with existing NASA systems, such as imagery from the Land Analysis System (LAS), atmospheric data in Common Data Format (CDF), and visualization of complex data with the National Space Science Data Center Graphics System. This would allow NASA to quickly explore the utility of such a system, given the ability to transfer data in and out of KBGIS easily. The use and maintenance of the object hierarchies as polymorphic data types brings, to data management, a while new set of problems and issues, few of which have been explored above the prototype level.

  9. Statistical modeling for visualization evaluation through data fusion.

    PubMed

    Chen, Xiaoyu; Jin, Ran

    2017-11-01

    There is a high demand of data visualization providing insights to users in various applications. However, a consistent, online visualization evaluation method to quantify mental workload or user preference is lacking, which leads to an inefficient visualization and user interface design process. Recently, the advancement of interactive and sensing technologies makes the electroencephalogram (EEG) signals, eye movements as well as visualization logs available in user-centered evaluation. This paper proposes a data fusion model and the application procedure for quantitative and online visualization evaluation. 15 participants joined the study based on three different visualization designs. The results provide a regularized regression model which can accurately predict the user's evaluation of task complexity, and indicate the significance of all three types of sensing data sets for visualization evaluation. This model can be widely applied to data visualization evaluation, and other user-centered designs evaluation and data analysis in human factors and ergonomics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. GeoCrystal: graphic-interactive access to geodata archives

    NASA Astrophysics Data System (ADS)

    Goebel, Stefan; Haist, Joerg; Jasnoch, Uwe

    2002-03-01

    Recently there is spent a lot of effort to establish information systems and global infrastructures enabling both data suppliers and users to describe (-> eCommerce, metadata) as well as to find appropriate data. Examples for this are metadata information systems, online-shops or portals for geodata. The main disadvantages of existing approaches are insufficient methods and mechanisms leading users to (e.g. spatial) data archives. This affects aspects concerning usability and personalization in general as well as visual feedback techniques in the different steps of the information retrieval process. Several approaches aim at the improvement of graphical user interfaces by using intuitive metaphors, but only some of them offer 3D interfaces in the form of information landscapes or geographic result scenes in the context of information systems for geodata. This paper presents GeoCrystal, which basic idea is to adopt Venn diagrams to compose complex queries and to visualize search results in a 3D information and navigation space for geodata. These concepts are enhanced with spatial metaphors and 3D information landscapes (library for geodata) wherein users can specify searches for appropriate geodata and are enabled to graphic-interactively communicate with search results (book metaphor).

  11. Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1992-01-01

    A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.

  12. The SAMPEX Data Center and User Interface for the Heliophysics Community

    NASA Astrophysics Data System (ADS)

    Davis, A. J.; Kanekal, S. G.; Looper, M. D.; Mazur, J. E.

    2012-12-01

    The Solar, Anomalous, Magnetospheric Particle Explorer (SAMPEX) was the first of NASA's Small Explorer (SMEX) series. SAMPEX was launched July 3, 1992 into a 520 by 670 km orbit at 82 degrees inclination. SAMPEX carries four instruments designed to study energetic particles of solar, interplanetary, and magnetospheric origin, as well as "anomalous" and galactic cosmic rays. As an outcome of the Senior Review process, the NASA SAMPEX science mission ended on June 30, 2004, leaving a 12-year continuous record of observations. (The spacecraft and instruments are still operating and returning science data under a partnership between NASA and the Aerospace Corporation). SAMPEX was launched before the development of the WWW and implementation of NASA's open data policy. This, and the complexity of the data analysis have made it difficult for the general community to make full use of the SAMPEX science data set. The SAMPEX Data Center remedies the situation. The data center set-up and operation was funded for 3 years by NASA, and it remains in operation. The goals of the data center are to enable community access to the full SAMPEX data set by developing an up-to-date, flexible web-based system, and to provide for the eventual permanent archiving of this version of the SAMPEX data set at the NSSDC. Knowledgeable members of the SAMPEX science team have prepared the data, and members of the ACE Science Center at Caltech are involved in maintaining the data distribution pipeline and user interface. The system is modeled in part on the ACE Science Center, but enhanced to accommodate the more-complex SAMPEX data set. We will describe the current status of the SAMPEX Data Center, the user interface, and the contents of the data that are available.

  13. The SAMPEX Data Center and User Interface for the SEC Community

    NASA Astrophysics Data System (ADS)

    Davis, A. J.; Mason, G. M.; Walpole, P.; von Rosenvinge, T. T.; Looper, M. D.; Blake, J. B.; Mazur, J. E.; Stone, E. C.; Leske, R. A.; Labrador, A. W.; Mewaldt, R. A.; Kanekal, S. G.; Baker, D. N.; Li, X.; Klecker, B.

    2005-05-01

    The Solar, Anomalous, Magnetospheric Particle Explorer (SAMPEX) was the first of NASA's Small Explorer (SMEX) series. SAMPEX was launched July 3, 1992 into a 520 by 670 km orbit at 82 degrees inclination. SAMPEX carries four instruments designed to study energetic particles of solar, interplanetary, and magnetospheric origin, as well as "anomalous" and galactic cosmic rays. As an outcome of the Senior Review process, the NASA SAMPEX science mission ended on June 30, 2004, leaving a 12-year continuous record of observations. (The spacecraft and instruments are still operating and returning science data for a 1-year trial period under a partnership between NASA and the Aerospace Corporation). SAMPEX was launched before the development of the WWW and implementation of NASA's open data policy. This, and the complexity of the data analysis have made it difficult for the general community to make full use of the SAMPEX science data set. The SAMPEX Data Center will remedy the situation. The data center set-up and operation is funded for 3 years by NASA. The goals of the data center are to enable community access to the full SAMPEX data set by developing an up-to-date, flexible web-based system, and to provide for the eventual permanent archiving of this version of the SAMPEX data set at the NSSDC. Knowledgeable members of the SAMPEX science team are preparing the data, and members of the ACE Science Center at Caltech are involved in developing the data distribution pipeline and user interface. The system is modeled in part on the ACE Science Center, but enhanced to accommodate the more-complex SAMPEX data set. We will describe the current status of the SAMPEX Data Center development, the user interface, and the contents of the data that will be made available.

  14. User-Friendly Interface Developed for a Web-Based Service for SpaceCAL Emulations

    NASA Technical Reports Server (NTRS)

    Liszka, Kathy J.; Holtz, Allen P.

    2004-01-01

    A team at the NASA Glenn Research Center is developing a Space Communications Architecture Laboratory (SpaceCAL) for protocol development activities for coordinated satellite missions. SpaceCAL will provide a multiuser, distributed system to emulate space-based Internet architectures, backbone networks, formation clusters, and constellations. As part of a new effort in 2003, building blocks are being defined for an open distributed system to make the satellite emulation test bed accessible through an Internet connection. The first step in creating a Web-based service to control the emulation remotely is providing a user-friendly interface for encoding the data into a well-formed and complete Extensible Markup Language (XML) document. XML provides coding that allows data to be transferred between dissimilar systems. Scenario specifications include control parameters, network routes, interface bandwidths, delay, and bit error rate. Specifications for all satellite, instruments, and ground stations in a given scenario are also included in the XML document. For the SpaceCAL emulation, the XML document can be created using XForms, a Webbased forms language for data collection. Contrary to older forms technology, the interactive user interface makes the science prevalent, not the data representation. Required versus optional input fields, default values, automatic calculations, data validation, and reuse will help researchers quickly and accurately define missions. XForms can apply any XML schema defined for the test mission to validate data before forwarding it to the emulation facility. New instrument definitions, facilities, and mission types can be added to the existing schema. The first prototype user interface incorporates components for interactive input and form processing. Internet address, data rate, and the location of the facility are implemented with basic form controls with default values provided for convenience and efficiency using basic XForms operations. Because different emulation scenarios will vary widely in their component structure, more complex operations are used to add and delete facilities.

  15. A Prototype Graphical User Interface for Co-op: A Group Decision Support System.

    DTIC Science & Technology

    1992-03-01

    achieve their potential to communicate. Information-oriented, systematic graphic design is the use of typography , symbols, color, and other static and...apphcuittin by reducig Uber ellurt anid enhuncizig Iliteracti. ’Iliis thesis designs and de% elupht Itrututylle Graphical User Interface iGUl i fui Cu f...ORGANIZATION.... .. .. ............ II. INTERFACE DESIGN PRINCIPLES. .............. 7 A. GRAPHICAL USER INTERFACES.............7 1. Design Principles

  16. Pilot-Vehicle Interface

    DTIC Science & Technology

    1993-11-01

    way is to develop a crude but working model of an entire system. The other is by developing a realistic model of the user interface , leaving out most...devices or by incorporating software for a more user -friendly interface . Automation introduces the possibility of making data entry errors. Multimode...across various human- computer interfaces . 127 a Memory: Minimize the amount of information that the user must maintain in short-term memory

  17. BrainIACS: a system for web-based medical image processing

    NASA Astrophysics Data System (ADS)

    Kishore, Bhaskar; Bazin, Pierre-Louis; Pham, Dzung L.

    2009-02-01

    We describe BrainIACS, a web-based medical image processing system that permits and facilitates algorithm developers to quickly create extensible user interfaces for their algorithms. Designed to address the challenges faced by algorithm developers in providing user-friendly graphical interfaces, BrainIACS is completely implemented using freely available, open-source software. The system, which is based on a client-server architecture, utilizes an AJAX front-end written using the Google Web Toolkit (GWT) and Java Servlets running on Apache Tomcat as its back-end. To enable developers to quickly and simply create user interfaces for configuring their algorithms, the interfaces are described using XML and are parsed by our system to create the corresponding user interface elements. Most of the commonly found elements such as check boxes, drop down lists, input boxes, radio buttons, tab panels and group boxes are supported. Some elements such as the input box support input validation. Changes to the user interface such as addition and deletion of elements are performed by editing the XML file or by using the system's user interface creator. In addition to user interface generation, the system also provides its own interfaces for data transfer, previewing of input and output files, and algorithm queuing. As the system is programmed using Java (and finally Java-script after compilation of the front-end code), it is platform independent with the only requirements being that a Servlet implementation be available and that the processing algorithms can execute on the server platform.

  18. Neuroanatomical affiliation visualization-interface system.

    PubMed

    Palombi, Olivier; Shin, Jae-Won; Watson, Charles; Paxinos, George

    2006-01-01

    A number of knowledge management systems have been developed to allow users to have access to large quantity of neuroanatomical data. The advent of three-dimensional (3D) visualization techniques allows users to interact with complex 3D object. In order to better understand the structural and functional organization of the brain, we present Neuroanatomical Affiliations Visualization-Interface System (NAVIS) as the original software to see brain structures and neuroanatomical affiliations in 3D. This version of NAVIS has made use of the fifth edition of "The Rat Brain in Stereotaxic coordinates" (Paxinos and Watson, 2005). The NAVIS development environment was based on the scripting language name Python, using visualization toolkit (VTK) as 3D-library and wxPython for the graphic user interface. The following manuscript is focused on the nucleus of the solitary tract (Sol) and the set of affiliated structures in the brain to illustrate the functionality of NAVIS. The nucleus of the Sol is the primary relay center of visceral and taste information, and consists of 14 distinct subnuclei that differ in cytoarchitecture, chemoarchitecture, connections, and function. In the present study, neuroanatomical projection data of the rat Sol were collected from selected literature in PubMed since 1975. Forty-nine identified projection data of Sol were inserted in NAVIS. The standard XML format used as an input for affiliation data allows NAVIS to update data online and/or allows users to manually change or update affiliation data. NAVIS can be extended to nuclei other than Sol.

  19. Two complementary personal medication management applications developed on a common platform: case report.

    PubMed

    Ross, Stephen E; Johnson, Kevin B; Siek, Katie A; Gordon, Jeffry S; Khan, Danish U; Haverhals, Leah M

    2011-07-12

    Adverse drug events are a major safety issue in ambulatory care. Improving medication self-management could reduce these adverse events. Researchers have developed medication applications for tethered personal health records (PHRs), but little has been reported about medication applications for interoperable PHRs. Our objective was to develop two complementary personal health applications on a common PHR platform: one to assist children with complex health needs (MyMediHealth), and one to assist older adults in care transitions (Colorado Care Tablet). The applications were developed using a user-centered design approach. The two applications shared a common PHR platform based on a service-oriented architecture. MyMediHealth employed Web and mobile phone user interfaces. Colorado Care Tablet employed a Web interface customized for a tablet PC. We created complementary medication management applications tailored to the needs of distinctly different user groups using common components. Challenges were addressed in multiple areas, including how to encode medication identities, how to incorporate knowledge bases for medication images and consumer health information, how to include supplementary dosing information, how to simplify user interfaces for older adults, and how to support mobile devices for children. These prototypes demonstrate the utility of abstracting PHR data and services (the PHR platform) from applications that can be tailored to meet the needs of diverse patients. Based on the challenges we faced, we provide recommendations on the structure of publicly available knowledge resources and the use of mobile messaging systems for PHR applications.

  20. Gestures in an Intelligent User Interface

    NASA Astrophysics Data System (ADS)

    Fikkert, Wim; van der Vet, Paul; Nijholt, Anton

    In this chapter we investigated which hand gestures are intuitive to control a large display multimedia interface from a user's perspective. Over the course of two sequential user evaluations, we defined a simple gesture set that allows users to fully control a large display multimedia interface, intuitively. First, we evaluated numerous gesture possibilities for a set of commands that can be issued to the interface. These gestures were selected from literature, science fiction movies, and a previous exploratory study. Second, we implemented a working prototype with which the users could interact with both hands and the preferred hand gestures with 2D and 3D visualizations of biochemical structures. We found that the gestures are influenced to significant extent by the fast paced developments in multimedia interfaces such as the Apple iPhone and the Nintendo Wii and to no lesser degree by decades of experience with the more traditional WIMP-based interfaces.

  1. From Community to Meta-Community Mental Health Care.

    PubMed

    Bouras, Nick; Ikkos, George; Craig, Thomas

    2018-04-20

    Since the 1960s, we have witnessed the development and growth of community mental health care that continues to dominate mental health policy and practice. Several high-income countries have implemented community mental health care programmes but for many others, including mostly low- and middle-income countries, it remains an aspiration. Although community mental health care has been positive for many service users, it has also had severe shortcomings. Expectations that it would lead to fuller social integration have not been fulfilled and many service users remain secluded in sheltered or custodial environments with limited social contacts and no prospect of work. Others receive little or no service at all. In today’s complex landscape of increasingly specialised services for people with mental health problems, the number of possible interfaces between services is increasing. Together with existing uneven financing systems and a context of constant change, these interfaces are challenging us to develop effective care pathways adjusted to the needs of service users and their carers. This discussion paper reviews the developments in community mental health care over the recent years and puts forward the concept of “Meta-Community Mental Health Care”. “Meta-Community Mental Health Care” embraces pluralism in understanding and treating psychiatric disorders, acknowledges the complexities of community provision, and reflects the realities and needs of the current era of care.

  2. From Community to Meta-Community Mental Health Care

    PubMed Central

    Bouras, Nick; Ikkos, George; Craig, Thomas

    2018-01-01

    Since the 1960s, we have witnessed the development and growth of community mental health care that continues to dominate mental health policy and practice. Several high-income countries have implemented community mental health care programmes but for many others, including mostly low- and middle-income countries, it remains an aspiration. Although community mental health care has been positive for many service users, it has also had severe shortcomings. Expectations that it would lead to fuller social integration have not been fulfilled and many service users remain secluded in sheltered or custodial environments with limited social contacts and no prospect of work. Others receive little or no service at all. In today’s complex landscape of increasingly specialised services for people with mental health problems, the number of possible interfaces between services is increasing. Together with existing uneven financing systems and a context of constant change, these interfaces are challenging us to develop effective care pathways adjusted to the needs of service users and their carers. This discussion paper reviews the developments in community mental health care over the recent years and puts forward the concept of “Meta-Community Mental Health Care”. “Meta-Community Mental Health Care” embraces pluralism in understanding and treating psychiatric disorders, acknowledges the complexities of community provision, and reflects the realities and needs of the current era of care. PMID:29677100

  3. Human-computer interface including haptically controlled interactions

    DOEpatents

    Anderson, Thomas G.

    2005-10-11

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  4. Applying Cognitive Psychology to User Interfaces

    NASA Astrophysics Data System (ADS)

    Durrani, Sabeen; Durrani, Qaiser S.

    This paper explores some key aspects of cognitive psychology that may be mapped onto user interfaces. Major focus in existing user interface guidelines is on consistency, simplicity, feedback, system messages, display issues, navigation, colors, graphics, visibility and error prevention [8-10]. These guidelines are effective indesigning user interfaces. However, these guidelines do not handle the issues that may arise due to the innate structure of human brain and human limitations. For example, where to place graphics on the screen so that user can easily process them and what kind of background should be given on the screen according to the limitation of human motor system. In this paper we have collected some available guidelines from the area of cognitive psychology [1, 5, 7]. In addition, we have extracted few guidelines from theories and studies of cognitive psychology [3, 11] which may be mapped to user interfaces.

  5. User interface customization on Endoscopy Department Mini-PACS and its impact on examination workflow

    NASA Astrophysics Data System (ADS)

    Osada, Masakazu; Kaise, Mitsuru; Ozeki, Takeshi; Tsunakawa, Hirofumi; Tsunakawa, Kiyoshi; Takayanagi, Takashi; Suzuki, Nobuaki; Miwa, Jun; Ohta, Yasuhiko; Kanai, Koichi

    1999-07-01

    We have proposed a new user interface with workflow customization, implemented and evaluted in Endoscopy Department Mini-PACS that has been introduced and routinely used for two years at Toshiba General Hospital. We have set some task at endoscopy image acquisition units during examinations for two different types of user interfaces and compared performance. One is a command-button based operation using a remote control, and another is that with eight graphic buttons which are displayed on a CRT monitor and can be customized. Results of the two-year study show that mean number of input diagnosis codes per examination with graphic and customized interface is significantly greater than that with conventional interface. Also, mean time to complete one upper gastric endoscopy examination with new user interface is about 17 percent less than that with conventional interface. These result suggest that systems with the visualized and customized operation and feedback encourages physicians to use more functions and to compete tasks more efficiently than systems with conventional command-button based user interfaces.

  6. A case study on better iconographic design in electronic medical records' user interface.

    PubMed

    Tasa, Umut Burcu; Ozcan, Oguzhan; Yantac, Asim Evren; Unluer, Ayca

    2008-06-01

    It is a known fact that there is a conflict between what users expect and what user interface designers create in the field of medical informatics along with other fields of interface design. The objective of the study is to suggest, from the 'design art' perspective, a method for improving the usability of an electronic medical record (EMR) interface. The suggestion is based on the hypothesis that the user interface of an EMR should be iconographic. The proposed three-step method consists of a questionnaire survey on how hospital users perceive concepts/terms that are going to be used in the EMR user interface. Then icons associated with the terms are designed by a designer, following a guideline which is prepared according to the results of the first questionnaire. Finally the icons are asked back to the target group for proof. A case study was conducted with 64 medical staff and 30 professional designers for the first questionnaire, and with 30 medical staff for the second. In the second questionnaire 7.53 icons out of 10 were matched correctly with a standard deviation of 0.98. Also, all icons except three were matched correctly in at least 83.3% of the forms. The proposed new method differs from the majority of previous studies which are based on user requirements by leaning on user experiments instead. The study demonstrated that the user interface of EMRs should be designed according to a guideline that results from a survey on users' experiences on metaphoric perception of the terms.

  7. A hybrid BCI for enhanced control of a telepresence robot.

    PubMed

    Carlson, Tom; Tonin, Luca; Perdikis, Serafeim; Leeb, Robert; del R Millán, José

    2013-01-01

    Motor-disabled end users have successfully driven a telepresence robot in a complex environment using a Brain-Computer Interface (BCI). However, to facilitate the interaction aspect that underpins the notion of telepresence, users must be able to voluntarily and reliably stop the robot at any moment, not just drive from point to point. In this work, we propose to exploit the user's residual muscular activity to provide a fast and reliable control channel, which can start/stop the telepresence robot at any moment. Our preliminary results show that not only does this hybrid approach increase the accuracy, but it also helps to reduce the workload and was the preferred control paradigm of all the participants.

  8. The CAD-score web server: contact area-based comparison of structures and interfaces of proteins, nucleic acids and their complexes.

    PubMed

    Olechnovič, Kliment; Venclovas, Ceslovas

    2014-07-01

    The Contact Area Difference score (CAD-score) web server provides a universal framework to compute and analyze discrepancies between different 3D structures of the same biological macromolecule or complex. The server accepts both single-subunit and multi-subunit structures and can handle all the major types of macromolecules (proteins, RNA, DNA and their complexes). It can perform numerical comparison of both structures and interfaces. In addition to entire structures and interfaces, the server can assess user-defined subsets. The CAD-score server performs both global and local numerical evaluations of structural differences between structures or interfaces. The results can be explored interactively using sortable tables of global scores, profiles of local errors, superimposed contact maps and 3D structure visualization. The web server could be used for tasks such as comparison of models with the native (reference) structure, comparison of X-ray structures of the same macromolecule obtained in different states (e.g. with and without a bound ligand), analysis of nuclear magnetic resonance (NMR) structural ensemble or structures obtained in the course of molecular dynamics simulation. The web server is freely accessible at: http://www.ibt.lt/bioinformatics/cad-score. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. The Distributed Common Ground System-Army User Interface

    DTIC Science & Technology

    2015-06-12

    its perceived lack of effectiveness. Popular opinion of the DCGS-A user interface within the military is it is unfriendly to use and not intuitive...from members of the United States Congress due to its perceived lack of effectiveness. Popular opinion of the DCGS-A user interface within the

  10. Learning Analytics for Natural User Interfaces

    ERIC Educational Resources Information Center

    Martinez-Maldonado, Roberto; Shum, Simon Buckingham; Schneider, Bertrand; Charleer, Sven; Klerkx, Joris; Duval, Erik

    2017-01-01

    The continuous advancement of natural user interfaces (NUIs) allows for the development\tof novel and creative ways to support collocated collaborative work in a wide range of areas, including teaching and learning. The use of NUIs, such as those based on interactive multi-touch surfaces and tangible user interfaces (TUIs), can offer unique…

  11. Development of a Mobile User Interface for Image-based Dietary Assessment.

    PubMed

    Kim, Sungye; Schap, Tusarebecca; Bosch, Marc; Maciejewski, Ross; Delp, Edward J; Ebert, David S; Boushey, Carol J

    2010-12-31

    In this paper, we present a mobile user interface for image-based dietary assessment. The mobile user interface provides a front end to a client-server image recognition and portion estimation software. In the client-server configuration, the user interactively records a series of food images using a built-in camera on the mobile device. Images are sent from the mobile device to the server, and the calorie content of the meal is estimated. In this paper, we describe and discuss the design and development of our mobile user interface features. We discuss the design concepts, through initial ideas and implementations. For each concept, we discuss qualitative user feedback from participants using the mobile client application. We then discuss future designs, including work on design considerations for the mobile application to allow the user to interactively correct errors in the automatic processing while reducing the user burden associated with classical pen-and-paper dietary records.

  12. Oasis: A high-level/high-performance open source Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Mortensen, Mikael; Valen-Sendstad, Kristian

    2015-03-01

    Oasis is a high-level/high-performance finite element Navier-Stokes solver written from scratch in Python using building blocks from the FEniCS project (fenicsproject.org). The solver is unstructured and targets large-scale applications in complex geometries on massively parallel clusters. Oasis utilizes MPI and interfaces, through FEniCS, to the linear algebra backend PETSc. Oasis advocates a high-level, programmable user interface through the creation of highly flexible Python modules for new problems. Through the high-level Python interface the user is placed in complete control of every aspect of the solver. A version of the solver, that is using piecewise linear elements for both velocity and pressure, is shown to reproduce very well the classical, spectral, turbulent channel simulations of Moser et al. (1999). The computational speed is strongly dominated by the iterative solvers provided by the linear algebra backend, which is arguably the best performance any similar implicit solver using PETSc may hope for. Higher order accuracy is also demonstrated and new solvers may be easily added within the same framework.

  13. SpicyNodes Radial Map Engine

    NASA Astrophysics Data System (ADS)

    Douma, M.; Ligierko, G.; Angelov, I.

    2008-10-01

    The need for information has increased exponentially over the past decades. The current systems for constructing, exploring, classifying, organizing, and searching information face the growing challenge of enabling their users to operate efficiently and intuitively in knowledge-heavy environments. This paper presents SpicyNodes, an advanced user interface for difficult interaction contexts. It is based on an underlying structure known as a radial map, which allows users to manipulate and interact in a natural manner with entities called nodes. This technology overcomes certain limitations of existing solutions and solves the problem of browsing complex sets of linked information. SpicyNodes is also an organic system that projects users into a living space, stimulating exploratory behavior and fostering creative thought. Our interactive radial layout is used for educational purposes and has the potential for numerous other applications.

  14. User interfaces in space science instrumentation

    NASA Astrophysics Data System (ADS)

    McCalden, Alec John

    This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.

  15. Internet Medline providers.

    PubMed

    Vine, D L; Coady, T R

    1998-01-01

    Each database in this review has features that will appeal to some users. Each provides a credible interface to information available within the Medline database. The major differences are pricing and interface design. In this context, features that cost more and might seem trivial to the occasional searcher may actually save time and money when used by the professional. Internet Grateful Med is free, but Ms. Coady and I agree the availability of only three ANDable search fields is a major functional limitation. PubMed is also free but much more powerful. The command line interface that permits very sophisticated searches requires a commitment that casual users will find intimidating. Ms. Coady did not believe the feedback currently provided during a search was sufficient for sustained professional use. Paper Chase and Knowledge Finder are mature, modestly priced Medline search services. Paper Chase provides a menu-driven interface that is very easy to use, yet permits the user to search virtually all of Medline's data fields. Knowledge Finder emphasizes the use of natural language queries but fully supports more traditional search strategies. The impact of the tradeoff between fuzzy and Boolean strategies offered by Knowledge Finder is unclear and beyond the scope of this review. Additional software must be downloaded to use all of Knowledge Finders' features. Other providers required no software beyond the basic Internet browser, and this requirement prevented Ms. Coady from evaluating Knowledge Finder. Ovid and Silver Platter offer well-designed interfaces that simplify the construction of complex queries. These are clearly services designed for professional users. While pricing eliminates these for casual use, it should be emphasized that Medline citation access is only a portion of the service provided by these high-end vendors. Finally, we should comment that each of the vendors and government-sponsored services provided prompt and useful feedback to e-mail questions about usage. In conclusion, we would suggest you try the various services, determine which interface suits your style and budget, then perform simple searches until you learn the strengths and weaknesses of the service you select.

  16. Intelligent Context-Aware and Adaptive Interface for Mobile LBS

    PubMed Central

    Liu, Yanhong

    2015-01-01

    Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077

  17. Natural Language Search Interfaces: Health Data Needs Single-Field Variable Search.

    PubMed

    Jay, Caroline; Harper, Simon; Dunlop, Ian; Smith, Sam; Sufi, Shoaib; Goble, Carole; Buchan, Iain

    2016-01-14

    Data discovery, particularly the discovery of key variables and their inter-relationships, is key to secondary data analysis, and in-turn, the evolving field of data science. Interface designers have presumed that their users are domain experts, and so they have provided complex interfaces to support these "experts." Such interfaces hark back to a time when searches needed to be accurate first time as there was a high computational cost associated with each search. Our work is part of a governmental research initiative between the medical and social research funding bodies to improve the use of social data in medical research. The cross-disciplinary nature of data science can make no assumptions regarding the domain expertise of a particular scientist, whose interests may intersect multiple domains. Here we consider the common requirement for scientists to seek archived data for secondary analysis. This has more in common with search needs of the "Google generation" than with their single-domain, single-tool forebears. Our study compares a Google-like interface with traditional ways of searching for noncomplex health data in a data archive. Two user interfaces are evaluated for the same set of tasks in extracting data from surveys stored in the UK Data Archive (UKDA). One interface, Web search, is "Google-like," enabling users to browse, search for, and view metadata about study variables, whereas the other, traditional search, has standard multioption user interface. Using a comprehensive set of tasks with 20 volunteers, we found that the Web search interface met data discovery needs and expectations better than the traditional search. A task × interface repeated measures analysis showed a main effect indicating that answers found through the Web search interface were more likely to be correct (F1,19=37.3, P<.001), with a main effect of task (F3,57=6.3, P<.001). Further, participants completed the task significantly faster using the Web search interface (F1,19=18.0, P<.001). There was also a main effect of task (F2,38=4.1, P=.025, Greenhouse-Geisser correction applied). Overall, participants were asked to rate learnability, ease of use, and satisfaction. Paired mean comparisons showed that the Web search interface received significantly higher ratings than the traditional search interface for learnability (P=.002, 95% CI [0.6-2.4]), ease of use (P<.001, 95% CI [1.2-3.2]), and satisfaction (P<.001, 95% CI [1.8-3.5]). The results show superior cross-domain usability of Web search, which is consistent with its general familiarity and with enabling queries to be refined as the search proceeds, which treats serendipity as part of the refinement. The results provide clear evidence that data science should adopt single-field natural language search interfaces for variable search supporting in particular: query reformulation; data browsing; faceted search; surrogates; relevance feedback; summarization, analytics, and visual presentation.

  18. Natural Language Search Interfaces: Health Data Needs Single-Field Variable Search

    PubMed Central

    Smith, Sam; Sufi, Shoaib; Goble, Carole; Buchan, Iain

    2016-01-01

    Background Data discovery, particularly the discovery of key variables and their inter-relationships, is key to secondary data analysis, and in-turn, the evolving field of data science. Interface designers have presumed that their users are domain experts, and so they have provided complex interfaces to support these “experts.” Such interfaces hark back to a time when searches needed to be accurate first time as there was a high computational cost associated with each search. Our work is part of a governmental research initiative between the medical and social research funding bodies to improve the use of social data in medical research. Objective The cross-disciplinary nature of data science can make no assumptions regarding the domain expertise of a particular scientist, whose interests may intersect multiple domains. Here we consider the common requirement for scientists to seek archived data for secondary analysis. This has more in common with search needs of the “Google generation” than with their single-domain, single-tool forebears. Our study compares a Google-like interface with traditional ways of searching for noncomplex health data in a data archive. Methods Two user interfaces are evaluated for the same set of tasks in extracting data from surveys stored in the UK Data Archive (UKDA). One interface, Web search, is “Google-like,” enabling users to browse, search for, and view metadata about study variables, whereas the other, traditional search, has standard multioption user interface. Results Using a comprehensive set of tasks with 20 volunteers, we found that the Web search interface met data discovery needs and expectations better than the traditional search. A task × interface repeated measures analysis showed a main effect indicating that answers found through the Web search interface were more likely to be correct (F 1,19=37.3, P<.001), with a main effect of task (F 3,57=6.3, P<.001). Further, participants completed the task significantly faster using the Web search interface (F 1,19=18.0, P<.001). There was also a main effect of task (F 2,38=4.1, P=.025, Greenhouse-Geisser correction applied). Overall, participants were asked to rate learnability, ease of use, and satisfaction. Paired mean comparisons showed that the Web search interface received significantly higher ratings than the traditional search interface for learnability (P=.002, 95% CI [0.6-2.4]), ease of use (P<.001, 95% CI [1.2-3.2]), and satisfaction (P<.001, 95% CI [1.8-3.5]). The results show superior cross-domain usability of Web search, which is consistent with its general familiarity and with enabling queries to be refined as the search proceeds, which treats serendipity as part of the refinement. Conclusions The results provide clear evidence that data science should adopt single-field natural language search interfaces for variable search supporting in particular: query reformulation; data browsing; faceted search; surrogates; relevance feedback; summarization, analytics, and visual presentation. PMID:26769334

  19. An IT Architecture for Systems Medicine.

    PubMed

    Ganzinger, Matthias; Gietzelt, Matthias; Karmen, Christian; Firnkorn, Daniel; Knaup, Petra

    2015-01-01

    Systems medicine aims to support treatment of complex diseases like cancer by integrating all available data for the disease. To provide such a decision support in clinical practice, a suitable IT architecture is necessary. We suggest a generic architecture comprised of the following three layers: data representation, decision support, and user interface. For the systems medicine research project "Clinically-applicable, omics-based assessment of survival, side effects, and targets in multiple myeloma" (CLIOMMICS) we developed a concrete instance of the generic architecture. We use i2b2 for representing the harmonized data. Since no deterministic model exists for multiple myeloma we use case-based reasoning for decision support. For clinical practice, visualizations of the results must be intuitive and clear. At the same time, they must communicate the uncertainty immanent in stochastic processes. Thus, we develop a specific user interface for systems medicine based on the web portal software Liferay.

  20. Formal verification of human-automation interaction

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Heymann, Michael

    2002-01-01

    This paper discusses a formal and rigorous approach to the analysis of operator interaction with machines. It addresses the acute problem of detecting design errors in human-machine interaction and focuses on verifying the correctness of the interaction in complex and automated control systems. The paper describes a systematic methodology for evaluating whether the interface provides the necessary information about the machine to enable the operator to perform a specified task successfully and unambiguously. It also addresses the adequacy of information provided to the user via training material (e.g., user manual) about the machine's behavior. The essentials of the methodology, which can be automated and applied to the verification of large systems, are illustrated by several examples and through a case study of pilot interaction with an autopilot aboard a modern commercial aircraft. The expected application of this methodology is an augmentation and enhancement, by formal verification, of human-automation interfaces.

  1. Concurrent Image Processing Executive (CIPE). Volume 2: Programmer's guide

    NASA Technical Reports Server (NTRS)

    Williams, Winifred I.

    1990-01-01

    This manual is intended as a guide for application programmers using the Concurrent Image Processing Executive (CIPE). CIPE is intended to become the support system software for a prototype high performance science analysis workstation. In its current configuration CIPE utilizes a JPL/Caltech Mark 3fp Hypercube with a Sun-4 host. CIPE's design is capable of incorporating other concurrent architectures as well. CIPE provides a programming environment to applications' programmers to shield them from various user interfaces, file transactions, and architectural complexities. A programmer may choose to write applications to use only the Sun-4 or to use the Sun-4 with the hypercube. A hypercube program will use the hypercube's data processors and optionally the Weitek floating point accelerators. The CIPE programming environment provides a simple set of subroutines to activate user interface functions, specify data distributions, activate hypercube resident applications, and to communicate parameters to and from the hypercube.

  2. Evaluation of user interface and workflow design of a bedside nursing clinical decision support system.

    PubMed

    Yuan, Michael Juntao; Finley, George Mike; Long, Ju; Mills, Christy; Johnson, Ron Kim

    2013-01-31

    Clinical decision support systems (CDSS) are important tools to improve health care outcomes and reduce preventable medical adverse events. However, the effectiveness and success of CDSS depend on their implementation context and usability in complex health care settings. As a result, usability design and validation, especially in real world clinical settings, are crucial aspects of successful CDSS implementations. Our objective was to develop a novel CDSS to help frontline nurses better manage critical symptom changes in hospitalized patients, hence reducing preventable failure to rescue cases. A robust user interface and implementation strategy that fit into existing workflows was key for the success of the CDSS. Guided by a formal usability evaluation framework, UFuRT (user, function, representation, and task analysis), we developed a high-level specification of the product that captures key usability requirements and is flexible to implement. We interviewed users of the proposed CDSS to identify requirements, listed functions, and operations the system must perform. We then designed visual and workflow representations of the product to perform the operations. The user interface and workflow design were evaluated via heuristic and end user performance evaluation. The heuristic evaluation was done after the first prototype, and its results were incorporated into the product before the end user evaluation was conducted. First, we recruited 4 evaluators with strong domain expertise to study the initial prototype. Heuristic violations were coded and rated for severity. Second, after development of the system, we assembled a panel of nurses, consisting of 3 licensed vocational nurses and 7 registered nurses, to evaluate the user interface and workflow via simulated use cases. We recorded whether each session was successfully completed and its completion time. Each nurse was asked to use the National Aeronautics and Space Administration (NASA) Task Load Index to self-evaluate the amount of cognitive and physical burden associated with using the device. A total of 83 heuristic violations were identified in the studies. The distribution of the heuristic violations and their average severity are reported. The nurse evaluators successfully completed all 30 sessions of the performance evaluations. All nurses were able to use the device after a single training session. On average, the nurses took 111 seconds (SD 30 seconds) to complete the simulated task. The NASA Task Load Index results indicated that the work overhead on the nurses was low. In fact, most of the burden measures were consistent with zero. The only potentially significant burden was temporal demand, which was consistent with the primary use case of the tool. The evaluation has shown that our design was functional and met the requirements demanded by the nurses' tight schedules and heavy workloads. The user interface embedded in the tool provided compelling utility to the nurse with minimal distraction.

  3. Easing access to R using 'shiny' to create graphical user interfaces: An example for the R package 'Luminescence'

    NASA Astrophysics Data System (ADS)

    Burow, Christoph; Kreutzer, Sebastian; Dietze, Michael; Fuchs, Margret C.; Schmidt, Christoph; Fischer, Manfred; Brückner, Helmut

    2017-04-01

    Since the release of the R package 'Luminescence' (Kreutzer et al., 2012) the functionality of the package has been greatly enhanced by implementing further functions for measurement data processing, statistical analysis and graphical output. Despite its capabilities for complex and non-standard analysis of luminescence data, working with the command-line interface (CLI) of R can be tedious at best and overwhelming at worst, especially for users without experience in programming languages. Even though much work is put into simplifying the usage of the package to continuously lower the entry threshold, at least basic knowledge of R will always be required. Thus, the potential user base of the package cannot be exhausted, at least as long as the CLI is the only means of utilising the 'Luminescence' package. But even experienced users may find it tedious to iteratively run a function until a satisfying results is produced. For example, plotting data is also at least partly subject to personal aesthetic tastes in accordance with the information it is supposed to convey and iterating through all the possible options in the R CLI can be a time-consuming task. An alternative approach to the CLI is the graphical user interface (GUI), which allows direct, interactive manipulation and interaction with the underlying software. For users with little or no experience with command-lines a GUI offers intuitive access that counteracts the perceived steep learning curve of a CLI. Even though R lacks native support for GUI functions, its capabilities of linking it to other programming languages allows to utilise external frameworks to build graphical user interfaces. A recent attempt to provide a GUI toolkit for R was the introduction of the 'shiny' package (Chang et al., 2016), which allows automatic construction of HTML, CSS and JavaScript based user interfaces straight from R. Here, we give (1) a brief introduction to the 'shiny' framework for R, before we (2) present a GUI for the R package 'Luminescence' in the form of interactive web applications. These applications can be accessed online so that a user is not even required to have a local installation of R and which provide access to most of the plotting functions of the R package 'Luminescence'. These functionalities will be demonstrated live during the PICO session. References Chang, W., Cheng, J., Allaire, JJ., Xie, Y., McPherson, J., 2016. shiny: Web Application Framework for R. R package version 0.13.2. https://CRAN.R-project.org/package=shiny Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M., Fischer, M., Fuchs, M., 2012. Introducing an R package for luminescence dating analysis. Ancient TL, 30: 1-8, 2012.

  4. Transportable Applications Environment Plus, Version 5.1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Transportable Applications Environment Plus (TAE+) computer program providing integrated, portable programming environment for developing and running application programs based on interactive windows, text, and graphical objects. Enables both programmers and nonprogrammers to construct own custom application interfaces easily and to move interfaces and application programs to different computers. Used to define corporate user interface, with noticeable improvements in application developer's and end user's learning curves. Main components are; WorkBench, What You See Is What You Get (WYSIWYG) software tool for design and layout of user interface; and WPT (Window Programming Tools) Package, set of callable subroutines controlling user interface of application program. WorkBench and WPT's written in C++, and remaining code written in C.

  5. Reasoning about Users' Actions in a Graphical User Interface.

    ERIC Educational Resources Information Center

    Virvou, Maria; Kabassi, Katerina

    2002-01-01

    Describes a graphical user interface called IFM (Intelligent File Manipulator) that provides intelligent help to users. Explains two underlying reasoning mechanisms, one an adaptation of human plausible reasoning and one that performs goal recognition based on the effects of users' commands; and presents results of an empirical study that…

  6. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.

    PubMed

    Matsubara, Takamitsu; Morimoto, Jun

    2013-08-01

    In this study, we propose a multiuser myoelectric interface that can easily adapt to novel users. When a user performs different motions (e.g., grasping and pinching), different electromyography (EMG) signals are measured. When different users perform the same motion (e.g., grasping), different EMG signals are also measured. Therefore, designing a myoelectric interface that can be used by multiple users to perform multiple motions is difficult. To cope with this problem, we propose for EMG signals a bilinear model that is composed of two linear factors: 1) user dependent and 2) motion dependent. By decomposing the EMG signals into these two factors, the extracted motion-dependent factors can be used as user-independent features. We can construct a motion classifier on the extracted feature space to develop the multiuser interface. For novel users, the proposed adaptation method estimates the user-dependent factor through only a few interactions. The bilinear EMG model with the estimated user-dependent factor can extract the user-independent features from the novel user data. We applied our proposed method to a recognition task of five hand gestures for robotic hand control using four-channel EMG signals measured from subject forearms. Our method resulted in 73% accuracy, which was statistically significantly different from the accuracy of standard nonmultiuser interfaces, as the result of a two-sample t -test at a significance level of 1%.

  7. Use of force feedback to enhance graphical user interfaces

    NASA Astrophysics Data System (ADS)

    Rosenberg, Louis B.; Brave, Scott

    1996-04-01

    This project focuses on the use of force feedback sensations to enhance user interaction with standard graphical user interface paradigms. While typical joystick and mouse devices are input-only, force feedback controllers allow physical sensations to be reflected to a user. Tasks that require users to position a cursor on a given target can be enhanced by applying physical forces to the user that aid in targeting. For example, an attractive force field implemented at the location of a graphical icon can greatly facilitate target acquisition and selection of the icon. It has been shown that force feedback can enhance a users ability to perform basic functions within graphical user interfaces.

  8. Influence of Learning Styles on Graphical User Interface Preferences for e-Learners

    ERIC Educational Resources Information Center

    Dedic, Velimir; Markovic, Suzana

    2012-01-01

    Implementing Web-based educational environment requires not only developing appropriate architectures, but also incorporating human factors considerations. User interface becomes the major channel to convey information in e-learning context: a well-designed and friendly enough interface is thus the key element in helping users to get the best…

  9. Integrating User Interface and Personal Innovativeness into the TAM for Mobile Learning in Cyber University

    ERIC Educational Resources Information Center

    Joo, Young Ju; Lee, Hyeon Woo; Ham, Yookyoung

    2014-01-01

    This study aims to add new variables, namely user interface, personal innovativeness, and satisfaction in learning, to Davis's technology acceptance model and also examine whether learners are willing to adopt mobile learning. Thus, this study attempted to explain the structural causal relationships among user interface, personal…

  10. Semantics of User Interface for Image Retrieval: Possibility Theory and Learning Techniques.

    ERIC Educational Resources Information Center

    Crehange, M.; And Others

    1989-01-01

    Discusses the need for a rich semantics for the user interface in interactive image retrieval and presents two methods for building such interfaces: possibility theory applied to fuzzy data retrieval, and a machine learning technique applied to learning the user's deep need. Prototypes developed using videodisks and knowledge-based software are…

  11. SWATMOD-PREP: Graphical user interface for preparing coupled SWAT-modflow simulations

    USDA-ARS?s Scientific Manuscript database

    This paper presents SWATMOD-Prep, a graphical user interface that couples a SWAT watershed model with a MODFLOW groundwater flow model. The interface is based on a recently published SWAT-MODFLOW code that couples the models via mapping schemes. The spatial layout of SWATMOD-Prep guides the user t...

  12. Reflections on Andes' Goal-Free User Interface

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    Although the Andes project produced many results over its 18 years of activity, this commentary focuses on its contributions to understanding how a goal-free user interface impacts the overall design and performance of a step-based tutoring system. Whereas a goal-aligned user interface displays relevant goals as blank boxes or empty locations that…

  13. Business Performer-Centered Design of User Interfaces

    NASA Astrophysics Data System (ADS)

    Sousa, Kênia; Vanderdonckt, Jean

    Business Performer-Centered Design of User Interfaces is a new design methodology that adopts business process (BP) definition and a business performer perspective for managing the life cycle of user interfaces of enterprise systems. In this methodology, when the organization has a business process culture, the business processes of an organization are firstly defined according to a traditional methodology for this kind of artifact. These business processes are then transformed into a series of task models that represent the interactive parts of the business processes that will ultimately lead to interactive systems. When the organization has its enterprise systems, but not yet its business processes modeled, the user interfaces of the systems help derive tasks models, which are then used to derive the business processes. The double linking between a business process and a task model, and between a task model and a user interface model makes it possible to ensure traceability of the artifacts in multiple paths and enables a more active participation of business performers in analyzing the resulting user interfaces. In this paper, we outline how a human-perspective is used tied to a model-driven perspective.

  14. A Hybrid 2D/3D User Interface for Radiological Diagnosis.

    PubMed

    Mandalika, Veera Bhadra Harish; Chernoglazov, Alexander I; Billinghurst, Mark; Bartneck, Christoph; Hurrell, Michael A; Ruiter, Niels de; Butler, Anthony P H; Butler, Philip H

    2018-02-01

    This paper presents a novel 2D/3D desktop virtual reality hybrid user interface for radiology that focuses on improving 3D manipulation required in some diagnostic tasks. An evaluation of our system revealed that our hybrid interface is more efficient for novice users and more accurate for both novice and experienced users when compared to traditional 2D only interfaces. This is a significant finding because it indicates, as the techniques mature, that hybrid interfaces can provide significant benefit to image evaluation. Our hybrid system combines a zSpace stereoscopic display with 2D displays, and mouse and keyboard input. It allows the use of 2D and 3D components interchangeably, or simultaneously. The system was evaluated against a 2D only interface with a user study that involved performing a scoliosis diagnosis task. There were two user groups: medical students and radiology residents. We found improvements in completion time for medical students, and in accuracy for both groups. In particular, the accuracy of medical students improved to match that of the residents.

  15. Projection Mapping User Interface for Disabled People

    PubMed Central

    Simutis, Rimvydas; Maskeliūnas, Rytis

    2018-01-01

    Difficulty in communicating is one of the key challenges for people suffering from severe motor and speech disabilities. Often such person can communicate and interact with the environment only using assistive technologies. This paper presents a multifunctional user interface designed to improve communication efficiency and person independence. The main component of this interface is a projection mapping technique used to highlight objects in the environment. Projection mapping makes it possible to create a natural augmented reality information presentation method. The user interface combines a depth sensor and a projector to create camera-projector system. We provide a detailed description of camera-projector system calibration procedure. The described system performs tabletop object detection and automatic projection mapping. Multiple user input modalities have been integrated into the multifunctional user interface. Such system can be adapted to the needs of people with various disabilities. PMID:29686827

  16. Human perceptual deficits as factors in computer interface test and evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowser, S.E.

    1992-06-01

    Issues related to testing and evaluating human computer interfaces are usually based on the machine rather than on the human portion of the computer interface. Perceptual characteristics of the expected user are rarely investigated, and interface designers ignore known population perceptual limitations. For these reasons, environmental impacts on the equipment will more likely be defined than will user perceptual characteristics. The investigation of user population characteristics is most often directed toward intellectual abilities and anthropometry. This problem is compounded by the fact that some deficits capabilities tend to be found in higher-than-overall population distribution in some user groups. The testmore » and evaluation community can address the issue from two primary aspects. First, assessing user characteristics should be extended to include tests of perceptual capability. Secondly, interface designs should use multimode information coding.« less

  17. Projection Mapping User Interface for Disabled People.

    PubMed

    Gelšvartas, Julius; Simutis, Rimvydas; Maskeliūnas, Rytis

    2018-01-01

    Difficulty in communicating is one of the key challenges for people suffering from severe motor and speech disabilities. Often such person can communicate and interact with the environment only using assistive technologies. This paper presents a multifunctional user interface designed to improve communication efficiency and person independence. The main component of this interface is a projection mapping technique used to highlight objects in the environment. Projection mapping makes it possible to create a natural augmented reality information presentation method. The user interface combines a depth sensor and a projector to create camera-projector system. We provide a detailed description of camera-projector system calibration procedure. The described system performs tabletop object detection and automatic projection mapping. Multiple user input modalities have been integrated into the multifunctional user interface. Such system can be adapted to the needs of people with various disabilities.

  18. Development of a graphical user interface for the global land information system (GLIS)

    USGS Publications Warehouse

    Alstad, Susan R.; Jackson, David A.

    1993-01-01

    The process of developing a Motif Graphical User Interface for the Global Land Information System (GLIS) involved incorporating user requirements, in-house visual and functional design requirements, and Open Software Foundation (OSF) Motif style guide standards. Motif user interface windows have been developed using the software to support Motif window functions war written using the C programming language. The GLIS architecture was modified to support multiple servers and remote handlers running the X Window System by forming a network of servers and handlers connected by TCP/IP communications. In April 1993, prior to release the GLIS graphical user interface and system architecture modifications were test by developers and users located at the EROS Data Center and 11 beta test sites across the country.

  19. Language workbench user interfaces for data analysis

    PubMed Central

    Benson, Victoria M.

    2015-01-01

    Biological data analysis is frequently performed with command line software. While this practice provides considerable flexibility for computationally savy individuals, such as investigators trained in bioinformatics, this also creates a barrier to the widespread use of data analysis software by investigators trained as biologists and/or clinicians. Workflow systems such as Galaxy and Taverna have been developed to try and provide generic user interfaces that can wrap command line analysis software. These solutions are useful for problems that can be solved with workflows, and that do not require specialized user interfaces. However, some types of analyses can benefit from custom user interfaces. For instance, developing biomarker models from high-throughput data is a type of analysis that can be expressed more succinctly with specialized user interfaces. Here, we show how Language Workbench (LW) technology can be used to model the biomarker development and validation process. We developed a language that models the concepts of Dataset, Endpoint, Feature Selection Method and Classifier. These high-level language concepts map directly to abstractions that analysts who develop biomarker models are familiar with. We found that user interfaces developed in the Meta-Programming System (MPS) LW provide convenient means to configure a biomarker development project, to train models and view the validation statistics. We discuss several advantages of developing user interfaces for data analysis with a LW, including increased interface consistency, portability and extension by language composition. The language developed during this experiment is distributed as an MPS plugin (available at http://campagnelab.org/software/bdval-for-mps/). PMID:25755929

  20. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes.

    PubMed

    van Zundert, G C P; Rodrigues, J P G L M; Trellet, M; Schmitz, C; Kastritis, P L; Karaca, E; Melquiond, A S J; van Dijk, M; de Vries, S J; Bonvin, A M J J

    2016-02-22

    The prediction of the quaternary structure of biomolecular macromolecules is of paramount importance for fundamental understanding of cellular processes and drug design. In the era of integrative structural biology, one way of increasing the accuracy of modeling methods used to predict the structure of biomolecular complexes is to include as much experimental or predictive information as possible in the process. This has been at the core of our information-driven docking approach HADDOCK. We present here the updated version 2.2 of the HADDOCK portal, which offers new features such as support for mixed molecule types, additional experimental restraints and improved protocols, all of this in a user-friendly interface. With well over 6000 registered users and 108,000 jobs served, an increasing fraction of which on grid resources, we hope that this timely upgrade will help the community to solve important biological questions and further advance the field. The HADDOCK2.2 Web server is freely accessible to non-profit users at http://haddock.science.uu.nl/services/HADDOCK2.2. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Adaptive and Adaptable Automation Design: A Critical Review of the Literature and Recommendations for Future Research

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kaber, David B.

    2006-01-01

    This report presents a review of literature on approaches to adaptive and adaptable task/function allocation and adaptive interface technologies for effective human management of complex systems that are likely to be issues for the Next Generation Air Transportation System, and a focus of research under the Aviation Safety Program, Integrated Intelligent Flight Deck Project. Contemporary literature retrieved from an online database search is summarized and integrated. The major topics include the effects of delegation-type, adaptable automation on human performance, workload and situation awareness, the effectiveness of various automation invocation philosophies and strategies to function allocation in adaptive systems, and the role of user modeling in adaptive interface design and the performance implications of adaptive interface technology.

  2. Web-based DAQ systems: connecting the user and electronics front-ends

    NASA Astrophysics Data System (ADS)

    Lenzi, Thomas

    2016-12-01

    Web technologies are quickly evolving and are gaining in computational power and flexibility, allowing for a paradigm shift in the field of Data Acquisition (DAQ) systems design. Modern web browsers offer the possibility to create intricate user interfaces and are able to process and render complex data. Furthermore, new web standards such as WebSockets allow for fast real-time communication between the server and the user with minimal overhead. Those improvements make it possible to move the control and monitoring operations from the back-end servers directly to the user and to the front-end electronics, thus reducing the complexity of the data acquisition chain. Moreover, web-based DAQ systems offer greater flexibility, accessibility, and maintainability on the user side than traditional applications which often lack portability and ease of use. As proof of concept, we implemented a simplified DAQ system on a mid-range Spartan6 Field Programmable Gate Array (FPGA) development board coupled to a digital front-end readout chip. The system is connected to the Internet and can be accessed from any web browser. It is composed of custom code to control the front-end readout and of a dual soft-core Microblaze processor to communicate with the client.

  3. Band Excitation for Scanning Probe Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesse, Stephen

    2017-01-02

    The Band Excitation (BE) technique for scanning probe microscopy uses a precisely determined waveform that contains specific frequencies to excite the cantilever or sample in an atomic force microscope to extract more information, and more reliable information from a sample. There are a myriad of details and complexities associated with implementing the BE technique. There is therefore a need to have a user friendly interface that allows typical microscopists access to this methodology. This software enables users of atomic force microscopes to easily: build complex band-excitation waveforms, set-up the microscope scanning conditions, configure the input and output electronics for generatemore » the waveform as a voltage signal and capture the response of the system, perform analysis on the captured response, and display the results of the measurement.« less

  4. User interface development and metadata considerations for the Atmospheric Radiation Measurement (ARM) archive

    NASA Technical Reports Server (NTRS)

    Singley, P. T.; Bell, J. D.; Daugherty, P. F.; Hubbs, C. A.; Tuggle, J. G.

    1993-01-01

    This paper will discuss user interface development and the structure and use of metadata for the Atmospheric Radiation Measurement (ARM) Archive. The ARM Archive, located at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is the data repository for the U.S. Department of Energy's (DOE's) ARM Project. After a short description of the ARM Project and the ARM Archive's role, we will consider the philosophy and goals, constraints, and prototype implementation of the user interface for the archive. We will also describe the metadata that are stored at the archive and support the user interface.

  5. Urine collection apparatus. [feminine hygiene

    NASA Technical Reports Server (NTRS)

    Michaud, R. B. (Inventor)

    1981-01-01

    A urine collection device for females comprises an interface body with an interface surface for engagement with the user's body. The interface body comprises a forward portion defining a urine-receiving bore which has an inlet in the interface surface adapted to be disposed in surrounding relation to the urethral opening of the user. The interface body also has a rear portion integrally adjoining the forward portion and a non-invasive vaginal seal on the interface surface for sealing the vagina of the user from communication with the urine-receiving bore. An absorbent pad is removably supported on the interface body and extends laterally therefrom. A garment for supporting the urine collection is also disclosed.

  6. BFEE: A User-Friendly Graphical Interface Facilitating Absolute Binding Free-Energy Calculations.

    PubMed

    Fu, Haohao; Gumbart, James C; Chen, Haochuan; Shao, Xueguang; Cai, Wensheng; Chipot, Christophe

    2018-03-26

    Quantifying protein-ligand binding has attracted the attention of both theorists and experimentalists for decades. Many methods for estimating binding free energies in silico have been reported in recent years. Proper use of the proposed strategies requires, however, adequate knowledge of the protein-ligand complex, the mathematical background for deriving the underlying theory, and time for setting up the simulations, bookkeeping, and postprocessing. Here, to minimize human intervention, we propose a toolkit aimed at facilitating the accurate estimation of standard binding free energies using a geometrical route, coined the binding free-energy estimator (BFEE), and introduced it as a plug-in of the popular visualization program VMD. Benefitting from recent developments in new collective variables, BFEE can be used to generate the simulation input files, based solely on the structure of the complex. Once the simulations are completed, BFEE can also be utilized to perform the post-treatment of the free-energy calculations, allowing the absolute binding free energy to be estimated directly from the one-dimensional potentials of mean force in simulation outputs. The minimal amount of human intervention required during the whole process combined with the ergonomic graphical interface makes BFEE a very effective and practical tool for the end-user.

  7. Finding and Exploring Health Information with a Slider-Based User Interface.

    PubMed

    Pang, Patrick Cheong-Iao; Verspoor, Karin; Pearce, Jon; Chang, Shanton

    2016-01-01

    Despite the fact that search engines are the primary channel to access online health information, there are better ways to find and explore health information on the web. Search engines are prone to problems when they are used to find health information. For instance, users have difficulties in expressing health scenarios with appropriate search keywords, search results are not optimised for medical queries, and the search process does not account for users' literacy levels and reading preferences. In this paper, we describe our approach to addressing these problems by introducing a novel design using a slider-based user interface for discovering health information without the need for precise search keywords. The user evaluation suggests that the interface is easy to use and able to assist users in the process of discovering new information. This study demonstrates the potential value of adopting slider controls in the user interface of health websites for navigation and information discovery.

  8. Weather information network including graphical display

    NASA Technical Reports Server (NTRS)

    Leger, Daniel R. (Inventor); Burdon, David (Inventor); Son, Robert S. (Inventor); Martin, Kevin D. (Inventor); Harrison, John (Inventor); Hughes, Keith R. (Inventor)

    2006-01-01

    An apparatus for providing weather information onboard an aircraft includes a processor unit and a graphical user interface. The processor unit processes weather information after it is received onboard the aircraft from a ground-based source, and the graphical user interface provides a graphical presentation of the weather information to a user onboard the aircraft. Preferably, the graphical user interface includes one or more user-selectable options for graphically displaying at least one of convection information, turbulence information, icing information, weather satellite information, SIGMET information, significant weather prognosis information, and winds aloft information.

  9. Anthropomorphic Robot Design and User Interaction Associated with Motion

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    2016-01-01

    Though in its original concept a robot was conceived to have some human-like shape, most robots now in use have specific industrial purposes and do not closely resemble humans. Nevertheless, robots that resemble human form in some way have continued to be introduced. They are called anthropomorphic robots. The fact that the user interface to all robots is now highly mediated means that the form of the user interface is not necessarily connected to the robots form, human or otherwise. Consequently, the unique way the design of anthropomorphic robots affects their user interaction is through their general appearance and the way they move. These robots human-like appearance acts as a kind of generalized predictor that gives its operators, and those with whom they may directly work, the expectation that they will behave to some extent like a human. This expectation is especially prominent for interactions with social robots, which are built to enhance it. Often interaction with them may be mainly cognitive because they are not necessarily kinematically intricate enough for complex physical interaction. Their body movement, for example, may be limited to simple wheeled locomotion. An anthropomorphic robot with human form, however, can be kinematically complex and designed, for example, to reproduce the details of human limb, torso, and head movement. Because of the mediated nature of robot control, there remains in general no necessary connection between the specific form of user interface and the anthropomorphic form of the robot. But their anthropomorphic kinematics and dynamics imply that the impact of their design shows up in the way the robot moves. The central finding of this report is that the control of this motion is a basic design element through which the anthropomorphic form can affect user interaction. In particular, designers of anthropomorphic robots can take advantage of the inherent human-like movement to 1) improve the users direct manual control over robot limbs and body positions, 2) improve users ability to detect anomalous robot behavior which could signal malfunction, and 3) enable users to be better able to infer the intent of robot movement. These three benefits of anthropomorphic design are inherent implications of the anthropomorphic form but they need to be recognized by designers as part of anthropomorphic design and explicitly enhanced to maximize their beneficial impact. Examples of such enhancements are provided in this report. If implemented, these benefits of anthropomorphic design can help reduce the risk of Inadequate Design of Human and Automation Robotic Integration (HARI) associated with the HARI-01 gap by providing efficient and dexterous operator control over robots and by improving operator ability to detect malfunctions and understand the intention of robot movement.

  10. 3dRPC: a web server for 3D RNA-protein structure prediction.

    PubMed

    Huang, Yangyu; Li, Haotian; Xiao, Yi

    2018-04-01

    RNA-protein interactions occur in many biological processes. To understand the mechanism of these interactions one needs to know three-dimensional (3D) structures of RNA-protein complexes. 3dRPC is an algorithm for prediction of 3D RNA-protein complex structures and consists of a docking algorithm RPDOCK and a scoring function 3dRPC-Score. RPDOCK is used to sample possible complex conformations of an RNA and a protein by calculating the geometric and electrostatic complementarities and stacking interactions at the RNA-protein interface according to the features of atom packing of the interface. 3dRPC-Score is a knowledge-based potential that uses the conformations of nucleotide-amino-acid pairs as statistical variables and that is used to choose the near-native complex-conformations obtained from the docking method above. Recently, we built a web server for 3dRPC. The users can easily use 3dRPC without installing it locally. RNA and protein structures in PDB (Protein Data Bank) format are the only needed input files. It can also incorporate the information of interface residues or residue-pairs obtained from experiments or theoretical predictions to improve the prediction. The address of 3dRPC web server is http://biophy.hust.edu.cn/3dRPC. yxiao@hust.edu.cn.

  11. User interface issues in supporting human-computer integrated scheduling

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.; Biefeld, Eric W.

    1991-01-01

    Explored here is the user interface problems encountered with the Operations Missions Planner (OMP) project at the Jet Propulsion Laboratory (JPL). OMP uses a unique iterative approach to planning that places additional requirements on the user interface, particularly to support system development and maintenance. These requirements are necessary to support the concepts of heuristically controlled search, in-progress assessment, and iterative refinement of the schedule. The techniques used to address the OMP interface needs are given.

  12. The User Interface: How Does Your Product Look and Feel?

    ERIC Educational Resources Information Center

    Strukhoff, Roger

    1987-01-01

    Discusses the importance of user cordial interfaces to the successful marketing of optical data disk products, and describes features of several online systems. The topics discussed include full text searching, indexed searching, menu driven interfaces, natural language interfaces, computer graphics, and possible future developments. (CLB)

  13. ORBIT: an integrated environment for user-customized bioinformatics tools.

    PubMed

    Bellgard, M I; Hiew, H L; Hunter, A; Wiebrands, M

    1999-10-01

    There are a large number of computational programs freely available to bioinformaticians via a client/server, web-based environment. However, the client interface to these tools (typically an html form page) cannot be customized from the client side as it is created by the service provider. The form page is usually generic enough to cater for a wide range of users. However, this implies that a user cannot set as 'default' advanced program parameters on the form or even customize the interface to his/her specific requirements or preferences. Currently, there is a lack of end-user interface environments that can be modified by the user when accessing computer programs available on a remote server running on an intranet or over the Internet. We have implemented a client/server system called ORBIT (Online Researcher's Bioinformatics Interface Tools) where individual clients can have interfaces created and customized to command-line-driven, server-side programs. Thus, Internet-based interfaces can be tailored to a user's specific bioinformatic needs. As interfaces are created on the client machine independent of the server, there can be different interfaces to the same server-side program to cater for different parameter settings. The interface customization is relatively quick (between 10 and 60 min) and all client interfaces are integrated into a single modular environment which will run on any computer platform supporting Java. The system has been developed to allow for a number of future enhancements and features. ORBIT represents an important advance in the way researchers gain access to bioinformatics tools on the Internet.

  14. The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance.

    PubMed

    Ahmed, Adil; Chandra, Subhash; Herasevich, Vitaly; Gajic, Ognjen; Pickering, Brian W

    2011-07-01

    The care of critically ill patients generates large quantities of data. Increasingly, these data are presented to the provider within an electronic medical record. The manner in which data are organized and presented can impact on the ability of users to synthesis that data into meaningful information. The objective of this study was to test the hypothesis that novel user interfaces, which prioritize the display of high-value data to providers within system-based packages, reduce task load, and result in fewer errors of cognition compared with established user interfaces that do not. Randomized crossover study. Academic tertiary referral center. Attending, resident and fellow critical care physicians. Novel health care record user interface. Subjects randomly assigned to either a standard electronic medical record or a novel user interface, were asked to perform a structured task. The task required the subjects to use the assigned electronic environment to review the medical record of an intensive care unit patient said to be actively bleeding for data that formed the basis of answers to clinical questions posed in the form of a structured questionnaire. The primary outcome was task load, measured using the paper version of the NASA-task load index. Secondary outcome measures included time to task completion, number of errors of cognition measured by comparison of subject to post hoc gold standard questionnaire responses, and the quantity of information presented to subjects by each environment. Twenty subjects completed the task on eight patients, resulting in 160 patient-provider encounters (80 in each group). The standard electronic medical record contained a much larger data volume with a median (interquartile range) number of data points per patient of 1008 (895-1183) compared with 102 (77-112) contained within the novel user interface. The median (interquartile range) NASA-task load index values were 38.8 (32-45) and 58 (45-65) for the novel user interface compared with the standard electronic medical record (p < .001). The median (interquartile range) times in seconds taken to complete the task for four consecutive patients were 93 (57-132), 60 (48-71), 68 (48-80), and 54 (42-64) for the novel user interface compared with 145 (109-201), 125 (113-162), 129 (100-145), and 112 (92-123) for the standard interface (p < .0001), respectively. The median (interquartile range) number of errors per provider was 0.5 (0-1) and two (0.25-3) for the novel user interface and standard electronic medical record interface, respectively (p = .007). A novel user interface was designed based on the information needs of intensive care unit providers with a specific goal of development being the reduction of task load and errors of cognition associated with filtering, extracting, and using medical data contained within a comprehensive electronic medical record. The results of this simulated clinical experiment suggest that the configuration of the intensive care unit user interface contributes significantly to the task load, time to task completion, and number of errors of cognition associated with the identification, and subsequent use, of relevant patient data. Task-specific user interfaces, developed from an understanding of provider information requirements, offer advantages over interfaces currently available within a standard electronic medical record.

  15. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Abgarmi, Bizhan; Ozacar, A. Arda

    2017-04-01

    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for additional capabilities or for other applications.

  16. Minimum Hamiltonian ascent trajectory evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of shuttle and shuttle derived vehicles) users manual

    NASA Technical Reports Server (NTRS)

    Lyons, J. T.; Borchers, William R.

    1993-01-01

    Documentation for the User Interface Program for the Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) is provided. The User Interface Program is a separate software package designed to ease the user input requirements when using the MASTRE Trajectory Program. This document supplements documentation on the MASTRE Program that consists of the MASTRE Engineering Manual and the MASTRE Programmers Guide. The User Interface Program provides a series of menus and tables using the VAX Screen Management Guideline (SMG) software. These menus and tables allow the user to modify the MASTRE Program input without the need for learning the various program dependent mnemonics. In addition, the User Interface Program allows the user to modify and/or review additional input Namelist and data files, to build and review command files, to formulate and calculate mass properties related data, and to have a plotting capability.

  17. Development of a Mobile User Interface for Image-based Dietary Assessment

    PubMed Central

    Kim, SungYe; Schap, TusaRebecca; Bosch, Marc; Maciejewski, Ross; Delp, Edward J.; Ebert, David S.; Boushey, Carol J.

    2011-01-01

    In this paper, we present a mobile user interface for image-based dietary assessment. The mobile user interface provides a front end to a client-server image recognition and portion estimation software. In the client-server configuration, the user interactively records a series of food images using a built-in camera on the mobile device. Images are sent from the mobile device to the server, and the calorie content of the meal is estimated. In this paper, we describe and discuss the design and development of our mobile user interface features. We discuss the design concepts, through initial ideas and implementations. For each concept, we discuss qualitative user feedback from participants using the mobile client application. We then discuss future designs, including work on design considerations for the mobile application to allow the user to interactively correct errors in the automatic processing while reducing the user burden associated with classical pen-and-paper dietary records. PMID:24455755

  18. A method of designing smartphone interface based on the extended user's mental model

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Li, Fengmin; Bian, Jiali; Pan, Juchen; Song, Song

    2017-01-01

    The user's mental model is the core guiding theory of product design, especially practical products. The essence of practical product is a tool which is used by users to meet their needs. Then, the most important feature of a tool is usability. The design method based on the user's mental model provides a series of practical and feasible theoretical guidance for improving the usability of the product according to the user's awareness of things. In this paper, we propose a method of designing smartphone interface based on the extended user's mental model according to further research on user groups. This approach achieves personalized customization of smartphone application interface and enhance application using efficiency.

  19. Integrated Information Support System (IISS). Volume 8. User Interface Subsystem. Part 3. User Interface Services Product Specification.

    DTIC Science & Technology

    1985-11-01

    User Interface that consists of a set of callable execution time routines available to an application program for form processing . IISS Function Screen...provisions for test consists of the normal testing techniques that are accomplished during the construction process . They consist of design and code...application presents a form * to the user which must be filled in with information for processing by that application. The application then

  20. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  1. The design and evaluation of an activity monitoring user interface for people with stroke.

    PubMed

    Hart, Phil; Bierwirth, Rebekah; Fulk, George; Sazonov, Edward

    2014-01-01

    Usability is an important topic in the field of telerehabilitation research. Older users with disabilities in particular, present age-related and disability-related challenges that should be accommodated for in the design of a user interface for a telerehabilitation system. This paper describes the design, implementation, and assessment of a telerehabilitation system user interface that tries to maximize usability for an elderly user who has experienced a stroke. An Internet-connected Nintendo(®) Wii™ gaming system is selected as a hardware platform, and a server and website are implemented to process and display the feedback information. The usability of the interface is assessed with a trial consisting of 18 subjects: 10 healthy Doctor of Physical Therapy students and 8 people with a stroke. Results show similar levels of usability and high satisfaction with the gaming system interface from both groups of subjects.

  2. An Efficient User Interface Design for Nursing Information System Based on Integrated Patient Order Information.

    PubMed

    Chu, Chia-Hui; Kuo, Ming-Chuan; Weng, Shu-Hui; Lee, Ting-Ting

    2016-01-01

    A user friendly interface can enhance the efficiency of data entry, which is crucial for building a complete database. In this study, two user interfaces (traditional pull-down menu vs. check boxes) are proposed and evaluated based on medical records with fever medication orders by measuring the time for data entry, steps for each data entry record, and the complete rate of each medical record. The result revealed that the time for data entry is reduced from 22.8 sec/record to 3.2 sec/record. The data entry procedures also have reduced from 9 steps in the traditional one to 3 steps in the new one. In addition, the completeness of medical records is increased from 20.2% to 98%. All these results indicate that the new user interface provides a more user friendly and efficient approach for data entry than the traditional interface.

  3. Emotion scents: a method of representing user emotions on GUI widgets

    NASA Astrophysics Data System (ADS)

    Cernea, Daniel; Weber, Christopher; Ebert, Achim; Kerren, Andreas

    2013-01-01

    The world of desktop interfaces has been dominated for years by the concept of windows and standardized user interface (UI) components. Still, while supporting the interaction and information exchange between the users and the computer system, graphical user interface (GUI) widgets are rather one-sided, neglecting to capture the subjective facets of the user experience. In this paper, we propose a set of design guidelines for visualizing user emotions on standard GUI widgets (e.g., buttons, check boxes, etc.) in order to enrich the interface with a new dimension of subjective information by adding support for emotion awareness as well as post-task analysis and decision making. We highlight the use of an EEG headset for recording the various emotional states of the user while he/she is interacting with the widgets of the interface. We propose a visualization approach, called emotion scents, that allows users to view emotional reactions corresponding to di erent GUI widgets without in uencing the layout or changing the positioning of these widgets. Our approach does not focus on highlighting the emotional experience during the interaction with an entire system, but on representing the emotional perceptions and reactions generated by the interaction with a particular UI component. Our research is motivated by enabling emotional self-awareness and subjectivity analysis through the proposed emotionenhanced UI components for desktop interfaces. These assumptions are further supported by an evaluation of emotion scents.

  4. Gromita: a fully integrated graphical user interface to gromacs 4.

    PubMed

    Sellis, Diamantis; Vlachakis, Dimitrios; Vlassi, Metaxia

    2009-09-07

    Gromita is a fully integrated and efficient graphical user interface (GUI) to the recently updated molecular dynamics suite Gromacs, version 4. Gromita is a cross-platform, perl/tcl-tk based, interactive front end designed to break the command line barrier and introduce a new user-friendly environment to run molecular dynamics simulations through Gromacs. Our GUI features a novel workflow interface that guides the user through each logical step of the molecular dynamics setup process, making it accessible to both advanced and novice users. This tool provides a seamless interface to the Gromacs package, while providing enhanced functionality by speeding up and simplifying the task of setting up molecular dynamics simulations of biological systems. Gromita can be freely downloaded from http://bio.demokritos.gr/gromita/.

  5. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  6. A web-oriented software for the optimization of pooled experiments in NGS for detection of rare mutations.

    PubMed

    Evangelista, Daniela; Zuccaro, Antonio; Lančinskas, Algirdas; Žilinskas, Julius; Guarracino, Mario R

    2016-02-17

    The cost per patient of next generation sequencing for detection of rare mutations may be significantly reduced using pooled experiments. Recently, some techniques have been proposed for the planning of pooled experiments and for the optimal allocation of patients into pools. However, the lack of a user friendly resource for planning the design of pooled experiments forces the scientists to do frequent, complex and long computations. OPENDoRM is a powerful collection of novel mathematical algorithms usable via an intuitive graphical user interface. It enables researchers to speed up the planning of their routine experiments, as well as, to support scientists without specific bioinformatics expertises. Users can automatically carry out analysis in terms of costs associated with the optimal allocation of patients in pools. They are also able to choose between three distinct pooling mathematical methods, each of which also suggests the optimal configuration for the submitted experiment. Importantly, in order to keep track of the performed experiments, users can save and export the results of their experiments in standard tabular and charts contents. OPENDoRM is a freely available web-oriented application for the planning of pooled NGS experiments, available at: http://www-labgtp.na.icar.cnr.it/OPENDoRM. Its easy and intuitive graphical user interface enables researchers to plan theirs experiments using novel algorithms, and to interactively visualize the results.

  7. Amino Acid Interaction (INTAA) web server.

    PubMed

    Galgonek, Jakub; Vymetal, Jirí; Jakubec, David; Vondrášek, Jirí

    2017-07-03

    Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. A study of the influence of task familiarity on user behaviors and performance with a MeSH term suggestion interface for PubMed bibliographic search.

    PubMed

    Tang, Muh-Chyun; Liu, Ying-Hsang; Wu, Wan-Ching

    2013-09-01

    Previous research has shown that information seekers in biomedical domain need more support in formulating their queries. A user study was conducted to evaluate the effectiveness of a metadata based query suggestion interface for PubMed bibliographic search. The study also investigated the impact of search task familiarity on search behaviors and the effectiveness of the interface. A real user, user search request and real system approach was used for the study. Unlike tradition IR evaluation, where assigned tasks were used, the participants were asked to search requests of their own. Forty-four researchers in Health Sciences participated in the evaluation - each conducted two research requests of their own, alternately with the proposed interface and the PubMed baseline. Several performance criteria were measured to assess the potential benefits of the experimental interface, including users' assessment of their original and eventual queries, the perceived usefulness of the interfaces, satisfaction with the search results, and the average relevance score of the saved records. The results show that, when searching for an unfamiliar topic, users were more likely to change their queries, indicating the effect of familiarity on search behaviors. The results also show that the interface scored higher on several of the performance criteria, such as the "goodness" of the queries, perceived usefulness, and user satisfaction. Furthermore, in line with our hypothesis, the proposed interface was relatively more effective when less familiar search requests were attempted. Results indicate that there is a selective compatibility between search familiarity and search interface. One implication of the research for system evaluation is the importance of taking into consideration task familiarity when assessing the effectiveness of interactive IR systems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Fluidica CFD software for fluids instruction

    NASA Astrophysics Data System (ADS)

    Colonius, Tim

    2008-11-01

    Fluidica is an open-source freely available Matlab graphical user interface (GUI) to to an immersed-boundary Navier- Stokes solver. The algorithm is programmed in Fortran and compiled into Matlab as mex-function. The user can create external flows about arbitrarily complex bodies and collections of free vortices. The code runs fast enough for complex 2D flows to be computed and visualized in real-time on the screen. This facilitates its use in homework and in the classroom for demonstrations of various potential-flow and viscous flow phenomena. The GUI has been written with the goal of allowing the student to learn how to use the software as she goes along. The user can select which quantities are viewed on the screen, including contours of various scalars, velocity vectors, streamlines, particle trajectories, streaklines, and finite-time Lyapunov exponents. In this talk, we demonstrate the software in the context of worked classroom examples demonstrating lift and drag, starting vortices, separation, and vortex dynamics.

  10. Using the Browser for Science: A Collaborative Toolkit for Astronomy

    NASA Astrophysics Data System (ADS)

    Connolly, A. J.; Smith, I.; Krughoff, K. S.; Gibson, R.

    2011-07-01

    Astronomical surveys have yielded hundreds of terabytes of catalogs and images that span many decades of the electromagnetic spectrum. Even when observatories provide user-friendly web interfaces, exploring these data resources remains a complex and daunting task. In contrast, gadgets and widgets have become popular in social networking (e.g. iGoogle, Facebook). They provide a simple way to make complex data easily accessible that can be customized based on the interest of the user. With ASCOT (an AStronomical COllaborative Toolkit) we expand on these concepts to provide a customizable and extensible gadget framework for use in science. Unlike iGoogle, where all of the gadgets are independent, the gadgets we develop communicate and share information, enabling users to visualize and interact with data through multiple, simultaneous views. With this approach, web-based applications for accessing and visualizing data can be generated easily and, by linking these tools together, integrated and powerful data analysis and discovery tools can be constructed.

  11. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  12. OWLing Clinical Data Repositories With the Ontology Web Language

    PubMed Central

    Pastor, Xavier; Lozano, Esther

    2014-01-01

    Background The health sciences are based upon information. Clinical information is usually stored and managed by physicians with precarious tools, such as spreadsheets. The biomedical domain is more complex than other domains that have adopted information and communication technologies as pervasive business tools. Moreover, medicine continuously changes its corpus of knowledge because of new discoveries and the rearrangements in the relationships among concepts. This scenario makes it especially difficult to offer good tools to answer the professional needs of researchers and constitutes a barrier that needs innovation to discover useful solutions. Objective The objective was to design and implement a framework for the development of clinical data repositories, capable of facing the continuous change in the biomedicine domain and minimizing the technical knowledge required from final users. Methods We combined knowledge management tools and methodologies with relational technology. We present an ontology-based approach that is flexible and efficient for dealing with complexity and change, integrated with a solid relational storage and a Web graphical user interface. Results Onto Clinical Research Forms (OntoCRF) is a framework for the definition, modeling, and instantiation of data repositories. It does not need any database design or programming. All required information to define a new project is explicitly stated in ontologies. Moreover, the user interface is built automatically on the fly as Web pages, whereas data are stored in a generic repository. This allows for immediate deployment and population of the database as well as instant online availability of any modification. Conclusions OntoCRF is a complete framework to build data repositories with a solid relational storage. Driven by ontologies, OntoCRF is more flexible and efficient to deal with complexity and change than traditional systems and does not require very skilled technical people facilitating the engineering of clinical software systems. PMID:25599697

  13. OWLing Clinical Data Repositories With the Ontology Web Language.

    PubMed

    Lozano-Rubí, Raimundo; Pastor, Xavier; Lozano, Esther

    2014-08-01

    The health sciences are based upon information. Clinical information is usually stored and managed by physicians with precarious tools, such as spreadsheets. The biomedical domain is more complex than other domains that have adopted information and communication technologies as pervasive business tools. Moreover, medicine continuously changes its corpus of knowledge because of new discoveries and the rearrangements in the relationships among concepts. This scenario makes it especially difficult to offer good tools to answer the professional needs of researchers and constitutes a barrier that needs innovation to discover useful solutions. The objective was to design and implement a framework for the development of clinical data repositories, capable of facing the continuous change in the biomedicine domain and minimizing the technical knowledge required from final users. We combined knowledge management tools and methodologies with relational technology. We present an ontology-based approach that is flexible and efficient for dealing with complexity and change, integrated with a solid relational storage and a Web graphical user interface. Onto Clinical Research Forms (OntoCRF) is a framework for the definition, modeling, and instantiation of data repositories. It does not need any database design or programming. All required information to define a new project is explicitly stated in ontologies. Moreover, the user interface is built automatically on the fly as Web pages, whereas data are stored in a generic repository. This allows for immediate deployment and population of the database as well as instant online availability of any modification. OntoCRF is a complete framework to build data repositories with a solid relational storage. Driven by ontologies, OntoCRF is more flexible and efficient to deal with complexity and change than traditional systems and does not require very skilled technical people facilitating the engineering of clinical software systems.

  14. Transportable Applications Environment (TAE) Plus: A NASA user interface development and management system

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1991-01-01

    The transportable Applications Environment Plus (TAE Plus), developed at the NASA Goddard Space FLight Center, is a portable, What you see is what you get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development of graphical user interfaces, as well as management of the user interface within the operational domain. TAE Plus is being applied to many types of applications, and what TAE Plus provides, how the implementation has utilizes state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA are discussed.

  15. MuSim, a Graphical User Interface for Multiple Simulation Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Thomas; Cummings, Mary Anne; Johnson, Rolland

    2016-06-01

    MuSim is a new user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parametrized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer (with a slider to vary the transparency of solids), allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline, MAD-X,more » and MCNP; more coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.« less

  16. Improved usability of a multi-infusion setup using a centralized control interface: A task-based usability test

    PubMed Central

    Cnossen, Fokie; Dieperink, Willem; Bult, Wouter; de Smet, Anne Marie; Touw, Daan J.; Nijsten, Maarten W.

    2017-01-01

    The objective of this study was to assess the usability benefits of adding a bedside central control interface that controls all intravenous (IV) infusion pumps compared to the conventional individual control of multiple infusion pumps. Eighteen dedicated ICU nurses volunteered in a between-subjects task-based usability test. A newly developed central control interface was compared to conventional control of multiple infusion pumps in a simulated ICU setting. Task execution time, clicks, errors and questionnaire responses were evaluated. Overall the central control interface outperformed the conventional control in terms of fewer user actions (40±3 vs. 73±20 clicks, p<0.001) and fewer user errors (1±1 vs. 3±2 errors, p<0.05), with no difference in task execution times (421±108 vs. 406±119 seconds, not significant). Questionnaires indicated a significant preference for the central control interface. Despite being novice users of the central control interface, ICU nurses displayed improved performance with the central control interface compared to the conventional interface they were familiar with. We conclude that the new user interface has an overall better usability than the conventional interface. PMID:28800617

  17. Improved usability of a multi-infusion setup using a centralized control interface: A task-based usability test.

    PubMed

    Doesburg, Frank; Cnossen, Fokie; Dieperink, Willem; Bult, Wouter; de Smet, Anne Marie; Touw, Daan J; Nijsten, Maarten W

    2017-01-01

    The objective of this study was to assess the usability benefits of adding a bedside central control interface that controls all intravenous (IV) infusion pumps compared to the conventional individual control of multiple infusion pumps. Eighteen dedicated ICU nurses volunteered in a between-subjects task-based usability test. A newly developed central control interface was compared to conventional control of multiple infusion pumps in a simulated ICU setting. Task execution time, clicks, errors and questionnaire responses were evaluated. Overall the central control interface outperformed the conventional control in terms of fewer user actions (40±3 vs. 73±20 clicks, p<0.001) and fewer user errors (1±1 vs. 3±2 errors, p<0.05), with no difference in task execution times (421±108 vs. 406±119 seconds, not significant). Questionnaires indicated a significant preference for the central control interface. Despite being novice users of the central control interface, ICU nurses displayed improved performance with the central control interface compared to the conventional interface they were familiar with. We conclude that the new user interface has an overall better usability than the conventional interface.

  18. Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics.

    PubMed

    Pedde, R Daniel; Li, Huiyan; Borchers, Christoph H; Akbari, Mohsen

    2017-10-01

    Interfacing mass spectrometry (MS) with microfluidic chips (μchip-MS) holds considerable potential to transform a clinician's toolbox, providing translatable methods for the early detection, diagnosis, monitoring, and treatment of noncommunicable diseases by streamlining and integrating laborious sample preparation workflows on high-throughput, user-friendly platforms. Overcoming the limitations of competitive immunoassays - currently the gold standard in clinical proteomics - μchip-MS can provide unprecedented access to complex proteomic assays having high sensitivity and specificity, but without the labor, costs, and complexities associated with conventional MS sample processing. This review surveys recent μchip-MS systems for clinical applications and examines their emerging role in streamlining the development and translation of MS-based proteomic assays by alleviating many of the challenges that currently inhibit widespread clinical adoption. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. SimLabel: a graphical user interface to simulate continuous wave EPR spectra from site-directed spin labeling experiments.

    PubMed

    Etienne, E; Le Breton, N; Martinho, M; Mileo, E; Belle, V

    2017-08-01

    Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. ERPLAB: an open-source toolbox for the analysis of event-related potentials.

    PubMed

    Lopez-Calderon, Javier; Luck, Steven J

    2014-01-01

    ERPLAB toolbox is a freely available, open-source toolbox for processing and analyzing event-related potential (ERP) data in the MATLAB environment. ERPLAB is closely integrated with EEGLAB, a popular open-source toolbox that provides many EEG preprocessing steps and an excellent user interface design. ERPLAB adds to EEGLAB's EEG processing functions, providing additional tools for filtering, artifact detection, re-referencing, and sorting of events, among others. ERPLAB also provides robust tools for averaging EEG segments together to create averaged ERPs, for creating difference waves and other recombinations of ERP waveforms through algebraic expressions, for filtering and re-referencing the averaged ERPs, for plotting ERP waveforms and scalp maps, and for quantifying several types of amplitudes and latencies. ERPLAB's tools can be accessed either from an easy-to-learn graphical user interface or from MATLAB scripts, and a command history function makes it easy for users with no programming experience to write scripts. Consequently, ERPLAB provides both ease of use and virtually unlimited power and flexibility, making it appropriate for the analysis of both simple and complex ERP experiments. Several forms of documentation are available, including a detailed user's guide, a step-by-step tutorial, a scripting guide, and a set of video-based demonstrations.

  1. STScI Archive Manual, Version 7.0

    NASA Astrophysics Data System (ADS)

    Padovani, Paolo

    1999-06-01

    The STScI Archive Manual provides information a user needs to know to access the HST archive via its two user interfaces: StarView and a World Wide Web (WWW) interface. It provides descriptions of the StarView screens used to access information in the database and the format of that information, and introduces the use to the WWW interface. Using the two interfaces, users can search for observations, preview public data, and retrieve data from the archive. Using StarView one can also find calibration reference files and perform detailed association searches. With the WWW interface archive users can access, and obtain information on, all Multimission Archive at Space Telescope (MAST) data, a collection of mainly optical and ultraviolet datasets which include, amongst others, the International Ultraviolet Explorer (IUE) Final Archive. Both interfaces feature a name resolver which simplifies searches based on target name.

  2. Supporting openEHR Java desktop application developers.

    PubMed

    Kashfi, Hajar; Torgersson, Olof

    2011-01-01

    The openEHR community suggests that an appropriate approach for creating a graphical user interface for an openEHR-based application is to generate forms from the underlying archetypes and templates. However, current generation techniques are not mature enough to be able to produce high quality interfaces with good usability. Therefore, developing efficient ways to combine manually designed and developed interfaces to openEHR backends is an interesting alternative. In this study, a framework for binding a pre-designed graphical user interface to an openEHR-based backend is proposed. The proposed framework contributes to the set of options available for developers. In particular we believe that the approach of combining user interface components with an openEHR backend in the proposed way might be useful in situations where the quality of the user interface is essential and for creating small scale and experimental systems.

  3. Concepts and implementations of natural language query systems

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Liu, I-Hsiung

    1984-01-01

    The currently developed user language interfaces of information systems are generally intended for serious users. These interfaces commonly ignore potentially the largest user group, i.e., casual users. This project discusses the concepts and implementations of a natural query language system which satisfy the nature and information needs of casual users by allowing them to communicate with the system in the form of their native (natural) language. In addition, a framework for the development of such an interface is also introduced for the MADAM (Multics Approach to Data Access and Management) system at the University of Southwestern Louisiana.

  4. AQBE — QBE Style Queries for Archetyped Data

    NASA Astrophysics Data System (ADS)

    Sachdeva, Shelly; Yaginuma, Daigo; Chu, Wanming; Bhalla, Subhash

    Large-scale adoption of electronic healthcare applications requires semantic interoperability. The new proposals propose an advanced (multi-level) DBMS architecture for repository services for health records of patients. These also require query interfaces at multiple levels and at the level of semi-skilled users. In this regard, a high-level user interface for querying the new form of standardized Electronic Health Records system has been examined in this study. It proposes a step-by-step graphical query interface to allow semi-skilled users to write queries. Its aim is to decrease user effort and communication ambiguities, and increase user friendliness.

  5. fgui: A Method for Automatically Creating Graphical User Interfaces for Command-Line R Packages

    PubMed Central

    Hoffmann, Thomas J.; Laird, Nan M.

    2009-01-01

    The fgui R package is designed for developers of R packages, to help rapidly, and sometimes fully automatically, create a graphical user interface for a command line R package. The interface is built upon the Tcl/Tk graphical interface included in R. The package further facilitates the developer by loading in the help files from the command line functions to provide context sensitive help to the user with no additional effort from the developer. Passing a function as the argument to the routines in the fgui package creates a graphical interface for the function, and further options are available to tweak this interface for those who want more flexibility. PMID:21625291

  6. The Johnson Space Center management information systems: User's guide to JSCMIS

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Johnson Space Center Management Information System (JSCMIS) is an interface to computer data bases at the NASA Johnson Space Center which allows an authorized user to browse and retrieve information from a variety of sources with minimum effort. The User's Guide to JSCMIS is the supplement to the JSCMIS Research Report which details the objectives, the architecture, and implementation of the interface. It is a tutorial on how to use the interface and a reference for details about it. The guide is structured like an extended JSCMIS session, describing all of the interface features and how to use them. It also contains an appendix with each of the standard FORMATs currently included in the interface. Users may review them to decide which FORMAT most suits their needs.

  7. Human-telerobot interactions - Information, control, and mental models

    NASA Technical Reports Server (NTRS)

    Smith, Randy L.; Gillan, Douglas J.

    1987-01-01

    A part of the NASA's Space Station will be a teleoperated robot (telerobot) with arms for grasping and manipulation, feet for holding onto objects, and television cameras for visual feedback. The objective of the work described in this paper is to develop the requirements and specifications for the user-telerobot interface and to determine through research and testing that the interface results in efficient system operation. The focus of the development of the user-telerobot interface is on the information required by the user, the user inputs, and the design of the control workstation. Closely related to both the information required by the user and the user's control of the telerobot is the user's mental model of the relationship between the control inputs and the telerobot's actions.

  8. The MAGIC Touch: Combining MAGIC-Pointing with a Touch-Sensitive Mouse

    NASA Astrophysics Data System (ADS)

    Drewes, Heiko; Schmidt, Albrecht

    In this paper, we show how to use the combination of eye-gaze and a touch-sensitive mouse to ease pointing tasks in graphical user interfaces. A touch of the mouse positions the mouse pointer at the current gaze position of the user. Thus, the pointer is always at the position where the user expects it on the screen. This approach changes the user experience in tasks that include frequent switching between keyboard and mouse input (e.g. working with spreadsheets). In a user study, we compared the touch-sensitive mouse with a traditional mouse and observed speed improvements for pointing tasks on complex backgrounds. For pointing task on plain backgrounds, performances with both devices were similar, but users perceived the gaze-sensitive interaction of the touch-sensitive mouse as being faster and more convenient. Our results show that using a touch-sensitive mouse that positions the pointer on the user’s gaze position reduces the need for mouse movements in pointing tasks enormously.

  9. Knowledge Development Generic Framework Concept

    DTIC Science & Technology

    2008-12-18

    requirements. The conceptual model serves as a communication interface among analysts, military staff, and other actors involved [22015] Systems Analysis will...It designates all long- lived basic mechanisms of material and institutional kind, which guarantee the functioning of a complex community . 2.2.3.2...cooperation with users) • Analyze and decide whether it is better to communicate an information object automatically (“document-to-people”) or via human

  10. On the Usability and Likeability of Virtual Reality Games for Education: The Case of VR-ENGAGE

    ERIC Educational Resources Information Center

    Virvou, Maria; Katsionis, George

    2008-01-01

    Educational software games aim at increasing the students' motivation and engagement while they learn. However, if software games are targeted to school classrooms they have to be usable and likeable by all students. Usability of virtual reality games may be a problem because these games tend to have complex user interfaces so that they are more…

  11. A Proposed Intelligent Policy-Based Interface for a Mobile eHealth Environment

    NASA Astrophysics Data System (ADS)

    Tavasoli, Amir; Archer, Norm

    Users of mobile eHealth systems are often novices, and the learning process for them may be very time consuming. In order for systems to be attractive to potential adopters, it is important that the interface should be very convenient and easy to learn. However, the community of potential users of a mobile eHealth system may be quite varied in their requirements, so the system must be able to adapt easily to suit user preferences. One way to accomplish this is to have the interface driven by intelligent policies. These policies can be refined gradually, using inputs from potential users, through intelligent agents. This paper develops a framework for policy refinement for eHealth mobile interfaces, based on dynamic learning from user interactions.

  12. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    Vandam, Andries

    1995-01-01

    The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.

  13. Graphical user interfaces for symbol-oriented database visualization and interaction

    NASA Astrophysics Data System (ADS)

    Brinkschulte, Uwe; Siormanolakis, Marios; Vogelsang, Holger

    1997-04-01

    In this approach, two basic services designed for the engineering of computer based systems are combined: a symbol-oriented man-machine-service and a high speed database-service. The man-machine service is used to build graphical user interfaces (GUIs) for the database service; these interfaces are stored using the database service. The idea is to create a GUI-builder and a GUI-manager for the database service based upon the man-machine service using the concept of symbols. With user-definable and predefined symbols, database contents can be visualized and manipulated in a very flexible and intuitive way. Using the GUI-builder and GUI-manager, a user can build and operate its own graphical user interface for a given database according to its needs without writing a single line of code.

  14. CDROM User Interface Evaluation: The Appropriateness of GUIs.

    ERIC Educational Resources Information Center

    Bosch, Victoria Manglano; Hancock-Beaulieu, Micheline

    1995-01-01

    Assesses the appropriateness of GUIs (graphical user interfaces), more specifically Windows-based interfaces for CD-ROM. An evaluation model is described that was developed to carry out an expert evaluation of the interfaces of seven CD-ROM products. Results are discussed in light of HCI (human-computer interaction) usability criteria and design…

  15. Cross-Cultural Interface Design and the Classroom-Learning Environment in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chia-Lin; Su, Yelin

    2012-01-01

    This study examined whether using localized interface designs would make a difference in users' learning results and their perceptions of the interface design in a classroom learning environment. This study also sought to learn more about users' attitudes toward the localized interface features. To assess the impact of using localized interfaces…

  16. Railroad track inspection interface demonstration : final report.

    DOT National Transportation Integrated Search

    2016-01-01

    This project developed a track data user interface utilizing the Google Glass optical display device. The interface allows the user : to recall data stored remotely and view the data on the Google Glass. The technical effort required developing a com...

  17. Study on user interface of pathology picture archiving and communication system.

    PubMed

    Kim, Dasueran; Kang, Peter; Yun, Jungmin; Park, Sung-Hye; Seo, Jeong-Wook; Park, Peom

    2014-01-01

    It is necessary to improve the pathology workflow. A workflow task analysis was performed using a pathology picture archiving and communication system (pathology PACS) in order to propose a user interface for the Pathology PACS considering user experience. An interface analysis of the Pathology PACS in Seoul National University Hospital and a task analysis of the pathology workflow were performed by observing recorded video. Based on obtained results, a user interface for the Pathology PACS was proposed. Hierarchical task analysis of Pathology PACS was classified into 17 tasks including 1) pre-operation, 2) text, 3) images, 4) medical record viewer, 5) screen transition, 6) pathology identification number input, 7) admission date input, 8) diagnosis doctor, 9) diagnosis code, 10) diagnosis, 11) pathology identification number check box, 12) presence or absence of images, 13) search, 14) clear, 15) Excel save, 16) search results, and 17) re-search. And frequently used menu items were identified and schematized. A user interface for the Pathology PACS considering user experience could be proposed as a preliminary step, and this study may contribute to the development of medical information systems based on user experience and usability.

  18. Introduction of knowledge bases in patient's data management system: role of the user interface.

    PubMed

    Chambrin, M C; Ravaux, P; Jaborska, A; Beugnet, C; Lestavel, P; Chopin, C; Boniface, M

    1995-02-01

    As the number of signals and data to be handled grows in intensive care unit, it is necessary to design more powerful computing systems that integrate and summarize all this information. The manual input of data as e.g. clinical signs and drug prescription and the synthetic representation of these data requires an ever more sophisticated user interface. The introduction of knowledge bases in the data management allows to conceive contextual interfaces. The objective of this paper is to show the importance of the design of the user interface, in the daily use of clinical information system. Then we describe a methodology that uses the man-machine interaction to capture the clinician knowledge during the clinical practice. The different steps are the audit of the user's actions, the elaboration of statistic models allowing the definition of new knowledge, and the validation that is performed before complete integration. A part of this knowledge can be used to improve the user interface. Finally, we describe the implementation of these concepts on a UNIX platform using OSF/MOTIF graphical interface.

  19. A review of existing and potential computer user interfaces for modern radiology.

    PubMed

    Iannessi, Antoine; Marcy, Pierre-Yves; Clatz, Olivier; Bertrand, Anne-Sophie; Sugimoto, Maki

    2018-05-16

    The digitalization of modern imaging has led radiologists to become very familiar with computers and their user interfaces (UI). New options for display and command offer expanded possibilities, but the mouse and keyboard remain the most commonly utilized, for usability reasons. In this work, we review and discuss different UI and their possible application in radiology. We consider two-dimensional and three-dimensional imaging displays in the context of interventional radiology, and discuss interest in touchscreens, kinetic sensors, eye detection, and augmented or virtual reality. We show that UI design specifically for radiologists is key for future use and adoption of such new interfaces. Next-generation UI must fulfil professional needs, while considering contextual constraints. • The mouse and keyboard remain the most utilized user interfaces for radiologists. • Touchscreen, holographic, kinetic sensors and eye tracking offer new possibilities for interaction. • 3D and 2D imaging require specific user interfaces. • Holographic display and augmented reality provide a third dimension to volume imaging. • Good usability is essential for adoption of new user interfaces by radiologists.

  20. Inclusive Smartphone Interface Design in Context: Co(Re)designing the PIS.

    PubMed

    Magee, Paul; Ward, Gillian; Moody, Louise; Roebuck, Annette

    2017-01-01

    User-context optimises smartphone interface-design. Neglect of user-context during development, delays or prevents marginalised-consumer benefit. Working with People with Learning Disability (PWLD) to develop interfaces refined by communication-need will improve User-Experience (UX). In research, a Participant Information Sheet (PIS) discloses planned study-activity. This paper explains co-creation of a PIS based on communication-need of PWLD.

  1. Co-Evolution of User and Organizational Interfaces: A Longitudinal Case Study of WWW Dissemination of National Statistics.

    ERIC Educational Resources Information Center

    Marchionini, Gary

    2002-01-01

    Describes how user interfaces for the Bureau of Labor Statistics (BLS) web site evolved over a 5-year period along with the larger organizational interface and how this co-evolution has influenced the institution. Interviews with BLS staff and transaction log analysis are the foci of this study, as well as user information-seeking studies and user…

  2. Graphical Requirements for Force Level Planning. Volume 2

    DTIC Science & Technology

    1991-09-01

    technology review includes graphics algorithms, computer hardware, computer software, and design methodologies. The technology can either exist today or...level graphics language. 7.4 User Interface Design Tools As user interfaces have become more sophisticated, they have become harder to develop. Xl...Setphen M. Pizer, editors. Proceedings 1986 Workshop on Interactive 31) Graphics , October 1986. 18 J. S. Dumas. Designing User Interface Software. Prentice

  3. The Role of Perceived User-Interface Design in Continued Usage Intention of Self-Paced E-Learning Tools

    ERIC Educational Resources Information Center

    Cho, Vincent; Cheng, T. C. Edwin; Lai, W. M. Jennifer

    2009-01-01

    While past studies on user-interface design focused on a particular system or application using the experimental approach, we propose a theoretical model to assess the impact of perceived user-interface design (PUID) on continued usage intention (CUI) of self-paced e-learning tools in general. We argue that the impact of PUID is mediated by two…

  4. Image Understanding and Intelligent Parallel Systems

    DTIC Science & Technology

    1991-05-09

    a common user interface for the interactive , graphical manipulation of those histories, and...Circuits and Systems, August 1987. Yap, S.-K. and M.L. Scott, "PenGuin: A language for reactive graphical user interface programming," to appear, INTERACT 󈨞, Cambridge, United Kingdom, 1990. 74 ...of up to a factor of 100 over single-workstation implementations. User interfaces to large multiprocessor computers are a difficult issue addressed

  5. Seeing the System through the End Users' Eyes: Shadow Expert Technique for Evaluating the Consistency of a Learning Management System

    NASA Astrophysics Data System (ADS)

    Holzinger, Andreas; Stickel, Christian; Fassold, Markus; Ebner, Martin

    Interface consistency is an important basic concept in web design and has an effect on performance and satisfaction of end users. Consistency also has significant effects on the learning performance of both expert and novice end users. Consequently, the evaluation of consistency within a e-learning system and the ensuing eradication of irritating discrepancies in the user interface redesign is a big issue. In this paper, we report of our experiences with the Shadow Expert Technique (SET) during the evaluation of the consistency of the user interface of a large university learning management system. The main objective of this new usability evaluation method is to understand the interaction processes of end users with a specific system interface. Two teams of usability experts worked independently from each other in order to maximize the objectivity of the results. The outcome of this SET method is a list of recommended changes to improve the user interaction processes, hence to facilitate high consistency.

  6. Adaptive interface for personalizing information seeking.

    PubMed

    Narayanan, S; Koppaka, Lavanya; Edala, Narasimha; Loritz, Don; Daley, Raymond

    2004-12-01

    An adaptive interface autonomously adjusts its display and available actions to current goals and abilities of the user by assessing user status, system task, and the context. Knowledge content adaptability is needed for knowledge acquisition and refinement tasks. In the case of knowledge content adaptability, the requirements of interface design focus on the elicitation of information from the user and the refinement of information based on patterns of interaction. In such cases, the emphasis on adaptability is on facilitating information search and knowledge discovery. In this article, we present research on adaptive interfaces that facilitates personalized information seeking from a large data warehouse. The resulting proof-of-concept system, called source recommendation system (SRS), assists users in locating and navigating data sources in the repository. Based on the initial user query and an analysis of the content of the search results, the SRS system generates a profile of the user tailored to the individual's context during information seeking. The user profiles are refined successively and are used in progressively guiding the user to the appropriate set of sources within the knowledge base. The SRS system is implemented as an Internet browser plug-in to provide a seamless and unobtrusive, personalized experience to the users during the information search process. The rationale behind our approach, system design, empirical evaluation, and implications for research on adaptive interfaces are described in this paper.

  7. Immunogenetic Management Software: a new tool for visualization and analysis of complex immunogenetic datasets

    PubMed Central

    Johnson, Z. P.; Eady, R. D.; Ahmad, S. F.; Agravat, S.; Morris, T; Else, J; Lank, S. M.; Wiseman, R. W.; O’Connor, D. H.; Penedo, M. C. T.; Larsen, C. P.

    2012-01-01

    Here we describe the Immunogenetic Management Software (IMS) system, a novel web-based application that permitsmultiplexed analysis of complex immunogenetic traits that are necessary for the accurate planning and execution of experiments involving large animal models, including nonhuman primates. IMS is capable of housing complex pedigree relationships, microsatellite-based MHC typing data, as well as MHC pyrosequencing expression analysis of class I alleles. It includes a novel, automated MHC haplotype naming algorithm and has accomplished an innovative visualization protocol that allows users to view multiple familial and MHC haplotype relationships through a single, interactive graphical interface. Detailed DNA and RNA-based data can also be queried and analyzed in a highly accessible fashion, and flexible search capabilities allow experimental choices to be made based on multiple, individualized and expandable immunogenetic factors. This web application is implemented in Java, MySQL, Tomcat, and Apache, with supported browsers including Internet Explorer and Firefox onWindows and Safari on Mac OS. The software is freely available for distribution to noncommercial users by contacting Leslie. kean@emory.edu. A demonstration site for the software is available at http://typing.emory.edu/typing_demo, user name: imsdemo7@gmail.com and password: imsdemo. PMID:22080300

  8. Immunogenetic Management Software: a new tool for visualization and analysis of complex immunogenetic datasets.

    PubMed

    Johnson, Z P; Eady, R D; Ahmad, S F; Agravat, S; Morris, T; Else, J; Lank, S M; Wiseman, R W; O'Connor, D H; Penedo, M C T; Larsen, C P; Kean, L S

    2012-04-01

    Here we describe the Immunogenetic Management Software (IMS) system, a novel web-based application that permits multiplexed analysis of complex immunogenetic traits that are necessary for the accurate planning and execution of experiments involving large animal models, including nonhuman primates. IMS is capable of housing complex pedigree relationships, microsatellite-based MHC typing data, as well as MHC pyrosequencing expression analysis of class I alleles. It includes a novel, automated MHC haplotype naming algorithm and has accomplished an innovative visualization protocol that allows users to view multiple familial and MHC haplotype relationships through a single, interactive graphical interface. Detailed DNA and RNA-based data can also be queried and analyzed in a highly accessible fashion, and flexible search capabilities allow experimental choices to be made based on multiple, individualized and expandable immunogenetic factors. This web application is implemented in Java, MySQL, Tomcat, and Apache, with supported browsers including Internet Explorer and Firefox on Windows and Safari on Mac OS. The software is freely available for distribution to noncommercial users by contacting Leslie.kean@emory.edu. A demonstration site for the software is available at http://typing.emory.edu/typing_demo , user name: imsdemo7@gmail.com and password: imsdemo.

  9. A mobile phone user interface for image-based dietary assessment

    NASA Astrophysics Data System (ADS)

    Ahmad, Ziad; Khanna, Nitin; Kerr, Deborah A.; Boushey, Carol J.; Delp, Edward J.

    2014-02-01

    Many chronic diseases, including obesity and cancer, are related to diet. Such diseases may be prevented and/or successfully treated by accurately monitoring and assessing food and beverage intakes. Existing dietary assessment methods such as the 24-hour dietary recall and the food frequency questionnaire, are burdensome and not generally accurate. In this paper, we present a user interface for a mobile telephone food record that relies on taking images, using the built-in camera, as the primary method of recording. We describe the design and implementation of this user interface while stressing the solutions we devised to meet the requirements imposed by the image analysis process, yet keeping the user interface easy to use.

  10. TAE Plus: Transportable Applications Environment Plus tools for building graphic-oriented applications

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1989-01-01

    The Transportable Applications Environment Plus (TAE Plus), developed by NASA's Goddard Space Flight Center, is a portable User Interface Management System (UIMS), which provides an intuitive WYSIWYG WorkBench for prototyping and designing an application's user interface, integrated with tools for efficiently implementing the designed user interface and effective management of the user interface during an application's active domain. During the development of TAE Plus, many design and implementation decisions were based on the state-of-the-art within graphics workstations, windowing system and object-oriented programming languages. Some of the problems and issues experienced during implementation are discussed. A description of the next development steps planned for TAE Plus is also given.

  11. A Mobile Phone User Interface for Image-Based Dietary Assessment

    PubMed Central

    Ahmad, Ziad; Khanna, Nitin; Kerr, Deborah A.; Boushey, Carol J.; Delp, Edward J.

    2016-01-01

    Many chronic diseases, including obesity and cancer, are related to diet. Such diseases may be prevented and/or successfully treated by accurately monitoring and assessing food and beverage intakes. Existing dietary assessment methods such as the 24-hour dietary recall and the food frequency questionnaire, are burdensome and not generally accurate. In this paper, we present a user interface for a mobile telephone food record that relies on taking images, using the built-in camera, as the primary method of recording. We describe the design and implementation of this user interface while stressing the solutions we devised to meet the requirements imposed by the image analysis process, yet keeping the user interface easy to use. PMID:28572696

  12. A Mobile Phone User Interface for Image-Based Dietary Assessment.

    PubMed

    Ahmad, Ziad; Khanna, Nitin; Kerr, Deborah A; Boushey, Carol J; Delp, Edward J

    2014-02-02

    Many chronic diseases, including obesity and cancer, are related to diet. Such diseases may be prevented and/or successfully treated by accurately monitoring and assessing food and beverage intakes. Existing dietary assessment methods such as the 24-hour dietary recall and the food frequency questionnaire, are burdensome and not generally accurate. In this paper, we present a user interface for a mobile telephone food record that relies on taking images, using the built-in camera, as the primary method of recording. We describe the design and implementation of this user interface while stressing the solutions we devised to meet the requirements imposed by the image analysis process, yet keeping the user interface easy to use.

  13. The Rise of the Graphical User Interface.

    ERIC Educational Resources Information Center

    Edwards, Alastair D. N.

    1996-01-01

    Discusses the history of the graphical user interface (GUI) and the growing realization that adaptations must be made to it lest its visual nature discriminate against nonsighted or sight-impaired users. One of the most popular commercially developed adaptations is to develop sounds that signal the location of icons or menus to mouse users.…

  14. Graphical User Interfaces and Library Systems: End-User Reactions.

    ERIC Educational Resources Information Center

    Zorn, Margaret; Marshall, Lucy

    1995-01-01

    Describes a study by Parke-Davis Pharmaceutical Research Library to determine user satisfaction with the graphical user interface-based (GUI) Dynix Marquis compared with the text-based Dynix Classic Online Public Access Catalog (OPAC). Results show that the GUI-based OPAC was preferred by endusers over the text-based OPAC. (eight references) (DGM)

  15. Effective Levels of Adaptation to Different Types of Users in Interactive Museum Systems.

    ERIC Educational Resources Information Center

    Paterno, F.; Mancini, C.

    2000-01-01

    Discusses user interaction with museum application interfaces and emphasizes the importance of adaptable and adaptive interfaces to meet differing user needs. Considers levels of support that can be given to different users during navigation of museum hypermedia information, using examples from the Web site for the Marble Museum (Italy).…

  16. Personalization of XML Content Browsing Based on User Preferences

    ERIC Educational Resources Information Center

    Encelle, Benoit; Baptiste-Jessel, Nadine; Sedes, Florence

    2009-01-01

    Personalization of user interfaces for browsing content is a key concept to ensure content accessibility. In this direction, we introduce concepts that result in the generation of personalized multimodal user interfaces for browsing XML content. User requirements concerning the browsing of a specific content type can be specified by means of…

  17. Space Segment (SS) and the Navigation User Segment (US) Interface Control Document (ICD)

    DOT National Transportation Integrated Search

    1993-10-10

    This Interface Control Document (ICD) defines the requirements related to the interface between the Space Segment (SS) of the Global Positioning System (GPS) and the Navigation Users Segment of the GPS. 2880k, 154p.

  18. Evaluation of User Interface and Workflow Design of a Bedside Nursing Clinical Decision Support System

    PubMed Central

    Yuan, Michael Juntao; Finley, George Mike; Mills, Christy; Johnson, Ron Kim

    2013-01-01

    Background Clinical decision support systems (CDSS) are important tools to improve health care outcomes and reduce preventable medical adverse events. However, the effectiveness and success of CDSS depend on their implementation context and usability in complex health care settings. As a result, usability design and validation, especially in real world clinical settings, are crucial aspects of successful CDSS implementations. Objective Our objective was to develop a novel CDSS to help frontline nurses better manage critical symptom changes in hospitalized patients, hence reducing preventable failure to rescue cases. A robust user interface and implementation strategy that fit into existing workflows was key for the success of the CDSS. Methods Guided by a formal usability evaluation framework, UFuRT (user, function, representation, and task analysis), we developed a high-level specification of the product that captures key usability requirements and is flexible to implement. We interviewed users of the proposed CDSS to identify requirements, listed functions, and operations the system must perform. We then designed visual and workflow representations of the product to perform the operations. The user interface and workflow design were evaluated via heuristic and end user performance evaluation. The heuristic evaluation was done after the first prototype, and its results were incorporated into the product before the end user evaluation was conducted. First, we recruited 4 evaluators with strong domain expertise to study the initial prototype. Heuristic violations were coded and rated for severity. Second, after development of the system, we assembled a panel of nurses, consisting of 3 licensed vocational nurses and 7 registered nurses, to evaluate the user interface and workflow via simulated use cases. We recorded whether each session was successfully completed and its completion time. Each nurse was asked to use the National Aeronautics and Space Administration (NASA) Task Load Index to self-evaluate the amount of cognitive and physical burden associated with using the device. Results A total of 83 heuristic violations were identified in the studies. The distribution of the heuristic violations and their average severity are reported. The nurse evaluators successfully completed all 30 sessions of the performance evaluations. All nurses were able to use the device after a single training session. On average, the nurses took 111 seconds (SD 30 seconds) to complete the simulated task. The NASA Task Load Index results indicated that the work overhead on the nurses was low. In fact, most of the burden measures were consistent with zero. The only potentially significant burden was temporal demand, which was consistent with the primary use case of the tool. Conclusions The evaluation has shown that our design was functional and met the requirements demanded by the nurses’ tight schedules and heavy workloads. The user interface embedded in the tool provided compelling utility to the nurse with minimal distraction. PMID:23612350

  19. Drinking from the Fire Hose: Why the Flight Management System Can Be Hard to Train and Difficult to Use

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Feary, Michael; Polson, Peter; Fennell, Karl

    2003-01-01

    The Flight Management Computer (FMC) and its interface, the Multi-function Control and Display Unit (MCDU) have been identified by researchers and airlines as difficult to train and use. Specifically, airline pilots have described the "drinking from the fire-hose" effect during training. Previous research has identified memorized action sequences as a major factor in a user s ability to learn and operate complex devices. This paper discusses the use of a method to examine the quantity of memorized action sequences required to perform a sample of 102 tasks, using features of the Boeing 777 Flight Management Computer Interface. The analysis identified a large number of memorized action sequences that must be learned during training and then recalled during line operations. Seventy-five percent of the tasks examined require recall of at least one memorized action sequence. Forty-five percent of the tasks require recall of a memorized action sequence and occur infrequently. The large number of memorized action sequences may provide an explanation for the difficulties in training and usage of the automation. Based on these findings, implications for training and the design of new user-interfaces are discussed.

  20. The MEDIGATE graphical user interface for entry of physical findings: design principles and implementation. Medical Examination Direct Iconic and Graphic Augmented Text Entry System.

    PubMed

    Yoder, J W; Schultz, D F; Williams, B T

    1998-10-01

    The solution to many of the problems of the computer-based recording of the medical record has been elusive, largely due to difficulties in the capture of those data elements that comprise the records of the Present Illness and of the Physical Findings. Reliable input of data has proven to be more complex than originally envisioned by early work in the field. This has led to more research and development into better data collection protocols and easy to use human-computer interfaces as support tools. The Medical Examination Direct Iconic and Graphic Augmented Text Entry System (MEDIGATE System) is a computer enhanced interactive graphic and textual record of the findings from physical examinations designed to provide ease of user input and to support organization and processing of the data characterizing these findings. The primary design objective of the MEDIGATE System is to develop and evaluate different interface designs for recording observations from the physical examination in an attempt to overcome some of the deficiencies in this major component of the individual record of health and illness.

  1. Flexible software architecture for user-interface and machine control in laboratory automation.

    PubMed

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  2. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.

    PubMed

    Lopes, Ana C; Nunes, Urbano; Vaz, Luis; Vaz, Luís

    2010-01-01

    This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented.

  3. User productivity as a function of AutoCAD interface design.

    PubMed

    Mitta, D A; Flores, P L

    1995-12-01

    Increased operator productivity is a desired outcome of user-CAD interaction scenarios. Two objectives of this research were to (1) define a measure of operator productivity and (2) empirically investigate the potential effects of CAD interface design on operator productivity, where productivity is defined as the percentage of a drawing session correctly completed per unit time. Here, AutoCAD provides the CAD environment of interest. Productivity with respect to two AutoCAD interface designs (menu, template) and three task types (draw, dimension, display) was investigated. Analysis of user productivity data revealed significantly higher productivity under the menu interface condition than under the template interface condition. A significant effect of task type was also discovered, where user productivity under display tasks was higher than productivity under the draw and dimension tasks. Implications of these results are presented.

  4. Flight Telerobotic Servicer prototype simulator

    NASA Astrophysics Data System (ADS)

    Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob

    A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.

  5. Automating testbed documentation and database access using World Wide Web (WWW) tools

    NASA Technical Reports Server (NTRS)

    Ames, Charles; Auernheimer, Brent; Lee, Young H.

    1994-01-01

    A method for providing uniform transparent access to disparate distributed information systems was demonstrated. A prototype testing interface was developed to access documentation and information using publicly available hypermedia tools. The prototype gives testers a uniform, platform-independent user interface to on-line documentation, user manuals, and mission-specific test and operations data. Mosaic was the common user interface, and HTML (Hypertext Markup Language) provided hypertext capability.

  6. Real-Time Distributed Algorithms for Visual and Battlefield Reasoning

    DTIC Science & Technology

    2006-08-01

    High-Level Task Definition Language, Graphical User Interface (GUI), Story Analysis, Story Interpretation, SensIT Nodes 16. SECURITY...or more actions to be taken in the event the conditions are satisfied. We developed graphical user interfaces that may be used to express such...actions to be taken in the event the conditions are satisfied. We developed graphical user interfaces that may be used to express such task

  7. Representation-based user interfaces for the audiovisual library of the year 2000

    NASA Astrophysics Data System (ADS)

    Aigrain, Philippe; Joly, Philippe; Lepain, Philippe; Longueville, Veronique

    1995-03-01

    The audiovisual library of the future will be based on computerized access to digitized documents. In this communication, we address the user interface issues which will arise from this new situation. One cannot simply transfer a user interface designed for the piece by piece production of some audiovisual presentation and make it a tool for accessing full-length movies in an electronic library. One cannot take a digital sound editing tool and propose it as a means to listen to a musical recording. In our opinion, when computers are used as mediations to existing contents, document representation-based user interfaces are needed. With such user interfaces, a structured visual representation of the document contents is presented to the user, who can then manipulate it to control perception and analysis of these contents. In order to build such manipulable visual representations of audiovisual documents, one needs to automatically extract structural information from the documents contents. In this communication, we describe possible visual interfaces for various temporal media, and we propose methods for the economically feasible large scale processing of documents. The work presented is sponsored by the Bibliotheque Nationale de France: it is part of the program aiming at developing for image and sound documents an experimental counterpart to the digitized text reading workstation of this library.

  8. User interface and patient involvement.

    PubMed

    Andreassen, Hege Kristin; Lundvoll Nilsen, Line

    2013-01-01

    Increased patient involvement is a goal in contemporary health care, and of importance to the development of patient oriented ICT. In this paper we discuss how the design of patient-user interfaces can affect patient involvement. Our discussion is based on 12 semi-structured interviews with patient users of a web-based solution for patient--doctor communication piloted in Norway. We argue ICT solutions offering a choice of user interfaces on the patient side are preferable to ensure individual accommodation and a high degree of patient involvement. When introducing web-based tools for patient--health professional communication a free-text option should be provided to the patient users.

  9. Chemical and mineralogical data and processing methods management system prototype with application to study of the North Caucasus Blybsky Metamorphic Complexes metamorphism PT-condition

    NASA Astrophysics Data System (ADS)

    Ivanov, Stanislav; Kamzolkin, Vladimir; Konilov, Aleksandr; Aleshin, Igor

    2014-05-01

    There are many various methods of assessing the conditions of rocks formation based on determining the composition of the constituent minerals. Our objective was to create a universal tool for processing mineral's chemical analysis results and solving geothermobarometry problems by creating a database of existing sensors and providing a user-friendly standard interface. Similar computer assisted tools are based upon large collection of sensors (geothermometers and geobarometers) are known, for example, the project TPF (Konilov A.N., 1999) - text-based sensor collection tool written in PASCAL. The application contained more than 350 different sensors and has been used widely in petrochemical studies (see A.N. Konilov , A.A. Grafchikov, V.I. Fonarev 2010 for review). Our prototype uses the TPF project concept and is designed with modern application development techniques, which allows better flexibility. Main components of the designed system are 3 connected datasets: sensors collection (geothermometers, geobarometers, oxygen geobarometers, etc.), petrochemical data and modeling results. All data is maintained by special management and visualization tools and resides in sql database. System utilities allow user to import and export data in various file formats, edit records and plot graphs. Sensors database contains up to date collections of known methods. New sensors may be added by user. Measured database should be filled in by researcher. User friendly interface allows access to all available data and sensors, automates routine work, reduces the risk of common user mistakes and simplifies information exchange between research groups. We use prototype to evaluate peak pressure during the formation of garnet-amphibolite apoeclogites, gneisses and schists Blybsky metamorphic complex of the Front Range of the Northern Caucasus. In particular, our estimation of formation pressure range (18 ± 4 kbar) agrees on independent research results. The reported study was partially supported by RFBR, research project No. 14-05-00615.

  10. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1992-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  11. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1993-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  12. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces.

    PubMed

    Grissmann, Sebastian; Zander, Thorsten O; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.

  13. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces

    PubMed Central

    Grissmann, Sebastian; Zander, Thorsten O.; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios. PMID:28769776

  14. gQTL: A Web Application for QTL Analysis Using the Collaborative Cross Mouse Genetic Reference Population.

    PubMed

    Konganti, Kranti; Ehrlich, Andre; Rusyn, Ivan; Threadgill, David W

    2018-06-07

    Multi-parental recombinant inbred populations, such as the Collaborative Cross (CC) mouse genetic reference population, are increasingly being used for analysis of quantitative trait loci (QTL). However specialized analytic software for these complex populations is typically built in R that works only on command-line, which limits the utility of these powerful resources for many users. To overcome analytic limitations, we developed gQTL, a web accessible, simple graphical user interface application based on the DOQTL platform in R to perform QTL mapping using data from CC mice. Copyright © 2018, G3: Genes, Genomes, Genetics.

  15. Indentured Parts List Maintenance and Part Assembly Capture Tool - IMPACT

    NASA Technical Reports Server (NTRS)

    Jain, Bobby; Morris, Jill; Sharpe, Kelly

    2004-01-01

    Johnson Space Center's (JSC's) indentured parts list (IPL) maintenance and parts assembly capture tool (IMPACT) is an easy-to-use graphical interface for viewing and maintaining the complex assembly hierarchies of large databases. IMPACT, already in use at JSC to support the International Space Station (ISS), queries, updates, modifies, and views data in IPL and associated resource data, functions that it can also perform, with modification, for any large commercial database. By enabling its users to efficiently view and manipulate IPL hierarchical data, IMPACT performs a function unlike that of any other tool. Through IMPACT, users will achieve results quickly, efficiently, and cost effectively.

  16. Overview of software development at the parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C. K.

    1985-01-01

    The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

  17. Data Management Applications for the Service Preparation Subsystem

    NASA Technical Reports Server (NTRS)

    Luong, Ivy P.; Chang, George W.; Bui, Tung; Allen, Christopher; Malhotra, Shantanu; Chen, Fannie C.; Bui, Bach X.; Gutheinz, Sandy C.; Kim, Rachel Y.; Zendejas, Silvino C.; hide

    2009-01-01

    These software applications provide intuitive User Interfaces (UIs) with a consistent look and feel for interaction with, and control of, the Service Preparation Subsystem (SPS). The elements of the UIs described here are the File Manager, Mission Manager, and Log Monitor applications. All UIs provide access to add/delete/update data entities in a complex database schema without requiring technical expertise on the part of the end users. These applications allow for safe, validated, catalogued input of data. Also, the software has been designed in multiple, coherent layers to promote ease of code maintenance and reuse in addition to reducing testing and accelerating maturity.

  18. Use of Design Patterns According to Hand Dominance in a Mobile User Interface

    ERIC Educational Resources Information Center

    Al-Samarraie, Hosam; Ahmad, Yusof

    2016-01-01

    User interface (UI) design patterns for mobile applications provide a solution to design problems and can improve the usage experience for users. However, there is a lack of research categorizing the uses of design patterns according to users' hand dominance in a learning-based mobile UI. We classified the main design patterns for mobile…

  19. CERESVis: A QC Tool for CERES that Leverages Browser Technology for Data Validation

    NASA Astrophysics Data System (ADS)

    Chu, C.; Sun-Mack, S.; Heckert, E.; Chen, Y.; Doelling, D.

    2015-12-01

    In this poster, we are going to present three user interfaces that CERES team uses to validate pixel-level data. Besides our home grown tools, we will aslo present the browser technology that we use to provide interactive interfaces, such as jquery, HighCharts and Google Earth. We pass data to the users' browsers and use the browsers to do some simple computations. The three user interfaces are: Thumbnails -- it displays hundrends images to allow users to browse 24-hour data files in few seconds. Multiple-synchronized cursors -- it allows users to compare multiple images side by side. Bounding Boxes and Histograms -- it allows users to draw multiple bounding boxes on an image and the browser computes/display the histograms.

  20. Speech-recognition interfaces for music information retrieval

    NASA Astrophysics Data System (ADS)

    Goto, Masataka

    2005-09-01

    This paper describes two hands-free music information retrieval (MIR) systems that enable a user to retrieve and play back a musical piece by saying its title or the artist's name. Although various interfaces for MIR have been proposed, speech-recognition interfaces suitable for retrieving musical pieces have not been studied. Our MIR-based jukebox systems employ two different speech-recognition interfaces for MIR, speech completion and speech spotter, which exploit intentionally controlled nonverbal speech information in original ways. The first is a music retrieval system with the speech-completion interface that is suitable for music stores and car-driving situations. When a user only remembers part of the name of a musical piece or an artist and utters only a remembered fragment, the system helps the user recall and enter the name by completing the fragment. The second is a background-music playback system with the speech-spotter interface that can enrich human-human conversation. When a user is talking to another person, the system allows the user to enter voice commands for music playback control by spotting a special voice-command utterance in face-to-face or telephone conversations. Experimental results from use of these systems have demonstrated the effectiveness of the speech-completion and speech-spotter interfaces. (Video clips: http://staff.aist.go.jp/m.goto/MIR/speech-if.html)

  1. Student Preferences toward Microcomputer User Interfaces.

    ERIC Educational Resources Information Center

    Hazari, Sunil I.; Reaves, Rita R.

    1994-01-01

    Describes a study of undergraduates that was conducted to determine students' preferences toward Graphical User Interface versus Command Line Interface during computer-assisted instruction. Previous experience, comfort level, performance scores, and student attitudes are examined and compared, and the computer use survey is appended. (Contains 13…

  2. Querying Event Sequences by Exact Match or Similarity Search: Design and Empirical Evaluation

    PubMed Central

    Wongsuphasawat, Krist; Plaisant, Catherine; Taieb-Maimon, Meirav; Shneiderman, Ben

    2012-01-01

    Specifying event sequence queries is challenging even for skilled computer professionals familiar with SQL. Most graphical user interfaces for database search use an exact match approach, which is often effective, but near misses may also be of interest. We describe a new similarity search interface, in which users specify a query by simply placing events on a blank timeline and retrieve a similarity-ranked list of results. Behind this user interface is a new similarity measure for event sequences which the users can customize by four decision criteria, enabling them to adjust the impact of missing, extra, or swapped events or the impact of time shifts. We describe a use case with Electronic Health Records based on our ongoing collaboration with hospital physicians. A controlled experiment with 18 participants compared exact match and similarity search interfaces. We report on the advantages and disadvantages of each interface and suggest a hybrid interface combining the best of both. PMID:22379286

  3. Iterative User Interface Design for Automated Sequential Organ Failure Assessment Score Calculator in Sepsis Detection

    PubMed Central

    Herasevich, Vitaly

    2017-01-01

    Background The new sepsis definition has increased the need for frequent sequential organ failure assessment (SOFA) score recalculation and the clerical burden of information retrieval makes this score ideal for automated calculation. Objective The aim of this study was to (1) estimate the clerical workload of manual SOFA score calculation through a time-motion analysis and (2) describe a user-centered design process for an electronic medical record (EMR) integrated, automated SOFA score calculator with subsequent usability evaluation study. Methods First, we performed a time-motion analysis by recording time-to-task-completion for the manual calculation of 35 baseline and 35 current SOFA scores by 14 internal medicine residents over a 2-month period. Next, we used an agile development process to create a user interface for a previously developed automated SOFA score calculator. The final user interface usability was evaluated by clinician end users with the Computer Systems Usability Questionnaire. Results The overall mean (standard deviation, SD) time-to-complete manual SOFA score calculation time was 61.6 s (33). Among the 24% (12/50) usability survey respondents, our user-centered user interface design process resulted in >75% favorability of survey items in the domains of system usability, information quality, and interface quality. Conclusions Early stakeholder engagement in our agile design process resulted in a user interface for an automated SOFA score calculator that reduced clinician workload and met clinicians’ needs at the point of care. Emerging interoperable platforms may facilitate dissemination of similarly useful clinical score calculators and decision support algorithms as “apps.” A user-centered design process and usability evaluation should be considered during creation of these tools. PMID:28526675

  4. Iterative User Interface Design for Automated Sequential Organ Failure Assessment Score Calculator in Sepsis Detection.

    PubMed

    Aakre, Christopher Ansel; Kitson, Jaben E; Li, Man; Herasevich, Vitaly

    2017-05-18

    The new sepsis definition has increased the need for frequent sequential organ failure assessment (SOFA) score recalculation and the clerical burden of information retrieval makes this score ideal for automated calculation. The aim of this study was to (1) estimate the clerical workload of manual SOFA score calculation through a time-motion analysis and (2) describe a user-centered design process for an electronic medical record (EMR) integrated, automated SOFA score calculator with subsequent usability evaluation study. First, we performed a time-motion analysis by recording time-to-task-completion for the manual calculation of 35 baseline and 35 current SOFA scores by 14 internal medicine residents over a 2-month period. Next, we used an agile development process to create a user interface for a previously developed automated SOFA score calculator. The final user interface usability was evaluated by clinician end users with the Computer Systems Usability Questionnaire. The overall mean (standard deviation, SD) time-to-complete manual SOFA score calculation time was 61.6 s (33). Among the 24% (12/50) usability survey respondents, our user-centered user interface design process resulted in >75% favorability of survey items in the domains of system usability, information quality, and interface quality. Early stakeholder engagement in our agile design process resulted in a user interface for an automated SOFA score calculator that reduced clinician workload and met clinicians' needs at the point of care. Emerging interoperable platforms may facilitate dissemination of similarly useful clinical score calculators and decision support algorithms as "apps." A user-centered design process and usability evaluation should be considered during creation of these tools. ©Christopher Ansel Aakre, Jaben E Kitson, Man Li, Vitaly Herasevich. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 18.05.2017.

  5. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    PubMed

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Interface design and human factors considerations for model-based tight glycemic control in critical care.

    PubMed

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. © 2012 Diabetes Technology Society.

  7. Interface Design and Human Factors Considerations for Model-Based Tight Glycemic Control in Critical Care

    PubMed Central

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Introduction Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. Method The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. Results The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. Conclusions The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. PMID:22401330

  8. User acquaintance with mobile interfaces.

    PubMed

    Ehrler, Frederic; Walesa, Magali; Sarrey, Evelyne; Wipfli, Rolf; Lovis, Christian

    2013-01-01

    Handheld technology finds slowly its place in the healthcare world. Some clinicians already use intensively dedicated mobile applications to consult clinical references. However, handheld technology hasn't still broadly embraced to the core of the healthcare business, the hospitals. The weak penetration of handheld technology in the hospitals can be partly explained by the caution of stakeholders that must be convinced about the efficiency of these tools before going forward. In a domain where temporal constraints are increasingly strong, caregivers cannot loose time on playing with gadgets. All users are not comfortable with tactile manipulations and the lack of dedicated peripheral complicates entering data for novices. Stakeholders must be convinced that caregivers will be able to master handheld devices. In this paper, we make the assumption that the proper design of an interface may influence users' performances to record information. We are also interested to find out whether users increase their efficiency when using handheld tools repeatedly. To answer these questions, we have set up a field study to compare users' performances on three different user interfaces while recording vital signs. Some user interfaces were familiar to users, and others were totally innovative. Results showed that users' familiarity with smartphone influences their performances and that users improve their performances by repeating a task.

  9. Clinical Documents: Attribute-Values Entity Representation, Context, Page Layout And Communication

    PubMed Central

    Lovis, Christian; Lamb, Alexander; Baud, Robert; Rassinoux, Anne-Marie; Fabry, Paul; Geissbühler, Antoine

    2003-01-01

    This paper presents how acquisition, storage and communication of clinical documents are implemented at the University Hospitals of Geneva. Careful attention has been given to user-interfaces, in order to support complex layouts, spell checking, templates management with automatic prefilling in order to facilitate acquisition. A dual architecture has been developed for storage using an attributes-values entity unified database and a consolidated, patient-centered, layout-respectful files-based storage, providing both representation power and sinsert (peed of accesses. This architecture allows great flexibility to store a continuum of data types from simple type values up to complex clinical reports. Finally, communication is entirely based on HTTP-XML internally and a HL-7 CDA interface V2 is currently studied for external communication. Some of the problem encountered, mostly concerning the typology of documents and the ontology of clinical attributes are evoked. PMID:14728202

  10. INL Multi-Robot Control Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  11. Putting Home Data Management into Perspective

    DTIC Science & Technology

    2009-12-01

    approaches. However, users of home and personal storage live it. Popular interfaces (e.g., iTunes , iPhoto, and even drop-down lists of recently...users of home and personal storage live it. Popular interfaces (e.g., iTunes , iPhoto, and even drop-down lists of recently-opened Word documents...live it. Popular interfaces (e.g., iTunes , iPhoto, and even drop- down lists of recently-opened Word documents) allow users to navigate file

  12. "I'm Keeping Those There, Are You?": The Role of a New User Interface Paradigm--Separate Control of Shared Space (SCOSS)--in the Collaborative Decision-Making Process

    ERIC Educational Resources Information Center

    Kerawalla, Lucinda; Pearce, Darren; Yuill, Nicola; Luckin, Rosemary; Harris, Amanda

    2008-01-01

    We take a socio-cultural approach to comparing how dual control of a new user interface paradigm--Separate Control of Shared Space (SCOSS)--and dual control of a single user interface can work to mediate the collaborative decision-making process between pairs of children carrying out a multiple categorisation word task on a shared computer.…

  13. Avatars and virtual agents – relationship interfaces for the elderly

    PubMed Central

    2017-01-01

    In the Digital Era, the authors witness a change in the relationship between the patient and the care-giver or Health Maintenance Organization's providing the health services. Another fact is the use of various technologies to increase the effectiveness and quality of health services across all primary and secondary users. These technologies range from telemedicine systems, decision making tools, online and self-services applications and virtual agents; all providing information and assistance. The common thread between all these digital implementations, is they all require human machine interfaces. These interfaces must be interactive, user friendly and inviting, to create user involvement and cooperation incentives. The challenge is to design interfaces which will best fit the target users and enable smooth interaction especially, for the elderly users. Avatars and Virtual Agents are one of the interfaces used for both home care monitoring and companionship. They are also inherently multimodal in nature and allow an intimate relation between the elderly users and the Avatar. This study discusses the need and nature of these relationship models, the challenges of designing for the elderly. The study proposes key features for the design and evaluation in the area of assistive applications using Avatar and Virtual agents for the elderly users. PMID:28706725

  14. Software Aids for radiologists: Part 1, Useful Photoshop skills.

    PubMed

    Gross, Joel A; Thapa, Mahesh M

    2012-12-01

    The purpose of this review is to describe the use of several essential techniques and tools in Adobe Photoshop image-editing software. The techniques shown expand on those previously described in the radiologic literature. Radiologists, especially those with minimal experience with image-editing software, can quickly apply a few essential Photoshop tools to minimize the frustration that can result from attempting to navigate a complex user interface.

  15. A Secure Web Application Providing Public Access to High-Performance Data Intensive Scientific Resources - ScalaBLAST Web Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Darren S.; Peterson, Elena S.; Oehmen, Chris S.

    2008-05-04

    This work presents the ScalaBLAST Web Application (SWA), a web based application implemented using the PHP script language, MySQL DBMS, and Apache web server under a GNU/Linux platform. SWA is an application built as part of the Data Intensive Computer for Complex Biological Systems (DICCBS) project at the Pacific Northwest National Laboratory (PNNL). SWA delivers accelerated throughput of bioinformatics analysis via high-performance computing through a convenient, easy-to-use web interface. This approach greatly enhances emerging fields of study in biology such as ontology-based homology, and multiple whole genome comparisons which, in the absence of a tool like SWA, require a heroicmore » effort to overcome the computational bottleneck associated with genome analysis. The current version of SWA includes a user account management system, a web based user interface, and a backend process that generates the files necessary for the Internet scientific community to submit a ScalaBLAST parallel processing job on a dedicated cluster.« less

  16. DASS-GUI: a user interface for identification and analysis of significant patterns in non-sequential data.

    PubMed

    Hollunder, Jens; Friedel, Maik; Kuiper, Martin; Wilhelm, Thomas

    2010-04-01

    Many large 'omics' datasets have been published and many more are expected in the near future. New analysis methods are needed for best exploitation. We have developed a graphical user interface (GUI) for easy data analysis. Our discovery of all significant substructures (DASS) approach elucidates the underlying modularity, a typical feature of complex biological data. It is related to biclustering and other data mining approaches. Importantly, DASS-GUI also allows handling of multi-sets and calculation of statistical significances. DASS-GUI contains tools for further analysis of the identified patterns: analysis of the pattern hierarchy, enrichment analysis, module validation, analysis of additional numerical data, easy handling of synonymous names, clustering, filtering and merging. Different export options allow easy usage of additional tools such as Cytoscape. Source code, pre-compiled binaries for different systems, a comprehensive tutorial, case studies and many additional datasets are freely available at http://www.ifr.ac.uk/dass/gui/. DASS-GUI is implemented in Qt.

  17. Southern California Earthquake Center Geologic Vertical Motion Database

    NASA Astrophysics Data System (ADS)

    Niemi, Nathan A.; Oskin, Michael; Rockwell, Thomas K.

    2008-07-01

    The Southern California Earthquake Center Geologic Vertical Motion Database (VMDB) integrates disparate sources of geologic uplift and subsidence data at 104- to 106-year time scales into a single resource for investigations of crustal deformation in southern California. Over 1800 vertical deformation rate data points in southern California and northern Baja California populate the database. Four mature data sets are now represented: marine terraces, incised river terraces, thermochronologic ages, and stratigraphic surfaces. An innovative architecture and interface of the VMDB exposes distinct data sets and reference frames, permitting user exploration of this complex data set and allowing user control over the assumptions applied to convert geologic and geochronologic information into absolute uplift rates. Online exploration and download tools are available through all common web browsers, allowing the distribution of vertical motion results as HTML tables, tab-delimited GIS-compatible text files, or via a map interface through the Google Maps™ web service. The VMDB represents a mature product for research of fault activity and elastic deformation of southern California.

  18. Clinician-Oriented Access to Data - C.O.A.D.: A Natural Language Interface to a VA DHCP Database

    PubMed Central

    Levy, Christine; Rogers, Elizabeth

    1995-01-01

    Hospitals collect enormous amounts of data related to the on-going care of patients. Unfortunately, a clinicians access to the data is limited by complexities of the database structure and/or programming skills required to access the database. The COAD project attempts to bridge the gap between the clinical user's need for specific information from the database, and the wealth of data residing in the hospital information system. The project design includes a natural language interface to data contained in a VA DHCP database. We have developed a prototype which links natural language software to certain DHCP data elements, including, patient demographics, prescriptions, diagnoses, laboratory data, and provider information. English queries can by typed onto the system, and answers to the questions are returned. Future work includes refinement of natural language/DHCP connections to enable more sophisticated queries, and optimization of the system to reduce response time to user questions.

  19. SuperTarget goes quantitative: update on drug–target interactions

    PubMed Central

    Hecker, Nikolai; Ahmed, Jessica; von Eichborn, Joachim; Dunkel, Mathias; Macha, Karel; Eckert, Andreas; Gilson, Michael K.; Bourne, Philip E.; Preissner, Robert

    2012-01-01

    There are at least two good reasons for the on-going interest in drug–target interactions: first, drug-effects can only be fully understood by considering a complex network of interactions to multiple targets (so-called off-target effects) including metabolic and signaling pathways; second, it is crucial to consider drug-target-pathway relations for the identification of novel targets for drug development. To address this on-going need, we have developed a web-based data warehouse named SuperTarget, which integrates drug-related information associated with medical indications, adverse drug effects, drug metabolism, pathways and Gene Ontology (GO) terms for target proteins. At present, the updated database contains >6000 target proteins, which are annotated with >330 000 relations to 196 000 compounds (including approved drugs); the vast majority of interactions include binding affinities and pointers to the respective literature sources. The user interface provides tools for drug screening and target similarity inclusion. A query interface enables the user to pose complex queries, for example, to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target proteins within a certain affinity range. SuperTarget is available at http://bioinformatics.charite.de/supertarget. PMID:22067455

  20. A Multifunctional Brain-Computer Interface Intended for Home Use: An Evaluation with Healthy Participants and Potential End Users with Dry and Gel-Based Electrodes

    PubMed Central

    Käthner, Ivo; Halder, Sebastian; Hintermüller, Christoph; Espinosa, Arnau; Guger, Christoph; Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Rafael-Palou, Xavier; Solà, Marc; Daly, Jean M.; Armstrong, Elaine; Martin, Suzanne; Kübler, Andrea

    2017-01-01

    Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis. PMID:28588442

  1. A Multifunctional Brain-Computer Interface Intended for Home Use: An Evaluation with Healthy Participants and Potential End Users with Dry and Gel-Based Electrodes.

    PubMed

    Käthner, Ivo; Halder, Sebastian; Hintermüller, Christoph; Espinosa, Arnau; Guger, Christoph; Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Rafael-Palou, Xavier; Solà, Marc; Daly, Jean M; Armstrong, Elaine; Martin, Suzanne; Kübler, Andrea

    2017-01-01

    Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes ( N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis.

  2. Interfaces for End-User Information Seeking.

    ERIC Educational Resources Information Center

    Marchionini, Gary

    1992-01-01

    Discusses essential features of interfaces to support end-user information seeking. Highlights include cognitive engineering; task models and task analysis; the problem-solving nature of information seeking; examples of systems for end-users, including online public access catalogs (OPACs), hypertext, and help systems; and suggested research…

  3. Alkahest NuclearBLAST : a user-friendly BLAST management and analysis system

    PubMed Central

    Diener, Stephen E; Houfek, Thomas D; Kalat, Sam E; Windham, DE; Burke, Mark; Opperman, Charles; Dean, Ralph A

    2005-01-01

    Background - Sequencing of EST and BAC end datasets is no longer limited to large research groups. Drops in per-base pricing have made high throughput sequencing accessible to individual investigators. However, there are few options available which provide a free and user-friendly solution to the BLAST result storage and data mining needs of biologists. Results - Here we describe NuclearBLAST, a batch BLAST analysis, storage and management system designed for the biologist. It is a wrapper for NCBI BLAST which provides a user-friendly web interface which includes a request wizard and the ability to view and mine the results. All BLAST results are stored in a MySQL database which allows for more advanced data-mining through supplied command-line utilities or direct database access. NuclearBLAST can be installed on a single machine or clustered amongst a number of machines to improve analysis throughput. NuclearBLAST provides a platform which eases data-mining of multiple BLAST results. With the supplied scripts, the program can export data into a spreadsheet-friendly format, automatically assign Gene Ontology terms to sequences and provide bi-directional best hits between two datasets. Users with SQL experience can use the database to ask even more complex questions and extract any subset of data they require. Conclusion - This tool provides a user-friendly interface for requesting, viewing and mining of BLAST results which makes the management and data-mining of large sets of BLAST analyses tractable to biologists. PMID:15958161

  4. Graphical user interface for yield and dose estimations for cyclotron-produced technetium

    NASA Astrophysics Data System (ADS)

    Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.

    2014-07-01

    The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  5. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    PubMed

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  6. A data mining technique for discovering distinct patterns of hand signs: implications in user training and computer interface design.

    PubMed

    Ye, Nong; Li, Xiangyang; Farley, Toni

    2003-01-15

    Hand signs are considered as one of the important ways to enter information into computers for certain tasks. Computers receive sensor data of hand signs for recognition. When using hand signs as computer inputs, we need to (1) train computer users in the sign language so that their hand signs can be easily recognized by computers, and (2) design the computer interface to avoid the use of confusing signs for improving user input performance and user satisfaction. For user training and computer interface design, it is important to have a knowledge of which signs can be easily recognized by computers and which signs are not distinguishable by computers. This paper presents a data mining technique to discover distinct patterns of hand signs from sensor data. Based on these patterns, we derive a group of indistinguishable signs by computers. Such information can in turn assist in user training and computer interface design.

  7. A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery

    NASA Astrophysics Data System (ADS)

    Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.

    2007-03-01

    This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.

  8. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G [Albuquerque, NM

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  9. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G.

    2004-04-20

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  10. Determinants of user acceptance of a specific social platform for older adults: An empirical examination of user interface characteristics and behavioral intention.

    PubMed

    Tsai, Tsai-Hsuan; Chang, Hsien-Tsung; Chen, Yan-Jiun; Chang, Yung-Sheng

    2017-01-01

    The use of the Internet and social applications has many benefits for the elderly, but numerous investigations have shown that the elderly do not perceive online social networks as a friendly social environment. Therefore, TreeIt, a social application specifically designed for the elderly, was developed for this study. In the TreeIt application, seven mechanisms promoting social interaction were designed to allow older adults to use social networking sites (SNSs) to increase social connection, maintain the intensity of social connections and strengthen social experience. This study's main objective was to investigate how user interface design affects older people's intention and attitude related to using SNSs. Fourteen user interface evaluation heuristics proposed by Zhang et al. were adopted as the criteria to assess user interface usability and further grouped into three categories: system support, user interface design and navigation. The technology acceptance model was adopted to assess older people's intention and attitude related to using SNSs. One hundred and one elderly persons were enrolled in this study as subjects, and the results showed that all of the hypotheses proposed in this study were valid: system support and perceived usefulness had a significant effect on behavioral intention; user interface design and perceived ease of use were positively correlated with perceived usefulness; and navigation exerted an influence on perceived ease of use. The results of this study are valuable for the future development of social applications for the elderly.

  11. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    PubMed Central

    Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng

    2017-01-01

    Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123

  12. VDJServer: A Cloud-Based Analysis Portal and Data Commons for Immune Repertoire Sequences and Rearrangements.

    PubMed

    Christley, Scott; Scarborough, Walter; Salinas, Eddie; Rounds, William H; Toby, Inimary T; Fonner, John M; Levin, Mikhail K; Kim, Min; Mock, Stephen A; Jordan, Christopher; Ostmeyer, Jared; Buntzman, Adam; Rubelt, Florian; Davila, Marco L; Monson, Nancy L; Scheuermann, Richard H; Cowell, Lindsay G

    2018-01-01

    Recent technological advances in immune repertoire sequencing have created tremendous potential for advancing our understanding of adaptive immune response dynamics in various states of health and disease. Immune repertoire sequencing produces large, highly complex data sets, however, which require specialized methods and software tools for their effective analysis and interpretation. VDJServer is a cloud-based analysis portal for immune repertoire sequence data that provide access to a suite of tools for a complete analysis workflow, including modules for preprocessing and quality control of sequence reads, V(D)J gene segment assignment, repertoire characterization, and repertoire comparison. VDJServer also provides sophisticated visualizations for exploratory analysis. It is accessible through a standard web browser via a graphical user interface designed for use by immunologists, clinicians, and bioinformatics researchers. VDJServer provides a data commons for public sharing of repertoire sequencing data, as well as private sharing of data between users. We describe the main functionality and architecture of VDJServer and demonstrate its capabilities with use cases from cancer immunology and autoimmunity. VDJServer provides a complete analysis suite for human and mouse T-cell and B-cell receptor repertoire sequencing data. The combination of its user-friendly interface and high-performance computing allows large immune repertoire sequencing projects to be analyzed with no programming or software installation required. VDJServer is a web-accessible cloud platform that provides access through a graphical user interface to a data management infrastructure, a collection of analysis tools covering all steps in an analysis, and an infrastructure for sharing data along with workflows, results, and computational provenance. VDJServer is a free, publicly available, and open-source licensed resource.

  13. Design and implementation of the NPOI database and website

    NASA Astrophysics Data System (ADS)

    Newman, K.; Jorgensen, A. M.; Landavazo, M.; Sun, B.; Hutter, D. J.; Armstrong, J. T.; Mozurkewich, David; Elias, N.; van Belle, G. T.; Schmitt, H. R.; Baines, E. K.

    2014-07-01

    The Navy Precision Optical Interferometer (NPOI) has been recording astronomical observations for nearly two decades, at this point with hundreds of thousands of individual observations recorded to date for a total data volume of many terabytes. To make maximum use of the NPOI data it is necessary to organize them in an easily searchable manner and be able to extract essential diagnostic information from the data to allow users to quickly gauge data quality and suitability for a specific science investigation. This sets the motivation for creating a comprehensive database of observation metadata as well as, at least, reduced data products. The NPOI database is implemented in MySQL using standard database tools and interfaces. The use of standard database tools allows us to focus on top-level database and interface implementation and take advantage of standard features such as backup, remote access, mirroring, and complex queries which would otherwise be time-consuming to implement. A website was created in order to give scientists a user friendly interface for searching the database. It allows the user to select various metadata to search for and also allows them to decide how and what results are displayed. This streamlines the searches, making it easier and quicker for scientists to find the information they are looking for. The website has multiple browser and device support. In this paper we present the design of the NPOI database and website, and give examples of its use.

  14. A graphical user interface for RAId, a knowledge integrated proteomics analysis suite with accurate statistics.

    PubMed

    Joyce, Brendan; Lee, Danny; Rubio, Alex; Ogurtsov, Aleksey; Alves, Gelio; Yu, Yi-Kuo

    2018-03-15

    RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .

  15. The development of a prototype intelligent user interface subsystem for NASA's scientific database systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Roelofs, Larry H.; Short, Nicholas M., Jr.

    1987-01-01

    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has as one of its components the development of an Intelligent User Interface (IUI).The intent of the latter is to develop a friendly and intelligent user interface service that is based on expert systems and natural language processing technologies. The purpose is to support the large number of potential scientific and engineering users presently having need of space and land related research and technical data but who have little or no experience in query languages or understanding of the information content or architecture of the databases involved. This technical memorandum presents prototype Intelligent User Interface Subsystem (IUIS) using the Crustal Dynamics Project Database as a test bed for the implementation of the CRUDDES (Crustal Dynamics Expert System). The knowledge base has more than 200 rules and represents a single application view and the architectural view. Operational performance using CRUDDES has allowed nondatabase users to obtain useful information from the database previously accessible only to an expert database user or the database designer.

  16. The Johnson Space Center Management Information Systems (JSCMIS): An interface for organizational databases

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Management Information and Decision Support Environment (MIDSE) is a research activity to build and test a prototype of a generic human interface on the Johnson Space Center (JSC) Information Network (CIN). The existing interfaces were developed specifically to support operations rather than the type of data which management could use. The diversity of the many interfaces and their relative difficulty discouraged occasional users from attempting to use them for their purposes. The MIDSE activity approached this problem by designing and building an interface to one JSC data base - the personnel statistics tables of the NASA Personnel and Payroll System (NPPS). The interface was designed against the following requirements: generic (use with any relational NOMAD data base); easy to learn (intuitive operations for new users); easy to use (efficient operations for experienced users); self-documenting (help facility which informs users about the data base structure as well as the operation of the interface); and low maintenance (easy configuration to new applications). A prototype interface entitled the JSC Management Information Systems (JSCMIS) was produced. It resides on CIN/PROFS and is available to JSC management who request it. The interface has passed management review and is ready for early use. Three kinds of data are now available: personnel statistics, personnel register, and plan/actual cost.

  17. Computer systems and methods for the query and visualization of multidimensional databases

    DOEpatents

    Stolte, Chris; Tang, Diane L; Hanrahan, Patrick

    2014-04-29

    In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.

  18. Computer systems and methods for the query and visualization of multidimensional databases

    DOEpatents

    Stolte, Chris [Palo Alto, CA; Tang, Diane L [Palo Alto, CA; Hanrahan, Patrick [Portola Valley, CA

    2011-02-01

    In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.

  19. Computer systems and methods for the query and visualization of multidimensional databases

    DOEpatents

    Stolte, Chris [Palo Alto, CA; Tang, Diane L [Palo Alto, CA; Hanrahan, Patrick [Portola Valley, CA

    2012-03-20

    In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.

  20. WIFIP: a web-based user interface for automated synchrotron beamlines.

    PubMed

    Sallaz-Damaz, Yoann; Ferrer, Jean Luc

    2017-09-01

    The beamline control software, through the associated graphical user interface (GUI), is the user access point to the experiment, interacting with synchrotron beamline components and providing automated routines. FIP, the French beamline for the Investigation of Proteins, is a highly automatized macromolecular crystallography (MX) beamline at the European Synchrotron Radiation Facility. On such a beamline, a significant number of users choose to control their experiment remotely. This is often performed with a limited bandwidth and from a large choice of computers and operating systems. Furthermore, this has to be possible in a rapidly evolving experimental environment, where new developments have to be easily integrated. To face these challenges, a light, platform-independent, control software and associated GUI are required. Here, WIFIP, a web-based user interface developed at FIP, is described. Further than being the present FIP control interface, WIFIP is also a proof of concept for future MX control software.

  1. Cognition-based development and evaluation of ergonomic user interfaces for medical image processing and archiving systems.

    PubMed

    Demiris, A M; Meinzer, H P

    1997-01-01

    Whether or not a computerized system enhances the conditions of work in the application domain, very much demands on the user interface. Graphical user interfaces seem to attract the interest of the users but mostly ignore some basic rules of visual information processing thus leading to systems which are difficult to use, lowering productivity and increasing working stress (cognitive and work load). In this work we present some fundamental ergonomic considerations and their application to the medical image processing and archiving domain. We introduce the extensions to an existing concept needed to control and guide the development of GUIs with respect to domain specific ergonomics. The suggested concept, called Model-View-Controller Constraints (MVCC), can be used to programmatically implement ergonomic constraints, and thus has some advantages over written style guides. We conclude with the presentation of existing norms and methods to evaluate user interfaces.

  2. Living with an autonomous spatiotemporal home heating system: Exploration of the user experiences (UX) through a longitudinal technology intervention-based mixed-methods approach.

    PubMed

    Kruusimagi, Martin; Sharples, Sarah; Robinson, Darren

    2017-11-01

    Rising energy demands place pressure on domestic energy consumption, but savings can be delivered through home automation and engaging users with their heating and energy behaviours. The aim of this paper is to explore user experiences (UX) of living with an automated heating system regarding experiences of control, understanding of the system, emerging thermal behaviours, and interactions with the system as this area is not sufficiently researched in the existing homes setting through extended deployment. We present a longitudinal deployment of a quasi-autonomous spatiotemporal home heating system in three homes. Users were provided with a smartphone control application linked to a self-learning heating algorithm. Rich qualitative and quantitative data presented here enabled a holistic exploration of UX. The paper's contribution focuses on highlighting key aspects of UX living with an automated heating systems including (i) adoption of the control interface into the social context, (ii) how users' vigilance in maintaining preferred conditions prevailed as a better indicator of system over-ride than gross deviation from thermal comfort, (iii) limited but motivated proactivity in system-initiated communications as best strategy for soliciting user feedback when inference fails, and (iv) two main motivations for interacting with the interface - managing irregularities when absent from the house and maintaining immediate comfort, latter compromising of a checking behaviour that can transit to a system state alteration behaviour depending on mismatches. We conclude by highlighting the complex socio-technical context in which thermal decisions are made in a situated action manner, and by calling for a more holistic, UX-focused approach in the design of automated home systems involving user experiences. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. A client/server system for Internet access to biomedical text/image databanks.

    PubMed

    Thoma, G R; Long, L R; Berman, L E

    1996-01-01

    Internet access to mixed text/image databanks is finding application in the medical world. An example is a database of medical X-rays and associated data consisting of demographic, socioeconomic, physician's exam, medical laboratory and other information collected as part of a nationwide health survey conducted by the government. Another example is a collection of digitized cryosection images, CT and MR taken of cadavers as part of the National Library of Medicine's Visible Human Project. In both cases, the challenge is to provide access to both the image and the associated text for a wide end user community to create atlases, conduct epidemiological studies, to develop image-specific algorithms for compression, enhancement and other types of image processing, among many other applications. The databanks mentioned above are being created in prototype form. This paper describes the prototype system developed for the archiving of the data and the client software to enable a broad range of end users to access the archive, retrieve text and image data, display the data and manipulate the images. System design considerations include; data organization in a relational database management system with object-oriented extensions; a hierarchical organization of the image data by different resolution levels for different user classes; client design based on common hardware and software platforms incorporating SQL search capability, X Window, Motif and TAE (a development environment supporting rapid prototyping and management of graphic-oriented user interfaces); potential to include ultra high resolution display monitors as a user option; intuitive user interface paradigm for building complex queries; and contrast enhancement, magnification and mensuration tools for better viewing by the user.

  4. MethLAB: a graphical user interface package for the analysis of array-based DNA methylation data.

    PubMed

    Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K; Conneely, Karen N

    2012-03-01

    Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data.

  5. GRAPHICAL USER INTERFACE WITH APPLICATIONS IN SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE MODELS.

    PubMed

    Ilea, M; Turnea, M; Arotăriţei, D; Rotariu, Mariana; Popescu, Marilena

    2015-01-01

    Practical significance of understanding the dynamics and evolution of infectious diseases increases continuously in contemporary world. The mathematical study of the dynamics of infectious diseases has a long history. By incorporating statistical methods and computer-based simulations in dynamic epidemiological models, it could be possible for modeling methods and theoretical analyses to be more realistic and reliable, allowing a more detailed understanding of the rules governing epidemic spreading. To provide the basis for a disease transmission, the population of a region is often divided into various compartments, and the model governing their relation is called the compartmental model. To present all of the information available, a graphical user interface provides icons and visual indicators. The graphical interface shown in this paper is performed using the MATLAB software ver. 7.6.0. MATLAB software offers a wide range of techniques by which data can be displayed graphically. The process of data viewing involves a series of operations. To achieve it, I had to make three separate files, one for defining the mathematical model and two for the interface itself. Considering a fixed population, it is observed that the number of susceptible individuals diminishes along with an increase in the number of infectious individuals so that in about ten days the number of individuals infected and susceptible, respectively, has the same value. If the epidemic is not controlled, it will continue for an indefinite period of time. By changing the global parameters specific of the SIS model, a more rapid increase of infectious individuals is noted. Using the graphical user interface shown in this paper helps achieving a much easier interaction with the computer, simplifying the structure of complex instructions by using icons and menus, and, in particular, programs and files are much easier to organize. Some numerical simulations have been presented to illustrate theoretical analysis.

  6. A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Wong, Edmond; Simon, Donald L.

    1994-01-01

    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.

  7. Traffic Generator (TrafficGen) Version 1.4.2: Users Guide

    DTIC Science & Technology

    2016-06-01

    events, the user has to enter them manually . We will research and implement a way to better define and organize the multicast addresses so they can be...the network with Transmission Control Protocol and User Datagram Protocol Internet Protocol traffic. Each node generating network traffic in an...TrafficGen Graphical User Interface (GUI) 3 3.1 Anatomy of the User Interface 3 3.2 Scenario Configuration and MGEN Files 4 4. Working with

  8. Modeling Goal-Directed User Exploration in Human-Computer Interaction

    DTIC Science & Technology

    2011-02-01

    scent, other factors including the layout position and grouping of options in the user-interface also affect user exploration and the likelihood of...grouping of options in the user-interface also affect user exploration and the likelihood of success. This dissertation contributes a new model of goal...better inform UI design. 1.1 RESEARCH GAPS IN MODELING In addition to infoscent, the layout of the UI also affects the choices made during

  9. A Graphical Database Interface for Casual, Naive Users.

    ERIC Educational Resources Information Center

    Burgess, Clifford; Swigger, Kathleen

    1986-01-01

    Describes the design of a database interface for infrequent users of computers which consists of a graphical display of a model of a database and a natural language query language. This interface was designed for and tested with physicians at the University of Texas Health Science Center in Dallas. (LRW)

  10. Physician acceptance of the IRIS user interface during a clinical trial at the Ottawa Civic Hospital

    NASA Astrophysics Data System (ADS)

    Coristine, Marjorie; Beeton, Carolyn; Tombaugh, Jo W.; Ahuja, J.; Belanger, Garry; Dillon, Richard F.; Currie, Shawn; Hind, E.

    1990-07-01

    During a clinical trial, emergency physicians and radiologists at the Ottawa Civic Hospital used IRIS (Integrated Radiological Information System) to process patients' x-rays, requisitions, and reports, and to have consultations, for 319 active cases. This paper discusses IRIS user interface issues raised during the clinical trial. The IRIS workstation consists of three major system components: 1) an image screen for viewing and enhancing images; 2) a control screen for presenting patient information, selecting images, and executing commands; and 3) a hands-free telephone for reporting activities and consultations. The control screen and hands-free telephone user interface allow physicians to navigate through patient files, select images and access reports, enter new reports, and perform remote consultations. Physicians were observed using the system during the trial and responded to questions about the user interface on an extensive debriefing interview after the trial. Overall, radiologists and emergency physicians were satisfied with IRIS control screen functionality and user interface. In a number of areas radiologists and emergency physicians differed in their user interface needs. Some features were found to be acceptable to one group of physicians but required modification to meet the needs of the other physician group. The data from the interviews, along with the comments from radiologists and emergency physicians provided important information for the revision of some features, and for the evolution of new features.

  11. Allowing the Advantaged User in a Network Centric System to Get Through the Disadvantaged Interface

    DTIC Science & Technology

    2009-09-01

    ADVANTAGED USER IN A NETWORK CENTRIC SYSTEM TO GET THROUGH THE DISADVANTAGED INTERFACE by Lawrence Brandon September 2009 Thesis Advisor...Through the Disadvantaged Interface 6. AUTHOR(S) Lawrence Brandon 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...identify those factors that cause disadvantaged interfaces within network centric systems and provides recommendations to these challenges so that

  12. A continuously growing web-based interface structure databank

    NASA Astrophysics Data System (ADS)

    Erwin, N. A.; Wang, E. I.; Osysko, A.; Warner, D. H.

    2012-07-01

    The macroscopic properties of materials can be significantly influenced by the presence of microscopic interfaces. The complexity of these interfaces coupled with the vast configurational space in which they reside has been a long-standing obstacle to the advancement of true bottom-up material behavior predictions. In this vein, atomistic simulations have proven to be a valuable tool for investigating interface behavior. However, before atomistic simulations can be utilized to model interface behavior, meaningful interface atomic structures must be generated. The generation of structures has historically been carried out disjointly by individual research groups, and thus, has constituted an overlap in effort across the broad research community. To address this overlap and to lower the barrier for new researchers to explore interface modeling, we introduce a web-based interface structure databank (www.isdb.cee.cornell.edu) where users can search, download and share interface structures. The databank is intended to grow via two mechanisms: (1) interface structure donations from individual research groups and (2) an automated structure generation algorithm which continuously creates equilibrium interface structures. In this paper, we describe the databank, the automated interface generation algorithm, and compare a subset of the autonomously generated structures to structures currently available in the literature. To date, the automated generation algorithm has been directed toward aluminum grain boundary structures, which can be compared with experimentally measured population densities of aluminum polycrystals.

  13. Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist

    PubMed Central

    Banerjee, Debjani; Bellesia, Giovanni; Daigle, Bernie J.; Douglas, Geoffrey; Gu, Mengyuan; Gupta, Anand; Hellander, Stefan; Horuk, Chris; Nath, Dibyendu; Takkar, Aviral; Lötstedt, Per; Petzold, Linda R.

    2016-01-01

    We present StochSS: Stochastic Simulation as a Service, an integrated development environment for modeling and simulation of both deterministic and discrete stochastic biochemical systems in up to three dimensions. An easy to use graphical user interface enables researchers to quickly develop and simulate a biological model on a desktop or laptop, which can then be expanded to incorporate increasing levels of complexity. StochSS features state-of-the-art simulation engines. As the demand for computational power increases, StochSS can seamlessly scale computing resources in the cloud. In addition, StochSS can be deployed as a multi-user software environment where collaborators share computational resources and exchange models via a public model repository. We demonstrate the capabilities and ease of use of StochSS with an example of model development and simulation at increasing levels of complexity. PMID:27930676

  14. Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist

    DOE PAGES

    Drawert, Brian; Hellander, Andreas; Bales, Ben; ...

    2016-12-08

    We present StochSS: Stochastic Simulation as a Service, an integrated development environment for modeling and simulation of both deterministic and discrete stochastic biochemical systems in up to three dimensions. An easy to use graphical user interface enables researchers to quickly develop and simulate a biological model on a desktop or laptop, which can then be expanded to incorporate increasing levels of complexity. StochSS features state-of-the-art simulation engines. As the demand for computational power increases, StochSS can seamlessly scale computing resources in the cloud. In addition, StochSS can be deployed as a multi-user software environment where collaborators share computational resources andmore » exchange models via a public model repository. We also demonstrate the capabilities and ease of use of StochSS with an example of model development and simulation at increasing levels of complexity.« less

  15. Support of surgical process modeling by using adaptable software user interfaces

    NASA Astrophysics Data System (ADS)

    Neumuth, T.; Kaschek, B.; Czygan, M.; Goldstein, D.; Strauß, G.; Meixensberger, J.; Burgert, O.

    2010-03-01

    Surgical Process Modeling (SPM) is a powerful method for acquiring data about the evolution of surgical procedures. Surgical Process Models are used in a variety of use cases including evaluation studies, requirements analysis and procedure optimization, surgical education, and workflow management scheme design. This work proposes the use of adaptive, situation-aware user interfaces for observation support software for SPM. We developed a method to support the modeling of the observer by using an ontological knowledge base. This is used to drive the graphical user interface for the observer to restrict the search space of terminology depending on the current situation. In the evaluation study it is shown, that the workload of the observer was decreased significantly by using adaptive user interfaces. 54 SPM observation protocols were analyzed by using the NASA Task Load Index and it was shown that the use of the adaptive user interface disburdens the observer significantly in workload criteria effort, mental demand and temporal demand, helping him to concentrate on his essential task of modeling the Surgical Process.

  16. Generating Fast and Accurate Compliance Reports for Various Data Rates

    NASA Astrophysics Data System (ADS)

    Penugonda, Srinath

    As the demands on the industry data rates have increased there is a need for interoperable interfaces to function flawlessly. Added to this complexity, the number of I/O data lines are also increasing making it more time consuming to design and test. This in general leads to creating of compliance standards to which interfaces must adhere. The goal of this theses is to aid the Signal Integrity Engineers with a better and fast way of rendering a full picture of the interface compliance parameters. Three different interfaces at various data rates were chosen. They are: 25Gbps Very Short Reach (VSR) based on Optical Internetworking Forum (OIF), Mobile Industry Processer Interface (MIPI) particularly for camera based on MIPI Alliance organization upto 1.5Gbps and for a passive Universal Serial Bus (USB) Type-C cable based on USB organization particularly for generation-I with data rate of 10Gbps. After a full understanding of each of the interfaces, a complete end-to-end reports for each of the interfaces were developed with an easy to use user interface. A standard one-to-one comparison is done with commercially available software tools for the above mentioned interfaces. The tools were developed in MATLAB and Python. Data was usually obtained by probing at interconnect, from either an oscilloscope or vector network analyzer.

  17. The Euler’s Graphical User Interface Spreadsheet Calculator for Solving Ordinary Differential Equations by Visual Basic for Application Programming

    NASA Astrophysics Data System (ADS)

    Gaik Tay, Kim; Cheong, Tau Han; Foong Lee, Ming; Kek, Sie Long; Abdul-Kahar, Rosmila

    2017-08-01

    In the previous work on Euler’s spreadsheet calculator for solving an ordinary differential equation, the Visual Basic for Application (VBA) programming was used, however, a graphical user interface was not developed to capture users input. This weakness may make users confuse on the input and output since those input and output are displayed in the same worksheet. Besides, the existing Euler’s spreadsheet calculator is not interactive as there is no prompt message if there is a mistake in inputting the parameters. On top of that, there are no users’ instructions to guide users to input the derivative function. Hence, in this paper, we improved previous limitations by developing a user-friendly and interactive graphical user interface. This improvement is aimed to capture users’ input with users’ instructions and interactive prompt error messages by using VBA programming. This Euler’s graphical user interface spreadsheet calculator is not acted as a black box as users can click on any cells in the worksheet to see the formula used to implement the numerical scheme. In this way, it could enhance self-learning and life-long learning in implementing the numerical scheme in a spreadsheet and later in any programming language.

  18. User`s and reference guide to the INEL RML/analytical radiochemistry sample tracking database version 1.00

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Femec, D.A.

    This report discusses the sample tracking database in use at the Idaho National Engineering Laboratory (INEL) by the Radiation Measurements Laboratory (RML) and Analytical Radiochemistry. The database was designed in-house to meet the specific needs of the RML and Analytical Radiochemistry. The report consists of two parts, a user`s guide and a reference guide. The user`s guide presents some of the fundamentals needed by anyone who will be using the database via its user interface. The reference guide describes the design of both the database and the user interface. Briefly mentioned in the reference guide are the code-generating tools, CREATE-SCHEMAmore » and BUILD-SCREEN, written to automatically generate code for the database and its user interface. The appendices contain the input files used by the these tools to create code for the sample tracking database. The output files generated by these tools are also included in the appendices.« less

  19. ODI - Portal, Pipeline, and Archive (ODI-PPA): a web-based astronomical compute archive, visualization, and analysis service

    NASA Astrophysics Data System (ADS)

    Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Harbeck, Daniel R.; Boroson, Todd; Liu, Wilson; Kotulla, Ralf; Shaw, Richard; Henschel, Robert; Rajagopal, Jayadev; Stobie, Elizabeth; Knezek, Patricia; Martin, R. Pierre; Archbold, Kevin

    2014-07-01

    The One Degree Imager-Portal, Pipeline, and Archive (ODI-PPA) is a web science gateway that provides astronomers a modern web interface that acts as a single point of access to their data, and rich computational and visualization capabilities. Its goal is to support scientists in handling complex data sets, and to enhance WIYN Observatory's scientific productivity beyond data acquisition on its 3.5m telescope. ODI-PPA is designed, with periodic user feedback, to be a compute archive that has built-in frameworks including: (1) Collections that allow an astronomer to create logical collations of data products intended for publication, further research, instructional purposes, or to execute data processing tasks (2) Image Explorer and Source Explorer, which together enable real-time interactive visual analysis of massive astronomical data products within an HTML5 capable web browser, and overlaid standard catalog and Source Extractor-generated source markers (3) Workflow framework which enables rapid integration of data processing pipelines on an associated compute cluster and users to request such pipelines to be executed on their data via custom user interfaces. ODI-PPA is made up of several light-weight services connected by a message bus; the web portal built using Twitter/Bootstrap, AngularJS and jQuery JavaScript libraries, and backend services written in PHP (using the Zend framework) and Python; it leverages supercomputing and storage resources at Indiana University. ODI-PPA is designed to be reconfigurable for use in other science domains with large and complex datasets, including an ongoing offshoot project for electron microscopy data.

  20. Strategic Help in User Interfaces for Information Retrieval.

    ERIC Educational Resources Information Center

    Brajnik, Giorgio; Mizzaro, Stefano; Tasso, Carlo; Venuti, Fabio

    2002-01-01

    Discussion of search strategy in information retrieval by end users focuses on the role played by strategic reasoning and design principles for user interfaces. Highlights include strategic help based on collaborative coaching; a conceptual model for strategic help; and a prototype knowledge-based system named FIRE. (Author/LRW)

  1. Enabling Accessibility Through Model-Based User Interface Development.

    PubMed

    Ziegler, Daniel; Peissner, Matthias

    2017-01-01

    Adaptive user interfaces (AUIs) can increase the accessibility of interactive systems. They provide personalized display and interaction modes to fit individual user needs. Most AUI approaches rely on model-based development, which is considered relatively demanding. This paper explores strategies to make model-based development more attractive for mainstream developers.

  2. STEPS: Modeling and Simulating Complex Reaction-Diffusion Systems with Python

    PubMed Central

    Wils, Stefan; Schutter, Erik De

    2008-01-01

    We describe how the use of the Python language improved the user interface of the program STEPS. STEPS is a simulation platform for modeling and stochastic simulation of coupled reaction-diffusion systems with complex 3-dimensional boundary conditions. Setting up such models is a complicated process that consists of many phases. Initial versions of STEPS relied on a static input format that did not cleanly separate these phases, limiting modelers in how they could control the simulation and becoming increasingly complex as new features and new simulation algorithms were added. We solved all of these problems by tightly integrating STEPS with Python, using SWIG to expose our existing simulation code. PMID:19623245

  3. ActiviTree: interactive visual exploration of sequences in event-based data using graph similarity.

    PubMed

    Vrotsou, Katerina; Johansson, Jimmy; Cooper, Matthew

    2009-01-01

    The identification of significant sequences in large and complex event-based temporal data is a challenging problem with applications in many areas of today's information intensive society. Pure visual representations can be used for the analysis, but are constrained to small data sets. Algorithmic search mechanisms used for larger data sets become expensive as the data size increases and typically focus on frequency of occurrence to reduce the computational complexity, often overlooking important infrequent sequences and outliers. In this paper we introduce an interactive visual data mining approach based on an adaptation of techniques developed for web searching, combined with an intuitive visual interface, to facilitate user-centred exploration of the data and identification of sequences significant to that user. The search algorithm used in the exploration executes in negligible time, even for large data, and so no pre-processing of the selected data is required, making this a completely interactive experience for the user. Our particular application area is social science diary data but the technique is applicable across many other disciplines.

  4. User interface development

    NASA Technical Reports Server (NTRS)

    Aggrawal, Bharat

    1994-01-01

    This viewgraph presentation describes the development of user interfaces for OS/2 versions of computer codes for the analysis of seals. Current status, new features, work in progress, and future plans are discussed.

  5. 14 CFR § 1215.102 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and the necessary TDRSS operational areas, interface devices, and NASA communication circuits that... interface. (c) Bit stream. The electronic signals acquired by TDRSS from the user craft or the user...

  6. Netlib services and resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, S.V.; Green, S.C.; Moore, K.

    1994-04-01

    The Netlib repository, maintained by the University of Tennessee and Oak Ridge National Laboratory, contains freely available software, documents, and databases of interest to the numerical, scientific computing, and other communities. This report includes both the Netlib User`s Guide and the Netlib System Manager`s Guide, and contains information about Netlib`s databases, interfaces, and system implementation. The Netlib repository`s databases include the Performance Database, the Conferences Database, and the NA-NET mail forwarding and Whitepages Databases. A variety of user interfaces enable users to access the Netlib repository in the manner most convenient and compatible with their networking capabilities. These interfaces includemore » the Netlib email interface, the Xnetlib X Windows client, the netlibget command-line TCP/IP client, anonymous FTP, anonymous RCP, and gopher.« less

  7. Recording information on protein complexes in an information management system

    PubMed Central

    Savitsky, Marc; Diprose, Jonathan M.; Morris, Chris; Griffiths, Susanne L.; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S.; Blake, Richard; Stuart, David I.; Esnouf, Robert M.

    2011-01-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein–protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. PMID:21605682

  8. Recording information on protein complexes in an information management system.

    PubMed

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. A SCILAB Program for Computing Rotating Magnetic Compact Objects

    NASA Astrophysics Data System (ADS)

    Papasotiriou, P. J.; Geroyannis, V. S.

    We implement the so-called ``complex-plane iterative technique'' (CIT) to the computation of classical differentially rotating magnetic white dwarf and neutron star models. The program has been written in SCILAB (© INRIA-ENPC), a matrix-oriented high-level programming language, which can be downloaded free of charge from the site http://www-rocq.inria.fr/scilab. Due to the advanced capabilities of this language, the code is short and understandable. Highlights of the program are: (a) time-saving character, (b) easy use due to the built-in graphics user interface, (c) easy interfacing with Fortran via online dynamic link. We interpret our numerical results in various ways by extensively using the graphics environment of SCILAB.

  10. Recommending personally interested contents by text mining, filtering, and interfaces

    DOEpatents

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface device configured to monitor a user's information data stream. A collaborative filter remote from the client interface device generates automated predictions about the interests of the user. A database server stores personal behavioral profiles and user's preferences based on a plurality of monitored past behaviors and an output of the collaborative user personal interest inference engine. A programmed personal content recommendation server filters items in an incoming information stream with the personal behavioral profile and identifies only those items of the incoming information stream that substantially matches the personal behavioral profile. The identified personally relevant content is then recommended to the user following some priority that may consider the similarity between the personal interest matches, the context of the user information consumption behaviors that may be shown by the user's content consumption mode.

  11. Research and Development for an Operational Information Ecology: The User-System Interface Agent Project

    NASA Technical Reports Server (NTRS)

    Srivastava, Sadanand; deLamadrid, James

    1998-01-01

    The User System Interface Agent (USIA) is a special type of software agent which acts as the "middle man" between a human user and an information processing environment. USIA consists of a group of cooperating agents which are responsible for assisting users in obtaining information processing services intuitively and efficiently. Some of the main features of USIA include: (1) multiple interaction modes and (2) user-specific and stereotype modeling and adaptation. This prototype system provides us with a development platform towards the realization of an operational information ecology. In the first phase of this project we focus on the design and implementation of prototype system of the User-System Interface Agent (USIA). The second face of USIA allows user interaction via a restricted query language as well as through a taxonomy of windows. In third phase the USIA system architecture was revised.

  12. Early experiences in developing and managing the neuroscience gateway.

    PubMed

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas T

    2015-02-01

    The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway.

  13. Early experiences in developing and managing the neuroscience gateway

    PubMed Central

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas. T.

    2015-01-01

    SUMMARY The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway. PMID:26523124

  14. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    VanDam, Andries (Principal Investigator)

    1996-01-01

    The focus of this grant was to experiment with novel user interfaces for scientific visualization applications using both desktop and virtual reality (VR) systems, and thus to advance the state of the art of user interface technology for this domain. This technology has been transferred to NASA via periodic status reports and papers relating to this grant that have been published in conference proceedings. This final report summarizes the research completed over the past three years, and subsumes all prior reports.

  15. The intelligent user interface for NASA's advanced information management systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  16. ASV3 dial-in interface recommendation for the Repository Based Software Engineering (RBSE) program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this report is to provide insight into the approach and design of the Cooperative User Interface (CUI). The CUI is being developed based on Hypercard technology and will provide the same look and feel as is provided by the NASA Electronic Library System (NELS) X-Window interface. The interaction between the user and ASCII-LIB is presented as well as the set of Hypercard Cards with which the user will work.

  17. Expandable Grids: A User Interface Visualization Technique and a Policy Semantics to Support Fast, Accurate Security and Privacy Policy Authoring

    DTIC Science & Technology

    2008-07-01

    dropout rate amongst Grid participants suggests participants found the Grid more frustrating to use, and subjective satisfaction scores show... learned more than N years of graduate school could ever teach me, and my sister, who was always there for me when my Black Friday letters came. Abstract...greatly affect whether policies match their authors’ intentions ; a bad user interface can lead to policies with many errors, while a good user interface

  18. The effects of time delays on a telepathology user interface.

    PubMed Central

    Carr, D.; Hasegawa, H.; Lemmon, D.; Plaisant, C.

    1992-01-01

    Telepathology enables a pathologist to examine physically distant tissue samples by microscope operation over a communication link. Communication links can impose time delays which cause difficulties in controlling the remote device. Such difficulties were found in a microscope teleoperation system. Since the user interface is critical to pathologist's acceptance of telepathology, we redesigned the user interface for this system, built two different versions (a keypad whose movement commands operated by specifying a start command followed by a stop command and a trackball interface whose movement commands were incremental and directly proportional to the rotation of the trackball). We then conducted a pilot study to determine the effect of time delays on the new user interfaces. In our experiment, the keypad was the faster interface when the time delay is short. There was no evidence to favor either the keypad or trackball when the time delay was longer. Inexperienced participants benefitted by allowing them to move long distances over the microscope slide by dragging the field-of-view indicator on the touchscreen control panel. The experiment suggests that changes could be made to the trackball interface which would improve its performance. PMID:1482878

  19. Determinants of user acceptance of a specific social platform for older adults: An empirical examination of user interface characteristics and behavioral intention

    PubMed Central

    Chang, Hsien-Tsung; Chen, Yan-Jiun; Chang, Yung-Sheng

    2017-01-01

    The use of the Internet and social applications has many benefits for the elderly, but numerous investigations have shown that the elderly do not perceive online social networks as a friendly social environment. Therefore, TreeIt, a social application specifically designed for the elderly, was developed for this study. In the TreeIt application, seven mechanisms promoting social interaction were designed to allow older adults to use social networking sites (SNSs) to increase social connection, maintain the intensity of social connections and strengthen social experience. This study’s main objective was to investigate how user interface design affects older people’s intention and attitude related to using SNSs. Fourteen user interface evaluation heuristics proposed by Zhang et al. were adopted as the criteria to assess user interface usability and further grouped into three categories: system support, user interface design and navigation. The technology acceptance model was adopted to assess older people’s intention and attitude related to using SNSs. One hundred and one elderly persons were enrolled in this study as subjects, and the results showed that all of the hypotheses proposed in this study were valid: system support and perceived usefulness had a significant effect on behavioral intention; user interface design and perceived ease of use were positively correlated with perceived usefulness; and navigation exerted an influence on perceived ease of use. The results of this study are valuable for the future development of social applications for the elderly. PMID:28837566

  20. MTVis: tree exploration using a multitouch interface

    NASA Astrophysics Data System (ADS)

    Andrews, David; Teoh, Soon Tee

    2010-01-01

    We present MTVis, a multi-touch interactive tree visualization system. The multi-touch interface display hardware is built using the LED-LP technology, and the tree layout is based on RINGS, but enhanced with multitouch interactions. We describe the features of the system, and how the multi-touch interface enhances the user's experience in exploring the tree data structure. In particular, the multi-touch interface allows the user to simultaneously control two child nodes of the root, and rotate them so that some nodes are magnified, while preserving the layout of the tree. We also describe the other meaninful touch screen gestures the users can use to intuitively explore the tree.

Top