Sample records for complex variable moving

  1. Solving the Inverse-Square Problem with Complex Variables

    ERIC Educational Resources Information Center

    Gauthier, N.

    2005-01-01

    The equation of motion for a mass that moves under the influence of a central, inverse-square force is formulated and solved as a problem in complex variables. To find the solution, the constancy of angular momentum is first established using complex variables. Next, the complex position coordinate and complex velocity of the particle are assumed…

  2. An Enduring Rapidly Moving Storm as a Guide to Saturn's Equatorial Jet's Complex Structure

    NASA Technical Reports Server (NTRS)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Perez-Hoyos, S.; Hueso, R.; Wong, M. H.; Simon, A.; Sanz-Requena, J. F.; Antunano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.; hide

    2016-01-01

    Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450/ms not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet (latitudes 10degN to 10degS) suffers intense vertical shears reaching + 2.5/ms/km, two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level.

  3. An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Chen, Guoxian; Huang, Yuefei; Yang, Jerry Zhijian; Feng, Hui

    2013-04-01

    A new geometrical conservative interpolation on unstructured meshes is developed for preserving still water equilibrium and positivity of water depth at each iteration of mesh movement, leading to an adaptive moving finite volume (AMFV) scheme for modeling flood inundation over dry and complex topography. Unlike traditional schemes involving position-fixed meshes, the iteration process of the AFMV scheme moves a fewer number of the meshes adaptively in response to flow variables calculated in prior solutions and then simulates their posterior values on the new meshes. At each time step of the simulation, the AMFV scheme consists of three parts: an adaptive mesh movement to shift the vertices position, a geometrical conservative interpolation to remap the flow variables by summing the total mass over old meshes to avoid the generation of spurious waves, and a partial differential equations(PDEs) discretization to update the flow variables for a new time step. Five different test cases are presented to verify the computational advantages of the proposed scheme over nonadaptive methods. The results reveal three attractive features: (i) the AMFV scheme could preserve still water equilibrium and positivity of water depth within both mesh movement and PDE discretization steps; (ii) it improved the shock-capturing capability for handling topographic source terms and wet-dry interfaces by moving triangular meshes to approximate the spatial distribution of time-variant flood processes; (iii) it was able to solve the shallow water equations with a relatively higher accuracy and spatial-resolution with a lower computational cost.

  4. A Chebyshev Collocation Method for Moving Boundaries, Heat Transfer, and Convection During Directional Solidification

    NASA Technical Reports Server (NTRS)

    Zhang, Yiqiang; Alexander, J. I. D.; Ouazzani, J.

    1994-01-01

    Free and moving boundary problems require the simultaneous solution of unknown field variables and the boundaries of the domains on which these variables are defined. There are many technologically important processes that lead to moving boundary problems associated with fluid surfaces and solid-fluid boundaries. These include crystal growth, metal alloy and glass solidification, melting and name propagation. The directional solidification of semi-conductor crystals by the Bridgman-Stockbarger method is a typical example of such a complex process. A numerical model of this growth method must solve the appropriate heat, mass and momentum transfer equations and determine the location of the melt-solid interface. In this work, a Chebyshev pseudospectra collocation method is adapted to the problem of directional solidification. Implementation involves a solution algorithm that combines domain decomposition, finite-difference preconditioned conjugate minimum residual method and a Picard type iterative scheme.

  5. The Effect of Visual Information on the Manual Approach and Landing

    NASA Technical Reports Server (NTRS)

    Wewerinke, P. H.

    1982-01-01

    The effect of visual information in combination with basic display information on the approach performance. A pre-experimental model analysis was performed in terms of the optimal control model. The resulting aircraft approach performance predictions were compared with the results of a moving base simulator program. The results illustrate that the model provides a meaningful description of the visual (scene) perception process involved in the complex (multi-variable, time varying) manual approach task with a useful predictive capability. The theoretical framework was shown to allow a straight-forward investigation of the complex interaction of a variety of task variables.

  6. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow.

    PubMed

    Clay, T W; Grünbaum, D

    2010-04-01

    Many larvae and other plankton have complex and variable morphologies of unknown functional significance. We experimentally and theoretically investigated the functional consequences of the complex morphologies of larval sand dollars, Dendraster excentricus (Eschscholtz), for hydrodynamic interactions between swimming and turbulent water motion. Vertical shearing flows (horizontal gradients of vertical flow) tilt organisms with simple geometries (e.g. spheres, ellipsoids), causing these organisms to move horizontally towards downwelling water and compromising their abilities to swim upwards. A biomechanical model of corresponding hydrodynamic interactions between turbulence-induced shear and the morphologically complex four-, six- and eight-armed stages of sand dollar larvae suggests that the movements of larval morphologies differ quantitatively and qualitatively across stages and shear intensities: at shear levels typical of calm conditions in estuarine and coastal environments, all modeled larval stages moved upward. However, at higher shears, modeled four- and eight-armed larvae moved towards downwelling, whereas six-armed larvae moved towards upwelling. We also experimentally quantified larval movement by tracking larvae swimming in low-intensity shear while simultaneously mapping the surrounding flow fields. Four- and eight-armed larvae moved into downwelling water, but six-armed larvae did not. Both the model and experiments suggest that stage-dependent changes to larval morphology lead to differences in larval movement: four- and eight-armed stages are more prone than the six-armed stage to moving into downwelling water. Our results suggest a mechanism by which differences can arise in the vertical distribution among larval stages. The ability to mitigate or exploit hydrodynamic interactions with shear is a functional consequence that potentially shapes larval evolution and development.

  7. Ecological correlates of fish movement in a network of Virginia streams

    USGS Publications Warehouse

    Albanese, B.; Angermeier, P.L.; Dorai-Raj, S.

    2004-01-01

    Identifying factors that influence fish movement is a key step in predicting how populations respond to environmental change. Using mark-recapture (four species) and trap capture (eight species) data, we examined relationships between three attributes of movement and 15 ecological variables. The probability of emigrating from a reach was positively related to intermittency (one species) and body size (one species) and negatively related to distance from the mainstem creek (two species) and habitat complexity (one species). The number of fish moving upstream through traps was positively related to increases in flow (five species), day length (three species), and water temperature (two species); the number moving through downstream traps was positively associated with increases in flow (three species). Distance moved was greater for fish moving through unsuitable reaches (one species). Floods have a pervasive effect on fish movement, and human activities that affect flows will have widespread implications. The importance of other factors varies interspecifically, which may translate into variation in persistence and colonization rates. For example, species that exhibit reach fidelity in complex habitats may increase movement if habitats are homogenized. These species may suffer population declines because of the cost of increased movement and may ultimately be replaced by ecological generalists.

  8. Commentary: Competency restoration research--complicating an already complex process.

    PubMed

    Rotter, Merrill; Greenspan, Michael

    2011-01-01

    Predicting restorability in individuals found not competent to stand trial is an enduring focus of interest among forensic clinicians and academicians. In our commentary, we suggest that to understand this area even more comprehensively, we must look further. We must build on existing research on fitness to stand trial, move beyond diagnosis and a binary competence variable, and include the complex interplay between symptoms and fitness-related capacities that may be associated with lack of adjudicative competence and challenges to restorability.

  9. Variability of visual responses of superior colliculus neurons depends on stimulus velocity.

    PubMed

    Mochol, Gabriela; Wójcik, Daniel K; Wypych, Marek; Wróbel, Andrzej; Waleszczyk, Wioletta J

    2010-03-03

    Visually responding neurons in the superficial, retinorecipient layers of the cat superior colliculus receive input from two primarily parallel information processing channels, Y and W, which is reflected in their velocity response profiles. We quantified the time-dependent variability of responses of these neurons to stimuli moving with different velocities by Fano factor (FF) calculated in discrete time windows. The FF for cells responding to low-velocity stimuli, thus receiving W inputs, increased with the increase in the firing rate. In contrast, the dynamics of activity of the cells responding to fast moving stimuli, processed by Y pathway, correlated negatively with FF whether the response was excitatory or suppressive. These observations were tested against several types of surrogate data. Whereas Poisson description failed to reproduce the variability of all collicular responses, the inclusion of secondary structure to the generating point process recovered most of the observed features of responses to fast moving stimuli. Neither model could reproduce the variability of low-velocity responses, which suggests that, in this case, more complex time dependencies need to be taken into account. Our results indicate that Y and W channels may differ in reliability of responses to visual stimulation. Apart from previously reported morphological and physiological differences of the cells belonging to Y and W channels, this is a new feature distinguishing these two pathways.

  10. Climate Variability and Human Migration in the Netherlands, 1865–1937

    PubMed Central

    Jennings, Julia A.; Gray, Clark L.

    2014-01-01

    Human migration is frequently cited as a potential social outcome of climate change and variability, and these effects are often assumed to be stronger in the past when economies were less developed and markets more localized. Yet, few studies have used historical data to test the relationship between climate and migration directly. In addition, the results of recent studies that link demographic and climate data are not consistent with conventional narratives of displacement responses. Using longitudinal individual-level demographic data from the Historical Sample of the Netherlands (HSN) and climate data that cover the same period, we examine the effects of climate variability on migration using event history models. Only internal moves in the later period and for certain social groups are associated with negative climate conditions, and the strength and direction of the observed effects change over time. International moves decrease with extreme rainfall, suggesting that the complex relationships between climate and migration that have been observed for contemporary populations extend into the nineteenth century. PMID:25937689

  11. Readability Revisited? The Implications of Text Complexity

    ERIC Educational Resources Information Center

    Wray, David; Janan, Dahlia

    2013-01-01

    The concept of readability has had a variable history, moving from a position where it was considered as a very important topic for those responsible for producing texts and matching those texts to the abilities and needs of learners, to its current declining visibility in the education literature. Some important work has been coming from the USA…

  12. Moving Carbon, Changing Earth: Bringing the Carbon Cycle to Life

    NASA Astrophysics Data System (ADS)

    Zabel, I.; Duggan-Haas, D.; Ross, R. M.; Stricker, B.; Mahowald, N. M.

    2014-12-01

    The carbon cycle presents challenges to researchers - in how to understand the complex interactions of fluxes, reservoirs, and systems - and to outreach professionals - in how to get across the complexity of the carbon cycle and still make it accessible to the public. At Cornell University and the Museum of the Earth in Ithaca, NY, researchers and outreach staff tackled these challenges together through a 2013 temporary museum exhibition: Moving Carbon, Changing Earth. Moving Carbon, Changing Earth introduced visitors to the world of carbon and its effect on every part of our lives. The exhibit was the result of the broader impacts portion of an NSF grant awarded to Natalie Mahowald, Professor in the Department of Earth and Atmospheric Sciences at Cornell University, who has been working with a team to improve simulations of regional and decadal variability in the carbon cycle. Within the exhibition, visitors used systems thinking to understand the distribution of carbon in and among Earth's systems, learning how (and how quickly or slowly) carbon moves between and within these systems, the relative scale of different reservoirs, and how carbon's movement changes climate and other environmental dynamics. Five interactive stations represented the oceans, lithosphere, atmosphere, biosphere, and a mystery reservoir. Puzzles, videos, real specimens, and an interview with Mahowald clarified and communicated the complexities of the carbon cycle. In this talk we'll present background information on Mahowald's research as well as photos of the exhibition and discussion of the components and motivations behind them, showing examples of innovative ways to bring a complex topic to life for museum visitors.

  13. An unusual kind of complex synchronizations and its applications in secure communications

    NASA Astrophysics Data System (ADS)

    Mahmoud, Emad E.

    2017-11-01

    In this paper, we talk about the meaning of complex anti-syncrhonization (CAS) of hyperchaotic nonlinear frameworks comprehensive complex variables and indeterminate parameters. This sort of synchronization can break down just for complex nonlinear frameworks. The CAS contains or fuses two sorts of synchronizations (complete synchronization and anti-synchronization). In the CAS the attractors of the master and slave frameworks are moving opposite or orthogonal to each other with a similar form; this phenomenon does not exist in the literature. Upon confirmation of the Lyapunov function and a versatile control strategy, a plan is made to play out the CAS of two indistinguishable hyperchaotic attractors of these frameworks. The adequacy of the obtained results is shown by a simulation case. Numerical issues are plotted to decide state variables, synchronization errors, modules errors, and phases errors of those hyperchaotic attractors after synchronization to determine that the CAS is accomplished. The above outcomes will present the possible establishment to the secure communication applications. The CAS of hyperchaotic complex frameworks in which a state variable of the master framework synchronizes with an alternate state variable of the slave framework is an encouraging kind of synchronization as it contributes fantastic security in secure communications. Amid this secure communications, the synchronization between transmitter and collector is shut and message signs are recouped. The encryption and reclamation of the signs are reproduced numerically.

  14. Research and development supporting risk-based wildfire effects prediction for fuels and fire management: Status and needs

    Treesearch

    Kevin Hyde; Matthew B. Dickinson; Gil Bohrer; David Calkin; Louisa Evers; Julie Gilbertson-Day; Tessa Nicolet; Kevin Ryan; Christina Tague

    2013-01-01

    Wildland fire management has moved beyond a singular focus on suppression, calling for wildfire management for ecological benefit where no critical human assets are at risk. Processes causing direct effects and indirect, long-term ecosystem changes are complex and multidimensional. Robust risk-assessment tools are required that account for highly variable effects on...

  15. An adaptive gridless methodology in one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, N.T.; Hailey, C.E.

    1996-09-01

    Gridless numerical analysis offers great potential for accurately solving for flow about complex geometries or moving boundary problems. Because gridless methods do not require point connection, the mesh cannot twist or distort. The gridless method utilizes a Taylor series about each point to obtain the unknown derivative terms from the current field variable estimates. The governing equation is then numerically integrated to determine the field variables for the next iteration. Effects of point spacing and Taylor series order on accuracy are studied, and they follow similar trends of traditional numerical techniques. Introducing adaption by point movement using a spring analogymore » allows the solution method to track a moving boundary. The adaptive gridless method models linear, nonlinear, steady, and transient problems. Comparison with known analytic solutions is given for these examples. Although point movement adaption does not provide a significant increase in accuracy, it helps capture important features and provides an improved solution.« less

  16. On the complexity of classical guitar playing: functional adaptations to task constraints.

    PubMed

    Heijink, Hank; Meulenbroek, Ruud G J

    2002-12-01

    The authors performed a behavioral study of the complexity of left-hand finger movements in classical guitar playing. Six professional guitarists played movement sequences in a fixed tempo. Left-hand finger movements were recorded in 3 dimensions, and the guitar sound was recorded synchronously. Assuming that performers prefer to avoid extreme joint angles when moving, the authors hypothesized 3 complexity factors. The results showed differential effects of the complexity factors on the performance measures and on participants' judgments of complexity. The results demonstrated that keeping the joints in the middle of their range is an important principle in guitar playing, and players exploit the available tolerance in timing and placement of the left-hand fingers to control the acoustic output variability.

  17. Floodplain complexity and surface metrics: influences of scale and geomorphology

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different scales would improve our understanding of the role that different environmental variables play at different scales and in different geomorphic settings.

  18. Elimination of chromatographic and mass spectrometric problems in GC-MS analysis of Lavender essential oil by multivariate curve resolution techniques: Improving the peak purity assessment by variable size moving window-evolving factor analysis.

    PubMed

    Jalali-Heravi, Mehdi; Moazeni-Pourasil, Roudabeh Sadat; Sereshti, Hassan

    2015-03-01

    In analysis of complex natural matrices by gas chromatography-mass spectrometry (GC-MS), many disturbing factors such as baseline drift, spectral background, homoscedastic and heteroscedastic noise, peak shape deformation (non-Gaussian peaks), low S/N ratio and co-elution (overlapped and/or embedded peaks) lead the researchers to handle them to serve time, money and experimental efforts. This study aimed to improve the GC-MS analysis of complex natural matrices utilizing multivariate curve resolution (MCR) methods. In addition, to assess the peak purity of the two-dimensional data, a method called variable size moving window-evolving factor analysis (VSMW-EFA) is introduced and examined. The proposed methodology was applied to the GC-MS analysis of Iranian Lavender essential oil, which resulted in extending the number of identified constituents from 56 to 143 components. It was found that the most abundant constituents of the Iranian Lavender essential oil are α-pinene (16.51%), camphor (10.20%), 1,8-cineole (9.50%), bornyl acetate (8.11%) and camphene (6.50%). This indicates that the Iranian type Lavender contains a relatively high percentage of α-pinene. Comparison of different types of Lavender essential oils showed the composition similarity between Iranian and Italian (Sardinia Island) Lavenders. Published by Elsevier B.V.

  19. Measurement of the M² beam propagation factor using a focus-tunable liquid lens.

    PubMed

    Niederriter, Robert D; Gopinath, Juliet T; Siemens, Mark E

    2013-03-10

    We demonstrate motion-free beam quality M² measurements of stigmatic, simple astigmatic, and general astigmatic (twisted) beams using only a focus-tunable liquid lens and a CCD camera. We extend the variable-focus technique to the characterization of general astigmatic beams by measuring the 10 second-order moments of the power density distribution for the twisted beam produced by passage through multimode optical fiber. Our method measures the same M² values as the traditional variable-distance method for a wide range of laser beam sources, including nearly TEM(00) (M²≈1) and general astigmatic multimode beams (M²≈8). The method is simple and compact, with no moving parts or complex apparatus and measurement precision comparable to the standard variable-distance method.

  20. General strategy for the protection of organs at risk in IMRT therapy of a moving body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abolfath, Ramin M.; Papiez, Lech

    2009-07-15

    We investigated protection strategies of organs at risk (OARs) in intensity modulated radiation therapy (IMRT). These strategies apply to delivery of IMRT to moving body anatomies that show relative displacement of OAR in close proximity to a tumor target. We formulated an efficient genetic algorithm which makes it possible to search for global minima in a complex landscape of multiple irradiation strategies delivering a given, predetermined intensity map to a target. The optimal strategy was investigated with respect to minimizing the dose delivered to the OAR. The optimization procedure developed relies on variability of all parameters available for control ofmore » radiation delivery in modern linear accelerators, including adaptation of leaf trajectories and simultaneous modification of beam dose rate during irradiation. We showed that the optimization algorithms lead to a significant reduction in the dose delivered to OAR in cases where organs at risk move relative to a treatment target.« less

  1. Computational Hemodynamics Involving Artificial Devices

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin; Feiereisen, William (Technical Monitor)

    2001-01-01

    This paper reports the progress being made towards developing complete blood flow simulation capability in human, especially, in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended in the recent past to the analysis and development of mechanical devices. The blood flow in these devices is practically incompressible and Newtonian, and thus various incompressible Navier-Stokes solution procedures can be selected depending on the choice of formulations, variables and numerical schemes. Two primitive variable formulations used are discussed as well as the overset grid approach to handle complex moving geometry. This procedure has been applied to several artificial devices. Among these, recent progress made in developing DeBakey axial flow blood pump will be presented from computational point of view. Computational and clinical issues will be discussed in detail as well as additional work needed.

  2. Trait-based plant ecology: moving towards a unifying species coexistence theory : Features of the Special Section.

    PubMed

    Escudero, Adrián; Valladares, Fernando

    2016-04-01

    Functional traits are the center of recent attempts to unify key ecological theories on species coexistence and assembling in populations and communities. While the plethora of studies on the role of functional traits to explain patterns and dynamics of communities has rendered a complex picture due to the idiosyncrasies of each study system and approach, there is increasing evidence on their actual relevance when aspects such as different spatial scales, intraspecific variability and demography are considered.

  3. Quantification and Analysis of Offensive Situations in Different Formats of Sided Games In Soccer

    PubMed Central

    Garcia, Jorge Diaz-Cidoncha; Román, Ignacio Refoyo; Calleja-González, Julio; Dellal, Alexandre

    2014-01-01

    There has been a lot of research that enabled soccer to improve: its technique, tactics and strategy through analysis and training. Nevertheless, players’ need to interact with each other turns any defending or attacking situation into complex solutions with a wide range of variables to be considered, in which the player is never isolated and must make the move that has the most positive impact on play. Fifty-four sided games played in three different formats (5v5, 7v7 and 9v9) and with two age groups (U9 and U14) were filmed at three soccer clubs in Spain in order to identify the most relevant attacking moves, from a technical and tactical perspective. This study used the observational method; it is descriptive and is applied through well-prepared systematic quantitative observation in a natural environment. A key part of the method involved viewing the match recordings and logging moves that had been categorised beforehand. Cohen’s Kappa analysis showed that the results for the most representative variables presented a substantial degree of concordance (0.61–0.80). The results show that there were significant variations depending on the game format, and the following study will present a description and analysis of the aspects that had considerable influence on attacking moves in different formats of sided games (5v5, 7v7 and 9v9). The study also presents various practical applications for the area of training and analysing both youth and professional soccer. PMID:25713680

  4. Vertical dynamics of a single-span beam subjected to moving mass-suspended payload system with variable speeds

    NASA Astrophysics Data System (ADS)

    He, Wei

    2018-03-01

    This paper presents the vertical dynamics of a simply supported Euler-Bernoulli beam subjected to a moving mass-suspended payload system of variable velocities. A planar theoretical model of the moving mass-suspended payload system of variable speeds is developed based on several assumptions: the rope is massless and rigid, and its length keeps constant; the stiffness of the gantry beam is much greater than the supporting beam, and the gantry beam can be treated as a mass particle traveling along the supporting beam; the supporting beam is assumed as a simply supported Bernoulli-Euler beam. The model can be degenerated to consider two classical cases-the moving mass case and the moving payload case. The proposed model is verified using both numerical and experimental methods. To further investigate the effect of possible influential factors, numerical examples are conducted covering a range of parameters, such as variable speeds (acceleration or deceleration), mass ratios of the payload to the total moving load, and the pendulum lengths. The effect of beam flexibility on swing response of the payload is also investigated. It is shown that the effect of a variable speed is significant for the deflections of the beam. The accelerating movement tends to induce larger beam deflections, while the decelerating movement smaller ones. For accelerating or decelerating movements, the moving mass model may underestimate the deflections of the beam compared with the presented model; while for uniform motion, both the moving mass model and the moving mass-payload model lead to same beam responses. Furthermore, it is observed that the swing response of the payload is not sensitive to the stiffness of the beam for operational cases of a moving crane, thus a simple moving payload model can be employed in the swing control of the payload.

  5. Remote sensing using MIMO systems

    DOEpatents

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  6. Decoding the spatial signatures of multi-scale climate variability - a climate network perspective

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.

    2017-12-01

    During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.

  7. Seasonal Trends of Soiling on Photovoltaic Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Matthew T; Ruth, Daniel; Micheli, Leonardo

    This work investigates the seasonal variability of PV soiling losses over a 12-month period for sixteen soiling stations deployed in the USA. A new parameter able to rank the sites according to the cumulative losses occurring over 3- and 6- month periods is presented. The relations between soiling losses and particulate matter are briefly discussed as well. Moving from long-term to shorter-term data increases the complexity of the analysis: monthly correlations are found to have lower accuracy than the longer term ones presented in the literature.

  8. Chimeric Antigen Receptor T-Cells (CAR T-Cells) for Cancer Immunotherapy - Moving Target for Industry?

    PubMed

    Salmikangas, Paula; Kinsella, Niamh; Chamberlain, Paul

    2018-05-31

    The first CD19 CAR T-cell products, Kymriah and Yescarta, are entering the US market and also being evaluated for marketing authorization in the EU. This breakthrough has expanded the interest and also investments towards novel chimeric antigen receptor (CAR) designs, both for hematological malignancies and solid tumors. At the same time, there is active development in moving from autologous products to allogeneic, off-the-shelf -products. New manufacturing technologies are also emerging for production of these complex genetically-modified cells and even decentralized manufacturing in hospitals is under consideration. However, the high potency of CAR T-cells is associated with toxicity and not all patients respond to the treatment. In addition, the number of patient and product variables impacting the clinical outcome is high. The race towards novel CAR T treatment options for cancer patients has begun, but without careful design of the constructs and overall understanding of the factors that impact the ultimate outcome in each case, the road towards commercial success may be long and winding. This review discusses the product- and patient-related variables that may pose challenges for the industry and developers both from the scientific and regulatory perspective.

  9. Wave field synthesis of moving virtual sound sources with complex radiation properties.

    PubMed

    Ahrens, Jens; Spors, Sascha

    2011-11-01

    An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.

  10. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

    PubMed

    Farshchiansadegh, Ali; Melendez-Calderon, Alejandro; Ranganathan, Rajiv; Murphey, Todd D; Mussa-Ivaldi, Ferdinando A

    2016-04-01

    The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.

  11. Novel near-infrared spectrum analysis tool: Synergy adaptive moving window model based on immune clone algorithm.

    PubMed

    Wang, Shenghao; Zhang, Yuyan; Cao, Fuyi; Pei, Zhenying; Gao, Xuewei; Zhang, Xu; Zhao, Yong

    2018-02-13

    This paper presents a novel spectrum analysis tool named synergy adaptive moving window modeling based on immune clone algorithm (SA-MWM-ICA) considering the tedious and inconvenient labor involved in the selection of pre-processing methods and spectral variables by prior experience. In this work, immune clone algorithm is first introduced into the spectrum analysis field as a new optimization strategy, covering the shortage of the relative traditional methods. Based on the working principle of the human immune system, the performance of the quantitative model is regarded as antigen, and a special vector corresponding to the above mentioned antigen is regarded as antibody. The antibody contains a pre-processing method optimization region which is created by 11 decimal digits, and a spectrum variable optimization region which is formed by some moving windows with changeable width and position. A set of original antibodies are created by modeling with this algorithm. After calculating the affinity of these antibodies, those with high affinity will be selected to clone. The regulation for cloning is that the higher the affinity, the more copies will be. In the next step, another import operation named hyper-mutation is applied to the antibodies after cloning. Moreover, the regulation for hyper-mutation is that the lower the affinity, the more possibility will be. Several antibodies with high affinity will be created on the basis of these steps. Groups of simulated dataset, gasoline near-infrared spectra dataset, and soil near-infrared spectra dataset are employed to verify and illustrate the performance of SA-MWM-ICA. Analysis results show that the performance of the quantitative models adopted by SA-MWM-ICA are better especially for structures with relatively complex spectra than traditional models such as partial least squares (PLS), moving window PLS (MWPLS), genetic algorithm PLS (GAPLS), and pretreatment method classification and adjustable parameter changeable size moving window PLS (CA-CSMWPLS). The selected pre-processing methods and spectrum variables are easily explained. The proposed method will converge in few generations and can be used not only for near-infrared spectroscopy analysis but also for other similar spectral analysis, such as infrared spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 24 CFR 1003.602 - Relocation and real property acquisition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... may occupy a suitable, decent, safe, and sanitary dwelling in the building/complex following... dwelling unit who moves from the building/complex permanently after the submission to HUD of an application... project. (iii) A tenant-occupant of a dwelling who moves from the building/complex permanently, after the...

  13. MOVES sensitivity study

    DOT National Transportation Integrated Search

    2012-01-01

    Purpose: : To determine ranking of important parameters and the overall sensitivity to values of variables in MOVES : To allow a greater understanding of the MOVES modeling process for users : Continued support by FHWA to transportation modeling comm...

  14. Repeat migration and disappointment.

    PubMed

    Grant, E K; Vanderkamp, J

    1986-01-01

    This article investigates the determinants of repeat migration among the 44 regions of Canada, using information from a large micro-database which spans the period 1968 to 1971. The explanation of repeat migration probabilities is a difficult task, and this attempt is only partly successful. May of the explanatory variables are not significant, and the overall explanatory power of the equations is not high. In the area of personal characteristics, the variables related to age, sex, and marital status are generally significant and with expected signs. The distance variable has a strongly positive effect on onward move probabilities. Variables related to prior migration experience have an important impact that differs between return and onward probabilities. In particular, the occurrence of prior moves has a striking effect on the probability of onward migration. The variable representing disappointment, or relative success of the initial move, plays a significant role in explaining repeat migration probabilities. The disappointment variable represents the ratio of actural versus expected wage income in the year after the initial move, and its effect on both repeat migration probabilities is always negative and almost always highly significant. The repeat probabilities diminish after a year's stay in the destination region, but disappointment in the most recent year still has a bearing on the delayed repeat probabilities. While the quantitative impact of the disappointment variable is not large, it is difficult to draw comparisons since similar estimates are not available elsewhere.

  15. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    NASA Astrophysics Data System (ADS)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  16. Moving in a moving medium: new perspectives on flight

    PubMed Central

    Shepard, Emily L. C.; Portugal, Steven J.

    2016-01-01

    One of the defining features of the aerial environment is its variability; air is almost never still. This has profound consequences for flying animals, affecting their flight stability, speed selection, energy expenditure and choice of flight path. All these factors have important implications for the ecology of flying animals, and the ecosystems they interact with, as well as providing bio-inspiration for the development of unmanned aerial vehicles. In this introduction, we touch on the factors that drive the variability in airflows, the scales of variability and the degree to which given airflows may be predictable. We then summarize how papers in this volume advance our understanding of the sensory, biomechanical, physiological and behavioural responses of animals to air flows. Overall, this provides insight into how flying animals can be so successful in this most fickle of environments. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528772

  17. Sand-wave movement on Little Georges Bank

    USGS Publications Warehouse

    Twichell, David C.

    1983-01-01

    A 1-x-1.5-km area on Little Georges Bank (centered at 41?08?N., 68?04?W.) was mapped three times during a ten-month period by sidescan sonar and echo-sounding techniques to assess the morphology and mobility of sand waves on Georges Bank. Sand-wave amplitudes in the survey area ranged from 1-11 m although most were 5-7 m. Wavelengths were not constant as the crests were sinuous and in places, even bifurcated. The sand waves are asymmetrical with their steepest sides facing northwest; however, gradients of their steep sides mostly are 4?-10? which is well below the angle of repose for sand in water. Sand waves tended to have greater relief and a sharper asymmetry during the survey in September than during those in June or April. During the survey period the sand waves moved but the direction and rate of motion was variable. Even along an individual sand wave some parts moved as much as 60 m between surveys while other parts apparently remained stationary. The sand waves were asymmetrical, but movement was not consistently in the direction that the steep sides faced. Along the same sand wave, parts moved to the northwest while other parts moved to the southeast. Despite the complex pattern of sand motion, the mean displacement of the sand waves was below the resolution of the survey technique; to resolve it, a longer survey is needed.

  18. Welfare: Its Relationship to Social Origins. Personal and Family Characteristics.

    ERIC Educational Resources Information Center

    Ensminger, Margaret E.

    An attempt was made to identify variables associated with black mothers in a high risk community who stayed on welfare, who moved off welfare, who moved on and off welfare, and who did not participate in welfare. Three kinds of variables were explored to explain such variations in welfare participation: (1) social origin characteristics, (2)…

  19. A method of fitting the gravity model based on the Poisson distribution.

    PubMed

    Flowerdew, R; Aitkin, M

    1982-05-01

    "In this paper, [the authors] suggest an alternative method for fitting the gravity model. In this method, the interaction variable is treated as the outcome of a discrete probability process, whose mean is a function of the size and distance variables. This treatment seems appropriate when the dependent variable represents a count of the number of items (people, vehicles, shipments) moving from one place to another. It would seem to have special advantages where there are some pairs of places between which few items move. The argument will be illustrated with reference to data on the numbers of migrants moving in 1970-1971 between pairs of the 126 labor market areas defined for Great Britain...." excerpt

  20. Racial composition, unemployment, and crime: dealing with inconsistencies in panel designs.

    PubMed

    Worrall, John L

    2008-09-01

    Racial composition and unemployment have appeared as either theoretically-relevant controls or variables of substantive interest in numerous studies of crime. While there is no clear consensus in the literature as to their statistical significance, the lack of consensus has been most apparent in panel analyses with unit fixed effects. One explanation for this is that racial composition and unemployment are fairly invariant, or slow-moving, which leads to collinearity with unit dummies. A number of pertinent studies are reviewed to illustrate how two slow-moving variables, percent black and percent unemployed, have behaved inconsistently. A fixed effects vector decomposition procedure [Plumper, V., Troeger, V. E., 2007. Efficient estimation of time-invariant and rarely changing variables in finite sample panel analyses with unit fixed effects. Political Analysis, 15, 124-139.] is used to illustrate how these variables' coefficients appear positive and significant when the slow-moving process is accounted for.

  1. Repeated Listening Increases the Liking for Music Regardless of Its Complexity: Implications for the Appreciation and Aesthetics of Music

    PubMed Central

    Madison, Guy; Schiölde, Gunilla

    2017-01-01

    Psychological and aesthetic theories predict that music is appreciated at optimal, peak levels of familiarity and complexity, and that appreciation of music exhibits an inverted U-shaped relationship with familiarity as well as complexity. Because increased familiarity conceivably leads to improved processing and less perceived complexity, we test whether there is an interaction between familiarity and complexity. Specifically, increased familiarity should render the music subjectively less complex, and therefore move the apex of the U curve toward greater complexity. A naturalistic listening experiment was conducted, featuring 40 music examples (ME) divided by experts into 4 levels of complexity prior to the main experiment. The MEs were presented 28 times each across a period of approximately 4 weeks, and individual ratings were assessed throughout the experiment. Ratings of liking increased monotonically with repeated listening at all levels of complexity; both the simplest and the most complex MEs were liked more as a function of listening time, without any indication of a U-shaped relation. Although the MEs were previously unknown to the participants, the strongest predictor of liking was familiarity in terms of having listened to similar music before, i.e., familiarity with musical style. We conclude that familiarity is the single most important variable for explaining differences in liking among music, regardless of the complexity of the music. PMID:28408864

  2. System for decision analysis support on complex waste management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shropshire, D.E.

    1997-10-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less

  3. Rearrangement moves on rooted phylogenetic networks

    PubMed Central

    Gambette, Philippe; van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2017-01-01

    Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network—that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose “horizontal” moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and “vertical” moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves—named rNNI and rSPR—reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results—separating the contributions of horizontal and vertical moves—we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for practical phylogenetic network reconstruction. PMID:28763439

  4. Moving bed reactor setup to study complex gas-solid reactions.

    PubMed

    Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih

    2007-08-01

    A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.

  5. Eye tracking a self-moved target with complex hand-target dynamics

    PubMed Central

    Landelle, Caroline; Montagnini, Anna; Madelain, Laurent

    2016-01-01

    Previous work has shown that the ability to track with the eye a moving target is substantially improved when the target is self-moved by the subject's hand compared with when being externally moved. Here, we explored a situation in which the mapping between hand movement and target motion was perturbed by simulating an elastic relationship between the hand and target. Our objective was to determine whether the predictive mechanisms driving eye-hand coordination could be updated to accommodate this complex hand-target dynamics. To fully appreciate the behavioral effects of this perturbation, we compared eye tracking performance when self-moving a target with a rigid mapping (simple) and a spring mapping as well as when the subject tracked target trajectories that he/she had previously generated when using the rigid or spring mapping. Concerning the rigid mapping, our results confirmed that smooth pursuit was more accurate when the target was self-moved than externally moved. In contrast, with the spring mapping, eye tracking had initially similar low spatial accuracy (though shorter temporal lag) in the self versus externally moved conditions. However, within ∼5 min of practice, smooth pursuit improved in the self-moved spring condition, up to a level similar to the self-moved rigid condition. Subsequently, when the mapping unexpectedly switched from spring to rigid, the eye initially followed the expected target trajectory and not the real one, thereby suggesting that subjects used an internal representation of the new hand-target dynamics. Overall, these results emphasize the stunning adaptability of smooth pursuit when self-maneuvering objects with complex dynamics. PMID:27466129

  6. Langevin modelling of high-frequency Hang-Seng index data

    NASA Astrophysics Data System (ADS)

    Tang, Lei-Han

    2003-06-01

    Accurate statistical characterization of financial time series, such as compound stock indices, foreign currency exchange rates, etc., is fundamental to investment risk management, pricing of derivative products and financial decision making. Traditionally, such data were analyzed and modeled from a purely statistics point of view, with little concern on the specifics of financial markets. Increasingly, however, attention has been paid to the underlying economic forces and the collective behavior of investors. Here we summarize a novel approach to the statistical modeling of a major stock index (the Hang Seng index). Based on mathematical results previously derived in the fluid turbulence literature, we show that a Langevin equation with a variable noise amplitude correctly reproduces the ubiquitous fat tails in the probability distribution of intra-day price moves. The form of the Langevin equation suggests that, despite the extremely complex nature of financial concerns and investment strategies at the individual's level, there exist simple universal rules governing the high-frequency price move in a stock market.

  7. Predicting animal home-range structure and transitions using a multistate Ornstein-Uhlenbeck biased random walk

    USGS Publications Warehouse

    Breed, Greg A.; Golson, Emily A.; Tinker, M. Tim

    2017-01-01

    The home‐range concept is central in animal ecology and behavior, and numerous mechanistic models have been developed to understand home range formation and maintenance. These mechanistic models usually assume a single, contiguous home range. Here we describe and implement a simple home‐range model that can accommodate multiple home‐range centers, form complex shapes, allow discontinuities in use patterns, and infer how external and internal variables affect movement and use patterns. The model assumes individuals associate with two or more home‐range centers and move among them with some estimable probability. Movement in and around home‐range centers is governed by a two‐dimensional Ornstein‐Uhlenbeck process, while transitions between centers are modeled as a stochastic state‐switching process. We augmented this base model by introducing environmental and demographic covariates that modify transition probabilities between home‐range centers and can be estimated to provide insight into the movement process. We demonstrate the model using telemetry data from sea otters (Enhydra lutris) in California. The model was fit using a Bayesian Markov Chain Monte Carlo method, which estimated transition probabilities, as well as unique Ornstein‐Uhlenbeck diffusion and centralizing tendency parameters. Estimated parameters could then be used to simulate movement and space use that was virtually indistinguishable from real data. We used Deviance Information Criterion (DIC) scores to assess model fit and determined that both wind and reproductive status were predictive of transitions between home‐range centers. Females were less likely to move between home‐range centers on windy days, less likely to move between centers when tending pups, and much more likely to move between centers just after weaning a pup. These tendencies are predicted by theoretical movement rules but were not previously known and show that our model can extract meaningful behavioral insight from complex movement data.

  8. Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis.

    PubMed

    Ding, Hang

    2014-01-01

    Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.

  9. Through a glass darkly: economics and personalised medicine.

    PubMed

    Haycox, Alan; Pirmohamed, Munir; McLeod, Claire; Houten, Rachel; Richards, Sarah

    2014-11-01

    Personalised medicine and pharmacogenetic-test-guided treatment strategies will be of increasing importance in the future, both in terms of healthcare provision and evaluation. It is well recognised that significant variability exists in the response of patients to drugs resulting from genetic or biological variations; however, we are only now gradually becoming aware of the complexities involved. Enormous variability occurs in the risk-benefit ratio that will be experienced by each individual patient as a consequence of their overall genetic make-up. Although not a panacea, enhanced scientific knowledge of the genetic basis for such variability offers the potential for a more 'tailored' approach to prescribing in the future, making it more closely attuned to the needs of the individual patient. Such 'personalised' medicine has the potential to revolutionise care provision in a manner that provides a range of challenges to current structures and processes of 'conventional' healthcare delivery. The aim of this paper is to outline such challenges and analyse potential ways in which they may be addressed in the future. It provides non-expert readers with a non-technical case study of the complexities inherent in the evaluation of a pharmacogenetic-test-guided treatment strategy from a health economic perspective. Wherever possible, technical issues have been minimised; however, references are provided for readers who wish to enhance their knowledge of the pharmacological basis of the case study of cytochrome P450 test-guided treatment. The case study aims simply to illustrate the approach and difficulties encountered in the health economic evaluation of complex pharmacogenetic technologies. Such technologies present a range of new and complex issues which have crucial implications for health economists attempting to obtain an accurate assessment of the 'value' of the technology in clinical practice in an array of patient subgroups. Personalised medicine is the future and this paper highlights how pharmaceutical manufacturers, clinicians, regulators and other stakeholders must all play their part in the inevitable and accelerating move into this complex and uncertain future.

  10. Inhomogeneity of epidemic spreading with entropy-based infected clusters.

    PubMed

    Wen-Jie, Zhou; Xing-Yuan, Wang

    2013-12-01

    Considering the difference in the sizes of the infected clusters in the dynamic complex networks, the normalized entropy based on infected clusters (δ*) is proposed to characterize the inhomogeneity of epidemic spreading. δ* gives information on the variability of the infected clusters in the system. We investigate the variation in the inhomogeneity of the distribution of the epidemic with the absolute velocity v of moving agent, the infection density ρ, and the interaction radius r. By comparing δ* in the dynamic networks with δH* in homogeneous mode, the simulation experiments show that the inhomogeneity of epidemic spreading becomes smaller with the increase of v, ρ, r.

  11. Analysis of the Sagnac interference imaging spectrometer with a variable optical path difference

    NASA Astrophysics Data System (ADS)

    Ai, Jingjing; Gao, Peng; Hu, Xiaochen; Zhang, Chunmin; Wang, Xia

    2018-03-01

    The Sagnac interference imaging spectrometer with a variable optical path difference (OPD) is proposed in this paper, which employs two wedge prisms coupled with a modified Sagnac interferometer, and produces a variable OPD through the moving wedge prism. Compared with the conventional imaging spectrometer, the Sagnac interference imaging spectrometer shows its advantages of miniaturization and insensitive to the non-uniform variation of the moving speed and the environment vibration. The exact expression of the OPD as a function of different parameters is derived, and the influences of the moving displacement, wedge angle and acute angles on the OPD are analyzed and discussed within the scope of engineering design. This study provides an important theoretical and practical guidance for the engineering of the Sagnac interference imaging spectrometer.

  12. Biological corridors and connectivity [Chapter 21

    Treesearch

    Samuel A. Cushman; Brad McRae; Frank Adriaensen; Paul Beier; Mark Shirley; Kathy Zeller

    2013-01-01

    The ability of individual animals to move across complex landscapes is critical for maintaining regional populations in the short term (Fahrig 2003; Cushman 2006), and for species to shift their geographic range in response to climate change (Heller & Zavaleta 2009). As organisms move through spatially complex landscapes, they respond to multiple...

  13. Momentum conserving Brownian dynamics propagator for complex soft matter fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padding, J. T.; Briels, W. J.

    2014-12-28

    We present a Galilean invariant, momentum conserving first order Brownian dynamics scheme for coarse-grained simulations of highly frictional soft matter systems. Friction forces are taken to be with respect to moving background material. The motion of the background material is described by locally averaged velocities in the neighborhood of the dissolved coarse coordinates. The velocity variables are updated by a momentum conserving scheme. The properties of the stochastic updates are derived through the Chapman-Kolmogorov and Fokker-Planck equations for the evolution of the probability distribution of coarse-grained position and velocity variables, by requiring the equilibrium distribution to be a stationary solution.more » We test our new scheme on concentrated star polymer solutions and find that the transverse current and velocity time auto-correlation functions behave as expected from hydrodynamics. In particular, the velocity auto-correlation functions display a long time tail in complete agreement with hydrodynamics.« less

  14. Nitrification of an industrial wastewater in a moving-bed biofilm reactor: effect of salt concentration.

    PubMed

    Vendramel, Simone; Dezotti, Marcia; Sant'Anna, Geraldo L

    2011-01-01

    Nitrification of wastewaters from chemical industries can pose some challenges due to the presence of inhibitory compounds. Some wastewaters, besides their organic complexity present variable levels of salt concentration. In order to investigate the effect of salt (NaCl) content on the nitrification of a conventional biologically treated industrial wastewater, a bench scale moving-bed biofilm reactor was operated on a sequencing batch mode. The wastewater presenting a chloride content of 0.05 g l(-1) was supplemented with NaCl up to 12 g Cl(-) l(-1). The reactor operation cycle was: filling (5 min), aeration (12 or 24h), settling (5 min) and drawing (5 min). Each experimental run was conducted for 3 to 6 months to address problems related to the inherent wastewater variability and process stabilization. A PLC system assured automatic operation and control of the pertinent process variables. Data obtained from selected batch experiments were adjusted by a kinetic model, which considered ammonia, nitrite and nitrate variations. The average performance results indicated that nitrification efficiency was not influenced by chloride content in the range of 0.05 to 6 g Cl(-) l(-1) and remained around 90%. When the chloride content was 12 g Cl(-) l(-1), a significant drop in the nitrification efficiency was observed, even operating with a reaction period of 24 h. Also, a negative effect of the wastewater organic matter content on nitrification efficiency was observed, which was probably caused by growth of heterotrophs in detriment of autotrophs and nitrification inhibition by residual chemicals.

  15. Terrestrial-style slow-moving earthflow kinematics in a submarine landslide complex

    Treesearch

    Joshu J. Mountjoy; Jim McKean; Philip M. Barnes; Jarg R. Pettinga

    2009-01-01

    Morphometric analysis of Simrad EM300 multibeam bathymetric DEMs reveals details of deformation patterns in a ~145 km2 submarine landslide complex that are commonly associated with slow-moving earthflows in terrestrial settings. This mode of failure, where existing landslide debris is remobilised repeatedly along discrete shear boundaries and is...

  16. The perceptual control of goal-directed locomotion: a common control architecture for interception and navigation?

    PubMed

    Chardenon, A; Montagne, G; Laurent, M; Bootsma, R J

    2004-09-01

    Intercepting a moving object while locomoting is a highly complex and demanding ability. Notwithstanding the identification of several informational candidates, the role of perceptual variables in the control process underlying such skills remains an open question. In this study we used a virtual reality set-up for studying locomotor interception of a moving ball. The subject had to walk along a straight path and could freely modify forward velocity, if necessary, in order to intercept-with the head-a ball moving along a straight path that led it to cross the agent's displacement axis. In a series of experiments we manipulated a local (ball size) and a global (focus of expansion) component of the visual flow but also the egocentric orientation of the ball. The experimental observations are well captured by a dynamic model linking the locomotor acceleration to properties of both global flow and egocentric direction. More precisely the changes in locomotor velocity depend on a linear combination of the change in bearing angle and the change in egocentric orientation, allowing the emergence of adaptive behavior under a variety of circumstances. We conclude that the mechanisms underlying the control of different goal-directed locomotion tasks (i.e. steering and interceptive tasks) could share a common architecture.

  17. A respiratory alert model for the Shenandoah Valley, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Davis, Robert E.; Knight, David B.; Sitka, Luke J.; Enfield, Kyle; Gawtry, Stephen B.; Stenger, Phillip J.; Deaton, Michael L.; Normile, Caroline P.; Lee, Temple R.

    2013-01-01

    Respiratory morbidity (particularly COPD and asthma) can be influenced by short-term weather fluctuations that affect air quality and lung function. We developed a model to evaluate meteorological conditions associated with respiratory hospital admissions in the Shenandoah Valley of Virginia, USA. We generated ensembles of classification trees based on six years of respiratory-related hospital admissions (64,620 cases) and a suite of 83 potential environmental predictor variables. As our goal was to identify short-term weather linkages to high admission periods, the dependent variable was formulated as a binary classification of five-day moving average respiratory admission departures from the seasonal mean value. Accounting for seasonality removed the long-term apparent inverse relationship between temperature and admissions. We generated eight total models specific to the northern and southern portions of the valley for each season. All eight models demonstrate predictive skill (mean odds ratio = 3.635) when evaluated using a randomization procedure. The predictor variables selected by the ensembling algorithm vary across models, and both meteorological and air quality variables are included. In general, the models indicate complex linkages between respiratory health and environmental conditions that may be difficult to identify using more traditional approaches.

  18. Variable rate irrigation (VRI)

    USDA-ARS?s Scientific Manuscript database

    Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...

  19. Ground-based thermography of fluvial systems at low and high discharge reveals potential complex thermal heterogeneity driven by flow variation and bioroughness

    USGS Publications Warehouse

    Cardenas, M.B.; Harvey, J.W.; Packman, A.I.; Scott, D.T.

    2008-01-01

    Temperature is a primary physical and biogeochemical variable in aquatic systems. Field-based measurement of temperature at discrete sampling points has revealed temperature variability in fluvial systems, but traditional techniques do not readily allow for synoptic sampling schemes that can address temperature-related questions with broad, yet detailed, coverage. We present results of thermal infrared imaging at different stream discharge (base flow and peak flood) conditions using a handheld IR camera. Remotely sensed temperatures compare well with those measured with a digital thermometer. The thermal images show that periphyton, wood, and sandbars induce significant thermal heterogeneity during low stages. Moreover, the images indicate temperature variability within the periphyton community and within the partially submerged bars. The thermal heterogeneity was diminished during flood inundation, when the areas of more slowly moving water to the side of the stream differed in their temperature. The results have consequences for thermally sensitive hydroelogical processes and implications for models of those processes, especially those that assume an effective stream temperature. Copyright ?? 2008 John Wiley & Sons, Ltd.

  20. KSC-2011-8240

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida moves along the on-ramp from NASA Causeway to Kennedy Parkway to gain entrance to the northbound roadways on the center. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The model is being moved from the visitor complex to NASA Kennedy Space Center's Launch Complex 39 turn basin. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  1. Processive motions of MreB micro-filaments coordinate cell wall growth

    NASA Astrophysics Data System (ADS)

    Garner, Ethan

    2012-02-01

    Rod-shaped bacteria elongate by the action of cell-wall synthesis complexes linked to underlying dynamic MreB filaments, but how these proteins function to allow continued elongation as a rod remains unknown. To understand how the movement of these filaments relates to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-resolution particle tracking in Bacillus subtilis. We found that both MreB and the elongation machinery move in linear paths across the cell, moving at similar rates (˜20nm / second) and angles to the cell body, suggesting they function as single complexes. These proteins move circumferentially around the cell, principally perpendicular to its length. We find that the motions of these complexes are independent, as they can pause and reverse,and also as nearby complexes move independently in both directions across one surface of the cell. Inhibition of cell wall synthesis with antibiotics or depletions in the cell wall synthesis machinery blocked MreB movement, suggesting that the cell wall synthetic machinery is the motor in this system. We propose that bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that span the plasma membrane and insert radial hoops of new peptidoglycan during their transit.

  2. Suppression and Contrast Normalization in Motion Processing

    PubMed Central

    2017-01-01

    Sensory neurons are activated by a range of stimuli to which they are said to be tuned. Usually, they are also suppressed by another set of stimuli that have little effect when presented in isolation. The interactions between preferred and suppressive stimuli are often quite complex and vary across neurons, even within a single area, making it difficult to infer their collective effect on behavioral responses mediated by activity across populations of neurons. Here, we investigated this issue by measuring, in human subjects (three males), the suppressive effect of static masks on the ocular following responses induced by moving stimuli. We found a wide range of effects, which depend in a nonlinear and nonseparable manner on the spatial frequency, contrast, and spatial location of both stimulus and mask. Under some conditions, the presence of the mask can be seen as scaling the contrast of the driving stimulus. Under other conditions, the effect is more complex, involving also a direct scaling of the behavioral response. All of this complexity at the behavioral level can be captured by a simple model in which stimulus and mask interact nonlinearly at two stages, one monocular and one binocular. The nature of the interactions is compatible with those observed at the level of single neurons in primates, usually broadly described as divisive normalization, without having to invoke any scaling mechanism. SIGNIFICANCE STATEMENT The response of sensory neurons to their preferred stimulus is often modulated by stimuli that are not effective when presented alone. Individual neurons can exhibit multiple modulatory effects, with considerable variability across neurons even in a single area. Such diversity has made it difficult to infer the impact of these modulatory mechanisms on behavioral responses. Here, we report the effects of a stationary mask on the reflexive eye movements induced by a moving stimulus. A model with two stages, each incorporating a divisive modulatory mechanism, reproduces our experimental results and suggests that qualitative variability of masking effects in cortical neurons might arise from differences in the extent to which such effects are inherited from earlier stages. PMID:29018158

  3. Post impact behavior of mobile reactor core containment systems

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.; Parker, W. G.; Vanbibber, L. E.

    1972-01-01

    The reactor core containment vessel temperatures after impact, and the design variables that affect the post impact survival of the system are analyzed. The heat transfer analysis includes conduction, radiation, and convection in addition to the core material heats of fusion and vaporization under partially burial conditions. Also, included is the fact that fission products vaporize and transport radially outward and condense outward and condense on cooler surfaces, resulting in a moving heat source. A computer program entitled Executive Subroutines for Afterheat Temperature Analysis (ESATA) was written to consider this complex heat transfer analysis. Seven cases were calculated of a reactor power system capable of delivering up to 300 MW of thermal power to a nuclear airplane.

  4. Early in-session cognitive-emotional problem-solving predicts 12-month outcomes in depression with personality disorder.

    PubMed

    McCarthy, Kye L; Mergenthaler, Erhard; Grenyer, Brin F S

    2014-01-01

    Therapist-patient verbalizations reveal complex cognitive-emotional linguistic data. How these variables contribute to change requires further research. Emotional-cognitive text analysis using the Ulm cycles model software was applied to transcripts of the third session of psychotherapy for 20 patients with depression and personality disorder. Results showed that connecting cycle sequences of problem-solving in the third hour predicted 12-month clinical outcomes. Therapist-patient dyads most improved spent significantly more time early in session in connecting cycles, whilst the least improved moved into connecting cycles late in session. For this particular sample, it was clear that positive emotional problem-solving in therapy was beneficial.

  5. Electromagnetic field of a bunch intersecting a dielectric plate in a waveguide

    NASA Astrophysics Data System (ADS)

    Alekhina, Tatiana Yu; Tyukhtin, Andrey V.

    2014-05-01

    The electromagnetic field (EMF) of a bunch moving uniformly and traversing a dielectric plate located in a waveguide is investigated. The main attention is focused on the case when Cherenkov radiation is generated in the plate. Analysis of the field components of the mode is performed with methods of the complex variable function theory. An algorithm of computation using the exact expressions for the EMF is also presented. Consideration of the EMF structure for different time moments is given. It is shown that Cherenkov-transition radiation (CTR) is generated in the vacuum area after the plate under certain conditions. Results obtained might be of interest for development of new methods of generation of electromagnetic radiation.

  6. Robot environment expert system

    NASA Technical Reports Server (NTRS)

    Potter, J. L.

    1985-01-01

    The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.

  7. Climate disruption and biodiversity.

    PubMed

    Pimm, Stuart L

    2009-07-28

    'Global warming' may be a familiar term, but it is seriously misleading. Human actions are causing a massive disruption to the planet's climate that is severe, rapid, very variable over space and time, and highly complex. The biosphere itself is complex and its responses to even simple changes are difficult to predict in detail. One can likely only be certain that many changes will be unexpected and some unfortunate. Even the simple, slow warming of the climate will produce complex consequences to species numbers and distributions because of how species depend on each other. An alternative approach to worrying about details is to concentrate on understanding the most significant ecological changes, ones that are irreversible--so-called 'tipping points'. Once such a point has been passed, even if society managed to restore historical climatic conditions, it might not restore the historical ecological patterns. Nowhere is this more obvious than in the loss of species, for we cannot recreate them. Climate disruptions may cause the loss of a large fraction of the planet's biodiversity, even if the only mechanism were to be species ranges moving uphill as temperatures rise.

  8. The game of go as a complex network

    NASA Astrophysics Data System (ADS)

    Georgeot, Bertrand; Giraud, Olivier; Kandiah, Vivek

    2014-03-01

    We have studied the game of go, one of the most ancient and complex board games, from a complex network perspective. We have defined a proper categorization of moves taking into account the local environment, and shown that in this case Zipf's law emerges from data taken from real games. The network shows differences between professional and amateur games, different level of amateurs, or different phases of the game. Certain eigenvectors are localized on specific groups of moves which correspond to different strategies (communities of moves). The point of view developed should allow to better modelize such games and could also help to design simulators which could in the future beat good human players. Our approach could be used for other types of games, and in parallel shed light on the human decision making process.

  9. Dengue dynamics in Binh Thuan province, southern Vietnam: periodicity, synchronicity and climate variability.

    PubMed

    Thai, Khoa T D; Cazelles, Bernard; Nguyen, Nam Van; Vo, Long Thi; Boni, Maciej F; Farrar, Jeremy; Simmons, Cameron P; van Doorn, H Rogier; de Vries, Peter J

    2010-07-13

    Dengue is a major global public health problem with increasing incidence and geographic spread. The epidemiology is complex with long inter-epidemic intervals and endemic with seasonal fluctuations. This study was initiated to investigate dengue transmission dynamics in Binh Thuan province, southern Vietnam. Wavelet analyses were performed on time series of monthly notified dengue cases from January 1994 to June 2009 (i) to detect and quantify dengue periodicity, (ii) to describe synchrony patterns in both time and space, (iii) to investigate the spatio-temporal waves and (iv) to associate the relationship between dengue incidence and El Niño-Southern Oscillation (ENSO) indices in Binh Thuan province, southern Vietnam. We demonstrate a continuous annual mode of oscillation and a multi-annual cycle of around 2-3-years was solely observed from 1996-2001. Synchrony in time and between districts was detected for both the annual and 2-3-year cycle. Phase differences used to describe the spatio-temporal patterns suggested that the seasonal wave of infection was either synchronous among all districts or moving away from Phan Thiet district. The 2-3-year periodic wave was moving towards, rather than away from Phan Thiet district. A strong non-stationary association between ENSO indices and climate variables with dengue incidence in the 2-3-year periodic band was found. A multi-annual mode of oscillation was observed and these 2-3-year waves of infection probably started outside Binh Thuan province. Associations with climatic variables were observed with dengue incidence. Here, we have provided insight in dengue population transmission dynamics over the past 14.5 years. Further studies on an extensive time series dataset are needed to test the hypothesis that epidemics emanate from larger cities in southern Vietnam.

  10. Biomass Supply Logistics and Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, Shahabaddine

    2009-04-01

    Feedstock supply system encompasses numerous unit operations necessary to move lignocellulosic feedstock from the place where it is produced (in the field or on the stump) to the start of the conversion process (reactor throat) of the Biorefinery. These unit operations, which include collection, storage, preprocessing, handling, and transportation, represent one of the largest technical and logistics challenges to the emerging lignocellulosic biorefining industry. This chapter briefly reviews methods of estimating the quantities of biomass followed by harvesting and collection processes based on current practices on handling wet and dry forage materials. Storage and queuing are used to deal withmore » seasonal harvest times, variable yields, and delivery schedules. Preprocessing can be as simple as grinding and formatting the biomass for increased bulk density or improved conversion efficiency, or it can be as complex as improving feedstock quality through fractionation, tissue separation, drying, blending, and densification. Handling and Transportation consists of using a variety of transport equipment (truck, train, ship) for moving the biomass from one point to another. The chapter also provides typical cost figures for harvest and processing of biomass.« less

  11. Biomass supply logistics and infrastructure.

    PubMed

    Sokhansanj, Shahabaddine; Hess, J Richard

    2009-01-01

    Feedstock supply system encompasses numerous unit operations necessary to move lignocellulosic feedstock from the place where it is produced (in the field or on the stump) to the start of the conversion process (reactor throat) of the biorefinery. These unit operations, which include collection, storage, preprocessing, handling, and transportation, represent one of the largest technical and logistics challenges to the emerging lignocellulosic biorefining industry. This chapter briefly reviews the methods of estimating the quantities of biomass, followed by harvesting and collection processes based on current practices on handling wet and dry forage materials. Storage and queuing are used to deal with seasonal harvest times, variable yields, and delivery schedules. Preprocessing can be as simple as grinding and formatting the biomass for increased bulk density or improved conversion efficiency, or it can be as complex as improving feedstock quality through fractionation, tissue separation, drying, blending, and densification. Handling and transportation consists of using a variety of transport equipment (truck, train, ship) for moving the biomass from one point to another. The chapter also provides typical cost figures for harvest and processing of biomass.

  12. An implantable bolus infusion pump for use in freely moving, nontethered rats

    PubMed Central

    HOLSCHNEIDER, D. P.; MAAREK, J.-M. I.; HARIMOTO, J.; YANG, J.; SCREMIN, O. U.

    2014-01-01

    One of the current constraints on functional neuroimaging in animals is that to avoid movement artifacts during data acquisition, subjects need to be immobilized, sedated, or anesthetized. Such measures limit the behaviors that can be examined, and introduce the additional variables of stress or anesthetic agents that may confound meaningful interpretation. This study provides a description of the design and characteristics of a self-contained, implantable microbolus infusion pump (MIP) that allows triggering of a bolus injection at a distance in conscious, behaving rats that are not restrained or tethered. The MIP is externally triggered by a pulse of infrared light and allows in vivo bolus drug delivery. We describe application of this technology to the intravenous bolus delivery of iodo[14C]antipyrine in a freely moving animal, followed immediately by lethal injection, rapid removal of the brain, and analysis of regional cerebral blood flow tissue radioactivity with the use of autoradiography. The ability to investigate changes in brain activation in nonrestrained animals makes the MIP a powerful tool for evaluation of complex behaviors. PMID:12234827

  13. Finite Adaptation and Multistep Moves in the Metropolis-Hastings Algorithm for Variable Selection in Genome-Wide Association Analysis

    PubMed Central

    Peltola, Tomi; Marttinen, Pekka; Vehtari, Aki

    2012-01-01

    High-dimensional datasets with large amounts of redundant information are nowadays available for hypothesis-free exploration of scientific questions. A particular case is genome-wide association analysis, where variations in the genome are searched for effects on disease or other traits. Bayesian variable selection has been demonstrated as a possible analysis approach, which can account for the multifactorial nature of the genetic effects in a linear regression model. Yet, the computation presents a challenge and application to large-scale data is not routine. Here, we study aspects of the computation using the Metropolis-Hastings algorithm for the variable selection: finite adaptation of the proposal distributions, multistep moves for changing the inclusion state of multiple variables in a single proposal and multistep move size adaptation. We also experiment with a delayed rejection step for the multistep moves. Results on simulated and real data show increase in the sampling efficiency. We also demonstrate that with application specific proposals, the approach can overcome a specific mixing problem in real data with 3822 individuals and 1,051,811 single nucleotide polymorphisms and uncover a variant pair with synergistic effect on the studied trait. Moreover, we illustrate multimodality in the real dataset related to a restrictive prior distribution on the genetic effect sizes and advocate a more flexible alternative. PMID:23166669

  14. Interaction of compass sensing and object-motion detection in the locust central complex.

    PubMed

    Bockhorst, Tobias; Homberg, Uwe

    2017-07-01

    Goal-directed behavior is often complicated by unpredictable events, such as the appearance of a predator during directed locomotion. This situation requires adaptive responses like evasive maneuvers followed by subsequent reorientation and course correction. Here we study the possible neural underpinnings of such a situation in an insect, the desert locust. As in other insects, its sense of spatial orientation strongly relies on the central complex, a group of midline brain neuropils. The central complex houses sky compass cells that signal the polarization plane of skylight and thus indicate the animal's steering direction relative to the sun. Most of these cells additionally respond to small moving objects that drive fast sensory-motor circuits for escape. Here we investigate how the presentation of a moving object influences activity of the neurons during compass signaling. Cells responded in one of two ways: in some neurons, responses to the moving object were simply added to the compass response that had adapted during continuous stimulation by stationary polarized light. By contrast, other neurons disadapted, i.e., regained their full compass response to polarized light, when a moving object was presented. We propose that the latter case could help to prepare for reorientation of the animal after escape. A neuronal network based on central-complex architecture can explain both responses by slight changes in the dynamics and amplitudes of adaptation to polarized light in CL columnar input neurons of the system. NEW & NOTEWORTHY Neurons of the central complex in several insects signal compass directions through sensitivity to the sky polarization pattern. In locusts, these neurons also respond to moving objects. We show here that during polarized-light presentation, responses to moving objects override their compass signaling or restore adapted inhibitory as well as excitatory compass responses. A network model is presented to explain the variations of these responses that likely serve to redirect flight or walking following evasive maneuvers. Copyright © 2017 the American Physiological Society.

  15. A Quantitative Characterization and Classification of Martian Valley Networks: New Constraints on Mars' Early Climate and Its Variability in Space and Time

    NASA Astrophysics Data System (ADS)

    Grau Galofre, A.; Jellinek, M.

    2014-12-01

    Valley networks and outflow channels are among the most arresting features of Mars' surface. Remarkable similarities between the structure and complexity of individual Martian channels with certain fluvial systems on Earth supports a popular picture of a warm wet early Mars. A key assumption in this picture is that "typical" Martian examples adequately capture the average character of the majority of all valley networks. However, a full catalog of the distribution of geomorphologic variability of valley networks over Mars' surface geometry has never been established. Accordingly, we present the first planet-wide map in which we use statistical methods and theoretical arguments to classify Martian channels in terms of the mechanics governing their formation. Using new metrics for the size, shape and complexity of channel networks, which we ground truth against a large suite of terrestrial examples, we distinguish drainage patterns related to glacial, subglacial, fluvial and lava flows. Preliminary results separate lava flows from other flow features and show that these features can be divided into three different groups of increasing complexity. The characteristics of these groups suggest that they represent fluvial, subglacial and glacial features. We show also that the relative proportions of the different groups varies systematically, with higher density of river-like features located in low longitudes and increasing glacial-like features as we move east or west. Our results suggest that the early Martian climate and hydrologic cycle was richer and more diverse than originally thought.

  16. Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach.

    PubMed

    Reader, Arran T; Holmes, Nicholas P

    2015-01-01

    Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.

  17. Boulder Dislodgment Reloaded: New insights from boulder transport and dislodgement by tsunamis and storms from three-dimensional numerical simulations with GPUSPH

    NASA Astrophysics Data System (ADS)

    Weiss, R.; Zainali, A.

    2014-12-01

    Boulders can be found on many coastlines around the globe. They are generally thought to be moved either during coastal storms or tsunamis because they are too heavy to be moved by more common marine or coastal processes. To understand storm and tsunami risk at given coastline, the event histories of both events need to be separated to produce a robust event statistics for quantitative risk analyses. Because boulders are most likely only moved by coastal storms or tsunamis, they are very suitable to produce the data basis for such event statistics. Boulder transport problem has been approached by comparing the driving with resisting forces acting on a boulder. However, we argue that this approach is not sufficient because the comparison of resisting and driving forces only constitutes boulder motion, but not for boulder dislodgment. Boulder motion means that the boulder starts to move out of its pocket. However, this motion does not guarantee that the boulder will reach the critical dislodgment position. Boulder dislodgment is a necessary condition to identify whether or not a boulder has moved. For boulder dislodgement, an equation of motion is needed, and that equation is Newtons Second Law of Motion (NSL). We perform fully coupled three-dimensional numerical simulation of boulders moved by waves where the boulders move according to NSL. Our numerical simulations are the first of their kind applied to tsunami and storm boulder motion. They show how storm and tsunami waves interact with boulders in a more realistic physical setting, and highlight the importance of submergence. Based on our simulations we perform a dimensional analysis that identifies the Froude number as important parameter, which can be considered large only in the front of tsunami waves, but small in the rest of tsunami wave and also generally small in storm waves. From a general point of view, our results indicate that the boulder transport problem is more complex than recently considered, and more variables need to be considered in inversions of the wave characteristics from moved boulders. However, numerical simulations are an incredible powerful and flexible tool with which more robust and more correct techniques to invert wave characteristics from moved boulders can be developed. Our analyses of the Froude number and submergence are positive indicators.

  18. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES

    PubMed Central

    Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A.

    2010-01-01

    A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method. PMID:20216919

  19. Hydrogeochemical variables regionalization--applying cluster analysis for a seasonal evolution model from an estuarine system affected by AMD.

    PubMed

    Grande, J A; Carro, B; Borrego, J; de la Torre, M L; Valente, T; Santisteban, M

    2013-04-15

    This study describes the spatial evolution of the hydrogeochemical parameters which characterise a strongly affected estuary by Acid Mine Drainage (AMD). The studied estuarine system receives AMD from the Iberian Pyrite Belt (SW Spain) and, simultaneously, is affected by the presence of an industrial chemical complex. Water sampling was performed in the year of 2008, comprising four sampling campaigns, in order to represent seasonality. The results show how the estuary can be divided into three areas of different behaviour in response to hydrogeochemical variables concentrations that define each sampling stations: on one hand, an area dominated by tidal influence; in the opposite end there is a second area including the points located in the two rivers headwaters that are not influenced by seawater; finally there is the area that can be defined as mixing zone. These areas are moved along the hydrological year due to seasonal chemical variations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Which metric of ambient ozone to predict daily mortality?

    NASA Astrophysics Data System (ADS)

    Moshammer, Hanns; Hutter, Hans-Peter; Kundi, Michael

    2013-02-01

    It is well known that ozone concentration is associated with daily cause specific mortality. But which ozone metric is the best predictor of the daily variability in mortality? We performed a time series analysis on daily deaths (all causes, respiratory and cardiovascular causes as well as death in elderly 65+) in Vienna for the years 1991-2009. We controlled for seasonal and long term trend, day of the week, temperature and humidity using the same basic model for all pollutant metrics. We found model fit was best for same day variability of ozone concentration (calculated as the difference between daily hourly maximum and minimum) and hourly maximum. Of these the variability displayed a more linear dose-response function. Maximum 8 h moving average and daily mean value performed not so well. Nitrogen dioxide (daily mean) in comparison performed better when previous day values were assessed. Same day ozone and previous day nitrogen dioxide effect estimates did not confound each other. Variability in daily ozone levels or peak ozone levels seem to be a better proxy of a complex reactive secondary pollutant mixture than daily average ozone levels in the Middle European setting. If this finding is confirmed this would have implications for the setting of legally binding limit values.

  1. Variable beam dose rate and DMLC IMRT to moving body anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papiez, Lech; Abolfath, Ramin M.

    2008-11-15

    Derivation of formulas relating leaf speeds and beam dose rates for delivering planned intensity profiles to static and moving targets in dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is presented. The analysis of equations determining algorithms for DMLC IMRT delivery under a variable beam dose rate reveals a multitude of possible delivery strategies for a given intensity map and for any given target motion patterns. From among all equivalent delivery strategies for DMLC IMRT treatments specific subclasses of strategies can be selected to provide deliveries that are particularly suitable for clinical applications providing existing delivery devices are used.more » Special attention is devoted to the subclass of beam dose rate variable DMLC delivery strategies to moving body anatomy that generalize existing techniques of such deliveries in Varian DMLC irradiation methodology to static body anatomy. Few examples of deliveries from this subclass of DMLC IMRT irradiations are investigated to illustrate the principle and show practical benefits of proposed techniques.« less

  2. Speed control variable rate irrigation

    USDA-ARS?s Scientific Manuscript database

    Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...

  3. A broadband variable-temperature test system for complex permittivity measurements of solid and powder materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Li, En; Zhang, Jing; Yu, Chengyong; Zheng, Hu; Guo, Gaofeng

    2018-02-01

    A microwave test system to measure the complex permittivity of solid and powder materials as a function of temperature has been developed. The system is based on a TM0n0 multi-mode cylindrical cavity with a slotting structure, which provides purer test modes compared to a traditional cavity. To ensure the safety, effectiveness, and longevity, heating and testing are carried out separately and the sample can move between two functional areas through an Alundum tube. Induction heating and a pneumatic platform are employed to, respectively, shorten the heating and cooling time of the sample. The single trigger function of the vector network analyzer is added to test software to suppress the drift of the resonance peak during testing. Complex permittivity is calculated by the rigorous field theoretical solution considering multilayer media loading. The variation of the cavity equivalent radius caused by the sample insertion holes is discussed in detail, and its influence to the test result is analyzed. The calibration method for the complex permittivity of the Alundum tube and quartz vial (for loading powder sample), which vary with the temperature, is given. The feasibility of the system has been verified by measuring different samples in a wide range of relative permittivity and loss tangent, and variable-temperature test results of fused quartz and SiO2 powder up to 1500 °C are compared with published data. The results indicate that the presented system is reliable and accurate. The stability of the system is verified by repeated and long-term tests, and error analysis is presented to estimate the error incurred due to the uncertainties in different error sources.

  4. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  5. Current status of deepwater oil spill modelling in the Faroe-Shetland Channel, Northeast Atlantic, and future challenges.

    PubMed

    Gallego, Alejandro; O'Hara Murray, Rory; Berx, Barbara; Turrell, William R; Beegle-Krause, C J; Inall, Mark; Sherwin, Toby; Siddorn, John; Wakelin, Sarah; Vlasenko, Vasyl; Hole, Lars R; Dagestad, Knut Frode; Rees, John; Short, Lucy; Rønningen, Petter; Main, Charlotte E; Legrand, Sebastien; Gutierrez, Tony; Witte, Ursula; Mulanaphy, Nicole

    2018-02-01

    As oil reserves in established basins become depleted, exploration and production moves towards relatively unexploited areas, such as deep waters off the continental shelf. The Faroe-Shetland Channel (FSC, NE Atlantic) and adjacent areas have been subject to increased focus by the oil industry. In addition to extreme depths, metocean conditions in this region characterise an environment with high waves and strong winds, strong currents, complex circulation patterns, sharp density gradients, and large small- and mesoscale variability. These conditions pose operational challenges to oil spill response and question the suitability of current oil spill modelling frameworks (oil spill models and their forcing data) to adequately simulate the behaviour of a potential oil spill in the area. This article reviews the state of knowledge relevant to deepwater oil spill modelling for the FSC area and identifies knowledge gaps and research priorities. Our analysis should be relevant to other areas of complex oceanography. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Zhang, Shun-Rong; Erickson, Philip J.; Goncharenko, Larisa P.; Coster, Anthea J.; Rideout, William; Vierinen, Juha

    2017-12-01

    During solar eclipses, the Moon's shadow causes a large reduction in atmospheric energy input, including not only the stratosphere but also the thermosphere and ionosphere. The eclipse shadow has a supersonic motion which is theoretically expected to generate atmospheric bow waves, similar to a fast-moving river boat, with waves starting in the lower atmosphere and propagating into the ionosphere. However, previous geographically limited observations have had difficulty detecting these weak waves within the natural background atmospheric variability, and the existence of eclipse-induced ionospheric waves and their evolution in a complex coupling system remain controversial. During the 21 August 2017 eclipse, high fidelity and wide coverage ionospheric observations provided for the first time an oversampled set of eclipse data, using a dense network of Global Navigation Satellite System receivers at ˜2,000 sites in North America. We show the first unambiguous evidence of ionospheric bow waves as electron content disturbances over central/eastern United States, with ˜1 h duration, 300-400 km wavelength and 280 m/s phase speed emanating from and tailing the totality region. We also identify large ionospheric perturbations moving at the supersonic speed of the maximum solar obscuration which are too fast to be associated with known gravity wave or large-scale traveling ionospheric disturbance processes. This study reveals complex interconnections between the Sun, Moon, and Earth's neutral atmosphere and ionosphere and demonstrates persistent coupling processes between different components of the Earth's atmosphere, a topic of significant community interest.

  7. Characterising non-linear dynamics in nocturnal breathing patterns of healthy infants using recurrence quantification analysis.

    PubMed

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2013-05-01

    Breathing dynamics vary between infant sleep states, and are likely to exhibit non-linear behaviour. This study applied the non-linear analytical tool recurrence quantification analysis (RQA) to 400 breath interval periods of REM and N-REM sleep, and then using an overlapping moving window. The RQA variables were different between sleep states, with REM radius 150% greater than N-REM radius, and REM laminarity 79% greater than N-REM laminarity. RQA allowed the observation of temporal variations in non-linear breathing dynamics across a night's sleep at 30s resolution, and provides a basis for quantifying changes in complex breathing dynamics with physiology and pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1987-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  9. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  10. The variable effects of stress on alcohol use from adolescence to early adulthood.

    PubMed

    Aseltine, R H; Gore, S L

    2000-04-01

    Despite evidence of a strong association between stress and level of drinking in adolescent populations, the role of stress in accounting for changes in drinking behavior throughout the adolescent years is unclear. This study uses a linear growth curve analysis to examine the determinants of within-individual changes in drinking frequency and binge drinking across five waves of data from a community sample of adolescents who were followed into young adulthood. Predictors of drinking include: stressful life events, parental and peer social support, and parental and peer relationship problems. Findings indicate significant effects of stressful life events and parental support and conflict on both the frequency and intensity of alcohol use. Although age-related changes in these variables coincide with changes in drinking behavior, they do not account for drinking variability over this period. Results from conditional models demonstrate that the impact of the stress is contingent on age, and that the strong associations between drinking and stress evidenced during the high school years weaken considerably as individuals move into their late teens and early twenties. Discussion centers on the complex motivations for and facilitators of drinking as young people mature and change environments over the adolescent years.

  11. Complex-valued derivative propagation method with approximate Bohmian trajectories: Application to electronic nonadiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Chou, Chia-Chun

    2018-05-01

    The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.

  12. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    PubMed

    Biswas, Paritosh K; Islam, Md Zohorul; Debnath, Nitish C; Yamage, Mat

    2014-01-01

    The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered.

  13. Electromagnetic variable degrees of freedom actuator systems and methods

    DOEpatents

    Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.

    2009-02-17

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  14. Three-dimensional local ALE-FEM method for fluid flow in domains containing moving boundaries/objects interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Monayem, A. K. M.; Mazumder, H.

    2015-03-05

    A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is amore » fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.« less

  15. KSC-2011-8236

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida nears the intersection of NASA Causeway and Kennedy Parkway. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The model is being moved from the visitor complex to NASA Kennedy Space Center's Launch Complex 39 turn basin. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  16. Geophysical Factor Resolving of Rainfall Mechanism for Super Typhoons by Using Multiple Spatiotemporal Components Analysis

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Lin; Hsu, Nien-Sheng

    2016-04-01

    This study develops a novel methodology to resolve the geophysical cause of typhoon-induced rainfall considering diverse dynamic co-evolution at multiple spatiotemporal components. The multi-order hidden patterns of complex hydrological process in chaos are detected to understand the fundamental laws of rainfall mechanism. The discovered spatiotemporal features are utilized to develop a state-of-the-art descriptive statistical model for mechanism validation, modeling and further prediction during typhoons. The time series of hourly typhoon precipitation from different types of moving track, atmospheric field and landforms are respectively precede the signal analytical process to qualify each type of rainfall cause and to quantify the corresponding affected degree based on the measured geophysical atmospheric-hydrological variables. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse landform formation. The identified driving-causes include: (1) cloud height to ground surface; (2) co-movement effect induced by typhoon wind field with monsoon; (3) stem capacity; (4) interaction between typhoon rain band and terrain; (5) structural intensity variance of typhoon; and (6) integrated cloudy density of rain band. Results show that: (1) for the central maximum wind speed exceeding 51 m/sec, Causes (1) and (3) are the primary ones to generate rainfall; (2) for the typhoon moving toward the direction of 155° to 175°, Cause (2) is the primary one; (3) for the direction of 90° to 155°, Cause (4) is the primary one; (4) for the typhoon passing through mountain chain which above 3500 m, Cause (5) is the primary one; and (5) for the moving speed lower than 18 km/hr, Cause (6) is the primary one. Besides, the multiple geophysical component-based precipitation modeling can achieve 81% of average accuracy and 0.732 of average correlation coefficient (CC) within average 46 hours of duration, that improve their predictability.

  17. Captive chimpanzee (Pan troglodytes) behavior as a function of space per animal and enclosure type.

    PubMed

    Neal Webb, Sarah J; Hau, Jann; Schapiro, Steven J

    2018-03-01

    Space per animal, or animal density, and enclosure type are important elements of functionally appropriate captive environments (FACEs) for chimpanzees. The National Institutes of Health (NIH) recommends that captive chimpanzees be maintained in areas of >250 ft 2 /animal. Several studies have investigated chimpanzee behavior in relation to space per animal, but only two studies have examined these variables while attempting to hold environmental complexity constant. Both have found few, if any, significant differences in behavior associated with increased space per animal. The NIH does not provide recommendations pertaining to enclosure type. Although Primadomes™ and corrals are considered acceptable FACE housing, no studies have investigated chimpanzee behavior in relation to these two common types of enclosures. We examined the NIH space per animal recommendation, and the effects of enclosure type, while maintaining similar levels of environmental complexity. We used focal animal observations to record the behavior of 22 chimpanzees in three social groups following within-facility housing transfers. Chimpanzees that were moved from an area with space below the NIH recommendation to the same type of enclosure with space above the recommendation (dome to double dome) exhibited significantly more locomotion and behavioral diversity post-transfer. Chimpanzees that were moved from an area with space below the recommendation to a different type of enclosure with space above the recommendation (dome to corral) exhibited significant increases in foraging and behavioral diversity, and a decrease in rough scratching. Lastly, chimpanzees that were moved from an area above the recommendation to a different enclosure type with space equal to the recommendation (corral to double dome) exhibited an increase in behavioral diversity. These results add to the body of literature that addresses the concept of specific minimum space requirements per chimpanzee, and highlight the need for more empirical investigation of the relationship between space per chimpanzee, behavior, and welfare. © 2018 Wiley Periodicals, Inc.

  18. The Impact of Interactivity on Comprehending 2D and 3D Visualizations of Movement Data.

    PubMed

    Amini, Fereshteh; Rufiange, Sebastien; Hossain, Zahid; Ventura, Quentin; Irani, Pourang; McGuffin, Michael J

    2015-01-01

    GPS, RFID, and other technologies have made it increasingly common to track the positions of people and objects over time as they move through two-dimensional spaces. Visualizing such spatio-temporal movement data is challenging because each person or object involves three variables (two spatial variables as a function of the time variable), and simply plotting the data on a 2D geographic map can result in overplotting and occlusion that hides details. This also makes it difficult to understand correlations between space and time. Software such as GeoTime can display such data with a three-dimensional visualization, where the 3rd dimension is used for time. This allows for the disambiguation of spatially overlapping trajectories, and in theory, should make the data clearer. However, previous experimental comparisons of 2D and 3D visualizations have so far found little advantage in 3D visualizations, possibly due to the increased complexity of navigating and understanding a 3D view. We present a new controlled experimental comparison of 2D and 3D visualizations, involving commonly performed tasks that have not been tested before, and find advantages in 3D visualizations for more complex tasks. In particular, we tease out the effects of various basic interactions and find that the 2D view relies significantly on "scrubbing" the timeline, whereas the 3D view relies mainly on 3D camera navigation. Our work helps to improve understanding of 2D and 3D visualizations of spatio-temporal data, particularly with respect to interactivity.

  19. Does Mother Know Best? Treatment Adherence as a Function of Anticipated Treatment Benefit

    PubMed Central

    Glymour, M. Maria; Nguyen, Quynh; Matsouaka, Roland; Tchetgen Tchetgen, Eric J.; Schmidt, Nicole M.; Osypuk, Theresa L.

    2016-01-01

    Background We describe bias resulting from individualized treatment selection, which occurs when treatment has heterogeneous effects and individuals selectively choose treatments of greatest benefit to themselves. This pernicious bias may confound estimates from observational studies and lead to important misinterpretation of intent-to-treat analyses of randomized trials. Despite the potentially serious threat to inferences, individualized treatment selection has rarely been formally described or assessed. Methods The Moving to Opportunity (MTO) trial randomly assigned subsidized rental vouchers to low-income families in high-poverty public housing. We assessed the Kessler-6 psychological distress and Behavior Problems Index outcomes for 2,829 adolescents 4–7 years after randomization. Among families randomly assigned to receive vouchers, we estimated probability of moving (treatment), predicted by pre-randomization characteristics (c-statistic=0.63). We categorized families into tertiles of this estimated probability of moving, and compared instrumental variable effect estimates for moving on Behavior Problems Index and Kessler-6 across tertiles. Results Instrumental variable estimated effects of moving on behavioral problems index were most adverse for boys least likely to move (b=0.93; 95% CI: 0.33, 1.53) compared to boys most likely to move (b=0.14; 95% CI: −0.15, 0.44; p=.02 for treatment*tertile interaction). Effects on Kessler-6 were more beneficial for girls least likely to move compared to girls most likely to move (−0.62 vs. 0.02; interaction p=.03). Conclusions Evidence of Individualized treatment selection differed by child gender and outcome and should be evaluated in randomized trial reports, especially when heterogeneous treatment effects are likely and non-adherence is common. PMID:26628424

  20. Robust pedestrian detection and tracking from a moving vehicle

    NASA Astrophysics Data System (ADS)

    Tuong, Nguyen Xuan; Müller, Thomas; Knoll, Alois

    2011-01-01

    In this paper, we address the problem of multi-person detection, tracking and distance estimation in a complex scenario using multi-cameras. Specifically, we are interested in a vision system for supporting the driver in avoiding any unwanted collision with the pedestrian. We propose an approach using Histograms of Oriented Gradients (HOG) to detect pedestrians on static images and a particle filter as a robust tracking technique to follow targets from frame to frame. Because the depth map requires expensive computation, we extract depth information of targets using Direct Linear Transformation (DLT) to reconstruct 3D-coordinates of correspondent points found by running Speeded Up Robust Features (SURF) on two input images. Using the particle filter the proposed tracker can efficiently handle target occlusions in a simple background environment. However, to achieve reliable performance in complex scenarios with frequent target occlusions and complex cluttered background, results from the detection module are integrated to create feedback and recover the tracker from tracking failures due to the complexity of the environment and target appearance model variability. The proposed approach is evaluated on different data sets both in a simple background scenario and a cluttered background environment. The result shows that, by integrating detector and tracker, a reliable and stable performance is possible even if occlusion occurs frequently in highly complex environment. A vision-based collision avoidance system for an intelligent car, as a result, can be achieved.

  1. Being Moved by Unfamiliar Sad Music Is Associated with High Empathy

    PubMed Central

    Eerola, Tuomas; Vuoskoski, Jonna K.; Kautiainen, Hannu

    2016-01-01

    The paradox of enjoying listening to music that evokes sadness is yet to be fully understood. Unlike prior studies that have explored potential explanations related to lyrics, memories, and mood regulation, we investigated the types of emotions induced by unfamiliar, instrumental sad music, and whether these responses are consistently associated with certain individual difference variables. One hundred and two participants were drawn from a representative sample to minimize self-selection bias. The results suggest that the emotional responses induced by unfamiliar sad music could be characterized in terms of three underlying factors: Relaxing sadness, Moving sadness, and Nervous sadness. Relaxing sadness was characterized by felt and perceived peacefulness and positive valence. Moving sadness captured an intense experience that involved feelings of sadness and being moved. Nervous sadness was associated with felt anxiety, perceived scariness and negative valence. These interpretations were supported by indirect measures of felt emotion. Experiences of Moving sadness were strongly associated with high trait empathy and emotional contagion, but not with other previously suggested traits such as absorption or nostalgia-proneness. Relaxing sadness and Nervous sadness were not significantly predicted by any of the individual difference variables. The findings are interpreted within a theoretical framework of embodied emotions. PMID:27695424

  2. Chess players' eye movements reveal rapid recognition of complex visual patterns: Evidence from a chess-related visual search task.

    PubMed

    Sheridan, Heather; Reingold, Eyal M

    2017-03-01

    To explore the perceptual component of chess expertise, we monitored the eye movements of expert and novice chess players during a chess-related visual search task that tested anecdotal reports that a key differentiator of chess skill is the ability to visualize the complex moves of the knight piece. Specifically, chess players viewed an array of four minimized chessboards, and they rapidly searched for the target board that allowed a knight piece to reach a target square in three moves. On each trial, there was only one target board (i.e., the "Yes" board), and for the remaining "lure" boards, the knight's path was blocked on either the first move (the "Easy No" board) or the second move (i.e., "the Difficult No" board). As evidence that chess experts can rapidly differentiate complex chess-related visual patterns, the experts (but not the novices) showed longer first-fixation durations on the "Yes" board relative to the "Difficult No" board. Moreover, as hypothesized, the task strongly differentiated chess skill: Reaction times were more than four times faster for the experts relative to novices, and reaction times were correlated with within-group measures of expertise (i.e., official chess ratings, number of hours of practice). These results indicate that a key component of chess expertise is the ability to rapidly recognize complex visual patterns.

  3. Observed behaviours of pre-term children in a social play situation with classroom peers.

    PubMed

    Nadeau, Line; Tessier, Réjean; Descôteaux, Amélie

    2009-08-01

    A number of studies have reported social adjustment problems in pre-term children. To observe the pre-term's behaviour in an experimental situation and correlate these observed behaviours with the children's peer-rated social behaviours (withdrawal, aggression and sociability/leadership). Of 56 pre-term children, 24 were classified as the sick pre-term (SPT) group and 32 children as the healthy pre-term (HPT) group. The comparison group comprised 56 healthy full-terms. The experimental situation used a game called Rush Hour, a labyrinth-type board game. The play situation was videotaped and behaviours (number of consecutive moves) were coded in real time. At 12 years of age, the sick pre-term (SPT) group exhibited fewer consecutive moves during the game than the other two groups, especially when the task became more complex (involving four consecutives moves). Moreover, the Complex Task Index was correlated with the social withdrawal score rated by peers. The at-birth sick pre-term gradually became less involved in a complex decision-making task and this was understood as a lesser ability to make a decision in a complex setting.

  4. A dissipative particle dynamics method for arbitrarily complex geometries

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em

    2018-02-01

    Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its effectiveness is demonstrated by examining the rich dynamics of surfactant micelles, which are flowing around multiple small cylinders and stenotic regions in the microfluidic device without wall penetration. In addition to stationary arbitrary-shape objects, the new method is particularly useful for problems involving moving and deformable boundaries, because it only uses local information of neighboring particles and satisfies the desired boundary conditions on-the-fly.

  5. Control Software for Piezo Stepping Actuators

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  6. Move-by-move dynamics of the advantage in chess matches reveals population-level learning of the game.

    PubMed

    Ribeiro, Haroldo V; Mendes, Renio S; Lenzi, Ervin K; del Castillo-Mussot, Marcelo; Amaral, Luís A N

    2013-01-01

    The complexity of chess matches has attracted broad interest since its invention. This complexity and the availability of large number of recorded matches make chess an ideal model systems for the study of population-level learning of a complex system. We systematically investigate the move-by-move dynamics of the white player's advantage from over seventy thousand high level chess matches spanning over 150 years. We find that the average advantage of the white player is positive and that it has been increasing over time. Currently, the average advantage of the white player is 0.17 pawns but it is exponentially approaching a value of 0.23 pawns with a characteristic time scale of 67 years. We also study the diffusion of the move dependence of the white player's advantage and find that it is non-Gaussian, has long-ranged anti-correlations and that after an initial period with no diffusion it becomes super-diffusive. We find that the duration of the non-diffusive period, corresponding to the opening stage of a match, is increasing in length and exponentially approaching a value of 15.6 moves with a characteristic time scale of 130 years. We interpret these two trends as a resulting from learning of the features of the game. Additionally, we find that the exponent [Formula: see text] characterizing the super-diffusive regime is increasing toward a value of 1.9, close to the ballistic regime. We suggest that this trend is due to the increased broadening of the range of abilities of chess players participating in major tournaments.

  7. Move-by-Move Dynamics of the Advantage in Chess Matches Reveals Population-Level Learning of the Game

    PubMed Central

    Ribeiro, Haroldo V.; Mendes, Renio S.; Lenzi, Ervin K.; del Castillo-Mussot, Marcelo; Amaral, Luís A. N.

    2013-01-01

    The complexity of chess matches has attracted broad interest since its invention. This complexity and the availability of large number of recorded matches make chess an ideal model systems for the study of population-level learning of a complex system. We systematically investigate the move-by-move dynamics of the white player’s advantage from over seventy thousand high level chess matches spanning over 150 years. We find that the average advantage of the white player is positive and that it has been increasing over time. Currently, the average advantage of the white player is 0.17 pawns but it is exponentially approaching a value of 0.23 pawns with a characteristic time scale of 67 years. We also study the diffusion of the move dependence of the white player’s advantage and find that it is non-Gaussian, has long-ranged anti-correlations and that after an initial period with no diffusion it becomes super-diffusive. We find that the duration of the non-diffusive period, corresponding to the opening stage of a match, is increasing in length and exponentially approaching a value of 15.6 moves with a characteristic time scale of 130 years. We interpret these two trends as a resulting from learning of the features of the game. Additionally, we find that the exponent characterizing the super-diffusive regime is increasing toward a value of 1.9, close to the ballistic regime. We suggest that this trend is due to the increased broadening of the range of abilities of chess players participating in major tournaments. PMID:23382876

  8. The noisy voter model on complex networks.

    PubMed

    Carro, Adrián; Toral, Raúl; San Miguel, Maxi

    2016-04-20

    We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an annealed approximation for uncorrelated networks, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity--variance of the underlying degree distribution--has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of inferring the degree heterogeneity of the underlying network by observing only the aggregate behavior of the system as a whole, an issue of interest for systems where only macroscopic, population level variables can be measured.

  9. Moving Beyond a Deficit Perspective with Qualitative Research Methods.

    ERIC Educational Resources Information Center

    Anzul, Margaret; Evans, Judith F.; King, Rita; Tellier-Robinson, Dora

    2001-01-01

    Four researchers argue the merits of qualitative methodology and its particular relevance to those in special education who seek to move beyond a deficit perspective. Unconstrained by defined variables and decontextualized settings, qualitative methods allowed the researchers to extend the scope of their studies beyond originally stated research…

  10. Alcohol use and change over time in firearm safety among families with young children.

    PubMed

    Martin-Storey, Alexa; Prickett, Kate C; Crosnoe, Robert

    2018-05-01

    Improperly stored firearms pose a clear health risk to children. Previous research concurrently links alcohol use with lower levels of firearm safety. The objectives of this study were to assess (1) how families move from unsafe to safer firearm storage practices and (2) how parental drinking was associated with moving away from unsafe firearm storage practices. This study used data from the Early Childhood Longitudinal Study-Birth Cohort, 2003 when children were two years old and again when they were four years old. Parents were asked about firearm storage practices, alcohol consumption, and information to measure other confounding variables. Their responses were used to identify families who engaged in unsafe firearm storage practices (n = 650) during the initial testing period and to assess how alcohol consumption and other variables were associated with moving to safer firearm storage practices at the second testing period. Families grew more likely to adopt safer firearm storage practices as their children aged, compared with continuing unsafe practices. Multivariate logistic regressions indicated that parental drinking, however, reduced the likelihood that parents moved to safer storage practices, controlling for covariates. Other families- and community-level variables, in particular, family structure, were also associated with the likelihood of moving to safer firearm storage behaviors. Families with higher levels of alcohol use may need additional assistance in addressing firearm safety. The findings call for future research to better understand how physicians can counsel at-risk families to help them store firearms more securely. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Evaluating thermoregulation in reptiles: an appropriate null model.

    PubMed

    Christian, Keith A; Tracy, Christopher R; Tracy, C Richard

    2006-09-01

    Established indexes of thermoregulation in ectotherms compare body temperatures of real animals with a null distribution of operative temperatures from a physical or mathematical model with the same size, shape, and color as the actual animal but without mass. These indexes, however, do not account for thermal inertia or the effects of inertia when animals move through thermally heterogeneous environments. Some recent models have incorporated body mass, to account for thermal inertia and the physiological control of warming and cooling rates seen in most reptiles, and other models have incorporated movement through the environment, but none includes all pertinent variables explaining body temperature. We present a new technique for calculating the distribution of body temperatures available to ectotherms that have thermal inertia, random movements, and different rates of warming and cooling. The approach uses a biophysical model of heat exchange in ectotherms and a model of random interaction with thermal environments over the course of a day to create a null distribution of body temperatures that can be used with conventional thermoregulation indexes. This new technique provides an unbiased method for evaluating thermoregulation in large ectotherms that store heat while moving through complex environments, but it can also generate null models for ectotherms of all sizes.

  12. Non-equilibrium voltage noise generated by ion transport through pores.

    PubMed

    Frehland, E; Solleder, P

    1985-01-01

    In this paper, we describe a systematic approach to the theoretical analysis of non-equilibrium voltage noise that arises from ions moving through pores in membranes. We assume that an ion must cross one or two barriers in the pore in order to move from one side of the membrane to the other. In our analysis, we consider the following factors: a) surface charge as a variable in the kinetic equations, b) linearization of the kinetic equations, c) master equation approach to fluctuations. To analyze the voltage noise arising from ion movement through a two barrier (i.e., one binding site) pore, we included the effects of ions in the channel's interior on the voltage noise. The current clamp is considered as a white noise generating additional noise in the system. In contrast to what is found for current noise, at low frequencies the voltage noise intensity is reduced by increasing voltage across the membrane. With this approach, we demonstrate explicitly for the examples treated that, apart from additional noise generated by the current clamp, the non-equilibrium voltage fluctuations can be related to the current fluctuations by the complex admittance.

  13. Moving Forward with School Nutrition Policies: A Case Study of Policy Adherence in Nova Scotia.

    PubMed

    McIsaac, Jessie-Lee D; Shearer, Cindy L; Veugelers, Paul J; Kirk, Sara F L

    2015-12-01

    Many Canadian school jurisdictions have developed nutrition policies to promote health and improve the nutritional status of children, but research is needed to clarify adherence, guide practice-related decisions, and move policy action forward. The purpose of this research was to evaluate policy adherence with a review of online lunch menus of elementary schools in Nova Scotia (NS) while also providing transferable evidence for other jurisdictions. School menus in NS were scanned and a list of commonly offered items were categorized, according to minimum, moderate, or maximum nutrition categories in the NS policy. The results of the menu review showed variability in policy adherence that depended on food preparation practices by schools. Although further research is needed to clarify preparation practices, the previously reported challenges of healthy food preparations (e.g., cost, social norms) suggest that many schools in NS are likely not able to use these healthy preparations, signifying potential noncompliance to the policy. Leadership and partnerships are needed among researchers, policy makers, and nutrition practitioners to address the complexity of issues related to food marketing and social norms that influence school food environments to inspire a culture where healthy and nutritious food is available and accessible to children.

  14. Shallow-water sloshing in a moving vessel with variable cross-section and wetting-drying using an extension of George's well-balanced finite volume solver

    NASA Astrophysics Data System (ADS)

    Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.

    2016-06-01

    A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.

  15. Separation of variables in the special diagonal Hamilton-Jacobi equation: Application to the dynamical problem of a particle constrained on a moving surface

    NASA Technical Reports Server (NTRS)

    Blanchard, D. L.; Chan, F. K.

    1973-01-01

    For a time-dependent, n-dimensional, special diagonal Hamilton-Jacobi equation a necessary and sufficient condition for the separation of variables to yield a complete integral of the form was established by specifying the admissible forms in terms of arbitrary functions. A complete integral was then expressed in terms of these arbitrary functions and also the n irreducible constants. As an application of the results obtained for the two-dimensional Hamilton-Jacobi equation, analysis was made for a comparatively wide class of dynamical problems involving a particle moving in Euclidean three-dimensional space under the action of external forces but constrained on a moving surface. All the possible cases in which this equation had a complete integral of the form were obtained and these are tubulated for reference.

  16. Relation between species assemblages of fishes and water quality in salt ponds and sloughs in South San Francisco Bay

    USGS Publications Warehouse

    Mejia, F.; Saiki, M.K.; Takekawa, John Y.

    2008-01-01

    This study was conducted to characterize fishery resources inhabiting salt-evaporation ponds and sloughs in South San Francisco Bay, and to identify key environmental variables that influence distribution of fishes. The ponds, which were originally constructed and operated for commercial production of salt, have undergone preliminary modifications (installation of culverts, gates, and other water-control structures) in preparation for full restoration to mostly tidal wetlands over the next 2 decades. We sampled fish from two salt-pond complexes (Alviso complex and Eden Landing complex), each consisting of several pond systems and their associated sloughs. Cluster analysis of species of fish indicated that at least two species assemblages were present, one characteristic of ponds and the other characteristic of sloughs and slough-like ponds. The slough-like ponds exhibited water-quality conditions (especially salinity) that resembled conditions found in the sloughs. Pond fishes were represented by 12 species, whereas slough fishes were represented by 22 species. Except for bay pipefish (Syngnathus leptorhynchus), which was unique to ponds, all species present in ponds also were in sloughs and slough-like ponds. These results indicated that species of fish in ponds originated from the sloughs. According to canonical-discriminant analysis, four environmental variables were useful for discriminating between the two species assemblages. Most discriminatory power was contributed by the index of habitat connectivity, a measure of minimum distance that a fish must travel to reach a particular pond from the nearest slough. Apparently, as fish from sloughs enter and move through interconnected salt ponds, environmental stress factors increase in severity until only the more tolerant species remain. The most likely source of stress is salinity, because this variable was second in importance to the index of habitat connectivity in discriminating between the two species assemblages. Water temperature and concentration of dissolved oxygen also seemingly influenced spatial distribution of fishes, although they were less important than salinity.

  17. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  18. Quantum Effects at a Proton Relaxation at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Kalytka, V. A.; Korovkin, M. V.

    2016-11-01

    Quantum effects during migratory polarization in multi-well crystals (including multi-well silicates and crystalline hydrates) are investigated in a variable electric field at low temperatures by direct quantum-mechanical calculations. Based on analytical solution of the quantum Liouville kinetic equation in the linear approximation for the polarizing field, the non-stationary density matrix is calculated for an ensemble of non-interacting protons moving in the field of one-dimensional multi-well crystal potential relief of rectangular shape. An expression for the complex dielectric constant convenient for a comparison with experiment and calculation of relaxer parameters is derived using the nonequilibrium polarization density matrix. The density matrix apparatus can be used for analytical investigation of the quantum mechanism of spontaneous polarization of a ferroelectric material (KDP and DKDP).

  19. Variability in Pretest-Posttest Correlation Coefficients by Student Achievement Level. NCEE 2011-4033

    ERIC Educational Resources Information Center

    Cole, Russell; Haimson, Joshua; Perez-Johnson, Irma; May, Henry

    2011-01-01

    State assessments are increasingly used as outcome measures for education evaluations. The scaling of state assessments produces variability in measurement error, with the conditional standard error of measurement increasing as average student ability moves toward the tails of the achievement distribution. This report examines the variability in…

  20. Multidecadal climate variability of global lands and oceans

    USGS Publications Warehouse

    McCabe, G.J.; Palecki, M.A.

    2006-01-01

    Principal components analysis (PCA) and singular value decomposition (SVD) are used to identify the primary modes of decadal and multidecadal variability in annual global Palmer Drought Severity Index (PDSI) values and sea-surface temperature (SSTs). The PDSI and SST data for 1925-2003 were detrended and smoothed (with a 10-year moving average) to isolate the decadal and multidecadal variability. The first two principal components (PCs) of the PDSI PCA explained almost 38% of the decadal and multidecadal variance in the detrended and smoothed global annual PDSI data. The first two PCs of detrended and smoothed global annual SSTs explained nearly 56% of the decadal variability in global SSTs. The PDSI PCs and the SST PCs are directly correlated in a pairwise fashion. The first PDSI and SST PCs reflect variability of the detrended and smoothed annual Pacific Decadal Oscillation (PDO), as well as detrended and smoothed annual Indian Ocean SSTs. The second set of PCs is strongly associated with the Atlantic Multidecadal Oscillation (AMO). The SVD analysis of the cross-covariance of the PDSI and SST data confirmed the close link between the PDSI and SST modes of decadal and multidecadal variation and provided a verification of the PCA results. These findings indicate that the major modes of multidecadal variations in SSTs and land-surface climate conditions are highly interrelated through a small number of spatially complex but slowly varying teleconnections. Therefore, these relations may be adaptable to providing improved baseline conditions for seasonal climate forecasting. Published in 2006 by John Wiley & Sons, Ltd.

  1. Beyond long memory in heart rate variability: An approach based on fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Leite, Argentina; Paula Rocha, Ana; Eduarda Silva, Maria

    2013-06-01

    Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. The ARFIMA-GARCH approach is applied to fifteen long term HRV series available at Physionet, leading to the discrimination among normal individuals, heart failure patients, and patients with atrial fibrillation.

  2. Grand average ERP-image plotting and statistics: A method for comparing variability in event-related single-trial EEG activities across subjects and conditions

    PubMed Central

    Delorme, Arnaud; Miyakoshi, Makoto; Jung, Tzyy-Ping; Makeig, Scott

    2014-01-01

    With the advent of modern computing methods, modeling trial-to-trial variability in biophysical recordings including electroencephalography (EEG) has become of increasingly interest. Yet no widely used method exists for comparing variability in ordered collections of single-trial data epochs across conditions and subjects. We have developed a method based on an ERP-image visualization tool in which potential, spectral power, or some other measure at each time point in a set of event-related single-trial data epochs are represented as color coded horizontal lines that are then stacked to form a 2-D colored image. Moving-window smoothing across trial epochs can make otherwise hidden event-related features in the data more perceptible. Stacking trials in different orders, for example ordered by subject reaction time, by context-related information such as inter-stimulus interval, or some other characteristic of the data (e.g., latency-window mean power or phase of some EEG source) can reveal aspects of the multifold complexities of trial-to-trial EEG data variability. This study demonstrates new methods for computing and visualizing grand ERP-image plots across subjects and for performing robust statistical testing on the resulting images. These methods have been implemented and made freely available in the EEGLAB signal-processing environment that we maintain and distribute. PMID:25447029

  3. KSC-2011-8238

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida negotiates the on-ramp at the intersection of NASA Causeway and Kennedy Parkway to gain entrance to the northbound roadways on the center. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The model is being moved from the visitor complex to NASA Kennedy Space Center's Launch Complex 39 turn basin. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-2011-8242

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida arrives at the foot of the on-ramp at the intersection of NASA Causeway and Kennedy Parkway to gain entrance to the northbound roadways on the center. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The model is being moved from the visitor complex to NASA Kennedy Space Center's Launch Complex 39 turn basin. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2011-8237

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida uses the on-ramp at the intersection of NASA Causeway and Kennedy Parkway to gain entrance to the northbound roadways on the center. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The model is being moved from the visitor complex to NASA Kennedy Space Center's Launch Complex 39 turn basin. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  6. KSC-2011-8241

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida monopolizes the on-ramp at the intersection of NASA Causeway and Kennedy Parkway to gain entrance to the northbound roadways on the center. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The model is being moved from the visitor complex to NASA Kennedy Space Center's Launch Complex 39 turn basin. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2011-8239

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida creeps along the on-ramp from NASA Causeway to Kennedy Parkway to gain entrance to the northbound roadways on the center. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The model is being moved from the visitor complex to NASA Kennedy Space Center's Launch Complex 39 turn basin. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2011-8235

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – Once it has passed the security gate, the high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida changes lanes as it rolls onto the center. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The model is being moved from the visitor complex to NASA Kennedy Space Center's Launch Complex 39 turn basin. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  9. Relationship between microscopic dynamics in traffic flow and complexity in networks.

    PubMed

    Li, Xin-Gang; Gao, Zi-You; Li, Ke-Ping; Zhao, Xiao-Mei

    2007-07-01

    Complex networks are constructed in the evolution process of traffic flow, and the states of traffic flow are represented by nodes in the network. The traffic dynamics can then be studied by investigating the statistical properties of those networks. According to Kerner's three-phase theory, there are two different phases in congested traffic, synchronized flow and wide moving jam. In the framework of this theory, we study different properties of synchronized flow and moving jam in relation to complex network. Scale-free network is constructed in stop-and-go traffic, i.e., a sequence of moving jams [Chin. Phys. Lett. 10, 2711 (2005)]. In this work, the networks generated in synchronized flow are investigated in detail. Simulation results show that the degree distribution of the networks constructed in synchronized flow has two power law regions, so the distinction in topological structure can really reflect the different dynamics in traffic flow. Furthermore, the real traffic data are investigated by this method, and the results are consistent with the simulations.

  10. Requirement of the basic region of N-WASP/WAVE2 for actin-based motility.

    PubMed

    Suetsugu, S; Miki, H; Yamaguchi, H; Takenawa, T

    2001-04-06

    WASP family proteins activate nucleation by the Arp2/3 complex, inducing rapid actin polymerization in vitro. Although the C-terminal portion of WASP family proteins (VCA) activates nucleation by the Arp2/3 complex in pure systems, we find that this fragment lacks activity in cell extracts. Thus, polystyrene beads coated with VCA did not move in brain cytosol, while beads coated with N-WASP or WAVE2 did move. The basic clusters between the WH1 domain and the CRIB domain of N-WASP were critical for movement since beads coated with N-WASP or WAVE2 constructs missing the basic clusters (Delta basic) also did not move. Furthermore, VCA and N-WASP/WAVE2 Delta basic constructs were much less able than wild-type N-WASP and WAVE2 to induce actin polymerization in cytosol. All of the proteins, with or without the basic domain, were potent activators of nucleation by purified Arp2/3 complex. Copyright 2001 Academic Press.

  11. Moving Beyond Univariate Post-Hoc Testing in Exercise Science: A Primer on Descriptive Discriminate Analysis.

    PubMed

    Barton, Mitch; Yeatts, Paul E; Henson, Robin K; Martin, Scott B

    2016-12-01

    There has been a recent call to improve data reporting in kinesiology journals, including the appropriate use of univariate and multivariate analysis techniques. For example, a multivariate analysis of variance (MANOVA) with univariate post hocs and a Bonferroni correction is frequently used to investigate group differences on multiple dependent variables. However, this univariate approach decreases power, increases the risk for Type 1 error, and contradicts the rationale for conducting multivariate tests in the first place. The purpose of this study was to provide a user-friendly primer on conducting descriptive discriminant analysis (DDA), which is a post-hoc strategy to MANOVA that takes into account the complex relationships among multiple dependent variables. A real-world example using the Statistical Package for the Social Sciences syntax and data from 1,095 middle school students on their body composition and body image are provided to explain and interpret the results from DDA. While univariate post hocs increased the risk for Type 1 error to 76%, the DDA identified which dependent variables contributed to group differences and which groups were different from each other. For example, students in the very lean and Healthy Fitness Zone categories for body mass index experienced less pressure to lose weight, more satisfaction with their body, and higher physical self-concept than the Needs Improvement Zone groups. However, perceived pressure to gain weight did not contribute to group differences because it was a suppressor variable. Researchers are encouraged to use DDA when investigating group differences on multiple correlated dependent variables to determine which variables contributed to group differences.

  12. Short-term variability in amplitude and motor topography of whole-body involuntary movements in Parkinson's disease dyskinesias and in Huntington's chorea.

    PubMed

    Fenney, Alison; Jog, Mandar S; Duval, Christian

    2008-02-01

    Clinical observations have noted variability in amplitude of levodopa-induced dyskinesias (LID) in Parkinson's disease (PD) and chorea in Huntington's disease (HD) during the day. However, no studies have examined whether both the amplitude and body location (motor topography) of whole-body involuntary movement (WBIM) varied over short periods of time (seconds or minutes), which may have a distinct and significant effect on how disruptive these WBIM may be. The present study quantified the variability of WBIM amplitude and motor topography in patients with PD having LID and in patients with HD having chorea. WBIM was quantified using the MotionMonitor magnetic motion tracker system. Five patients in each group were tested in two conditions: sitting and standing. WBIM increased from sitting to standing, more so in choreic patients. WBIM varied from 17% to 102% of total WBIM amplitude. Chorea tended to present with greater variability than LID in absolute terms in the standing condition, but not when the mean WBIM amplitude was taken into consideration. Motor topography of WBIM also varied more in the HD group, but mostly in the seated condition where more limbs were free to move. Neither group expressed any laterality of involuntary movement, with amplitude being equally distributed on both sides of the body. Results show significant short-term variability in amplitude of chorea and LID, as well as, variability in location of these involuntary movements, illustrating the complexity of the adaptations required to live and be active with involuntary movements such as HD chorea or PD dyskinesias.

  13. Large Bodies Associated with Meteoroid Streams

    NASA Technical Reports Server (NTRS)

    Badadzhanov, P. B.; William, I. P.; Kokhirova, G. I.

    2011-01-01

    It is now accepted that some near-Earth objects (NEOs) may be dormant or dead comets. One strong indicator of cometary nature is the existence of an associated meteoroid stream with its consequently observed meteor showers. The complexes of NEOs which have very similar orbits and a likely common progenitor have been identified. The theoretical parameters for any meteor shower that may be associated with these complexes were calculated. As a result of a search of existing catalogues of meteor showers, activity has been observed corresponding to each of the theoretically predicted showers was found. We conclude that these asteroid-meteoroid complexes of four NEOs moving within the Piscids stream, three NEOs moving within the Iota Aquariids stream, and six new NEOs added to the Taurid complex are the result of a cometary break-up.

  14. Fear of humans and its relationships with productivity in laying hens at commercial farms.

    PubMed

    Barnett, J L; Hemsworth, P H; Newman, E A

    1992-09-01

    1. The relationship between the behavioural responses of laying hens to humans and productivity was determined at 16 commercial sheds from 14 farms. 2. A number of behaviour variables were moderately to highly correlated with production variables; for example, the proportion of birds that moved away from an approaching experimenter in an unfamiliar environment ('shute test') was negatively correlated with peak hen day production, (PKHDP). 3. Behavioural responses to humans accounted for between 23 and 63% of the variation in a number of production variables, including PKHDP and the duration of a high level of production. 4. Inclusion of farm factor variables increased the amount of variation accounted for by the behaviour variables. For example, adding the variable 'time/day spent in the shed by stockpeople' to the behaviour variables 'the proportion of birds that moved away from an approaching human' in the shute test and 'the number of times birds in cages adopted an erect posture' in response to an approaching human increased the variation accounted for in PKHDP from 53 to 61%. 5. The results suggest that fear of humans may be a factor that limits the productivity of commercial laying hens.

  15. Dengue Dynamics in Binh Thuan Province, Southern Vietnam: Periodicity, Synchronicity and Climate Variability

    PubMed Central

    Thai, Khoa T. D.; Cazelles, Bernard; Nguyen, Nam Van; Vo, Long Thi; Boni, Maciej F.; Farrar, Jeremy; Simmons, Cameron P.; van Doorn, H. Rogier; de Vries, Peter J.

    2010-01-01

    Background Dengue is a major global public health problem with increasing incidence and geographic spread. The epidemiology is complex with long inter-epidemic intervals and endemic with seasonal fluctuations. This study was initiated to investigate dengue transmission dynamics in Binh Thuan province, southern Vietnam. Methodology Wavelet analyses were performed on time series of monthly notified dengue cases from January 1994 to June 2009 (i) to detect and quantify dengue periodicity, (ii) to describe synchrony patterns in both time and space, (iii) to investigate the spatio-temporal waves and (iv) to associate the relationship between dengue incidence and El Niño-Southern Oscillation (ENSO) indices in Binh Thuan province, southern Vietnam. Principal Findings We demonstrate a continuous annual mode of oscillation and a multi-annual cycle of around 2–3-years was solely observed from 1996–2001. Synchrony in time and between districts was detected for both the annual and 2–3-year cycle. Phase differences used to describe the spatio-temporal patterns suggested that the seasonal wave of infection was either synchronous among all districts or moving away from Phan Thiet district. The 2–3-year periodic wave was moving towards, rather than away from Phan Thiet district. A strong non-stationary association between ENSO indices and climate variables with dengue incidence in the 2–3-year periodic band was found. Conclusions A multi-annual mode of oscillation was observed and these 2–3-year waves of infection probably started outside Binh Thuan province. Associations with climatic variables were observed with dengue incidence. Here, we have provided insight in dengue population transmission dynamics over the past 14.5 years. Further studies on an extensive time series dataset are needed to test the hypothesis that epidemics emanate from larger cities in southern Vietnam. PMID:20644621

  16. A New Moving Object Detection Method Based on Frame-difference and Background Subtraction

    NASA Astrophysics Data System (ADS)

    Guo, Jiajia; Wang, Junping; Bai, Ruixue; Zhang, Yao; Li, Yong

    2017-09-01

    Although many methods of moving object detection have been proposed, moving object extraction is still the core in video surveillance. However, with the complex scene in real world, false detection, missed detection and deficiencies resulting from cavities inside the body still exist. In order to solve the problem of incomplete detection for moving objects, a new moving object detection method combined an improved frame-difference and Gaussian mixture background subtraction is proposed in this paper. To make the moving object detection more complete and accurate, the image repair and morphological processing techniques which are spatial compensations are applied in the proposed method. Experimental results show that our method can effectively eliminate ghosts and noise and fill the cavities of the moving object. Compared to other four moving object detection methods which are GMM, VIBE, frame-difference and a literature's method, the proposed method improve the efficiency and accuracy of the detection.

  17. Innovation and nested preferential growth in chess playing behavior

    NASA Astrophysics Data System (ADS)

    Perotti, J. I.; Jo, H.-H.; Schaigorodsky, A. L.; Billoni, O. V.

    2013-11-01

    Complexity develops via the incorporation of innovative properties. Chess is one of the most complex strategy games, where expert contenders exercise decision making by imitating old games or introducing innovations. In this work, we study innovation in chess by analyzing how different move sequences are played at the population level. It is found that the probability of exploring a new or innovative move decreases as a power law with the frequency of the preceding move sequence. Chess players also exploit already known move sequences according to their frequencies, following a preferential growth mechanism. Furthermore, innovation in chess exhibits Heaps' law suggesting similarities with the process of vocabulary growth. We propose a robust generative mechanism based on nested Yule-Simon preferential growth processes that reproduces the empirical observations. These results, supporting the self-similar nature of innovations in chess are important in the context of decision making in a competitive scenario, and extend the scope of relevant findings recently discovered regarding the emergence of Zipf's law in chess.

  18. Method and apparatus for calibrating a linear variable differential transformer

    DOEpatents

    Pokrywka, Robert J [North Huntingdon, PA

    2005-01-18

    A calibration apparatus for calibrating a linear variable differential transformer (LVDT) having an armature positioned in au LVDT armature orifice, and the armature able to move along an axis of movement. The calibration apparatus includes a heating mechanism with an internal chamber, a temperature measuring mechanism for measuring the temperature of the LVDT, a fixture mechanism with an internal chamber for at least partially accepting the LVDT and for securing the LVDT within the heating mechanism internal chamber, a moving mechanism for moving the armature, a position measurement mechanism for measuring the position of the armature, and an output voltage measurement mechanism. A method for calibrating an LVDT, including the steps of: powering the LVDT; heating the LVDT to a desired temperature; measuring the position of the armature with respect to the armature orifice; and measuring the output voltage of the LVDT.

  19. KSC-2011-8243

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida moves past the traffic signals onto Kennedy Parkway as it travels northbound toward NASA Kennedy Space Center's Launch Complex 39 turn basin. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  20. Modellierung dreidimensionaler Strahlungsfelder im frühen Universum %t Modelling three dimensional radiation fields in the early universe

    NASA Astrophysics Data System (ADS)

    Meinköhn, Erik

    2002-11-01

    The present work aims at the modelling of three-dimensional radiation fields in gas clouds from the early universe, in particular as to the influence of varying distributions of density and velocity. In observations of high-redshift gas clouds, the Lyα transition from the first excited energy level to the ground state of the hydrogen atom is usually found to be the only prominent emission lines in the entire spectrum. It is a well-known assumption that high-redshifted hydrogen clouds are the precursors of present-day galaxies. Thus, the investigation of the Lyα line is of paramount importance of the theory of galaxy formation and evolution. The observed Lyα line - or rather, to be precise, its profile - reveals both the complexity of the spatial distribution and of the kinematics of the interstellar gas, and also the nature of the photon source. In this thesis we have developed a code which is capable of solving the three-dimensional frequency-dependent radiative transfer equation for arbitrarily nonrelativistically moving media. The numerical treatment of the associated partial integro-differential equation is an extremely challenging task, since radiation intensity depends on 6 variables, namely 3 space variables, 2 variables describing the direction of photon propagation, and the frequency. With the goal of a quantitative comparison with observational data in mind, the implementation of very efficient methods for a sufficiently accurate solution of the complex radiative transfer problems turned out to be a necessity. The size of the resulting linear system of equations makes the use of parallelization techniques and grid refinement strategies indispensable.

  1. Syncopation, Body-Movement and Pleasure in Groove Music

    PubMed Central

    Witek, Maria A. G.; Clarke, Eric F.; Wallentin, Mikkel; Kringelbach, Morten L.; Vuust, Peter

    2014-01-01

    Moving to music is an essential human pleasure particularly related to musical groove. Structurally, music associated with groove is often characterised by rhythmic complexity in the form of syncopation, frequently observed in musical styles such as funk, hip-hop and electronic dance music. Structural complexity has been related to positive affect in music more broadly, but the function of syncopation in eliciting pleasure and body-movement in groove is unknown. Here we report results from a web-based survey which investigated the relationship between syncopation and ratings of wanting to move and experienced pleasure. Participants heard funk drum-breaks with varying degrees of syncopation and audio entropy, and rated the extent to which the drum-breaks made them want to move and how much pleasure they experienced. While entropy was found to be a poor predictor of wanting to move and pleasure, the results showed that medium degrees of syncopation elicited the most desire to move and the most pleasure, particularly for participants who enjoy dancing to music. Hence, there is an inverted U-shaped relationship between syncopation, body-movement and pleasure, and syncopation seems to be an important structural factor in embodied and affective responses to groove. PMID:24740381

  2. Syncopation, body-movement and pleasure in groove music.

    PubMed

    Witek, Maria A G; Clarke, Eric F; Wallentin, Mikkel; Kringelbach, Morten L; Vuust, Peter

    2014-01-01

    Moving to music is an essential human pleasure particularly related to musical groove. Structurally, music associated with groove is often characterised by rhythmic complexity in the form of syncopation, frequently observed in musical styles such as funk, hip-hop and electronic dance music. Structural complexity has been related to positive affect in music more broadly, but the function of syncopation in eliciting pleasure and body-movement in groove is unknown. Here we report results from a web-based survey which investigated the relationship between syncopation and ratings of wanting to move and experienced pleasure. Participants heard funk drum-breaks with varying degrees of syncopation and audio entropy, and rated the extent to which the drum-breaks made them want to move and how much pleasure they experienced. While entropy was found to be a poor predictor of wanting to move and pleasure, the results showed that medium degrees of syncopation elicited the most desire to move and the most pleasure, particularly for participants who enjoy dancing to music. Hence, there is an inverted U-shaped relationship between syncopation, body-movement and pleasure, and syncopation seems to be an important structural factor in embodied and affective responses to groove.

  3. Notes sur les mouvements recursifs (Notes on Regressive Moves).

    ERIC Educational Resources Information Center

    Auchlin, Antoine; And Others

    1981-01-01

    Examines the phenomenon of regressive moves (retro-interpretation) in the light of a hypothesis according to which the formation of complex and hierarchically organized conversation units is subordinated to the linearity of discourse. Analyzes a transactional exchange, describing the interplay of integration, anticipation, and retro-interpretation…

  4. Error quantification of a high-resolution coupled hydrodynamic-ecosystem coastal-ocean model: Part 2. Chlorophyll-a, nutrients and SPM

    NASA Astrophysics Data System (ADS)

    Allen, J. Icarus; Holt, Jason T.; Blackford, Jerry; Proctor, Roger

    2007-12-01

    Marine systems models are becoming increasingly complex and sophisticated, but far too little attention has been paid to model errors and the extent to which model outputs actually relate to ecosystem processes. Here we describe the application of summary error statistics to a complex 3D model (POLCOMS-ERSEM) run for the period 1988-1989 in the southern North Sea utilising information from the North Sea Project, which collected a wealth of observational data. We demonstrate that to understand model data misfit and the mechanisms creating errors, we need to use a hierarchy of techniques, including simple correlations, model bias, model efficiency, binary discriminator analysis and the distribution of model errors to assess model errors spatially and temporally. We also demonstrate that a linear cost function is an inappropriate measure of misfit. This analysis indicates that the model has some skill for all variables analysed. A summary plot of model performance indicates that model performance deteriorates as we move through the ecosystem from the physics, to the nutrients and plankton.

  5. A system of three-dimensional complex variables

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1986-01-01

    Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.

  6. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.

  7. Variable Acceleration Force Calibration System (VACS)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will present the development and testing of the VASC concept.

  8. On mechanical waves and Doppler shifts from moving boundaries

    DOE PAGES

    Christov, Ivan C.; Christov, Christo I.

    2017-02-01

    We investigate the propagation of infinitesimal harmonic mechanical waves emitted from a boundary with variable velocity and arriving at a stationary observer. In the classical Doppler effect, X s(t)=vt is the location of the source with constant velocity v. In the present work, however, we consider a source co-located with a moving boundary x=X s(t), where X s(t) can have an arbitrary functional form. For ‘slowly moving’ boundaries (i.e., ones for which the timescale set by the mechanical motion is large in comparison to the inverse of the frequency of the emitted wave), we present a multiple-scale asymptotic analysis of the moving boundary problem for the linear wave equation. Here, we obtain a closed-form leading-order (with respect to the latter small parameter) solution and show that the variable velocity of the boundary results not only in frequency modulation but also in amplitude modulation of the received signal. Consequently, our results extend the applicability of two basic tenets of the theory of a moving source on a stationary domain, specifically that (i)more » $$.\\atop{x}_s$$ for non-uniform boundary motion can be inserted in place of the constant velocity v in the classical Doppler formula and (ii) that the non-uniform boundary motion introduces variability in the amplitude of the wave. The specific examples of decelerating and oscillatory boundary motion are worked out and illustrated.« less

  9. CFRP variable curvature mirror used for realizing non-moving-element optical zoom imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Fan, Xuewu; Pang, Zhihai; Ren, Guorui; Wang, Wei; Xie, Yongjie; Ma, Zhen; Du, Yunfei; Su, Yu; Wei, Jingxuan

    2014-12-01

    In recent years, how to eliminate moving elements while realizing optical zoom imaging has been paid much attention. Compared with the conventional optical zooming techniques, removing moving elements would bring in many benefits such as reduction in weight, volume and power cost and so on. The key to implement non-moving-element optical zooming lies in the design of variable curvature mirror (VCM). In order to obtain big enough optical magnification, the VCM should be capable of generating a large variation of saggitus. Hence, the mirror material should not be brittle, in other words the corresponding ultimate strength should be high enough to ensure that mirror surface would not be broken during large curvature variation. Besides that, the material should have a not too big Young's modulus because in this case less force is required to generate a deformation. Among all available materials, for instance SiC, Zerodur and et.al, CFRP (carbon fiber reinforced polymer) satisfies all these requirements and many related research have proven this. In this paper, a CFRP VCM is designed, fabricated and tested. With a diameter of 100mm, a thickness of 2mm and an initial curvature radius of 1740mm, this component could change its curvature radius from 1705mm to 1760mm, which correspond to a saggitus variation of nearly 23μm. The work reported further proves the suitability of CFRP in constructing variable curvature mirror which could generate a large variation of saggitus.

  10. A Teaching Makeover Improves Learning for Diverse Learners

    ERIC Educational Resources Information Center

    Doubet, Kristina J.; Hockett, Jessica A.; Brighton, Catherine M.

    2016-01-01

    In many primary classrooms, the prospect of addressing standards threatens to rob young children of the joy of learning. Teachers who feel pressed to move students of all backgrounds toward mastery of increasingly complex standards may abandon rich curriculum and move toward isolated "skill drills." This may be counterproductive. The…

  11. A novel spatial-temporal detection method of dim infrared moving small target

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Deng, Tao; Gao, Lei; Zhou, Heng; Luo, Song

    2014-09-01

    Moving small target detection under complex background in infrared image sequence is one of the major challenges of modern military in Early Warning Systems (EWS) and the use of Long-Range Strike (LRS). However, because of the low SNR and undulating background, the infrared moving small target detection is a difficult problem in a long time. To solve this problem, a novel spatial-temporal detection method based on bi-dimensional empirical mode decomposition (EMD) and time-domain difference is proposed in this paper. This method is downright self-data decomposition and do not rely on any transition kernel function, so it has a strong adaptive capacity. Firstly, we generalized the 1D EMD algorithm to the 2D case. In this process, the project has solved serial issues in 2D EMD, such as large amount of data operations, define and identify extrema in 2D case, and two-dimensional signal boundary corrosion. The EMD algorithm studied in this project can be well adapted to the automatic detection of small targets under low SNR and complex background. Secondly, considering the characteristics of moving target, we proposed an improved filtering method based on three-frame difference on basis of the original difference filtering in time-domain, which greatly improves the ability of anti-jamming algorithm. Finally, we proposed a new time-space fusion method based on a combined processing of 2D EMD and improved time-domain differential filtering. And, experimental results show that this method works well in infrared small moving target detection under low SNR and complex background.

  12. Variable-speed, portable routing skate

    NASA Technical Reports Server (NTRS)

    Pesch, W. A.

    1967-01-01

    Lightweight, portable, variable-speed routing skate is used on heavy metal subassemblies which are impractical to move to a stationary machine. The assembly, consisting of the housing with rollers, router, and driving mechanism with transmission, weighs about forty pounds. Both speed and depth of cut are adjustable.

  13. Landfalling characteristics of the tropical cyclones generated in the South China Sea

    NASA Astrophysics Data System (ADS)

    Yang, L.; Wang, D.

    2012-12-01

    Tracks of tropical cyclones (TCs) in the South China Sea (SCS) during 1970-2010 can mainly be divided into two categories: Westward (including west and northwest) and Eastward (east and northeast). TCs moving westward tend to make landfall along the South china or Vietnam coast, while those moving eastward tend to dissipate in the ocean or make landfall on Taiwan, Philippine Islands or occasionally the South China coast. During spring (April-May), there are 17 TCs generated in the SCS, among which 13 moves eastward, but only 4 moves westward. A total of 95 TCs forms in the SCS during TC peak season (June-September), among which 71 TCs move westward, about three times more than that moving eastward (24). During October-December, 33 TCs move westward and 12 eastward. The variability of TC track direction is investigated on intraseasonal, seasonal and inter-annual scale circulation. It is found that TC landfall activities are related to Madden-Julian Oscillation (MJO), El Nino-Southern Oscillation (ENSO), monsoon activities and TC genesis locations.

  14. Particle-based solid for nonsmooth multidomain dynamics

    NASA Astrophysics Data System (ADS)

    Nordberg, John; Servin, Martin

    2018-04-01

    A method for simulation of elastoplastic solids in multibody systems with nonsmooth and multidomain dynamics is developed. The solid is discretised into pseudo-particles using the meshfree moving least squares method for computing the strain tensor. The particle's strain and stress tensor variables are mapped to a compliant deformation constraint. The discretised solid model thus fit a unified framework for nonsmooth multidomain dynamics simulations including rigid multibodies with complex kinematic constraints such as articulation joints, unilateral contacts with dry friction, drivelines, and hydraulics. The nonsmooth formulation allows for impact impulses to propagate instantly between the rigid multibody and the solid. Plasticity is introduced through an associative perfectly plastic modified Drucker-Prager model. The elastic and plastic dynamics are verified for simple test systems, and the capability of simulating tracked terrain vehicles driving on a deformable terrain is demonstrated.

  15. Integrated failure detection and management for the Space Station Freedom external active thermal control system

    NASA Technical Reports Server (NTRS)

    Mesloh, Nick; Hill, Tim; Kosyk, Kathy

    1993-01-01

    This paper presents the integrated approach toward failure detection, isolation, and recovery/reconfiguration to be used for the Space Station Freedom External Active Thermal Control System (EATCS). The on-board and on-ground diagnostic capabilities of the EATCS are discussed. Time and safety critical features, as well as noncritical failures, and the detection coverage for each provided by existing capabilities are reviewed. The allocation of responsibility between on-board software and ground-based systems, to be shown during ground testing at the Johnson Space Center, is described. Failure isolation capabilities allocated to the ground include some functionality originally found on orbit but moved to the ground to reduce on-board resource requirements. Complex failures requiring the analysis of multiple external variables, such as environmental conditions, heat loads, or station attitude, are also allocated to ground personnel.

  16. Putting Text Complexity in Context: Refocusing on Comprehension of Complex Text

    ERIC Educational Resources Information Center

    Valencia, Sheila W.; Wixson, Karen K.; Pearson, P. David

    2014-01-01

    The Common Core State Standards for English Language Arts have prompted enormous attention to issues of text complexity. The purpose of this article is to put text complexity in perspective by moving from a primary focus on the text itself to a focus on the comprehension of complex text. We argue that a focus on comprehension is at the heart of…

  17. A global satellite assisted precipitation climatology

    USGS Publications Warehouse

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate Hazards Group's Precipitation Climatology version 1 (CHPclim v.1.0,http://dx.doi.org/10.15780/G2159X), is shown to compare favorably with similar global climatology products, especially in areas with complex terrain and low station densities.

  18. A global satellite-assisted precipitation climatology

    NASA Astrophysics Data System (ADS)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate Hazards Group's Precipitation Climatology version 1 (CHPclim v.1.0, doi:10.15780/G2159X), is shown to compare favorably with similar global climatology products, especially in areas with complex terrain and low station densities.

  19. Resonance behavior of atomic and molecular photoionization amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepkov, N. A.; Kuznetsov, V. V.; Semenov, S. K.

    The behavior of the partial photoionization amplitudes with a given orbital angular momentum l in the complex plane in resonances is studied. In the autoionization resonances the trajectory of the amplitude in the complex plane corresponds to a circle. With increasing photoelectron energy the amplitude moves about a circle in the counterclockwise direction. The new expressions for the partial amplitudes in the resonance are proposed which are similar to the Fano form but contain the 'partial' profile parameters which are connected with the Fano parameter q by a simple relation. In the giant dipole resonances the amplitudes in the complexmore » plane also move about a circle in the counterclockwise direction provided the Coulomb phase is excluded from the amplitude. In the correlational resonances created by channel interactions with the giant dipole resonance the trajectories of the amplitudes acquire a loop about which the amplitudes move in the counterclockwise direction. Very similar behavior of partial photoionization amplitudes in the complex plane is demonstrated also for the dipole transitions from the K shells of the N{sub 2} molecule in the {sigma}* shape resonance.« less

  20. Continuously Variable Transmission

    NASA Technical Reports Server (NTRS)

    Grana, D. C.

    1985-01-01

    Chain slides along two cones, in novel transmission concept. Transmission includes chain drive between two splined shafts. Chain sprockets follow surfaces of two cones. As one chain sprocket moves toward smaller diameter other chain sprocket moves toward larger diameter, thereby changing "gear" ratio. Movement initiated by tension applied to chain by planetary gear mechanism. Device positive, simple, and efficient over wide range of speed ratios.

  1. An Android Research and Development Program.

    DTIC Science & Technology

    1983-03-01

    reprogrammable multifunctional manipulator designed to move material, parts, tools, or special devices, through variable programmed motions for the performance...thesis: 1. An ’industrial robot’ is a [mechanized,] reprogrammable multifunctional manipulator designed to move material, parts, tools, or...insertion is also well defined in space. These manipulators are currently in use in the automobile industry, and two were were demonstrated by Kohol

  2. Research on measurement method of optical camouflage effect of moving object

    NASA Astrophysics Data System (ADS)

    Wang, Juntang; Xu, Weidong; Qu, Yang; Cui, Guangzhen

    2016-10-01

    Camouflage effectiveness measurement as an important part of the camouflage technology, which testing and measuring the camouflage effect of the target and the performance of the camouflage equipment according to the tactical and technical requirements. The camouflage effectiveness measurement of current optical band is mainly aimed at the static target which could not objectively reflect the dynamic camouflage effect of the moving target. This paper synthetical used technology of dynamic object detection and camouflage effect detection, the digital camouflage of the moving object as the research object, the adaptive background update algorithm of Surendra was improved, a method of optical camouflage effect detection using Lab-color space in the detection of moving-object was presented. The binary image of moving object is extracted by this measurement technology, in the sequence diagram, the characteristic parameters such as the degree of dispersion, eccentricity, complexity and moment invariants are constructed to construct the feature vector space. The Euclidean distance of moving target which through digital camouflage was calculated, the results show that the average Euclidean distance of 375 frames was 189.45, which indicated that the degree of dispersion, eccentricity, complexity and moment invariants of the digital camouflage graphics has a great difference with the moving target which not spray digital camouflage. The measurement results showed that the camouflage effect was good. Meanwhile with the performance evaluation module, the correlation coefficient of the dynamic target image range 0.1275 from 0.0035, and presented some ups and down. Under the dynamic condition, the adaptability of target and background was reflected. In view of the existing infrared camouflage technology, the next step, we want to carry out the camouflage effect measurement technology of the moving target based on infrared band.

  3. Fall in homicides in the City of São Paulo: an exploratory analysis of possible determinants

    PubMed Central

    Peres, Maria Fernanda Tourinho; de Almeida, Juliana Feliciano; Vicentin, Diego; Cerda, Magdalena; Cardia, Nancy; Adorno, Sérgio

    2012-01-01

    Throughout the first decade of the 2000s the homicide mortality rate (HMR) showed a significant reduction in the state and the city of São Paulo (MSP). The aim of this study is to describe the trend of HMR, socio-demographic indicators, and the investment in social and public security, and to analyze the correlation between HMR and independent variables in the MSP between 1996 and 2008. An exploratory time series ecological study was conducted. The following variables were included: HMR per 100,000 inhabitants, socio-demographic indicators, and investments in social and public security. The moving-averages for all variables were calculated and trends were analyzed through Simple Linear Regression models. Annual percentage changes, the average annual change and periodic percentage changes were calculated for all variables, and the associations between annual percentage changes were tested by Spearman’s correlation analysis. Correlations were found for the proportion of youth in the population (r = 0.69), unemployment rate (r = 0.60), State budget for education and culture (r = 0.87) and health and sanitation (r = 0.56), municipal (r = 0.68) and State (r = 0.53) budget for Public Security, firearms seized (r = 0.69) and the incarceration rate (r = 0.71). The results allow us to support the hypothesis that demographic changes, acceleration of the economy, in particular the fall in unemployment, investment in social policies and changes in public security policies act synergistically to reduce HMR in São Paulo. Complex models of analysis, incorporating the joint action of different potential explanatory variables, should be developed. PMID:22218669

  4. Variability of isotope and major ion chemistry in the Allequash Basin, Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hunt, Randall J.; Bullen, Thomas D.; Krabbenhoft, David P.; Kendall, Carol

    2003-01-01

    As part of ongoing research conducted at one of the U.S. Geological Survey's Water, Energy, and Biogeochem-ical Budgets sites, work was undertaken to describe the spatial and temporal variability of stream and ground water isotopic composition and cation chemistry in the Trout Lake watershed, to relate the variability to the watershed flow system, and to identify the linkages of geochemical evolution and source of water in the watershed. The results are based on periodic sampling of sites at two scales along Allequash Creek, a small headwater stream in northern Wisconsin. Based on this sampling, there are distinct water isotopic and geochemical differences observed at a smaller hillslope scale and the larger Allequash Creek scale. The variability was larger than expected for this simple watershed, and is likely to be seen in more complex basins. Based on evidence from multiple isotopes and stream chemistry, the flow system arises from three main source waters (terrestrial-, lake-, or wetland-derived recharge) that can be identified along any flowpath using water isotopes together with geochemical characteristics such as iron concentrations. The ground water chemistry demonstrates considerable spatial variability that depends mainly on the flow-path length and water mobility through the aquifer. Calcium concentrations increase with increasing flowpath length, whereas strontium isotope ratios increase with increasing extent of stagnation in either the unsaturated or saturated zones as waters move from source to sink. The flowpath distribution we identify provides important constraints on the calibration of ground water flow models such as that undertaken by Pint et al. (this issue).

  5. Adoption of site-specific variable rate sprinkler irrigation systems

    USDA-ARS?s Scientific Manuscript database

    More than twenty years of private and public research on site-specific variable-rate sprinkler irrigation (SS-VRI) technology has resulted in limited commercial adoption of the technology. Competing patents, liability and proprietary software have affected industry’s willingness to move into a new t...

  6. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.

  7. Quantifying Effects of Pharmacological Blockers of Cardiac Autonomous Control Using Variability Parameters.

    PubMed

    Miyabara, Renata; Berg, Karsten; Kraemer, Jan F; Baltatu, Ovidiu C; Wessel, Niels; Campos, Luciana A

    2017-01-01

    Objective: The aim of this study was to identify the most sensitive heart rate and blood pressure variability (HRV and BPV) parameters from a given set of well-known methods for the quantification of cardiovascular autonomic function after several autonomic blockades. Methods: Cardiovascular sympathetic and parasympathetic functions were studied in freely moving rats following peripheral muscarinic (methylatropine), β1-adrenergic (metoprolol), muscarinic + β1-adrenergic, α1-adrenergic (prazosin), and ganglionic (hexamethonium) blockades. Time domain, frequency domain and symbolic dynamics measures for each of HRV and BPV were classified through paired Wilcoxon test for all autonomic drugs separately. In order to select those variables that have a high relevance to, and stable influence on our target measurements (HRV, BPV) we used Fisher's Method to combine the p -value of multiple tests. Results: This analysis led to the following best set of cardiovascular variability parameters: The mean normal beat-to-beat-interval/value (HRV/BPV: meanNN), the coefficient of variation (cvNN = standard deviation over meanNN) and the root mean square differences of successive (RMSSD) of the time domain analysis. In frequency domain analysis the very-low-frequency (VLF) component was selected. From symbolic dynamics Shannon entropy of the word distribution (FWSHANNON) as well as POLVAR3, the non-linear parameter to detect intermittently decreased variability, showed the best ability to discriminate between the different autonomic blockades. Conclusion: Throughout a complex comparative analysis of HRV and BPV measures altered by a set of autonomic drugs, we identified the most sensitive set of informative cardiovascular variability indexes able to pick up the modifications imposed by the autonomic challenges. These indexes may help to increase our understanding of cardiovascular sympathetic and parasympathetic functions in translational studies of experimental diseases.

  8. Metabolism

    MedlinePlus

    ... anabolism, small molecules are changed into larger, more complex molecules of carbohydrate, protein, and fat. Catabolism (pronounced: kuh-TAB-uh- ... this process, cells break down large molecules (mostly carbohydrates and ... body to move. As complex chemical units are broken down into more simple ...

  9. Dance recognition system using lower body movement.

    PubMed

    Simpson, Travis T; Wiesner, Susan L; Bennett, Bradford C

    2014-02-01

    The current means of locating specific movements in film necessitate hours of viewing, making the task of conducting research into movement characteristics and patterns tedious and difficult. This is particularly problematic for the research and analysis of complex movement systems such as sports and dance. While some systems have been developed to manually annotate film, to date no automated way of identifying complex, full body movement exists. With pattern recognition technology and knowledge of joint locations, automatically describing filmed movement using computer software is possible. This study used various forms of lower body kinematic analysis to identify codified dance movements. We created an algorithm that compares an unknown move with a specified start and stop against known dance moves. Our recognition method consists of classification and template correlation using a database of model moves. This system was optimized to include nearly 90 dance and Tai Chi Chuan movements, producing accurate name identification in over 97% of trials. In addition, the program had the capability to provide a kinematic description of either matched or unmatched moves obtained from classification recognition.

  10. ColorMoves: Optimizing Color's Potential for Exploration and Communication of Data

    NASA Astrophysics Data System (ADS)

    Samsel, F.

    2017-12-01

    Color is the most powerful perceptual channel available for exposing and communicating data. Most visualizations are rendered in one of a handful of common colormaps - the rainbow, cool-warm, heat map and viridis. These maps meet the basic criteria for encoding data - perceptual uniformity and reasonable discriminatory power. However, as the size and complexity of data grows, our need to optimize the potential of color grows. The ability to expose greater detail and differentiate between multiple variables becomes ever more important. To meet this need we have created ColorMoves, an interactive colormap construction tool that enables scientists to quickly and easily align a concentration contrast with the data ranges of interest. Perceptual research tells us that luminance is the strongest contrast and thus provides the highest degree of perceptual discrimination. However, the most commonly used colormaps contain a limited range of luminance contrast. ColorMoves enables interactive constructing colormaps enabling one to distribute the luminance where is it most needed. The interactive interface enables optimal placement of the color scales. The ability to watch the changes on ones data, in real time makes precision adjustment quick and easy. By enabling more precise placement and multiple ranges of luminance one can construct colomaps containing greater discriminatory power. By selecting from the wide range of color scale hues scientists can create colormaps intuitive to their subject. ColorMoves is comprised of four main components: a set of 40 color scales; a histogram of the data distribution; a viewing area showing the colormap on your data; and the controls section. The 40 color scales span the spectrum of hues, saturation levels and value distributions. The histogram of the data distribution enables placement of the color scales in precise locations. The viewing area show is the impact of changes on the data in real time. The controls section enables export of the constructed colormaps for use in tools such as ParaView and Matplotlib. For a clearer understanding of ColorMoves capability we recommend trying it out at SciVisColor.org.

  11. Power partial-discard strategy to obtain improved performance for simulated moving bed chromatography.

    PubMed

    Chung, Ji-Woo; Kim, Kyung-Min; Yoon, Tae-Ung; Kim, Seung-Ik; Jung, Tae-Sung; Han, Sang-Sup; Bae, Youn-Sang

    2017-12-22

    A novel power partial-discard (PPD) strategy was developed as a variant of the partial-discard (PD) operation to further improve the separation performance of the simulated moving bed (SMB) process. The PPD operation varied the flow rates of discard streams by introducing a new variable, the discard amount (DA) as well as varying the reported variable, discard length (DL), while the conventional PD used fixed discard flow rates. The PPD operations showed significantly improved purities in spite of losses in recoveries. Remarkably, the PPD operation could provide more enhanced purity for a given recovery or more enhanced recovery for a given purity than the PD operation. The two variables, DA and DL, in the PPD operation played a key role in achieving the desired purity and recovery. The PPD operations will be useful for attaining high-purity products with reasonable recoveries. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2018-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  13. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  14. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2014-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  15. Assessing application uniformity of a variable rate irrigation system in a windy location

    USDA-ARS?s Scientific Manuscript database

    Variable rate irrigation (VRI) systems are commercially available and can easily be retrofitted onto moving sprinkler systems. However, there are few reports on the application performance of such equipment. In this study, application uniformity of two center pivots equipped with a commercial VRI sy...

  16. Transient Response of a PEM Fuel Cell Representing Variable Load for a Moving Vehicle on Urban Roads

    DOT National Transportation Integrated Search

    2001-01-01

    Three-dimensional numerical simulation of transient response of a Polymer Electrolyte Membrane (PEM) fuel cell subjected to a variable load is developed. The model parameters are typical of experimental cell for a 10-cm2 reactive area with serpentine...

  17. Broadening our View of the MOC using Satellite Altimetry and Two Moored Arrays in the Atlantic: MOVE 16N and RAPID 26N

    NASA Astrophysics Data System (ADS)

    Duchez, A.; Frajka-Williams, E.; Lankhorst, M. J.; Koelling, J.; Send, U.

    2016-02-01

    The Atlantic meridional overturning circulation (MOC) carries heat northwards in the top 1000m of the Atlantic, with a deep, cold return flow below. Climate simulations predict a slowing of the AMOC in the coming years, while present day observations from boundary arrays demonstrate substantial variability on weekly- to interannual timescales. Using simultaneous observations from the MOVE 16N and RAPID 26N arrays in the Atlantic, we investigate transport and property variability. On long timescales, the tendencies in deep densities are similar between the two latitudes (towards lighter water in the west), resulting in a change in the thermal wind balance across the Atlantic. This tendency is punctuated by a more abrupt change in late 2009 at 26N and 7 months later at 16N. In situ arrays such as RAPID 26N and MOVE 16N provide detailed depth structure of transport variability, but are necessarily limited to individual latitudes. Using satellite altimetry, we show that the sea surface height (SSH) anomalies in the western half of the Atlantic covary with in situ transport estimates on interannual timescales. We use satellite altimetry to extend estimates of depth-integrated ocean transports back in time to 1993, then investigate how the spatial pattern of SSH variability broadens our view of Atlantic MOC structure beyond individual latitudes. This analysis investigates two decade+ long time series of ocean transports, and complements the findings with satellite observations.

  18. All-quad meshing without cleanup

    DOE PAGES

    Rushdi, Ahmad A.; Mitchell, Scott A.; Mahmoud, Ahmed H.; ...

    2016-08-22

    Here, we present an all-quad meshing algorithm for general domains. We start with a strongly balanced quadtree. In contrast to snapping the quadtree corners onto the geometric domain boundaries, we move them away from the geometry. Then we intersect the moved grid with the geometry. The resulting polygons are converted into quads with midpoint subdivision. Moving away avoids creating any flat angles, either at a quadtree corner or at a geometry–quadtree intersection. We are able to handle two-sided domains, and more complex topologies than prior methods. The algorithm is provably correct and robust in practice. It is cleanup-free, meaning wemore » have angle and edge length bounds without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is fast and predictable. This paper has better quality bounds, and the algorithm is demonstrated over more complex domains, than our prior version.« less

  19. All-quad meshing without cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rushdi, Ahmad A.; Mitchell, Scott A.; Mahmoud, Ahmed H.

    Here, we present an all-quad meshing algorithm for general domains. We start with a strongly balanced quadtree. In contrast to snapping the quadtree corners onto the geometric domain boundaries, we move them away from the geometry. Then we intersect the moved grid with the geometry. The resulting polygons are converted into quads with midpoint subdivision. Moving away avoids creating any flat angles, either at a quadtree corner or at a geometry–quadtree intersection. We are able to handle two-sided domains, and more complex topologies than prior methods. The algorithm is provably correct and robust in practice. It is cleanup-free, meaning wemore » have angle and edge length bounds without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is fast and predictable. This paper has better quality bounds, and the algorithm is demonstrated over more complex domains, than our prior version.« less

  20. EPR spectroscopy of complex biological iron-sulfur systems.

    PubMed

    Hagen, Wilfred R

    2018-02-21

    From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

  1. A Search for Photometric Variability in the Young T3.5 Planetary-mass Companion GU Psc b

    NASA Astrophysics Data System (ADS)

    Naud, Marie-Eve; Artigau, Étienne; Rowe, Jason F.; Doyon, René; Malo, Lison; Albert, Loïc; Gagné, Jonathan; Bouchard, Sandie

    2017-10-01

    We present a photometric J-band variability study of GU Psc b, a T3.5 co-moving planetary-mass companion (9-13 {M}{Jup}) to a young (˜150 Myr) M3 member of the AB Doradus Moving Group. The large separation between GU Psc b and its host star (42″) provides a rare opportunity to study the photometric variability of a planetary-mass companion. The study presented here is based on observations obtained from 2013 to 2014 over three nights with durations of 5-6 hr each with the WIRCam imager at Canada-France-Hawaii Telescope. Photometric variability with a peak-to-peak amplitude of 4 ± 1% at a timescale of ˜6 hr was marginally detected on 2014 October 11. No high-significance variability was detected on 2013 December 22 and 2014 October 10. The amplitude and timescale of the variability seen here, as well as its evolving nature, is comparable to what was observed for a variety of field T dwarfs and suggests that mechanisms invoked to explain brown dwarf variability may be applicable to low-gravity objects such as GU Psc b. Rotation-induced photometric variability due to the formation and dissipation of atmospheric features such as clouds is a plausible hypothesis for the tentative variation detected here. Additional photometric measurements, particularly on longer timescales, will be required to confirm and characterize the variability of GU Psc b, determine its periodicity and to potentially measure its rotation period.

  2. Eye Movements in Reading as Rational Behavior

    ERIC Educational Resources Information Center

    Bicknell, Klinton

    2011-01-01

    Moving one's eyes while reading is one of the most complex everyday tasks humans face. To perform efficiently, readers must make decisions about when and where to move their eyes every 200-300ms. Over the past decades, it has been demonstrated that these fine-grained decisions are influenced by a range of linguistic properties of the text, and…

  3. Alasdair Macintyre's Idea of an Educated Public and "Informal" Adult Education in Scotland

    ERIC Educational Resources Information Center

    Hammond, Keith

    2006-01-01

    Scotland has a particular history, that moves around the unique public experiences of the Enlightenment and the Act of Union as defining moments that could have developed differently. For complex reasons, public thinking moved more and more towards the fractured moral and political conditions that we know now. But, following the work of Alasdair…

  4. The Power of Life Histories: Moving Readers to Greater Acts of Empathy through Literature and Memoir

    ERIC Educational Resources Information Center

    Lee, Valarie G.; Madden, Marjorie E.

    2016-01-01

    This paper argues that narratives, specifically literature and memoir, offer a way to build empathy and understanding by moving readers to deeper levels of text interpretation and critique. The paper examines a new literacy framework, Life Histories, that uses talk, collaboration, writing, and performance to understand the complex relationships…

  5. An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems

    NASA Astrophysics Data System (ADS)

    Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri

    2018-01-01

    The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.

  6. Congress and National Security: Interest, Influence and Speed

    DTIC Science & Technology

    2010-03-01

    impact of these variables in two case studies of security agency organizational reform. The Intelligence Reform and Terrorism Prevention Act of 2004...all the stars in order to move fast on an issue of national security. Instead the positive impact of one or two variables combined with the... impact of these variables in two case studies of security agency organizational reform. The Intelligence Reform and Terrorism Prevention Act of 2004 and

  7. Weather variability, tides, and Barmah Forest virus disease in the Gladstone region, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S; McMichael, Anthony J; Dale, Pat; Tong, Shilu

    2006-05-01

    In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (b=0.15, p-value<0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (b=-1.03, p-value=0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.

  8. Spatiotemporal variability of stream habitat and movement of three species of fish

    USGS Publications Warehouse

    Roberts, J.H.; Angermeier, P.L.

    2007-01-01

    Relationships between environmental variability and movement are poorly understood, due to both their complexity and the limited ecological scope of most movement studies. We studied movements of fantail (Etheostoma flabellare), riverweed (E. podostemone), and Roanoke darters (Percina roanoka) through two stream systems during two summers. We then related movement to variability in measured habitat attributes using logistic regression and exploratory data plots. We indexed habitat conditions at both microhabitat (i.e., patches of uniform depth, velocity, and substrate) and mesohabitat (i.e., riffle and pool channel units) spatial scales, and determined how local habitat conditions were affected by landscape spatial (i.e., longitudinal position, land use) and temporal contexts. Most spatial variability in habitat conditions and fish movement was unexplained by a site's location on the landscape. Exceptions were microhabitat diversity, which was greater in the less-disturbed watershed, and riffle isolation and predator density in pools, which were greater at more-downstream sites. Habitat conditions and movement also exhibited only minor temporal variability, but the relative influences of habitat attributes on movement were quite variable over time. During the first year, movements of fantail and riverweed darters were triggered predominantly by loss of shallow microhabitats; whereas, during the second year, microhabitat diversity was more strongly related (though in opposite directions) to movement of these two species. Roanoke darters did not move in response to microhabitat-scale variables, presumably because of the species' preference for deeper microhabitats that changed little over time. Conversely, movement of all species appeared to be constrained by riffle isolation and predator density in pools, two mesohabitat-scale attributes. Relationships between environmental variability and movement depended on both the spatiotemporal scale of consideration and the ecology of the species. Future studies that integrate across scales, taxa, and life-histories are likely to provide greater insight into movement ecology than will traditional, single-season, single-species approaches. ?? 2006 Springer-Verlag.

  9. Stability of uncertain impulsive complex-variable chaotic systems with time-varying delays.

    PubMed

    Zheng, Song

    2015-09-01

    In this paper, the robust exponential stabilization of uncertain impulsive complex-variable chaotic delayed systems is considered with parameters perturbation and delayed impulses. It is assumed that the considered complex-variable chaotic systems have bounded parametric uncertainties together with the state variables on the impulses related to the time-varying delays. Based on the theories of adaptive control and impulsive control, some less conservative and easily verified stability criteria are established for a class of complex-variable chaotic delayed systems with delayed impulses. Some numerical simulations are given to validate the effectiveness of the proposed criteria of impulsive stabilization for uncertain complex-variable chaotic delayed systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Complex background suppression using global-local registration strategy for the detection of small-moving target on moving platform

    NASA Astrophysics Data System (ADS)

    Zou, Tianhao; Zuo, Zhengrong

    2018-02-01

    Target detection is a very important and basic problem of computer vision and image processing. The most often case we meet in real world is a detection task for a moving-small target on moving platform. The commonly used methods, such as Registration-based suppression, can hardly achieve a desired result. To crack this hard nut, we introduce a Global-local registration based suppression method. Differ from the traditional ones, the proposed Global-local Registration Strategy consider both the global consistency and the local diversity of the background, obtain a better performance than normal background suppression methods. In this paper, we first discussed the features about the small-moving target detection on unstable platform. Then we introduced a new strategy and conducted an experiment to confirm its noisy stability. In the end, we confirmed the background suppression method based on global-local registration strategy has a better perform in moving target detection on moving platform.

  11. Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods.

    PubMed

    Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Grassmann, Mariel; Ceulemans, Eva

    2017-06-01

    Change point detection in multivariate time series is a complex task since next to the mean, the correlation structure of the monitored variables may also alter when change occurs. DeCon was recently developed to detect such changes in mean and\\or correlation by combining a moving windows approach and robust PCA. However, in the literature, several other methods have been proposed that employ other non-parametric tools: E-divisive, Multirank, and KCP. Since these methods use different statistical approaches, two issues need to be tackled. First, applied researchers may find it hard to appraise the differences between the methods. Second, a direct comparison of the relative performance of all these methods for capturing change points signaling correlation changes is still lacking. Therefore, we present the basic principles behind DeCon, E-divisive, Multirank, and KCP and the corresponding algorithms, to make them more accessible to readers. We further compared their performance through extensive simulations using the settings of Bulteel et al. (Biological Psychology, 98 (1), 29-42, 2014) implying changes in mean and in correlation structure and those of Matteson and James (Journal of the American Statistical Association, 109 (505), 334-345, 2014) implying different numbers of (noise) variables. KCP emerged as the best method in almost all settings. However, in case of more than two noise variables, only DeCon performed adequately in detecting correlation changes.

  12. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows

    NASA Astrophysics Data System (ADS)

    Herkül, Kristjan; Peterson, Anneliis; Paekivi, Sander

    2017-06-01

    Both basic science and marine spatial planning are in a need of high resolution spatially continuous data on seabed habitats and biota. As conventional point-wise sampling is unable to cover large spatial extents in high detail, it must be supplemented with remote sensing and modeling in order to fulfill the scientific and management needs. The combined use of in situ sampling, sonar scanning, and mathematical modeling is becoming the main method for mapping both abiotic and biotic seabed features. Further development and testing of the methods in varying locations and environmental settings is essential for moving towards unified and generally accepted methodology. To fill the relevant research gap in the Baltic Sea, we used multibeam sonar and mathematical modeling methods - generalized additive models (GAM) and random forest (RF) - together with underwater video to map seabed substrate and epibenthos of offshore shallows. In addition to testing the general applicability of the proposed complex of techniques, the predictive power of different sonar-based variables and modeling algorithms were tested. Mean depth, followed by mean backscatter, were the most influential variables in most of the models. Generally, mean values of sonar-based variables had higher predictive power than their standard deviations. The predictive accuracy of RF was higher than that of GAM. To conclude, we found the method to be feasible and with predictive accuracy similar to previous studies of sonar-based mapping.

  13. Frontiers of the food-energy-water trilemma: Sri Lanka as a microcosm of tradeoffs

    NASA Astrophysics Data System (ADS)

    Perrone, Debra; Hornberger, George

    2016-01-01

    Food, energy, and water are three critical resources for humanity. As climate variability, population growth, and lifestyle changes amplify the stress placed on each of the resources, the interrelationships among food, energy, and water systems become more pronounced. Political conflict, social and cultural norms, and spatial and temporal distribution of the resources add additional layers of complexity. It is in this context that the significance of understanding the impacts of water scarcity on the decisions around food and energy productions has emerged. Our work establishes tradeoff frontiers (TFs) as a method useful in illustrating the system-level tradeoffs between allocating water for food and water for energy. This paper illustrates how TFs can be used to (1) show how scarcity in water resources affects the tradeoffs between food and energy and (2) explore the political and social constraints that can move production away from what is feasible technically. We use Sri Lanka, a country where water resources are variable both in space and time and a country with relatively self-contained energy and agricultural sectors, as a microcosm of the food security, energy security, and water security trilemma. Nevertheless, our application of tradeoff frontiers is applicable widely to other systems.

  14. An analysis of successful commercialization of federally funded R&D energy technologies

    NASA Astrophysics Data System (ADS)

    Asuquo, Gibson Esang

    Several studies indicate that commercialization of federally funded R&D technologies to private sector remains low. In an extension of research demonstrating relative effectiveness of various technology-transfer mechanisms used by the Department of Energy (DOE) in transferring federally funded R&D technologies, this study quantitatively analyzed 52 Industrial Technology Program (ITP) funded R&D technologies, from 1993 through 2006, to understand commercialization success of DOE's funded R&D technologies, based on the correlative significance between independent variables (R&D durations and levels of funding) and dependent variable (technology commercialization output). No statistically significant linear relationship was found between the studied variables. The R2 (the coefficient of multiple determination) value indicates that only three percent (0.03) of the change in the output of commercialized technologies can be explained by the change in the two independent variables. The results of this study have led to an important conclusion that the research, development, and deployment (RD&D) of federally funded energy technologies is complex and a non-linear process. The problem requires a consideration of other factors and a research design that can accommodate the complexity involved. However, as determined by this study, the ITP technology commercialization output (success rate) of 22% is nearly two times as high as the 14% Booz-Allen estimate for the rest of U.S. industry. A quantitative research (such as this study) that attempts to understand the relative significance of correlational relationship between R&D variables appears to offer insufficient explanations as to why the federal government is not getting high technology commercialization output from its dollar investments in R&D. Some qualitative research approaches could move this important research to the next level in the future. Further research in this area should focus on causal effects between R&D variables. The study should attempt to identify the effect that could be caused by an early involvement of angel investors, venture capitalists, and end-users of technologies during RD&D. Successful commercialization of energy technologies requires targeting the most promising innovations that may be jointly supported by public and private sector. A few suggestions on how to improve commercialization of federally funded R&D are outlined in Section 10.3 of this study.

  15. Saccadic interception of a moving visual target after a spatiotemporal perturbation.

    PubMed

    Fleuriet, Jérome; Goffart, Laurent

    2012-01-11

    Animals can make saccadic eye movements to intercept a moving object at the right place and time. Such interceptive saccades indicate that, despite variable sensorimotor delays, the brain is able to estimate the current spatiotemporal (hic et nunc) coordinates of a target at saccade end. The present work further tests the robustness of this estimate in the monkey when a change in eye position and a delay are experimentally added before the onset of the saccade and in the absence of visual feedback. These perturbations are induced by brief microstimulation in the deep superior colliculus (dSC). When the microstimulation moves the eyes in the direction opposite to the target motion, a correction saccade brings gaze back on the target path or very near. When it moves the eye in the same direction, the performance is more variable and depends on the stimulated sites. Saccades fall ahead of the target with an error that increases when the stimulation is applied more caudally in the dSC. The numerous cases of compensation indicate that the brain is able to maintain an accurate and robust estimate of the location of the moving target. The inaccuracies observed when stimulating the dSC that encodes the visual field traversed by the target indicate that dSC microstimulation can interfere with signals encoding the target motion path. The results are discussed within the framework of the dual-drive and the remapping hypotheses.

  16. On Adaptation, Maximization, and Reinforcement Learning among Cognitive Strategies

    ERIC Educational Resources Information Center

    Erev, Ido; Barron, Greg

    2005-01-01

    Analysis of binary choice behavior in iterated tasks with immediate feedback reveals robust deviations from maximization that can be described as indications of 3 effects: (a) a payoff variability effect, in which high payoff variability seems to move choice behavior toward random choice; (b) underweighting of rare events, in which alternatives…

  17. Remote Practice and Culture Shock: Social Workers Moving to Isolated Northern Regions.

    ERIC Educational Resources Information Center

    Zapf, Michael Kim

    1993-01-01

    Examined adjustment patterns of social workers (n=85) who relocated to remote Yukon Territory. Social workers recruited from southern Canada reported overall experience of culture shock followed by recovery. Structural variables related to job itself were associated with culture shock but not recovery. Individual variables of personal history and…

  18. Primary School Leadership Practice: How the Subject Matters

    ERIC Educational Resources Information Center

    Spillane, James P.

    2005-01-01

    Teaching is a critical consideration in investigations of primary school leadership and not just as an outcome variable. Factoring in instruction as an explanatory variable in scholarship on school leadership involves moving away from views of teaching as a monolithic or unitary practice. When it comes to leadership in primary schools, the subject…

  19. Physically Active Adults: An Analysis of the Key Variables That Keep Them Moving

    ERIC Educational Resources Information Center

    Downs, Andrew

    2016-01-01

    Background: A large proportion of adults are insufficiently physically active, and researchers have yet to determine the factors that enable individuals to maintain adequate levels of physical activity throughout adulthood. Purpose: This study sought to identify the key variables linked with consistent physical activity in adulthood as elucidated…

  20. Minority Parental Involvement and School Barriers: Moving the Focus Away from Deficiencies of Parents

    ERIC Educational Resources Information Center

    Kim, Yanghee

    2009-01-01

    There has been an alarming imbalance in recent research on minority parental involvement because it has focused on parents' variables to identify groups for effective interventions without searching for broader contextual variables. This literature review provides available research findings on the school barriers that prevent minority parents'…

  1. Acknowledging trade-offs and understanding complexity: exurbanization issues in Macon County, North Carolina

    Treesearch

    Richard A. Vercoe; M. Welch-Devine; Dean Hardy; J.A. Demoss; S.N. Bonney; K. Allen; Peter Brosius; D. Charles; B. Crawford; S. Heisel; Nik Heynen; R.G. de Jesus-Crespo; N. Nibbelink; L. Parker; Cathy Pringle; A. Shaw; L. Van Sant

    2014-01-01

    We applied an integrative framework to illuminate and discuss the complexities of exurbanization in Macon County, North Carolina. The case of Macon County, North Carolina, highlights the complexity involved in addressing issues of exurbanization in the Southern Appalachian region. Exurbanization, the process by which urban residents move into rural areas in search of...

  2. Modeling the conformation of polyphenols and their complexation with polypeptides: self-association of catechin and its complexation with L-proline glycine oligomers.

    Treesearch

    Fred L. Tobiason; Richard W. Hemingway; Gerard Vergoten

    1999-01-01

    Over the past 10 years, several scientific thrusts have come together in the study of flavanoids that make it possible to move forward into the study of complexation between polyphenols and polypeptides. Enhanced understanding of the conformational properties of flavanoid monomers and polyflavanoids through...

  3. What's so Funny? Moving Students toward Complex Thinking in a Course on Comedy and Laughter

    ERIC Educational Resources Information Center

    Ciccone, Anthony A.; Meyers, Renee A.; Waldmann, Stephanie

    2008-01-01

    This case study involves investigation of freshman students' abilities to engage in the pursuit and appreciation of complex thinking through their study of comedy and laughter in a Freshman Seminar at the University of Wisconsin-Milwaukee. We offer an analysis of students' reflections on their confrontation with complexity as they attempt to…

  4. Modal Control of a Satellite in Orbit about L3.

    DTIC Science & Technology

    1980-12-01

    the right- half of the complex plane , are removed via the controller moving the unstable roots from the right- half to the left- half of the ...complex plane . Simultaneously, the other system roots remain in their original locations in the complex plane . Since the Poincare exponents of Hamiltonian... half - plane , the conjugate root in the left- half -

  5. Graphical Representation of Complex Solutions of the Quadratic Equation in the "xy" Plane

    ERIC Educational Resources Information Center

    McDonald, Todd

    2006-01-01

    This paper presents a visual representation of complex solutions of quadratic equations in the xy plane. Rather than moving to the complex plane, students are able to experience a geometric interpretation of the solutions in the xy plane. I am also working on these types of representations with higher order polynomials with some success.

  6. Conceptual dissonance: evaluating the efficacy of natural language processing techniques for validating translational knowledge constructs.

    PubMed

    Payne, Philip R O; Kwok, Alan; Dhaval, Rakesh; Borlawsky, Tara B

    2009-03-01

    The conduct of large-scale translational studies presents significant challenges related to the storage, management and analysis of integrative data sets. Ideally, the application of methodologies such as conceptual knowledge discovery in databases (CKDD) provides a means for moving beyond intuitive hypothesis discovery and testing in such data sets, and towards the high-throughput generation and evaluation of knowledge-anchored relationships between complex bio-molecular and phenotypic variables. However, the induction of such high-throughput hypotheses is non-trivial, and requires correspondingly high-throughput validation methodologies. In this manuscript, we describe an evaluation of the efficacy of a natural language processing-based approach to validating such hypotheses. As part of this evaluation, we will examine a phenomenon that we have labeled as "Conceptual Dissonance" in which conceptual knowledge derived from two or more sources of comparable scope and granularity cannot be readily integrated or compared using conventional methods and automated tools.

  7. Diversity and Evolution of Mycobacterium tuberculosis: Moving to Whole-Genome-Based Approaches

    PubMed Central

    Niemann, Stefan; Supply, Philip

    2014-01-01

    Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological tracing and for the investigation of the local and global strain population structure. Of special importance is the analysis of the expansion of multidrug (MDR) and extensively drug-resistant (XDR) strains. Classical genotyping and, more recently, whole-genome sequencing have revealed that the strains of the MTBC are more diverse than previously anticipated. Globally, several phylogenetic lineages can be distinguished whose geographical distribution is markedly variable. Strains of particular (sub)lineages, such as Beijing, seem to be more virulent and associated with enhanced resistance levels and fitness, likely fueling their spread in certain world regions. The upcoming generalization of whole-genome sequencing approaches will expectedly provide more comprehensive insights into the molecular and epidemiological mechanisms involved and lead to better diagnostic and therapeutic tools. PMID:25190252

  8. Beyond ideal magnetohydrodynamics: from fibration to 3  +  1 foliation

    NASA Astrophysics Data System (ADS)

    Andersson, N.; Hawke, I.; Dionysopoulou, K.; Comer, G. L.

    2017-06-01

    We consider a resistive multi-fluid framework from the 3  +  1 space-time foliation point-of-view, paying particular attention to issues relating to the use of multi-parameter equations of state and the associated inversion from evolved to primitive variables. We highlight relevant numerical issues that arise for general systems with relative flows. As an application of the new formulation, we consider a three-component system relevant for hot neutron stars. In this case we let the baryons (neutrons and protons) move together, but allow heat and electrons to exhibit relative flow. This reduces the problem to three momentum equations; overall energy-momentum conservation, a generalised Ohm’s law and a heat equation. Our results provide a hierarchy of increasingly complex models and prepare the ground for new state-of-the-art simulations of relevant scenarios in relativistic astrophysics.

  9. Brownian thermal noise in functional optical surfaces

    NASA Astrophysics Data System (ADS)

    Kroker, S.; Dickmann, J.; Rojas Hurtado, C. B.; Heinert, D.; Nawrodt, R.; Levin, Y.; Vyatchanin, S. P.

    2017-07-01

    We present a formalism to compute Brownian thermal noise in functional optical surfaces such as grating reflectors, photonic crystal slabs, or complex metamaterials. Such computations are based on a specific readout variable, typically a surface integral of a dielectric interface displacement weighed by a form factor. This paper shows how to relate this form factor to Maxwell's stress tensor computed on all interfaces of the moving surface. As an example, we examine Brownian thermal noise in monolithic T-shaped grating reflectors. The previous computations by Heinert et al. [Phys. Rev. D 88, 042001 (2013), 10.1103/PhysRevD.88.042001] utilizing a simplified readout form factor produced estimates of thermal noise that are tens of percent higher than those of the exact analysis in the present paper. The relation between the form factor and Maxwell's stress tensor implies a close correlation between the optical properties of functional optical surfaces and thermal noise.

  10. Exact Solution for Capillary Bridges Properties by Shooting Method

    NASA Astrophysics Data System (ADS)

    Qiang-Nian, Li; Jia-Qi, Zhang; Feng-Xi, Zhou

    2017-04-01

    The investigation of liquid bridge force acting between wet particles has great significance in many fields. In this article, the exact solution of capillary force between two unequal-sized spherical particles is investigated. Firstly, The Young-Laplace equation with moving boundary is converted into a set of ordinary differential equations with two fix point boundary using variable substitution technique, in which the gravity effects have been neglected. The geometry of the liquid bridge between two particles is solved by shooting method. After that, the gorge method is applied to calculate the capillary-bridge force that is consists of contributions from the capillary suction and surface tension. Finally, the effect of various parameters including distance between two spheres, radii of spheres, and contact angles on the capillary force are investigated. It is shown that the presented approach is an efficient and accurate algorithm for capillary force between two particles in complex situations.

  11. Propeller/fan-pitch feathering apparatus

    NASA Technical Reports Server (NTRS)

    Schilling, Jan C. (Inventor); Adamson, Arthur P. (Inventor); Bathori, Julius (Inventor); Walker, Neil (Inventor)

    1990-01-01

    A pitch feathering system for a gas turbine driven aircraft propeller having multiple variable pitch blades utilizes a counter-weight linked to the blades. The weight is constrained to move, when effecting a pitch change, only in a radial plane and about an axis which rotates about the propeller axis. The system includes a linkage allowing the weight to move through a larger angle than the associated pitch change of the blade.

  12. Saturn 1B space vehicle for ASTP moves from VAB to launch complex

    NASA Image and Video Library

    1975-03-24

    S75-24007 (24 March 1975) --- The Saturn 1B space vehicle for the Apollo-Soyuz Test Project mission, with its launch umbilical tower, rides atop a huge crawler-transporter as it moves slowly away from the Vehicle Assembly Building on its 4.24-mile journey to Pad B, Launch Complex 39, at NASA's Kennedy Space Center. The ASTP vehicle is composed of a Saturn 1B (first) stage, a Saturn IVB (second) stage, and a payload consisting of a Command/Service Module and a Docking Module. The joint U.S.-USSR ASTP docking mission in Earth orbit is scheduled for July 1975.

  13. KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  14. Heat recovery system employing a temperature controlled variable speed fan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, W.T.

    1986-05-20

    A heat recovery system is described for use in recovering heat from an industrial process producing a heated fluid comprising: a source of inlet air; a housing coupled to the source and including a heat exchanger; means for passing the heated fluid through the heat exchanger; the housing including means for moving a variable volume of air adjustable over a continuous range from the source through the heat exchanger; air discharge means communicating with the housing for discharging air which has passed through the heat exchanger; a control system including first temperature sensing means for sensing the discharge temperature ofmore » the discharge air moving through the discharge means and a control circuit coupled to the first temperature sensing means and to the moving means for varying the volume of air moved in response to the sensed discharge temperature to control the temperature of discharge air passing through the discharge means at a first predetermined value; and the control system including second temperature sensing means for sensing the temperature of the source of inlet air and valve means coupled to and controlled by the control circuit to cause liquid to bypass the heat exchanger when the inlet air temperature rises above a second predetermined value.« less

  15. Turnip mosaic virus Moves Systemically through Both Phloem and Xylem as Membrane-Associated Complexes1

    PubMed Central

    Zheng, Huanquan

    2015-01-01

    Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem. PMID:25717035

  16. Representation of planar motion of complex joints by means of rolling pairs. Application to neck motion.

    PubMed

    Page, Alvaro; de Rosario, Helios; Gálvez, José A; Mata, Vicente

    2011-02-24

    We propose to model planar movements between two human segments by means of rolling-without-slipping kinematic pairs. We compute the path traced by the instantaneous center of rotation (ICR) as seen from the proximal and distal segments, thus obtaining the fixed and moving centrodes, respectively. The joint motion is then represented by the rolling-without-slipping of one centrode on the other. The resulting joint kinematic model is based on the real movement and accounts for nonfixed axes of rotation; therefore it could improve current models based on revolute pairs in those cases where joint movement implies displacement of the ICR. Previous authors have used the ICR to characterize human joint motion, but they only considered the fixed centrode. Such an approach is not adequate for reproducing motion because the fixed centrode by itself does not convey information about body position. The combination of the fixed and moving centrodes gathers the kinematic information needed to reproduce the position and velocities of moving bodies. To illustrate our method, we applied it to the flexion-extension movement of the head relative to the thorax. The model provides a good estimation of motion both for position variables (mean R(pos)=0.995) and for velocities (mean R(vel)=0.958). This approach is more realistic than other models of neck motion based on revolute pairs, such as the dual-pivot model. The geometry of the centrodes can provide some information about the nature of the movement. For instance, the ascending and descending curves of the fixed centrode suggest a sequential movement of the cervical vertebrae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. The search for mechanisms of change in behavioral treatments for alcohol use disorders: a commentary.

    PubMed

    Longabaugh, Richard

    2007-10-01

    Definitive results from efforts to identify mechanisms of change in behavioral treatments for alcohol use disorders have been elusive. The working hypothesis guiding this paper is that one of the reasons for this elusiveness is that the models we hypothesize to account for treatments effectiveness are unnecessarily restricted and too simple. This paper aims to accomplish 3 things. First, a typography for locating potential mediators of change will be presented. In the course of doing so, a nomenclature will be proposed with the hope that this will facilitate communications among alcohol treatment researchers studying mechanisms of change. Second, alternatives to the classic test of mediation of alcohol treatment effects will be considered and one such alternative described. Third, alternative ways of conceptualizing, constructing and analyzing variables to measure mediators will be suggested. It is hoped that this commentary will facilitate research on mechanisms of change in behavioral treatments for alcohol use disorders. Behavioral change is a complex process, and the models that we develop to account for this process need to reflect this complexity. Advances in statistical approaches for testing mediation, along with a better understanding as to how to use these tools should help in moving toward this goal.

  18. Contributions of divergent and nondivergent winds to the kinetic energy balance of a severe storm environment

    NASA Technical Reports Server (NTRS)

    Browning, P. A.; Fuelberg, H. E.

    1983-01-01

    Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters.

  19. I feel you-monitoring environmental variables related to asthma in an integrated real-time frame.

    PubMed

    Berenguer, Anabela Gonçalves

    2015-09-11

    The study of asthma and other complex diseases has proven to be a "moving target" for researchers due to its complex aetiology, difficulty in definition, and immeasurable environmental effects. A large number of studies regarding the contribution of both genetic and environmental factors often result in contradictory results, in part due to the highly heterogeneous nature of asthma. Recent literature has focused on the epigenetic signatures of asthma caused by environmental factors, highlighting the importance of environment. However, unlike the genetic techniques, environmental assessment still lacks accuracy. A plausible solution for this problem would be an individual-based environmental exposure assessment, relying on new technologies such as personal real-time environmental sensors. This could prove to enable the assessment of the whole environmental exposure-or exposome-matching in terms of precision the genome that is emphasized in most studies so far. In addition, the measurement of the whole array of biological molecules, in response to the environment action, could help understand the context of the disease. The current perspective comprises a beyond-genetics integrated vision of omics technology coupled with real-time environmental measures targeting to enhance our comprehension of the disease genesis.

  20. Camera-pose estimation via projective Newton optimization on the manifold.

    PubMed

    Sarkis, Michel; Diepold, Klaus

    2012-04-01

    Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.

  1. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis.

    PubMed

    Garner, Ethan C; Bernard, Remi; Wang, Wenqin; Zhuang, Xiaowei; Rudner, David Z; Mitchison, Tim

    2011-07-08

    Rod-shaped bacteria elongate by the action of cell wall synthesis complexes linked to underlying dynamic MreB filaments. To understand how the movements of these filaments relate to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-precision particle tracking in Bacillus subtilis. We found that MreB and the elongation machinery moved circumferentially around the cell, perpendicular to its length, with nearby synthesis complexes and MreB filaments moving independently in both directions. Inhibition of cell wall synthesis by various methods blocked the movement of MreB. Thus, bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that insert radial hoops of new peptidoglycan during their transit, possibly driving the motion of the underlying MreB filaments.

  2. The Physics of Traffic

    NASA Astrophysics Data System (ADS)

    Davis, L. Craig

    2006-03-01

    Congestion in freeway traffic is an example of self-organization in the language of complexity theory. Nonequilibrium, first-order phase transitions from free flow cause complex spatiotemporal patterns. Two distinct phases of congestion are observed in empirical traffic data--wide moving jams and synchronous flow. Wide moving jams are characterized by stopped or slowly moving vehicles within the jammed region, which widens and moves upstream at 15-20 km/h. Above a critical density of vehicles, a sudden decrease in the velocity of a lead vehicle can initiate a transition from metastable states to this phase. Human behaviors, especially delayed reactions, are implicated in the formation of jams. The synchronous flow phase results from a bottleneck such as an on-ramp. Thus, in contrast to a jam, the downstream front is pinned at a fixed location. The name of the phase comes from the equilibration (or synchronization) of speed and flow rate across all lanes caused by frequent vehicle lane changes. Synchronous flow occurs when the mainline flow and the rate of merging from an on-ramp are sufficiently large. Large-scale simulations using car-following models reproduce the physical phenomena occurring in traffic and suggest methods to improve flow and mediate congestion.

  3. Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow

    PubMed Central

    Katsuyama, Narumi; Usui, Nobuo; Taira, Masato

    2016-01-01

    A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity. PMID:27597999

  4. Delineation of peatland lagg boundaries from airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Langlois, Melanie N.; Richardson, Murray C.; Price, Jonathan S.

    2017-09-01

    In Canada, peatlands are the most common type of wetland, but boundary delineation in peatland complexes has received little attention in the scientific literature. Typically, peatland boundaries are mapped as crisp, absolute features, and the transitional lagg zone—the ecotone found between a raised bog and the surrounding mineral land—is often overlooked. In this study, we aim (1) to advance existing approaches for detecting and locating laggs and lagg boundaries using airborne LiDAR surveys and (2) to describe the spatial distribution of laggs around raised bog peatlands. Two contrasting spatial analytical approaches for lagg detection were tested using five LiDAR-derived topographic and vegetation indices: topography, vegetation height, topographic wetness index, the standard deviation of the vegetation's height (as a proxy for the complexity of the vegetation's structure), and local indices of elevation variance. Using a dissimilarity approach (edge-detection, split-moving window analysis), no one variable accurately depicted both the lagg-mineral land and bog-lagg boundaries. Some indicators were better at predicting the bog-lagg boundary (i.e., vegetation height) and others at finding the lagg-mineral land boundary (i.e., topography). Dissimilarity analysis reinforces the usefulness of derived variables (e.g., wetness indices) in locating laggs, especially for those with weak topographic and vegetation gradients. When the lagg was confined between the bog and the adjacent upland, it took a linear form, parallel to the peatland's edge and was easier to predict. When the adjacent mineral land was flat or sloping away from the peatland, the lagg was discontinuous and intermittent and more difficult to predict.

  5. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow.

    PubMed

    Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout

    2007-10-01

    We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.

  6. Individual Differences in the Alignment of Structural and Functional Markers of the V5/MT Complex in Primates

    PubMed Central

    Large, I.; Bridge, H.; Ahmed, B.; Clare, S.; Kolasinski, J.; Lam, W. W.; Miller, K. L.; Dyrby, T. B.; Parker, A. J.; Smith, J. E. T.; Daubney, G.; Sallet, J.; Bell, A. H.; Krug, K.

    2016-01-01

    Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture. PMID:27371764

  7. EFT-1 Crew Module Move to KSC Visitor Complex for Exhibit Display

    NASA Image and Video Library

    2017-04-10

    The Orion crew module that traveled into space on Exploration Fight Test 1 (EFT-1) completed a different kind of trip recently at NASA's Kennedy Space Center in Florida. Secured on a custom-made ground support equipment transporter, Orion was moved from the Neil Armstrong Operations and Checkout Building to the Kennedy Space Center Visitor Complex, less than three miles down the road. The crew module will become part of the NASA Now exhibit inside the IMAX theater at the complex.The Orion spacecraft launched atop a United Launch Alliance Delta IV rocket Dec. 5, 2014, from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. During the mission, the spacecraft traveled 3,604 miles above Earth, the first U.S. spacecraft designed to carry humans to go beyond low-Earth orbit in 42 years. The Orion crew module splashed down approximately 4.5 hours later in the Pacific Ocean, 600 miles off the shore of California.

  8. Effect of trotting speed on kinematic variables measured by use of extremity-mounted inertial measurement units in nonlame horses performing controlled treadmill exercise.

    PubMed

    Cruz, Antonio M; Vidondo, Beatriz; Ramseyer, Alessandra A; Maninchedda, Ugo E

    2018-02-01

    OBJECTIVE To assess effects of speed on kinematic variables measured by use of extremity-mounted inertial measurement units (IMUs) in nonlame horses performing controlled exercise on a treadmill. ANIMALS 10 nonlame horses. PROCEDURES 6 IMUs were attached at predetermined locations on 10 nonlame Franches Montagnes horses. Data were collected in triplicate during trotting at 3.33 and 3.88 m/s on a high-speed treadmill. Thirty-three selected kinematic variables were analyzed. Repeated-measures ANOVA was used to assess the effect of speed. RESULTS Significant differences between the 2 speeds were detected for most temporal (11/14) and spatial (12/19) variables. The observed spatial and temporal changes would translate into a gait for the higher speed characterized by increased stride length, protraction and retraction, flexion and extension, mediolateral movement of the tibia, and symmetry, but with similar temporal variables and a reduction in stride duration. However, even though the tibia coronal range of motion was significantly different between speeds, the high degree of variability raised concerns about whether these changes were clinically relevant. For some variables, the lower trotting speed apparently was associated with more variability than was the higher trotting speed. CONCLUSIONS AND CLINICAL RELEVANCE At a higher trotting speed, horses moved in the same manner (eg, the temporal events investigated occurred at the same relative time within the stride). However, from a spatial perspective, horses moved with greater action of the segments evaluated. The detected changes in kinematic variables indicated that trotting speed should be controlled or kept constant during gait evaluation.

  9. Language Learning Strategies, Course Grades, and Age in EFL Secondary School Learners

    ERIC Educational Resources Information Center

    Tragant, Elsa; Victori, Mia

    2012-01-01

    In studies dealing with language learning strategies in the school context, the variables of proficiency and age are often difficult to isolate since students accumulate more hours of foreign language instruction as they move up from grade to grade. This study aimed to deal with these two variables independently by analysing learning strategy use…

  10. Roommate Changes in Residence Halls: Can They Be Predicted?

    ERIC Educational Resources Information Center

    Hallisey, Jacqueline N.; Harren, Vincent A.; Caple, Richard B.

    2015-01-01

    The purpose of this study was to examine the demographic and academic variables of students involved in roommate changes to determine which variables predict who will move from a room and who will stay in a room and what alternatives to current housing arrangements are selected by those who initiate the roommate changes. [This article was…

  11. Determinants of activation for self-management in patients with COPD.

    PubMed

    Korpershoek, Yjg; Bos-Touwen, I D; de Man-van Ginkel, J M; Lammers, J-Wj; Schuurmans, M J; Trappenburg, Jca

    2016-01-01

    COPD self-management is a complex behavior influenced by many factors. Despite scientific evidence that better disease outcomes can be achieved by enhancing self-management, many COPD patients do not respond to self-management interventions. To move toward more effective self-management interventions, knowledge of characteristics associated with activation for self-management is needed. The purpose of this study was to identify key patient and disease characteristics of activation for self-management. An explorative cross-sectional study was conducted in primary and secondary care in patients with COPD. Data were collected through questionnaires and chart reviews. The main outcome was activation for self-management, measured with the 13-item Patient Activation Measure (PAM). Independent variables were sociodemographic variables, self-reported health status, depression, anxiety, illness perception, social support, disease severity, and comorbidities. A total of 290 participants (age: 67.2±10.3; forced expiratory volume in 1 second predicted: 63.6±19.2) were eligible for analysis. While poor activation for self-management (PAM-1) was observed in 23% of the participants, only 15% was activated for self-management (PAM-4). Multiple linear regression analysis revealed six explanatory determinants of activation for self-management (P<0.2): anxiety (β: -0.35; -0.6 to -0.1), illness perception (β: -0.2; -0.3 to -0.1), body mass index (BMI) (β: -0.4; -0.7 to -0.2), age (β: -0.1; -0.3 to -0.01), Global Initiative for Chronic Obstructive Lung Disease stage (2 vs 1 β: -3.2; -5.8 to -0.5; 3 vs 1 β: -3.4; -7.1 to 0.3), and comorbidities (β: 0.8; -0.2 to 1.8), explaining 17% of the variance. This study showed that only a minority of COPD patients is activated for self-management. Although only a limited part of the variance could be explained, anxiety, illness perception, BMI, age, disease severity, and comorbidities were identified as key determinants of activation for self-management. This knowledge enables health care professionals to identify patients at risk of inadequate self-management, which is essential to move toward targeting and tailoring of self-management interventions. Future studies are needed to understand the complex causal mechanisms toward change in self-management.

  12. Dimensional reduction in sensorimotor systems: A framework for understanding muscle coordination of posture

    PubMed Central

    Ting, Lena H.

    2014-01-01

    The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254

  13. Authentic early experience in Medical Education: a socio-cultural analysis identifying important variables in learning interactions within workplaces.

    PubMed

    Yardley, Sarah; Brosnan, Caragh; Richardson, Jane; Hays, Richard

    2013-12-01

    This paper addresses the question 'what are the variables influencing social interactions and learning during Authentic Early Experience (AEE)?' AEE is a complex educational intervention for new medical students. Following critique of the existing literature, multiple qualitative methods were used to create a study framework conceptually orientated to a socio-cultural perspective. Study participants were recruited from three groups at one UK medical school: students, workplace supervisors, and medical school faculty. A series of intersecting spectra identified in the data describe dyadic variables that make explicit the parameters within which social interactions are conducted in this setting. Four of the spectra describe social processes related to being in workplaces and developing the ability to manage interactions during authentic early experiences. These are: (1) legitimacy expressed through invited participation or exclusion; (2) finding a role-a spectrum from student identity to doctor mindset; (3) personal perspectives and discomfort in transition from lay to medical; and, (4) taking responsibility for 'risk'-moving from aversion to management through graded progression of responsibility. Four further spectra describe educational consequences of social interactions. These spectra identify how the reality of learning is shaped through social interactions and are (1) generic-specific objectives, (2) parallel-integrated-learning, (3) context specific-transferable learning and (4) performing or simulating-reality. Attention to these variables is important if educators are to maximise constructive learning from AEE. Application of each of the spectra could assist workplace supervisors to maximise the positive learning potential of specific workplaces.

  14. Tests and evaluation of a variable focus liquid lens for curvature wavefront sensors in astronomy.

    PubMed

    Fuentes-Fernández, Jorge; Cuevas, Salvador; Álvarez-Nuñez, Luis C; Watson, Alan

    2013-10-20

    Curvature wavefront sensors (WFSs), which obtain the wavefront aberrations from two defocused intensity images at each side of the pupil plane, have shown to be highly efficient for astronomical applications. We propose here an alternative defocusing mechanism for curvature sensors, based on an electrowetting-based variable focus liquid lens. Typically, the sampling rates of a WFS for active optics are of the order of 0.01 Hz, and the focus modulation can be done by simply moving the detector back and forth. On the other hand, adaptive optics may require speeds of up to several hundred hertz, and the modulation is then done by using a fast vibrating membrane mirror. We believe variable focus liquid lenses may be able to perform this focus modulation, reducing the overall size of the system and without the need of extra moving parts. We have done a full characterization of the Varioptic Arctic 416 liquid lens, and we have evaluated its potential performance in different curvature configurations.

  15. Flutter suppression and stability analysis for a variable-span wing via morphing technology

    NASA Astrophysics Data System (ADS)

    Li, Wencheng; Jin, Dongping

    2018-01-01

    A morphing wing can enhance aerodynamic characteristics and control authority as an alternative to using ailerons. To use morphing technology for flutter suppression, the dynamical behavior and stability of a variable-span wing subjected to the supersonic aerodynamic loads are investigated numerically in this paper. An axially moving cantilever plate is employed to model the variable-span wing, in which the governing equations of motion are established via the Kane method and piston theory. A morphing strategy based on axially moving rates is proposed to suppress the flutter that occurs beyond the critical span length, and the flutter stability is verified by Floquet theory. Furthermore, the transient stability during the morphing motion is analyzed and the upper bound of the morphing rate is obtained. The simulation results indicate that the proposed morphing law, which is varying periodically with a proper amplitude, could accomplish the flutter suppression. Further, the upper bound of the morphing speed decreases rapidly once the span length is close to its critical span length.

  16. Windthrow Variability in Central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negrón-Juárez, Robinson; Jenkins, Hillary; Raupp, Carlos

    Windthrows are a recurrent disturbance in Amazonia and are an important driver of forest dynamics and carbon storage. In this study, we present for the first time the seasonal and interannual variability of windthrows, focusing on Central Amazonia, and discuss the potential meteorological factors associated with this variability. Landsat images over the 1998-2010 time period were used to detect the occurrence of windthrows, which were identified based on their spectral characteristics and shape. Here, we found that windthrows occurred every year but were more frequent between September and February. Organized convective activity associated with multicell storms embedded in mesoscale convectivemore » systems, such as northerly squall lines (that move from northeast to southwest) and southerly squall lines (that move from southwest to northeast) can cause windthrows. We also found that southerly squall lines occurred more frequently than their previously reported ~50 year interval. At the interannual scale, we did not find an association between El Niño-Southern Oscillation (ENSO) and windthrows.« less

  17. Windthrow Variability in Central Amazonia

    DOE PAGES

    Negrón-Juárez, Robinson; Jenkins, Hillary; Raupp, Carlos; ...

    2017-02-04

    Windthrows are a recurrent disturbance in Amazonia and are an important driver of forest dynamics and carbon storage. In this study, we present for the first time the seasonal and interannual variability of windthrows, focusing on Central Amazonia, and discuss the potential meteorological factors associated with this variability. Landsat images over the 1998-2010 time period were used to detect the occurrence of windthrows, which were identified based on their spectral characteristics and shape. Here, we found that windthrows occurred every year but were more frequent between September and February. Organized convective activity associated with multicell storms embedded in mesoscale convectivemore » systems, such as northerly squall lines (that move from northeast to southwest) and southerly squall lines (that move from southwest to northeast) can cause windthrows. We also found that southerly squall lines occurred more frequently than their previously reported ~50 year interval. At the interannual scale, we did not find an association between El Niño-Southern Oscillation (ENSO) and windthrows.« less

  18. Migration plans of the rural populations of the Third World countries: a probit analysis of micro-level data from Asia, Africa, and Latin America.

    PubMed

    Mcdevitt, T M; Hawley, A H; Udry, J R; Gadalla, S; Leoprapai, B; Cardona, R

    1986-07-01

    This study 1) examines the extent to which a given set of microlevel factors has predictive value in different socioeconomic settings and 2) demonstrates the utility of a probit estimation technique in examining plans of rural populations to migrate. Data were collected in 1977-1979 in Thailand, Egypt, and Colombia, 3 countries which differ in culture, extent of urbanization, and proportion of labor force engaged in nonextractive industries. The researchers used identical questionnaires and obtained interviews in 4 rural villages with the "migration shed" of each country's capital city. There were 1088 rural-resident men and women interviewed in Thailand, 1088 in Colombia, and 1376 in Egypt. The researchers gathered information about year-to-year changes in residence, marital status, fertility, housing, employment status, occupation, and industry. While in all 3 countries return moves are relatively frequent, especially among males, the proportions of migrants who have moved 3 or more times do not rise above 10%. The model used portrays the formation of migration intentions of the individual as the outcome of a decision process involving the subjective weighing of perceived differentials in well-being associated with current residence and 1 or more potential destinations, taking into account the direct relocation costs and ability to finance a move. The researchers used dichotomous probit and ordinal probit techniques and 4 variations on the dependant variable to generate some of the results. The only expectancy variable significant in all countries is age. Education is also positively and significantly associated with intentions to move for both sexes in Colombia and Egypt. Marital status is a deterrent to migration plans for males in Colombia and both sexes in Egypt. Previous migration experience fails to show any significant relationship to propensity to move. Conclusions drawn from the data include: 1) the effects of age and economic status appear to increase, both in strength and significance, for males in countries as the likelihood of a move increases; and 2) the effect of the kin and friend contract variable in Colombia appears to be related to its usefulness in explaining th initial consideration of a move rather than the plans that carry a probability or certainty of implementation. The careful measurement of strength of migration intentions and the application of ordinal probit estimation methods to the analysis of prospective migration may contribute to the refinement of our understanding of the process of migration decision making across a range of geographical, cultural, and developmental contexts.

  19. Housing and testing in mixed-sex rooms increases motivation and accuracy during operant testing in both male and female mice.

    PubMed

    Lloyd, Kelsey R; Yaghoubi, Sarah K; Makinson, Ryan A; McKee, Sarah E; Reyes, Teresa M

    2018-04-01

    Operant behavior tasks are widely used in neuroscience research, but little is known about how variables such as housing and testing conditions affect rodent operant performance. We have previously observed differences in operant performance in male and female mice depending on whether mice were housed and tested in rooms containing only one sex versus rooms containing both sexes. Here, male and female mice in either single-sex or mixed sex housing rooms were trained on fixed ratio 1 (FR1) and progressive ratio (PR) tasks. For both sexes, animals in the mixed sex room had more accurate performance in FR1 and were more motivated in the PR task. We then moved the single sex housed animals to the mixed sex room and vice versa. Animals that started in mixed sex housing had no change to PR, but both sexes who started in single sex housing were more motivated after the switch. Additionally, the females that moved into single-sex housing performed less accurately in FR1. We conclude that housing and testing conditions can affect performance on FR1 and PR tasks. As these tasks are commonly used as training steps to more complex tasks, housing and testing conditions should be carefully considered during experiment design and reported in publications. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Granger causality for state-space models

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Seth, Anil K.

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  1. Weather Variability, Tides, and Barmah Forest Virus Disease in the Gladstone Region, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S.; McMichael, Anthony J.; Dale, Pat; Tong, Shilu

    2006-01-01

    In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention. PMID:16675420

  2. Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling.

    PubMed

    Zheng, Lianqing; Chen, Mengen; Yang, Wei

    2009-06-21

    To overcome the pseudoergodicity problem, conformational sampling can be accelerated via generalized ensemble methods, e.g., through the realization of random walks along prechosen collective variables, such as spatial order parameters, energy scaling parameters, or even system temperatures or pressures, etc. As usually observed, in generalized ensemble simulations, hidden barriers are likely to exist in the space perpendicular to the collective variable direction and these residual free energy barriers could greatly abolish the sampling efficiency. This sampling issue is particularly severe when the collective variable is defined in a low-dimension subset of the target system; then the "Hamiltonian lagging" problem, which reveals the fact that necessary structural relaxation falls behind the move of the collective variable, may be likely to occur. To overcome this problem in equilibrium conformational sampling, we adopted the orthogonal space random walk (OSRW) strategy, which was originally developed in the context of free energy simulation [L. Zheng, M. Chen, and W. Yang, Proc. Natl. Acad. Sci. U.S.A. 105, 20227 (2008)]. Thereby, generalized ensemble simulations can simultaneously escape both the explicit barriers along the collective variable direction and the hidden barriers that are strongly coupled with the collective variable move. As demonstrated in our model studies, the present OSRW based generalized ensemble treatments show improved sampling capability over the corresponding classical generalized ensemble treatments.

  3. Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan; Zhang, Yingrong

    2018-07-01

    We investigate the transverse free vibration behaviour of axially moving nanobeams based on the nonlocal strain gradient theory. Considering the geometrical nonlinearity, which takes the form of von Kármán strains, the coupled plane motion equations and related boundary conditions of a new size-dependent beam model of Euler-Bernoulli type are developed using the generalized Hamilton principle. Using the simply supported axially moving nanobeams as an example, the complex modal analysis method is adopted to solve the governing equation; then, the effect of the order of modal truncation on the natural frequencies is discussed. Subsequently, the roles of the nonlocal parameter, material characteristic parameter, axial speed, stiffness and axial support rigidity parameter on the free vibration are comprehensively addressed. The material characteristic parameter induces the stiffness hardening of nanobeams, while the nonlocal parameter induces stiffness softening. In addition, the roles of small-scale parameters on the flutter critical velocity and stability are explained.

  4. Automated digital magnetofluidics

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Garcia, A. A.; Marquez, M.

    2008-08-01

    Drops can be moved in complex patterns on superhydrophobic surfaces using a reconfigured computer-controlled x-y metrology stage with a high degree of accuracy, flexibility, and reconfigurability. The stage employs a DMC-4030 controller which has a RISC-based, clock multiplying processor with DSP functions, accepting encoder inputs up to 22 MHz, provides servo update rates as high as 32 kHz, and processes commands at rates as fast as 40 milliseconds. A 6.35 mm diameter cylindrical NdFeB magnet is translated by the stage causing water drops to move by the action of induced magnetization of coated iron microspheres that remain in the drop and are attracted to the rare earth magnet through digital magnetofluidics. Water drops are easily moved in complex patterns in automated digital magnetofluidics at an average speed of 2.8 cm/s over a superhydrophobic polyethylene surface created by solvent casting. With additional components, some potential uses for this automated microfluidic system include characterization of superhydrophobic surfaces, water quality analysis, and medical diagnostics.

  5. Study of the impact on Salmonella of moving outdoor pigs to fresh land.

    PubMed

    Smith, R P; Andres, V; Dormer, L; Gosling, R; Oastler, C; Davies, R H

    2017-07-01

    Anecdotal evidence has suggested that outdoor-kept pigs show an improvement to health and productivity after being moved to a new site. This study explores whether Salmonella occurrence reduced and was sustained after moving to a new site. Nine farms were followed for a year in which four sampling visits were completed. The highest detection of Salmonella was from pooled faecal dropping from pigs, run-off/ pooled water, rodents and wild birds. Descriptive summaries showed that the prevalence of both all Salmonella and serovars of public health importance were lower at all visits after the move. Some variability was shown in results from individual farms, but a year after the move, six farms still maintained a lower prevalence. A risk factor model showed that the prevalence at visits 2 and 3 after the move was significantly lower than baseline, after accounting for a number of significant factors that were included in the model. These were sample type and seasonality (included as a priori), presence of coughing in the sampled group and Glasser's disease on the farm, and the use of tent or kennel accommodation. This finding provides important evidence that more frequent site moves may help reduce Salmonella prevalence in outdoor herds.

  6. Envisioning New Technologies in Teacher Practice: Moving Forward, Circling Back Using a Teacher Action Research Approach. New Literacies and Digital Epistemologies. Volume 47

    ERIC Educational Resources Information Center

    Strong-Wilson, Teresa, Ed.

    2012-01-01

    How do classroom teachers envision new technologies within their practice? In the conversation on incorporating new technologies into classrooms, teachers are often sidelined. "Envisioning New Technologies in Teacher Practice" looks at the complex ways in which teachers move forward to embrace change as well as how they circle back, continually…

  7. CRAWLER HIDDEN UNDER MOBILE LAUNCHER MOVES APOLLO 17 FROM VEHICLE ASSEMBLY BUILDING AS TRIP TO LAUNC

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 17 space vehicle was moved today from the Vehicle Assembly Building to Complex 39's pad A in preparation for its launch with Astronauts Eugene A. Cernan, Commander; Ronald A. Evans, Command Module Pilot; and Dr. Harrison H. ''Jack'' Schmitt, Lunar Module Pilot, on the sixth U.S. manned lunar landing mission on December 6, 1972.

  8. Light-fuelled transport of large dendrimers and proteins.

    PubMed

    Koskela, Jenni E; Liljeström, Ville; Lim, Jongdoo; Simanek, Eric E; Ras, Robin H A; Priimagi, Arri; Kostiainen, Mauri A

    2014-05-14

    This work presents a facile water-based supramolecular approach for light-induced surface patterning. The method is based upon azobenzene-functionalized high-molecular weight triazine dendrimers up to generation 9, demonstrating that even very large globular supramolecular complexes can be made to move in response to light. We also demonstrate light-fuelled macroscopic movements in native biomolecules, showing that complexes of apoferritin protein and azobenzene can effectively form light-induced surface patterns. Fundamentally, the results establish that thin films comprising both flexible and rigid globular particles of large diameter can be moved with light, whereas the presented material concepts offer new possibilities for the yet marginally explored biological applications of azobenzene surface patterning.

  9. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved toward the outside of the launch tower. It will be lowered and taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  10. The game of go as a complex network

    NASA Astrophysics Data System (ADS)

    Georgeot, B.; Giraud, O.

    2012-03-01

    We study the game of go from a complex network perspective. We construct a directed network using a suitable definition of tactical moves including local patterns, and study this network for different datasets of professional and amateur games. The move distribution follows Zipf's law and the network is scale free, with statistical peculiarities different from other real directed networks, such as, e.g., the World Wide Web. These specificities reflect in the outcome of ranking algorithms applied to it. The fine study of the eigenvalues and eigenvectors of matrices used by the ranking algorithms singles out certain strategic situations. Our results should pave the way to a better modelization of board games and other types of human strategic scheming.

  11. [Review of the active locomotion system for capsule endoscope].

    PubMed

    Zhao, Dechun; Guo, Yijun; Peng, Chenglin

    2010-02-01

    This review summarized the progress of researches on the active locomotion system for capsule endoscope, analyzed the moving and controlling principles in different locomotion systems, and compared their merits and shortcomings. Owing to the complexity of human intestines and the limits to the size and consumption of locomotion system from the capsule endoscope, there is not yet one kind of active locomotion system currently used in clinical practice. The locomotive system driven by an outer rotational magnetic field could improve the commercial endoscope capsule, while its magnetic field controlling moving is complex. Active locomotion system driven by shape memory alloys will be the orientated development and the point of research in the future.

  12. Diary Data Subjected to Cluster Analysis of Intake/Output/Void Habits with Resulting Clusters Compared by Continence Status, Age, Race

    PubMed Central

    Miller, Janis M; Guo, Ying; Rodseth, Sarah Becker

    2011-01-01

    Background Data that incorporate the full complexity of healthy beverage intake and voiding frequency do not exist; therefore, clinicians reviewing bladder habits or voiding diaries for continence care must rely on expert opinion recommendations. Objective To use data-driven cluster analyses to reduce complex voiding diary variables into discrete patterns or data cluster profiles, descriptively name the clusters, and perform validity testing. Method Participants were 352 community women who filled out a 3-day voiding diary. Six variables (void frequency during daytime hours, void frequency during nighttime hours, modal output, total output, total intake, and body mass index) were entered into cluster analyses. The clusters were analyzed for differences by continence status, age, race (Black women, n = 196 White women, n = 156), and for those who were incontinent, by leakage episode severity. Results Three clusters emerged, labeled descriptively as Conventional, Benchmark, and Superplus. The Conventional cluster (68% of the sample) demonstrated mean daily intake of 45 ±13 ounces; mean daily output of 37 ± 15 ounces, mean daily voids 5 ± 2 times, mean modal daytime output 10±0.5 ounces, and mean nighttime voids 1±1 times. The Superplus cluster (7% of the sample) showed double or triple these values across the 5 variables, and the Benchmark cluster (25%) showed values consistent with current popular recommendations on intake and output (e.g., meeting or exceeding the 8 × 8 fluid intake rule of thumb). The clusters differed significantly (p < .05) by age, race, amount of irritating beverages consumed, and incontinence status. Discussion Identification of three discrete clusters provides for a potential parsimonious but data-driven means of classifying individuals for additional epidemiological or clinical study. The clinical utility rests with potential for intervening to move an individual from a high risk to low risk cluster with regards to incontinence. PMID:21317828

  13. Using a knowledge utilization framework to explore how findings from one study can be applied to other nursing contexts.

    PubMed

    Olsen, P R; Bradbury-Jones, C

    2013-09-01

    To discuss the complexities of moving research into practice and through a case example, explore how empirical findings from one specific study could be applied to nursing in other contexts. The processes of moving research findings into practice are complex and multidimensional. In this paper, an innovative approach to social support, network-focused nursing (NFN), is used as a case example to illustrate these complexities. Social support is associated with better recovery and survival after illness and based on this, a NFN programme was developed in a Danish oncology youth unit. Subsequently, a research study was undertaken to investigate the programme and based on the findings, the concept NFN was developed. A knowledge utilization framework is used to explore how empirical findings from the NFN study could be applied to nursing more generally. Aligned with this, the specific considerations for implementing NFN are explicated. Strong leadership, education, management support and effective communication are critical factors for research utilization. Moving research into practice requires openness to new ideas. Nursing and healthcare policies therefore need to support environments in which creativity and innovation can flourish. NFN was developed in teenager and young adult cancer care, but its principles may be transferable to other clinical environments. It is important that nurse managers and policy makers ensure that support and education are available to nurses to facilitate moving research into practice. Moreover, resources need to be considered, particularly in countries where financial and organizational infrastructures may be weak. © 2013 The Authors. International Nursing Review © 2013 International Council of Nurses.

  14. Bridging the Gap: Using Simultaneous Multi-Patient Simulations to Improve Nursing Competency and Transition to Practice: A Causal-Comparative Inquiry

    ERIC Educational Resources Information Center

    Fomenko, Julie Ann Schwein

    2017-01-01

    Twenty-first-century healthcare is a complex and demanding arena. Today's hospital environment is more complex than in previous years while patients move through the system at a much faster pace. Newly graduated nurses are challenged in their first year with the healthcare needs of complex patients. Nurse educators and nurse leaders differ in…

  15. A comparison of moving object detection methods for real-time moving object detection

    NASA Astrophysics Data System (ADS)

    Roshan, Aditya; Zhang, Yun

    2014-06-01

    Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.

  16. Moving Students to Deeper Learning in Leadership

    ERIC Educational Resources Information Center

    Stover, Sheri; Seemiller, Corey

    2017-01-01

    The world is a volatile, uncertain, complex, and ambiguous (VUCA) environment (Carvan, 2015) that calls for leaders who can effectively navigate the complexity of leadership today. Students of leadership studies must not only learn leadership information content, but also be able to effectively implement the content and process, requiring deep…

  17. Steering Dynamics in Complex Education Systems. An Agenda for Empirical Research

    ERIC Educational Resources Information Center

    Theisens, Henno; Hooge, Edith; Waslander, Sietske

    2016-01-01

    Many policy systems and education systems have grown more complex in the last three decades. Power has moved away from central governments in different directions: upwards towards international organisations, sideways towards private institutions and non-governmental organisations and downwards towards local governments and public enterprises such…

  18. Complex Moving Parts: Assessment Systems and Electronic Portfolios

    ERIC Educational Resources Information Center

    Larkin, Martha J.; Robertson, Royce L.

    2013-01-01

    The largest college within an online university of over 50,000 students invested significant resources in translating a complex assessment system focused on continuous improvement and national accreditation into an effective and efficient electronic portfolio (ePortfolio). The team building the system needed a model to address problems met…

  19. Expectations of filial obligation and their impact on preferences for future living arrangements of middle-aged and older Asian Indian immigrants.

    PubMed

    Diwan, Sadhna; Lee, Sang E; Sen, Soma

    2011-03-01

    Filial obligation, described as culturally-defined rights and duties that prescribe how family members are expected to care for and provide support to each other, is an important variable that influences older immigrants' preferences for living and care arrangements. This exploratory study examined variables associated with expectations of filial obligation among middle-aged and older, Asian Indian, first generation immigrants and explored the relationship between variations in expectations of filial obligation and expressed preferences for future living arrangements. Data were collected through telephone surveys of 226 English-speaking immigrants in Atlanta, GA. Although no significant relationships were observed between filial obligation expectations and length of residence in the U.S., respondents indicated a variety of preferred future living arrangements. Contrary to current living arrangement patterns found among older immigrants, very few respondents preferred to move in with their children. The most popular preference was to "move closer to children," followed by "moving to a retirement community" with the majority preferring a retirement community geared to Asian Indians. Other preferences included "not moving" and "returning to India." Variations in expectations of filial obligation, length of residence in the U.S., and self-rated health were significantly associated with these preferences. Implications are discussed for building capacity within ethnic communities to address living arrangement preferences and their repercussions for caregiving in ethnic families and in communities.

  20. Distributed Constrained Optimization with Semicoordinate Transformations

    NASA Technical Reports Server (NTRS)

    Macready, William; Wolpert, David

    2006-01-01

    Recent work has shown how information theory extends conventional full-rationality game theory to allow bounded rational agents. The associated mathematical framework can be used to solve constrained optimization problems. This is done by translating the problem into an iterated game, where each agent controls a different variable of the problem, so that the joint probability distribution across the agents moves gives an expected value of the objective function. The dynamics of the agents is designed to minimize a Lagrangian function of that joint distribution. Here we illustrate how the updating of the Lagrange parameters in the Lagrangian is a form of automated annealing, which focuses the joint distribution more and more tightly about the joint moves that optimize the objective function. We then investigate the use of "semicoordinate" variable transformations. These separate the joint state of the agents from the variables of the optimization problem, with the two connected by an onto mapping. We present experiments illustrating the ability of such transformations to facilitate optimization. We focus on the special kind of transformation in which the statistically independent states of the agents induces a mixture distribution over the optimization variables. Computer experiment illustrate this for &sat constraint satisfaction problems and for unconstrained minimization of NK functions.

  1. Valorisation of waste tyre by pyrolysis in a moving bed reactor.

    PubMed

    Aylón, E; Fernández-Colino, A; Murillo, R; Navarro, M V; García, T; Mastral, A M

    2010-07-01

    The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operational parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Valorisation of waste tyre by pyrolysis in a moving bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aylon, E.; Fernandez-Colino, A.; Murillo, R., E-mail: ramonm@icb.csic.e

    2010-07-15

    The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operationalmore » parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products.« less

  3. Flow simulations about steady-complex and unsteady moving configurations using structured-overlapped and unstructured grids

    NASA Technical Reports Server (NTRS)

    Newman, James C., III

    1995-01-01

    The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of comparable accuracy for these simulations. This study also indicated that, overall, the structured-overlapped scheme was slightly more CPU efficient than the unstructured approach.

  4. Mythical Maia, ultrashort and 53 PSC variables. Lecture 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, A.N.

    1983-03-14

    Moving down the main sequence from the ..beta.. Cephei variables, we come to later B-type stars. The suspicion of variability for these stars goes back to Vogel in 1891 who studied the radial velocities of Vega. Since that time there have been numerous studies of Vega (Wisniewski and Johnson 1979, Fernie 1981) and other B and early A stars which hint at variability in both radial velocity and light. Since Struve (1955) discussed these stars 28 years ago, they have been called the Maia stars after the Pleiades star that he thought was the prototype. The uncertainty in their actualmore » variability has led Breger (1980) to call them the mythical Maia variables.« less

  5. The Role and Variability of Ocean Heat Content in the Arctic Ocean: 1948-2009

    DTIC Science & Technology

    2014-06-01

    moved from the Bering Sea past the Bering Strait into the Beaufort Sea (Logerwell 2008). However, besides the risks of ocean acidification and...VARIABILITY OF OCEAN HEAT CONTENT IN THE ARCTIC OCEAN : 1948–2009 by Dominic F. DiMaggio June 2014 Thesis Co-Advisors: Wieslaw Maslowski...COVERED Master’s Thesis 4. TITLE AND SUBTITLE THE ROLE AND VARIABILITY OF OCEAN HEAT CONTENT IN THE ARCTIC OCEAN : 1948–2009 5. FUNDING NUMBERS 6

  6. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes.

    PubMed

    Mjøsund, Hanne Leirbekk; Boyle, Eleanor; Kjaer, Per; Mieritz, Rune Mygind; Skallgård, Tue; Kent, Peter

    2017-03-21

    Wireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. There are many types of these wireless devices currently available but the precision in measurement and the magnitude of measurement error from such devices is often unknown. This study investigated the concurrent validity of one inertial motion sensor system (ViMove) for its ability to measure lumbar inclination motion, compared with the Vicon motion capture system. To mimic the variability of movement patterns in a clinical population, a sample of 34 people were included - 18 with low back pain and 16 without low back pain. ViMove sensors were attached to each participant's skin at spinal levels T12 and S2, and Vicon surface markers were attached to the ViMove sensors. Three repetitions of end-range flexion inclination, extension inclination and lateral flexion inclination to both sides while standing were measured by both systems concurrently with short rest periods in between. Measurement agreement through the whole movement range was analysed using a multilevel mixed-effects regression model to calculate the root mean squared errors and the limits of agreement were calculated using the Bland Altman method. We calculated root mean squared errors (standard deviation) of 1.82° (±1.00°) in flexion inclination, 0.71° (±0.34°) in extension inclination, 0.77° (±0.24°) in right lateral flexion inclination and 0.98° (±0.69°) in left lateral flexion inclination. 95% limits of agreement ranged between -3.86° and 4.69° in flexion inclination, -2.15° and 1.91° in extension inclination, -2.37° and 2.05° in right lateral flexion inclination and -3.11° and 2.96° in left lateral flexion inclination. We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further research should investigate the ViMove system's ability to measure lumbar motion in more complex 3D functional movements and to measure changes of movement patterns related to treatment effects.

  7. State Estimation for Humanoid Robots

    DTIC Science & Technology

    2015-07-01

    21 2.2.1 Linear Inverted Pendulum Model . . . . . . . . . . . . . . . . . . . 21 2.2.2 Planar Five-link Model...Linear Inverted Pendulum Model. LVDT Linear Variable Differential Transformers. MEMS Microelectromechanical Systems. MHE Moving Horizon Estimator. QP...

  8. Fluid Mechanics and Complex Variable Theory: Getting Past the 19th Century

    ERIC Educational Resources Information Center

    Newton, Paul K.

    2017-01-01

    The subject of fluid mechanics is a rich, vibrant, and rapidly developing branch of applied mathematics. Historically, it has developed hand-in-hand with the elegant subject of complex variable theory. The Westmont College NSF-sponsored workshop on the revitalization of complex variable theory in the undergraduate curriculum focused partly on…

  9. Modeling and Simulation Architecture for Studying Doppler-Based Radar with Complex Environments

    DTIC Science & Technology

    2009-03-26

    structures can interfere with a radar’s ability to detect moving aircraft because radar returns from turbines are comparable to those from slow flying...Netherlands Organisation for Applied Scientific Research . 13 EM Electromagnetic . . . . . . . . . . . . . . . . . . . . . . . 14 MTI Moving Target Indicator...ensure the turbine won’t interact with the radar. However, (2.3) doesn’t account for terrain masking or shadowing. If there is a tall object or terrain

  10. Adult Bronchoscopy Training

    PubMed Central

    Wahidi, Momen M.; Read, Charles A.; Buckley, John D.; Addrizzo-Harris, Doreen J.; Shah, Pallav L.; Herth, Felix J. F.; de Hoyos Parra, Alberto; Ornelas, Joseph; Yarmus, Lonny; Silvestri, Gerard A.

    2015-01-01

    BACKGROUND: The determination of competency of trainees in programs performing bronchoscopy is quite variable. Some programs provide didactic lectures with hands-on supervision, other programs incorporate advanced simulation centers, whereas others have a checklist approach. Although no single method has been proven best, the variability alone suggests that outcomes are variable. Program directors and certifying bodies need guidance to create standards for training programs. Little well-developed literature on the topic exists. METHODS: To provide credible and trustworthy guidance, rigorous methodology has been applied to create this bronchoscopy consensus training statement. All panelists were vetted and approved by the CHEST Guidelines Oversight Committee. Each topic group drafted questions in a PICO (population, intervention, comparator, outcome) format. MEDLINE data through PubMed and the Cochrane Library were systematically searched. Manual searches also supplemented the searches. All gathered references were screened for consideration based on inclusion criteria, and all statements were designated as an Ungraded Consensus-Based Statement. RESULTS: We suggest that professional societies move from a volume-based certification system to skill acquisition and knowledge-based competency assessment for trainees. Bronchoscopy training programs should incorporate multiple tools, including simulation. We suggest that ongoing quality and process improvement systems be introduced and that certifying agencies move from a volume-based certification system to skill acquisition and knowledge-based competency assessment for trainees. We also suggest that assessment of skill maintenance and improvement in practice be evaluated regularly with ongoing quality and process improvement systems after initial skill acquisition. CONCLUSIONS: The current methods used for bronchoscopy competency in training programs are variable. We suggest that professional societies and certifying agencies move from a volume- based certification system to a standardized skill acquisition and knowledge-based competency assessment for pulmonary and thoracic surgery trainees. PMID:25674901

  11. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.

    PubMed

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.

  12. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries

    PubMed Central

    Ge, Liang; Sotiropoulos, Fotis

    2008-01-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  13. Complex versus simple ankle movement training in stroke using telerehabilitation: a randomized controlled trial.

    PubMed

    Deng, Huiqiong; Durfee, William K; Nuckley, David J; Rheude, Brandon S; Severson, Amy E; Skluzacek, Katie M; Spindler, Kristen K; Davey, Cynthia S; Carey, James R

    2012-02-01

    Telerehabilitation allows rehabilitative training to continue remotely after discharge from acute care and can include complex tasks known to create rich conditions for neural change. The purposes of this study were: (1) to explore the feasibility of using telerehabilitation to improve ankle dorsiflexion during the swing phase of gait in people with stroke and (2) to compare complex versus simple movements of the ankle in promoting behavioral change and brain reorganization. This study was a pilot randomized controlled trial. Training was done in the participant's home. Testing was done in separate research labs involving functional magnetic resonance imaging (fMRI) and multi-camera gait analysis. Sixteen participants with chronic stroke and impaired ankle dorsiflexion were assigned randomly to receive 4 weeks of telerehabilitation of the paretic ankle. Participants received either computerized complex movement training (track group) or simple movement training (move group). Behavioral changes were measured with the 10-m walk test and gait analysis using a motion capture system. Brain reorganization was measured with ankle tracking during fMRI. Dorsiflexion during gait was significantly larger in the track group compared with the move group. For fMRI, although the volume, percent volume, and intensity of cortical activation failed to show significant changes, the frequency count of the number of participants showing an increase versus a decrease in these values from pretest to posttest measurements was significantly different between the 2 groups, with the track group decreasing and the move group increasing. Limitations of this study were that no follow-up test was conducted and that a small sample size was used. The results suggest that telerehabilitation, emphasizing complex task training with the paretic limb, is feasible and can be effective in promoting further dorsiflexion in people with chronic stroke.

  14. KSC-2011-8228

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – A transporter carrying the high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida rolls along the NASA Causeway as it leaves the visitor complex on its way to NASA Kennedy Space Center's Launch Complex 39 turn basin. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  15. Internal combustion engine with rotary valve assembly having variable intake valve timing

    DOEpatents

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  16. Cybersecurity in Hospitals: A Systematic, Organizational Perspective

    PubMed Central

    Kaiser, Jessica P

    2018-01-01

    Background Cybersecurity incidents are a growing threat to the health care industry in general and hospitals in particular. The health care industry has lagged behind other industries in protecting its main stakeholder (ie, patients), and now hospitals must invest considerable capital and effort in protecting their systems. However, this is easier said than done because hospitals are extraordinarily technology-saturated, complex organizations with high end point complexity, internal politics, and regulatory pressures. Objective The purpose of this study was to develop a systematic and organizational perspective for studying (1) the dynamics of cybersecurity capability development at hospitals and (2) how these internal organizational dynamics interact to form a system of hospital cybersecurity in the United States. Methods We conducted interviews with hospital chief information officers, chief information security officers, and health care cybersecurity experts; analyzed the interview data; and developed a system dynamics model that unravels the mechanisms by which hospitals build cybersecurity capabilities. We then use simulation analysis to examine how changes to variables within the model affect the likelihood of cyberattacks across both individual hospitals and a system of hospitals. Results We discuss several key mechanisms that hospitals use to reduce the likelihood of cybercriminal activity. The variable that most influences the risk of cyberattack in a hospital is end point complexity, followed by internal stakeholder alignment. Although resource availability is important in fueling efforts to close cybersecurity capability gaps, low levels of resources could be compensated for by setting a high target level of cybersecurity. Conclusions To enhance cybersecurity capabilities at hospitals, the main focus of chief information officers and chief information security officers should be on reducing end point complexity and improving internal stakeholder alignment. These strategies can solve cybersecurity problems more effectively than blindly pursuing more resources. On a macro level, the cyber vulnerability of a country’s hospital infrastructure is affected by the vulnerabilities of all individual hospitals. In this large system, reducing variation in resource availability makes the whole system less vulnerable—a few hospitals with low resources for cybersecurity threaten the entire infrastructure of health care. In other words, hospitals need to move forward together to make the industry less attractive to cybercriminals. Moreover, although compliance is essential, it does not equal security. Hospitals should set their target level of cybersecurity beyond the requirements of current regulations and policies. As of today, policies mostly address data privacy, not data security. Thus, policy makers need to introduce policies that not only raise the target level of cybersecurity capabilities but also reduce the variability in resource availability across the entire health care system. PMID:29807882

  17. Catchment Tomography - Joint Estimation of Surface Roughness and Hydraulic Conductivity with the EnKF

    NASA Astrophysics Data System (ADS)

    Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.

    2017-12-01

    Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of biased initial parameter ensembles. The computational experiments additionally show to which degree of spatial heterogeneity and to which degree of uncertainty of subsurface flow parameters the Manning's coefficient and hydraulic conductivity can be estimated efficiently.

  18. Spatially explicit risk assessment of an estuarine fish in Barataria Bay, Louisiana, following the Deepwater Horizon Oil spill: evaluating tradeoffs in model complexity and parsimony

    EPA Science Inventory

    As ecological risk assessments (ERA) move beyond organism-based determinations towards probabilistic population-level assessments, model complexity must be evaluated against the goals of the assessment, the information available to parameterize components with minimal dependence ...

  19. Ecopedagogy: A Movement between Critical Dialogue and Complexity: Proposal for a Categories System

    ERIC Educational Resources Information Center

    Norat, María de los Ángeles Vilches; Herrería, Alfonso Fernández; Rodríguez, Francisco Miguel Martínez

    2016-01-01

    This qualitative research has been undertaken with the purpose of developing an integrated system of categories based on ecopedagogy. Founded on the critical pedagogy of Paulo Freire, this movement moves towards complex thinking and holism. Its theoretical bases are set on principles of sustainability, biosensibility, ethics of care and global…

  20. Understanding the Complexity of Social Issues through Process Drama.

    ERIC Educational Resources Information Center

    O'Mara, Joanne

    2002-01-01

    Attempts to capture the process of understanding and questioning deforestation through process drama (in which students and teacher work both in and out of role to explore a problem, situation, or theme). Notes that moving topics such as the destruction of a rainforest into process drama introduces complexity into social issues. Considers how…

  1. KSC-2011-8244

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida travels northbound along Kennedy Parkway toward NASA Kennedy Space Center's Launch Complex 39 turn basin. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  2. KSC-2011-8256

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – Support personnel plan the last leg of the move of the high-fidelity space shuttle model which was on display at the NASA Kennedy Space Center Visitor Complex in Florida to Kennedy's Launch Complex 39 turn basin. Across the street (at right) are the 525-foot-tall Vehicle Assembly Building and the Launch Control Center. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  3. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

    NASA Astrophysics Data System (ADS)

    Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

    2017-08-01

    This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

  4. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.

    PubMed

    Diwadkar, V A; Carpenter, P A; Just, M A

    2000-07-01

    Functional MRI was used to determine how the constituents of the cortical network subserving dynamic spatial working memory respond to two types of increases in task complexity. Participants mentally maintained the most recent location of either one or three objects as the three objects moved discretely in either a two- or three-dimensional array. Cortical activation in the dorsolateral prefrontal (DLPFC) and the parietal cortex increased as a function of the number of object locations to be maintained and the dimensionality of the display. An analysis of the response characteristics of the individual voxels showed that a large proportion were activated only when both the variables imposed the higher level of demand. A smaller proportion were activated specifically in response to increases in task demand associated with each of the independent variables. A second experiment revealed the same effect of dimensionality in the parietal cortex when the movement of objects was signaled auditorily rather than visually, indicating that the additional representational demands induced by 3-D space are independent of input modality. The comodulation of activation in the prefrontal and parietal areas by the amount of computational demand suggests that the collaboration between areas is a basic feature underlying much of the functionality of spatial working memory. Copyright 2000 Academic Press.

  5. Using llama derived single domain antibodies to target botulinum neurotoxins

    NASA Astrophysics Data System (ADS)

    Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.

    2010-04-01

    Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.

  6. Brain signal variability as a window into the bidirectionality between music and language processing: moving from a linear to a nonlinear model

    PubMed Central

    Hutka, Stefanie; Bidelman, Gavin M.; Moreno, Sylvain

    2013-01-01

    There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain’s processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer. PMID:24454295

  7. Brain signal variability as a window into the bidirectionality between music and language processing: moving from a linear to a nonlinear model.

    PubMed

    Hutka, Stefanie; Bidelman, Gavin M; Moreno, Sylvain

    2013-12-30

    There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain's processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer.

  8. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.

  9. COMMUNICATING PROBABILISTIC RISK OUTCOMES TO RISK MANAGERS

    EPA Science Inventory

    Increasingly, risk assessors are moving away from simple deterministic assessments to probabilistic approaches that explicitly incorporate ecological variability, measurement imprecision, and lack of knowledge (collectively termed "uncertainty"). While the new methods provide an...

  10. 78 FR 28727 - Airworthiness Directives; Agusta S.p.A. Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... inspecting the pilot and copilot engine rotary variable differential transformer (RVDT) control box... differential transformer (RVDT) locking pin, which could move out of position and result in loss of manual...

  11. Variable optical filters for earth-observation imaging minispectrometers

    NASA Astrophysics Data System (ADS)

    Piegari, A.; Bulir, J.; Krasilnikova, A.; Dami, M.; Harnisch, B.

    2017-11-01

    Small-dimension, low-mass spectrometers are useful for both Earth observation and planetary missions. A very compact multi-spectral mini-spectrometer that contains no moving parts, can be constructed combining a graded-thickness filter, having a spatially variable narrow-band transmission, to a CCD array detector. The peak wavelength of the transmission filter is moving along one direction of the filter surface, such that each line of a two-dimensional array detector, equipped with this filter, will detect radiation in a different pass band. The spectrum of interest for image spectrometry of the Earth surface is very wide, 400-1000nm. This requirement along with the need of a very small dimension, makes this filter very difficult to manufacture. Preliminary results on metal-dielectric wedge filters, with a gradient of the transmission peak wavelength equal to 60nm/mm, are reported.

  12. Development of a Robust Identifier for NPPs Transients Combining ARIMA Model and EBP Algorithm

    NASA Astrophysics Data System (ADS)

    Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.

    2014-08-01

    This study introduces a novel identification method for recognition of nuclear power plants (NPPs) transients by combining the autoregressive integrated moving-average (ARIMA) model and the neural network with error backpropagation (EBP) learning algorithm. The proposed method consists of three steps. First, an EBP based identifier is adopted to distinguish the plant normal states from the faulty ones. In the second step, ARIMA models use integrated (I) process to convert non-stationary data of the selected variables into stationary ones. Subsequently, ARIMA processes, including autoregressive (AR), moving-average (MA), or autoregressive moving-average (ARMA) are used to forecast time series of the selected plant variables. In the third step, for identification the type of transients, the forecasted time series are fed to the modular identifier which has been developed using the latest advances of EBP learning algorithm. Bushehr nuclear power plant (BNPP) transients are probed to analyze the ability of the proposed identifier. Recognition of transient is based on similarity of its statistical properties to the reference one, rather than the values of input patterns. More robustness against noisy data and improvement balance between memorization and generalization are salient advantages of the proposed identifier. Reduction of false identification, sole dependency of identification on the sign of each output signal, selection of the plant variables for transients training independent of each other, and extendibility for identification of more transients without unfavorable effects are other merits of the proposed identifier.

  13. Free piston variable-stroke linear-alternator generator

    DOEpatents

    Haaland, Carsten M.

    1998-01-01

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

  14. Population and Activity of On-road Vehicles in MOVES2014 ...

    EPA Pesticide Factsheets

    This report describes the sources and derivation for on-road vehicle population and activity information and associated adjustments as stored in the MOVES2014 default databases. Motor Vehicle Emission Simulator, the MOVES2014 model, is a set of modeling tools for estimating emissions produced by on-road (cars, trucks, motorcycles, etc.) and nonroad (backhoes, lawnmowers, etc.) mobile sources. The national default activity information in MOVES2014 provides a reasonable basis for estimating national emissions. However, the uncertainties and variability in the default data contribute to the uncertainty in the resulting emission estimates. Properly characterizing emissions from the on-road vehicle subset requires a detailed understanding of the cars and trucks that make up the vehicle fleet and their patterns of operation. The MOVES model calculates emission inventories by multiplying emission rates by the appropriate emission-related activity, applying correction (adjustment) factors as needed to simulate specific situations, and then adding up the emissions from all sources (populations) and regions. This report describes the sources and derivation for on-road vehicle population and activity information and associated adjustments as stored in the MOVES2014 default databases. Motor Vehicle Emission Simulator, the MOVES2014 model, is a set of modeling tools for estimating emissions produced by on-road (cars, trucks, motorcycles, etc.) and nonroad (backhoes, law

  15. SIMP J013656.5+093347 Is Likely a Planetary-mass Object in the Carina-Near Moving Group

    NASA Astrophysics Data System (ADS)

    Gagné, Jonathan; Faherty, Jacqueline K.; Burgasser, Adam J.; Artigau, Étienne; Bouchard, Sandie; Albert, Loïc; Lafrenière, David; Doyon, René; Bardalez Gagliuffi, Daniella C.

    2017-05-01

    We report on the discovery that the nearby (˜6 pc) photometrically variable T2.5 dwarf SIMP J013656.5+093347 is a likely member of the ˜200 Myr old Carina-Near moving group with a probability of >99.9% based on its full kinematics. Our v\\sin I measurement of 50.9 ± 0.8 km s-1 combined with the known rotation period inferred from variability measurements provide a lower limit of 1.01 ± 0.02 {R}{Jup} on the radius of SIMP 0136+0933, an independent verification that it must be younger than ˜950 Myr, according to evolution models. We estimate a field interloper probability of 0.2% based on the density of field T0-T5 dwarfs. At the age of Carina-Near, SIMP 0136+0933 has an estimated mass of 12.7 ± 1.0 {M}{Jup} and is predicted to have burned roughly half of its original deuterium. SIMP 0136+0933 is the closest known young moving group member to the Sun and is one of only a few known young T dwarfs, making it an important benchmark for understanding the atmospheres of young planetary-mass objects.

  16. The Deep Lens Survey : Real--time Optical Transient and Moving Object Detection

    NASA Astrophysics Data System (ADS)

    Becker, Andy; Wittman, David; Stubbs, Chris; Dell'Antonio, Ian; Loomba, Dinesh; Schommer, Robert; Tyson, J. Anthony; Margoniner, Vera; DLS Collaboration

    2001-12-01

    We report on the real-time optical transient program of the Deep Lens Survey (DLS). Meeting the DLS core science weak-lensing objective requires repeated visits to the same part of the sky, 20 visits for 63 sub-fields in 4 filters, on a 4-m telescope. These data are reduced in real-time, and differenced against each other on all available timescales. Our observing strategy is optimized to allow sensitivity to transients on several minute, one day, one month, and one year timescales. The depth of the survey allows us to detect and classify both moving and stationary transients down to ~ 25th magnitude, a relatively unconstrained region of astronomical variability space. All transients and moving objects, including asteroids, Kuiper belt (or trans-Neptunian) objects, variable stars, supernovae, 'unknown' bursts with no apparent host, orphan gamma-ray burst afterglows, as well as airplanes, are posted on the web in real-time for use by the community. We emphasize our sensitivity to detect and respond in real-time to orphan afterglows of gamma-ray bursts, and present one candidate orphan in the field of Abell 1836. See http://dls.bell-labs.com/transients.html.

  17. Health behavior change in advance care planning: an agent-based model.

    PubMed

    Ernecoff, Natalie C; Keane, Christopher R; Albert, Steven M

    2016-02-29

    A practical and ethical challenge in advance care planning research is controlling and intervening on human behavior. Additionally, observing dynamic changes in advance care planning (ACP) behavior proves difficult, though tracking changes over time is important for intervention development. Agent-based modeling (ABM) allows researchers to integrate complex behavioral data about advance care planning behaviors and thought processes into a controlled environment that is more easily alterable and observable. Literature to date has not addressed how best to motivate individuals, increase facilitators and reduce barriers associated with ACP. We aimed to build an ABM that applies the Transtheoretical Model of behavior change to ACP as a health behavior and accurately reflects: 1) the rates at which individuals complete the process, 2) how individuals respond to barriers, facilitators, and behavioral variables, and 3) the interactions between these variables. We developed a dynamic ABM of the ACP decision making process based on the stages of change posited by the Transtheoretical Model. We integrated barriers, facilitators, and other behavioral variables that agents encounter as they move through the process. We successfully incorporated ACP barriers, facilitators, and other behavioral variables into our ABM, forming a plausible representation of ACP behavior and decision-making. The resulting distributions across the stages of change replicated those found in the literature, with approximately half of participants in the action-maintenance stage in both the model and the literature. Our ABM is a useful method for representing dynamic social and experiential influences on the ACP decision making process. This model suggests structural interventions, e.g. increasing access to ACP materials in primary care clinics, in addition to improved methods of data collection for behavioral studies, e.g. incorporating longitudinal data to capture behavioral dynamics.

  18. The variation of polar firn subject to percolation - characterizing processes and glacier mass budget uncertainty using high-resolution instruments

    NASA Astrophysics Data System (ADS)

    Demuth, M. N.; Marshall, H.; Morris, E. M.; Burgess, D. O.; Gray, L.

    2009-12-01

    As the Earth's glaciers and ice sheets are subjected to the effects of recent and predicted warming, the distribution of their glaciological facies zones will alter. Percolation and wet snow facies zones will, in general, move upwards; encroaching upon, for some glacier configurations, regions of dry snow facies. Meltwater percolation and internal accumulation processes that characterize these highly variable facies may confound reliable estimates of surface mass budgets based on traditional point measurements alone. If the extents of these zones are indeed increasing, as has been documented through recent analysis of QuickScat data for the ice caps of the Canadian Arctic, then the certainty of glacier mass budget estimates using traditional techniques may be degraded to an as yet un-quantified degree. Indeed, the application of remote sensing, in particular that utilizing repeat altimetry to retrieve surface mass budget estimates, is also subject to the complexity of glacier facies from the standpoint of their near-surface stratigraphy, density variations and rates of compaction. We first review the problem of measuring glacier mass budgets in the context of nested scales of variability, where auto-correlation structure varies with the scale of observation. We then consider specifically firn subject to percolation and describe the application of high-resolution instruments to characterize variability at the field-scale. The data collected include measurements of micro-topography, snow hardness, and snow density and texture; retrieved using airborne scanning lidar, a snow micro-penetrometer, neutron probe and ground-penetrating radars. The analysis suggests corresponding scales of correlation as it concerns the influence of antecedent conditions (surface roughness and hardness, and stratigraphic variability) and post-depositional processes (percolation and refreezing of surface melt water).

  19. Some elements of a theory of multidimensional complex variables. I - General theory. II - Expansions of analytic functions and application to fluid flows

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1989-01-01

    The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.

  20. Variable Complexity Optimization of Composite Structures

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    2002-01-01

    The use of several levels of modeling in design has been dubbed variable complexity modeling. The work under the grant focused on developing variable complexity modeling strategies with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and design against uncertainty using response surface techniques.

  1. Dannie Heineman Prize for Mathematical Physics: Applying mathematical techniques to solve important problems in quantum theory

    NASA Astrophysics Data System (ADS)

    Bender, Carl

    2017-01-01

    The theory of complex variables is extremely useful because it helps to explain the mathematical behavior of functions of a real variable. Complex variable theory also provides insight into the nature of physical theories. For example, it provides a simple and beautiful picture of quantization and it explains the underlying reason for the divergence of perturbation theory. By using complex-variable methods one can generalize conventional Hermitian quantum theories into the complex domain. The result is a new class of parity-time-symmetric (PT-symmetric) theories whose remarkable physical properties have been studied and verified in many recent laboratory experiments.

  2. Protein Modelling: What Happened to the “Protein Structure Gap”?

    PubMed Central

    Schwede, Torsten

    2013-01-01

    Computational modeling and prediction of three-dimensional macromolecular structures and complexes from their sequence has been a long standing vision in structural biology as it holds the promise to bypass part of the laborious process of experimental structure solution. Over the last two decades, a paradigm shift has occurred: starting from a situation where the “structure knowledge gap” between the huge number of protein sequences and small number of known structures has hampered the widespread use of structure-based approaches in life science research, today some form of structural information – either experimental or computational – is available for the majority of amino acids encoded by common model organism genomes. Template based homology modeling techniques have matured to a point where they are now routinely used to complement experimental techniques. With the scientific focus of interest moving towards larger macromolecular complexes and dynamic networks of interactions, the integration of computational modeling methods with low-resolution experimental techniques allows studying large and complex molecular machines. Computational modeling and prediction techniques are still facing a number of challenges which hamper the more widespread use by the non-expert scientist. For example, it is often difficult to convey the underlying assumptions of a computational technique, as well as the expected accuracy and structural variability of a specific model. However, these aspects are crucial to understand the limitations of a model, and to decide which interpretations and conclusions can be supported. PMID:24010712

  3. Contributions of the ARM Program to Radiative Transfer Modeling for Climate and Weather Applications

    NASA Technical Reports Server (NTRS)

    Mlawer, Eli J.; Iacono, Michael J.; Pincus, Robert; Barker, Howard W.; Oreopoulos, Lazaros; Mitchell, David L.

    2016-01-01

    Accurate climate and weather simulations must account for all relevant physical processes and their complex interactions. Each of these atmospheric, ocean, and land processes must be considered on an appropriate spatial and temporal scale, which leads these simulations to require a substantial computational burden. One especially critical physical process is the flow of solar and thermal radiant energy through the atmosphere, which controls planetary heating and cooling and drives the large-scale dynamics that moves energy from the tropics toward the poles. Radiation calculations are therefore essential for climate and weather simulations, but are themselves quite complex even without considering the effects of variable and inhomogeneous clouds. Clear-sky radiative transfer calculations have to account for thousands of absorption lines due to water vapor, carbon dioxide, and other gases, which are irregularly distributed across the spectrum and have shapes dependent on pressure and temperature. The line-by-line (LBL) codes that treat these details have a far greater computational cost than can be afforded by global models. Therefore, the crucial requirement for accurate radiation calculations in climate and weather prediction models must be satisfied by fast solar and thermal radiation parameterizations with a high level of accuracy that has been demonstrated through extensive comparisons with LBL codes. See attachment for continuation.

  4. A kernel regression approach to gene-gene interaction detection for case-control studies.

    PubMed

    Larson, Nicholas B; Schaid, Daniel J

    2013-11-01

    Gene-gene interactions are increasingly being addressed as a potentially important contributor to the variability of complex traits. Consequently, attentions have moved beyond single locus analysis of association to more complex genetic models. Although several single-marker approaches toward interaction analysis have been developed, such methods suffer from very high testing dimensionality and do not take advantage of existing information, notably the definition of genes as functional units. Here, we propose a comprehensive family of gene-level score tests for identifying genetic elements of disease risk, in particular pairwise gene-gene interactions. Using kernel machine methods, we devise score-based variance component tests under a generalized linear mixed model framework. We conducted simulations based upon coalescent genetic models to evaluate the performance of our approach under a variety of disease models. These simulations indicate that our methods are generally higher powered than alternative gene-level approaches and at worst competitive with exhaustive SNP-level (where SNP is single-nucleotide polymorphism) analyses. Furthermore, we observe that simulated epistatic effects resulted in significant marginal testing results for the involved genes regardless of whether or not true main effects were present. We detail the benefits of our methods and discuss potential genome-wide analysis strategies for gene-gene interaction analysis in a case-control study design. © 2013 WILEY PERIODICALS, INC.

  5. Lectures on Kähler Geometry - Series: London Mathematical Society Student Texts (No. 69)

    NASA Astrophysics Data System (ADS)

    Moroianu, Andrei

    2004-03-01

    Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory. The first graduate-level text on Kähler geometry, providing a concise introduction for both mathematicians and physicists with a basic knowledge of calculus in several variables and linear algebra Over 130 exercises and worked examples Self-contained and presents varying viewpoints including Riemannian, complex and algebraic

  6. Biased Brownian motion mechanism for processivity and directionality of single-headed myosin-VI.

    PubMed

    Iwaki, Mitsuhiro; Iwane, Atsuko Hikikoshi; Ikebe, Mitsuo; Yanagida, Toshio

    2008-01-01

    Conventional form to function as a vesicle transporter is not a 'single molecule' but a coordinated 'two molecules'. The coordinated two molecules make it complicated to reveal its mechanism. To overcome the difficulty, we adopted a single-headed myosin-VI as a model protein. Myosin-VI is an intracellular vesicle and organelle transporter that moves along actin filaments in a direction opposite to most other known myosin classes. The myosin-VI was expected to form a dimer to move processively along actin filaments with a hand-over-hand mechanism like other myosin organelle transporters. However, wild-type myosin-VI was demonstrated to be monomer and single-headed, casting doubt on its processivity. Using single molecule techniques, we show that green fluorescent protein (GFP)-fused single-headed myosin-VI does not move processively. However, when coupled to a 200 nm polystyrene bead (comparable to an intracellular vesicle in size) at a ratio of one head per bead, single-headed myosin-VI moves processively with large (40 nm) steps. Furthermore, we found that a single-headed myosin-VI-bead complex moved more processively in a high-viscous solution (40-fold higher than water) similar to cellular environment. Because diffusion of the bead is 60-fold slower than myosin-VI heads alone in water, we propose a model in which the bead acts as a diffusional anchor for the myosin-VI, enhancing the head's rebinding following detachment and supporting processive movement of the bead-monomer complex. This investigation will help us understand how molecular motors utilize Brownian motion in cells.

  7. Changes in physical activity and travel behaviors in residents of a mixed-use development.

    PubMed

    Mumford, Karen G; Contant, Cheryl K; Weissman, Jennifer; Wolf, Jean; Glanz, Karen

    2011-11-01

    Mixed-use developments may be especially promising settings for encouraging walking and other types of physical activity. This study examined the physical activity and travel behaviors of individuals before and after they relocated to Atlantic Station, a mixed-use redevelopment community in metropolitan Atlanta. A survey study was conducted to compare the behaviors, experiences, and attitudes of Atlantic Station residents before and after moving to a mixed-use neighborhood. Data were collected in 2008 and 2009 and analyzed in 2010. Key dependent variables were self-reported physical activity and travel behaviors including walking for recreation and transport, automobile use, and use of public transportation. Study participants included 101 adult residents of Atlantic Station, most of whom were female, young, and well educated. There were significant increases in walking for recreation or fitness (46%-54%; p<0.05) and walking for transportation (44%-84%; p<0.001) after moving into the mixed-use development. Respondents also reported reduced automobile travel and increased time spent using public transportation after moving to Atlantic Station. Because this study used individuals as their own controls, there is more control over confounding lifestyle variables compared to cross-sectional studies of individuals living in different neighborhoods. Adults who move to a denser, mixed-use neighborhood increase their levels of walking for both recreation and transportation, decrease their automobile travel, and increase their use of public transportation. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Canada on the Move: an intensive media analysis from inception to reception.

    PubMed

    Faulkner, Guy; Finlay, Sara-Jane

    2006-01-01

    Research evaluating mediated physical activity campaigns uses an unsophisticated conceptualization of the media and would benefit from the application of a media studies approach. The purpose of this article is to report on the application of this type of analysis to the Canada on the Move media campaign. Through interviews and document analysis, the press release surrounding Canada on the Move was examined at four levels: inception, production, transmission and reception. Analytic strategies of thematic and textual analysis were conducted. The press release was well received by journalists and editors and was successfully transmitted as inferred from national and local television coverage, although there was no national print pickup. Canada on the Move was perceived by sampled audience members as a useful and interesting strategy to encourage walking. A holistic approach to media analysis reveals the complex and frequently messy process of this mediated communication process. Implications for future media disseminations of Canada on the Move are discussed.

  9. Phase transitions in traffic flow on multilane roads.

    PubMed

    Kerner, Boris S; Klenov, Sergey L

    2009-11-01

    Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.

  10. Applying the PDCA Cycle to the Complex Task of Teaching and Assessing Public Relations Writing

    ERIC Educational Resources Information Center

    Knight, John E.; Allen, Sandra

    2012-01-01

    Teaching skills, knowledge and abilities appropriate for career-ready graduates and assessing learning are complex issues. Developing a valid and reliable approach is often by trial and error. Instead, the authors employed Deming's PDCA Cycle of continuous improvement as a systematic procedure to incrementally move closer to their goal. This paper…

  11. Spawning Ideas--Moving from Ideas to Action: Quality Tools for Collective Problem-Solving and Continuous Learning.

    ERIC Educational Resources Information Center

    Flor, Richard F.; Troskey, Matthew D.

    This paper explores the dynamics of managing collective problem solving and decision making, and the application of tools and strategies to deal with the emergent complexity of systems in which educators work. Schools and educational programs are complex adaptive systems that respond to changes in internal and external environments. Functioning…

  12. Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology

    Treesearch

    J. J. McDonnell; M. Sivapalan; K. Vache; S. Dunn; G. Grant; R. Haggerty; C. Hinz; R. Hooper; J. Kirchner; M.L. Roderick; J. Selker; M. Weiler

    2007-01-01

    Field studies in watershed hydrology continue to characterize and catalogue the enormous heterogeneity and complexity of rainfall runoff processes in more and more watersheds, in different hydroclimatic regimes, and at different scales. Nevertheless, the ability to generalize these findings to ungauged regions remains out of reach. In spite of their apparent physical...

  13. Harnessing the Power of Play: Opportunities for Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Mastrangelo, Sonia

    2009-01-01

    Play is a complex phenomenon that occurs naturally for most children; they move through the various stages of play development and are able to add complexity, imagination, and creativity to their thought processes and actions. However, for many children with autism spectrum disorders (ASD), the various stages of play never truly develop, or occur…

  14. Basic features of slime mould motility

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomohiro

    2015-03-01

    The plasmodium of Physarum polycephalum is a unicellular and multi-nuclear giant amoeba that is formed by fusions of myriads of uninucleate microscopic amoebae at a point in the life cycle of the organism. The very large unicellular form of the plasmodium is very uncommon in nature; on the contrary, almost all of the other higher organisms have multi-cellular bodies. Therefore, the plasmodium has an exceptional property: although the plasmodium is a unicellular organism, the size of the amoeba is variable. The smallest plasmodium consists of the fusion of two amoebae, so the smallest size is twice that of a usual amoeba. There is no upper limit to the largest size of the plasmodium, in principle. There is a record of very large plasmodium of more than a few metres. A more interesting point is that despite the variety in the size, the plasmodium can move, feed and form complex structures and adapt itself to the environment in an intelligent manner...

  15. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  16. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria.

    PubMed

    Vassallo, Christopher N; Cao, Pengbo; Conklin, Austin; Finkelstein, Hayley; Hayes, Christopher S; Wall, Daniel

    2017-08-18

    Myxobacteria are known for complex social behaviors including outer membrane exchange (OME), in which cells exchange large amounts of outer membrane lipids and proteins upon contact. The TraA cell surface receptor selects OME partners based on a variable domain. However, traA polymorphism alone is not sufficient to precisely discriminate kin. Here, we report a novel family of OME-delivered toxins that promote kin discrimination of OME partners. These SitA lipoprotein toxins are polymorphic and widespread in myxobacteria. Each sitA is associated with a cognate sitI immunity gene, and in some cases a sitB accessory gene. Remarkably, we show that SitA is transferred serially between target cells, allowing the toxins to move cell-to-cell like an infectious agent. Consequently, SitA toxins define strong identity barriers between strains and likely contribute to population structure, maintenance of cooperation, and strain diversification. Moreover, these results highlight the diversity of systems evolved to deliver toxins between bacteria.

  17. Analysis of parameters for technological equipment of parallel kinematics based on rods of variable length for processing accuracy assurance

    NASA Astrophysics Data System (ADS)

    Koltsov, A. G.; Shamutdinov, A. H.; Blokhin, D. A.; Krivonos, E. V.

    2018-01-01

    A new classification of parallel kinematics mechanisms on symmetry coefficient, being proportional to mechanism stiffness and accuracy of the processing product using the technological equipment under study, is proposed. A new version of the Stewart platform with a high symmetry coefficient is presented for analysis. The workspace of the mechanism under study is described, this space being a complex solid figure. The workspace end points are reached by the center of the mobile platform which moves in parallel related to the base plate. Parameters affecting the processing accuracy, namely the static and dynamic stiffness, natural vibration frequencies are determined. The capability assessment of the mechanism operation under various loads, taking into account resonance phenomena at different points of the workspace, was conducted. The study proved that stiffness and therefore, processing accuracy with the use of the above mentioned mechanisms are comparable with the stiffness and accuracy of medium-sized series-produced machines.

  18. Rethinking pattern formation in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Halatek, J.; Frey, E.

    2018-05-01

    The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.

  19. NEW SUNS IN THE COSMOS. III. MULTIFRACTAL SIGNATURE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, D. B. de; Nepomuceno, M. M. F.; Junior, P. R. V. de Moraes

    2016-11-01

    In the present paper, we investigate the multifractality signatures in hourly time series extracted from the CoRoT spacecraft database. Our analysis is intended to highlight the possibility that astrophysical time series can be members of a particular class of complex and dynamic processes, which require several photometric variability diagnostics to characterize their structural and topological properties. To achieve this goal, we search for contributions due to a nonlinear temporal correlation and effects caused by heavier tails than the Gaussian distribution, using a detrending moving average algorithm for one-dimensional multifractal signals (MFDMA). We observe that the correlation structure is the mainmore » source of multifractality, while heavy-tailed distribution plays a minor role in generating the multifractal effects. Our work also reveals that the rotation period of stars is inherently scaled by the degree of multifractality. As a result, analyzing the multifractal degree of the referred series, we uncover an evolution of multifractality from shorter to larger periods.« less

  20. COED Transactions, Vol. IX, No. 3, March 1977. Evaluation of a Complex Variable Using Analog/Hybrid Computation Techniques.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    Described is the use of an analog/hybrid computer installation to study those physical phenomena that can be described through the evaluation of an algebraic function of a complex variable. This is an alternative way to study such phenomena on an interactive graphics terminal. The typical problem used, involving complex variables, is that of…

  1. Measuring Pilot Workload in a Moving-base Simulator. Part 2: Building Levels of Workload

    NASA Technical Reports Server (NTRS)

    Kantowitz, B. H.; Hart, S. G.; Bortolussi, M. R.; Shively, R. J.; Kantowitz, S. C.

    1984-01-01

    Pilot behavior in flight simulators often use a secondary task as an index of workload. His routine to regard flying as the primary task and some less complex task as the secondary task. While this assumption is quite reasonable for most secondary tasks used to study mental workload in aircraft, the treatment of flying a simulator through some carefully crafted flight scenario as a unitary task is less justified. The present research acknowledges that total mental workload depends upon the specific nature of the sub-tasks that a pilot must complete as a first approximation, flight tasks were divided into three levels of complexity. The simplest level (called the Base Level) requires elementary maneuvers that do not utilize all the degrees of freedom of which an aircraft, or a moving-base simulator; is capable. The second level (called the Paired Level) requires the pilot to simultaneously execute two Base Level tasks. The third level (called the Complex Level) imposes three simultaneous constraints upon the pilot.

  2. Moving into the paravisceral aorta using fenestrated and branched endografts.

    PubMed

    Farber, Mark A; Vallabhaneni, Raghuveer

    2012-12-01

    When one compares the potential advantages of endovascular aortic repair with respect to traditional open repair, it would seem logical that extension into the paravisceral aorta would be easily justified, given the complexity of open aortic repair and its associated complications. Eight years have transpired between trial initiation and Food and Drug Administration approval of the first fenestrated device in the United States for the treatment of juxtarenal aneurysms. While there are only a few centers in the United States with substantial experience performing fenestrated and branched endovascular aortic repair, there is a diverse experience outside the United States that has been gained over the past decade. It is through the experience of these centers that the technical and procedural complexities of complex endovascular aortic repair has been solved and provide the foundation that has allowed aortic specialists to move endovascular therapy into the paravisceral aorta with fenestrated and branched endovascular aortic repairs. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Free piston variable-stroke linear-alternator generator

    DOEpatents

    Haaland, C.M.

    1998-12-15

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine is described. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod. 8 figs.

  4. Robust control charts in industrial production of olive oil

    NASA Astrophysics Data System (ADS)

    Grilo, Luís M.; Mateus, Dina M. R.; Alves, Ana C.; Grilo, Helena L.

    2014-10-01

    Acidity is one of the most important variables in the quality analysis and characterization of olive oil. During the industrial production we use individuals and moving range charts to monitor this variable, which is not always normal distributed. After a brief exploratory data analysis, where we use the bootstrap method, we construct control charts, before and after a Box-Cox transformation, and compare their robustness and performance.

  5. Learning an intrinsic-variable preserving manifold for dynamic visual tracking.

    PubMed

    Qiao, Hong; Zhang, Peng; Zhang, Bo; Zheng, Suiwu

    2010-06-01

    Manifold learning is a hot topic in the field of computer science, particularly since nonlinear dimensionality reduction based on manifold learning was proposed in Science in 2000. The work has achieved great success. The main purpose of current manifold-learning approaches is to search for independent intrinsic variables underlying high dimensional inputs which lie on a low dimensional manifold. In this paper, a new manifold is built up in the training step of the process, on which the input training samples are set to be close to each other if the values of their intrinsic variables are close to each other. Then, the process of dimensionality reduction is transformed into a procedure of preserving the continuity of the intrinsic variables. By utilizing the new manifold, the dynamic tracking of a human who can move and rotate freely is achieved. From the theoretical point of view, it is the first approach to transfer the manifold-learning framework to dynamic tracking. From the application point of view, a new and low dimensional feature for visual tracking is obtained and successfully applied to the real-time tracking of a free-moving object from a dynamic vision system. Experimental results from a dynamic tracking system which is mounted on a dynamic robot validate the effectiveness of the new algorithm.

  6. Integrating gastrocnemius force-length properties, in vivo activation and operating lengths reveals how Anolis deal with ecological challenges.

    PubMed

    Foster, Kathleen L; Higham, Timothy E

    2017-03-01

    A central question in biology is how animals successfully behave under complex natural conditions. Although changes in locomotor behaviour, motor control and force production in relation to incline are commonly examined, a wide range of other factors, including a range of perch diameters, pervades arboreal habitats. Moving on different substrate diameters requires considerable alteration of body and limb posture, probably causing significant shifts in the lengths of the muscle-tendon units powering locomotion. Thus, how substrate shape impacts in vivo muscle function remains an important but neglected question in ecophysiology. Here, we used high-speed videography, electromyography, in situ contractile experiments and morphology to examine gastrocnemius muscle function during arboreal locomotion in the Cuban knight anole, Anolis equestris The gastrocnemius contributes more to the propulsive effort on broad surfaces than on narrow surfaces. Surprisingly, substrate inclination affected the relationship between the maximum potential force and fibre recruitment; the trade-off that was present between these variables on horizontal surfaces became a positive relationship on inclined surfaces. Finally, the biarticular nature of the gastrocnemius allows it to generate force isometrically, regardless of substrate diameter and incline, despite the fact that the tendons are incapable of stretching during cyclical locomotion. Our results emphasize the importance of considering ecology and muscle function together, and the necessity of examining both mechanical and physiological properties of muscles to understand how animals move in their environment. © 2017. Published by The Company of Biologists Ltd.

  7. Suppression of AC railway power-line interference in ECG signals recorded by public access defibrillators

    PubMed Central

    Dotsinsky, Ivan

    2005-01-01

    Background Public access defibrillators (PADs) are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Method Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed). This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC) for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. Results The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. Conclusion The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression. PMID:16309558

  8. Suppression of AC railway power-line interference in ECG signals recorded by public access defibrillators.

    PubMed

    Dotsinsky, Ivan

    2005-11-26

    Public access defibrillators (PADs) are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection. Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed). This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC) for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling. The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection. The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression.

  9. Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA

    USGS Publications Warehouse

    Gingerich, S.B.; Voss, C.I.

    2005-01-01

    Three-dimensional modeling of groundwater flow and solute transport in the Pearl Harbor aquifer, southern Oahu, Hawaii, shows that the readjustment of the freshwater-saltwater transition zone takes a long time following changes in pumping, irrigation, or recharge in the aquifer system. It takes about 50-years for the transition zone to move 90% of the distance to its new steady position. Further, the Ghyben-Herzberg estimate of the freshwater/saltwater interface depth occurred between the 10 and 50% simulated seawater concentration contours in a complex manner during 100-years of the pumping history of the aquifer. Thus, it is not a good predictor of the depth of potable water. Pre-development recharge was used to simulate the 1880 freshwater-lens configuration. Historical pumpage and recharge distributions were used and the resulting freshwater-lens size and position were simulated through 1980. Simulations show that the transition zone moved upward and landward during the period simulated. Previous groundwater flow models for Oahu have been limited to areal models that simulate a sharp interface between freshwater and saltwater or solute-transport models that simulate a vertical aquifer section. The present model is based on the US Geological Survey's three-dimensional solute transport (3D SUTRA) computer code. Using several new tools for pre- and post-processing of model input and results have allowed easy model construction and unprecedented visualization of the freshwater lens and underlying transition zone in Hawaii's most developed aquifer. ?? Springer-Verlag 2005.

  10. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane begins moving away from the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  11. Beta-lactam resistance in the gram negatives: increasing complexity of conditional, composite and multiply resistant phenotypes.

    PubMed

    Iredell, Jon; Thomas, Lee; Espedido, Björn

    2006-12-01

    The greatest impact of microbiology data on clinical care is in the critically ill. Unfortunately, this is also the area in which microbiology laboratories are most often non-contributive. Attempts to move to rapid, culture-independent diagnostics are driven by the need to expedite urgent results. This is difficult in Gram-negative infection because of the complexity of the antibiotic resistance phenotype. Here, we discuss resistance to modern beta-lactams as a case in point. Recent outbreaks of transmissible carbapenem resistance among Gram-negative enteric pathogens in Sydney and Melbourne serve to illustrate the pitfalls of traditional phenotypical approaches. A better understanding of the epidemiology and mosaic nature of antibiotic resistance elements in the microflora is needed for us to move forward.

  12. Complex dynamics at the interface between wild and domestic viruses of finfish

    USGS Publications Warehouse

    Kurath, G.; Winton, J.

    2011-01-01

    Viral traffic occurs readily between wild and domesticated stocks of finfish because aquatic environments have greater connectivity than their terrestrial counterparts and because the global expansion and dynamic nature of intensive aquaculture provide multiple pathways of transmission and unique drivers of virus adaptation. Supported by examples from the literature, we provide reasons why viruses move from wild fish reservoirs to infect domestic fish in aquaculture more readily than 'domestic' viruses move across the interface to infect wild stocks. We also hypothesize that 'wild' viruses moving across the interface to domestic populations of finfish are more frequently associated with disease outbreaks and host switches compared to domestic viruses that cross the interface to infect wild fish.

  13. [Conjugated variability of spontaneous activity and behavioral response to olfactory stimuli in the taiga tick (Ixodes persulcatus)].

    PubMed

    Romashchenko, A V; Shnaĭder, E P; Petrovskiĭ, D V; Moshkin, M P

    2013-01-01

    According to -the automatic tracing of the movement of ticks in a Petri dish, motivational variability of the spontaneous activity and behavioral response of the taiga tick to olfactory stimuli was analyzed. In the studied sample, two groups of ticks that differ in the movement trajectory in the absence of stimulus were isolated, including ticks that mainly moved on the edge of the dish at maximum accessible height (group 1) and ticks that mainly moved at the bottom and wall of the dish (group 2). It was registered that ticks of group 1 (as opposed to ticks of group 2) demonstrated a pronounced behavioral response to olfactory stimuli (human synthetic pheromones and ammonia) and negative geotaxis. It was established that belonging to these groups depended On the time of day when the testing was performed and did not depend on the physiological age and infectious status.

  14. CosmoQuest Transient Tracker: Opensource Photometry & Astrometry software

    NASA Astrophysics Data System (ADS)

    Myers, Joseph L.; Lehan, Cory; Gay, Pamela; Richardson, Matthew; CosmoQuest Team

    2018-01-01

    CosmoQuest is moving from online citizen science, to observational astronomy with the creation of Transient Trackers. This open source software is designed to identify asteroids and other transient/variable objects in image sets. Transient Tracker’s features in final form will include: astrometric and photometric solutions, identification of moving/transient objects, identification of variable objects, and lightcurve analysis. In this poster we present our initial, v0.1 release and seek community input.This software builds on the existing NIH funded ImageJ libraries. Creation of this suite of opensource image manipulation routines is lead by Wayne Rasband and is released primarily under the MIT license. In this release, we are building on these libraries to add source identification for point / point-like sources, and to do astrometry. Our materials released under the Apache 2.0 license on github (http://github.com/CosmoQuestTeam) and documentation can be found at http://cosmoquest.org/TransientTracker.

  15. A new luminous blue variable - R143 in 30 Doradus

    NASA Technical Reports Server (NTRS)

    Parker, Joel WM.; Clayton, Geoffrey C.; Winge, Claudia; Conti, Peter S.

    1993-01-01

    We have discovered that R143 in the Large Magellanic Cloud is a luminous blue variable (LBV), the first and perhaps the lone LBV in the central cluster of 30 Doradus, and only the sixth known LMC LBV. Photometric and spectroscopic observations over the past 40 yr indicate that during that time R143 moved redward (changing from an F5 to F8 supergiant), then blueward (possibly becoming as early as O9.5), and is now moving back to the red (currently appearing as a late B supergiant). Similarly, the V magnitude of the star has changed by at least 1.4 mag. Images of R143 show very unusual filaments of nebulosity extending from the star to a shell at a distance of 3.5 pc, perhaps due to a similar ejection mechanism that created the spiral jets and shell associated with AG Car, another LBV.

  16. Numerical Modeling in Geodynamics: Success, Failure and Perspective

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.

    2005-12-01

    A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of tuning model variables are greater than two, test carefully the effect of each of the variables on the modeled phenomenon. Remember: With four exponents I can fit an elephant (E. Fermi, physicist). (vii) Make your numerical model as accurate as possible, but never put the aim to reach a great accuracy: Undue precision of computations is the first symptom of mathematical illiteracy (N. Krylov, mathematician). How complex should be a numerical model? A model which images any detail of the reality is as useful as a map of scale 1:1 (J. Robinson, economist). This message is quite important for geoscientists, who study numerical models of complex geodynamical processes. I believe that geoscientists will never create a model of the real Earth dynamics, but we should try to model the dynamics such a way to simulate basic geophysical processes and phenomena. Does a particular model have a predictive power? Each numerical model has a predictive power, otherwise the model is useless. The predictability of the model varies with its complexity. Remember that a solution to the numerical model is an approximate solution to the equations, which have been chosen in believe that they describe dynamic processes of the Earth. Hence a numerical model predicts dynamics of the Earth as well as the mathematical equations describe this dynamics. What methodological advances are still needed for testable geodynamic modeling? Inverse (time-reverse) numerical modeling and data assimilation are new methodologies in geodynamics. The inverse modeling can allow to test geodynamic models forward in time using restored (from present-day observations) initial conditions instead of unknown conditions.

  17. KSC-2011-8227

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The transporter carrying the high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida makes a wide turn into the right-hand lane of the NASA Causeway as it leaves the visitor complex on its way to NASA Kennedy Space Center's Launch Complex 39 turn basin. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  18. A retrospective study on changes in residents' physical activities, social interactions, and neighborhood cohesion after moving to a walkable community.

    PubMed

    Zhu, Xuemei; Yu, Chia-Yuan; Lee, Chanam; Lu, Zhipeng; Mann, George

    2014-12-01

    This study is to examine changes in residents' physical activities, social interactions, and neighborhood cohesion after they moved to a walkable community in Austin, Texas. Retrospective surveys (N=449) were administered in 2013-2014 to collect pre- and post-move data about the outcome variables and relevant personal, social, and physical environmental factors. Walkability of each resident's pre-move community was measured using the Walk Score. T tests were used to examine the pre-post move differences in the outcomes in the whole sample and across sub-groups with different physical activity levels, neighborhood conditions, and neighborhood preferences before the move. After the move, total physical activity increased significantly in the whole sample and all sub-groups except those who were previously sufficiently active; lived in communities with high walkability, social interactions, or neighborhood cohesion; or had moderate preference for walkable neighborhoods. Walking in the community increased in the whole sample and all subgroups except those who were previously sufficiently active, moved from high-walkability communities, or had little to no preference for walkable neighborhoods. Social interactions and neighborhood cohesion increased significantly after the move in the whole sample and all sub-groups. This study explored potential health benefits of a walkable community in promoting physically and socially active lifestyles, especially for populations at higher risk of obesity. The initial result is promising, suggesting the need for more work to further examine the relationships between health and community design using pre-post assessments. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Syntactic Complexity, Lexical Variation and Accuracy as a Function of Task Complexity and Proficiency Level in L2 Writing and Speaking

    ERIC Educational Resources Information Center

    Kuiken, Folkert; Vedder, Ineke

    2012-01-01

    The research project reported in this chapter consists of three studies in which syntactic complexity, lexical variation and fluency appear as dependent variables. The independent variables are task complexity and proficiency level, as the three studies investigate the effect of task complexity on the written and oral performance of L2 learners of…

  20. Application of semiautomatic measuring complex for ecological monitoring of marine aquatories (EMMA) in the study of coastal areas of the Black Sea

    NASA Astrophysics Data System (ADS)

    Goncharenko, Igor; Rostovtseva, Vera; Konovalov, Boris

    2017-04-01

    For monitoring of the ecological state of coastal waters it is often necessary to obtain data from board a moving ship or an airborne craft. We suggested using a three-channel passive optical device that enables to get the sea reflectance coefficient spectra from board a moving ship. The data of the measurements are processed then according to our original method, which is based on the intrinsic properties of the pure water absorption spectrum - water absorption step method (WASM). It gives us the possibility to suppress influence of the various weather and experiment conditions on the data quality and to obtain estimates of the absorption spectra of the sea waters under exploration. The retrieved spectra in its turn can be the source of information about water constituents concentration. Based on foregoing we developed a semiautomatic measurement complex EMMA (Ecological Monitoring of Marine Aquatories) operating from board a ship. It includes three hyperspectral photometers, the data from which are processed by special algorithm on base of WASM. In natural waters we can get estimates of phytoplankton pigments, "yellow substance" and suspended matter concentrations. EMMA is also provided by the flowing system of temperature and salinity measuring. The main results are the following: • The data from the new semiautomatic complex EMMA obtained during the operational monitoring of coastal waters aboard a moving vessel are given for two different regions of the Black Sea: the region at a river mouth at Adler and the region of two seas waters mixing at Feodosia. • Specially designed for the complex software based on the original algorithm for spectra calibration WASM, which can reduce the negative impact of adverse weather conditions (wind, cloudiness, sea roughness) on the results of evaluation of the composition of sea water (the concentration of particulate matter and DOM), is applied for the data processing. • Complex EMMA is used for rapid determination of distribution of the main components of the coastal waters from board a moving vessel. The obtained water constituents concentrations are compared to the results of measurements in water samples. The developed method of operative sea monitoring is necessary for a variety of purposes, including calibration of satellite measurements.

  1. Dynamics of Oxidation of Aluminum Nanoclusters using Variable Charge Molecular-Dynamics Simulations on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Campbell, Timothy; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Ogata, Shuji; Rodgers, Stephen

    1999-06-01

    Oxidation of aluminum nanoclusters is investigated with a parallel molecular-dynamics approach based on dynamic charge transfer among atoms. Structural and dynamic correlations reveal that significant charge transfer gives rise to large negative pressure in the oxide which dominates the positive pressure due to steric forces. As a result, aluminum moves outward and oxygen moves towards the interior of the cluster with the aluminum diffusivity 60% higher than that of oxygen. A stable 40 Å thick amorphous oxide is formed; this is in excellent agreement with experiments.

  2. Analysis of Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  3. Weather variability and the incidence of cryptosporidiosis: comparison of time series poisson regression and SARIMA models.

    PubMed

    Hu, Wenbiao; Tong, Shilu; Mengersen, Kerrie; Connell, Des

    2007-09-01

    Few studies have examined the relationship between weather variables and cryptosporidiosis in Australia. This paper examines the potential impact of weather variability on the transmission of cryptosporidiosis and explores the possibility of developing an empirical forecast system. Data on weather variables, notified cryptosporidiosis cases, and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics for the period of January 1, 1996-December 31, 2004, respectively. Time series Poisson regression and seasonal auto-regression integrated moving average (SARIMA) models were performed to examine the potential impact of weather variability on the transmission of cryptosporidiosis. Both the time series Poisson regression and SARIMA models show that seasonal and monthly maximum temperature at a prior moving average of 1 and 3 months were significantly associated with cryptosporidiosis disease. It suggests that there may be 50 more cases a year for an increase of 1 degrees C maximum temperature on average in Brisbane. Model assessments indicated that the SARIMA model had better predictive ability than the Poisson regression model (SARIMA: root mean square error (RMSE): 0.40, Akaike information criterion (AIC): -12.53; Poisson regression: RMSE: 0.54, AIC: -2.84). Furthermore, the analysis of residuals shows that the time series Poisson regression appeared to violate a modeling assumption, in that residual autocorrelation persisted. The results of this study suggest that weather variability (particularly maximum temperature) may have played a significant role in the transmission of cryptosporidiosis. A SARIMA model may be a better predictive model than a Poisson regression model in the assessment of the relationship between weather variability and the incidence of cryptosporidiosis.

  4. Social variables exert selective pressures in the evolution and form of primate mimetic musculature.

    PubMed

    Burrows, Anne M; Li, Ly; Waller, Bridget M; Micheletta, Jerome

    2016-04-01

    Mammals use their faces in social interactions more so than any other vertebrates. Primates are an extreme among most mammals in their complex, direct, lifelong social interactions and their frequent use of facial displays is a means of proximate visual communication with conspecifics. The available repertoire of facial displays is primarily controlled by mimetic musculature, the muscles that move the face. The form of these muscles is, in turn, limited by and influenced by phylogenetic inertia but here we use examples, both morphological and physiological, to illustrate the influence that social variables may exert on the evolution and form of mimetic musculature among primates. Ecomorphology is concerned with the adaptive responses of morphology to various ecological variables such as diet, foliage density, predation pressures, and time of day activity. We present evidence that social variables also exert selective pressures on morphology, specifically using mimetic muscles among primates as an example. Social variables include group size, dominance 'style', and mating systems. We present two case studies to illustrate the potential influence of social behavior on adaptive morphology of mimetic musculature in primates: (1) gross morphology of the mimetic muscles around the external ear in closely related species of macaque (Macaca mulatta and Macaca nigra) characterized by varying dominance styles and (2) comparative physiology of the orbicularis oris muscle among select ape species. This muscle is used in both facial displays/expressions and in vocalizations/human speech. We present qualitative observations of myosin fiber-type distribution in this muscle of siamang (Symphalangus syndactylus), chimpanzee (Pan troglodytes), and human to demonstrate the potential influence of visual and auditory communication on muscle physiology. In sum, ecomorphologists should be aware of social selective pressures as well as ecological ones, and that observed morphology might reflect a compromise between the demands of the physical and the social environments. © 2016 Anatomical Society.

  5. A Planning Revolution

    NASA Technical Reports Server (NTRS)

    Heneghan, C.

    1999-01-01

    The traditional centralized planning and scheduling of complex fast moving projects are value-added activites. However, centralized scheduling has some severe deficiencies that have plagued managers since the Polaris project when PERT analysis was invented.

  6. A Teacher's Journey: A First-Person Account of How a Gay, Cambodian Refugee Navigated Myriad Barriers to Become Educated in the United States

    ERIC Educational Resources Information Center

    Sam, Kosal; Finley, Susan

    2015-01-01

    Educational institutions, like most social service organizations, need to recognize intersectionality and complexity and move away from monolithic conceptions of homelessness--if they recognize homelessness at all. This first person account of a gay, Cambodian refugee illustrates the enormous complexity schools face in forming institutional…

  7. Achieving control and interoperability through unified model-based systems and software engineering

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Ingham, Michel; Dvorak, Daniel

    2005-01-01

    Control and interoperation of complex systems is one of the most difficult challenges facing NASA's Exploration Systems Mission Directorate. An integrated but diverse array of vehicles, habitats, and supporting facilities, evolving over the long course of the enterprise, must perform ever more complex tasks while moving steadily away from the sphere of ground support and intervention.

  8. Alex in the Middle: Inclusion of a Child with Severe Disabilities and Complex Health Needs.

    ERIC Educational Resources Information Center

    Bruns, Deborah A.

    This case study describes the 2-year process of moving a young child with severe disabilities and complex medical needs from a special school setting to a special class in a regular education setting. The child had Marshall-Smith Syndrome, characterized by respiratory, pulmonary, and skeletal abnormalities, and developmental delays due to the…

  9. Is Structure Dependence an Innate Constraint? New Experimental Evidence from Children's Complex-Question Production

    ERIC Educational Resources Information Center

    Ambridge, Ben; Rowland, Caroline F.; Pine, Julian M.

    2008-01-01

    According to Crain and Nakayama (1987), when forming complex yes/no questions, children do not make errors such as "Is the boy who smoking is crazy?" because they have innate knowledge of "structure dependence" and so will not move the auxiliary from the relative clause. However, simple recurrent networks are also able to avoid…

  10. KSC-2011-8245

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida negotiates the turn from Kennedy Parkway onto Schwartz Road on its way toward NASA Kennedy Space Center's Launch Complex 39 turn basin. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  11. Planning Following Stroke: A Relational Complexity Approach Using the Tower of London

    PubMed Central

    Andrews, Glenda; Halford, Graeme S.; Chappell, Mark; Maujean, Annick; Shum, David H. K.

    2014-01-01

    Planning on the 4-disk version of the Tower of London (TOL4) was examined in stroke patients and unimpaired controls. Overall TOL4 solution scores indicated impaired planning in the frontal stroke but not non-frontal stroke patients. Consistent with the claim that processing the relations between current states, intermediate states, and goal states is a key process in planning, the domain-general relational complexity metric was a good indicator of the experienced difficulty of TOL4 problems. The relational complexity metric shared variance with task-specific metrics of moves to solution and search depth. Frontal stroke patients showed impaired planning compared to controls on problems at all three complexity levels, but at only two of the three levels of moves to solution, search depth and goal ambiguity. Non-frontal stroke patients showed impaired planning only on the most difficult quaternary-relational and high search depth problems. An independent measure of relational processing (viz., Latin square task) predicted TOL4 solution scores after controlling for stroke status and location, and executive processing (Trail Making Test). The findings suggest that planning involves a domain-general capacity for relational processing that depends on the frontal brain regions. PMID:25566042

  12. Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro Models

    PubMed Central

    Manini, Ivana; Caponnetto, Federica; Bartolini, Anna; Ius, Tamara; Mariuzzi, Laura; Di Loreto, Carla; Cesselli, Daniela

    2018-01-01

    The invasion properties of glioblastoma hamper a radical surgery and are responsible for its recurrence. Understanding the invasion mechanisms is thus critical to devise new therapeutic strategies. Therefore, the creation of in vitro models that enable these mechanisms to be studied represents a crucial step. Since in vitro models represent an over-simplification of the in vivo system, in these years it has been attempted to increase the level of complexity of in vitro assays to create models that could better mimic the behaviour of the cells in vivo. These levels of complexity involved: 1. The dimension of the system, moving from two-dimensional to three-dimensional models; 2. The use of microfluidic systems; 3. The use of mixed cultures of tumour cells and cells of the tumour micro-environment in order to mimic the complex cross-talk between tumour cells and their micro-environment; 4. And the source of cells used in an attempt to move from commercial lines to patient-based models. In this review, we will summarize the evidence obtained exploring these different levels of complexity and highlighting advantages and limitations of each system used. PMID:29300332

  13. Experience of place for young adults under 65 years with complex disabilities moving into purpose-built residential care.

    PubMed

    Muenchberger, Heidi; Ehrlich, Carolyn; Kendall, Elizabeth; Vit, Marina

    2012-12-01

    The aim of this research was to examine first-person accounts of the significance of place for young adults (aged between 18 and 65 years of age) with complex disabilities moving into purpose-built residential care accommodation. Interviews with residents, family members and staff working at the accommodation site considered the impact of the physical, care and social environment on the experience of place. Five elements of experience were identified, including (a) freedom and self-expression, (b) designed for disability (c) flexible and responsive care environment, (d) establishing relationships and (e) defining spaces. Findings confirmed the need for a 'value added approach' to housing and support for young adults with complex disability. A value added approach extends the importance of place beyond the physical context for people with complex conditions and incorporates essential symbolic and relational concepts of value--being of value (for family members), having value (for residents) and giving value (for staff). The framework of the therapeutic landscape is applied within the context of supported residential care and the factors that promote a healing environment are examined. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Typhoon Sinlaku

    Atmospheric Science Data Center

    2013-04-16

    ... before the storm weakened as it moved inland. While the nature and formation of individual storm events is relatively well understood, ... clouds on climate is difficult to assess due to the variable nature of cloud cover at various altitudes. MISR's data products are designed ...

  15. Nonlinear Krylov and moving nodes in the method of lines

    NASA Astrophysics Data System (ADS)

    Miller, Keith

    2005-11-01

    We report on some successes and problem areas in the Method of Lines from our work with moving node finite element methods. First, we report on our "nonlinear Krylov accelerator" for the modified Newton's method on the nonlinear equations of our stiff ODE solver. Since 1990 it has been robust, simple, cheap, and automatic on all our moving node computations. We publicize further trials with it here because it should be of great general usefulness to all those solving evolutionary equations. Second, we discuss the need for reliable automatic choice of spatially variable time steps. Third, we discuss the need for robust and efficient iterative solvers for the difficult linearized equations (Jx=b) of our stiff ODE solver. Here, the 1997 thesis of Zulu Xaba has made significant progress.

  16. Relocation of the Deep Space Network Maintenance Center

    NASA Technical Reports Server (NTRS)

    Beutler, K. F.

    1981-01-01

    The Jet Propulsion Laboratory maintains a Deep Space Network (DSN) maintenance center (DMC), whose task is to engineer and manage the repair and calibration program for the electronic and mechanical equipment used in the tracking stations located at Madrid, Spain, and Canberra, Australia. The DMC also manages the Goldstone complex maintenance facility (GCMF), whose task is to repair and calibrate the Goldstone electronic and mechanical equipment. The rationale for moving the facility to Barstow, California, and the benefits derived from the move are discussed.

  17. Participation of primary motor cortex area 4a in complex sensory processing: 3.0-T fMRI study.

    PubMed

    Terumitsu, Makoto; Ikeda, Kotaro; Kwee, Ingrid L; Nakada, Tsutomu

    2009-05-06

    The precise movement of human fingers requires continuous and reciprocal interaction between motor and sensory systems. Similar to other primates, there is double representation of the digits and wrists within the human primary motor cortex (M1), which are generally referred to as area 4 anterior (M1-4a) and area 4 posterior (M1-4p). In this high-field (3.0 T) functional magnetic resonance imaging (fMRI) study, we hypothesized that M1-4p is more important for initiation of motion, whereas M1-4a is important for execution of a given motion involving more complex sensoriomotor interaction. We investigated M1-4a and M1-4p activation associated with two representative motor tasks, namely, finger tapping (voluntary motion, VM) and passive finger movement accomplished by continuous pressure (passive motor, PM), and two representative sensory stimulations, namely, simple stimulation of flutter vibration (simple sensory, SS), and complex stimulation by a row of pins moving either vertically or horizontally (complex sensory, CS). Both M1-4a and M1-4p were activated in both motor tasks, VM and PM. M1-4p was not activated by either of the two sensory tasks, whereas M1-4a was activated by CS but not by SS. Analysis of the center of gravities (COG) of the activated areas showed that VM and PM moved COG towards M1-4p and 3a. SS moved COG towards somatosensory cortex Brodmann areas 1, 2, and 3b, whereas CS towards M1-4a. The result clearly showed that M1-4a represents the area of secondary motor execution, which actively participates in CS processing.

  18. Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion

    PubMed Central

    Poncet, Joël; Dubremetz, Jean-François; Lebrun, Maryse

    2009-01-01

    One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ) between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1) and the neck of the rhoptries (for RON2/RON4/RON5 proteins), have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes. PMID:19247437

  19. Inversion of deformation fields time-series from optical images, application to the long term kinematics of slow-moving landslides

    NASA Astrophysics Data System (ADS)

    Bontemps, Noélie; Lacroix, Pascal; Doin, Marie-Pierre

    2017-04-01

    Slow-moving landslides are one of the major risks in mountainous areas. They are the cause of a lot of damages, both material and human as they can at any time exhibit sudden acceleration phases and flows that are generally difficult to predict. Landslide kinematic is driven by, inter alia, precipitation and water infiltration, river erosion, earthquakes and human activities. Complex interactions have been observed between climatic forcing and earthquakes. However, observations of these complex interactions on slow-moving landslides are very few, restricting the comprehension that we have on involved mechanisms. In this context, it is necessary to monitor slow-moving landslides over time. We propose to answer this problematic by studying slow-moving landslides over a long time period in the Colca valley, Peru, affected by both earthquakes and rainfalls. We will base our study on the 30-years long SPOT1-7/Pleiades archive, that confronts us with (1) low dynamic of images, (2) difference of pixel resolution between all acquired images and (3) long time span in between images leading to ground surface changes. To overcome these three limitations, this study proposes an adaptation to optical images of a method originally used for InSAR time-series analysis. This method uses the full redundancy of information to derive robust time-series of displacement from deformation fields. The retrieved displacement time-series obtained on the three largest landslides of the area are robust and coherent in time. The developed method allows decreasing the displacement uncertainties by approximately 25%. Eventually, we discuss the impact of the different forcing on the three main landslides of the region.

  20. Adjoint-based optimization of PDEs in moving domains

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Liao, Wenyuan

    2008-02-01

    In this investigation we address the problem of adjoint-based optimization of PDE systems in moving domains. As an example we consider the one-dimensional heat equation with prescribed boundary temperatures and heat fluxes. We discuss two methods of deriving an adjoint system necessary to obtain a gradient of a cost functional. In the first approach we derive the adjoint system after mapping the problem to a fixed domain, whereas in the second approach we derive the adjoint directly in the moving domain by employing methods of the noncylindrical calculus. We show that the operations of transforming the system from a variable to a fixed domain and deriving the adjoint do not commute and that, while the gradient information contained in both systems is the same, the second approach results in an adjoint problem with a simpler structure which is therefore easier to implement numerically. This approach is then used to solve a moving boundary optimization problem for our model system.

  1. On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Gamal M.

    Dynamical systems described by real and complex variables are currently one of the most popular areas of scientific research. These systems play an important role in several fields of physics, engineering, and computer sciences, for example, laser systems, control (or chaos suppression), secure communications, and information science. Dynamical basic properties, chaos (hyperchaos) synchronization, chaos control, and generating hyperchaotic behavior of these systems are briefly summarized. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. They are also used to describe and simulate the physics of detuned laser and thermal convection of liquid flows, where the electric field and the atomic polarization amplitudes are both complex. Clearly, if the variables of the system are complex the equations involve twice as many variables and control parameters, thus making it that much harder for a hostile agent to intercept and decipher the coded message. Chaotic and hyperchaotic complex systems are stated as examples. Finally there are many open problems in the study of chaotic and hyperchaotic complex nonlinear dynamical systems, which need further investigations. Some of these open problems are given.

  2. Complex social waves of giant honeybees provoked by a dummy wasp support the special-agent hypothesis.

    PubMed

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas

    2010-03-01

    The social waves in giant honeybees termed as shimmering are more complex than mexican waves. it has been demonstrated1 that shimmering is triggered by special agents at the nest surface. in this paper, we have used a nest that originated by amalgamation of two previously separated nests and stimulated waves by a dummy wasp moved on a miniature cable car. we illustrate the plausibility of the special-agent hypothesis1 also for complex shimmering processes.

  3. Complex social waves of giant honeybees provoked by a dummy wasp support the special-agent hypothesis

    PubMed Central

    Weihmann, Frank; Hoetzl, Thomas

    2010-01-01

    The social waves in giant honeybees termed as shimmering are more complex than mexican waves. it has been demonstrated1 that shimmering is triggered by special agents at the nest surface. in this paper, we have used a nest that originated by amalgamation of two previously separated nests and stimulated waves by a dummy wasp moved on a miniature cable car. we illustrate the plausibility of the special-agent hypothesis1 also for complex shimmering processes. PMID:20585516

  4. Complex Versus Simple Ankle Movement Training in Stroke Using Telerehabilitation: A Randomized Controlled Trial

    PubMed Central

    Deng, Huiqiong; Durfee, William K.; Nuckley, David J.; Rheude, Brandon S.; Severson, Amy E.; Skluzacek, Katie M.; Spindler, Kristen K.; Davey, Cynthia S.

    2012-01-01

    Background Telerehabilitation allows rehabilitative training to continue remotely after discharge from acute care and can include complex tasks known to create rich conditions for neural change. Objectives The purposes of this study were: (1) to explore the feasibility of using telerehabilitation to improve ankle dorsiflexion during the swing phase of gait in people with stroke and (2) to compare complex versus simple movements of the ankle in promoting behavioral change and brain reorganization. Design This study was a pilot randomized controlled trial. Setting Training was done in the participant's home. Testing was done in separate research labs involving functional magnetic resonance imaging (fMRI) and multi-camera gait analysis. Patients Sixteen participants with chronic stroke and impaired ankle dorsiflexion were assigned randomly to receive 4 weeks of telerehabilitation of the paretic ankle. Intervention Participants received either computerized complex movement training (track group) or simple movement training (move group). Measurements Behavioral changes were measured with the 10-m walk test and gait analysis using a motion capture system. Brain reorganization was measured with ankle tracking during fMRI. Results Dorsiflexion during gait was significantly larger in the track group compared with the move group. For fMRI, although the volume, percent volume, and intensity of cortical activation failed to show significant changes, the frequency count of the number of participants showing an increase versus a decrease in these values from pretest to posttest measurements was significantly different between the 2 groups, with the track group decreasing and the move group increasing. Limitations Limitations of this study were that no follow-up test was conducted and that a small sample size was used. Conclusions The results suggest that telerehabilitation, emphasizing complex task training with the paretic limb, is feasible and can be effective in promoting further dorsiflexion in people with chronic stroke. PMID:22095209

  5. Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control

    NASA Astrophysics Data System (ADS)

    Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo

    2017-02-01

    The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.

  6. Aging and the complexity of cardiovascular dynamics

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Furman, M. I.; Pincus, S. M.; Ryan, S. M.; Lipsitz, L. A.; Goldberger, A. L.

    1991-01-01

    Biomedical signals often vary in a complex and irregular manner. Analysis of variability in such signals generally does not address directly their complexity, and so may miss potentially useful information. We analyze the complexity of heart rate and beat-to-beat blood pressure using two methods motivated by nonlinear dynamics (chaos theory). A comparison of a group of healthy elderly subjects with healthy young adults indicates that the complexity of cardiovascular dynamics is reduced with aging. This suggests that complexity of variability may be a useful physiological marker.

  7. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Variability in Rheumatology day care hospitals in Spain: VALORA study.

    PubMed

    Hernández Miguel, María Victoria; Martín Martínez, María Auxiliadora; Corominas, Héctor; Sanchez-Piedra, Carlos; Sanmartí, Raimon; Fernandez Martinez, Carmen; García-Vicuña, Rosario

    To describe the variability of the day care hospital units (DCHUs) of Rheumatology in Spain, in terms of structural resources and operating processes. Multicenter descriptive study with data from a self-completed questionnaire of DCHUs self-assessment based on DCHUs quality standards of the Spanish Society of Rheumatology. Structural resources and operating processes were analyzed and stratified by hospital complexity (regional, general, major and complex). Variability was determined using the coefficient of variation (CV) of the variable with clinical relevance that presented statistically significant differences when was compared by centers. A total of 89 hospitals (16 autonomous regions and Melilla) were included in the analysis. 11.2% of hospitals are regional, 22,5% general, 27%, major and 39,3% complex. A total of 92% of DCHUs were polyvalent. The number of treatments applied, the coordination between DCHUs and hospital pharmacy and the post graduate training process were the variables that showed statistically significant differences depending on the complexity of hospital. The highest rate of rheumatologic treatments was found in complex hospitals (2.97 per 1,000 population), and the lowest in general hospitals (2.01 per 1,000 population). The CV was 0.88 in major hospitals; 0.86 in regional; 0.76 in general, and 0.72 in the complex. there was variability in the number of treatments delivered in DCHUs, being greater in major hospitals and then in regional centers. Nonetheless, the variability in terms of structure and function does not seem due to differences in center complexity. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  9. Advanced Statistics for Exotic Animal Practitioners.

    PubMed

    Hodsoll, John; Hellier, Jennifer M; Ryan, Elizabeth G

    2017-09-01

    Correlation and regression assess the association between 2 or more variables. This article reviews the core knowledge needed to understand these analyses, moving from visual analysis in scatter plots through correlation, simple and multiple linear regression, and logistic regression. Correlation estimates the strength and direction of a relationship between 2 variables. Regression can be considered more general and quantifies the numerical relationships between an outcome and 1 or multiple variables in terms of a best-fit line, allowing predictions to be made. Each technique is discussed with examples and the statistical assumptions underlying their correct application. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust behaviors. In addition, I introduce a temporal smoothing technique to eliminate the jagged effect caused by large simulation time. Several algorithms are used to speed up the simulation. For example, pre-calculated tables and display lists are created to replace some of the most commonly used functions, scripts and processes. The performance study shows that both time and space costs of the algorithms are linear in the number of particles in the system. On a Silicon Graphics Octane, three vehicles with 20,000 particles run at 6-8 frames per second on average. This speed does not include the extra calculations of convergence of the numerical integration for fluid dynamics which usually takes about 4-5 minutes to achieve steady state.

  11. On applications of chimera grid schemes to store separation

    NASA Technical Reports Server (NTRS)

    Cougherty, F. C.; Benek, J. A.; Steger, J. L.

    1985-01-01

    A finite difference scheme which uses multiple overset meshes to simulate the aerodynamics of aircraft/store interaction and store separation is described. In this chimera, or multiple mesh, scheme, a complex configuration is mapped using a major grid about the main component of the configuration, and minor overset meshes are used to map each additional component such as a store. As a first step in modeling the aerodynamics of store separation, two dimensional inviscid flow calculations were carried out in which one of the minor meshes is allowed to move with respect to the major grid. Solutions of calibrated two dimensional problems indicate that allowing one mesh to move with respect to another does not adversely affect the time accuracy of an unsteady solution. Steady, inviscid three dimensional computations demonstrate the capability to simulate complex configurations, including closely packed multiple bodies.

  12. Birds of a Feather: Supporting Secure Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braswell III, H V

    2006-04-24

    Over the past few years Lawrence Livermore National Laboratory has begun the process of moving to a diskless environment in the Secure Computer Support realm. This movement has included many moving targets and increasing support complexity. We would like to set up a forum for Security and Support professionals to get together from across the Complex and discuss current deployments, lessons learned, and next steps. This would include what hardware, software, and hard copy based solutions are being used to manage Secure Computing. The topics to be discussed include but are not limited to: Diskless computing, port locking and management,more » PC, Mac, and Linux/UNIX support and setup, system imaging, security setup documentation and templates, security documentation and management, customer tracking, ticket tracking, software download and management, log management, backup/disaster recovery, and mixed media environments.« less

  13. Solving Partial Differential Equations on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less

  14. Comparison of quantitative flow cytometric data provided by panels with lower and increased color number

    NASA Astrophysics Data System (ADS)

    Bocsi, József; Mittag, Anja; Pierzchalski, Arkadiusz; Baumgartner, Adolf; Dähnert, Ingo; Tárnok, Attila

    2012-03-01

    To date the flow cytometry (FCM) industry is booming with new generations of commercial clinical instruments. Long-term clinical studies have the dilemma that moving to new instruments being capable of more complex cell-analysis makes it difficult to compare new data with those obtained on older instruments with less complex analysis panels. Since 15 years we conduct follow-up studies on children with congenital heart diseases. In this period we moved from 2- to 3- and now to 10-color FCM immunophenotyping panels. Questions arise how to compare and transfer data from lower to higher level of complexity. Two comparable antibody panels for leukocyte immunophenotyping (12-tube 2-colors, and 9-tube 4-colors) were measured on a BD FACScalibur FCM (calibration: Spherotech beads) in 19 blood samples from children with congenital heart disease. This increase of colors was accompanied by moving antibodies that were in the 2-color panel either FITC or PE labeled to red dyes such as PerCP or APC. Algorithms were developed for bridging data for quantitative characterization of antigen expression (mean fluorescence intensity) and frequency of different cell subpopulations in combination with rainbow bead standard data. This approach worked for the most relevant antibodies (CD3, CD4, CD8 etc.) well, but rendered substantial uncertainty for activation markers (CD69 etc.). Our techniques are particularly well suited to the analysis in long-term studies and have the potential to compare older and recent results in a standardized way.

  15. Collective strategy for obstacle navigation during cooperative transport by ants.

    PubMed

    McCreery, Helen F; Dix, Zachary A; Breed, Michael D; Nagpal, Radhika

    2016-11-01

    Group cohesion and consensus have primarily been studied in the context of discrete decisions, but some group tasks require making serial decisions that build on one another. We examine such collective problem solving by studying obstacle navigation during cooperative transport in ants. In cooperative transport, ants work together to move a large object back to their nest. We blocked cooperative transport groups of Paratrechina longicornis with obstacles of varying complexity, analyzing groups' trajectories to infer what kind of strategy the ants employed. Simple strategies require little information, but more challenging, robust strategies succeed with a wider range of obstacles. We found that transport groups use a stochastic strategy that leads to efficient navigation around simple obstacles, and still succeeds at difficult obstacles. While groups navigating obstacles preferentially move directly toward the nest, they change their behavior over time; the longer the ants are obstructed, the more likely they are to move away from the nest. This increases the chance of finding a path around the obstacle. Groups rapidly changed directions and rarely stalled during navigation, indicating that these ants maintain consensus even when the nest direction is blocked. Although some decisions were aided by the arrival of new ants, at many key points, direction changes were initiated within the group, with no apparent external cause. This ant species is highly effective at navigating complex environments, and implements a flexible strategy that works for both simple and more complex obstacles. © 2016. Published by The Company of Biologists Ltd.

  16. LTPP Profile Variability

    DOT National Transportation Integrated Search

    1998-05-01

    The reason U.S. consumers are the envy of the world is that our nation essentially is an economy in motion. For a variety of reasons, our nation has the ability to move raw materials, manufactured products, and finished goods with very high degrees o...

  17. An Efficient Moving Target Detection Algorithm Based on Sparsity-Aware Spectrum Estimation

    PubMed Central

    Shen, Mingwei; Wang, Jie; Wu, Di; Zhu, Daiyin

    2014-01-01

    In this paper, an efficient direct data domain space-time adaptive processing (STAP) algorithm for moving targets detection is proposed, which is achieved based on the distinct spectrum features of clutter and target signals in the angle-Doppler domain. To reduce the computational complexity, the high-resolution angle-Doppler spectrum is obtained by finding the sparsest coefficients in the angle domain using the reduced-dimension data within each Doppler bin. Moreover, we will then present a knowledge-aided block-size detection algorithm that can discriminate between the moving targets and the clutter based on the extracted spectrum features. The feasibility and effectiveness of the proposed method are validated through both numerical simulations and raw data processing results. PMID:25222035

  18. Space moving target detection and tracking method in complex background

    NASA Astrophysics Data System (ADS)

    Lv, Ping-Yue; Sun, Sheng-Li; Lin, Chang-Qing; Liu, Gao-Rui

    2018-06-01

    The background of the space-borne detectors in real space-based environment is extremely complex and the signal-to-clutter ratio is very low (SCR ≈ 1), which increases the difficulty for detecting space moving targets. In order to solve this problem, an algorithm combining background suppression processing based on two-dimensional least mean square filter (TDLMS) and target enhancement based on neighborhood gray-scale difference (GSD) is proposed in this paper. The latter can filter out most of the residual background clutter processed by the former such as cloud edge. Through this procedure, both global and local SCR have obtained substantial improvement, indicating that the target has been greatly enhanced. After removing the detector's inherent clutter region through connected domain processing, the image only contains the target point and the isolated noise, in which the isolated noise could be filtered out effectively through multi-frame association. The proposed algorithm in this paper has been compared with some state-of-the-art algorithms for moving target detection and tracking tasks. The experimental results show that the performance of this algorithm is the best in terms of SCR gain, background suppression factor (BSF) and detection results.

  19. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1995-02-01

    The nearby intense star-forming region known as the Great Nebula in the Orion constellation reveals a bow shock around a very young star as seen by NASA's Hubble Space Telescope (HST). Named for the crescent-shaped wave made by a ship as it moves through the water, a bow shock can be created in space where two streams of gas collide. LL Ori emits a vigorous solar wind, a stream of charged particles moving rapidly outward from the star. Our own sun has a less energetic version of this wind. The material in the fast wind from LL Ori collides with slow moving gas evaporating away form the center of the Orion Nebula, which is located in the lower right of this image, producing the crescent shaped bow shock seen in the image. Astronomers have identified numerous shock fronts in this complex star-forming region and are using this data to understand the many complex phenomena associated with the birth of stars. A close visitor in our Milky Way Galaxy, the nebula is only 1,500 light years away from Earth. The filters used in this color composite represent oxygen, nitrogen, and hydrogen emissions.

  20. FISHER'S GEOMETRIC MODEL WITH A MOVING OPTIMUM

    PubMed Central

    Matuszewski, Sebastian; Hermisson, Joachim; Kopp, Michael

    2014-01-01

    Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results are based on an “adaptive-walk approximation,” which is checked against individual-based simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely depends on a single composite parameter γ, which scales the rate of environmental change by the “adaptive potential” of the population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps. PMID:24898080

  1. Weather explains high annual variation in butterfly dispersal

    PubMed Central

    Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter

    2016-01-01

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662

  2. Modelling atmospheric flows with adaptive moving meshes

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Smolarkiewicz, Piotr K.; Dörnbrack, Andreas

    2012-04-01

    An anelastic atmospheric flow solver has been developed that combines semi-implicit non-oscillatory forward-in-time numerics with a solution-adaptive mesh capability. A key feature of the solver is the unification of a mesh adaptation apparatus, based on moving mesh partial differential equations (PDEs), with the rigorous formulation of the governing anelastic PDEs in generalised time-dependent curvilinear coordinates. The solver development includes an enhancement of the flux-form multidimensional positive definite advection transport algorithm (MPDATA) - employed in the integration of the underlying anelastic PDEs - that ensures full compatibility with mass continuity under moving meshes. In addition, to satisfy the geometric conservation law (GCL) tensor identity under general moving meshes, a diagnostic approach is proposed based on the treatment of the GCL as an elliptic problem. The benefits of the solution-adaptive moving mesh technique for the simulation of multiscale atmospheric flows are demonstrated. The developed solver is verified for two idealised flow problems with distinct levels of complexity: passive scalar advection in a prescribed deformational flow, and the life cycle of a large-scale atmospheric baroclinic wave instability showing fine-scale phenomena of fronts and internal gravity waves.

  3. Modeling Psychological Attributes in Psychology – An Epistemological Discussion: Network Analysis vs. Latent Variables

    PubMed Central

    Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc

    2017-01-01

    Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780

  4. Complex Variables throughout the Curriculum

    ERIC Educational Resources Information Center

    D'Angelo, John P.

    2017-01-01

    We offer many specific detailed examples, several of which are new, that instructors can use (in lecture or as student projects) to revitalize the role of complex variables throughout the curriculum. We conclude with three primary recommendations: revise the syllabus of Calculus II to allow early introductions of complex numbers and linear…

  5. Independent variable complexity for regional regression of the flow duration curve in ungauged basins

    NASA Astrophysics Data System (ADS)

    Fouad, Geoffrey; Skupin, André; Hope, Allen

    2016-04-01

    The flow duration curve (FDC) is one of the most widely used tools to quantify streamflow. Its percentile flows are often required for water resource applications, but these values must be predicted for ungauged basins with insufficient or no streamflow data. Regional regression is a commonly used approach for predicting percentile flows that involves identifying hydrologic regions and calibrating regression models to each region. The independent variables used to describe the physiographic and climatic setting of the basins are a critical component of regional regression, yet few studies have investigated their effect on resulting predictions. In this study, the complexity of the independent variables needed for regional regression is investigated. Different levels of variable complexity are applied for a regional regression consisting of 918 basins in the US. Both the hydrologic regions and regression models are determined according to the different sets of variables, and the accuracy of resulting predictions is assessed. The different sets of variables include (1) a simple set of three variables strongly tied to the FDC (mean annual precipitation, potential evapotranspiration, and baseflow index), (2) a traditional set of variables describing the average physiographic and climatic conditions of the basins, and (3) a more complex set of variables extending the traditional variables to include statistics describing the distribution of physiographic data and temporal components of climatic data. The latter set of variables is not typically used in regional regression, and is evaluated for its potential to predict percentile flows. The simplest set of only three variables performed similarly to the other more complex sets of variables. Traditional variables used to describe climate, topography, and soil offered little more to the predictions, and the experimental set of variables describing the distribution of basin data in more detail did not improve predictions. These results are largely reflective of cross-correlation existing in hydrologic datasets, and highlight the limited predictive power of many traditionally used variables for regional regression. A parsimonious approach including fewer variables chosen based on their connection to streamflow may be more efficient than a data mining approach including many different variables. Future regional regression studies may benefit from having a hydrologic rationale for including different variables and attempting to create new variables related to streamflow.

  6. Moment-to-moment changes in feeling moved match changes in closeness, tears, goosebumps, and warmth: time series analyses.

    PubMed

    Schubert, Thomas W; Zickfeld, Janis H; Seibt, Beate; Fiske, Alan Page

    2018-02-01

    Feeling moved or touched can be accompanied by tears, goosebumps, and sensations of warmth in the centre of the chest. The experience has been described frequently, but psychological science knows little about it. We propose that labelling one's feeling as being moved or touched is a component of a social-relational emotion that we term kama muta (its Sanskrit label). We hypothesise that it is caused by appraising an intensification of communal sharing relations. Here, we test this by investigating people's moment-to-moment reports of feeling moved and touched while watching six short videos. We compare these to six other sets of participants' moment-to-moment responses watching the same videos: respectively, judgements of closeness (indexing communal sharing), reports of weeping, goosebumps, warmth in the centre of the chest, happiness, and sadness. Our eighth time series is expert ratings of communal sharing. Time series analyses show strong and consistent cross-correlations of feeling moved and touched and closeness with each other and with each of the three physiological variables and expert-rated communal sharing - but distinctiveness from happiness and sadness. These results support our model.

  7. STICK-SLIP-SEPARATION Analysis and Non-Linear Stiffness and Damping Characterization of Friction Contacts Having Variable Normal Load

    NASA Astrophysics Data System (ADS)

    Yang, B. D.; Chu, M. L.; Menq, C. H.

    1998-03-01

    Mechanical systems in which moving components are mutually constrained through contacts often lead to complex contact kinematics involving tangential and normal relative motions. A friction contact model is proposed to characterize this type of contact kinematics that imposes both friction non-linearity and intermittent separation non-linearity on the system. The stick-slip friction phenomenon is analyzed by establishing analytical criteria that predict the transition between stick, slip, and separation of the interface. The established analytical transition criteria are particularly important to the proposed friction contact model for the transition conditions of the contact kinematics are complicated by the effect of normal load variation and possible interface separation. With these transition criteria, the induced friction force on the contact plane and the variable normal load perpendicular to the contact plane, can be predicted for any given cyclic relative motions at the contact interface and hysteresis loops can be produced so as to characterize the equivalent damping and stiffness of the friction contact. These-non-linear damping and stiffness methods along with the harmonic balance method are then used to predict the resonant response of a frictionally constrained two-degree-of-freedom oscillator. The predicted results are compared with those of the time integration method and the damping effect, the resonant frequency shift, and the jump phenomenon are examined.

  8. Using a Model of Verbal Art to Analyse the Visual: Analysing Multimodal Texts in Secondary English

    ERIC Educational Resources Information Center

    Ravelli, Louise

    2016-01-01

    Multimodal texts are now part of the curriculum for school English, but they are by their nature inherently complex, and pose many challenges for the classroom. Not least is finding a way to manage the technical complexity of accounting for these texts, as well as finding a way to move students beyond simple observation and description to critical…

  9. Improved Membership Probability for Moving Groups: Bayesian and Machine Learning Approaches

    NASA Astrophysics Data System (ADS)

    Lee, Jinhee; Song, Inseok

    2018-01-01

    Gravitationally unbound loose stellar associations (i.e., young nearby moving groups: moving groups hereafter) have been intensively explored because they are important in planet and disk formation studies, exoplanet imaging, and age calibration. Among the many efforts devoted to the search for moving group members, a Bayesian approach (e.g.,using the code BANYAN) has become popular recently because of the many advantages it offers. However, the resultant membership probability needs to be carefully adopted because of its sensitive dependence on input models. In this study, we have developed an improved membership calculation tool focusing on the beta-Pic moving group. We made three improvements for building models used in BANYAN II: (1) updating a list of accepted members by re-assessing memberships in terms of position, motion, and age, (2) investigating member distribution functions in XYZ, and (3) exploring field star distribution functions in XYZUVW. Our improved tool can change membership probability up to 70%. Membership probability is critical and must be better defined. For example, our code identifies only one third of the candidate members in SIMBAD that are believed to be kinematically associated with beta-Pic moving group.Additionally, we performed cluster analysis of young nearby stars using an unsupervised machine learning approach. As more moving groups and their members are identified, the complexity and ambiguity in moving group configuration has been increased. To clarify this issue, we analyzed ~4,000 X-ray bright young stellar candidates. Here, we present the preliminary results. By re-identifying moving groups with the least human intervention, we expect to understand the composition of the solar neighborhood. Moreover better defined moving group membership will help us understand star formation and evolution in relatively low density environments; especially for the low-mass stars which will be identified in the coming Gaia release.

  10. Cybersecurity in Hospitals: A Systematic, Organizational Perspective.

    PubMed

    Jalali, Mohammad S; Kaiser, Jessica P

    2018-05-28

    Cybersecurity incidents are a growing threat to the health care industry in general and hospitals in particular. The health care industry has lagged behind other industries in protecting its main stakeholder (ie, patients), and now hospitals must invest considerable capital and effort in protecting their systems. However, this is easier said than done because hospitals are extraordinarily technology-saturated, complex organizations with high end point complexity, internal politics, and regulatory pressures. The purpose of this study was to develop a systematic and organizational perspective for studying (1) the dynamics of cybersecurity capability development at hospitals and (2) how these internal organizational dynamics interact to form a system of hospital cybersecurity in the United States. We conducted interviews with hospital chief information officers, chief information security officers, and health care cybersecurity experts; analyzed the interview data; and developed a system dynamics model that unravels the mechanisms by which hospitals build cybersecurity capabilities. We then use simulation analysis to examine how changes to variables within the model affect the likelihood of cyberattacks across both individual hospitals and a system of hospitals. We discuss several key mechanisms that hospitals use to reduce the likelihood of cybercriminal activity. The variable that most influences the risk of cyberattack in a hospital is end point complexity, followed by internal stakeholder alignment. Although resource availability is important in fueling efforts to close cybersecurity capability gaps, low levels of resources could be compensated for by setting a high target level of cybersecurity. To enhance cybersecurity capabilities at hospitals, the main focus of chief information officers and chief information security officers should be on reducing end point complexity and improving internal stakeholder alignment. These strategies can solve cybersecurity problems more effectively than blindly pursuing more resources. On a macro level, the cyber vulnerability of a country's hospital infrastructure is affected by the vulnerabilities of all individual hospitals. In this large system, reducing variation in resource availability makes the whole system less vulnerable-a few hospitals with low resources for cybersecurity threaten the entire infrastructure of health care. In other words, hospitals need to move forward together to make the industry less attractive to cybercriminals. Moreover, although compliance is essential, it does not equal security. Hospitals should set their target level of cybersecurity beyond the requirements of current regulations and policies. As of today, policies mostly address data privacy, not data security. Thus, policy makers need to introduce policies that not only raise the target level of cybersecurity capabilities but also reduce the variability in resource availability across the entire health care system. ©Mohammad S Jalali, Jessica P Kaiser. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.05.2018.

  11. Variability in Second Language Learning: The Roles of Individual Differences, Learning Conditions, and Linguistic Complexity

    ERIC Educational Resources Information Center

    Tagarelli, Kaitlyn M.; Ruiz, Simón; Vega, José Luis Moreno; Rebuschat, Patrick

    2016-01-01

    Second language learning outcomes are highly variable, due to a variety of factors, including individual differences, exposure conditions, and linguistic complexity. However, exactly how these factors interact to influence language learning is unknown. This article examines the relationship between these three variables in language learners.…

  12. Diminished heart rate complexity in adolescent girls: a sign of vulnerability to anxiety disorders?

    PubMed

    Fiol-Veny, Aina; De la Torre-Luque, Alejandro; Balle, Maria; Bornas, Xavier

    2018-07-01

    Diminished heart rate variability has been found to be associated with high anxiety symptomatology. Since adolescence is the period of onset for many anxiety disorders, this study aimed to determine sex- and anxiety-related differences in heart rate variability and complexity in adolescents. We created four groups according to sex and anxiety symptomatology: high-anxiety girls (n = 24) and boys (n = 25), and low-anxiety girls (n = 22) and boys (n = 24) and recorded their cardiac function while they performed regular school activities. A series of two-way (sex and anxiety) MANOVAs were performed on time domain variability, frequency domain variability, and non-linear complexity. We obtained no multivariate interaction effects between sex and anxiety, but highly anxious participants had lower heart rate variability than the low-anxiety group. Regarding sex, girls showed lower heart rate variability and complexity than boys. The results suggest that adolescent girls have a less flexible cardiac system that could be a marker of the girls' vulnerability to developing anxiety disorders.

  13. Fast regional readout CMOS Image Sensor for dynamic MLC tracking

    NASA Astrophysics Data System (ADS)

    Zin, H.; Harris, E.; Osmond, J.; Evans, P.

    2014-03-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  14. Structural Measures to Track the Evolution of SNOMED CT Hierarchies

    PubMed Central

    Wei, Duo; Gu, Huanying (Helen); Perl, Yehoshua; Halper, Michael; Ochs, Christopher; Elhanan, Gai; Chen, Yan

    2015-01-01

    The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is an extensive reference terminology with an attendant amount of complexity. It has been updated continuously and revisions have been released semi-annually to meet users’ needs and to reflect the results of quality assurance (QA) activities. Two measures based on structural features are proposed to track the effects of both natural terminology growth and QA activities based on aspects of the complexity of SNOMED CT. These two measures, called the structural density measure and accumulated structural measure, are derived based on two abstraction networks, the area taxonomy and the partial-area taxonomy. The measures derive from attribute relationship distributions and various concept groupings that are associated with the abstraction networks. They are used to track the trends in the complexity of structures as SNOMED CT changes over time. The measures were calculated for consecutive releases of five SNOMED CT hierarchies, including the Specimen hierarchy. The structural density measure shows that natural growth tends to move a hierarchy’s structure toward a more complex state, whereas the accumulated structural measure shows that QA processes tend to move a hierarchy’s structure toward a less complex state. It is also observed that both the structural density and accumulated structural measures are useful tools to track the evolution of an entire SNOMED CT hierarchy and reveal internal concept migration within it. PMID:26260003

  15. Climate Exposure of US National Parks in a New Era of Change

    PubMed Central

    Monahan, William B.; Fisichelli, Nicholas A.

    2014-01-01

    US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901–2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change. PMID:24988483

  16. Climate exposure of US national parks in a new era of change.

    PubMed

    Monahan, William B; Fisichelli, Nicholas A

    2014-01-01

    US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901-2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change.

  17. Variable and Asymmetric Range of Enslaving: Fingers Can Act Independently over Small Range of Flexion

    PubMed Central

    van den Noort, Josien C.; van Beek, Nathalie; van der Kraan, Thomas; Veeger, DirkJan H. E. J.; Stegeman, Dick F.; Veltink, Peter H.; Maas, Huub

    2016-01-01

    The variability in the numerous tasks in which we use our hands is very large. However, independent movement control of individual fingers is limited. To assess the extent of finger independency during full-range finger flexion including all finger joints, we studied enslaving (movement in non-instructed fingers) and range of independent finger movement through the whole finger flexion trajectory in single and multi-finger movement tasks. Thirteen young healthy subjects performed single- and multi-finger movement tasks under two conditions: active flexion through the full range of movement with all fingers free to move and active flexion while the non-instructed finger(s) were restrained. Finger kinematics were measured using inertial sensors (PowerGlove), to assess enslaving and range of independent finger movement. Although all fingers showed enslaving movement to some extent, highest enslaving was found in adjacent fingers. Enslaving effects in ring and little finger were increased with movement of additional, non-adjacent fingers. The middle finger was the only finger affected by restriction in movement of non-instructed fingers. Each finger showed a range of independent movement before the non-instructed fingers started to move, which was largest for the index finger. The start of enslaving was asymmetrical for adjacent fingers. Little finger enslaving movement was affected by multi-finger movement. We conclude that no finger can move independently through the full range of finger flexion, although some degree of full independence is present for smaller movements. This range of independent movement is asymmetric and variable between fingers and between subjects. The presented results provide insight into the role of finger independency for different types of tasks and populations. PMID:27992598

  18. A Separable Insertion Method to Calculate Atomic and Molecular Resonances on a FE-DVR Grid using Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Abeln, Brant Anthony

    The study of metastable electronic resonances, anion or neutral states of finite lifetime, in molecules is an important area of research where currently no theoretical technique is generally applicable. The role of theory is to calculate both the position and width, which is proportional to the inverse of the lifetime, of these resonances and how they vary with respect to nuclear geometry in order to generate potential energy surfaces. These surfaces are the basis of time-dependent models of the molecular dynamics where the system moves towards vibrational excitation or fragmentation. Three fundamental electronic processes that can be modeled this way are dissociative electronic attachment, vibrational excitation through electronic impact and autoionization. Currently, experimental investigation into these processes is being preformed on polyatomic molecules while theoreticians continue their fifty-year-old search for robust methods to calculate them. The separable insertion method, investigated in this thesis, seeks to tackle the problem of calculating metastable resonances by using existing quantum chemistry tools along with a grid-based method employing exterior complex scaling (ECS). Modern quantum chemistry methods are extremely efficient at calculating ground and (bound) excited electronic states of atoms and molecules by utilizing Gaussian basis functions. These functions provide both a numerically fast and analytic solution to the necessary two-electron, six-dimensional integrals required in structure calculations. However, these computer programs, based on analytic Gaussian basis sets, cannot construct solutions that are not square-integrable, such as resonance wavefunctions. ECS, on the other hand, can formally calculate resonance solutions by rotating the asymptotic electronic coordinates into the complex plane. The complex Siegert energies for resonances, Eres = ER - iGamma/2 where ER is the real-valued position of the resonance and Gamma is the width of the resonance, can be found directly as an isolated pole in the complex energy plane. Unlike the straight complex scaling, ECS on the electronic coordinates overcomes the non-analytic behavior of the nuclear attraction potential, as a function of complex [special characters omitted] where the sum is over each nucleus in a molecular system. Discouragingly, the Gaussian basis functions, which are computationally well-suited for bound electronic structure, fail at forming an effective basis set for ECS due to the derivative discontinuity generated by the complex coordinate rotation and the piecewise defined contour. This thesis seeks to explore methods for implementing ECS indirectly without losing the numerical simplicity and power of Gaussian basis sets. The separable insertion method takes advantage of existing software by constructing a N2-term separable potential of the target system using Gaussian functions to be inserted into a finite-element discrete variable representation (FE-DVR) grid that implements ECS. This work reports an exhaustive investigation into this approach for calculating resonances. This thesis shows that this technique is successful at describing an anion shape resonance of a closed-shell atom or molecule in the static-exchange approximation. This method is applied to the 2P Be-, 2pig N2- and 2pi u CO2- shape resonances to calculate their complex Seigert energies. Additionally, many details on the exact construction of the separable potential and of the expansion basis are explored. The future work considers methods for faster convergence of the resonance energy, moving beyond the static-exchange approximation and applying this technique to polyatomic systems of interest.

  19. Multifractality Signatures in Quasars Time Series. I. 3C 273

    NASA Astrophysics Data System (ADS)

    Belete, A. Bewketu; Bravo, J. P.; Canto Martins, B. L.; Leão, I. C.; De Araujo, J. M.; De Medeiros, J. R.

    2018-05-01

    The presence of multifractality in a time series shows different correlations for different time scales as well as intermittent behaviour that cannot be captured by a single scaling exponent. The identification of a multifractal nature allows for a characterization of the dynamics and of the intermittency of the fluctuations in non-linear and complex systems. In this study, we search for a possible multifractal structure (multifractality signature) of the flux variability in the quasar 3C 273 time series for all electromagnetic wavebands at different observation points, and the origins for the observed multifractality. This study is intended to highlight how the scaling behaves across the different bands of the selected candidate which can be used as an additional new technique to group quasars based on the fractal signature observed in their time series and determine whether quasars are non-linear physical systems or not. The Multifractal Detrended Moving Average algorithm (MFDMA) has been used to study the scaling in non-linear, complex and dynamic systems. To achieve this goal, we applied the backward (θ = 0) MFDMA method for one-dimensional signals. We observe weak multifractal (close to monofractal) behaviour in some of the time series of our candidate except in the mm, UV and X-ray bands. The non-linear temporal correlation is the main source of the observed multifractality in the time series whereas the heaviness of the distribution contributes less.

  20. Hybrid computing using a neural network with dynamic external memory.

    PubMed

    Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis

    2016-10-27

    Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.

  1. A variable parameter single degree-of-freedom model for predicting the effects of sitting posture and vibration magnitude on the vertical apparent mass of the human body.

    PubMed

    Toward, Martin G R; Griffin, Michael J

    2010-01-01

    Models of the vertical apparent mass of the human body are mostly restricted to a sitting posture unsupported by a backrest and ignore the variations in apparent mass associated with changes in posture and changes in the magnitude of vibration. Using findings from experimental research, this study fitted a single degree-of-freedom lumped parameter model to the measured vertical apparent mass of the body measured with a range of sitting postures and vibration magnitudes. The resulting model reflects the effects of reclining a rigid backrest or reclining a foam backrest (from 0 to 30 degrees), the effects of moving the hands from the lap to a steering wheel, the effects of moving the horizontal position of the feet, and the effects of vibration magnitude (from 0.125 to 1.6 ms(-2) r.m.s.). The error between the modelled and the measured apparent mass was minimised, for both the apparent masses of individual subjects and the median apparent masses of groups of 12 subjects, for each sitting posture and each vibration magnitude. Trends in model parameters, the damping ratios, and the damped natural frequencies were identified as a function of the model variables and show the effects of posture and vibration magnitude on body dynamics. For example, contact with a rigid backrest increased the derived damped natural frequency of the principal resonance as a result of reduced moving mass and increased stiffness. When the rigid backrest was reclined from 0 to 30º, the damping decreased and the resonance frequency increased as a result of reduced moving mass. It is concluded that, by appropriate variations in model parameters, a single degree-of-freedom model can provide a useful fit to the vertical apparent mass of the human body over a wide range of postures and vibration magnitudes. When measuring or modelling seat transmissibility, it may be difficult to justify an apparent mass model with more than a single degree-of-freedom if it does not reflect the large influences of vibration magnitude, body posture, and individual variability.

  2. Robust moving mesh algorithms for hybrid stretched meshes: Application to moving boundaries problems

    NASA Astrophysics Data System (ADS)

    Landry, Jonathan; Soulaïmani, Azzeddine; Luke, Edward; Ben Haj Ali, Amine

    2016-12-01

    A robust Mesh-Mover Algorithm (MMA) approach is designed to adapt meshes of moving boundaries problems. A new methodology is developed from the best combination of well-known algorithms in order to preserve the quality of initial meshes. In most situations, MMAs distribute mesh deformation while preserving a good mesh quality. However, invalid meshes are generated when the motion is complex and/or involves multiple bodies. After studying a few MMA limitations, we propose the following approach: use the Inverse Distance Weighting (IDW) function to produce the displacement field, then apply the Geometric Element Transformation Method (GETMe) smoothing algorithms to improve the resulting mesh quality, and use an untangler to revert negative elements. The proposed approach has been proven efficient to adapt meshes for various realistic aerodynamic motions: a symmetric wing that has suffered large tip bending and twisting and the high-lift components of a swept wing that has moved to different flight stages. Finally, the fluid flow problem has been solved on meshes that have moved and they have produced results close to experimental ones. However, for situations where moving boundaries are too close to each other, more improvements need to be made or other approaches should be taken, such as an overset grid method.

  3. Parallel Flux Tensor Analysis for Efficient Moving Object Detection

    DTIC Science & Technology

    2011-07-01

    computing as well as parallelization to enable real time performance in analyzing complex video [3, 4 ]. There are a number of challenging computer vision... 4 . TITLE AND SUBTITLE Parallel Flux Tensor Analysis for Efficient Moving Object Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...We use the trace of the flux tensor matrix, referred to as Tr JF , that is defined below, Tr JF = ∫ Ω W (x− y)(I2xt(y) + I2yt(y) + I2tt(y))dy ( 4 ) as

  4. Visual control of prey-capture flight in dragonflies.

    PubMed

    Olberg, Robert M

    2012-04-01

    Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The QSAR study of flavonoid-metal complexes scavenging rad OH free radical

    NASA Astrophysics Data System (ADS)

    Wang, Bo-chu; Qian, Jun-zhen; Fan, Ying; Tan, Jun

    2014-10-01

    Flavonoid-metal complexes have antioxidant activities. However, quantitative structure-activity relationships (QSAR) of flavonoid-metal complexes and their antioxidant activities has still not been tackled. On the basis of 21 structures of flavonoid-metal complexes and their antioxidant activities for scavenging rad OH free radical, we optimised their structures using Gaussian 03 software package and we subsequently calculated and chose 18 quantum chemistry descriptors such as dipole, charge and energy. Then we chose several quantum chemistry descriptors that are very important to the IC50 of flavonoid-metal complexes for scavenging rad OH free radical through method of stepwise linear regression, Meanwhile we obtained 4 new variables through the principal component analysis. Finally, we built the QSAR models based on those important quantum chemistry descriptors and the 4 new variables as the independent variables and the IC50 as the dependent variable using an Artificial Neural Network (ANN), and we validated the two models using experimental data. These results show that the two models in this paper are reliable and predictable.

  6. Long-range dispersal moved Francisella tularensis into Western Europe from the East.

    PubMed

    Dwibedi, Chinmay; Birdsell, Dawn; Lärkeryd, Adrian; Myrtennäs, Kerstin; Öhrman, Caroline; Nilsson, Elin; Karlsson, Edvin; Hochhalter, Christian; Rivera, Andrew; Maltinsky, Sara; Bayer, Brittany; Keim, Paul; Scholz, Holger C; Tomaso, Herbert; Wittwer, Matthias; Beuret, Christian; Schuerch, Nadia; Pilo, Paola; Hernández Pérez, Marta; Rodriguez-Lazaro, David; Escudero, Raquel; Anda, Pedro; Forsman, Mats; Wagner, David M; Larsson, Pär; Johansson, Anders

    2016-12-01

    For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis , the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains ( n =205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains ( n =195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.

  7. Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion

    NASA Astrophysics Data System (ADS)

    Barcheck, C. Grace; Tulaczyk, Slawek; Schwartz, Susan Y.; Walter, Jacob I.; Winberry, J. Paul

    2018-03-01

    The Whillans Ice Plain (WIP) is unique among Antarctic ice streams because it moves by stick-slip. The conditions allowing stick-slip and its importance in controlling ice dynamics remain uncertain. Local basal seismicity previously observed during unstable slip is a clue to the mechanism of ice stream stick-slip and a window into current basal conditions, but the spatial extent and importance of this basal seismicity are unknown. We analyze data from a 2010-2011 ice-plain-wide seismic and GPS network to show that basal micro-seismicity correlates with large-scale patterns in ice stream slip behavior: Basal seismicity is common where the ice moves the least between unstable slip events, with small discrete basal micro-earthquakes happening within 10s of km of the central stick-slip nucleation area and emergent basal tremor occurring downstream of this area. Basal seismicity is largely absent in surrounding areas, where inter-slip creep rates are high. The large seismically active area suggests that a frictional sliding law that can accommodate stick-slip may be appropriate for ice stream beds on regional scales. Variability in seismic behavior over inter-station distances of 1-10 km indicates heterogeneity in local bed conditions and frictional complexity. WIP unstable slips may nucleate when stick-slip basal earthquake patches fail over a large area. We present a conceptual model in which basal seismicity results from slip-weakening frictional failure of over-consolidated till as it is eroded and mobilized into deforming till.

  8. Method and apparatus for continuous annular electrochromatography

    DOEpatents

    Scott, Charles D.

    1987-01-01

    Separation of complex mixtures and solutions can be carried out using a method and apparatus for continuous annular electrochromatography. Solutes are diverted radially by an imposed electrical field as they move downward in a rotating chromatographic column.

  9. Environmental variability and indicators: a few observations

    Treesearch

    William F. Laudenslayer

    1991-01-01

    Abstract The environment of the earth is exceedingly complex and variable. Indicator species are used to reduce thaf complexity and variability to a level that can be more emily understood. In recent years, use of indicators has increased dramatically. For the Forest Service, as an example, regulations that interpret the National Forest Management Act require the use...

  10. A CFD study of complex missile and store configurations in relative motion

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    An investigation was conducted from May 16, 1990 to August 31, 1994 on the development of computational fluid dynamics (CFD) methodologies for complex missiles and the store separation problem. These flowfields involved multiple-component configurations, where at least one of the objects was engaged in relative motion. The two most important issues that had to be addressed were: (1) the unsteadiness of the flowfields (time-accurate and efficient CFD algorithms for the unsteady equations), and (2) the generation of grid systems which would permit multiple and moving bodies in the computational domain (dynamic domain decomposition). The study produced two competing and promising methodologies, and their proof-of-concept cases, which have been reported in the open literature: (1) Unsteady solutions on dynamic, overlapped grids, which may also be perceived as moving, locally-structured grids, and (2) Unsteady solutions on dynamic, unstructured grids.

  11. Extracellular wire tetrode recording in brain of freely walking insects.

    PubMed

    Guo, Peiyuan; Pollack, Alan J; Varga, Adrienn G; Martin, Joshua P; Ritzmann, Roy E

    2014-04-01

    Increasing interest in the role of brain activity in insect motor control requires that we be able to monitor neural activity while insects perform natural behavior. We previously developed a technique for implanting tetrode wires into the central complex of cockroach brains that allowed us to record activity from multiple neurons simultaneously while a tethered cockroach turned or altered walking speed. While a major advance, tethered preparations provide access to limited behaviors and often lack feedback processes that occur in freely moving animals. We now present a modified version of that technique that allows us to record from the central complex of freely moving cockroaches as they walk in an arena and deal with barriers by turning, climbing or tunneling. Coupled with high speed video and cluster cutting, we can now relate brain activity to various parameters of the movement of freely behaving insects.

  12. Multiple-block grid adaption for an airplane geometry

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid Samareh; Smith, Robert E.

    1988-01-01

    Grid-adaption methods are developed with the capability of moving grid points in accordance with several variables for a three-dimensional multiple-block grid system. These methods are algebraic, and they are implemented for the computation of high-speed flow over an airplane configuration.

  13. Systems Analysis Directorate Activities Summary, May 1976

    DTIC Science & Technology

    1976-06-01

    approach is to assume an attack by force is made on a fixed facility with the intent to remove certain materials or perform sabotage of some portion of...IBPS/»-«/, and DATA ACTL/*--/ in main program at statement numbers TAT00500-550, and move them into a BLOCK DATA subroutine as shown below: 0001...NPQ-••). The variables JJ and IIA are common variables and should not be transferred in a subroutine call statement. (7) Statement numbers 0N2211

  14. Proposal of a new electromechanical total artificial heart: the TAH Serpentina.

    PubMed

    Sauer, I M; Frank, J; Bücherl, E S

    1999-03-01

    A new type of energy converter for an electro-mechanical total artificial heart (TAH) based on the principle of a unidirectional moving motor is described. Named the TAH Serpentina, the concept consists of 2 major parts, a pendulum shaped movable element fixed on one side using a joint bearing and a special shaped drum cam. Pusher plates are mounted flexibly to the crossbar of the pendulum. A motor drives the special shaped drum cam linked to the pendulum through a ball bearing. The circular motion of the unidirectional moving brushless DC motor is transferred into the linear motion of the pendulum to drive the pusher plates. Using a crossbar with a variable length, the stroke of the pendulum and therefore the displaced blood volume is alterable. To achieve a variable length, an electric driven screw thread or a hydraulic system is possible. Comparable to the natural heart, cardiac output would be determined by frequency and stroke volume.

  15. Gravity and perceptual stability during translational head movement on earth and in microgravity.

    PubMed

    Jaekl, P; Zikovitz, D C; Jenkin, M R; Jenkin, H L; Zacher, J E; Harris, L R

    2005-01-01

    We measured the amount of visual movement judged consistent with translational head movement under normal and microgravity conditions. Subjects wore a virtual reality helmet in which the ratio of the movement of the world to the movement of the head (visual gain) was variable. Using the method of adjustment under normal gravity 10 subjects adjusted the visual gain until the visual world appeared stable during head movements that were either parallel or orthogonal to gravity. Using the method of constant stimuli under normal gravity, seven subjects moved their heads and judged whether the virtual world appeared to move "with" or "against" their movement for several visual gains. One subject repeated the constant stimuli judgements in microgravity during parabolic flight. The accuracy of judgements appeared unaffected by the direction or absence of gravity. Only the variability appeared affected by the absence of gravity. These results are discussed in relation to discomfort during head movements in microgravity. c2005 Elsevier Ltd. All rights reserved.

  16. The analytical solution of the problem of a shock focusing in a gas for one-dimensional case

    NASA Astrophysics Data System (ADS)

    Shestakovskaya, E. S.; Magazov, F. G.

    2018-03-01

    The analytical solution of the problem of an imploding shock wave in the vessel with an impermeable wall is constructed for the cases of planar, cylindrical and spherical symmetry. The negative velocity is set at the vessel boundary. The velocity of cold ideal gas is zero. At the initial time the shock spreads from this point into the center of symmetry. The boundary moves under the particular law which conforms to the movement of the shock. In Euler variables it moves but in Lagrangian variables its trajectory is a vertical line. Equations that determine the structure of the gas flow between the shock front and the boundary as a function of time and the Lagrangian coordinate as well as the dependence of the entropy on the shock wave velocity are obtained. Self-similar coefficients and corresponding critical values of self-similar coordinates were found for a wide range of adiabatic index. The problem is solved for Lagrangian coordinates.

  17. KSC-2011-8246

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida negotiates the turn from Kennedy Parkway onto Schwartz Road on its way toward NASA Kennedy Space Center's Launch Complex 39 turn basin. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The 525-foot-tall Vehicle Assembly Building peeps over the treetops, at right. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  18. KSC-2011-8247

    NASA Image and Video Library

    2011-12-11

    CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model that was on display at the NASA Kennedy Space Center Visitor Complex in Florida travels along Schwartz Road on its way toward NASA Kennedy Space Center's Launch Complex 39 turn basin. It is standard procedure for large payloads and equipment to travel against the normal flow of traffic under the supervision of a move crew when being transported on or off center property. The Assembly and Refurbishment Facility, formerly used to process components of space shuttle solid rocket boosters, is in the background at right. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis

  19. Gradient elution moving boundary electrophoresis enables rapid analysis of acids in complex biomass-derived streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.

    Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less

  20. Concepts and models of coupled systems

    NASA Astrophysics Data System (ADS)

    Ertsen, Maurits

    2017-04-01

    In this paper, I will especially focus on the question of the position of human agency, social networks and complex co-evolutionary interactions in socio-hydrological models. The long term perspective of complex systems' modeling typically focuses on regional or global spatial scales and century/millennium time scales. It is still a challenge to relate correlations in outcomes defined at those longer and larger scales to the causalities at the shorter and smaller scales. How do we move today to the next 1000 years in the same way that our ancestors did move from their today to our present, in the small steps that produce reality? Please note, I am not arguing long term work is not interesting or the like. I just pose the question how to deal with the problem that we employ relations with hindsight that matter to us, but not necessarily to the agents that produced the relations we think we have observed. I would like to push the socio-hydrological community a little into rethinking how to deal with complexity, with the aim to bring together the timescales of humans and complexity. I will provide one or two examples of how larger-scale and longer-term observations on water flows and environmental loads can be broken down into smaller-scale and shorter-term production processes of these same loads.

  1. Gradient elution moving boundary electrophoresis enables rapid analysis of acids in complex biomass-derived streams

    DOE PAGES

    Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.; ...

    2016-09-27

    Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less

  2. Environmental variability and acoustic signals: a multi-level approach in songbirds.

    PubMed

    Medina, Iliana; Francis, Clinton D

    2012-12-23

    Among songbirds, growing evidence suggests that acoustic adaptation of song traits occurs in response to habitat features. Despite extensive study, most research supporting acoustic adaptation has only considered acoustic traits averaged for species or populations, overlooking intraindividual variation of song traits, which may facilitate effective communication in heterogeneous and variable environments. Fewer studies have explicitly incorporated sexual selection, which, if strong, may favour variation across environments. Here, we evaluate the prevalence of acoustic adaptation among 44 species of songbirds by determining how environmental variability and sexual selection intensity are associated with song variability (intraindividual and intraspecific) and short-term song complexity. We show that variability in precipitation can explain short-term song complexity among taxonomically diverse songbirds, and that precipitation seasonality and the intensity of sexual selection are related to intraindividual song variation. Our results link song complexity to environmental variability, something previously found for mockingbirds (Family Mimidae). Perhaps more importantly, our results illustrate that individual variation in song traits may be shaped by both environmental variability and strength of sexual selection.

  3. Design and Evaluation of Complex Moving HIFU Treatment Protocols

    NASA Astrophysics Data System (ADS)

    Kargl, Steven G.; Andrew, Marilee A.; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.

    2005-03-01

    The use of moving high-intensity focused ultrasound (HIFU) treatment protocols is of interest in achieving efficient formation of large-volume thermal lesions in tissue. Judicious protocol design is critical in order to avoid collateral damage to healthy tissues outside the treatment zone. A KZK-BHTE model, extended to simulate multiple, moving scans in tissue, is used to investigate protocol design considerations. Prediction and experimental observations are presented which 1) validate the model, 2) illustrate how to assess the effects of acoustic nonlinearity, and 3) demonstrate how to assess and control collateral damage such as prefocal lesion formation and lesion formation resulting from thermal conduction without direct HIFU exposure. Experimental data consist of linear and circular scan protocols delivered over a range of exposure regimes in ex vivo bovine liver.

  4. 3D shape measurement of moving object with FFT-based spatial matching

    NASA Astrophysics Data System (ADS)

    Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun

    2018-03-01

    This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.

  5. Dog days of summer: Influences on decision of wolves to move pups

    USGS Publications Warehouse

    Ausband, David E.; Mitchell, Michael S.; Bassing, Sarah B.; Nordhagen, Matthew; Smith, Douglas W.; Stahler, Daniel R.

    2016-01-01

    For animals that forage widely, protecting young from predation can span relatively long time periods due to the inability of young to travel with and be protected by their parents. Moving relatively immobile young to improve access to important resources, limit detection of concentrated scent by predators, and decrease infestations by ectoparasites can be advantageous. Moving young, however, can also expose them to increased mortality risks (e.g., accidents, getting lost, predation). For group-living animals that live in variable environments and care for young over extended time periods, the influence of biotic factors (e.g., group size, predation risk) and abiotic factors (e.g., temperature and precipitation) on the decision to move young is unknown. We used data from 25 satellite-collared wolves ( Canis lupus ) in Idaho, Montana, and Yellowstone National Park to evaluate how these factors could influence the decision to move pups during the pup-rearing season. We hypothesized that litter size, the number of adults in a group, and perceived predation risk would positively affect the number of times gray wolves moved pups. We further hypothesized that wolves would move their pups more often when it was hot and dry to ensure sufficient access to water. Contrary to our hypothesis, monthly temperature above the 30-year average was negatively related to the number of times wolves moved their pups. Monthly precipitation above the 30-year average, however, was positively related to the amount of time wolves spent at pup-rearing sites after leaving the natal den. We found little relationship between risk of predation (by grizzly bears, humans, or conspecifics) or group and litter sizes and number of times wolves moved their pups. Our findings suggest that abiotic factors most strongly influence the decision of wolves to move pups, although responses to unpredictable biotic events (e.g., a predator encountering pups) cannot be ruled out.

  6. An FDA Perspective on the Regulatory Implications of Complex Signatures to Predict Response to Targeted Therapies

    PubMed Central

    Beaver, Julia A.; Tzou, Abraham; Blumenthal, Gideon M.; McKee, Amy E.; Kim, Geoffrey; Pazdur, Richard; Philip, Reena

    2016-01-01

    As technologies evolve, and diagnostics move from detection of single biomarkers toward complex signatures, an increase in the clinical use and regulatory submission of complex signatures is anticipated. However, to date, no complex signatures have been approved as companion diagnostics. In this article, we will describe the potential benefit of complex signatures and their unique regulatory challenges including analytical performance validation, complex signature simulation, and clinical performance evaluation. We also will review the potential regulatory pathways for clearance, approval, or acceptance of complex signatures by the U.S. Food and Drug Administration (FDA). These regulatory pathways include regulations applicable to in vitro diagnostic devices, including companion diagnostic devices, the potential for labeling as a complementary diagnostic, and the biomarker qualification program. PMID:27993967

  7. Cooperative dynamics in the penetration of a group of intruders in a granular medium.

    PubMed

    Pacheco-Vázquez, F; Ruiz-Suárez, J C

    2010-11-23

    An object moving in a fluid experiences a drag force that depends on its velocity, shape and the properties of the medium. From this simplest case to the motion of a flock of birds or a school of fish, the drag forces and the hydrodynamic interactions determine the full dynamics of the system. Similar drag forces appear when a single projectile impacts and moves through a granular medium, and this case is well studied in the literature. On the other hand, the case in which a group of intruders impact a granular material has never been considered. Here, we study the simultaneous penetration of several intruders in a very low-density granular medium. We find that the intruders move through it in a collective way, following a cooperative dynamics, whose complexity resembles flocking phenomena in living systems or the movement of reptiles in sand, wherein changes in drag are exploited to efficiently move or propel.

  8. REVIEW ARTICLE: Hither and yon: a review of bi-directional microtubule-based transport

    NASA Astrophysics Data System (ADS)

    Gross, Steven P.

    2004-06-01

    Active transport is critical for cellular organization and function, and impaired transport has been linked to diseases such as neuronal degeneration. Much long distance transport in cells uses opposite polarity molecular motors of the kinesin and dynein families to move cargos along microtubules. It is increasingly clear that many cargos are moved by both sets of motors, and frequently reverse course. This review compares this bi-directional transport to the more well studied uni-directional transport. It discusses some bi-directionally moving cargos, and critically evaluates three different physical models for how such transport might occur. It then considers the evidence for the number of active motors per cargo, and how the net or average direction of transport might be controlled. The likelihood of a complex linking the activities of kinesin and dynein is also discussed. The paper concludes by reviewing elements of apparent universality between different bi-directionally moving cargos and by briefly considering possible reasons for the existence of bi-directional transport.

  9. Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection.

    PubMed

    Ferreira, Anselmo; Felipussi, Siovani C; Alfaro, Carlos; Fonseca, Pablo; Vargas-Munoz, John E; Dos Santos, Jefersson A; Rocha, Anderson

    2016-07-20

    The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterwards, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex datasets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature show the effectiveness of the proposed method and its suitability for real-world applications.

  10. Cooperative dynamics in the penetration of a group of intruders in a granular medium

    PubMed Central

    Pacheco-Vázquez, F.; Ruiz-Suárez, J.C.

    2010-01-01

    An object moving in a fluid experiences a drag force that depends on its velocity, shape and the properties of the medium. From this simplest case to the motion of a flock of birds or a school of fish, the drag forces and the hydrodynamic interactions determine the full dynamics of the system. Similar drag forces appear when a single projectile impacts and moves through a granular medium, and this case is well studied in the literature. On the other hand, the case in which a group of intruders impact a granular material has never been considered. Here, we study the simultaneous penetration of several intruders in a very low-density granular medium. We find that the intruders move through it in a collective way, following a cooperative dynamics, whose complexity resembles flocking phenomena in living systems or the movement of reptiles in sand, wherein changes in drag are exploited to efficiently move or propel. PMID:21119636

  11. Computation of incompressible viscous flows through artificial heart devices with moving boundaries

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Rogers, Stuart; Kwak, Dochan; Chang, I.-DEE

    1991-01-01

    The extension of computational fluid dynamics techniques to artificial heart flow simulations is illustrated. Unsteady incompressible Navier-Stokes equations written in 3-D generalized curvilinear coordinates are solved iteratively at each physical time step until the incompressibility condition is satisfied. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. The efficiency and robustness of the time accurate formulation of the algorithm are tested by computing the flow through model geometries. A channel flow with a moving indentation is computed and validated with experimental measurements and other numerical solutions. In order to handle the geometric complexity and the moving boundary problems, a zonal method and an overlapping grid embedding scheme are used, respectively. Steady state solutions for the flow through a tilting disk heart valve was compared against experimental measurements. Good agreement was obtained. The flow computation during the valve opening and closing is carried out to illustrate the moving boundary capability.

  12. Preparing America for Deep Space Exploration Episode 16: Exploration On The Move

    NASA Image and Video Library

    2018-02-22

    Preparing America for Deep Space Exploration Episode 16: Exploration On The Move NASA is pressing full steam ahead toward sending humans farther than ever before. Take a look at the work being done by teams across the nation for NASA’s Deep Space Exploration System, including the Space Launch System, Orion, and Exploration Ground Systems programs, as they continue to propel human spaceflight into the next generation. Highlights from the fourth quarter of 2017 included Orion parachute drop tests at the Yuma Proving Ground in Arizona; the EM-1 Crew Module move from Cleanroom to Workstation at Kennedy Space Center; Crew Training, Launch Pad Evacuation Scenario, and Crew Module Vibration and Legibility Testing at NASA’s Johnson Space Center; RS-25 Rocket Engine Testing at Stennis Space Center; Core Stage Engine Section arrival, Core Stage Pathfinder; LH2 Qualification Tank; Core Stage Intertank Umbilical lift at Mobile Launcher; Crew Access Arm move to Mobile Launcher; Water Flow Test at Launch Complex 39-B.

  13. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    DOE PAGES

    Cha, W.; Ulvestad, A.; Allain, M.; ...

    2016-11-23

    Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  14. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    NASA Astrophysics Data System (ADS)

    Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.

    2016-11-01

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  15. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.

    PubMed

    Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O

    2016-11-25

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  16. Hydrological considerations in providing data for water agreements

    NASA Astrophysics Data System (ADS)

    Shamir, U.

    2011-12-01

    Conflicts over water are as old as human history. Still, analysis of past and present water conflicts, cooperation and agreements clearly indicate a preponderance of cooperation over conflict. How can hydrologists contribute to maximizing the probability that this will be the outcome when interests of adjacent political entities over water move towards conflict? Hydrology is among the most important data bases for crafting a water agreement across a political boundary (others include: political, social, and economic) and are often the most elusive and controversial. We deal here with cases of water scarcity, although flood protection issues are no less interesting and challenging. For hydrologists, some of the important points in this regard are: - Agreed and "stable" hydrological data base: hydrologists know that data bases are always a "moving target" that keeps changing with new and better information, improved understanding of the hydrological components and the use of models, as well as due to the influence of changing internal and external drivers (land use and land cover, modified precipitation fields, climate change). On the other hand, it is not possible to manage an agreement that requires continuous change of the hydrological information. To do so would cause endless discussions between the parties, causing the agreement to become unstable. The tendency is therefore to "freeze" the hydrological information in the agreement and introduce a mechanism for periodic update. - Variability and uncertainty: while the basic hydrology is to be kept "stable", the agreement must recognize variability and uncertainty. Various mechanisms can be used for this, depending on the specific circumstances of the case, including: the range of variability and the degree of uncertainty and the consequences of excursions systematic from nominal values and the effects of random variability. - Water quality is an important parameter that determines usability for various purposes, and requires treatment when source quality does not match consumer requirements. - Complexity/difficulty and associated cost of extraction/production to make the "potential" source water into "usable" water. - Look jointly for new sources and benefits (expand the "cake"): agreements should look beyond the issues and water sources that are under imminent discussion due to competition and disagreement, to see whether the "cake" can be expanded, in terms of the water itself and of benefits that can accrue from a creative water agreement. - Conversion of "potential" water into "usable" water: water in a source requires transformation in time, space and quality and incurs a cost. - Introduction of expanded, previously unused resources which become available due to advanced extraction/production capabilities and additional treatment process, and/or by changing water use patterns and land use practices. - Negotiate over and jointly manage the benefits and losses due to water (wherever and whenever possible) rather than merely with the physical parameters of water themselves volume, flow, concentration.

  17. An immersed boundary-simplified sphere function-based gas kinetic scheme for simulation of 3D incompressible flows

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Yang, W. M.; Wang, Y.; Wu, J.

    2017-08-01

    In this work, an immersed boundary-simplified sphere function-based gas kinetic scheme (SGKS) is presented for the simulation of 3D incompressible flows with curved and moving boundaries. At first, the SGKS [Yang et al., "A three-dimensional explicit sphere function-based gas-kinetic flux solver for simulation of inviscid compressible flows," J. Comput. Phys. 295, 322 (2015) and Yang et al., "Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows," J. Comput. Phys. 319, 129 (2016)], which is often applied for the simulation of compressible flows, is simplified to improve the computational efficiency for the simulation of incompressible flows. In the original SGKS, the integral domain along the spherical surface for computing conservative variables and numerical fluxes is usually not symmetric at the cell interface. This leads the expression of numerical fluxes at the cell interface to be relatively complicated. For incompressible flows, the sphere at the cell interface can be approximately considered to be symmetric as shown in this work. Besides that, the energy equation is usually not needed for the simulation of incompressible isothermal flows. With all these simplifications, the simple and explicit formulations for the conservative variables and numerical fluxes at the cell interface can be obtained. Second, to effectively implement the no-slip boundary condition for fluid flow problems with complex geometry as well as moving boundary, the implicit boundary condition-enforced immersed boundary method [Wu and Shu, "Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications," J. Comput. Phys. 228, 1963 (2009)] is introduced into the simplified SGKS. That is, the flow field is solved by the simplified SGKS without considering the presence of an immersed body and the no-slip boundary condition is implemented by the immersed boundary method. The accuracy and efficiency of the present scheme are validated by simulating the decaying vortex flow, flow past a stationary and rotating sphere, flow past a stationary torus, and flows over dragonfly flight.

  18. An instrument design and sample strategy for measuring soil respiration in the coastal temperate rain forest

    NASA Astrophysics Data System (ADS)

    Nay, S. M.; D'Amore, D. V.

    2009-12-01

    The coastal temperate rainforest (CTR) along the northwest coast of North America is a large and complex mosaic of forests and wetlands located on an undulating terrain ranging from sea level to thousands of meters in elevation. This biome stores a dynamic portion of the total carbon stock of North America. The fate of the terrestrial carbon stock is of concern due to the potential for mobilization and export of this store to both the atmosphere as carbon respiration flux and ocean as dissolved organic and inorganic carbon flux. Soil respiration is the largest export vector in the system and must be accurately measured to gain any comprehensive understanding of how carbon moves though this system. Suitable monitoring tools capable of measuring carbon fluxes at small spatial scales are essential for our understanding of carbon dynamics at larger spatial scales within this complex assemblage of ecosystems. We have adapted instrumentation and developed a sampling strategy for optimizing replication of soil respiration measurements to quantify differences among spatially complex landscape units of the CTR. We start with the design of the instrument to ease the technological, ergonomic and financial barriers that technicians encounter in monitoring the efflux of CO2 from the soil. Our sampling strategy optimizes the physical efforts of the field work and manages for the high variation of flux measurements encountered in this difficult environment of rough terrain, dense vegetation and wet climate. Our soil respirometer incorporates an infra-red gas analyzer (LiCor Inc. LI-820) and an 8300 cm3 soil respiration chamber; the device is durable, lightweight, easy to operate and can be built for under $5000 per unit. The modest unit price allows for a multiple unit fleet to be deployed and operated in an intensive field monitoring campaign. We use a large 346 cm2 collar to accommodate as much micro spatial variation as feasible and to facilitate repeated measures for tracking temporal trends. Our collar design minimizes root interference yet provides a highly stable platform for coupling with the respirometer. Meso-scale variability characterized by large down woody debris, wind throw pits and mounds and surface roots is negotiated with by a hexagonal array of seven collars at two meter spacing (sample pod). Landscape scale variability is managed through stratification and replication amongst ecosystem types arrayed across a hydrologic gradient from bogs to forested wetlands to upland forests. Our strategy has allowed us to gather data sets consisting of approximately 1800 total observations with approximately 600 measurements per replication per year. Mean coefficients of variation (CV) at the collar (micro-scale) were approximately 0.67. The pod level mean CV was reduced to approximately 0.29 at the pod (meso-scale). The CV at the vegetation strata were 0.43, 0.18 and 0.21 for bog, forested wetland and upland forest respectively. With temperature and hydrological data we are able to measure and model carbon dynamics in this large and complex environment. The analysis of variability at the three spatial scales has confirmed that our approach is capturing and constraining the variability.

  19. Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    EPA Science Inventory

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...

  20. Cell biophysics: How to eat on the go

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2016-12-01

    Dendritic cells use components of their cytoskeleton to both move and ingest pieces of infected cells. This competition for protein resources can give rise to a complex set of states that may be understood with an advection-diffusion model.

  1. 10. PARTIAL VIEW OF SOUTH FACE OF MST AND BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. PARTIAL VIEW OF SOUTH FACE OF MST AND BRIDGE CRANE MOVED TO ITS SOUTHERN LIMIT - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. 11. PARTIAL VIEW OF NORTH FACE OF MST AND BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. PARTIAL VIEW OF NORTH FACE OF MST AND BRIDGE CRANE MOVED TO ITS NORTHERN LIMIT - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Testosterone and Social Behavior

    ERIC Educational Resources Information Center

    Booth, Alan; Granger, Douglas A.; Mazur, Allan; Kivlighan, Katie T.

    2006-01-01

    Popular perceptions of the effect of testosterone on "manly" behavior are inaccurate. We need to move away from such simplistic notions by treating testosterone as one component along with other physiological, psychological and sociological variables in interactive and reciprocal models of behavior. Several hormones can now be measured in saliva,…

  4. 40 CFR 264.573 - Design and operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., climatic conditions, the stress of daily operations, e.g., variable and moving loads such as vehicle... leakage to which they are exposed, climatic conditions, the stress of installation, and the stress of daily operation (including stresses from vehicular traffic on the drip pad); (ii) Placed upon a...

  5. 40 CFR 264.573 - Design and operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., climatic conditions, the stress of daily operations, e.g., variable and moving loads such as vehicle... leakage to which they are exposed, climatic conditions, the stress of installation, and the stress of daily operation (including stresses from vehicular traffic on the drip pad); (ii) Placed upon a...

  6. 40 CFR 264.573 - Design and operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., climatic conditions, the stress of daily operations, e.g., variable and moving loads such as vehicle... leakage to which they are exposed, climatic conditions, the stress of installation, and the stress of daily operation (including stresses from vehicular traffic on the drip pad); (ii) Placed upon a...

  7. Sap volume flow as influenced by tubing diameter and slope percent

    Treesearch

    H. Clay Smith

    1971-01-01

    The amount of sugar maple sap that can move through plastic tubing is controlled by several factors. The most important are tubing diameter and slope percent. Estimates are given of the number of tapholes that can be used with combinations of these variables.

  8. Simulated lumped-parameter system reduced-order adaptive control studies

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Lawrence, D. A.; Taylor, T.; Malakooti, M. V.

    1981-01-01

    Two methods of interpreting the misbehavior of reduced order adaptive controllers are discussed. The first method is based on system input-output description and the second is based on state variable description. The implementation of the single input, single output, autoregressive, moving average system is considered.

  9. Performance Assessment of Two Whole-Lake Acoustic Positional Telemetry Systems - Is Reality Mining of Free-Ranging Aquatic Animals Technologically Possible?

    PubMed Central

    Baktoft, Henrik; Zajicek, Petr; Klefoth, Thomas; Svendsen, Jon C.; Jacobsen, Lene; Pedersen, Martin Wæver; March Morla, David; Skov, Christian; Nakayama, Shinnosuke; Arlinghaus, Robert

    2015-01-01

    Acoustic positional telemetry systems (APTs) represent a novel approach to study the behaviour of free ranging aquatic animals in the wild at unprecedented detail. System manufactures promise remarkably high temporal and spatial resolution. However, the performance of APTs has rarely been rigorously tested at the level of entire ecosystems. Moreover, the effect of habitat structure on system performance has only been poorly documented. Two APTs were deployed to cover two small lakes and a series of standardized stationary tests were conducted to assess system performance. Furthermore, a number of tow tests were conducted to simulate moving fish. Based on these data, we quantified system performance in terms of data yield, accuracy and precision as a function of structural complexity in relation to vegetation. Mean data yield of the two systems was 40 % (Lake1) and 60 % (Lake2). Average system accuracy (acc) and precision (prec) were Lake1: acc = 3.1 m, prec = 1.1 m; Lake2: acc = 1.0 m, prec = 0.2 m. System performance was negatively affected by structural complexity, i.e., open water habitats yielded far better performance than structurally complex vegetated habitats. Post-processing greatly improved data quality, and sub-meter accuracy and precision were, on average, regularly achieved in Lake2 but remained the exception in the larger and structurally more complex Lake1. Moving transmitters were tracked well by both systems. Whereas overestimation of moved distance is inevitable for stationary transmitters due to accumulation of small tracking errors, moving transmitters can result in both over- and underestimation of distances depending on circumstances. Both deployed APTs were capable of providing high resolution positional data at the scale of entire lakes and are suitable systems to mine the reality of free ranging fish in their natural environment. This opens important opportunities to advance several fields of study such as movement ecology and animal social networks in the wild. It is recommended that thorough performance tests are conducted in any study utilizing APTs. The APTs tested here appear best suited for studies in structurally simple ecosystems or for studying pelagic species. In such situations, the data quality provided by the APTs is exceptionally high. PMID:26000459

  10. How do task characteristics affect learning and performance? The roles of variably mapped and dynamic tasks.

    PubMed

    Macnamara, Brooke N; Frank, David J

    2018-05-01

    For well over a century, scientists have investigated individual differences in performance. The majority of studies have focused on either differences in practice, or differences in cognitive resources. However, the predictive ability of either practice or cognitive resources varies considerably across tasks. We are the first to examine task characteristics' impact on learning and performance in a complex task while controlling for other task characteristics. In 2 experiments we test key theoretical task characteristic thought to moderate the relationship between practice, cognitive resources, and performance. We devised a task where each of several key task characteristics can be manipulated independently. Participants played 5 rounds of a game similar to the popular tower defense videogame Plants vs. Zombies where both cognitive load and game characteristics were manipulated. In Experiment 1, participants either played a consistently mapped version-the stimuli and the associated meaning of their properties were constant across the 5 rounds-or played a variably mapped version-the stimuli and the associated meaning of their properties changed every few minutes. In Experiment 2, participants either played a static version-that is, turn taking with no time pressure-or played a dynamic version-that is, the stimuli moved regardless of participants' response rates. In Experiment 1, participants' accuracy and efficiency were substantially hindered in the variably mapped conditions. In Experiment 2, learning and performance accuracy were hindered in the dynamic conditions, especially when under cognitive load. Our results suggest that task characteristics impact the relative importance of cognitive resources and practice on predicting learning and performance. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Long-term distribution and habitat changes of protected wildlife: giant pandas in Wolong Nature Reserve, China.

    PubMed

    Bai, Wenke; Connor, Thomas; Zhang, Jindong; Yang, Hongbo; Dong, Xin; Gu, Xiaodong; Zhou, Caiquan

    2018-04-01

    Changes in wildlife habitat across space and time, and corresponding changes in wildlife space use, are increasingly common phenomenon. It is critical to study and understand these spatio-temporal changes to accurately inform conservation strategy and manage wildlife populations. These changes can be particularly large and complex in areas that face pressure from human development and disturbance but are also under protection and/or restoration regimes. We analyzed changes in space use and habitat suitability of giant pandas in Wolong Nature Reserve, China, over three decades using kernel density, spatio-temporal analysis of moving polygons (STAMP), and MaxEnt methods, and data from three national censuses. Between 2001 and 2012, there was a slight retraction in total range, and more area of significant space use decreases than increases. Habitat suitability varied spatially and temporally, with a 4.1% decrease in average suitability between 1987 and 2001 and a 3.5% increase in average suitability in between 2001 and 2012. Elevation and bamboo were the most important habitat predictors across the three censuses. Human and natural disturbance variables such as distance to household and the distance to landslide variable in the 4th census were also important predictors, and likely also negatively influenced important habitat variables such as bamboo and forest cover. We were able to measure changes in space utilization and habitat suitability over a large time scale, highlighting the achievements and challenges of giant panda conservation. Long-term monitoring of the changes in distribution and habitat of threatened species, and an analysis of the drivers behind these changes such as undergone here, are important to inform the management and conservation of the world's remaining wildlife populations.

  12. Ground Motion Uncertainty and Variability (single-station sigma): Insights from Euroseistest, Greece

    NASA Astrophysics Data System (ADS)

    Ktenidou, O. J.; Roumelioti, Z.; Abrahamson, N. A.; Cotton, F.; Pitilakis, K.

    2014-12-01

    Despite recent improvements in networks and data, the global aleatory uncertainty (sigma) in GMPEs is still large. One reason is the ergodic approach, where we combine data in space to make up for lack of data in time. By estimating the systematic site response, we can make site-specific GMPEs and use a lower, site-specific uncertainty: single-station sigma. In this study we use the EUROSEISTEST database (http://euroseisdb.civil.auth.gr), which has two distinct advantages: good existing knowledge of site conditions at all stations, and careful relocation of the recorded events. Constraining the site and source parameters as best we can, we minimise the within- and between-events components of the global, ergodic sigma. Following that, knowledge of the site response from empirical and theoretical approaches permits us to move on to single-station sigma. The variability per site is not clearly correlated to the site class. We show that in some cases knowledge of Vs30 is not sufficient, and that site-specific data are needed to capture the response, possibly due to 2D/3D effects from complex geometry. Our values of single-station sigma are low compared to the literature. This may be due to the good ray coverage we have in all directions for small, nearby records. Indeed, our single-station sigma values are similar to published single-path values, which means that they may correspond to a fully -rather than partially- non-ergodic approach. We find larger ground motion variability for short distances and small magnitudes. This may be related to the uncertainty in the depth affecting nearby records more, or to stress drop and causing trade-offs between the source and site terms for small magnitudes.

  13. Adaptive Synchronization of Fractional Order Complex-Variable Dynamical Networks via Pinning Control

    NASA Astrophysics Data System (ADS)

    Ding, Da-Wei; Yan, Jie; Wang, Nian; Liang, Dong

    2017-09-01

    In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fractional order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more practical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective. Supported by National Natural Science Foundation of China under Grant No. 61201227, National Natural Science Foundation of China Guangdong Joint Fund under Grant No. U1201255, the Natural Science Foundation of Anhui Province under Grant No. 1208085MF93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B, and also supported by Chinese Scholarship Council

  14. Electromagnetic pulse scattering by a wedge moving in a free space with relativistic velocity

    NASA Astrophysics Data System (ADS)

    Ciarkowski, Adam

    Recently, increased interest is observed in studying scattering of electromagnetic signals by objects moving with large velocities. The velocities considered can attain relativistic values. Interesting phenomena characteristic of this class of problems were observed, in this number the Doppler shift of equiphase surfaces in the diffracted wave. Apart from new techniques elaborated to attack general scattering problems involving moving objects, specific scaterring problems are also examined. Of special interest are moving scatterers with edges. The simplest scaterrer with this property is a wedge, which in particular case reduces to a half-plane. There is a number of recent works in which diffraction of specific electromagnetic signals by these objects in motion are analyzed. In most cases time-harmonic excitation fields are being assumed. This contribution is concerned with the analysis of 2D scattering of an electromagnetic pulse by a perfectly conducting wedge moving in a free space with relativistic velocity. The exciting field is a pulsed plane-wave signal, with its envelope described by a Dirac delta function. This choice is motivated by the fact that solutions to excitation fields with different envelopes can be obtained from that found here by its integration with an appropriate weight function. In this sense this solution plays a role of a Green function. In our analysis we neglect any dispersion phenomena connected with the surrounding medium. The results herein obtained may be useful in modelling phenomena connected with the space technology. In our analysis we apply the Frame Hopping Method. In particular we first Lorentz transform the pulse signal from the laboratory frame of reference where this field is defined, to the frame where the wedge is at rest. In the latter frame we Fourier transform the resulting field to the complex frequency domain, thus arriving at the problem of time-harmonic diffraction by the wedge at rest. This problem has the exact solution, found yet by Sommerfeld. We take advantage of this solution and transform it back from complex frequency to the time domain. In this transformation both inverse Fourier transform and Felsen technique are used. Finally, the transient field obtained in the moving frame of reference is Lorentz transformed to the laboratory frame. We carry our calculations for both E- and H-field polarizations and show that the field distribution in the laboratory frame is not simply a moving image of that in the moving frame. For wedge velocities much lower than the velocity of light we reduce general expressions for the field in this frame to simpler ones.

  15. Convergence of marine megafauna movement patterns in coastal and open oceans.

    PubMed

    Sequeira, A M M; Rodríguez, J P; Eguíluz, V M; Harcourt, R; Hindell, M; Sims, D W; Duarte, C M; Costa, D P; Fernández-Gracia, J; Ferreira, L C; Hays, G C; Heupel, M R; Meekan, M G; Aven, A; Bailleul, F; Baylis, A M M; Berumen, M L; Braun, C D; Burns, J; Caley, M J; Campbell, R; Carmichael, R H; Clua, E; Einoder, L D; Friedlaender, Ari; Goebel, M E; Goldsworthy, S D; Guinet, C; Gunn, J; Hamer, D; Hammerschlag, N; Hammill, M; Hückstädt, L A; Humphries, N E; Lea, M-A; Lowther, A; Mackay, A; McHuron, E; McKenzie, J; McLeay, L; McMahon, C R; Mengersen, K; Muelbert, M M C; Pagano, A M; Page, B; Queiroz, N; Robinson, P W; Shaffer, S A; Shivji, M; Skomal, G B; Thorrold, S R; Villegas-Amtmann, S; Weise, M; Wells, R; Wetherbee, B; Wiebkin, A; Wienecke, B; Thums, M

    2018-03-20

    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.

  16. Hybrid entanglement between a trapped ion and a mirror

    NASA Astrophysics Data System (ADS)

    Corrêa, Clóvis; Vidiella-Barranco, A.

    2018-05-01

    We present a scheme for cavity-assisted generation of hybrid entanglement between a moving mirror belonging to an optomechanical cavity and a single trapped ion located inside a second cavity. Due to radiation pressure, it is possible to entangle the states of the moving mirror and the corresponding cavity field. Also, by tuning the second cavity field with the internal degrees of freedom of the ion, an entangled state of the cavity field/ion can be independently generated. The fields leaking from each cavity may be then combined in a beam splitter, and following the detection of the outgoing photons by conveniently placed photodetectors, we show that it is possible to generate entangled states of the moving mirror and the single trapped ion's center-of-mass vibration. In our scheme the generated states are hybrid entangled states, in the sense that they are constituted by discrete (Fock) states and continuous variable (coherent) states.

  17. A vision fusion treatment system based on ATtiny26L

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Zhang, Chunxi; Wang, Jiqiang

    2006-11-01

    Vision fusion treatment is an important and effective project to strabismus children. The vision fusion treatment system based on the principle for eyeballs to follow the moving visual survey pole is put forward first. In this system the original position of visual survey pole is about 35 centimeters far from patient's face before its moving to the middle position between the two eyeballs. The eyeballs of patient will follow the movement of the visual survey pole. When they can't follow, one or two eyeballs will turn to other position other than the visual survey pole. This displacement is recorded every time. A popular single chip microcomputer ATtiny26L is used in this system, which has a PWM output signal to control visual survey pole to move with continuously variable speed. The movement of visual survey pole accords to the modulating law of eyeballs to follow visual survey pole.

  18. Torque-Limiting Infinitely-Variable CAM Release Mechanism for a Rotatable Joint

    NASA Technical Reports Server (NTRS)

    Moetteli, John B. (Inventor)

    1997-01-01

    The invention relates to a mechanism for permitting convenient manual or servo-powered control of a boom assembly, which is rotatably positionable about yaw and pitch axes by means of releasably locking, yaw and pitch torque-limiting mechanisms, each of which may be locked, unlocked, and positioned by respective yaw and pitch levers. The boom may be longitudinally projected and withdrawn by rotating a boom extension/retraction crank. Torque limiting is provided by spring loaded clutch mechanisms, whereby positioning forces applied to the handles are effective to move the boom unless overcome by greater opposing forces, sufficient to overcome the torque applied by the torque limiting clutch mechanisms. In operation, a structure positionable by the invention (e.g., and end-effector or robot arm) may be rotatably moved about yaw and pitch axes by moving a selected one of the three levers.

  19. Exact relativistic expressions for wave refraction in a generally moving fluid.

    PubMed

    Cavalleri, G; Tonni, E; Barbero, F

    2013-04-01

    The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.

  20. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    PubMed

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2013-01-01

    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  1. Order of events matter: comparing discrete models for optimal control of species augmentation.

    PubMed

    Bodine, Erin N; Gross, Louis J; Lenhart, Suzanne

    2012-01-01

    We investigate optimal timing of augmentation of an endangered/threatened species population in a target region by moving individuals from a reserve or captive population. This is formulated as a discrete-time optimal control problem in which augmentation occurs once per time period over a fixed number of time periods. The population model assumes the Allee effect growth functions in both target and reserve populations and the control objective is to maximize the target and reserve population sizes over the time horizon while accounting for costs of augmentation. Two possible orders of events are considered for different life histories of the species relative to augmentation time: move individuals either before or after population growth occurs. The control variable is the proportion of the reserve population to be moved to the target population. We develop solutions and illustrate numerical results which indicate circumstances for which optimal augmentation strategies depend upon the order of events.

  2. Atomistic Monte Carlo Simulation of Lipid Membranes

    PubMed Central

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol. PMID:24469314

  3. How diverse is the oxygen consumption during the life cycle of the pelagic tunicate Dolioletta gegenbauri?

    NASA Astrophysics Data System (ADS)

    Koester, M.; Paffenhofer, G. A.

    2016-02-01

    The goal of our study was to study the intraspecies physiological diversity of different life stages of the pelagic tunicate Dolioletta gegenbauri (Tunicata, Thaliacea) that occur intermittently in high abundances on the shelf off the southeastern US. The complex life cycle of this species starts with solitary oozooids that develop to nurses with colonies of feeding trophozooids and phorozooids. As the latter mature they produce clusters of gonozooids. As oxygen consumption is a good physiological indicator for metabolic expenditures, we quantified the oxygen consumption of different zooids of D. gegenbauri (nurses, phorozooids and gonozooids) at environmental conditions. Oxygen consumption rates were determined from changes in oxygen concentration that were monitored non-invasively and continuously by an innovative sensor system in time-series-experiments. Specific oxygen consumption rates varied considerably and were related to moving activity, feeding behaviour, biomass, and growth of different life stages of doliolids. The results of our study will advance our understanding of variability in oxygen consumption of different stages of doliolid development due to their specific ecological role.

  4. Fluid Dynamics of Competitive Swimming: A Computational Study

    NASA Astrophysics Data System (ADS)

    Mittal, Rajat; Loebbeck, Alfred; Singh, Hersh; Mark, Russell; Wei, Timothy

    2004-11-01

    The dolphin kick is an important component in competitive swimming and is used extensively by swimmers immediately following the starting dive as well as after turns. In this stroke, the swimmer swims about three feet under the water surface and the stroke is executed by performing an undulating wave-like motion of the body that is quite similar to the anguilliform propulsion mode in fish. Despite the relatively simple kinematics of this stoke, considerable variability in style and performance is observed even among Olympic level swimmers. Motivated by this, a joint experimental-numerical study has been initiated to examine the fluid-dynamics of this stroke. The current presentation will describe the computational portion of this study. The computations employ a sharp interface immersed boundary method (IBM) which allows us to simulate flows with complex moving boudnaries on stationary Cartesian grids. 3D body scans of male and female Olympic swimmers have been obtained and these are used in conjuction with high speed videos to recreate a realistic dolphin kick for the IBM solver. Preliminary results from these computations will be presented.

  5. On the Improvement of Convergence Performance for Integrated Design of Wind Turbine Blade Using a Vector Dominating Multi-objective Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.

    2016-09-01

    A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.

  6. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-06-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  7. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  8. A Systematic Review of fMRI Reward Paradigms in Adolescents versus Adults: The Impact of Task Design and Implications for Understanding Neurodevelopment

    PubMed Central

    Richards, Jessica M.; Plate, Rista C.; Ernst, Monique

    2013-01-01

    The neural systems underlying reward-related behaviors across development have recently generated a great amount of interest. Yet, the neurodevelopmental literature on reward processing is marked by inconsistencies due to the heterogeneity of the reward paradigms used, the complexity of the behaviors being studied, and the developing brain itself as a moving target. The present review will examine task design as one source of variability across findings by compiling this literature along three dimensions: (1) task structures, (2) cognitive processes, and (3) neural systems. We start with the presentation of a heuristic neural systems model, the Triadic Model, as a way to provide a theoretical framework for the neuroscience research on motivated behaviors. We then discuss the principles guiding reward task development. Finally, we review the extant developmental neuroimaging literature on reward-related processing, organized by reward task type. We hope that this approach will help to clarify the literature on the functional neurodevelopment of reward-related neural systems, and to identify the role of the experimental parameters that significantly influence these findings. PMID:23518270

  9. Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.

    PubMed

    Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun

    2018-05-08

    Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.

  10. Is Active Design changing the workplace? - A natural pre-post experiment looking at health behaviour and workplace perceptions.

    PubMed

    Engelen, Lina; Chau, Josephine; Bohn-Goldbaum, Erika; Young, Sarah; Hespe, Dominique; Bauman, Adrian

    2017-01-01

    Active Design is a relatively new concept and evaluation on its effects on healthy behaviour is lacking. To investigate Active Design influence on workplace physical activity, sedentary behaviour, musculoskeletal complaints, and perceptions of the workplace and productivity. Participants (n = 118 adults) moving from 14 workplaces into a new building completed an online questionnaire pre- and post-move. The questions related to health behaviours (physical activity, sitting time and sleep); musculoskeletal issues; perceptions of the office environment; productivity; and engagement. After the move, 68% of participants were located in an open plan building (21% before the move). In the new workplace participants tended to sit less during their work time (72% - 66%; p < 0.05) and stand more (15% - 19%; p < 0.05) while walking remained unchanged. Participants reported less lower-back pain. The new work environment was perceived as more motivating and providing better light, air quality and temperature, but less storage space. Participants reported looking forward to going to work more than before. No difference was reported in productivity related measures. Moving to a new Active Design building can have some physical health-promoting effects on occupants. Satisfaction with environmental characteristics tended to improve in the new building though perceptions of productivity measures were variable.

  11. Complex Engineered Systems: A New Paradigm

    NASA Astrophysics Data System (ADS)

    Mina, Ali A.; Braha, Dan; Bar-Yam, Yaneer

    Human history is often seen as an inexorable march towards greater complexity — in ideas, artifacts, social, political and economic systems, technology, and in the structure of life itself. While we do not have detailed knowledge of ancient times, it is reasonable to conclude that the average resident of New York City today faces a world of much greater complexity than the average denizen of Carthage or Tikal. A careful consideration of this change, however, suggests that most of it has occurred recently, and has been driven primarily by the emergence of technology as a force in human life. In the 4000 years separating the Indus Valley Civilization from 18th century Europe, human transportation evolved from the bullock cart to the hansom, and the methods of communication used by George Washington did not differ significantly from those used by Alexander or Rameses. The world has moved radically towards greater complexity in the last two centuries. We have moved from buggies and letter couriers to airplanes and the Internet — an increase in capacity, and through its diversity also in complexity, orders of magnitude greater than that accumulated through the rest of human history. In addition to creating iconic artifacts — the airplane, the car, the computer, the television, etc. — this change has had a profound effect on the scope of experience by creating massive, connected and multiultra- level systems — traffic networks, power grids, markets, multinational corporations — that defy analytical understanding and seem to have a life of their own. This is where complexity truly enters our lives.

  12. Weather explains high annual variation in butterfly dispersal.

    PubMed

    Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter

    2016-07-27

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).

  13. Mesoscale Convective Complex versus Non-Mesoscale Convective Complex Thunderstorms: A Comparison of Selected Meteorological Variables.

    DTIC Science & Technology

    1986-08-01

    mean square errors for selected variables . . 34 8. Variable range and mean value for MCC and non-MCC cases . . 36 9. Alpha ( a ) levels at which the...Table 9. For each variable, the a level is listed at which the two mean values are determined to be significantly 38 Table 9. Alpha ( a ) levels at...vorticity advection None 700 mb vertical velocity forecast .20 different. These a levels express the probability of erroneously con- cluding that the

  14. The drag force on a subsonic projectile in a fluid complex plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivlev, A. V.; Zhukhovitskii, D. I.

    2012-09-15

    The incompressible Navier-Stokes equation is employed to describe a subsonic particle flow induced in complex plasmas by a moving projectile. Drag forces acting on the projectile in different flow regimes are calculated. It is shown that, along with the regular neutral gas drag, there is an additional force exerted on the projectile due to dissipation in the surrounding particle fluid. This additional force provides significant contribution to the total drag.

  15. Performance Analysis of OFDM in Frequency Selective, Slowly Fading Nakagami Channels

    DTIC Science & Technology

    2001-12-01

    starting with some background, then moving into how to generate an OFDM signal, and finally discussing the implementation of OFDM using one specific...application, the IEEE 802.11a standard. The application of some more general communications concepts such as the discrete Fourier transform (DFT...provide orthogonal cover to the sub-carriers, some may argue that the FFT’s complexity makes up for the loss of equalization complexity, however, as Ch

  16. Moving from "They" to "We"--A Qualitative Case Study of the Perspectives and Interactions of Teams Who Support Children with Complex Communication Needs to Contribute to the Generalization of Communication Skills

    ERIC Educational Resources Information Center

    Cole-Lade, Gretchen Michele

    2015-01-01

    Children with complex communication needs (CCN) face many challenges in their daily life. They can struggle academically and socially if their communicative needs are not supported consistently by those who provide care for them. They frequently use Augmentative or Alternative Communication (AAC) systems or devices to communicate. The purposes of…

  17. Scale and legacy controls on catchment nutrient export regimes

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2017-12-01

    Nutrient dynamics in river catchments are complex: water and chemical fluxes are highly variable in low-order streams, but this variability declines as fluxes move through higher-order reaches. This poses a major challenge for process understanding as much effort is focussed on long-term monitoring of the main river channel (a high-order reach), and therefore the data available to support process understanding are predominantly derived from sites where much of the transient response of nutrient export is masked by the effect of averaging over both space and time. This may be further exacerbated at all scales by the accumulation of legacy nutrient sources in soils, aquifers and pore waters, where historical activities have led to nutrient accumulation where the catchment system is transport limited. Therefore it is of particular interest to investigate how the variability of nutrient export changes both with catchment scale (from low to high-order catchment streams) and with the presence of legacy sources, such that the context of infrequent monitoring on high-order streams can be better understood. This is not only a question of characterising nutrient export regimes per se, but also developing a more thorough understanding of how the concepts of scale and legacy may modify the statistical characteristics of observed responses across scales in both space and time. In this paper, we use synthetic data series and develop a model approach to consider how space and timescales combine with impacts of legacy sources to influence observed variability in catchment export. We find that: increasing space and timescales tend to reduce the observed variance in nutrient exports, due to an increase in travel times and greater mixing, and therefore averaging, of sources; increasing the influence of legacy sources inflates the variance, with the level of inflation dictated by the residence time of the respective sources.

  18. Disorder trapping by rapidly moving phase interface in an undercooled liquid

    NASA Astrophysics Data System (ADS)

    Galenko, Peter; Danilov, Denis; Nizovtseva, Irina; Reuther, Klemens; Rettenmayr, Markus

    2017-08-01

    Non-equilibrium phenomena such as the disappearance of solute drag, the origin of solute trapping and evolution of disorder trapping occur during fast transformations with originating metastable phases [D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (Elsevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of disorder trapping by a rapidly moving phase interface is presented. Using a model of fast phase transformations, a system of governing equations for the diffusion of atoms, and the evolution of both long-range order parameter and phase field variable is formulated. First numerical solutions are carried out for a congruently melting binary alloy system.

  19. Nonintegrable Schrodinger discrete breathers.

    PubMed

    Gómez-Gardeñes, J; Floría, L M; Peyrard, M; Bishop, A R

    2004-12-01

    In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schrödinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.

  20. Moving From Static to Dynamic Models of the Onset of Mental Disorder: A Review.

    PubMed

    Nelson, Barnaby; McGorry, Patrick D; Wichers, Marieke; Wigman, Johanna T W; Hartmann, Jessica A

    2017-05-01

    In recent years, there has been increased focus on subthreshold stages of mental disorders, with attempts to model and predict which individuals will progress to full-threshold disorder. Given this research attention and the clinical significance of the issue, this article analyzes the assumptions of the theoretical models in the field. Psychiatric research into predicting the onset of mental disorder has shown an overreliance on one-off sampling of cross-sectional data (ie, a snapshot of clinical state and other risk markers) and may benefit from taking dynamic changes into account in predictive modeling. Cross-disciplinary approaches to complex system structures and changes, such as dynamical systems theory, network theory, instability mechanisms, chaos theory, and catastrophe theory, offer potent models that can be applied to the emergence (or decline) of psychopathology, including psychosis prediction, as well as to transdiagnostic emergence of symptoms. Psychiatric research may benefit from approaching psychopathology as a system rather than as a category, identifying dynamics of system change (eg, abrupt vs gradual psychosis onset), and determining the factors to which these systems are most sensitive (eg, interpersonal dynamics and neurochemical change) and the individual variability in system architecture and change. These goals can be advanced by testing hypotheses that emerge from cross-disciplinary models of complex systems. Future studies require repeated longitudinal assessment of relevant variables through either (or a combination of) micro-level (momentary and day-to-day) and macro-level (month and year) assessments. Ecological momentary assessment is a data collection technique appropriate for micro-level assessment. Relevant statistical approaches are joint modeling and time series analysis, including metric-based and model-based methods that draw on the mathematical principles of dynamical systems. This next generation of prediction studies may more accurately model the dynamic nature of psychopathology and system change as well as have treatment implications, such as introducing a means of identifying critical periods of risk for mental state deterioration.

  1. Luminescence Studies of the Ligand Exchange Between Two Phenanthroline Complexes and Bovine Serum Albumin

    NASA Astrophysics Data System (ADS)

    Lin, H.-B.; Shen, Q.-H.

    2017-03-01

    The interactions between bovine serum albumin (BSA) and two Cu(II) phenanthroline complexes were studied by fluorescence and UV-visible absorption spectroscopy. The obtained results confirm that the phen ligand (phen = 1,10-phenanthroline) is dissociated from the two complexes and moves into the hydrophobic cavity of BSA and that the M-L complexes (M = Co2+, Cu2+; L = Hlact, imda; Hlact = lactic acid, H2imda = iminodiacetic acid) coordinate with the amino acids on the surface of the peptide in the solution. This mode of action significantly inhibits the denaturation of BSA. The calculated distance between the BSA and the two complexes suggests that the energy transfer from the excited state of BSA to a complex occurs with high efficiency.

  2. Influences of Mating Group Composition on the Behavioral Time-Budget of Male and Female Alpine Ibex (Capra ibex) during the Rut

    PubMed Central

    Tettamanti, Federico; Viblanc, Vincent A.

    2014-01-01

    During the rut, polygynous ungulates gather in mixed groups of individuals of different sex and age. Group social composition, which may vary on a daily basis, is likely to have strong influences on individual’s time-budget, with emerging properties at the group-level. To date, few studies have considered the influence of group composition on male and female behavioral time budget in mating groups. Focusing on a wild population of Alpine ibex, we investigated the influence of group composition (adult sex ratio, the proportion of dominant to subordinate males, and group size) on three behavioral axes obtained by Principal Components Analysis, describing male and female group time-budget. For both sexes, the first behavioral axis discerned a trade-off between grazing and standing/vigilance behavior. In females, group vigilance behavior increased with increasingly male-biased sex ratio, whereas in males, the effect of adult sex ratio on standing/vigilance behavior depended on the relative proportion of dominant males in the mating group. The second axis characterized courtship and male-male agonistic behavior in males, and moving and male-directed agonistic behavior in females. Mating group composition did not substantially influence this axis in males. However, moving and male-directed agonistic behavior increased at highly biased sex ratios (quadratic effect) in females. Finally, the third axis highlighted a trade-off between moving and lying behavior in males, and distinguished moving and female-female agonistic behavior from lying behavior in females. For males, those behaviors were influenced by a complex interaction between group size and adult sex ratio, whereas in females, moving and female-female agonistic behaviors increased in a quadratic fashion at highly biased sex ratios, and also increased with increasing group size. Our results reveal complex behavioral trade-offs depending on group composition in the Alpine ibex, and emphasize the importance of social factors in influencing behavioral time-budgets of wild ungulates during the rut. PMID:24416453

  3. Deinstitutionalisation and Community Living: Progress, Problems and Priorities

    ERIC Educational Resources Information Center

    Mansell, Jim

    2006-01-01

    Background: Deinstitutionalisation of services for people with intellectual disabilities has become a focus of disability policy in many countries. Research for the most part supports this strategy. However, outcomes are not uniformly better for everyone who moves to community living. This paper explores reasons for variability in service quality…

  4. Stability versus Transition in Women's Career Development: A Test of Levinson's Theory.

    ERIC Educational Resources Information Center

    Smart, Roslyn; Peterson, Candida

    1994-01-01

    According to responses from 498 Australian professional women representing Levinson's 7 stages, pay satisfaction was the only 1 of 12 variables that displayed cyclic alternation between stability and transition. Some age differences appeared in terms of work involvement, aspiration, and plans to move. (SK)

  5. An Integrated Enrollment Forecast Model. IR Applications, Volume 15, January 18, 2008

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2008-01-01

    Enrollment forecasting is the central component of effective budget and program planning. The integrated enrollment forecast model is developed to achieve a better understanding of the variables affecting student enrollment and, ultimately, to perform accurate forecasts. The transfer function model of the autoregressive integrated moving average…

  6. DESIGNS FOR ESTIMATING VARIABILITY STRUCTURE AND IMPLICATIONS FOR DETECTING WATERSHED RESTORATION EFFECTIVENESS

    EPA Science Inventory

    The evaluation of stream restoration projects is moving from a focus on project specific effectiveness to a more holistic evaluation of the array of restoration activities that are or might be imposed to improve conditions across the stream network. Part of evaluating how the con...

  7. 14 CFR 25.777 - Cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Controls of a variable nature using a rotary motion must move clockwise from the off position, through an... harness (if provided) fastened. (d) Identical powerplant controls for each engine must be located to prevent confusion as to the engines they control. (e) Wing flap controls and other auxiliary lift device...

  8. Using Emotional and Social Factors To Predict Student Success.

    ERIC Educational Resources Information Center

    Pritchard, Mary E.; Wilson, Gregory S.

    2003-01-01

    College academic success and retention have traditionally been predicted using demographic and academic variables. This study moved beyond traditional predictors. A survey of 218 undergraduate students revealed that emotional and social factors (e.g., stress, frequency of alcohol consumption) related to GPA and emotional factors (e.g.,…

  9. A structure-based kinetic model of transcription.

    PubMed

    Zuo, Yuhong; Steitz, Thomas A

    2017-01-01

    During transcription, RNA polymerase moves downstream along the DNA template and maintains a transcription bubble. Several recent structural studies of transcription complexes with a complete transcription bubble provide new insights into how RNAP couples the nucleotide addition reaction to its directional movement.

  10. Spatial cognition in a virtual reality home-cage extension for freely moving rodents

    PubMed Central

    Kaupert, Ursula; Frei, Katja; Bagorda, Francesco; Schatz, Alexej; Tocker, Gilad; Rapoport, Sophie; Derdikman, Dori

    2017-01-01

    Virtual reality (VR) environments are a powerful tool to investigate brain mechanisms involved in the behavior of animals. With this technique, animals are usually head fixed or secured in a harness, and training for cognitively more complex VR paradigms is time consuming. A VR apparatus allowing free animal movement and the constant operator-independent training of tasks would enable many new applications. Key prospective usages include brain imaging of animal behavior when carrying a miniaturized mobile device such as a fluorescence microscope or an optetrode. Here, we introduce the Servoball, a spherical VR treadmill based on the closed-loop tracking of a freely moving animal and feedback counterrotation of the ball. Furthermore, we present the complete integration of this experimental system with the animals’ group home cage, from which single individuals can voluntarily enter through a tunnel with radio-frequency identification (RFID)-automated access control and commence experiments. This automated animal sorter functions as a mechanical replacement of the experimenter. We automatically trained rats using visual or acoustic cues to solve spatial cognitive tasks and recorded spatially modulated entorhinal cells. When electrophysiological extracellular recordings from awake behaving rats were performed, head fixation can dramatically alter results, so that any complex behavior that requires head movement is impossible to achieve. We circumvented this problem with the use of the Servoball in open-field scenarios, as it allows the combination of open-field behavior with the recording of nerve cells, along with all the flexibility that a virtual environment brings. This integrated home cage with a VR arena experimental system permits highly efficient experimentation for complex cognitive experiments. NEW & NOTEWORTHY Virtual reality (VR) environments are a powerful tool for the investigation of brain mechanisms. We introduce the Servoball, a VR treadmill for freely moving rodents. The Servoball is integrated with the animals’ group home cage. Single individuals voluntarily enter using automated access control. Training is highly time-efficient, even for cognitively complex VR paradigms. PMID:28077665

  11. Multivariate analysis: greater insights into complex systems

    USDA-ARS?s Scientific Manuscript database

    Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...

  12. A moving control volume approach to computing hydrodynamic forces and torques on immersed bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nangia, Nishant; Johansen, Hans; Patankar, Neelesh A.

    Here, we present a moving control volume (CV) approach to computing hydrodynamic forces and torques on complex geometries. The method requires surface and volumetric integrals over a simple and regular Cartesian box that moves with an arbitrary velocity to enclose the body at all times. The moving box is aligned with Cartesian grid faces, which makes the integral evaluation straightforward in an immersed boundary (IB) framework. Discontinuous and noisy derivatives of velocity and pressure at the fluid–structure interface are avoided and far-field (smooth) velo city and pressure information is used. We re-visit the approach to compute hydrodynamic forces and torquesmore » through force/torque balance equations in a Lagrangian frame that some of us took in a prior work (Bhalla et al., 2013 [13]). We prove the equivalence of the two approaches for IB methods, thanks to the use of Peskin's delta functions. Both approaches are able to suppress spurious force oscillations and are in excellent agreement, as expected theoretically. Test cases ranging from Stokes to high Reynolds number regimes are considered. We discuss regridding issues for the moving CV method in an adaptive mesh refinement (AMR) context. The proposed moving CV method is not limited to a specific IB method and can also be used, for example, with embedded boundary methods.« less

  13. A moving control volume approach to computing hydrodynamic forces and torques on immersed bodies

    DOE PAGES

    Nangia, Nishant; Johansen, Hans; Patankar, Neelesh A.; ...

    2017-10-01

    Here, we present a moving control volume (CV) approach to computing hydrodynamic forces and torques on complex geometries. The method requires surface and volumetric integrals over a simple and regular Cartesian box that moves with an arbitrary velocity to enclose the body at all times. The moving box is aligned with Cartesian grid faces, which makes the integral evaluation straightforward in an immersed boundary (IB) framework. Discontinuous and noisy derivatives of velocity and pressure at the fluid–structure interface are avoided and far-field (smooth) velo city and pressure information is used. We re-visit the approach to compute hydrodynamic forces and torquesmore » through force/torque balance equations in a Lagrangian frame that some of us took in a prior work (Bhalla et al., 2013 [13]). We prove the equivalence of the two approaches for IB methods, thanks to the use of Peskin's delta functions. Both approaches are able to suppress spurious force oscillations and are in excellent agreement, as expected theoretically. Test cases ranging from Stokes to high Reynolds number regimes are considered. We discuss regridding issues for the moving CV method in an adaptive mesh refinement (AMR) context. The proposed moving CV method is not limited to a specific IB method and can also be used, for example, with embedded boundary methods.« less

  14. Temperature Variability Associated with the Middle Atmosphere Electrodynamics (MAE-1) Campaign

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1999-01-01

    Meteorological rockets launched during the Middle Atmosphere Electrodynamics (MAE-1) Campaign in October 1980 from Andoya Rocket Range (ARR), Norway, exhibited large and unexpected temperature variability. Temperatures were found to vary as much as 20 C within a few hours and demonstrated a similar type of variability from one day to the next. Following examination of the reduced rocketsonde profiles the question was raised whether the observed variability was due to natural atmospheric variability or instrument malfunction. Small-scale variability, as observed, may result from one or multiple sources, e.g., intense storms upstream from the observing site, orography such as mountain waves off of the Greenland Plateau, convective activity, gravity waves, etc. Arranging the observations spaced over time showed that the perturbations moved downward. Prior to MAE-1 very few small rocketsonde measurements had been launched from ARR, thus the quality of the initial measurements in early October caused concern when the large variability was noted. We discuss the errors of the rocketsonde measurements, graphically review the nature of the variability observed, compare the data with other measurements, and postulate a possible cause for the variability.

  15. Variable geometry Darrieus wind machine

    NASA Astrophysics Data System (ADS)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  16. Russian Soyuz Moves to Launch Pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  17. The Choice of Spatial Interpolation Method Affects Research Conclusions

    NASA Astrophysics Data System (ADS)

    Eludoyin, A. O.; Ijisesan, O. S.; Eludoyin, O. M.

    2017-12-01

    Studies from developing countries using spatial interpolations in geographical information systems (GIS) are few and recent. Many of the studies have adopted interpolation procedures including kriging, moving average or Inverse Weighted Average (IDW) and nearest point without the necessary recourse to their uncertainties. This study compared the results of modelled representations of popular interpolation procedures from two commonly used GIS software (ILWIS and ArcGIS) at the Obafemi Awolowo University, Ile-Ife, Nigeria. Data used were concentrations of selected biochemical variables (BOD5, COD, SO4, NO3, pH, suspended and dissolved solids) in Ere stream at Ayepe-Olode, in the southwest Nigeria. Water samples were collected using a depth-integrated grab sampling approach at three locations (upstream, downstream and along a palm oil effluent discharge point in the stream); four stations were sited along each location (Figure 1). Data were first subjected to examination of their spatial distributions and associated variogram variables (nugget, sill and range), using the PAleontological STatistics (PAST3), before the mean values were interpolated in selected GIS software for the variables using each of kriging (simple), moving average and nearest point approaches. Further, the determined variogram variables were substituted with the default values in the selected software, and their results were compared. The study showed that the different point interpolation methods did not produce similar results. For example, whereas the values of conductivity was interpolated to vary as 120.1 - 219.5 µScm-1 with kriging interpolation, it varied as 105.6 - 220.0 µScm-1 and 135.0 - 173.9µScm-1 with nearest point and moving average interpolations, respectively (Figure 2). It also showed that whereas the computed variogram model produced the best fit lines (with least associated error value, Sserror) with Gaussian model, the Spherical model was assumed default for all the distributions in the software, such that the value of nugget was assumed as 0.00, when it was rarely so (Figure 3). The study concluded that interpolation procedures may affect decisions and conclusions on modelling inferences.

  18. Game Location and Team Quality Effects on Performance Profiles in Professional Soccer

    PubMed Central

    Lago-Peñas, Carlos; Lago-Ballesteros, Joaquin

    2011-01-01

    Home advantage in team sports has an important role in determining the outcome of a game. The aim of the present study was to identify the soccer game- related statistics that best discriminate home and visiting teams according to the team quality. The sample included all 380 games of the Spanish professional men’s league. The independent variables were game location (home or away) and the team quality. Teams were classified into four groups according to their final ranking at the end of the league. The game-related statistics registered were divided into three groups: (i) variables related to goals scored; (ii) variables related to offense and (iii) variables related to defense. A univariate (t-test and Mann-Whitney U) and multivariate (discriminant analysis) analysis of data was done. Results showed that home teams have significantly higher means for goal scored, total shots, shots on goal, attacking moves, box moves, crosses, offsides committed, assists, passes made, successful passes, dribbles made, successful dribbles, ball possession, and gains of possession, while visiting teams presented higher means for losses of possession and yellow cards. In addition, the findings of the current study confirm that game location and team quality are important in determining technical and tactical performances in matches. Teams described as superior and those described as inferior did not experience the same home advantage. Future research should consider the influence of other confounding variables such as weather conditions, game status and team form. Key points Home teams have significantly higher figures for attack indicators probably due to facilities familiarity and crowd effects. The teams’ game-related statistics profile varied according to game location and team quality. Teams described as superior and those described as inferior did not experience the same home advantage. PMID:24150619

  19. Variability of the lowest mass objects in the AB Doradus moving group

    NASA Astrophysics Data System (ADS)

    Vos, Johanna M.; Allers, Katelyn N.; Biller, Beth A.; Liu, Michael C.; Dupuy, Trent J.; Gallimore, Jack F.; Adenuga, Iyadunni J.; Best, William M. J.

    2018-02-01

    We present the detection of [3.6 μm] photometric variability in two young, L/T transition brown dwarfs, WISE J004701.06+680352.1 (W0047) and 2MASS J2244316+204343 (2M2244) using the Spitzer Space Telescope. We find a period of 16.4 ± 0.2 h and a peak-to-peak amplitude of 1.07 ± 0.04 per cent for W0047, and a period of 11 ± 2 h and amplitude of 0.8 ± 0.2 per cent for 2M2244. This period is significantly longer than that measured previously during a shorter observation. We additionally detect significant J-band variability in 2M2244 using the Wide-Field Camera on UKIRT. We determine the radial and rotational velocities of both objects using Keck NIRSPEC data. We find a radial velocity of -16.0_{-0.9}^{+0.8} km s-1 for 2M2244, and confirm it as a bona fide member of the AB Doradus moving group. We find rotational velocities of v sin i = 9.8 ± 0.3 and 14.3^{+1.4}_{-1.5} km s-1 for W0047 and 2M2244, respectively. With inclination angles of 85°+5-9 and 76°+14-20, W0047 and 2M2244 are viewed roughly equator-on. Their remarkably similar colours, spectra and inclinations are consistent with the possibility that viewing angle may influence atmospheric appearance. We additionally present Spitzer [4.5 μm] monitoring of the young, T5.5 object SDSS111010+011613 (SDSS1110) where we detect no variability. For periods <18 h, we place an upper limit of 1.25 per cent on the peak-to-peak variability amplitude of SDSS1110.

  20. Morphometric analysis of developing crowns of maxillary primary second molars and permanent first molars in humans.

    PubMed

    Peretz, B; Nevis, N; Smith, P

    1998-07-01

    The purpose of this study was firstly to characterize the changes occurring in size and form of the mineralizing maxillary second primary molar and first permanent molar crowns, and secondly to determine if similar changes in size and form characterize enamel apposition in the crowns of these teeth. Twenty-five primary second molars and 20 maxillary permanent first molars at various stages of development, found in archaeological excavations in Israel, were examined for a number of measured variables using image analyser software. Teeth were divided into two groups according to their stage of development: stage I included all teeth at an early stage of development in which mesiobuccal-cusp height was less than 5 mm for the primary molar and 5.9 mm for the permanent molar; stage 2 included all teeth in later stages of development where mesiobuccal-cusp height was greater than these values. In the primary molar, a significant increase was found between the two stages in almost all variables. Significant correlations were also found between all intercusp distances and the external variables. Strong correlations between height of the mesiobuccal cusp and all external and internal variables were noted in stage 1, but fewer in stage 2. In the permanent tooth, no increase was observed in intercusp distances and very few correlations were found between and among the variables. The results suggest that a change in the shape of the maxillary primary second molar occurs during formation, with the lingual cusp tips moving lingually and distally, and the distobuccal cusp tips moving distally. No change occurs in the shape of the maxillary permanent first molar during crown formation. Growth of the maxillary primary second and permanent first molar crowns occurs in 'bursts' of development.

Top