Science.gov

Sample records for complexes co2l2cl4 cu2l2cl4

  1. Complexity.

    PubMed

    Gómez-Hernández, J Jaime

    2006-01-01

    It is difficult to define complexity in modeling. Complexity is often associated with uncertainty since modeling uncertainty is an intrinsically difficult task. However, modeling uncertainty does not require, necessarily, complex models, in the sense of a model requiring an unmanageable number of degrees of freedom to characterize the aquifer. The relationship between complexity, uncertainty, heterogeneity, and stochastic modeling is not simple. Aquifer models should be able to quantify the uncertainty of their predictions, which can be done using stochastic models that produce heterogeneous realizations of aquifer parameters. This is the type of complexity addressed in this article.

  2. Complexity Survey.

    ERIC Educational Resources Information Center

    Gordon, Sandra L.; Anderson, Beth C.

    To determine whether consensus existed among teachers about the complexity of common classroom materials, a survey was administered to 66 pre-service and in-service kindergarten and prekindergarten teachers. Participants were asked to rate 14 common classroom materials as simple, complex, or super-complex. Simple materials have one obvious part,…

  3. Complex derivatives

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Caldarelli, Guido; Georg, Co-Pierre; May, Robert; Stiglitz, Joseph

    2013-03-01

    The intrinsic complexity of the financial derivatives market has emerged as both an incentive to engage in it, and a key source of its inherent instability. Regulators now faced with the challenge of taming this beast may find inspiration in the budding science of complex systems.

  4. Designing Complexity

    ERIC Educational Resources Information Center

    Glanville, Ranulph

    2007-01-01

    This article considers the nature of complexity and design, as well as relationships between the two, and suggests that design may have much potential as an approach to improving human performance in situations seen as complex. It is developed against two backgrounds. The first is a world view that derives from second order cybernetics and radical…

  5. Complex odontoma.

    PubMed

    Preetha, A; Balikai, Bharati S; Sujatha, D; Pai, Anuradha; Ganapathy, K S

    2010-01-01

    Odontomas are hamartomatous lesions or malformations composed of mature enamel, dentin, and pulp. They may be compound or complex, depending on the extent of morphodifferentiation or their resemblance to normal teeth. The etiology of odontoma is unknown, although several theories have been proposed. This article describes a case of a large infected complex odontoma in the residual mandibular ridge, resulting in considerable mandibular expansion.

  6. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  7. Complex interactions

    NASA Astrophysics Data System (ADS)

    de Régules, Sergio

    2016-04-01

    Complexity science - which describes phenomena such as collective and emergent behaviour - is the focus of a new centre where researchers are examining everything from the spread of influenza to what a healthy heartbeat looks like. Sergio de Régules reports.

  8. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ...     View Larger Image The complex structure and beauty of polar clouds are highlighted by these images acquired ... corner, the edge of the Antarctic coastline and some sea ice can be seen through some thin, high cirrus clouds. The right-hand panel ...

  9. Researching Complexity.

    ERIC Educational Resources Information Center

    Sumara, Dennis J.

    2000-01-01

    Discusses what Complexity Theory (presented as a rubric that collects theoretical understandings from a number of domains such as ecology, biology, neurology, and education) suggests about mind, selfhood, intelligence, and practices of reading, and the import of these reconceptualizations to reader-response researchers. Concludes that developing…

  10. Complex chemistry with complex compounds

    NASA Astrophysics Data System (ADS)

    Eichler, Robert; Asai, M.; Brand, H.; Chiera, N. M.; Di Nitto, A.; Dressler, R.; Düllmann, Ch. E.; Even, J.; Fangli, F.; Goetz, M.; Haba, H.; Hartmann, W.; Jäger, E.; Kaji, D.; Kanaya, J.; Kaneya, Y.; Khuyagbaatar, J.; Kindler, B.; Komori, Y.; Kraus, B.; Kratz, J. V.; Krier, J.; Kudou, Y.; Kurz, N.; Miyashita, S.; Morimoto, K.; Morita, K.; Murakami, M.; Nagame, Y.; Ooe, K.; Piguet, D.; Sato, N.; Sato, T. K.; Steiner, J.; Steinegger, P.; Sumita, T.; Takeyama, M.; Tanaka, K.; Tomitsuka, T.; Toyoshima, A.; Tsukada, K.; Türler, A.; Usoltsev, I.; Wakabayashi, Y.; Wang, Y.; Wiehl, N.; Wittwer, Y.; Yakushev, A.; Yamaki, S.; Yano, S.; Yamaki, S.; Qin, Z.

    2016-12-01

    In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the investigation of fragile single molecular species by gas-phase chromatography. The latest success with the heaviest group 6 transactinide seaborgium is highlighted. The formation of a very volatile hexacarbonyl compound Sg(CO)6 was observed similarly to its lighter homologues molybdenum and tungsten. The interactions of these gaseous carbonyl complex compounds with quartz surfaces were investigated by thermochromatography. Second-generation experiments are under way to investigate the intramolecular bond between the central metal atom of the complexes and the ligands addressing the influence of relativistic effects in the heaviest compounds. Our contribution comprises some aspects of the ongoing challenging experiments as well as an outlook towards other interesting compounds related to volatile complex compounds in the gas phase.

  11. Managing Complexity

    SciTech Connect

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  12. Complex Systems

    PubMed Central

    Goldberger, Ary L.

    2006-01-01

    Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107

  13. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  14. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  15. On State Complexes and Special Cube Complexes

    ERIC Educational Resources Information Center

    Peterson, Valerie J.

    2009-01-01

    This thesis presents the first steps toward a classification of non-positively curved cube complexes called state complexes. A "state complex" is a configuration space for a "reconfigurable system," i.e., an abstract system in which local movements occur in some discrete manner. Reconfigurable systems can be used to describe, for example,…

  16. Natural complexity, computational complexity and depth.

    PubMed

    Machta, J

    2011-09-01

    Depth is a complexity measure for natural systems of the kind studied in statistical physics and is defined in terms of computational complexity. Depth quantifies the length of the shortest parallel computation required to construct a typical system state or history starting from simple initial conditions. The properties of depth are discussed and it is compared with other complexity measures. Depth can only be large for systems with embedded computation.

  17. [Complexity of land ecosystem].

    PubMed

    Wu, Cifang; Chen, Meiqiu

    2002-06-01

    In recent years, complexity studies has become a new research region and been widely applied in engineering, biology, economy, management, military, police and sociology. In this paper, from the view of complex science, the main complexity characteristics of land ecosystem were described, furthermore, the application of fractal, chaos, and artificial neural network on the complexity of land ecosystem were also discussed.

  18. Complex networks analysis of language complexity

    NASA Astrophysics Data System (ADS)

    Amancio, Diego R.; Aluisio, Sandra M.; Oliveira, Osvaldo N., Jr.; Costa, Luciano da F.

    2012-12-01

    Methods from statistical physics, such as those involving complex networks, have been increasingly used in the quantitative analysis of linguistic phenomena. In this paper, we represented pieces of text with different levels of simplification in co-occurrence networks and found that topological regularity correlated negatively with textual complexity. Furthermore, in less complex texts the distance between concepts, represented as nodes, tended to decrease. The complex networks metrics were treated with multivariate pattern recognition techniques, which allowed us to distinguish between original texts and their simplified versions. For each original text, two simplified versions were generated manually with increasing number of simplification operations. As expected, distinction was easier for the strongly simplified versions, where the most relevant metrics were node strength, shortest paths and diversity. Also, the discrimination of complex texts was improved with higher hierarchical network metrics, thus pointing to the usefulness of considering wider contexts around the concepts. Though the accuracy rate in the distinction was not as high as in methods using deep linguistic knowledge, the complex network approach is still useful for a rapid screening of texts whenever assessing complexity is essential to guarantee accessibility to readers with limited reading ability.

  19. Radioisotope trithiol complexes

    DOEpatents

    Jurisson, Silvia S.; Cutler, Cathy S.; Degraffenreid, Anthony J.

    2016-08-30

    The present invention is directed to a series of stable radioisotope trithiol complexes that provide a simplified route for the direct complexation of radioisotopes present in low concentrations. In certain embodiments, the complex contains a linking domain configured to conjugate the radioisotope trithiol complex to a targeting vector. The invention is also directed to a novel method of linking the radioisotope to a trithiol compound to form the radioisotope trithiol complex. The inventive radioisotope trithiol complexes may be utilized for a variety of applications, including diagnostics and/or treatment in nuclear medicine.

  20. Evolution of biological complexity

    PubMed Central

    Adami, Christoph; Ofria, Charles; Collier, Travis C.

    2000-01-01

    To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural “Maxwell Demon,” within a fixed environment, genomic complexity is forced to increase. PMID:10781045

  1. Doxorubicin Lipid Complex Injection

    MedlinePlus

    Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's sarcoma ( ...

  2. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to ... body) related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called ...

  3. Irinotecan Lipid Complex Injection

    MedlinePlus

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other ... worsened after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications ...

  4. Oligocyclopentadienyl transition metal complexes

    SciTech Connect

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  5. Vincristine Lipid Complex Injection

    MedlinePlus

    Vincristine lipid complex is used to treat a certain type of acute lymphoblastic leukemia (ALL; a type ... at least two different treatments with other medications. Vincristine lipid complex is in a class of medications ...

  6. Crystallization of macromolecular complexes: combinatorial complex crystallization

    NASA Astrophysics Data System (ADS)

    Stura, Enrico A.; Graille, Marc; Charbonnier, Jean-Baptiste

    2001-11-01

    The usefulness of antibody complexation, as a way of increasing the chances of crystallization needs to be re-evaluated after many antibody complexes have been crystallized and their structure determined. It is somewhat striking that among these, only a small number is a complex with a large protein antigen. The problem is that the effort of raising, cleaving and purifying an Fab is rewarded only by an extra chance of getting crystals; depending on the relative likelihood of crystallization of the complexed and uncomplexed protein. The example of the complex between HIV gp120, CD4 and an Fab fragment from a neutralizing antibody suggests that further complexation of an antigen-antibody complex with a third protein could, by increasing the number of possible combinations, improve the likelihood of crystallization. We propose the use of Ig-binding proteins as a way of extending the method from HIV gp120 to all proteins for which there are monoclonal antibodies. We discuss this technique, combinatorial complex crystallization (CCC), as part of a multi-component system for the enhancement of crystallization of macromolecular complexes. The method makes use of single Ig-binding domains from Staphylococcus aureus protein A (SpA), Peptostreptococcus magnus protein L (PpL) and the streptococcal protein G (SpG). The generality of the method depends on the ability of these domains to interact with a large repertoire of antibodies without affecting antigen binding. There is strong evidence to suggest that these Ig-binding domains bind outside the antigen-combining site of the antibody without perturbing antigen binding. It is clear from the crystal structure of the single SpG domain complexed with an Fab that the interaction involves mainly the immunoglobulin CH1 domain, a region not involved in antigen recognition. We have recently determined the structure of the complex between a human Fab and the domain D from SpA and found that steric hindrance is unlikely even for large

  7. Complex Correspondence Principle

    SciTech Connect

    Bender, Carl M.; Meisinger, Peter N.; Hook, Daniel W.; Wang Qinghai

    2010-02-12

    Quantum mechanics and classical mechanics are distinctly different theories, but the correspondence principle states that quantum particles behave classically in the limit of high quantum number. In recent years much research has been done on extending both quantum and classical mechanics into the complex domain. These complex extensions continue to exhibit a correspondence, and this correspondence becomes more pronounced in the complex domain. The association between complex quantum mechanics and complex classical mechanics is subtle and demonstrating this relationship requires the use of asymptotics beyond all orders.

  8. Complex virial theorem and complex scaling

    SciTech Connect

    Junker, B.R.

    1983-06-01

    We present the simple generalization to complex energies of the normal global real scaling used for bound-state calculations to produce a variational energy which satisfies the virial theorem. We show that in two limiting cases, one or the other of which is almost always p satisfied in all calculations, the virially stabilized complex energy is sensitive to only the real part or the imaginary part of the complex virial expression. We then compute the virial expression for a number of wave functions for the 1s2s/sup 2/ /sup 2/S He/sup -/, 1s2s2p /sup 2/P/sup o/ He/sup -/, and 1s/sup 2/2s/sup 2/kp /sup 2/P/sup o/ Be/sup -/ resonances and the corresponding virially stabilized resonance energies. In all calculations one of the limiting cases was applicable.

  9. Assessing physiological complexity.

    PubMed

    Burggren, W W; Monticino, M G

    2005-09-01

    Physiologists both admire and fear complexity, but we have made relatively few attempts to understand it. Inherently complex systems are more difficult to study and less predictable. However, a deeper understanding of physiological systems can be achieved by modifying experimental design and analysis to account for complexity. We begin this essay with a tour of some mathematical views of complexity. After briefly exploring chaotic systems, information theory and emergent behavior, we reluctantly conclude that, while a mathematical view of complexity provides useful perspectives and some narrowly focused tools, there are too few generally practical take-home messages for physiologists studying complex systems. Consequently, we attempt to provide guidelines as to how complex systems might be best approached by physiologists. After describing complexity based on the sum of a physiological system's structures and processes, we highlight increasingly refined approaches based on the pattern of interactions between structures and processes. We then provide a series of examples illustrating how appreciating physiological complexity can improve physiological research, including choosing experimental models, guiding data collection, improving data interpretations and constructing more rigorous system models. Finally, we conclude with an invitation for physiologists, applied mathematicians and physicists to collaborate on describing, studying and learning from studies of physiological complexity.

  10. Complexation of Optoelectronic Systems

    NASA Astrophysics Data System (ADS)

    Boreisho, A. S.; Il‧in, M. Yu.; Konyaev, M. A.; Mikhailenko, A. S.; Morozov, A. V.; Strakhov, S. Yu.

    2016-05-01

    Problems of increasing the efficiency and the functionality of complex optoelectronic systems for monitoring real atmospheric conditions and of their use are discussed. It is shown by the example of a meteorological complex comprising an infrared wind-sensing lidar and an X-range Doppler radar that the complexation of probing systems working in different electromagnetic-radiation ranges opens up new opportunities for determining the meteorological parameters of a turbulent atmosphere and investigating the interaction of radiation with it.

  11. Complexity and schizophrenia.

    PubMed

    Fernández, Alberto; Gómez, Carlos; Hornero, Roberto; López-Ibor, Juan José

    2013-08-01

    Complexity estimators have been broadly utilized in schizophrenia investigation. Early studies reported increased complexity in schizophrenia patients, associated with a higher variability or "irregularity" of their brain signals. However, further investigations showed reduced complexities, thus introducing a clear divergence. Nowadays, both increased and reduced complexity values are reported. The explanation of such divergence is a critical issue to understand the role of complexity measures in schizophrenia research. Considering previous arguments a complementary hypothesis is advanced: if the increased irregularity of schizophrenia patients' neurophysiological activity is assumed, a "natural" tendency to increased complexity in EEG and MEG scans should be expected, probably reflecting an abnormal neuronal firing pattern in some critical regions such as the frontal lobes. This "natural" tendency to increased complexity might be modulated by the interaction of three main factors: medication effects, symptomatology, and age effects. Therefore, young, medication-naïve, and highly symptomatic (positive symptoms) patients are expected to exhibit increased complexities. More importantly, the investigation of these interacting factors by means of complexity estimators might help to elucidate some of the neuropathological processes involved in schizophrenia.

  12. Visual complexity: a review.

    PubMed

    Donderi, Don C

    2006-01-01

    The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from research on single forms, form and texture arrays and visual displays. Form complexity and form probability are shown to be linked through their reciprocal relationship in complexity theory, which is in turn shown to be consistent with recent developments in perceptual learning and neural circuit theory. Directions for further research are suggested.

  13. Adaptive Leadership: Fighting Complexity with Complexity

    DTIC Science & Technology

    2014-06-01

    It appears that, as Jorge Luis Borges put it, “Everything touches everything.”39 Army ants and the World Wide Web are exemplars of complex systems...Star Trek: USS Enterprise: Haynes Manual (San Jose , CA: Simon and Schuster, 2010). 66 Spillane, Distributed Leadership. 24... Jose , CA: Simon and Schuster, 2010. Smythe, Elizabeth, and Andrew Norton. “Thinking as Leadership/Leadership As Thinking.” Leadership 3, no. 1 (2007

  14. U1A Complex

    SciTech Connect

    2014-10-28

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  15. U1A Complex

    ScienceCinema

    None

    2016-07-12

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  16. Bacterial formate hydrogenlyase complex

    PubMed Central

    McDowall, Jennifer S.; Murphy, Bonnie J.; Haumann, Michael; Palmer, Tracy; Armstrong, Fraser A.; Sargent, Frank

    2014-01-01

    Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts. PMID:25157147

  17. Complexity and Relations

    ERIC Educational Resources Information Center

    Lancaster, Jeanette Elizabeth

    2013-01-01

    A central feature of complexity is that it is based on non-linear, recursive relations. However, in most current accounts of complexity such relations, while non-linear, are based on the reductive relations of a Newtonian onto-epistemological framework. This means that the systems that are emergent from the workings of such relations are a…

  18. The Tom Core Complex

    PubMed Central

    Ahting, Uwe; Thun, Clemens; Hegerl, Reiner; Typke, Dieter; Nargang, Frank E.; Neupert, Walter; Nussberger, Stephan

    1999-01-01

    Translocation of nuclear-encoded preproteins across the outer membrane of mitochondria is mediated by the multicomponent transmembrane TOM complex. We have isolated the TOM core complex of Neurospora crassa by removing the receptors Tom70 and Tom20 from the isolated TOM holo complex by treatment with the detergent dodecyl maltoside. It consists of Tom40, Tom22, and the small Tom components, Tom6 and Tom7. This core complex was also purified directly from mitochondria after solubilization with dodecyl maltoside. The TOM core complex has the characteristics of the general insertion pore; it contains high-conductance channels and binds preprotein in a targeting sequence-dependent manner. It forms a double ring structure that, in contrast to the holo complex, lacks the third density seen in the latter particles. Three-dimensional reconstruction by electron tomography exhibits two open pores traversing the complex with a diameter of ∼2.1 nm and a height of ∼7 nm. Tom40 is the key structural element of the TOM core complex. PMID:10579717

  19. COMPLEXITY IN ECOLOGICAL SYSTEMS

    EPA Science Inventory

    The enormous complexity of ecosystems is generally obvious under even the most cursory examination. In the modern world, this complexity is further augmented by the linkage of ecosystems to economic and social systems through the human use of the environment for technological pu...

  20. Complexity and emergent phenomena.

    PubMed

    Suki, Béla; Bates, Jason H T; Frey, Urs

    2011-04-01

    Complex biological systems operate under non-equilibrium conditions and exhibit emergent properties associated with correlated spatial and temporal structures. These properties may be individually unpredictable, but tend to be governed by power-law probability distributions and/or correlation. This article reviews the concepts that are invoked in the treatment of complex systems through a wide range of respiratory-related examples. Following a brief historical overview, some of the tools to characterize structural variabilities and temporal fluctuations associated with complex systems are introduced. By invoking the concept of percolation, the notion of multiscale behavior and related modeling issues are discussed. Spatial complexity is then examined in the airway and parenchymal structures with implications for gas exchange followed by a short glimpse of complexity at the cellular and subcellular network levels. Variability and complexity in the time domain are then reviewed in relation to temporal fluctuations in airway function. Next, an attempt is given to link spatial and temporal complexities through examples of airway opening and lung tissue viscoelasticity. Specific examples of possible and more direct clinical implications are also offered through examples of optimal future treatment of fibrosis, exacerbation risk prediction in asthma, and a novel method in mechanical ventilation. Finally, the potential role of the science of complexity in the future of physiology, biology, and medicine is discussed.

  1. Performance Improvement Assuming Complexity

    ERIC Educational Resources Information Center

    Rowland, Gordon

    2007-01-01

    Individual performers, work teams, and organizations may be considered complex adaptive systems, while most current human performance technologies appear to assume simple determinism. This article explores the apparent mismatch and speculates on future efforts to enhance performance if complexity rather than simplicity is assumed. Included are…

  2. Visual Complexity: A Review

    ERIC Educational Resources Information Center

    Donderi, Don C.

    2006-01-01

    The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from…

  3. Complexity and behavioral economics.

    PubMed

    Rosser, J Barkley; Rosser, Marina V

    2015-04-01

    This paper will consider the relationship between complexity economics and behavioral economics. A crucial key to this is to understand that Herbert Simon was both the founder of explicitly modern behavioral economics as well as one of the early developers of complexity theory. Bounded rationality was essentially derived from Simon's view of the impossibility of full rationality on the part of economic agents. Modern complexity theory through such approaches as agent-based modeling offers an approach to understanding behavioral economics by allowing for specific behavioral responses to be assigned to agents who interact within this context, even without full rationality. Other parts of modern complexity theory are considered in terms of their relationships with behavioral economics. Fundamentally, complexity provides an ultimate foundation for bounded rationality and hence the need to use behavioral economics in a broader array of contexts than most economists have thought appropriate.

  4. Complexity: against systems.

    PubMed

    Chu, Dominique

    2011-09-01

    This article assumes a specific intuitive notion of complexity as a difficulty to generate and/or assess the plausibility of models. Based on this intuitive understanding of complexity, it identifies two main causes of complexity, namely, radical openness and contextuality. The former is the idea that there are no natural systems. The modeler always needs to draw artificial boundaries around phenomena to generate feasible models. Contextuality is intimately connected to the requirement to simplify models and to leave out most aspects. Complexity occurs when contextuality and radical openness cannot be contained that is when it is not clear where the boundaries of the system are and which abstractions are the correct ones. This concept of complexity is illustrated using a number of example from evolution.

  5. Selenophene transition metal complexes

    SciTech Connect

    White, Carter James

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the η5- and the η1(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The 77Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of η1(S)-bound thiophenes, η1(S)-benzothiophene and η1(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the η1(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh3)Re(2-benzothioenylcarbene)]O3SCF3 was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the η1(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  6. Afterglow Complex Plasma

    SciTech Connect

    Samarian, A. A.; Boufendi, L.; Mikikian, M.

    2008-09-07

    The review of the first detailed experimental and theoretical studies of complex plasma in RF discharge afterglow is presented. The studies have been done in a frame of FAST collaborative research project between Complex Plasma Laboratory of the University of Sydney and the GREMI laboratory of Universite d'Orleans. We examined the existing models of plasma decay, presents experimental observations of dust dynamics under different afterglow complex plasma conditions, presents the experimental data obtained (in particular the presence of positively charged particles in discharge afterglow), discusses the use of dust particles as a probe to study the diffusion losses in afterglow plasmas.

  7. Complexity and robustness

    PubMed Central

    Carlson, J. M.; Doyle, John

    2002-01-01

    Highly optimized tolerance (HOT) was recently introduced as a conceptual framework to study fundamental aspects of complexity. HOT is motivated primarily by systems from biology and engineering and emphasizes, (i) highly structured, nongeneric, self-dissimilar internal configurations, and (ii) robust yet fragile external behavior. HOT claims these are the most important features of complexity and not accidents of evolution or artifices of engineering design but are inevitably intertwined and mutually reinforcing. In the spirit of this collection, our paper contrasts HOT with alternative perspectives on complexity, drawing on real-world examples and also model systems, particularly those from self-organized criticality. PMID:11875207

  8. Complexity and forensic pathology.

    PubMed

    Jones, Richard Martin

    2015-12-01

    It has become increasingly apparent that nonlinearity and complexity are the norm in human physiological systems, the relevance of which is informing an enhanced understanding of basic pathological processes such as inflammation, the host response to severe trauma, and critical illness. This article will explore how an understanding of nonlinear systems and complexity might inform the study of the pathophysiology of deaths of medicolegal interest, and how 'complexity thinking' might usefully be incorporated into modern forensic medicine and forensic pathology research, education and practice.

  9. A complex legacy

    NASA Astrophysics Data System (ADS)

    Moore, Cristopher

    2011-11-01

    In his tragically short life, Alan Turing helped define what computing machines are capable of, and where they reach inherent limits. His legacy is still felt every day, in areas ranging from computational complexity theory to cryptography and quantum computing.

  10. Indicators: Physical Habitat Complexity

    EPA Pesticide Factsheets

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.

  11. Complex Regional Pain Syndrome

    MedlinePlus

    Complex regional pain syndrome (CRPS) is a chronic pain condition. It causes intense pain, usually in the arms, hands, legs, or feet. ... in skin temperature, color, or texture Intense burning pain Extreme skin sensitivity Swelling and stiffness in affected ...

  12. Reconstruction Using Witness Complexes

    PubMed Central

    Oudot, Steve Y.

    2010-01-01

    We present a novel reconstruction algorithm that, given an input point set sampled from an object S, builds a one-parameter family of complexes that approximate S at different scales. At a high level, our method is very similar in spirit to Chew’s surface meshing algorithm, with one notable difference though: the restricted Delaunay triangulation is replaced by the witness complex, which makes our algorithm applicable in any metric space. To prove its correctness on curves and surfaces, we highlight the relationship between the witness complex and the restricted Delaunay triangulation in 2d and in 3d. Specifically, we prove that both complexes are equal in 2d and closely related in 3d, under some mild sampling assumptions. PMID:21643440

  13. Complex Flow Workshop Report

    SciTech Connect

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  14. Complex and unpredictable Cardano

    NASA Astrophysics Data System (ADS)

    Ekert, Artur

    2008-08-01

    This purely recreational paper is about one of the most colorful characters of the Italian Renaissance, Girolamo Cardano, and the discovery of two basic ingredients of quantum theory, probability and complex numbers.

  15. Inside the complexity labyrinth

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2010-02-01

    Although the world we live in is complex, complexity as a science does not have a long history. For generations, most physicists tried to understand everything in terms of interactions between pairs of idealized "test particles". Then, about a 100 years ago, Henri Poincaré pointed out that a fully interacting three-body system was not just the sum of its three component pairs. The famous "three-body problem" was born.

  16. Electrospun complexes - functionalised nanofibres

    NASA Astrophysics Data System (ADS)

    Meyer, T.; Wolf, M.; Dreyer, B.; Unruh, D.; Krüger, C.; Menze, M.; Sindelar, R.; Klingelhöfer, G.; Renz, F.

    2016-12-01

    Here we present a new approach of using iron-complexes in electro-spun fibres. We modify poly(methyl methacrylate) (PMMA) by replacing the methoxy group with Diaminopropane or Ethylenediamine. The complex is bound covalently via an imine-bridge or an amide. The resulting polymer can be used in the electrospinning process without any further modifications in method either as pure reagent or mixed with small amounts of not functionalised polymer resulting in fibres of different qualities (Fig. 1).

  17. An erupted complex odontoma.

    PubMed

    Tozoglu, Sinan; Yildirim, Umran; Buyukkurt, M Cemil

    2010-01-01

    Odontomas are benign tumors of odontogenic origin. The cause of the odontoma is unknown, but it is believed to be hereditary or due to a disturbance in tooth development triggered by trauma or infection. Odontomas may be either compound or complex. Although these tumors are seen frequently, erupted odontomas are rare. The purpose of this study is to present a rare case of complex odontoma that erupted into the oral cavity.

  18. Pulling complexes out of complex diseases

    PubMed Central

    Mohan, Ryan D; Abmayr, Susan M; Workman, Jerry L

    2014-01-01

    Spinocerebellar ataxia 7 (SCA7) is an incurable disease caused by expansion of CAG trinucleotide sequences within the Ataxin-7 gene. This elongated CAG tract results in an Ataxin-7 protein bearing an expanded polyglutamine (PolyQ) repeat. SCA7 disease is characterized by progressive neural and retinal degeneration leading to ataxia and blindness. Evidence gathered from investigating SCA7 and other PolyQ diseases strongly suggest that misregulation of gene expression contributes to neurodegeneration. In fact, Ataxin-7 is a subunit of the essential Spt-Ada-Gcn5-Acetltransferase (SAGA) chromatin modifying complex that regulates expression of a large number of genes. Here we discuss recent insights into Ataxin-7 function and, considering these findings, propose a model for how polyglutamine expansion of Ataxin-7 may affect Ataxin-7 function to alter chromatin modifications and gene expression. PMID:25054097

  19. Cell complexes through time

    NASA Astrophysics Data System (ADS)

    Klette, Reinhard

    2000-10-01

    The history of cell complexes is closely related to the birth and development of topology in general. Johann Benedict Listing (1802 - 1882) introduced the term 'topology' into mathematics in a paper published in 1847, and he also defined cell complexes for the first time in a paper published in 1862. Carl Friedrich Gauss (1777 - 1855) is often cited as the one who initiated these ideas, but he did not publish either on topology or on cell complexes. The pioneering work of Leonhard Euler (1707 - 1783) on graphs is also often cited as the birth of topology, and Euler's work was cited by Listing in 1862 as a stimulus for his research on cell complexes. There are different branches in topology which have little in common: point set topology, algebraic topology, differential topology etc. Confusion may arise if just 'topology' is specified, without clarifying the used concept. Topological subjects in mathematics are often related to continuous models, and therefore quite irrelevant to computer based solutions in image analysis. Compared to this, only a minority of topology publications in mathematics addresses discrete spaces which are appropriate for computer-based image analysis. In these cases, often the notion of a cell complex plays a crucial role. This paper briefly reports on a few of these publications. This paper is not intended to cover the very lively progress in cell complex studies within the context of image analysis during the last two decades. Basically it stops its historic review at the time when this subject in image analysis research gained speed in 1980 - 1990. As a general point of view, the paper indicates that image analysis contributes to a fusion of topological concepts, the geometric and the abstract cell structure approach and point set topology, which may lead towards new problems for the study of topologies defined on geometric or abstract cell complexes.

  20. Hydridomethyl iridium complex

    DOEpatents

    Bergman, Robert G.; Buchanan, J. Michael; Stryker, Jeffrey M.; Wax, Michael J.

    1989-01-01

    A process for functionalizing methane comprising: (a) reacting methane with a hydridoalkyl metal complex of the formula: CpIr[P(R.sub.1).sub.3 ]H(R.sub.2) wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical having from 1 to 5 carbon atoms; Ir represents an iridium atom; P represents a phosphorus atom; R.sub.1 represents an alkyl group; R.sub.2 represents an alkyl group having at least two carbon atoms; and H represents a hydrogen atom, in the presence of a liquid alkane R.sub.3 H having at least three carbon atoms to form a hydridomethyl complex of the formula: CpIr[P(R.sub.1).sub.3 ]HMe where Me represents a methyl radical. (b) reacting said hydridomethyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X"X'"X"" or CHX'X"X'"; wherein X', X", X"', and X"" represent halogens selected from bromine, iodine and chlorine, to halomethyl complex of step (a) having the formula: CpIr[P(R.sub.1).sub.3 ]MeX: (c) reacting said halomethyl complex with a mercuric halide of the formula HgX.sub.2 to form a methyl mercuric halide of the formula HgMeX; and (d) reacting said methyl mercuric halide with a molecular halogen of the formula X.sub.2 to form methyl halide.

  1. Quantum Complexity in Graphene

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    Carbon has a unique position among elements in the periodic table. It produces an allotrope, graphene, a mechanically robust two dimensional semimetal. The multifarious properties that graphene exhibits has few parallels among elemental metals. From simplicity, namely carbon atoms connected by pure sp2 bonds, a wealth of novel quantum properties emerge. In classical complex systems such as a spin glass or a finance market, several competing agents or elements are responsible for unanticipated and difficult to predict emergent properties. The complex (sic) structure of quantum mechanics is responsbile for an unanticipated set of emergent properties in graphene. We call this quantum complexity. In fact, most quantum systems, phenomena and modern quantum field theory could be viewed as examples of quantum complexity. After giving a brief introduction to the quantum complexity we focus on our own work, which indicates the breadth in the type of quantum phenomena that graphene could support. We review our theoretical suggestions of, (i) spin-1 collective mode in netural graphene, (ii) relativistic type of phenomena in crossed electric and magnetic fields, (iii) room temperature superconductivity in doped graphene and (iv) composite Fermi sea in neutral graphene in uniform magnetic field and (v) two-channel Kondo effect. Except for the relativistic type of phenomena, the rest depend in a fundamental way on a weak electron correlation that exists in the broad two-dimensional band of graphene.

  2. Quantum Complexity in Graphene

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    Carbon has a unique position among elements in the periodic table. It produces an allotrope, graphene, a mechanically robust two dimensional semimetal. The multifarious properties that graphene exhibits has few parallels among elemental metals. From simplicity, namely carbon atoms connected by pure sp2 bonds, a wealth of novel quantum properties emerge. In classical complex systems such as a spin glass or a finance market, several competing agents or elements are responsible for unanticipated and difficult to predict emergent properties. The complex (sic) structure of quantum mechanics is responsbile for an unanticipated set of emergent properties in graphene. We call this quantum complexity. Infact, most quantum systems, phenomena and modern quantum field theory could be viewed as examples of quantum complexity. After giving a brief introduction to the quantum complexity we focus on our own work, which indicates the breadth in the type of quantum phenomena that graphene could support. We review our theoretical suggestions of, (i) spin-1 collective mode in netural graphene, (ii) relativistic type of phenomena in crossed electric and magnetic fields, (iii) room temperature superconductivity in doped graphene and (iv) composite Fermi sea in neutral graphene in uniform magnetic field and (v) 2-channel Kondo effect. Except for the relativistic type of phenomena and Kondo effect, the rest depend in a fundamental way on a weak electron correlations that exist in graphene.

  3. Alanine water complexes.

    PubMed

    Vaquero, Vanesa; Sanz, M Eugenia; Peña, Isabel; Mata, Santiago; Cabezas, Carlos; López, Juan C; Alonso, José L

    2014-04-10

    Two complexes of alanine with water, alanine-(H2O)n (n = 1,2), have been generated by laser ablation of the amino acid in a supersonic jet containing water vapor and characterized using Fourier transform microwave spectroscopy. In the observed complexes, water molecules bind to the carboxylic group of alanine acting as both proton donors and acceptors. In alanine-H2O, the water molecule establishes two intermolecular hydrogen bonds forming a six-membered cycle, while in alanine-(H2O)2 the two water molecules establish three hydrogen bonds forming an eight-membered ring. In both complexes, the amino acid moiety is in its neutral form and shows the conformation observed to be the most stable for the bare molecule. The microsolvation study of alanine-(H2O)n (n = 1,2) can be taken as a first step toward understanding bulk properties at a microscopic level.

  4. The complex pendulum

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.

    1998-12-01

    In this talk we propose to broaden the conventional notion of quantum mechanics. In conventional quantum mechanics one imposes the condition H†=H, where † represents complex conjugation and matrix transpose, to ensure that the Hamiltonian has a real spectrum. Replacing this mathematical condition by the weaker and more physical requirement H‡=H, where ‡=PT represents combined parity reflection and time reversal, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These PT-symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase space. This talk describes the unusual classical and quantum properties of PT-symmetric quantum mechanical and quantum field theoretic models.

  5. The complex pendulum

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.

    1999-07-01

    This talk proposes a generalization of conventional quantum mechanics. In conventional quantum mechanics one imposes the condition H †=H , where † represents complex conjugation and matrix transpose, to ensure that the Hamiltonian has a real spectrum. By replacing this mathematical condition with the weaker and more physical requirement H ‡=H , where ‡= PT represents combined parity reflection and time reversal, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These PT-symmetric theories may be viewed as analytic continuations of conventional theories from real to complex-phase space. This talk describes the unusual classical and quantum properties of PT-symmetric quantum-mechanical and quantum-field-theoretic models.

  6. Nonergodic complexity management

    NASA Astrophysics Data System (ADS)

    Piccinini, Nicola; Lambert, David; West, Bruce J.; Bologna, Mauro; Grigolini, Paolo

    2016-06-01

    Linear response theory, the backbone of nonequilibrium statistical physics, has recently been extended to explain how and why nonergodic renewal processes are insensitive to simple perturbations, such as in habituation. It was established that a permanent correlation results between an external stimulus and the response of a complex system generating nonergodic renewal processes, when the stimulus is a similar nonergodic process. This is the principle of complexity management, whose proof relies on ensemble distribution functions. Herein we extend the proof to the nonergodic case using time averages and a single time series, hence making it usable in real life situations where ensemble averages cannot be performed because of the very nature of the complex systems being studied.

  7. Synchronization in complex networks

    SciTech Connect

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  8. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  9. Viral quasispecies complexity measures.

    PubMed

    Gregori, Josep; Perales, Celia; Rodriguez-Frias, Francisco; Esteban, Juan I; Quer, Josep; Domingo, Esteban

    2016-06-01

    Mutant spectrum dynamics (changes in the related mutants that compose viral populations) has a decisive impact on virus behavior. The several platforms of next generation sequencing (NGS) to study viral quasispecies offer a magnifying glass to study viral quasispecies complexity. Several parameters are available to quantify the complexity of mutant spectra, but they have limitations. Here we critically evaluate the information provided by several population diversity indices, and we propose the introduction of some new ones used in ecology. In particular we make a distinction between incidence, abundance and function measures of viral quasispecies composition. We suggest a multidimensional approach (complementary information contributed by adequately chosen indices), propose some guidelines, and illustrate the use of indices with a simple example. We apply the indices to three clinical samples of hepatitis C virus that display different population heterogeneity. Areas of virus biology in which population complexity plays a role are discussed.

  10. Planning Complex Projects Automatically

    NASA Technical Reports Server (NTRS)

    Henke, Andrea L.; Stottler, Richard H.; Maher, Timothy P.

    1995-01-01

    Automated Manifest Planner (AMP) computer program applies combination of artificial-intelligence techniques to assist both expert and novice planners, reducing planning time by orders of magnitude. Gives planners flexibility to modify plans and constraints easily, without need for programming expertise. Developed specifically for planning space shuttle missions 5 to 10 years ahead, with modifications, applicable in general to planning other complex projects requiring scheduling of activities depending on other activities and/or timely allocation of resources. Adaptable to variety of complex scheduling problems in manufacturing, transportation, business, architecture, and construction.

  11. Complexity and Animal Models

    DTIC Science & Technology

    2015-01-01

    SEP 2015 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Complexity and animal models 5a. CONTRACT NUMBER 5b. GRANT NUMBER...decrease W/Wmax, thereby maintaining the relationship between variability and W/Wmax. doi:10.1016/j.jcrc.2010.05.012 Complexity and animal models...may not be possible during mass casualty and natural disaster situations or may need to be postponed during combat to avoid danger to the medic’s life

  12. Universality classes of complexity

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    We give several criteria of complexity and define different universality classes. According to our classification, at the lowest class of complexity are random graph, Markov Models and Hidden Markov Models. At the next level is Sherrington-Kirkpatrick spin glass, connected with neuron-network models. On a higher level are critical theories, spin glass phase of Random Energy Model, percolation, self organized criticality (SOC). The top level class involves HOT design, error threshold in optimal coding, language, and, maybe, financial market. Alive systems are also related with the last class.

  13. The ESCRT Complexes

    PubMed Central

    Hurley, James H.

    2010-01-01

    The ESCRT machinery consists of the peripheral membrane protein complexes, ESCRT-0, -I, -II, -III, and Vps4-Vta1, and the ALIX homodimer. The ESCRT system is required for degradation of unneeded or dangerous plasma membrane proteins; biogenesis of the lysosome and the yeast vacuole; the budding of most membrane enveloped viruses; the membrane abscission step in cytokinesis; macroautophagy; and several other processes. From their initial discovery in 2001-2002, the literature on ESCRTs has grown exponentially. This review will describe the structure and function of the six complexes noted above and summarizes current knowledge of their mechanistic roles in cellular pathways and in disease. PMID:20653365

  14. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N [Berkeley, CA; Corneillie, Todd M [Campbell, CA; Xu, Jide [Berkeley, CA

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  15. The Corona Australis Complex.

    NASA Astrophysics Data System (ADS)

    Vaile, Roberta Anne

    What began as a HI study of the CrA star formation region has grown to incorporate the following: (1) a detailed investigation of the HI content of the CrA dark cloud; (2) an extensive molecular survey of the CrA dark cloud, from which the CrA molecular abundances were determined and compared to those of other Galactic environments; (3) an extensive HI survey of the CrA complex, which was compared to the established Galactic distributions in and near the region; (4) an examination of the extent and nature of the CrA IVCs, components of gas at intermediate, anomalous velocities; (5) an investigation of the correlations which may exist between the features of the CrA region; and (6) an evaluation of where the CrA complex fits within the framework of our understanding of the Galaxy. A review of our perceptions of the Galactic structure is contained in Chapter I. The established state of knowledge of the CrA dark cloud region--chiefly, that of a region of young and on-going star formation--is given in Chapter II. The observational studies of the CrA dark cloud region specifically are presented in Chapter III. The HI survey of the CrA complex is presented in Chapter IV, with the CrA IVCs results presented in Chapter V. A comparison of the CrA HI structure with nearby Galactic features suggests that the CrA complex--exemplified by the T_ {rm A} morphology given as a frontispiece and in Figure 4.1--is a coherently -moving HI structure falling subject to the Rayleigh-Taylor, Kelvin-Helmholtz, flute and Parker hydrodynamic and magnetohydrodynamic instabilities under the Galactic gravitational and differential rotation forces. As the distance to the CrA IVCs still remains speculative, no definitive identity for the CrA IVCs was established. Considering the whole, the CrA complex was interpreted as a feature triggered by the Sco-Cen association, possibly a late-comer to the Lindblad Ring and possibly a result of the Tau-Gem events. The similarities with the Oph northern

  16. Complexity and Fly Swarms

    NASA Astrophysics Data System (ADS)

    Cates, Grant; Murray, Joelle

    Complexity is the study of phenomena that emerge from a collection of interacting objects and arises in many systems throughout physics, biology, finance, economics and more. Certain kinds of complex systems can be described by self-organized criticality (SOC). An SOC system is one that is internally driven towards some critical state. Recent experimental work suggests scaling behavior of fly swarms-one of the hallmarks of an SOC system. Our goal is to look for SOC behavior in computational models of fly swarms.

  17. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  18. Salen complexes with dianionic counterions

    DOEpatents

    Job, Gabriel E.; Farmer, Jay J.; Cherian, Anna E.

    2016-08-02

    The present invention describes metal salen complexes having dianionic counterions. Such complexes can be readily precipitated and provide an economical method for the purification and isolation of the complexes, and are useful to prepare novel polymer compositions.

  19. Graphical Representation of Complex Functions.

    ERIC Educational Resources Information Center

    Renka, Robert J.

    1988-01-01

    Describes methods and software for graphing representation of a complex function of a complex variable. Includes an application of a graphical interpretation of the complex zeros of the cubic and their properties. (PK)

  20. Surface complexation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adsorption-desorption reactions are important processes that affect the transport of contaminants in the environment. Surface complexation models are chemical models that can account for the effects of variable chemical conditions, such as pH, on adsorption reactions. These models define specific ...

  1. Complexity in Cultural Identity

    ERIC Educational Resources Information Center

    Holliday, Adrian

    2010-01-01

    Despite their diverse national backgrounds, 28 interviewees speak similarly about the complexity of the cultural realities with which they live, and refuse to be pinned down to specific cultural types. While nation is of great importance, unless personally inspiring, it tends to be an external force which is in conflict with a wide variety of…

  2. Coordination Complexes of Cobalt.

    ERIC Educational Resources Information Center

    Williams, Gregory M.; And Others

    1989-01-01

    Described is an experiment involving the synthesis and spectral studies of cobalt complexes that not only give general chemistry students an introduction to inorganic synthesis but allows them to conduct a systematic study on the effect of different ligands on absorption spectra. Background information, procedures, and experimental results are…

  3. Complex Digital Visual Systems

    ERIC Educational Resources Information Center

    Sweeny, Robert W.

    2013-01-01

    This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…

  4. Hydridomethyl iridium complex

    SciTech Connect

    Bergman, R.G; Buchanan, J.M.; Stryker, J.M.; Wax, M.J.

    1989-07-18

    This patent describes a hydridomethyl complex of the formula: CpIr(P(R{sub 1}){sub 3})HMe. Cp represents a cyclopentadienyl or alkyl cyclopentadienyl radical; Ir represents an iridium atom; P represents a phosphorus atom; R{sub 1} represents an alkyl group; and Me represents a methyl group.

  5. Complexity, Systems, and Software

    DTIC Science & Technology

    2014-08-14

    2014 Carnegie Mellon University Complexity, Systems, and Software Software Engineering Institute Carnegie Mellon University Pittsburgh, PA...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 8...for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by the United States

  6. Subelliptic Estimates for Complexes

    PubMed Central

    Guillemin, Victor; Sternberg, Shlomo

    1970-01-01

    New results are announced linking properties of the symbol module and characteristic variety of a differential complex with test estimates near the characteristic variety of the type considered by Hörmander (½-estimate). The first result is the invariance of the test estimates under pseudo-differential change of coordinates, and this leads to the introduction of a normal form for the complex in the neighborhood of a Cohen-MacCauley point of the symbol module. If the characteristic variety V is a manifold near the Cohen-MacCauley point (x0,ζ0) with parametrizing functions p1,...,pq, where q is the codimension of the characteristic variety in the complexified contangent bundle, the matrix [Formula: see text] of Poisson brackets defines invariantly a Hermitian form Q on the normal space to V at (x0,ζ0) when the dpζ(x0,ζ0) are used as basis, and the test estimates are satisfied at the ith stage of the complex if sig. Q (signature of Q) is ≥ n - i + 1 (n the dimension of the base manifold) or rank Q - sig. Q ≥ i + 1. Finally, conditions are given in order that, on a manifold with smooth boundary, the associated boundary complexes satisfy the ½-estimate. PMID:16591855

  7. Restricting Grammatical Complexity

    ERIC Educational Resources Information Center

    Frank, Robert

    2004-01-01

    Theories of natural language syntax often characterize grammatical knowledge as a form of abstract computation. This paper argues that such a characterization is correct, and that fundamental properties of grammar can and should be understood in terms of restrictions on the complexity of possible grammatical computation, when defined in terms of…

  8. Complex Planar Splines.

    DTIC Science & Technology

    1981-05-01

    try todefine a complex planar spline by holomorphic elements like polynomials, then by the well known identity theorem (e.g. Diederich- Remmert [9, p...R. Remmert : Funktionentheorie I, Springer, Berlin, Heidelberg, New York, 1972, 246 p. 10 0. Lehto - K.I. Virtanen: Quasikonforme AbbildunQen, Springer

  9. Managing Complex Dynamical Systems

    ERIC Educational Resources Information Center

    Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.

    2011-01-01

    Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.

  10. The Complexity of Care

    ERIC Educational Resources Information Center

    Collins, Steve; Ting, Hermia

    2014-01-01

    The profession of teaching is unique because of the extent to which a teacher becomes involved in the lives of their "clients". The level of care required to support students well can be intense, confusing, and overwhelming. Relationships co-evolve within an ever-changing process and care is considered an essential aspect of complex relationships…

  11. Launching Complex Tasks

    ERIC Educational Resources Information Center

    Jackson, Kara J.; Shahan, Emily C.; Gibbons, Lynsey K.; Cobb, Paul A.

    2012-01-01

    Mathematics lessons can take a variety of formats. In this article, the authors discuss lessons organized around complex mathematical tasks. These lessons usually unfold in three phases. First, the task is introduced to students. Second, students work on solving the task. Third, the teacher "orchestrates" a concluding whole-class discussion in…

  12. Cytarabine Lipid Complex Injection

    MedlinePlus

    ... used to treat lymphomatous meningitis (a type of cancer in the covering of the spinal cord and brain). Cytarabine lipid complex is in a class of medications called antimetabolites. It works by slowing or stopping the growth of cancer cells in your body.

  13. Complex WS 2 nanostructures

    NASA Astrophysics Data System (ADS)

    Whitby, R. L. D.; Hsu, W. K.; Lee, T. H.; Boothroyd, C. B.; Kroto, H. W.; Walton, D. R. M.

    2002-06-01

    A range of elegant tubular and conical nanostructures has been created by template growth of (WS 2) n layers on the surfaces of single-walled carbon nanotube bundles. The structures exhibit remarkably perfect straight segments together with interesting complexities at the intersections, which are discussed here in detail in order to enhance understanding of the structural features governing tube growth.

  14. Complex Characters Made Simple

    ERIC Educational Resources Information Center

    Kettle, Sidney F. A.

    2009-01-01

    The physical significance of complex characters is explored with particular reference to the C[subscript 4] point group. While a diagrammatic representation of these characters in this group is possible, the extension to higher groups C[subscript n], n greater than 4 is left as a problem for discussion. (Contains 3 tables, 8 figures, and 1 note.)

  15. Complex Event Recognition Architecture

    NASA Technical Reports Server (NTRS)

    Fitzgerald, William A.; Firby, R. James

    2009-01-01

    Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.

  16. Classification of Software Projects' Complexity

    NASA Astrophysics Data System (ADS)

    Fitsilis, P.; Kameas, A.; Anthopoulos, L.

    Software project complexity is a subject that has not received detailed attention. The purpose of this chapter is to present a systematic way for studying and modeling software project complexity. The proposed model is based on the widely known and accepted Project Management Body of Knowledge and it uses a typology for modeling complexity based on complexity of faith, fact, and interaction.

  17. Statistical Factors in Complexation Reactions.

    ERIC Educational Resources Information Center

    Chung, Chung-Sun

    1985-01-01

    Four cases which illustrate statistical factors in complexation reactions (where two of the reactants are monodentate ligands) are presented. Included are tables showing statistical factors for the reactions of: (1) square-planar complexes; (2) tetrahedral complexes; and (3) octahedral complexes. (JN)

  18. Complexity Leadership: A Theoretical Perspective

    ERIC Educational Resources Information Center

    Baltaci, Ali; Balci, Ali

    2017-01-01

    Complex systems are social networks composed of interactive employees interconnected through collaborative, dynamic ties such as shared goals, perspectives and needs. Complex systems are largely based on "the complex system theory". The complex system theory focuses mainly on finding out and developing strategies and behaviours that…

  19. Debating complexity in modeling

    USGS Publications Warehouse

    Hunt, Randall J.; Zheng, Chunmiao

    1999-01-01

    As scientists trying to understand the natural world, how should our effort be apportioned? We know that the natural world is characterized by complex and interrelated processes. Yet do we need to explicitly incorporate these intricacies to perform the tasks we are charged with? In this era of expanding computer power and development of sophisticated preprocessors and postprocessors, are bigger machines making better models? Put another way, do we understand the natural world better now with all these advancements in our simulation ability? Today the public's patience for long-term projects producing indeterminate results is wearing thin. This increases pressure on the investigator to use the appropriate technology efficiently. On the other hand, bringing scientific results into the legal arena opens up a new dimension to the issue: to the layperson, a tool that includes more of the complexity known to exist in the real world is expected to provide the more scientifically valid answer.

  20. Reducing GWAS Complexity

    PubMed Central

    Hazelett, Dennis J.; Conti, David V.; Han, Ying; Al Olama, Ali Amin; Easton, Doug; Eeles, Rosalind A.; Kote-Jarai, Zsofia; Haiman, Christopher A.; Coetzee, Gerhard A.

    2016-01-01

    ABSTRACT Genome-wide association studies (GWAS) have revealed numerous genomic 'hits' associated with complex phenotypes. In most cases these hits, along with surrogate genetic variation as measure by numerous single nucleotide polymorphisms (SNPs) that are in linkage disequilibrium, are not in coding genes making assignment of functionality or causality intractable. Here we propose that fine-mapping along with the matching of risk SNPs at chromatin biofeatures lessen this complexity by reducing the number of candidate functional/causal SNPs. For example, we show here that only on average 2 SNPs per prostate cancer risk locus are likely candidates for functionality/causality; we further propose that this manageable number should be taken forward in mechanistic studies. The candidate SNPs can be looked up for each prostate cancer risk region in 2 recent publications in 20151,2 from our groups. PMID:26771711

  1. Compressively sensed complex networks.

    SciTech Connect

    Dunlavy, Daniel M.; Ray, Jaideep; Pinar, Ali

    2010-07-01

    The aim of this project is to develop low dimension parametric (deterministic) models of complex networks, to use compressive sensing (CS) and multiscale analysis to do so and to exploit the structure of complex networks (some are self-similar under coarsening). CS provides a new way of sampling and reconstructing networks. The approach is based on multiresolution decomposition of the adjacency matrix and its efficient sampling. It requires preprocessing of the adjacency matrix to make it 'blocky' which is the biggest (combinatorial) algorithm challenge. Current CS reconstruction algorithm makes no use of the structure of a graph, its very general (and so not very efficient/customized). Other model-based CS techniques exist, but not yet adapted to networks. Obvious starting point for future work is to increase the efficiency of reconstruction.

  2. Carney Complex: an update

    PubMed Central

    Correa, Ricardo; Salpea, Paraskevi; Stratakis, Constantine

    2015-01-01

    Carney Complex (CNC) is a rare autosomal dominant syndrome, characterized by pigmented lesions of the skin and mucosa, cardiac, cutaneous and other myxomas, and multiple endocrine tumors. The disease is caused by inactivating mutations or large deletions of the PRKAR1A gene located at 17q22–24 coding for the regulatory subunit type I alpha of protein kinase A (PKA) gene. Most recently, components of the complex have been associated with defects of other PKA subunits, such as the catalytic subunits PRKACA (adrenal hyperplasia) and PRKACB (pigmented spots, myxomas, pituitary adenomas). In this report, we review CNC, its clinical features, diagnosis, treatment, and molecular etiology including PRKAR1A mutations and the newest on PRKACA and PRKACB defects especially as they pertain to adrenal tumors and Cushing’s syndrome. PMID:26130139

  3. Oscillations of complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Xingang; Lai, Ying-Cheng; Lai, Choy Heng

    2006-12-01

    A complex network processing information or physical flows is usually characterized by a number of macroscopic quantities such as the diameter and the betweenness centrality. An issue of significant theoretical and practical interest is how such quantities respond to sudden changes caused by attacks or disturbances in recoverable networks, i.e., functions of the affected nodes are only temporarily disabled or partially limited. By introducing a model to address this issue, we find that, for a finite-capacity network, perturbations can cause the network to oscillate persistently in the sense that the characterizing quantities vary periodically or randomly with time. We provide a theoretical estimate of the critical capacity-parameter value for the onset of the network oscillation. The finding is expected to have broad implications as it suggests that complex networks may be structurally highly dynamic.

  4. Complex Flows by Nanohydrodynamics

    SciTech Connect

    Alley, E; Covello, P; Alder, B

    2004-03-01

    The study of complex flows by particle simulations is speeded up over molecular dynamics (MD) by more than two orders of magnitude by employing a stochastic collision dynamics method (DSMC) extended to high density (CBA). As a consequence, a picture generated on a single processor shows the typical features of the Rayleigh-Taylor instability and is in quantitative agreement with the experimentally found long time behavior.

  5. The Complex Information Process

    NASA Astrophysics Data System (ADS)

    Taborsky, Edwina

    2000-09-01

    This paper examines the semiosic development of energy to information within a dyadic reality that operates within the contradictions of both classical and quantum physics. These two realities are examined within the three Peircean modal categories of Firstness, Secondness and Thirdness. The paper concludes that our world cannot operate within either of the two physical realities but instead filiates the two to permit a semiosis or information-generation of complex systems.

  6. Operational Shock Complexity Theory

    DTIC Science & Technology

    2005-05-26

    but lies essentially at the door of the Westerner’s perceived need for order, theory and lack of belief in the concept of fate.25 Finally, complexity...elsewhere and the entire system exhibits properties and behaviors different from the parts.61 The two main types of system are open and closed systems...62 Open systems take on board excess energy to replace that which is lost in order to continue operating and remain alive. Closed systems seek

  7. Complex spatiotemporal convection patterns

    NASA Astrophysics Data System (ADS)

    Pesch, W.

    1996-09-01

    This paper reviews recent efforts to describe complex patterns in isotropic fluids (Rayleigh-Bénard convection) as well as in anisotropic liquid crystals (electro-hydrodynamic convection) when driven away from equilibrium. A numerical scheme for solving the full hydrodynamic equations is presented that allows surprisingly well for a detailed comparison with experiments. The approach can also be useful for a systematic construction of models (order parameter equations).

  8. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  9. [Complex vascular access].

    PubMed

    Mangiarotti, G; Cesano, G; Thea, A; Hamido, D; Pacitti, A; Segoloni, G P

    1998-03-01

    Availability of a proper vascular access is a basic condition for a proper extracorporeal replacement in end-stage chronic renal failure. However, biological factors, management and other problems, may variously condition their middle-long term survival. Therefore, personal experience of over 25 years has been critically reviewed in order to obtain useful information. In particular "hard" situations necessitating complex procedures have been examined but, if possible, preserving the peripherical vascular features.

  10. Sporadic meteoroid complex: Modeling

    NASA Astrophysics Data System (ADS)

    Andreev, V.

    2014-07-01

    The distribution of the sporadic meteoroids flux density over the celestial sphere is the common form of representation of the meteoroids distribution in the vicinity of the Earth's orbit. The determination of the flux density of sporadic meteor bodies is Q(V,e,f) = Q_0 P_e(V) P(e,f) where V is the meteoroid velocity, e,f are the radiant coordinates, Q_0 is the meteoroid flux over whole celestial sphere, P_e(V) is the conditional velocity distributions and P(e,f) is the radiant distribution over the celestial sphere. The sporadic meteoroid complex model is analytical and based on heliocentric velocities and radiant distributions. The multi-mode character of the heliocentric velocity and radiant distributions follows from the analysis of meteor observational data. This fact points to a complicated structure of the sporadic meteoroid complex. It is the consequence of the plurality of the parent bodies and the origin mechanisms of the meteoroids. The meteoroid complex was divided into four groups for that reason and with a goal of more accurate modelling of velocities and radiant distributions. As the classifying parameter to determine the meteoroid membership in any group, we adopt the Tisserand invariant relative to Jupiter T_J = 1/a + 2 A_J^{-3/2} √{a (1 - e^2)} cos i and the meteoroid orbit inclination i. Two meteoroid groups relate to long-period and short-period comets. One meteoroid group is related to asteroids. The relationship to the last, fourth group is a problematic one. Then, we construct models of radiant and velocity distributions for each group. The analytical model for the whole sporadic meteoroid complex is the sum of the ones for each group.

  11. Keynes, Hayek and Complexity

    NASA Astrophysics Data System (ADS)

    Ormerod, Paul

    In the spirit of the overall topic of the conference, in this paper I consider the extent to which economic theory includes elements of the complex systems approach. I am setting to one side here the developments over the past decade in applying complex systems analysis to economic problems. This is not because this recent work is not important. It most certainly is. But I want to argue that there is a very distinct tradition of what we would now describe as a complex systems approach in the works of two of the greatest economists of the 20th century. There is of course a dominant intellectual paradigm within economics, that known as `neo-classical'economics. This paradigm is by no means an empty box, and is undoubtedly useful in helping to understand how some aspects of the social and economic worlds work. But even in its heyday, neo-classical economics never succeeded by its empirical success in driving out completely other theoretical approaches, for its success was simply not sufficient to do so. Much more importantly, economics over the past twenty or thirty years has become in an increasing state of flux.

  12. Emergent Complex Network Geometry

    PubMed Central

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280

  13. Coherence, Complexity and Creativity

    NASA Astrophysics Data System (ADS)

    Arecchi, Fortunato Tito

    We review the ideas and experiments that established the onset of laser coherence beyond a suitable threshold. That threshold is the first of a chain of bifurcations in a non linear dynamics, leading eventually to deterministic chaos in lasers. In particular, the so called HC behavior has striking analogies with the electrical activity of neurons. Based on these considerations, we develop a dynamical model of neuron synchronization leading to coherent global perceptions. Synchronization implies a transitory control of neuron chaos. Depending on the time duration of this control, a cognitive agent has different amounts of awareness. Combining this with a stream of external inputs, one can point at an optimal use of internal resources, that is called cognitive creativity. While coherence is associated with long range correlations, complexity arises whenever an array of coupled dynamical systems displays multiple paths of coherence. What is the relation among the three concepts in the title? While coherence is associated with long range correlations, complexity arises whenever an array of coupled dynamical systems displays multiple paths of coherence. Creativity corresponds to a free selection of a coherence path within a complex nest. As sketched above, it seems dynamically related to chaos control.

  14. The Emparassment of Complexity

    NASA Astrophysics Data System (ADS)

    Nowotny, Helga

    My vision of complexity sciences targets their potential to extend the range, precision, and depth in making predictions. While this has always been the ambition and yardstick for the physicalmathematical sciences, complexity sciences now allow to include society and social behavior - to some extent. There is agreement that society is a complex adaptive system, CAS, with a few peculiarities. Ignoring, downplaying, or naturalizing them, i.e. to take them as essential and given, carries the risk to end up with abstractions which are cutoff from the dynamics of societal contexts. One of the peculiarities of society as a CAS is that the models with which we try to make sense of the world are invented and constructed by us. It is humans who make observations and provide the assumptions on which models are based. Humans leave traces that are collected and processed to be transformed into data. Humans decide to which purpose they will be put and how they will be repurposed. Humans are object of research and subject. Coping with these peculiarities requires an inbuilt reflexivity. Practioners must perform a double act and do so repeatedly. They must engage in a focused way with their scientific work and equally distance themselves by critically reflecting their often tacit assumptions. A friend of mine, Yehuda Elkana, called this twotier thinking...

  15. Manufacturing complexity analysis

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1977-01-01

    The analysis of the complexity of a typical system is presented. Starting with the subsystems of an example system, the step-by-step procedure for analysis of the complexity of an overall system is given. The learning curves for the various subsystems are determined as well as the concurrent numbers of relevant design parameters. Then trend curves are plotted for the learning curve slopes versus the various design-oriented parameters, e.g. number of parts versus slope of learning curve, or number of fasteners versus slope of learning curve, etc. Representative cuts are taken from each trend curve, and a figure-of-merit analysis is made for each of the subsystems. Based on these values, a characteristic curve is plotted which is indicative of the complexity of the particular subsystem. Each such characteristic curve is based on a universe of trend curve data taken from data points observed for the subsystem in question. Thus, a characteristic curve is developed for each of the subsystems in the overall system.

  16. Predictive Surface Complexation Modeling

    SciTech Connect

    Sverjensky, Dimitri A.

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  17. The Stigma Complex

    PubMed Central

    Pescosolido, Bernice A.; Martin, Jack K.

    2016-01-01

    Since the beginning of the twenty-first century, research on stigma has continued. Building on conceptual and empirical work, the recent period clarifies new types of stigmas, expansion of measures, identification of new directions, and increasingly complex levels. Standard beliefs have been challenged, the relationship between stigma research and public debates reconsidered, and new scientific foundations for policy and programs suggested. We begin with a summary of the most recent Annual Review articles on stigma, which reminded sociologists of conceptual tools, informed them of developments from academic neighbors, and claimed findings from the early period of “resurgence.” Continued (even accelerated) progress has also revealed a central problem. Terms and measures are often used interchangeably, leading to confusion and decreasing accumulated knowledge. Drawing from this work but focusing on the past 14 years of stigma research (including mental illness, sexual orientation, HIV/AIDS, and race/ethnicity), we provide a theoretical architecture of concepts (e.g., prejudice, experienced/received discrimination), drawn together through a stigma process (i.e., stigmatization), based on four theoretical premises. Many characteristics of the mark (e.g., discredited, concealable) and variants (i.e., stigma types and targets) become the focus of increasingly specific and multidimensional definitions. Drawing from complex and systems science, we propose a stigma complex, a system of interrelated, heterogeneous parts bringing together insights across disciplines to provide a more realistic and complicated sense of the challenge facing research and change efforts. The Framework Integrating Normative Influences on Stigma (FINIS) offers a multilevel approach that can be tailored to stigmatized statuses. Finally, we outline challenges for the next phase of stigma research, with the goal of continuing scientific activity that enhances our understanding of stigma and builds

  18. Complex-Valued Autoencoders

    PubMed Central

    Baldi, Pierre; Lu, Zhiqin

    2012-01-01

    Autoencoders are unsupervised machine learning circuits, with typically one hidden layer, whose learning goal is to minimize an average distortion measure between inputs and outputs. Linear autoencoders correspond to the special case where only linear transformations between visible and hidden variables are used. While linear autoencoders can be defined over any field, only real-valued linear autoencoders have been studied so far. Here we study complex-valued linear autoencoders where the components of the training vectors and adjustable matrices are defined over the complex field with the L2 norm. We provide simpler and more general proofs that unify the real-valued and complex-valued cases, showing that in both cases the landscape of the error function is invariant under certain groups of transformations. The landscape has no local minima, a family of global minima associated with Principal Component Analysis, and many families of saddle points associated with orthogonal projections onto sub-space spanned by sub-optimal subsets of eigenvectors of the covariance matrix. The theory yields several iterative, convergent, learning algorithms, a clear understanding of the generalization properties of the trained autoencoders, and can equally be applied to the hetero-associative case when external targets are provided. Partial results on deep architecture as well as the differential geometry of autoencoders are also presented. The general framework described here is useful to classify autoencoders and identify general properties that ought to be investigated for each class, illuminating some of the connections between autoencoders, unsupervised learning, clustering, Hebbian learning, and information theory. PMID:22622264

  19. Proteins : paradigms of complexity /

    SciTech Connect

    Frauenfelder, Hans,

    2001-01-01

    Proteins are the working machines of living systems. Directed by the DNA, of the order of a few hundred building blocks, selected from twenty different amino acids, are covalently linked into a linear polypeptide chain. In the proper environment, the chain folds into the working protein, often a globule of linear dimensions of a few nanometers. The biologist considers proteins units from which living systems are built. Many physical scientists look at them as systems in which the laws of complexity can be studied better than anywhere else. Some of the results of such studies will be sketched.

  20. Chalcogenide centred gold complexes.

    PubMed

    Gimeno, M Concepción; Laguna, Antonio

    2008-09-01

    Chalcogenide-centred gold complexes are an important class of compounds in which a central chalcogen is surrounded by several gold atoms or gold and other metals. They have special characteristics such as unusual geometries, electron deficiency and properties such as luminescence or non-linear optical properties. The best known species are the trinuclear [E(AuPR3)3]+, 'oxonium' type species, that have high synthetic applicability, not only in other chalcogen-centred species, but in many other organometallic derivatives. The aurophilic interactions play an important role in the stability, preference for a particular geometry and luminescence properties in this type of derivatives (critical review, 117 references).

  1. Organization of complex networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim

    Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how

  2. Complex regional pain syndrome

    PubMed Central

    Sebastin, Sandeep J

    2011-01-01

    Complex regional pain syndrome (CRPS) previously known as reflex sympathetic dystrophy is a chronic neurological disorder involving the limbs characterized by disabling pain, swelling, vasomotor instability, sudomotor abnormality, and impairment of motor function. CRPS is not uncommon after hand surgery and may complicate post-operative care. There is no specific diagnostic test for CRPS and the diagnosis is based on history, clinical examination, and supportive laboratory findings. Recent modifications to diagnostic criteria have enabled clinicians to diagnose this disease more consistently. This review gives a synopsis of CRPS and discusses the diagnosis, pathophysiology, and treatment options based on the limited evidence in the literature. PMID:22022040

  3. Complexity, contingency, and criticality.

    PubMed Central

    Bak, P; Paczuski, M

    1995-01-01

    Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or "punctuations" of all sizes. In the critical state, events which would otherwise be uncoupled become correlated. The apparent, historical contingency in many sciences, including geology, biology, and economics, finds a natural interpretation as a self-organized critical phenomenon. These ideas are discussed in the context of simple mathematical models of sandpiles and biological evolution. Insights are gained not only from numerical simulations but also from rigorous mathematical analysis. Images Fig. 3 Fig. 4 PMID:11607561

  4. Macroevolution of complex retroviruses.

    PubMed

    Katzourakis, Aris; Gifford, Robert J; Tristem, Michael; Gilbert, M Thomas P; Pybus, Oliver G

    2009-09-18

    Retroviruses can leave a "fossil record" in their hosts' genomes in the form of endogenous retroviruses. Foamy viruses, complex retroviruses that infect mammals, have been notably absent from this record. We have found an endogenous foamy virus within the genomes of sloths and show that foamy viruses were infecting mammals more than 100 million years ago and codiverged with their hosts across an entire geological era. Our analysis highlights the role of evolutionary constraint in maintaining viral genome structure and indicates that accessory genes and mammalian mechanisms of innate immunity are the products of macroevolutionary conflict played out over a geological time scale.

  5. Linking social complexity and vocal complexity: a parid perspective

    PubMed Central

    Krams, Indrikis; Krama, Tatjana; Freeberg, Todd M.; Kullberg, Cecilia; Lucas, Jeffrey R.

    2012-01-01

    The Paridae family (chickadees, tits and titmice) is an interesting avian group in that species vary in important aspects of their social structure and many species have large and complex vocal repertoires. For this reason, parids represent an important set of species for testing the social complexity hypothesis for vocal communication—the notion that as groups increase in social complexity, there is a need for increased vocal complexity. Here, we describe the hypothesis and some of the early evidence that supported the hypothesis. Next, we review literature on social complexity and on vocal complexity in parids, and describe some of the studies that have made explicit tests of the social complexity hypothesis in one parid—Carolina chickadees, Poecile carolinensis. We conclude with a discussion, primarily from a parid perspective, of the benefits and costs of grouping and of physiological factors that might mediate the relationship between social complexity and changes in signalling behaviour. PMID:22641826

  6. Polyhydride complexes for hydrogen storage

    SciTech Connect

    Jensen, C.M.

    1995-09-01

    Polyhydride metal complexes are being developed for application in hydrogen storage. Efforts have focused on developing complexes with improved available hydrogen weight percentages. We have explored the possibility that complexes containing aromatic hydrocarbon ligands could store hydrogen at both the metal center and in the ligands. We have synthesized novel indenyl hydride complexes and explored their reactivity with hydrogen. The reversible hydrogenation of [IrH{sub 3}(PPh{sub 3})({eta}{sup 5}-C{sub 10}H{sub 7})]{sup +} has been achieved. While attempting to prepare {eta}{sup 6}-tetrahydronaphthalene complexes, we discovered that certain polyhydride complexes catalyze both the hydrogenation and dehydrogenation of tetrahydronaphthalene.

  7. Method for preparing radiopharmaceutical complexes

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1989-05-02

    A method for preparing radiopharmaceutical complexes that are substantially free of the reaction materials used to produce the radiopharmaceutical complex is disclosed. The method involves admixing in a suitable first solvent in a container a target seeking ligand or salt or metal adduct thereof, a radionuclide label, and a reducing agent for said radionuclide, thereby forming said radiopharmaceutical complex; coating the interior walls of the container with said pharmaceutical complex; discarding the solvent containing by-products and unreacted starting reaction materials; and removing the radiopharmaceutical complex from said walls by dissolving it in a second solvent, thereby obtaining said radiopharmaceutical complex substantially free of by-products and unreacted starting materials.

  8. Complex Semantic Networks

    NASA Astrophysics Data System (ADS)

    Teixeira, G. M.; Aguiar, M. S. F.; Carvalho, C. F.; Dantas, D. R.; Cunha, M. V.; Morais, J. H. M.; Pereira, H. B. B.; Miranda, J. G. V.

    Verbal language is a dynamic mental process. Ideas emerge by means of the selection of words from subjective and individual characteristics throughout the oral discourse. The goal of this work is to characterize the complex network of word associations that emerge from an oral discourse from a discourse topic. Because of that, concepts of associative incidence and fidelity have been elaborated and represented the probability of occurrence of pairs of words in the same sentence in the whole oral discourse. Semantic network of words associations were constructed, where the words are represented as nodes and the edges are created when the incidence-fidelity index between pairs of words exceeds a numerical limit (0.001). Twelve oral discourses were studied. The networks generated from these oral discourses present a typical behavior of complex networks and their indices were calculated and their topologies characterized. The indices of these networks obtained from each incidence-fidelity limit exhibit a critical value in which the semantic network has maximum conceptual information and minimum residual associations. Semantic networks generated by this incidence-fidelity limit depict a pattern of hierarchical classes that represent the different contexts used in the oral discourse.

  9. The authority of complexity.

    PubMed

    Stehr, N; Grundmann, R

    2001-06-01

    The assertion about the unique 'complexity' or the peculiarly intricate character of social phenomena has, at least within sociology, a long, venerable and virtually uncontested tradition. At the turn of the last century, classical social theorists, for example, Georg Simmel and Emile Durkheim, made prominent and repeated reference to this attribute of the subject matter of sociology and the degree to which it complicates, even inhibits the develop and application of social scientific knowledge. Our paper explores the origins, the basis and the consequences of this assertion and asks in particular whether the classic complexity assertion still deserves to be invoked in analyses that ask about the production and the utilization of social scientific knowledge in modern society. We present John Maynard Keynes' economic theory and its practical applications as an illustration. We conclude that the practical value of social scientific knowledge is not dependent on a faithful, in the sense of complete, representation of social reality. Instead, social scientific knowledge that wants to optimize its practicality has to attend and attach itself to elements of social situations that can be altered or are actionable.

  10. Tuberous sclerosis complex.

    PubMed

    Islam, Monica P; Roach, E Steve

    2015-01-01

    Tuberous sclerosis complex (TSC) is a neurocutaneous syndrome that can affect the brain, skin, eyes, kidneys, heart, and lungs. TSC alters cellular proliferation and differentiation, resulting in hamartomas of various organs, tumor formation, and altered neuronal migration. The phenotype is highly variable. Most individuals have seizures, commonly including infantile spasms, and there is variable intellectual disability and autism. Neonates can present with cardiac failure due to intracardiac rhabdomyomas. The likelihood of renal angiomyolipomas increases with age, and renal disease is the most common cause of death in adults with TSC. Pulmonary involvement occurs predominantly in women and carries a high morbidity and mortality. TSC is inherited as an autosomal dominant trait, but spontaneous mutations are common. A mutation of either TSC1 on chromosome 9 or TSC2 on chromosome 16 leads to dysfunction of hamartin or tuberin, respectively. These two proteins form a functional complex that modulates the mammalian target of rapamycin (mTOR) pathway. Medications that inhibit mTOR are being used to treat TSC-related tumors, and current studies are investigating whether these agents could alleviate other TSC complications. Consensus statements guide identification and optimal management of many of the TSC-related complications at diagnosis and throughout the lifespan. A multidisciplinary approach is necessary for optimal management of individuals with TSC.

  11. Complexity in language acquisition.

    PubMed

    Clark, Alexander; Lappin, Shalom

    2013-01-01

    Learning theory has frequently been applied to language acquisition, but discussion has largely focused on information theoretic problems-in particular on the absence of direct negative evidence. Such arguments typically neglect the probabilistic nature of cognition and learning in general. We argue first that these arguments, and analyses based on them, suffer from a major flaw: they systematically conflate the hypothesis class and the learnable concept class. As a result, they do not allow one to draw significant conclusions about the learner. Second, we claim that the real problem for language learning is the computational complexity of constructing a hypothesis from input data. Studying this problem allows for a more direct approach to the object of study--the language acquisition device-rather than the learnable class of languages, which is epiphenomenal and possibly hard to characterize. The learnability results informed by complexity studies are much more insightful. They strongly suggest that target grammars need to be objective, in the sense that the primitive elements of these grammars are based on objectively definable properties of the language itself. These considerations support the view that language acquisition proceeds primarily through data-driven learning of some form.

  12. Growth of Complex Organizations

    NASA Astrophysics Data System (ADS)

    Nunes Amaral, Luis A.

    2000-03-01

    We analyze a database comprising all publicly-traded US firms within the years 1974--93(M.H.R. Stanley et al.), Nature 379, 804 (1996); L.A.N. Amaral et al., J. Phys. (France) I 7, 621 (1997). We find (i) that the distribution of the annual growth rates ---for companies with approximately the same size S--- decays as an exponential, and (ii) that the standard deviation σ of these distributions scales as σ ~ S^-β. We introduce a dynamical model in which we assume that each firm has a complex internal structure comprising many subunits(L.A.N. Amaral et al.), Phys. Rev. Lett. 80, 1385 (1998). We study the case in which (i) each subunit grows in a multiplicative manner, and (ii) the interactions between the firms are mean field. We find agreement between our predictions and the empirical results for firms. We then analyze the fluctuations in the gross domestic product of 152 countries for the period 1950--92 and find a surprising agreement with the results for firm growth (Y. Lee et al.), Phys. Rev. Lett. 81, 3275 (1998). Finally, we analyze the fluctuations in the research output and research input of US universities and find sinilar scaling laws(V. Plerou et al.), Nature 400, 433 (1999). Our empirical results and model suggest that the growth of organizations with complex structure are governed by similar mechanisms.

  13. Tuberous sclerosis complex.

    PubMed

    Henske, Elizabeth P; Jóźwiak, Sergiusz; Kingswood, J Christopher; Sampson, Julian R; Thiele, Elizabeth A

    2016-05-26

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that affects multiple organ systems and is caused by loss-of-function mutations in one of two genes: TSC1 or TSC2. The disorder can affect both adults and children. First described in depth by Bourneville in 1880, it is now estimated that nearly 2 million people are affected by the disease worldwide. The clinical features of TSC are distinctive and can vary widely between individuals, even within one family. Major features of the disease include tumours of the brain, skin, heart, lungs and kidneys, seizures and TSC-associated neuropsychiatric disorders, which can include autism spectrum disorder and cognitive disability. TSC1 (also known as hamartin) and TSC2 (also known as tuberin) form the TSC protein complex that acts as an inhibitor of the mechanistic target of rapamycin (mTOR) signalling pathway, which in turn plays a pivotal part in regulating cell growth, proliferation, autophagy and protein and lipid synthesis. Remarkable progress in basic and translational research, in addition to several randomized controlled trials worldwide, has led to regulatory approval of the use of mTOR inhibitors for the treatment of renal angiomyolipomas, brain subependymal giant cell astrocytomas and pulmonary lymphangioleiomyomatosis, but further research is needed to establish full indications of therapeutic treatment. In this Primer, we review the state-of-the-art knowledge in the TSC field, including the molecular and cellular basis of the disease, medical management, major knowledge gaps and ongoing research towards a cure.

  14. Complex master slave interferometry.

    PubMed

    Rivet, Sylvain; Maria, Michael; Bradu, Adrian; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian

    2016-02-08

    A general theoretical model is developed to improve the novel Spectral Domain Interferometry method denoted as Master/Slave (MS) Interferometry. In this model, two functions, g and h are introduced to describe the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time and due to dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MS method. A first improvement consists in reducing the number of channeled spectra necessary to be collected at Master stage. In previous MSI implementation, the number of channeled spectra at the Master stage equated the number of depths where information was selected from at the Slave stage. The paper demonstrates that two experimental channeled spectra only acquired at Master stage suffice to produce A-scans from any number of resolved depths at the Slave stage. A second improvement is the utilization of complex signal processing. Previous MSI implementations discarded the phase. Complex processing of the electrical signal determined by the channeled spectrum allows phase processing that opens several novel avenues. A first consequence of such signal processing is reduction in the random component of the phase without affecting the axial resolution. In previous MSI implementations, phase instabilities were reduced by an average over the wavenumber that led to reduction in the axial resolution.

  15. Syntactic Complexity as an Aspect of Text Complexity

    ERIC Educational Resources Information Center

    Frantz, Roger S.; Starr, Laura E.; Bailey, Alison L.

    2015-01-01

    Students' ability to read complex texts is emphasized in the Common Core State Standards (CCSS) for English Language Arts and Literacy. The standards propose a three-part model for measuring text complexity. Although the model presents a robust means for determining text complexity based on a variety of features inherent to a text as well as…

  16. Not so Complex: Iteration in the Complex Plane

    ERIC Educational Resources Information Center

    O'Dell, Robin S.

    2014-01-01

    The simple process of iteration can produce complex and beautiful figures. In this article, Robin O'Dell presents a set of tasks requiring students to use the geometric interpretation of complex number multiplication to construct linear iteration rules. When the outputs are plotted in the complex plane, the graphs trace pleasing designs…

  17. Nuclear Weapons Complex reconfiguration study

    SciTech Connect

    Not Available

    1991-01-01

    Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

  18. Amphotericin B Lipid Complex Injection

    MedlinePlus

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did ... respond or are unable to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in ...

  19. Complexity in scalable computing.

    SciTech Connect

    Rouson, Damian W. I.

    2008-12-01

    The rich history of scalable computing research owes much to a rapid rise in computing platform scale in terms of size and speed. As platforms evolve, so must algorithms and the software expressions of those algorithms. Unbridled growth in scale inevitably leads to complexity. This special issue grapples with two facets of this complexity: scalable execution and scalable development. The former results from efficient programming of novel hardware with increasing numbers of processing units (e.g., cores, processors, threads or processes). The latter results from efficient development of robust, flexible software with increasing numbers of programming units (e.g., procedures, classes, components or developers). The progression in the above two parenthetical lists goes from the lowest levels of abstraction (hardware) to the highest (people). This issue's theme encompasses this entire spectrum. The lead author of each article resides in the Scalable Computing Research and Development Department at Sandia National Laboratories in Livermore, CA. Their co-authors hail from other parts of Sandia, other national laboratories and academia. Their research sponsors include several programs within the Department of Energy's Office of Advanced Scientific Computing Research and its National Nuclear Security Administration, along with Sandia's Laboratory Directed Research and Development program and the Office of Naval Research. The breadth of interests of these authors and their customers reflects in the breadth of applications this issue covers. This article demonstrates how to obtain scalable execution on the increasingly dominant high-performance computing platform: a Linux cluster with multicore chips. The authors describe how deep memory hierarchies necessitate reducing communication overhead by using threads to exploit shared register and cache memory. On a matrix-matrix multiplication problem, they achieve up to 96% parallel efficiency with a three-part strategy: intra

  20. Complex Dark Matter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  1. Complex Dark Matter

    SciTech Connect

    Lincoln, Don

    2015-04-16

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  2. Complex pendulum biomass sensor

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  3. Complexity, Metastability and Nonextensivity

    NASA Astrophysics Data System (ADS)

    Beck, C.; Benedek, G.; Rapisarda, A.; Tsallis, C.

    Work and heat fluctuations in systems with deterministic and stochastic forces / E. G. D. Cohen and R. Van Zon -- Is the entropy S[symbol] extensive or nonextensive? / C. Tsallis -- Superstatistics: recent developments and applications / C. Beck -- Two stories outside Boltzmann-Gibbs statistics: Mori's Q-phase transitions and glassy dynamics at the onset of chaos / A. Robledo, F. Baldovin and E. Mayoral -- Time-averages and the heat theorem / A. Carati -- Fundamental formulae and numerical evidences for the central limit theorem in Tsallis statistics / H. Suyari -- Generalizing the Planck distribution / A. M. C. Soma and C. Tsallis -- The physical roots of complexity: renewal or modulation? / P. Grigolini -- Nonequivalent ensembles and metastability / H. Touchette and R. S. Ellis -- Statistical physics for cosmic structures / L. Pietronero and F. Sylos Labini -- Metastability and anomalous behavior in the HMF model: connections to nonextensive thermodynamics and glassy dynamics / A. Pluchino, A. Rapisarda and V. Latora -- Vlasov analysis of relaxation and meta-equilibrium / C. Anteneodo and R. O. Vallejos -- Weak chaos in large conservative systems - infinite-range coupled standard maps / L. G. Moyano, A. P. Majtey and C. Tsallis -- Deterministc aging / E. Barkai -- Edge of chaos of the classical kicked top map: sensitivity to initial conditions / S. M. Duarte Queirós and C. Tsallis -- What entropy at the edge of chaos? / M. Lissia, M. Coraddu and R. Tonelli -- Fractal growth of carbon schwarzites / G. Benedek ... [et al.] -- Clustering and interface propagation in interacting particle dynamics / A. Provata and V. K. Noussiou -- Resonant activation and noise enhanced stability in Josephson junctions / A. L. Pankratov and B. Spagnolo -- Symmetry breaking induced directed motions / C.-H. Chang and T. Y. Tsong -- General theory of Galilean-invariant entropic lattic Boltzmann models / B. M. Boghosian -- Unifying approach to the jamming transition in granular media and

  4. The tuberous sclerosis complex

    PubMed Central

    Orlova, Ksenia A.; Crino, Peter B.

    2010-01-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that results from mutations in the TSC1 or TSC2 genes and is associated with hamartoma formation in multiple organ systems. The neurological manifestations of TSC are particularly challenging and include infantile spasms, intractable epilepsy, cognitive disabilities, and autism. Progress over the past 15 years has demonstrated that the TSC1 or TSC2 encoded proteins modulate cell function via the mTOR signaling cascade and serve as keystones in regulating cell growth and proliferation. The mTOR pathway provides an intersection for an intricate network of protein cascades that respond to cellular nutrition, energy levels, and growth-factor stimulation. In the brain, TSC1 and TSC2 have been implicated in cell body size, dendritic arborization, axonal outgrowth and targeting, neuronal migration, cortical lamination, and spine formation. Antagonism of the mTOR pathway with rapamycin and related compounds may provide new therapeutic options for TSC patients. PMID:20146692

  5. Recognizing complex patterns.

    PubMed

    Sinha, Pawan

    2002-11-01

    How the brain recognizes complex patterns in the environment is a central, but little understood question in neuroscience. The problem is of great significance for a host of applications such as biometric-based access control, autonomous robots and content-based information management. Although some headway in these directions has been made, the current artificial systems do not match the robustness and versatility of their biological counterparts. Here I examine recognition tasks drawn from two different sensory modalities--face recognition and speaker/speech recognition. The goal is to characterize the present state of artificial recognition technologies for these tasks, the influence of neuroscience on the design of these systems and the key challenges they face.

  6. Understanding complex chiral plasmonics.

    PubMed

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-11-07

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the 'host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.

  7. Complex regional pain syndrome

    PubMed Central

    Carr, Emily S.; De La Cerda, Ashley

    2016-01-01

    Complex regional pain syndrome (CRPS) is a neurologic disorder that often results in debilitating chronic pain, but the diagnosis may elude providers as it is one of exclusion. A history of trauma may be elucidated. We report a case of CRPS and review the clinical findings, appropriate workup, and treatment options for the patient. The patient we describe went through an extensive workup before receiving the correct diagnosis. Delay in diagnosis leads to prolonged suffering for the patient and, at times, unnecessary invasive debridement procedures. Raising awareness of this entity may help physicians make the correct diagnosis early, as well as initiate a collaborative effort between neurology, anesthesiology, and dermatology to provide the patient the most favorable outcome. PMID:27365892

  8. Complex Tectonism on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Complex tectonism is evident in these images of Ganymede's surface. The solid state imaging camera on NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. The 80 kilometer (50 mile) wide lens-shaped feature in the center of the image is located at 32 degrees latitude and 188 degrees longitude along the border of a region of ancient dark terrain known as Marius Regio, and is near an area of younger bright terrain named Nippur Sulcus. The tectonism that created the structures in the bright terrain nearby has strongly affected the local dark terrain to form unusual structures such as the one shown here. The lens-like appearance of this feature is probably due to shearing of the surface, where areas have slid past each other and also rotated slightly. Note that in several places in these images, especially around the border of the lens-shaped feature, bright ridges appear to turn into dark grooves. Analysis of the geologic structures in areas like this are helping scientists to understand the complex tectonic history of Ganymede.

    North is to the top-left of the image, and the sun illuminates the surface from the southeast. The image covers an area about 63 kilometers (39 miles) by 120 kilometers (75 miles) across at a resolution of 188 meters (627 feet) per picture element. The images were taken on September 6, 1996 at a range of 18,522 kilometers (11,576 miles) by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  9. Managing complexity of aerospace systems

    NASA Astrophysics Data System (ADS)

    Tamaskar, Shashank

    Growing complexity of modern aerospace systems has exposed the limits of conventional systems engineering tools and challenged our ability to design them in a timely and cost effective manner. According to the US Government Accountability Office (GAO), in 2009 nearly half of the defense acquisition programs are expecting 25% or more increase in unit acquisition cost. Increase in technical complexity has been identified as one of the primary drivers behind cost-schedule overruns. Thus to assure the affordability of future aerospace systems, it is increasingly important to develop tools and capabilities for managing their complexity. We propose an approach for managing the complexity of aerospace systems to address this pertinent problem. To this end, we develop a measure that improves upon the state-of-the-art metrics and incorporates key aspects of system complexity. We address the problem of system decomposition by presenting an algorithm for module identification that generates modules to minimize integration complexity. We demonstrate the framework on diverse spacecraft and show the impact of design decisions on integration cost. The measure and the algorithm together help the designer track and manage complexity in different phases of system design. We next investigate how complexity can be used as a decision metric in the model-based design (MBD) paradigm. We propose a framework for complexity enabled design space exploration that introduces the idea of using complexity as a non-traditional design objective. We also incorporate complexity with the component based design paradigm (a sub-field of MBD) and demonstrate it on several case studies. The approach for managing complexity is a small but significant contribution to the vast field of complexity management. We envision our approach being used in concert with a suite of complexity metrics to provide an ability to measure and track complexity through different stages of design and development. This will not

  10. Grammatical complexity of strange sets

    NASA Astrophysics Data System (ADS)

    Auerbach, Ditza; Procaccia, Itamar

    1990-06-01

    Chaotic dynamical systems can be organized around an underlying strange set, which is comprised of all the unstable periodic orbits. In this paper, we quantify the complexity of such an organization; this complexity addresses the difficulty of predicting the structure of the strange set from low-order data and is independent of the entropy and the algorithmic complexity. We refer to the new measure as the grammatical complexity. The notion is introduced, discussed, and illustrated in the context of simple dynamical systems. In addition, the grammatical complexity is generalized to include metric properties arising due to the nonuniform distribution of the invariant measure on the strange set.

  11. Complexity and Diversity of Digraphs

    NASA Astrophysics Data System (ADS)

    Bertz, Steven H.; Pereira, Gil Z.; Zamfirescu, Christina M. D.

    There has been a great deal of ferment in `Complexity Science' in recent years, as chronicled in the proceedings of the New England Complex Systems Institute's International Conference on Complex Systems [Minai & Bar-Yam 2006, 2008] and those of the Santa Fe Institute [Nadel & Stein 1995, Cowan 1994]. We have been primarily focused on developing metrics of complexity relevant to chemistry, especially synthetic chemistry [Bertz 2003a-c]. Our approach involves abstracting a molecule or a plan for its synthesis as a graph and then using the tools of graph theory to characterize its complexity and diversity.

  12. Complexity of formation in holography

    NASA Astrophysics Data System (ADS)

    Chapman, Shira; Marrochio, Hugo; Myers, Robert C.

    2017-01-01

    It was recently conjectured that the quantum complexity of a holographic boundary state can be computed by evaluating the gravitational action on a bulk region known as the Wheeler-DeWitt patch. We apply this complexity=action duality to evaluate the `complexity of formation' [1, 2], i.e. the additional complexity arising in preparing the entangled thermofield double state with two copies of the boundary CFT compared to preparing the individual vacuum states of the two copies. We find that for boundary dimensions d > 2, the difference in the complexities grows linearly with the thermal entropy at high temperatures. For the special case d = 2, the complexity of formation is a fixed constant, independent of the temperature. We compare these results to those found using the complexity=volume duality.

  13. Understanding complex chiral plasmonics

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-10-01

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant

  14. The Mycobacterium avium complex.

    PubMed Central

    Inderlied, C B; Kemper, C A; Bermudez, L E

    1993-01-01

    Mycobacterium avium complex (MAC) disease emerged early in the epidemic of AIDS as one of the common opportunistic infections afflicting human immunodeficiency virus-infected patients. However, only over the past few years has a consensus developed about its significance to the morbidity and mortality of AIDS. M. avium was well known to mycobacteriologists decades before AIDS, and the MAC was known to cause disease, albeit uncommon, in humans and animals. The early interest in the MAC provided a basis for an explosion of studies over the past 10 years largely in response to the role of the MAC in AIDS opportunistic infection. Molecular techniques have been applied to the epidemiology of MAC disease as well as to a better understanding of the genetics of antimicrobial resistance. The interaction of the MAC with the immune system is complex, and putative MAC virulence factors appear to have a direct effect on the components of cellular immunity, including the regulation of cytokine expression and function. There now is compelling evidence that disseminated MAC disease in humans contributes to both a decrease in the quality of life and survival. Disseminated disease most commonly develops late in the course of AIDS as the CD4 cells are depleted below a critical threshold, but new therapies for prophylaxis and treatment offer considerable promise. These new therapeutic modalities are likely to be useful in the treatment of other forms of MAC disease in patients without AIDS. The laboratory diagnosis of MAC disease has focused on the detection of mycobacteria in the blood and tissues, and although the existing methods are largely adequate, there is need for improvement. Indeed, the successful treatment of MAC disease clearly will require an early and rapid detection of the MAC in clinical specimens long before the establishment of the characteristic overwhelming infection of bone marrow, liver, spleen, and other tissue. Also, a standard method of susceptibility testing

  15. Complexity of vesicle microcirculation

    NASA Astrophysics Data System (ADS)

    Kaoui, B.; Tahiri, N.; Biben, T.; Ez-Zahraouy, H.; Benyoussef, A.; Biros, G.; Misbah, C.

    2011-10-01

    This study focuses numerically on dynamics in two dimensions of vesicles in microcirculation. The method used is based on boundary integral formulation. This study is inspired by the behavior of red blood cells (RBCs) in the microvasculature. Red RBCs carry oxygen from the lungs and deliver it through the microvasculature. The shape adopted by RBCs can affect blood flow and influence oxygen delivery. Our simulation using vesicles (a simple model for RBC) reveals unexpected complexity as compared to the case where a purely unbounded Poiseuille flow is considered [Kaoui, Biros, and Misbah, Phys. Rev. Lett.10.1103/PhysRevLett.103.188101 103, 188101 (2009)]. In sufficiently large channels (in the range of 100μm; the vesicle size and its reduced volume are taken in the range of those of a human RBC), such as arterioles, a slipperlike (asymmetric) shape prevails. A parachutelike (symmetric) shape is adopted in smaller channels (in the range of 20μm, as in venules), but this shape loses stability and again changes to a pronounced slipperlike morphology in channels having a size typical of capillaries (5-10 μm). Stiff membranes, mimicking malaria infection, for example, adopt a centered or off-centered snakelike locomotion instead (the denomination snaking is used for this regime). A general scenario of how and why vesicles adopt their morphologies and dynamics among several distinct possibilities is provided. This finding potentially points to nontrivial RBCs dynamics in the microvasculature.

  16. [Toxic complex from parrotfish].

    PubMed

    Chungue, E; Bagnis, R; Fusetani, N; Yasumoto, T

    1977-01-01

    Clinical and epidemiological observations suggested that a complex toxic molecule is involved in the parrotfish flesh (Scarus gibbus) poisoning from Gambier Islands. The fat soluble extract obtained from the muscles upon ciguatoxin preparation showed two toxic substances after fractionation by DEAE cellulose column chromatography. The major toxin is different from ciguatoxin judging by its chromatographic behaviour. The other is closely similar to (or identical with) ciguatoxin from the moray eel Gymnothorax javanicus. They were named SG1 for the new toxin and SG2 for the ciguatoxin like compound. Successive filtrations on Sephadex LH-20 of SG1 and SG2 gave respectively a lethality to mice of 0.03 microgram/g and 0.06 microgram/g. SG1, specifically occurs in the muscles of the parrotfish family (scaritoxin) while it is absent from other ciguateric fishes. According to that specificity and the lack of SG1 in S. gibbus liver and gut contents, the origin of scaritoxin is briefly discussed.

  17. Sociality influences cultural complexity

    PubMed Central

    Muthukrishna, Michael; Shulman, Ben W.; Vasilescu, Vlad; Henrich, Joseph

    2014-01-01

    Archaeological and ethnohistorical evidence suggests a link between a population's size and structure, and the diversity or sophistication of its toolkits or technologies. Addressing these patterns, several evolutionary models predict that both the size and social interconnectedness of populations can contribute to the complexity of its cultural repertoire. Some models also predict that a sudden loss of sociality or of population will result in subsequent losses of useful skills/technologies. Here, we test these predictions with two experiments that permit learners to access either one or five models (teachers). Experiment 1 demonstrates that naive participants who could observe five models, integrate this information and generate increasingly effective skills (using an image editing tool) over 10 laboratory generations, whereas those with access to only one model show no improvement. Experiment 2, which began with a generation of trained experts, shows how learners with access to only one model lose skills (in knot-tying) more rapidly than those with access to five models. In the final generation of both experiments, all participants with access to five models demonstrate superior skills to those with access to only one model. These results support theoretical predictions linking sociality to cumulative cultural evolution. PMID:24225461

  18. Fact Sheet: Range Complex

    NASA Technical Reports Server (NTRS)

    Cornelson, C.; Fretter, E.

    2004-01-01

    NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.

  19. Complexity measurement based on information theory and kolmogorov complexity.

    PubMed

    Lui, Leong Ting; Terrazas, Germán; Zenil, Hector; Alexander, Cameron; Krasnogor, Natalio

    2015-01-01

    In the past decades many definitions of complexity have been proposed. Most of these definitions are based either on Shannon's information theory or on Kolmogorov complexity; these two are often compared, but very few studies integrate the two ideas. In this article we introduce a new measure of complexity that builds on both of these theories. As a demonstration of the concept, the technique is applied to elementary cellular automata and simulations of the self-organization of porphyrin molecules.

  20. Physical Complexity and Cognitive Evolution

    NASA Astrophysics Data System (ADS)

    Jedlicka, Peter

    Our intuition tells us that there is a general trend in the evolution of nature, a trend towards greater complexity. However, there are several definitions of complexity and hence it is difficult to argue for or against the validity of this intuition. Christoph Adami has recently introduced a novel measure called physical complexity that assigns low complexity to both ordered and random systems and high complexity to those in between. Physical complexity measures the amount of information that an organism stores in its genome about the environment in which it evolves. The theory of physical complexity predicts that evolution increases the amount of `knowledge' an organism accumulates about its niche. It might be fruitful to generalize Adami's concept of complexity to the entire evolution (including the evolution of man). Physical complexity fits nicely into the philosophical framework of cognitive biology which considers biological evolution as a progressing process of accumulation of knowledge (as a gradual increase of epistemic complexity). According to this paradigm, evolution is a cognitive `ratchet' that pushes the organisms unidirectionally towards higher complexity. Dynamic environment continually creates problems to be solved. To survive in the environment means to solve the problem, and the solution is an embodied knowledge. Cognitive biology (as well as the theory of physical complexity) uses the concepts of information and entropy and views the evolution from both the information-theoretical and thermodynamical perspective. Concerning humans as conscious beings, it seems necessary to postulate an emergence of a new kind of knowledge - a self-aware and self-referential knowledge. Appearence of selfreflection in evolution indicates that the human brain reached a new qualitative level in the epistemic complexity.

  1. Titan's chemical complexity

    NASA Astrophysics Data System (ADS)

    Vuitton, Veronique

    2012-04-01

    We review here our current knowledge of Titan's gas phase chemistry. We base our discussion on photochemical models as well as on laboratory experiments. We identify the lower mass positive [1,2] and negative [3] ions detected in the upper atmosphere and we show that their formation is a direct consequence of the presence of heavy neutrals. We demonstrate that the observed densities of CO, CO2 and H2O can be explained by a combination of exogenous O, and OH/H2O input [4]. We argue that benzene [5] and ammonia [6] are created in the upper atmosphere through complex chemical processes involving both neutral and ion chemistry. These species diffuse downward where they are at the origin of heavier aromatics and amines, respectively. Finally, we discuss the impact on hydrocarbon densities of recent theoretical calculations of the rate constants of association reactions [7]. [1] V. Vuitton, R. V. Yelle and V. G. Anicich, Astrophys. J., 647, L175 (2006). [2] V. Vuitton, R. V. Yelle and M. J. McEwan, Icarus, 191, 722 (2007). [3] V. Vuitton, P. Lavvas, R. V. Yelle, M. Galand, A. Wellbrock, G. R. Lewis, A. J. Coates and J.-E. Wahlund, Planet. Space Sci., 57, 1558 (2009). [4] S. M. Hörst, V. Vuitton, and R. V. Yelle, J. Geophys. Res., 113, E10006 (2008). [5] V. Vuitton, R. V. Yelle and J. Cui, J. Geophys. Res., 113, E05007 (2008). [6] R. V. Yelle, V. Vuitton, P. Lavvas, S. J. Klippenstein, M. A. Smith, S. M. Hörst and J. Cui, Faraday Discuss., 147, 31 (2010). [7] V. Vuitton, R. V. Yelle, S. J. Klippenstein and P. Lavvas, Astrophys. J., in press.

  2. Complex oxides: Intricate disorder

    SciTech Connect

    Uberuaga, Blas Pedro

    2016-02-29

    In this study, complex oxides such as pyrochlores have a myriad of potential technological applications, including as fast ion conductors and radiation-tolerant nuclear waste forms. They are also of interest for their catalytic and spin ice properties. Many of these functional properties are enabled by the atomic structure of the cation sublattices. Pyrochlores (A2B2O7) contain two different cations (A and B), typically a 3+ rare earth and a 4+ transition metal such as Hf, Zr, or Ti. The large variety of chemistries that can form pyrochlores leads to a rich space in which to search for exotic new materials. Furthermore, how cations order or disorder on their respective sublattices for a given chemical composition influences the functional properties of the oxide. For example, oxygen ionic conductivity is directly correlated with the level of cation disorder — the swapping of A and B cations1. Further, the resistance of these materials against amorphization has also been connected with the ability of the cations to disorder2, 3. These correlations between cation structure and functionality have spurred great interest in the structure of the cation sublattice under irradiation, with significant focus on the disordering mechanisms and disordered structure. Previous studies have found that, upon irradiation, pyrochlores often undergo an order-to-disorder transformation, in which the resulting structure is, from a diffraction point of view, indistinguishable from fluorite (AO2) (ref. 3). Shamblin et al. now reveal that the structure of disordered pyrochlore is more complicated than previously thought4.

  3. Carney complex (CNC)

    PubMed Central

    Bertherat, Jérôme

    2006-01-01

    The Carney complex (CNC) is a dominantly inherited syndrome characterized by spotty skin pigmentation, endocrine overactivity and myxomas. Skin pigmentation anomalies include lentigines and blue naevi. The most common endocrine gland manifestations are acromegaly, thyroid and testicular tumors, and adrenocorticotropic hormone (ACTH)-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). PPNAD, a rare cause of Cushing's syndrome, is due to primary bilateral adrenal defect that can be also observed in some patients without other CNC manifestations or familial history of the disease. Myxomas can be observed in the heart, skin and breast. Cardiac myxomas can develop in any cardiac chamber and may be multiple. One of the putative CNC genes located on 17q22-24, (PRKAR1A), has been identified to encode the regulatory subunit (R1A) of protein kinase A. Heterozygous inactivating mutations of PRKAR1A were reported initially in 45 to 65 % of CNC index cases, and may be present in about 80 % of the CNC families presenting mainly with Cushing's syndrome. PRKAR1A is a key component of the cAMP signaling pathway that has been implicated in endocrine tumorigenesis and could, at least partly, function as a tumor suppressor gene. Genetic analysis should be proposed to all CNC index cases. Patients with CNC or with a genetic predisposition to CNC should have regular screening for manifestations of the disease. Clinical work-up for all the manifestations of CNC should be performed at least once a year in all patients and should start in infancy. Cardiac myxomas require surgical removal. Treatment of the other manifestations of CNC should be discussed and may include follow-up, surgery, or medical treatment depending on the location of the tumor, its size, the existence of clinical signs of tumor mass or hormonal excess, and the suspicion of malignancy. Bilateral adrenalectomy is the most common treatment for Cushing's syndrome due to PPNAD

  4. Complex oxides: Intricate disorder

    DOE PAGES

    Uberuaga, Blas Pedro

    2016-02-29

    In this study, complex oxides such as pyrochlores have a myriad of potential technological applications, including as fast ion conductors and radiation-tolerant nuclear waste forms. They are also of interest for their catalytic and spin ice properties. Many of these functional properties are enabled by the atomic structure of the cation sublattices. Pyrochlores (A2B2O7) contain two different cations (A and B), typically a 3+ rare earth and a 4+ transition metal such as Hf, Zr, or Ti. The large variety of chemistries that can form pyrochlores leads to a rich space in which to search for exotic new materials. Furthermore,more » how cations order or disorder on their respective sublattices for a given chemical composition influences the functional properties of the oxide. For example, oxygen ionic conductivity is directly correlated with the level of cation disorder — the swapping of A and B cations1. Further, the resistance of these materials against amorphization has also been connected with the ability of the cations to disorder2, 3. These correlations between cation structure and functionality have spurred great interest in the structure of the cation sublattice under irradiation, with significant focus on the disordering mechanisms and disordered structure. Previous studies have found that, upon irradiation, pyrochlores often undergo an order-to-disorder transformation, in which the resulting structure is, from a diffraction point of view, indistinguishable from fluorite (AO2) (ref. 3). Shamblin et al. now reveal that the structure of disordered pyrochlore is more complicated than previously thought4.« less

  5. Phonological Complexity and Language Learnability

    PubMed Central

    Gierut, Judith A.

    2008-01-01

    Purpose To extend formal models of language learnability to applications in clinical treatment of children with functional phonological delays. Method The focus of the narrative review is on phonological complexity. This follows from learnability theory, whereby complexity in the linguistic input to children has been shown to trigger language learning. Drawing from the literature, phonological complexity is defined from epistemic, ontological, and functional perspectives, with specific emphasis on the application of language universals in the selection of target sounds for treatment. Results The cascading effects of phonological complexity on children’s generalization learning are illustrated, and frequently asked questions about complexity in treatment are addressed. Conclusion The role of complexity in cognitive development is introduced to demonstrate the apparent robustness of effects. PMID:17329671

  6. Increasing complexity with quantum physics.

    PubMed

    Anders, Janet; Wiesner, Karoline

    2011-09-01

    We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.

  7. Complex higher order derivative theories

    SciTech Connect

    Margalli, Carlos A.; Vergara, J. David

    2012-08-24

    In this work is considered a complex scalar field theory with higher order derivative terms and interactions. A procedure is developed to quantize consistently this system avoiding the presence of negative norm states. In order to achieve this goal the original real scalar high order field theory is extended to a complex space attaching a complex total derivative to the theory. Next, by imposing reality conditions the complex theory is mapped to a pair of interacting real scalar field theories without the presence of higher derivative terms.

  8. New types of lanthanide complexes

    SciTech Connect

    Kahwa, I.A.K.

    1986-01-01

    Three new types of lanthanide (Ln) complexes, namely, the first examples of homodinuclear macrocyclic lanthanide complexes, novel binary and ternary gaseous polyatomic lanthanide oxides and new lanthanide oxalato complexes are described in chapters one, two and three respectively. The homodinuclear complexes are 2:2 condensation products of 2,6-diformyl-p-cresol and triethylenetetramine templated by Ln(NO/sub 3/)/sub 3/ and Ln(ClO/sub 4/)/sub 3/. The complexes are dimorphic, and are off-white (the more stable form) when they are obtained from dilute solutions and orange if they arise from more concentrated reactants. The complexes were characterized by elemental analysis, fast atom bombardment mass spectrometry (FAB MS), electronic absorption and IR spectroscopy, thermogravimetry along with preliminary spectroscopic studies using electron paramagnetic resonance, magnetic susceptibility and luminescence. The orange complexes exhibit more antiferromagnetic exchange interactions, low Ln/sup 3 +/magnetic moments and multi-exponential luminescence decay kinetics, whereas the off-white complexes show single exponential luminescence decay and free ion magnetic moments. At low temperatures and in presence of excess triethylenetetramine, solvated light lanthanide mononuclear complexes of a 1:1 acyclic Schiff base acetal were isolated and the structure of one of these was confirmed by single crystal x-ray diffraction crystallography.

  9. Societal Complexity and Familial Complexity: Evidence for the Curvilinear Hypothesis

    ERIC Educational Resources Information Center

    Blumberg, Rae Lesser; Winch, Robert F.

    1972-01-01

    The hypothesis is supported that the most extended, complex familial systems should be found among societies in an intermediate range of societal complexity, particularly among settled agricultural peoples. Among the simple hunting-gathering groups and in modern industrial states is found the nuclear family system: small, independent, nonextended…

  10. Sustainability, Complexity and Learning: Insights from Complex Systems Approaches

    ERIC Educational Resources Information Center

    Espinosa, A.; Porter, T.

    2011-01-01

    Purpose: The purpose of this research is to explore core contributions from two different approaches to complexity management in organisations aiming to improve their sustainability,: the Viable Systems Model (VSM), and the Complex Adaptive Systems (CAS). It is proposed to perform this by summarising the main insights each approach offers to…

  11. Complex Constructivism: A Theoretical Model of Complexity and Cognition

    ERIC Educational Resources Information Center

    Doolittle, Peter E.

    2014-01-01

    Education has long been driven by its metaphors for teaching and learning. These metaphors have influenced both educational research and educational practice. Complexity and constructivism are two theories that provide functional and robust metaphors. Complexity provides a metaphor for the structure of myriad phenomena, while constructivism…

  12. Competing Complexity Metrics and Adults' Production of Complex Sentences.

    ERIC Educational Resources Information Center

    Cheung, Hintat; Kemper, Susan

    1992-01-01

    Evaluation of the adequacy of 11 metrics for measuring linguistic complexity of language samples obtained from 60 to 90 year olds indicated that, although most of the metrics adequately accounted for age-group and individual differences in complexity, the amount and type of embedding proved to predict how easily sentences are understood and how…

  13. Waves in complex systems

    NASA Astrophysics Data System (ADS)

    Xie, Hang

    The theme of this thesis is the study of wave phenomena in complex systems. In particular, the following three topics constitute the foci of my research. The first topic involves the generalization of an electronic transport mechanism commonly observed in disordered media, fluctuation induced tunneling conduction, by considering tunneling through not just insulating potential barriers, but also narrow conducting channels. Here the wave nature of the electron implies that a narrow conduction channel can act as an electronic waveguide, with a cutoff transverse dimension that is half the Fermi wavelength. My research involves the study of electronic transport through finite-length conducting channels with transverse dimensions below the cutoff. Such narrow conduction channel may be physically realized by chains of single conducting atoms, for example. At small voltage bias across the conduction channel, only tunneling transport is possible at zero temperature. But at finite temperatures some of the electrons with energies above the Fermi level can ballistically transport across the channel. By considering both tunneling and thermal activation mechanisms, with thermally-generated (random) voltage bias across the narrow channel, we obtained a temperature-dependent conductivity behavior that is in good agreement with the measured two-lead conductance of RuO2 and IrO2 nanowires. Furthermore, by considering high applied voltage across the nano conduction channels, our model predicts interesting electronic Fabry-Perot behavior whose experimental verification is presently underway. The second topic involves the study of the Hall effect in mesoscopic samples. In particular, we are interested in the possibility of enhancing the Hall effect by nano-patterning samples of 2D electron gas. Through numerical solution of the Schrodinger equation in the presence of a magnetic field, mesoscopic transport behavior is obtained for samples with given geometric patterns of the

  14. Forecasting in Complex Systems

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  15. Understanding and Teaching Complex Texts

    ERIC Educational Resources Information Center

    Fisher, Douglas; Frey, Nancy

    2014-01-01

    Teachers in today's classrooms struggle every day to design instructional interventions that would build students' reading skills and strategies in order to ensure their comprehension of complex texts. Text complexity can be determined in both qualitative and quantitative ways. In this article, the authors describe various innovative…

  16. Too Dumb for Complex Texts?

    ERIC Educational Resources Information Center

    Bauerlein, Mark

    2011-01-01

    High school students' lack of experience and practice with reading complex texts is a primary cause of their difficulties with college-level reading. Filling the syllabus with digital texts does little to address this deficiency. Complex texts demand three dispositions from readers: a willingness to probe works characterized by dense meanings, the…

  17. Complexity and Education: Vital Simultaneities

    ERIC Educational Resources Information Center

    Davis, Brent

    2008-01-01

    This article explores the place of complexity science within education and educational research. The discussion begins with the suggestion that educational research has a history of adopting interpretive frames from other domains with little adaptation. Complexity science is argued to compel a different sort of positioning, one that requires…

  18. Complex Variables in Secondary Schools

    ERIC Educational Resources Information Center

    Dwyer, Jerry; Moskal, Barbara; Duke, Billy; Wilhelm, Jennifer

    2007-01-01

    This article describes the work of outreach mathematicians introducing the topic of complex variables to eighth and ninth grade students (13- to 15-year-olds) in the US. Complex variables is an area of mathematics that is not typically studied at secondary level. The authors developed seven lessons designed to stimulate students' interest in…

  19. Improve Reading with Complex Texts

    ERIC Educational Resources Information Center

    Fisher, Douglas; Frey, Nancy

    2015-01-01

    The Common Core State Standards have cast a renewed light on reading instruction, presenting teachers with the new requirements to teach close reading of complex texts. Teachers and administrators should consider a number of essential features of close reading: They are short, complex texts; rich discussions based on worthy questions; revisiting…

  20. A Simple Explanation of Complexation

    ERIC Educational Resources Information Center

    Elliott, J. Richard

    2010-01-01

    The topics of solution thermodynamics, activity coefficients, and complex formation are introduced through computational exercises and sample applications. The presentation is designed to be accessible to freshmen in a chemical engineering computations course. The MOSCED model is simplified to explain complex formation in terms of hydrogen…

  1. Teacher Knowledge: A Complex Tapestry

    ERIC Educational Resources Information Center

    Adoniou, Misty

    2015-01-01

    Teachers need to know a great deal, in many areas and in multiple ways. Teacher knowledge is a complex tapestry, and teachers must successfully weave the multiple threads. In this article, I present a conceptualisation of teacher knowledge that provides a framework for describing the complexity of teacher knowledge. The framework describes three…

  2. The Algebra of Complex Numbers.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  3. The Complexity of Language Learning

    ERIC Educational Resources Information Center

    Nelson, Charles

    2011-01-01

    This paper takes a complexity theory approach to looking at language learning, an approach that investigates how language learners adapt to and interact with people and their environment. Based on interviews with four graduate students, it shows how complexity theory can help us understand both the situatedness of language learning and also…

  4. Complex Training: A Brief Review

    PubMed Central

    Ebben, William P.

    2002-01-01

    The effectiveness of plyometric training is well supported by research. Complex training has gained popularity as a training strategy combining weight training and plyometric training. Anecdotal reports recommend training in this fashion in order to improve muscular power and athletic performance. Recently, several studies have examined complex training. Despite the fact that questions remain about the potential effectiveness and implementation of this type of training, results of recent studies are useful in guiding practitioners in the development and implementation of complex training programs. In some cases, research suggests that complex training has an acute ergogenic effect on upper body power and the results of acute and chronic complex training include improved jumping performance. Improved performance may require three to four minutes rest between the weight training and plyometrics sets and the use of heavy weight training loads. PMID:24688269

  5. Ternary complexes in analytical chemistry.

    PubMed

    Babko, A K

    1968-08-01

    Reactions between a complex AB and a third component C do not always proceed by a displacement mechanism governed by the energy difference of the chemical bonds A-B and A-C. The third component often becomes part of the complex, forming a mixed co-ordination sphere or ternary complex. The properties of this ternary complex ABC are not additive functions of the properties of AB and AC. Such reactions are important in many methods in analytical chemistry, particularly in photometric analysis, extractive separation, masking, etc. The general properties of the four basic types of ternary complex are reviewed and examples given. The four types comprise the systems (a) metal ion, electronegative ligand, organic base, (b) one metal ion, two different electronegative ligands, (c) ternary heteropoly acids, and (d) two different metal ions, one ligand.

  6. Complex systems in metabolic engineering.

    PubMed

    Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T

    2015-12-01

    Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity.

  7. [Health: an adaptive complex system].

    PubMed

    Toro-Palacio, Luis Fernando; Ochoa-Jaramillo, Francisco Luis

    2012-02-01

    This article points out the enormous gap that exists between complex thinking of an intellectual nature currently present in our environment, and complex experimental thinking that has facilitated the scientific and technological advances that have radically changed the world. The article suggests that life, human beings, global society, and all that constitutes health be considered as adaptive complex systems. This idea, in turn, prioritizes the adoption of a different approach that seeks to expand understanding. When this rationale is recognized, the principal characteristics and emerging properties of health as an adaptive complex system are sustained, following a care and services delivery model. Finally, some pertinent questions from this perspective are put forward in terms of research, and a series of appraisals are expressed that will hopefully serve to help us understand all that we have become as individuals and as a species. The article proposes that the delivery of health care services be regarded as an adaptive complex system.

  8. The evolution of complex life.

    PubMed

    Billingham, J

    1989-01-01

    In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.

  9. Kinetics of actinide complexation reactions

    SciTech Connect

    Nash, K.L.; Sullivan, J.C.

    1997-09-01

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

  10. The energetics of genome complexity.

    PubMed

    Lane, Nick; Martin, William

    2010-10-21

    All complex life is composed of eukaryotic (nucleated) cells. The eukaryotic cell arose from prokaryotes just once in four billion years, and otherwise prokaryotes show no tendency to evolve greater complexity. Why not? Prokaryotic genome size is constrained by bioenergetics. The endosymbiosis that gave rise to mitochondria restructured the distribution of DNA in relation to bioenergetic membranes, permitting a remarkable 200,000-fold expansion in the number of genes expressed. This vast leap in genomic capacity was strictly dependent on mitochondrial power, and prerequisite to eukaryote complexity: the key innovation en route to multicellular life.

  11. Quantum Tunneling and Complex Trajectories

    NASA Astrophysics Data System (ADS)

    Meynig, Max; Haggard, Hal

    2017-01-01

    In general, the semiclassical approximation of quantum mechanical tunneling fails to treat tunneling through barriers if real initial conditions and trajectories are used. By analytically continuing classical dynamics to the complex plane the problems encountered in the approximation can be resolved. While, the complex methods discussed here have been previously explored, no one has exhibited an analytically solvable case. The essential features of the complex method will be discussed in the context of a novel, analytically solvable problem. These methods could be useful in quantum gravity, with applications to the tunneling of spacetime geometries.

  12. [Carney's Complex: familial cardiac myxoma].

    PubMed

    Guerra, Miguel S; Santos, Nelson; Neves, Fátima; Carlos Mota, João; Miranda, José António; Vouga, Luis

    2006-01-01

    The Carney Complex is a very rare autosomal dominant disease including multiple neoplasia syndrome. This syndrome was initially described in 1985 under the rubric "...the complex of myxomas, spotty pigmentation, and endocrine overactivity". We present a case report of an old woman with Carney Complex who had the characteristic features of facial hirsutism and acromegalic facies, a large pigmented swelling over the face and a cardiac myxoma arising from the left atrium. We emphasize the need for periodic echocardiographic screening of patients and family members.

  13. The future of complexity engineering

    NASA Astrophysics Data System (ADS)

    Frei, Regina; Di Marzo Serugendo, Giovanna

    2012-06-01

    Complexity Engineering encompasses a set of approaches to engineering systems which are typically composed of various interacting entities often exhibiting self-* behaviours and emergence. The engineer or designer uses methods that benefit from the findings of complexity science and often considerably differ from the classical engineering approach of "divide and conquer". This article provides an overview on some very interdisciplinary and innovative research areas and projects in the field of Complexity Engineering, including synthetic biology, chemistry, artificial life, self-healing materials and others. It then classifies the presented work according to five types of nature-inspired technology, namely: (1) using technology to understand nature, (2) nature-inspiration for technology, (3) using technology on natural systems, (4) using biotechnology methods in software engineering, and (5) using technology to model nature. Finally, future trends in Complexity Engineering are indicated and related risks are discussed.

  14. Mathematicians, Attributional Complexity, and Gender

    NASA Astrophysics Data System (ADS)

    Stalder, Daniel R.

    Given indirect indications in sex role and soda! psychology research that mathematical-deductive reasoning may negatively relate to social acuity, Study 1 investigated whether mathematicians were less attributionally complex than nonmathematicians. Study 1 administered the Attributional Complexity Scale, a measure of social acuity, to female and male faculty members and graduate students in four Midwestern schools. Atlrihutional complexity (AC) is the ability and motivation to give complex explanations for behavior. Study 1 found a significant interaction between field and gender. Only among women did mathematicians score lower on AC. In addition, an established gender difference in AC (that women score higher than men) was present only among nonmathematicians. Studies 2 and 3 offered some preliminary support for the possibility that it is generally female students who score tow on AC who aspire to he mathematicians and for the underlying view that female students' perceived similarity to mathematicians can influence their vocational choices.

  15. Complex bile duct injuries: management

    PubMed Central

    Ardiles, V.; Pekolj, J.

    2008-01-01

    Background. Laparoscopic cholecystectomy is the present treatment of choice for patients with gallbladder stones, despite its being associated with a higher incidence of biliary injuries compared with the open procedure. Injuries occurring during the laparoscopic approach seem to be more complex. A complex biliary injury is a disease that is difficult to diagnose and treat. We considered complex injuries: 1) injuries that involve the confluence; 2) injuries in which repair attempts have failed; 3) any bile duct injury associated with a vascular injury; 4) or any biliary injury in association with portal hypertension or secondary biliary cirrhosis. The present review is an evaluation of our experience in the treatment of these complex biliary injuries and an analysis of the international literature on the management of patients. PMID:18695753

  16. Complex Topographic Feature Ontology Patterns

    USGS Publications Warehouse

    Varanka, Dalia E.; Jerris, Thomas J.

    2015-01-01

    Semantic ontologies are examined as effective data models for the representation of complex topographic feature types. Complex feature types are viewed as integrated relations between basic features for a basic purpose. In the context of topographic science, such component assemblages are supported by resource systems and found on the local landscape. Ontologies are organized within six thematic modules of a domain ontology called Topography that includes within its sphere basic feature types, resource systems, and landscape types. Context is constructed not only as a spatial and temporal setting, but a setting also based on environmental processes. Types of spatial relations that exist between components include location, generative processes, and description. An example is offered in a complex feature type ‘mine.’ The identification and extraction of complex feature types are an area for future research.

  17. Making the Tent Function Complex

    ERIC Educational Resources Information Center

    Sprows, David J.

    2010-01-01

    This note can be used to illustrate to the student such concepts as periodicity in the complex plane. The basic construction makes use of the Tent function which requires only that the student have some working knowledge of binary arithmetic.

  18. Complex Hydrides for Hydrogen Storage

    SciTech Connect

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  19. SDO: Complex Mass of Plasma

    NASA Video Gallery

    A small, but complex mass of solar material gyrated and spun about over the course of 40 hours above the surface of the sun on Sept. 1-3, 2015. It was stretched and pulled back and forth by powerfu...

  20. Unitarity and Complex Mass Fields

    NASA Astrophysics Data System (ADS)

    Bollini, C. G.; Oxman, L. E.

    We consider a field obeying a simple higher order equation with a real mass and two complex conjugate mass parameters. The evaluation of vacuum expectation values leads to the propagators, which are (resp.) a Feynman causal function and two complex conjugate Wheeler-Green functions (half retarded plus half advanced). By means of the computation of convolutions, we are able to show that the total self-energy has an absorptive part which is only due to the real mass. In this way it is shown that this diagram is compatible with unitarity and the elimination of free complex-mass asymptotic states from the set of external legs of the S-matrix. It is also shown that the complex masses act as regulators of ultraviolet divergences.

  1. Auditory Perception of Complex Sounds.

    DTIC Science & Technology

    1987-10-30

    processes that underlie several aspects of complex pattern recog- nition -- whether of speech, of music , or of environmental sounds. These patterns differ...quality or timbre can play similar grouping roles in auditory steams. Most of the experimental work has concerned timing of successive sounds in sequences...auditory perceptual processes that underlie several aspects of complex pattern recognition - whether of speech, of music , or of environmental sounds

  2. Septin pairs, a complex choreography.

    PubMed

    Ewers, Helge

    2011-06-13

    Septins form a filamentous collar at the mother-bud neck in budding yeast. In cytokinesis, this collar splits into two rings and the septin complexes undergo a dramatic reorientation. Using fluorescence polarization microscopy, DeMay et al. (2011. J. Cell Biol. doi:10.1083/jcb.201012143) now demonstrate that septin complexes assemble as paired filaments in vivo and reveal new insights into septin organization during cytokinesis.

  3. Mixed real/complex factorization

    SciTech Connect

    Lima, L.T.G. . Dept. of Electrical Engineering); Martines, N.; Pinto, H.J.C.P. . Centro de Pesquisas de Energia Electrica)

    1993-02-01

    This paper describes a mixed real/complex sparse matrix factorization and solution scheme applied to a large matrix problem. Large system eigenanalysis and frequency domain methods will directly benefit from the proposed scheme, which can reduce both memory and CPU time requirements when compared to conventional complex-only solutions. The application in hand is the small signal electromechanical stability analysis of large power systems. The savings obtained are significant considering the CPU intensive nature of these matrix problems.

  4. Complexity, action, and black holes

    DOE PAGES

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; ...

    2016-04-18

    In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  5. Complexity, action, and black holes

    NASA Astrophysics Data System (ADS)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-04-01

    Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the "Wheeler-DeWitt" patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  6. Symbolic Dynamics and Grammatical Complexity

    NASA Astrophysics Data System (ADS)

    Hao, Bai-Lin; Zheng, Wei-Mou

    The following sections are included: * Formal Languages and Their Complexity * Formal Language * Chomsky Hierarchy of Grammatical Complexity * The L-System * Regular Language and Finite Automaton * Finite Automaton * Regular Language * Stefan Matrix as Transfer Function for Automaton * Beyond Regular Languages * Feigenbaum and Generalized Feigenbaum Limiting Sets * Even and Odd Fibonacci Sequences * Odd Maximal Primitive Prefixes and Kneading Map * Even Maximal Primitive Prefixes and Distinct Excluded Blocks * Summary of Results

  7. Complex Hybrid Inflation and Baryogenesis

    SciTech Connect

    Delepine, David; Martinez, Carlos; Urena-Lopez, L. Arturo

    2007-04-20

    We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U(1) global symmetry associated with the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry. The latter strongly depends on the vacuum expectation value of the waterfall field, which is well constrained by diverse cosmological observations.

  8. Quantum complexity and negative curvature

    NASA Astrophysics Data System (ADS)

    Brown, Adam R.; Susskind, Leonard; Zhao, Ying

    2017-02-01

    As time passes, once simple quantum states tend to become more complex. For strongly coupled k -local Hamiltonians, this growth of computational complexity has been conjectured to follow a distinctive and universal pattern. In this paper we show that the same pattern is exhibited by a much simpler system—classical geodesics on a compact two-dimensional geometry of uniform negative curvature. This striking parallel persists whether the system is allowed to evolve naturally or is perturbed from the outside.

  9. Goldstone Deep Space Communication Complex

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Three 34m (110 ft.) diameter Beam Waveguide antennas located at the Goldstone Deep Space Communications Complex, situated in the Mojave Desert in California. This is one of three complexes which comprise NASA's Deep Space Network (DSN). The DSN provides radio communications for all of NASA's interplanetary spacecraft and is also utilized for radio astronomy and radar observations of the solar system and the universe.

  10. Complex numbers in quantum theory

    NASA Astrophysics Data System (ADS)

    Maynard, Glenn

    In 1927, Nobel prize winning physicist, E. Schrodinger, in correspondence with Ehrenfest, wrote the following about the new theory: "What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. Psi is surely fundamentally a real function." This seemingly simple issue remains unexplained almost ninety years later. In this dissertation I elucidate the physical and theoretical origins of the complex requirement. (Abstract shortened by ProQuest.).

  11. Thermochemical Radii of Complex Ions

    NASA Astrophysics Data System (ADS)

    Roobottom, Helen K.; Jenkins, H. Donald B.; Passmore, Jack; Glasser, Leslie

    1999-11-01

    Using rectilinear correlations of lattice energy with the inverse cubic root of the volume per molecule of complex salts of type MX (1:1), M2X (2:1), and MX2 (1:2) we have generated a comprehensive self-consistent tabulation of more than 400 thermochemical radii for complex ions. These radii can be used in the Kapustinskii equation to generate lattice energies and also as ion size parameters.

  12. Conforming Morse-Smale Complexes

    SciTech Connect

    Gyulassy, Attila; Gunther, David; Levine, Joshua A.; Tierny, Julien; Pascucci, Valerio

    2014-08-11

    Morse-Smale (MS) complexes have been gaining popularity as a tool for feature-driven data analysis and visualization. However, the quality of their geometric embedding and the sole dependence on the input scalar field data can limit their applicability when expressing application-dependent features. In this paper we introduce a new combinatorial technique to compute an MS complex that conforms to both an input scalar field and an additional, prior segmentation of the domain. The segmentation constrains the MS complex computation guaranteeing that boundaries in the segmentation are captured as separatrices of the MS complex. We demonstrate the utility and versatility of our approach with two applications. First, we use streamline integration to determine numerically computed basins/mountains and use the resulting segmentation as an input to our algorithm. This strategy enables the incorporation of prior flow path knowledge, effectively resulting in an MS complex that is as geometrically accurate as the employed numerical integration. Our second use case is motivated by the observation that often the data itself does not explicitly contain features known to be present by a domain expert. We introduce edit operations for MS complexes so that a user can directly modify their features while maintaining all the advantages of a robust topology-based representation.

  13. Formulation of Complex Action Theory

    NASA Astrophysics Data System (ADS)

    Nagao, K.; Nielsen, H. B.

    2011-12-01

    We formulate a complex action theory which includes operators of coordinate and momentum hat{q} and hat{p} being replaced with non-hermitian operators hat{q}_{new} and hat{p}_{new}, and their eigenstates | q >_{new} and | p >_{new} with complex eigenvalues q and p. Introducing a philosophy of keeping the analyticity in path integration variables, we define a modified set of complex conjugate, real and imaginary parts, hermitian conjugates and bras, and explicitly construct hat{q}_{new}, hat{p}_{new}, |q >_{new} and |p >_{new} by formally squeezing coherent states. We also pose a theorem on the relation between functions on the phase space and the corresponding operators. Only in our formalism can we describe a complex action theory or a real action theory with complex saddle points in the tunneling effect etc. in terms of bras and kets in the functional integral. Furthermore, in a system with a non-hermitian diagonalizable bounded Hamiltonian, we show that the mechanism to obtain a hermitian Hamiltonian after a long time development proposed in our paper [Prog. Theor. Phys. 125 (2011), 633] works also in the complex coordinate formalism. If the hermitian Hamiltonian is given in a local form, a conserved probability current density can be constructed with two kinds of wave functions.

  14. The Ndc80 complex bridges two Dam1 complex rings

    PubMed Central

    Kim, Jae ook; Zelter, Alex; Umbreit, Neil T; Bollozos, Athena; Riffle, Michael; Johnson, Richard; MacCoss, Michael J; Asbury, Charles L; Davis, Trisha N

    2017-01-01

    Strong kinetochore-microtubule attachments are essential for faithful segregation of sister chromatids during mitosis. The Dam1 and Ndc80 complexes are the main microtubule binding components of the Saccharomyces cerevisiae kinetochore. Cooperation between these two complexes enhances kinetochore-microtubule coupling and is regulated by Aurora B kinase. We show that the Ndc80 complex can simultaneously bind and bridge across two Dam1 complex rings through a tripartite interaction, each component of which is regulated by Aurora B kinase. Mutations in any one of the Ndc80p interaction regions abrogates the Ndc80 complex’s ability to bind two Dam1 rings in vitro, and results in kinetochore biorientation and microtubule attachment defects in vivo. We also show that an extra-long Ndc80 complex, engineered to space the two Dam1 rings further apart, does not support growth. Taken together, our work suggests that each kinetochore in vivo contains two Dam1 rings and that proper spacing between the rings is vital. DOI: http://dx.doi.org/10.7554/eLife.21069.001 PMID:28191870

  15. "Computational Modeling of Actinide Complexes"

    SciTech Connect

    Balasubramanian, K

    2007-03-07

    We will present our recent studies on computational actinide chemistry of complexes which are not only interesting from the standpoint of actinide coordination chemistry but also of relevance to environmental management of high-level nuclear wastes. We will be discussing our recent collaborative efforts with Professor Heino Nitsche of LBNL whose research group has been actively carrying out experimental studies on these species. Computations of actinide complexes are also quintessential to our understanding of the complexes found in geochemical, biochemical environments and actinide chemistry relevant to advanced nuclear systems. In particular we have been studying uranyl, plutonyl, and Cm(III) complexes are in aqueous solution. These studies are made with a variety of relativistic methods such as coupled cluster methods, DFT, and complete active space multi-configuration self-consistent-field (CASSCF) followed by large-scale CI computations and relativistic CI (RCI) computations up to 60 million configurations. Our computational studies on actinide complexes were motivated by ongoing EXAFS studies of speciated complexes in geo and biochemical environments carried out by Prof Heino Nitsche's group at Berkeley, Dr. David Clark at Los Alamos and Dr. Gibson's work on small actinide molecules at ORNL. The hydrolysis reactions of urnayl, neputyl and plutonyl complexes have received considerable attention due to their geochemical and biochemical importance but the results of free energies in solution and the mechanism of deprotonation have been topic of considerable uncertainty. We have computed deprotonating and migration of one water molecule from the first solvation shell to the second shell in UO{sub 2}(H{sub 2}O){sub 5}{sup 2+}, UO{sub 2}(H{sub 2}O){sub 5}{sup 2+}NpO{sub 2}(H{sub 2}O){sub 6}{sup +}, and PuO{sub 2}(H{sub 2}O){sub 5}{sup 2+} complexes. Our computed Gibbs free energy(7.27 kcal/m) in solution for the first time agrees with the experiment (7.1 kcal

  16. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    NASA Astrophysics Data System (ADS)

    Williams, Rube B.

    2004-02-01

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  17. Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems

    SciTech Connect

    Williams, Rube B.

    2004-02-04

    Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.

  18. Complexity analysis of angiogenesis vasculature

    NASA Astrophysics Data System (ADS)

    Mahadevan, Vijay; Tyrell, James A.; Tong, Ricky T.; Brown, Edward B.; Jain, Rakesh K.; Roysam, Badrinath

    2005-04-01

    Tumor vasculature has a high degree of irregularity as compared to normal vasculature. The quantification of the morphometric complexity in tumor images can be useful in diagnosis. Also, it is desirable in several other medical applications to have an automated complexity analysis to aid in diagnosis and prognosis under treatment. e.g. in diabetic retinopathy and in arteriosclerosis. In addition, prior efforts at segmentation of the tumor vasculature using matched filtering, template matching and splines have been hampered by the irregularity of these vessels. We try to solve both problems by introducing a novel technique for vessel detection, followed by a tracing-independent complexity analysis based on a combination of ideas. First, the vessel cross-sectional profile is modeled using a continuous and everywhere differentiable family of super-Gaussian curves. This family generates rectangular profiles that can accurately localize the vessel boundaries in microvasculature images. Second, a robust non-linear regression algorithm based on M-estimators is used to estimate the parameters that optimally characterize the vessel"s shape. A framework for the quantitative analysis of the complexity of the vasculature based on the vessel detection is presented. A set of measures that quantify the complexity are proposed viz. Squared Error, Entropy-based and Minimum Description Length-based Shape Complexities. They are completely automatic and can deal with complexities of the entire vessel unlike existing tortuousity measures which deal only with vessel centerlines. The results are validated using carefully constructed phantom and real image data with ground truth information from an expert observer.

  19. Complex systems: physics beyond physics

    NASA Astrophysics Data System (ADS)

    Holovatch, Yurij; Kenna, Ralph; Thurner, Stefan

    2017-03-01

    Complex systems are characterised by specific time-dependent interactions among their many constituents. As a consequence they often manifest rich, non-trivial and unexpected behaviour. Examples arise both in the physical and non-physical worlds. The study of complex systems forms a new interdisciplinary research area that cuts across physics, biology, ecology, economics, sociology, and the humanities. In this paper we review the essence of complex systems from a physicists' point of view, and try to clarify what makes them conceptually different from systems that are traditionally studied in physics. Our goal is to demonstrate how the dynamics of such systems may be conceptualised in quantitative and predictive terms by extending notions from statistical physics and how they can often be captured in a framework of co-evolving multiplex network structures. We mention three areas of complex-systems science that are currently studied extensively, the science of cities, dynamics of societies, and the representation of texts as evolutionary objects. We discuss why these areas form complex systems in the above sense. We argue that there exists plenty of new ground for physicists to explore and that methodical and conceptual progress is needed most.

  20. Cortical complexity in cetacean brains.

    PubMed

    Hof, Patrick R; Chanis, Rebecca; Marino, Lori

    2005-11-01

    Cetaceans (dolphins, whales, and porpoises) have a long, dramatically divergent evolutionary history compared with terrestrial mammals. Throughout their 55-60 million years of evolution, cetaceans acquired a compelling set of characteristics that include echolocation ability (in odontocetes), complex auditory and communicative capacities, and complex social organization. Moreover, although cetaceans have not shared a common ancestor with primates for over 90 million years, they possess a set of cognitive attributes that are strikingly convergent with those of many primates, including great apes and humans. In contrast, cetaceans have evolved a highly unusual combination of neurobiological features different from that of primates. As such, cetacean brains offer a critical opportunity to address questions about how complex behavior can be based on very different neuroanatomical and neurobiological evolutionary products. Cetacean brains and primate brains are arguably most meaningfully conceived as alternative evolutionary routes to neurobiological and cognitive complexity. In this article, we summarize data on brain size and hemisphere surface configuration in several cetacean species and present an overview of the cytoarchitectural complexity of the cerebral cortex of the bottlenose dolphin.

  1. Control principles of complex systems

    NASA Astrophysics Data System (ADS)

    Liu, Yang-Yu; Barabási, Albert-László

    2016-07-01

    A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: it requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in dynamical systems and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these questions here recent advances on the controllability and the control of complex networks are reviewed, exploring the intricate interplay between the network topology and dynamical laws. The pertinent mathematical results are matched with empirical findings and applications. Uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

  2. Articulation points in complex networks

    PubMed Central

    Tian, Liang; Bashan, Amir; Shi, Da-Ning; Liu, Yang-Yu

    2017-01-01

    An articulation point in a network is a node whose removal disconnects the network. Those nodes play key roles in ensuring connectivity of many real-world networks, from infrastructure networks to protein interaction networks and terrorist communication networks. Despite their fundamental importance, a general framework of studying articulation points in complex networks is lacking. Here we develop analytical tools to study key issues pertinent to articulation points, such as the expected number of them and the network vulnerability against their removal, in an arbitrary complex network. We find that a greedy articulation point removal process provides us a different perspective on the organizational principles of complex networks. Moreover, this process results in a rich phase diagram with two fundamentally different types of percolation transitions. Our results shed light on the design of more resilient infrastructure networks and the effective destruction of terrorist communication networks. PMID:28139697

  3. Graph distance for complex networks

    NASA Astrophysics Data System (ADS)

    Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki

    2016-10-01

    Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.

  4. Multi-stage complex contagions

    NASA Astrophysics Data System (ADS)

    Melnik, Sergey; Ward, Jonathan A.; Gleeson, James P.; Porter, Mason A.

    2013-03-01

    The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages—which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea—exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, which cannot occur in single-stage contagion models. We find that cascades—and hence collective action—can be driven not only by high-stage influencers but also by low-stage influencers.

  5. Multi-stage complex contagions.

    PubMed

    Melnik, Sergey; Ward, Jonathan A; Gleeson, James P; Porter, Mason A

    2013-03-01

    The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages-which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea-exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, which cannot occur in single-stage contagion models. We find that cascades-and hence collective action-can be driven not only by high-stage influencers but also by low-stage influencers.

  6. Articulation points in complex networks

    NASA Astrophysics Data System (ADS)

    Tian, Liang; Bashan, Amir; Shi, Da-Ning; Liu, Yang-Yu

    2017-01-01

    An articulation point in a network is a node whose removal disconnects the network. Those nodes play key roles in ensuring connectivity of many real-world networks, from infrastructure networks to protein interaction networks and terrorist communication networks. Despite their fundamental importance, a general framework of studying articulation points in complex networks is lacking. Here we develop analytical tools to study key issues pertinent to articulation points, such as the expected number of them and the network vulnerability against their removal, in an arbitrary complex network. We find that a greedy articulation point removal process provides us a different perspective on the organizational principles of complex networks. Moreover, this process results in a rich phase diagram with two fundamentally different types of percolation transitions. Our results shed light on the design of more resilient infrastructure networks and the effective destruction of terrorist communication networks.

  7. Complexity matching in dyadic conversation.

    PubMed

    Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T

    2014-12-01

    Recent studies of dyadic interaction have examined phenomena of synchronization, entrainment, alignment, and convergence. All these forms of behavioral matching have been hypothesized to play a supportive role in establishing coordination and common ground between interlocutors. In the present study, evidence is found for a new kind of coordination termed complexity matching. Temporal dynamics in conversational speech signals were analyzed through time series of acoustic onset events. Timing in periods of acoustic energy was found to exhibit behavioral matching that reflects complementary timing in turn-taking. In addition, acoustic onset times were found to exhibit power law clustering across a range of timescales, and these power law functions were found to exhibit complexity matching that is distinct from behavioral matching. Complexity matching is discussed in terms of interactive alignment and other theoretical principles that lead to new hypotheses about information exchange in dyadic conversation and interaction in general.

  8. Phosphoroorganic Metal Complexes in Therapeutics.

    PubMed

    Demkowicz, Sebastian; Kozak, Witold; Daśko, Mateusz; Rachon, Janusz

    2016-01-01

    The present mini-review highlights recent developments on antitumor activity of metal-based therapeutics which have been a subject of researches for the last few decades. In 1965, Rosenberg found that during an electrolysis on platinum electrodes a complex of Pt is generated which inhibited to a great extent a binary fission in Escherichia coli bacteria. This discovery started a new chapter in medicinal chemistry and the interesting properties of cisplatin were soon applied in cancer therapy especially in curing genitourinary tumors. However, various side effects limited its use in medical treatment. Since then a great number of other metal-organic complexes based on platinum, palladium, ruthenium, gold, copper, silver, rhodium, osmium, rhenium, iridium and others have been synthesized. Among them, NAMI-A and KP1019 have recently undergone clinical trials. In this review paper we report a detailed account of metal complexes with phosphorus-based ligands which are of particular interest in therapeutics.

  9. Exact controllability of complex networks

    PubMed Central

    Yuan, Zhengzhong; Zhao, Chen; Di, Zengru; Wang, Wen-Xu; Lai, Ying-Cheng

    2013-01-01

    Controlling complex networks is of paramount importance in science and engineering. Despite the recent development of structural controllability theory, we continue to lack a framework to control undirected complex networks, especially given link weights. Here we introduce an exact controllability paradigm based on the maximum multiplicity to identify the minimum set of driver nodes required to achieve full control of networks with arbitrary structures and link-weight distributions. The framework reproduces the structural controllability of directed networks characterized by structural matrices. We explore the controllability of a large number of real and model networks, finding that dense networks with identical weights are difficult to be controlled. An efficient and accurate tool is offered to assess the controllability of large sparse and dense networks. The exact controllability framework enables a comprehensive understanding of the impact of network properties on controllability, a fundamental problem towards our ultimate control of complex systems. PMID:24025746

  10. Graph distance for complex networks

    PubMed Central

    Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki

    2016-01-01

    Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions. PMID:27725690

  11. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  12. Emergence: complexity pedagogy in action.

    PubMed

    Jonas-Simpson, Christine; Mitchell, Gail; Cross, Nadine

    2015-01-01

    Many educators are looking for new ways to engage students and each other in order to enrich curriculum and the teaching-learning process. We describe an example of how we enacted teaching-learning approaches through the insights of complexity thinking, an approach that supports the emergence of new possibilities for teaching-learning in the classroom and online. Our story begins with an occasion to meet with 10 nursing colleagues in a three-hour workshop using four activities that engaged learning about complexity thinking and pedagogy. Guiding concepts for the collaborative workshop were nonlinearity, distributed decision-making, divergent thinking, self-organization, emergence, and creative exploration. The workshop approach considered critical questions to spark our collective inquiry. We asked, "What is emergent learning?" and "How do we, as educators and learners, engage a community so that new learning surfaces?" We integrated the arts, creative play, and perturbations within a complexity approach.

  13. Manipulating Complex Light with Metamaterials

    PubMed Central

    Zeng, Jinwei; Wang, Xi; Sun, Jingbo; Pandey, Apra; Cartwright, Alexander N.; Litchinitser, Natalia M.

    2013-01-01

    Recent developments in the field of metamaterials have revealed unparalleled opportunities for “engineering” space for light propagation; opening a new paradigm in spin- and quantum-related phenomena in optical physics. Here we show that unique optical properties of metamaterials (MMs) open unlimited prospects to “engineer” light itself. We propose and demonstrate for the first time a novel way of complex light manipulation in few-mode optical fibers using optical MMs. Most importantly, these studies highlight how unique properties of MMs, namely the ability to manipulate both electric and magnetic field components of electromagnetic (EM) waves, open new degrees of freedom in engineering complex polarization states of light at will, while preserving its orbital angular momentum (OAM) state. These results lay the first steps in manipulating complex light in optical fibers, likely providing new opportunities for high capacity communication systems, quantum information, and on-chip signal processing. PMID:24084836

  14. Hilbert complexes of nonlinear elasticity

    NASA Astrophysics Data System (ADS)

    Angoshtari, Arzhang; Yavari, Arash

    2016-12-01

    We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.

  15. Complex Educational Design: A Course Design Model Based on Complexity

    ERIC Educational Resources Information Center

    Freire, Maximina Maria

    2013-01-01

    Purpose: This article aims at presenting a conceptual framework which, theoretically grounded on complexity, provides the basis to conceive of online language courses that intend to respond to the needs of students and society. Design/methodology/approach: This paper is introduced by reflections on distance education and on the paradigmatic view…

  16. The Ontologies of Complexity and Learning about Complex Systems

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Kapur, Manu; So, Hyo-Jeong; Lee, June

    2011-01-01

    This paper discusses a study of students learning core conceptual perspectives from recent scientific research on complexity using a hypermedia learning environment in which different types of scaffolding were provided. Three comparison groups used a hypermedia system with agent-based models and scaffolds for problem-based learning activities that…

  17. Matrix Fourth-Complex Variables

    NASA Astrophysics Data System (ADS)

    Dimiev, Stancho; Marinov, Marin S.; Stoev, Peter

    2009-11-01

    In the paper we consider quasi-cyclic hyper-complex variables which are naturally related to the partial differential equations with complex variables. In fact, we develop a matrix 4×4 generalization of the classical bicomplex numbers [1], [2]. We recall that a matrix 2×2 isomorphic type treatment of the classical bicomplex numbers was developed in [3]. Here we develop a matrix 4×4 generalization of the bicomplex numbers including some improvement of the papers [3] and [4]. Let us remark that a deep generalization of the considered ideas was sketch in [5] before us.

  18. 1998 Complex Systems Summer School

    SciTech Connect

    1998-12-15

    For the past eleven years a group of institutes, centers, and universities throughout the country have sponsored a summer school in Santa Fe, New Mexico as part of an interdisciplinary effort to promote the understanding of complex systems. The goal of these summer schools is to provide graduate students, postdoctoral fellows and active research scientists with an introduction to the study of complex behavior in mathematical, physical, and living systems. The Center for Nonlinear Studies supported the eleventh in this series of highly successful schools in Santa Fe in June, 1998.

  19. Accessing complexity from genome information

    NASA Astrophysics Data System (ADS)

    Tenreiro Machado, J. A.

    2012-06-01

    This paper studies the information content of the chromosomes of 24 species. In a first phase, a scheme inspired in dynamical system state space representation is developed. For each chromosome the state space dynamical evolution is shed into a two dimensional chart. The plots are then analyzed and characterized in the perspective of fractal dimension. This information is integrated in two measures of the species' complexity addressing its average and variability. The results are in close accordance with phylogenetics pointing quantitative aspects of the species' genomic complexity.

  20. Silver Complexes of Dihalogen Molecules.

    PubMed

    Malinowski, Przemysław J; Himmel, Daniel; Krossing, Ingo

    2016-08-01

    The perfluorohexane-soluble and donor-free silver compound Ag(A) (A=Al(OR(F) )4 ; R(F) =C(CF3 )3 ) prepared using a facile novel route has unprecedented capabilities to form unusual and weakly bound complexes. Here, we report on the three dihalogen-silver complexes Ag(Cl2 )A, Ag(Br2 )A, and Ag(I2 )A derived from the soluble silver compound Ag(A) (characterized by single-crystal/powder XRD, Raman spectra, and quantum-mechanical calculations).

  1. Holographic Complexity Equals Bulk Action?

    NASA Astrophysics Data System (ADS)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-05-01

    We conjecture that the quantum complexity of a holographic state is dual to the action of a certain spacetime region that we call a Wheeler-DeWitt patch. We illustrate and test the conjecture in the context of neutral, charged, and rotating black holes in anti-de Sitter spacetime, as well as black holes perturbed with static shells and with shock waves. This conjecture evolved from a previous conjecture that complexity is dual to spatial volume, but appears to be a major improvement over the original. In light of our results, we discuss the hypothesis that black holes are the fastest computers in nature.

  2. Correlation dimension of complex networks.

    PubMed

    Lacasa, Lucas; Gómez-Gardeñes, Jesús

    2013-04-19

    We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.

  3. Combination therapeutics in complex diseases.

    PubMed

    He, Bing; Lu, Cheng; Zheng, Guang; He, Xiaojuan; Wang, Maolin; Chen, Gao; Zhang, Ge; Lu, Aiping

    2016-12-01

    The biological redundancies in molecular networks of complex diseases limit the efficacy of many single drug therapies. Combination therapeutics, as a common therapeutic method, involve pharmacological intervention using several drugs that interact with multiple targets in the molecular networks of diseases and may achieve better efficacy and/or less toxicity than monotherapy in practice. The development of combination therapeutics is complicated by several critical issues, including identifying multiple targets, targeting strategies and the drug combination. This review summarizes the current achievements in combination therapeutics, with a particular emphasis on the efforts to develop combination therapeutics for complex diseases.

  4. Workspace Program for Complex-Number Arithmetic

    NASA Technical Reports Server (NTRS)

    Patrick, M. C.; Howell, Leonard W., Jr.

    1986-01-01

    COMPLEX is workspace program designed to empower APL with complexnumber capabilities. Complex-variable methods provide analytical tools invaluable for applications in mathematics, science, and engineering. COMPLEX written in APL.

  5. Synthesis of triamidoamine complexes of niobium

    SciTech Connect

    Freundlich, J.S.; Schrock, R.R.

    1996-12-04

    The authors report the chemical preparation of Nb[N{sub 3}N] complexes. The complexes were characterized by NMR and FT-IR spectroscopy, and X-ray diffraction. The structures of these complexes are presented.

  6. Capturing Complexity through Maturity Modelling

    ERIC Educational Resources Information Center

    Underwood, Jean; Dillon, Gayle

    2004-01-01

    The impact of information and communication technologies (ICT) on the process and products of education is difficult to assess for a number of reasons. In brief, education is a complex system of interrelationships, of checks and balances. This context is not a neutral backdrop on which teaching and learning are played out. Rather, it may help, or…

  7. DNA/chitosan electrostatic complex.

    PubMed

    Bravo-Anaya, Lourdes Mónica; Soltero, J F Armando; Rinaudo, Marguerite

    2016-07-01

    Up to now, chitosan and DNA have been investigated for gene delivery due to chitosan advantages. It is recognized that chitosan is a biocompatible and biodegradable non-viral vector that does not produce immunological reactions, contrary to viral vectors. Chitosan has also been used and studied for its ability to protect DNA against nuclease degradation and to transfect DNA into several kinds of cells. In this work, high molecular weight DNA is compacted with chitosan. DNA-chitosan complex stoichiometry, net charge, dimensions, conformation and thermal stability are determined and discussed. The influence of external salt and chitosan molecular weight on the stoichiometry is also discussed. The isoelectric point of the complexes was found to be directly related to the protonation degree of chitosan. It is clearly demonstrated that the net charge of DNA-chitosan complex can be expressed in terms of the ratio [NH3(+)]/[P(-)], showing that the electrostatic interactions between DNA and chitosan are the main phenomena taking place in the solution. Compaction of DNA long chain complexed with low molar mass chitosan gives nanoparticles with an average radius around 150nm. Stable nanoparticles are obtained for a partial neutralization of phosphate ionic sites (i.e.: [NH3(+)]/[P(-)] fraction between 0.35 and 0.80).

  8. Porous Soil as Complex Network

    NASA Astrophysics Data System (ADS)

    Benito, R. M.; Santiago, A.; Cárdenas, J. P.; Tarquis, A. M.; Borondo, F.; Losada, J. C.

    2009-04-01

    We present a complex network model based on a heterogeneous preferential attachment scheme [1,2] to quantify the structure of porous soils [3]. Under this perspective pores are represented by nodes and the space for the flow of fluids between them are represented by links. Pore properties such as position and size are described by fixed states in a metric space, while an affinity function is introduced to bias the attachment probabilities of links according to these properties. We perform an analytical and numerical study of the degree distributions in the soil model and show that under reasonable conditions all the model variants yield a multiscaling behavior in the connectivity degrees, leaving a empirically testable signature of heterogeneity in the topology of pore networks. References [1] A. Santiago and R. M. Benito, "Emergence of multiscaling in heterogeneous complex networks". Int. J. Mod. Phys. C 18, 1591 (2007). [2] A. Santiago and R. M. Benito, "An extended formalism for preferential attachment in heterogeneous complex networks". Europhys. Lett. 82, 58004 (2008). [3] A. Santiago, R. M. Benito, J. P. Cárdenas, J. C. Losada, A. M. Tarquis and F. Borondo, "Multiscaling of porous soils as heterogeneous complex networks". Nonl. Proc. Geophys. 15, 1-10 (2008).

  9. Biologically Inspired Phosphino Platinum Complexes

    SciTech Connect

    Jain, Avijita; Helm, Monte L.; Linehan, John C.; DuBois, Daniel L.; Shaw, Wendy J.

    2012-08-01

    Platinum complexes containing phosphino amino acid and amino acid ester ligands, built upon the PPhNR’2 platform, have been synthesized and characterized (PPhNR’2= [1,3-diaza]-5-phenyl phosphacyclohexane, R’=glycine or glycine ester). These complexes were characterized by 31P, 13C, 1H, 195Pt NMR spectroscopy and mass spectrometry. The X-ray crystal structure of one of the complexes, [PtCl2(PPhNGlyester 2)2], is also reported. These biologically inspired ligands have potential use in homogeneous catalysis, with special applications in chiral chemistry and water soluble chemistry. These complexes also provide a foundation upon which larger peptides can be attached, to allow the introduction of enzyme-like features onto small molecule catalysts. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  10. Text Complexity and the CCSS

    ERIC Educational Resources Information Center

    Aspen Institute, 2012

    2012-01-01

    What is meant by text complexity is a measurement of how challenging a particular text is to read. There are a myriad of different ways of explaining what makes text challenging to read, from the sophistication of the vocabulary employed to the length of its sentences to even measurements of how the text as a whole coheres. Research shows that no…

  11. Leadership Learning for Complex Organizations

    ERIC Educational Resources Information Center

    Ng, F. S. David

    2015-01-01

    Many school leadership programs are set and delivered in specific modules or workshops in order to achieve a pre-determined set of competencies, knowledge, and skills. In addition, these programs are driven by the faculty member and the prescribed content. As Singapore schools become more complex in the roles and responsibilities to educate the…

  12. The Complexity Tutorial Workshop 2006

    DTIC Science & Technology

    2007-08-01

    Tremblay Jocelyn Jocelyn.Tremblay@drdc-rddc.gc.ca Turcotte Guy Guy.Turcotte@drdc-rddc.gc.ca Verdon John Verdon.JBV@forces.gc.ca DRDC Valcartier...PhD Thesis. University of Manchester, number of pages: 254. Holland, H. John , 1995. Hidden Order: How Adaptation Builds Complexity. HarperCollins

  13. Complex Landscape Terms in Seri

    ERIC Educational Resources Information Center

    O'Meara, Carolyn; Bohnemeyer, Jurgen

    2008-01-01

    The nominal lexicon of Seri is characterized by a prevalence of analytical descriptive terms. We explore the consequences of this typological trait in the landscape domain. The complex landscape terms of Seri classify geographic entities in terms of their material make-up and spatial properties such as shape, orientation, and merological…

  14. The Complexities of Domestic Violence

    ERIC Educational Resources Information Center

    Dutton, Donald G.

    2007-01-01

    Comments on the article by Robert Bornstein, "The complex relationship between dependency and domestic violence: Converging psychological factors and social forces." Although a more focused examination of the psychological factors involved in domestic violence is welcome, there are some factual errors in Bornstein's article that need attention and…

  15. Lignocellulose hydrolysis by multienzyme complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass is the most abundant renewable resource on the planet. Converting this material into a usable fuel is a multi-step process, the rate-limiting step being enzymatic hydrolysis of organic polymers into monomeric sugars. While the substrate can be complex and require a multitud...

  16. Aromatic triamide-lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Petoud, Stephane; Xu, Jide

    2013-10-08

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  17. Libraries Serving the CSIR Complex.

    ERIC Educational Resources Information Center

    Rajagopalan, T. S.; Ramaswami, K.

    A survey of the resources and services of the Council of Scientific and Industrial Research (CSIR) libraries was made so that the libraries in the complex could share the benefit of the experiences of each other. The report is based on questionnaire replies received from 31 CSIR Institutions and eight Co-operative Research Associations and relates…

  18. Learning To Live with Complexity.

    ERIC Educational Resources Information Center

    Dosa, Marta

    Neither the design of information systems and networks nor the delivery of library services can claim true user centricity without an understanding of the multifaceted psychological environment of users and potential users. The complexity of the political process, social problems, challenges to scientific inquiry, entrepreneurship, and…

  19. Hydrogen storage via polyhydride complexes

    SciTech Connect

    Jensen, C.M.

    1996-10-01

    Polyhydride metal complexes are being developed for application to hydrogen storage. Complexes have been found which catalyze the reversible hydrogenation of unsaturated hydrocarbons. This catalytic reaction could be the basis for a low temperature, hydrogen storage system with a available hydrogen density greater than 7 weight percent. The P-C-P pincer complexes, RhH{sub 2}(C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}) and IrH{sub 2}(C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}) have unprecedented, long term stability at elevated temperatures. The novel iridium complex catalyzes the transfer dehydrogenation of cycloctane to cyclooctene at the rate of 716 turnovers/h which is 2 orders of magnitude greater than that found for previously reported catalytic systems which do not require the sacrificial hydrogenation of a large excess of hydrogen acceptor.

  20. Ruthenium complexes as antimicrobial agents.

    PubMed

    Li, Fangfei; Collins, J Grant; Keene, F Richard

    2015-04-21

    One of the major advances in medical science has been the development of antimicrobials; however, a consequence of their widespread use has been the emergence of drug-resistant populations of microorganisms. There is clearly a need for the development of new antimicrobials--but more importantly, there is the need for the development of new classes of antimicrobials, rather than drugs based upon analogues of known scaffolds. Due to the success of the platinum anticancer agents, there has been considerable interest in the development of therapeutic agents based upon other transition metals--and in particular ruthenium(II/III) complexes, due to their well known interaction with DNA. There have been many studies of the anticancer properties and cellular localisation of a range of ruthenium complexes in eukaryotic cells over the last decade. However, only very recently has there been significant interest in their antimicrobial properties. This review highlights the types of ruthenium complexes that have exhibited significant antimicrobial activity and discusses the relationship between chemical structure and biological processing--including site(s) of intracellular accumulation--of the ruthenium complexes in both bacterial and eukaryotic cells.

  1. Three-Dimensional Complex Variables

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1988-01-01

    Report presents new theory of analytic functions of three-dimensional complex variables. While three-dimensional system subject to more limitations and more difficult to use than the two-dimensional system, useful in analysis of three-dimensional fluid flows, electrostatic potentials, and other phenomena involving harmonic functions.

  2. Management of Complex Anal Fistulas

    PubMed Central

    Bubbers, Emily J.; Cologne, Kyle G.

    2016-01-01

    Complex anal fistulas require careful evaluation. Prior to any attempts at definitive repair, the anatomy must be well defined and the sepsis resolved. Several muscle-sparing approaches to anal fistula are appropriate, and are often catered to the patient based on their presentation and previous repairs. Emerging technologies show promise for fistula repair, but lack long-term data. PMID:26929751

  3. TASI Lectures on Complex Structures

    NASA Astrophysics Data System (ADS)

    Denef, Frederik

    2012-11-01

    These lecture notes give an introduction to a number of ideas and methods that have been useful in the study of complex systems ranging from spin glasses to D-branes on Calabi-Yau manifolds. Topics include the replica formalism, Parisi's solution of the Sherrington-Kirkpatrick model, overlap order parameters, supersymmetric quantum mechanics, D-brane landscapes and their black hole duals.

  4. Language Networks as Complex Systems

    ERIC Educational Resources Information Center

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  5. [Formylation of porphyrin platinum complexes].

    PubMed

    Rumiantseva, V D; Konovalenko, L I; Nagaeva, E A; Mironov, A F

    2005-01-01

    The formylation reaction of platinum complexes of beta-unsubstituted porphyrins was studied. The interaction of deuteroporphyrin IX derivatives with the Vilsmeyer reagent led to the selective formylation of their macrocycles in the beta position. The resulting formyl derivatives of the porphyrins are of interest for fluorescent immunoassay.

  6. Complex Knowledge Mastery: Some Propositions.

    ERIC Educational Resources Information Center

    Keller, Joyce A.; Schallert, Diane L.

    The proposition that the mastery of complex tasks embodies several components was studied for 236 students in an undergraduate introductory financial accounting course. A new curriculum was developed for the course that included in-depth exposure to the actual financial statements of a company and the understanding of the structural relationships…

  7. Challenges in complex systems science

    NASA Astrophysics Data System (ADS)

    San Miguel, M.; Johnson, J. H.; Kertesz, J.; Kaski, K.; Díaz-Guilera, A.; MacKay, R. S.; Loreto, V.; Érdi, P.; Helbing, D.

    2012-11-01

    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda.

  8. Biomechanics of complex shoulder instability.

    PubMed

    Degen, Ryan M; Giles, Joshua W; Thompson, Stephen R; Litchfield, Robert B; Athwal, George S

    2013-10-01

    Identification and treatment of the osseous lesions associated with complex shoulder instability remains challenging. Further biomechanical testing is required to delineate critical defect values and determine which treatments provide improved glenohumeral joint stability for the various defect sizes, while minimizing the associated complications.

  9. Autism in Tuberous Sclerosis Complex.

    ERIC Educational Resources Information Center

    Gutierrez, Griselda C.; Smalley, Susan L.; Tanguay, Peter E.

    1998-01-01

    The frequency and clinical presentation of autism in 28 probands with tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by benign tissue growths and a high frequency of seizure disorders and mental retardation, was examined. Eight probands met criteria for autism. Implications for understanding the association of…

  10. Hierarchy measure for complex networks.

    PubMed

    Mones, Enys; Vicsek, Lilla; Vicsek, Tamás

    2012-01-01

    Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure.

  11. Hierarchy Measure for Complex Networks

    PubMed Central

    Mones, Enys; Vicsek, Lilla; Vicsek, Tamás

    2012-01-01

    Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure. PMID:22470477

  12. Complex DNA structures and structures of DNA complexes

    SciTech Connect

    Chazin, W.J.; Carlstroem, G.; Shiow-Meei Chen; Miick, S.; Gomez-Paloma, L.; Smith, J.; Rydzewski, J.

    1994-12-01

    Complex DNA structures (for example, triplexes, quadruplexes, junctions) and DNA-ligand complexes are more difficult to study by NMR than standard DNA duplexes are because they have high molecular weights, show nonstandard or distorted local conformations, and exhibit large resonance linewidths and severe {sup 1}H spectral overlap. These systems also tend to have limited solubility and may require specialized solution conditions to maintain favorable spectral characteristics, which adds to the spectroscopic difficulties. Furthermore, with more atoms in the system, both assignment and structure calculation become more challenging. In this article, we focus on demonstrating the current status of NMR studies of such systems and the limitations to further progress; we also indicate in what ways isotopic enrichment can be useful.

  13. I. Redox chemistry of bimetallic fulvalene complexes II. Oligocyclopentadienyl complexes

    SciTech Connect

    Brown, David Stephen

    1993-11-01

    The electrochemistry of the heterobimetallic complexes (fulvalene)WFe(CO)5 (30) and (fulvalene)WRu(CO)5 (31) has been investigated. Compound 30 is reduced in two one-electron processes, and this behavior was exploited synthetically to prepare a tetranuclear dimer by selective metal reduction. Complex 31 displayed a distinction between the metals upon reoxidation of the dianion, allowing the formation of a dimer by selective metal anion oxidation. The redox behavior of 30 led to an investigation of the use of electrocatalysis to effect metal-specific ligand substitution. It was found that reduction of 30 with a catalytic amount of CpFe(C6Me6) (97) in the presence of excess P(OMe)3 or PMe5 led to the formation of the zwitterions (fulvalene)[W(CO)3-][Fe(CO)PR3+] (107, R = P(OMe)3; 108, R = PMe3). Compound 31 also displayed unique behavior with different reducing agents, as the monosubstituted zwitterion (fulvalene)[W(CO)3-][Ru(CO)2(PMe3+] was obtained when 97 was used while the disubstituted complex (fulvalene) [W(CO)3-] [Ru(CO)(PMe3)2+] was produced when Cp*Fe(C6Me6) was the catalyst. Potential synthetic routes to quatercyclopentadienyl complexes were also explored. Various attempts to couple heterobimetallic fulvalene compounds proved to be unsuccessful. 138 refs.

  14. Complex quantum network model of energy transfer in photosynthetic complexes.

    PubMed

    Ai, Bao-Quan; Zhu, Shi-Liang

    2012-12-01

    The quantum network model with real variables is usually used to describe the excitation energy transfer (EET) in the Fenna-Matthews-Olson (FMO) complexes. In this paper we add the quantum phase factors to the hopping terms and find that the quantum phase factors play an important role in the EET. The quantum phase factors allow us to consider the space structure of the pigments. It is found that phase coherence within the complexes would allow quantum interference to affect the dynamics of the EET. There exist some optimal phase regions where the transfer efficiency takes its maxima, which indicates that when the pigments are optimally spaced, the exciton can pass through the FMO with perfect efficiency. Moreover, the optimal phase regions almost do not change with the environments. In addition, we find that the phase factors are useful in the EET just in the case of multiple pathways. Therefore, we demonstrate that the quantum phases may bring the other two factors, the optimal space of the pigments and multiple pathways, together to contribute the EET in photosynthetic complexes with perfect efficiency.

  15. Is a "Complex" Task Really Complex? Validating the Assumption of Cognitive Task Complexity

    ERIC Educational Resources Information Center

    Sasayama, Shoko

    2016-01-01

    In research on task-based learning and teaching, it has traditionally been assumed that differing degrees of cognitive task complexity can be inferred through task design and/or observations of differing qualities in linguistic production elicited by second language (L2) communication tasks. Without validating this assumption, however, it is…

  16. Physical approach to complex systems

    NASA Astrophysics Data System (ADS)

    Kwapień, Jarosław; Drożdż, Stanisław

    2012-06-01

    Typically, complex systems are natural or social systems which consist of a large number of nonlinearly interacting elements. These systems are open, they interchange information or mass with environment and constantly modify their internal structure and patterns of activity in the process of self-organization. As a result, they are flexible and easily adapt to variable external conditions. However, the most striking property of such systems is the existence of emergent phenomena which cannot be simply derived or predicted solely from the knowledge of the systems’ structure and the interactions among their individual elements. This property points to the holistic approaches which require giving parallel descriptions of the same system on different levels of its organization. There is strong evidence-consolidated also in the present review-that different, even apparently disparate complex systems can have astonishingly similar characteristics both in their structure and in their behaviour. One can thus expect the existence of some common, universal laws that govern their properties. Physics methodology proves helpful in addressing many of the related issues. In this review, we advocate some of the computational methods which in our opinion are especially fruitful in extracting information on selected-but at the same time most representative-complex systems like human brain, financial markets and natural language, from the time series representing the observables associated with these systems. The properties we focus on comprise the collective effects and their coexistence with noise, long-range interactions, the interplay between determinism and flexibility in evolution, scale invariance, criticality, multifractality and hierarchical structure. The methods described either originate from “hard” physics-like the random matrix theory-and then were transmitted to other fields of science via the field of complex systems research, or they originated elsewhere but

  17. Computational complexity of Boolean functions

    NASA Astrophysics Data System (ADS)

    Korshunov, Aleksei D.

    2012-02-01

    Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.

  18. Computational complexity in electronic structure.

    PubMed

    Whitfield, James Daniel; Love, Peter John; Aspuru-Guzik, Alán

    2013-01-14

    In quantum chemistry, the price paid by all known efficient model chemistries is either the truncation of the Hilbert space or uncontrolled approximations. Theoretical computer science suggests that these restrictions are not mere shortcomings of the algorithm designers and programmers but could stem from the inherent difficulty of simulating quantum systems. Extensions of computer science and information processing exploiting quantum mechanics has led to new ways of understanding the ultimate limitations of computational power. Interestingly, this perspective helps us understand widely used model chemistries in a new light. In this article, the fundamentals of computational complexity will be reviewed and motivated from the vantage point of chemistry. Then recent results from the computational complexity literature regarding common model chemistries including Hartree-Fock and density functional theory are discussed.

  19. Reactive immunization on complex networks

    NASA Astrophysics Data System (ADS)

    Alfinito, Eleonora; Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido

    2017-01-01

    Epidemic spreading on complex networks depends on the topological structure as well as on the dynamical properties of the infection itself. Generally speaking, highly connected individuals play the role of hubs and are crucial to channel information across the network. On the other hand, static topological quantities measuring the connectivity structure are independent of the dynamical mechanisms of the infection. A natural question is therefore how to improve the topological analysis by some kind of dynamical information that may be extracted from the ongoing infection itself. In this spirit, we propose a novel vaccination scheme that exploits information from the details of the infection pattern at the moment when the vaccination strategy is applied. Numerical simulations of the infection process show that the proposed immunization strategy is effective and robust on a wide class of complex networks.

  20. Imaging an Adapted Dentoalveolar Complex

    PubMed Central

    Herber, Ralf-Peter; Fong, Justine; Lucas, Seth A.; Ho, Sunita P.

    2012-01-01

    Adaptation of a rat dentoalveolar complex was illustrated using various imaging modalities. Micro-X-ray computed tomography for 3D modeling, combined with complementary techniques, including image processing, scanning electron microscopy, fluorochrome labeling, conventional histology (H&E, TRAP), and immunohistochemistry (RANKL, OPN) elucidated the dynamic nature of bone, the periodontal ligament-space, and cementum in the rat periodontium. Tomography and electron microscopy illustrated structural adaptation of calcified tissues at a higher resolution. Ongoing biomineralization was analyzed using fluorochrome labeling, and by evaluating attenuation profiles using virtual sections from 3D tomographies. Osteoclastic distribution as a function of anatomical location was illustrated by combining histology, immunohistochemistry, and tomography. While tomography and SEM provided past resorption-related events, future adaptive changes were deduced by identifying matrix biomolecules using immunohistochemistry. Thus, a dynamic picture of the dentoalveolar complex in rats was illustrated. PMID:22567314

  1. Quantum physics and complex networks

    NASA Astrophysics Data System (ADS)

    Biamonte, Jacob

    2014-03-01

    There is a widely used and successful theory of ``chemical reaction networks,'' which provides a framework describing systems governed by mass action kinetics. Computer science and population biology use the same ideas under a different name: ``stochastic Petri nets.'' But if we look at these theories from the perspective of quantum theory, they turn out to involve creation and annihilation operators, coherent states and other well-known ideas--yet in a context where probabilities replace amplitudes. I will explain this connection as part of a detailed analogy between quantum mechanics and stochastic mechanics which we've produced several results on recently, including the recent analytical results uniting quantum physics and complex networks. Our general idea is about merging concepts from quantum physics and complex network theory to provide a bidirectional bridge between both disciplines. Support is acknowledged from the Foundational Questions Institute (FQXi) and the Compagnia di San Paolo Foundation.

  2. Disorder in Complex Human System

    NASA Astrophysics Data System (ADS)

    Akdeniz, K. Gediz

    2011-11-01

    Since the world of human and whose life becomes more and more complex every day because of the digital technology and under the storm of knowledge (media, internet, governmental and non-governmental organizations, etc...) the simulation is rapidly growing in the social systems and in human behaviors. The formation of the body and mutual interactions are left to digital technological, communication mechanisms and coding the techno genetics of the body. Deconstruction begins everywhere. The linear simulation mechanism with modern realities are replaced by the disorder simulation of human behaviors with awareness realities. In this paper I would like to introduce simulation theory of "Disorder Sensitive Human Behaviors". I recently proposed this theory to critique the role of disorder human behaviors in social systems. In this theory the principle of realty is the chaotic awareness of the complexity of human systems inside of principle of modern thinking in Baudrillard's simulation theory. Proper examples will be also considered to investigate the theory.

  3. Leptogenesis in Complex Hybrid Inflation

    SciTech Connect

    Martinez-Prieto, Carlos

    2008-12-04

    We study the transference of an initial leptonic charge contained in a complex scalar field (waterfall field) at the end of the inflation to the leptons of the standard model and then convert this leptonic charge in baryonic charge by sphaleron process. The proposal is that this is done trough the decay of the complex scalar field particles into the the right-handed neutrino which in turn decays into the left-handed lepton doublet and the Higgs field of the standard model. It must be analyzed in what environment the transference is done. We propose that the inflaton (the dominant energy density of the universe) decay into ultrarelativistic fermions before the waterfall field particles decay in the right handed-neutrino, leaving a thermalized bath where the transference of the leptonic asymmetry can be achieved.

  4. SAR Image Complex Pixel Representations

    SciTech Connect

    Doerry, Armin W.

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  5. Structural Complexity of DNA Sequence

    PubMed Central

    Liou, Cheng-Yuan; Cheng, Wei-Chen; Tsai, Huai-Ying

    2013-01-01

    In modern bioinformatics, finding an efficient way to allocate sequence fragments with biological functions is an important issue. This paper presents a structural approach based on context-free grammars extracted from original DNA or protein sequences. This approach is radically different from all those statistical methods. Furthermore, this approach is compared with a topological entropy-based method for consistency and difference of the complexity results. PMID:23662161

  6. Formazans and their metal complexes

    NASA Astrophysics Data System (ADS)

    Sigeikin, Gennadii I.; Lipunova, Galina N.; Pervova, I. G.

    2006-10-01

    The current data on the structure of formazans in crystals and in solutions are considered and some problems of tautomeric and conformational equilibria are discussed. Some novel classes of formazans synthesised over the past decade are presented. The results of structural studies of formazan complexes with various types of metal coordination are generalised. Examples of synthesis of formazan-containing polymers are given. Special emphasis is placed on analytical and practical applications of formazan derivatives.

  7. Materials and Fuels Complex Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  8. Chaos in a complex plasma

    SciTech Connect

    Sheridan, T.E.

    2005-08-15

    Chaotic dynamics is observed experimentally in a complex (dusty) plasma of three particles. A low-frequency sinusoidal modulation of the plasma density excites both the center-of-mass and breathing modes. Low-dimensional chaos is seen for a 1:2 resonance between these modes. A strange attractor with a dimension of 2.48{+-}0.05 is observed. The largest Lyapunov exponent is positive.

  9. [Complex injuries associated with somnambulism].

    PubMed

    Sillesen, Nanna Hylleholt; Nielsen, Lisa Toft; Bonde, Christian

    2010-12-13

    Up to 3% of adults walk in their sleep and some perform complex behaviours. Treatment recommendations for sleepwalking are inconsistent. This case report describes a 64-year-old man who climbed out of a 2nd floor toilet window during somnambulism. He fell 6-8 meters and fractured the tibia, fibula, cervical columna, lumbal columna, calcaneus, costae and suffered a pneumothorax. Evidence to support sleepwalking treatment is lacking and besides benzodiazepines, prevention is the preferred treatment choice according to the literature.

  10. Magnetic Properties of Tcnq Complexes

    NASA Astrophysics Data System (ADS)

    Qureshi, Saleem

    Available from UMI in association with The British Library. Requires signed TDF. This work can be divided up into three complementary steps. The first part of the work involved synthesis of a large number of TCNQ complexes, in particular complex salts, which are known to have promising electrical properties due to reduction in the on-site Coloumbic repulsion between the electrons. The cations used for the complexes are C12BPE (dodecyl bi pyridyl ethelenium), C10BPE, C8BPE, C6BPE, GTPP (geronyl triphenyl phosphonium), BI (butyl imidazolium), DMI (dimethyl imidazolium) and TB (toluidine blue). The second part of the project was to characterize these materials using different techniques to try to build up a knowledge of the materials. Particular interest was involved in the study of magnetic behaviour and in the later parts of the work some electrical measurements were made to try to determine the band gap, mobility and temperature dependence of conductivity. Considering the quasi-one-dimensional nature of the TCNQ salts, a theoretical model was devised based on the solution of one dimensional Heisenberg spin Hamiltonian. A computer program was developed that allowed for a numerical solution of a chain of spins in which number of spins could be varied. The Hamiltonian could be solved for up to 12 spins, the maximum allowable by the ICL 2900 computer at Crips computer centre of the University of Nottingham. The program allowed the user to input the coupling energy and alternation parameter between adjacent spins. The results from this program were used to explain magnetic behaviour of the TCNQ complexes prepared during this work.

  11. Lectures in Complex Systems (1991)

    DTIC Science & Technology

    1992-08-05

    behavioral phenomena in terms of single synapses and single neurons. It is also interesting that Pavlov , before Lash- ley, was apparently discontent with...the study of complex behavior in mathematical, physical and living systems. The emphasis is ondeveloping techniques to the study of specific systems...Dynamical Behavior of a Pair of Spatially Homogeneous Neural Fields Antonio C. Roque Da Silva Filho 371 A Cellular Automaton to Embed Genetic Search

  12. Maxillofacial esthesioneuroblastoma: A diagnostic complexity

    PubMed Central

    Raj, G Shyam; Rao, Guttikonda Venkateswara; Kumar, Manchikatla Praveen; Sudheerkanth, Kondamari

    2016-01-01

    Esthesioneuroblastoma is a rare malignant tumor of the sinonasal tract. Oral and maxillofacial pathologists rarely encounter this tumor in their daily practice. Because of their complex anatomic location, non-specific symptoms, varied histomorphology and unfamiliarity, most of the times, the tumor is diagnosed as benign tumor and thereby conservative treatment results in multiple recurrences. A recurrent case of esthesioneuroblastoma in a 24-year-old female patient describing the clinical, histopathological and immunohistochemical features along with differential diagnosis is discussed. PMID:27601839

  13. Maxillofacial esthesioneuroblastoma: A diagnostic complexity.

    PubMed

    Raj, G Shyam; Rao, Guttikonda Venkateswara; Kumar, Manchikatla Praveen; Sudheerkanth, Kondamari

    2016-01-01

    Esthesioneuroblastoma is a rare malignant tumor of the sinonasal tract. Oral and maxillofacial pathologists rarely encounter this tumor in their daily practice. Because of their complex anatomic location, non-specific symptoms, varied histomorphology and unfamiliarity, most of the times, the tumor is diagnosed as benign tumor and thereby conservative treatment results in multiple recurrences. A recurrent case of esthesioneuroblastoma in a 24-year-old female patient describing the clinical, histopathological and immunohistochemical features along with differential diagnosis is discussed.

  14. Multiscale vulnerability of complex networks.

    PubMed

    Boccaletti, Stefano; Buldú, Javier; Criado, Regino; Flores, Julio; Latora, Vito; Pello, Javier; Romance, Miguel

    2007-12-01

    We present a novel approach to quantify the vulnerability of a complex network, i.e., the capacity of a graph to maintain its functional performance under random damages or malicious attacks. The proposed measure represents a multiscale evaluation of vulnerability, and makes use of combined powers of the links' betweenness. We show that the proposed approach is able to properly describe some cases for which earlier measures of vulnerability fail. The relevant applications of our method for technological network design are outlined.

  15. Chaos and Complexity in Astrophysics

    NASA Astrophysics Data System (ADS)

    Regev, Oded

    2006-03-01

    Part I. Dynamical Systems - General: 1. Introduction to Part I; 2. Astrophysical examples; 3. Mathematical properties of dynamical systems; 4. Properties of chaotic dynamics; 5. Analysis of time series; 6. Regular and irregular motion in Hamiltonian systems; 7. Extended systems - instabilities and patterns; Part II. Astrophysical Applications: 8. Introduction to Part II; 9. Planetary, stellar and galactic dynamics; 10. Irregularly variable astronomical point sources; 11. Complex spatial patterns in astrophysics; 12. Topics in astrophysical fluid dynamics; References; Index.

  16. Materials and Fuels Complex Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  17. Thermodynamic characterization of polyhydride complexes

    SciTech Connect

    Zidan, R.A.; Rocheleau, R.E.; Jensen, C.M.

    1996-10-01

    The authors have investigated the interaction of hydrogen with solid IrXH{sub 2} (PPr{sup i}{sub 3}){sub 2}(H{sub 2}) (X=Cl, I). Gaseous hydrogen was found to react directly and reversibly with solid iridium chloro-complex, IrClH{sub 2}(PPr{sup i}{sub 3}){sub 2}(H{sub 2}) under mild conditions of pressure and temperature. Equilibrium absorption and desorption isotherms were obtained at fixed temperatures ranging from 273{degrees} K to 323{degrees} K over the pressure range from 0.1 to 11 atmospheres. The rates of hydrogen uptake and release were found to be very rapid. A Gaussian shaped thermal desorption spectrum showed that hydrogen desorption occurred over a wide range of temperatures from 200{degrees} K to 350{degrees} K. The TDS results and the absence of well defined plateaus in p-c isotherms indicated a disorder of the hydrogen arrangement in the iridium complex matrix. These observation were consistent with earlier findings from NMR and neutron diffraction measurements. The enthalpy ({Delta}H) and the entropy ({Delta}S) of hydrogen desorption, from a van`t Hoffs plot based on the hydrogen pressure at 50% of full loading of hydrogen at fixed temperatures, were {minus}4.9 {+-}0.3 kcaL/mole of H{sub 2} and 28.6{+-} cal/deg. mole of H{sub 2} respectively. Hydrogen desorption from IrIH{sub 2}(PPr{sup i}{sub 3}){sub 2}(H{sub 2}) was not observed at the above temperature and pressure ranges, indicating stronger hydrogen bond in iodo-complex compared to the chloro-complex.

  18. Complexity and the Fractional Calculus

    DTIC Science & Technology

    2013-01-01

    Paolo Grigolini,, Mauro Bologna,, Bruce West 611102 c. THIS PAGE The public reporting burden for this collection of information is estimated to...dx.doi.org/10.1155/2013/498789 Research Article Complexity and the Fractional Calculus Pensri Pramukkul,1 Adam Svenkeson,1 Paolo Grigolini,1 Mauro ...8. PERFORMING ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Paolo Grigolini Pensri Pramukkul, Adam Svenkeson

  19. Quantum query complexity for qutrits

    NASA Astrophysics Data System (ADS)

    Tamir, Boaz

    2008-02-01

    We compute lower bounds for the exact quantum query complexity of a ternary function f . The lower bound is of order O(log3(n)) . In case f is symmetric on a sphere then the lower bound is of order O(n) . This work is a natural continuation of the work of Beals, Buhrman, Cleve, Mosca, and de Wolf on lower limits for binary functions.

  20. Complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  1. Complex amine-based reagents

    NASA Astrophysics Data System (ADS)

    Suslov, S. Yu.; Kirilina, A. V.; Sergeev, I. A.; Zezyulya, T. V.; Sokolova, E. A.; Eremina, E. V.; Timofeev, N. V.

    2017-03-01

    Amines for a long time have been applied to maintaining water chemistry conditions (WCC) at power plants. However, making use of complex reagents that are the mixture of neutralizing and the filmforming amines, which may also contain other organic components, causes many disputes. This is mainly due to lack of reliable information about these components. The protective properties of any amine with regard to metal surfaces depend on several factors, which are considered in this article. The results of applying complex reagents to the protection of heating surfaces in industrial conditions and estimated behavior forecasts for various reagents under maintaining WCC on heat-recovery boilers with different thermal circuits are presented. The case of a two-drum heat-recovery boiler with in-line drums was used as an example, for which we present the calculated pH values for various brands of reagents under the same conditions. Work with different reagent brands and its analysis enabled us to derive a composition best suitable for the conditions of their practical applications in heat-recovery boilers at different pressures. Testing the new amine reagent performed at a CCPP power unit shows that this reagent is an adequate base for further development of reagents based on amine compounds. An example of testing a complex reagent is shown created with the participation of the authors within the framework the program of import substitution and its possible use is demonstrated for maintaining WCC of power-generating units of combined-cycle power plants (CCPP) and TPP. The compliance of the employed reagents with the standards of water chemistry conditions and protection of heating surfaces were assessed. The application of amine-containing reagents at power-generating units of TPP makes it possible to solve complex problems aimed at ensuring the sparing cleaning of heating surfaces from deposits and the implementation of conservation and management of water chemistry condition

  2. Synchronization in node of complex networks consist of complex chaotic system

    SciTech Connect

    Wei, Qiang; Xie, Cheng-jun; Liu, Hong-jun; Li, Yan-hui

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  3. Mechanisms for Complex Chromosomal Insertions

    PubMed Central

    Szafranski, Przemyslaw; Akdemir, Zeynep Coban; Yuan, Bo; Cooper, Mitchell L.; Magriñá, Maria A.; Bacino, Carlos A.; Lalani, Seema R.; Patel, Ankita; Song, Rodger H.; Bi, Weimin; Cheung, Sau Wai; Carvalho, Claudia M. B.; Lupski, James R.

    2016-01-01

    Chromosomal insertions are genomic rearrangements with a chromosome segment inserted into a non-homologous chromosome or a non-adjacent locus on the same chromosome or the other homologue, constituting ~2% of nonrecurrent copy-number gains. Little is known about the molecular mechanisms of their formation. We identified 16 individuals with complex insertions among 56,000 individuals tested at Baylor Genetics using clinical array comparative genomic hybridization (aCGH) and fluorescence in situ hybridization (FISH). Custom high-density aCGH was performed on 10 individuals with available DNA, and breakpoint junctions were fine-mapped at nucleotide resolution by long-range PCR and DNA sequencing in 6 individuals to glean insights into potential mechanisms of formation. We observed microhomologies and templated insertions at the breakpoint junctions, resembling the breakpoint junction signatures found in complex genomic rearrangements generated by replication-based mechanism(s) with iterative template switches. In addition, we analyzed 5 families with apparently balanced insertion in one parent detected by FISH analysis and found that 3 parents had additional small copy-number variants (CNVs) at one or both sides of the inserting fragments as well as at the inserted sites. We propose that replicative repair can result in interchromosomal complex insertions generated through chromothripsis-like chromoanasynthesis involving two or three chromosomes, and cause a significant fraction of apparently balanced insertions harboring small flanking CNVs. PMID:27880765

  4. Entropy, complexity, and spatial information

    NASA Astrophysics Data System (ADS)

    Batty, Michael; Morphet, Robin; Masucci, Paolo; Stanilov, Kiril

    2014-10-01

    We pose the central problem of defining a measure of complexity, specifically for spatial systems in general, city systems in particular. The measures we adopt are based on Shannon's (in Bell Syst Tech J 27:379-423, 623-656, 1948) definition of information. We introduce this measure and argue that increasing information is equivalent to increasing complexity, and we show that for spatial distributions, this involves a trade-off between the density of the distribution and the number of events that characterize it; as cities get bigger and are characterized by more events—more places or locations, information increases, all other things being equal. But sometimes the distribution changes at a faster rate than the number of events and thus information can decrease even if a city grows. We develop these ideas using various information measures. We first demonstrate their applicability to various distributions of population in London over the last 100 years, then to a wider region of London which is divided into bands of zones at increasing distances from the core, and finally to the evolution of the street system that characterizes the built-up area of London from 1786 to the present day. We conclude by arguing that we need to relate these measures to other measures of complexity, to choose a wider array of examples, and to extend the analysis to two-dimensional spatial systems.

  5. Epidemic processes in complex networks

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro

    2015-07-01

    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.

  6. Luminescent tetrametallic complexes of ruthenium

    SciTech Connect

    Murphy, W.R. Jr.; Brewer, K.J.; Gettliffe, G.; Petersen, J.D. )

    1989-01-11

    Tetrametallic complexes constructed around the metal core Ru(dpp){sub 3}{sup 2+} (where dpp = 2,3-bis(2-pyridyl)pyrazine) have been prepared and characterized. The complexes, which have the general formula Ru((dpp)ML{sub 2}){sub 3}{sup n+}, where ML{sub 2} = Ru{sup II}(bpy){sub 2} (n = 8), Ru{sup II}(phen){sub 2} (n = 8), and Ru{sup II}(tpy)Cl (n = 5) and bpy = 2,2{prime}-bipyridine, phen = 1,10-phenanthroline, and tpy = 2,2{prime}:6{prime},2{double prime}-terpyridine, are prepared from the reaction of Ru(dpp){sub 3}{sup 2+} with ML{sub 2}Cl{sub 2} in ethanol/water. The tetrametallic complexes luminesce at room temperature in acetonitrile with emissions characteristic of a single ruthenium center with excited-state lifetimes in the 100-ns range. Electrochemically, the most facile reductions occur at the dpp ligand, and the lower energy oxidation is a single peak associated with the three peripheral ruthenium centers. 13 refs., 1 fig., 2 tabs.

  7. Child health in complex emergencies.

    PubMed Central

    Moss, William J.; Ramakrishnan, Meenakshi; Storms, Dory; Henderson Siegle, Anne; Weiss, William M.; Lejnev, Ivan; Muhe, Lulu

    2006-01-01

    Coordinated and effective interventions are critical for relief efforts to be successful in addressing the health needs of children in situations of armed conflict, population displacement, and/or food insecurity. We reviewed published literature and surveyed international relief organizations engaged in child health activities in complex emergencies. Our aim was to identify research needs and improve guidelines for the care of children. Much of the literature details the burden of disease and the causes of morbidity and mortality; few interventional studies have been published. Surveys of international relief organizations showed that most use World Health Organization (WHO), United Nations Children's Fund (UNICEF), and ministry of health guidelines designed for use in stable situations. Organizations were least likely to have formal guidelines on the management of asphyxia, prematurity, and infection in neonates; diagnosis and management of children with human immunodeficiency virus (HIV) infection; active case-finding and treatment of tuberculosis; paediatric trauma; and the diagnosis and management of mental-health problems in children. Guidelines often are not adapted to the different types of health-care workers who provide care in complex emergencies. Evidence-based, locally adapted guidelines for the care of children in complex emergencies should be adopted by ministries of health, supported by WHO and UNICEF, and disseminated to international relief organizations to ensure appropriate, effective, and uniform care. PMID:16501716

  8. SHM in complex structural components

    NASA Astrophysics Data System (ADS)

    Croxford, Anthony J.; Wilcox, Paul D.; Courtney, Charles R. P.; Drinkwater, Bruce W.

    2009-03-01

    The use of permanently attached arrays of sensors has made it clear that guided waves can be used for the SHM of structures. The approaches developed have relied on the use of reference signal subtraction to indicate changes to the state of the structure, such as the appearance of damage. The limit of performance of any system is defined by the post subtraction noise. In order to confirm the basic principles at work the majority of this work has been carried out on simple metallic plates. While important to confirm the levels of understanding, this is not sufficient for practical use. This paper looks at the application of SHM techniques in more complex structures, more typical of those any system would be used on in practise. A rib from a BaE 146 aircraft is used to demonstrate the practical difficulties of applying guided wave SHM methods to densely featured structures. A model system comprising a plate with a single stringer is used to demonstrate a method for normalizing signals to give responses directly related to the scattering properties of the change in the system, mitigating the effect of the position of the change, and a method is proposed to generalize the approach to complex systems. Preliminary tests in the region of the stringer are used to identify the experimental challenges to realizing the calibration on complex systems.

  9. Contour complexity and contour detection.

    PubMed

    Wilder, John; Feldman, Jacob; Singh, Manish

    2015-01-01

    Itis well-known that "smooth" chains of oriented elements-contours-are more easily detected amid background noise than more undulating (i.e., "less smooth") chains. Here, we develop a Bayesian framework for contour detection and show that it predicts that contour detection performance should decrease with the contour's complexity, quantified as the description length (DL; i.e., the negative logarithm of probability integrated along the contour). We tested this prediction in two experiments in which subjects were asked to detect simple open contours amid pixel noise. In Experiment 1, we demonstrate a consistent decline in performance with increasingly complex contours, as predicted by the Bayesian model. In Experiment 2, we confirmed that this effect is due to integrated complexity along the contour, and does not seem to depend on local stretches of linear structure. The results corroborate the probabilistic model of contours, and show how contour detection can be understood as a special case of a more general process-the identification of organized patterns in the environment.

  10. The complex chemical Langevin equation

    SciTech Connect

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2014-07-14

    The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE’s main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE’s predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE’s accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the “complex CLE” predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.

  11. Decision paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene

    1991-01-01

    Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.

  12. Spatial complexity in children's language.

    PubMed

    Weist, R M; Lymburner, N L; Piotrowski, S; Stoddard, J L

    2000-10-01

    The purpose of this research was to explore the properties of locative scenes which influence the sequence of the acquisition of spatial prepositions in English. Children ranging in age from about 2;8 to 5;6 were tested with a comprehension test involving a sentence-picture matching task. The comprehension test contained six kinds of spatial contrasts which were judged to vary in the geometric complexity of the scene. The order of acquisition was as follows: (1) into/out of & onto/off of, (2) in/on, (3) into/onto & out of/off of and through/over (around), (4) between X & Y/Y & Z, and (5) across/along. Complexity depends on a number of factors such as the number of referent objects and the nature of the relationship between the object to be located and the critical feature of the referent object. Prepositions which involve a more complex spatial geometry are more difficult for young children to comprehend. It was argued that the sequence of acquisition is partially determined by the course of conceptual development.

  13. Collective complexes--total perspectives.

    PubMed

    Alho, Päivi Marjaana

    2006-11-01

    A much greater part of our identity than we generally believe is collectively determined. Awareness of the causal link between identity, its connected values and the influence exerted by these values on perception is therefore crucial. In the implicit personality model of Peabody and Goldberg (1989), the apparent wide variety of human characteristics is broken down into three broad dimensions: general evaluation, impulse control and assertiveness. My hypothesis is that the regulation of impulses can be equated with the Jungian concept of the mother and father complexes, and assertiveness with the relation between individualism and collectivism. I have utilized Montgomery's perspective theory and Jung's concepts of the union of opposites, the complex and the shadow in order to provide an alternative interpretation of the implicit personality model. According to my interpretation, the traditional values of any culture can be read against these three dimensions. These values can be seen as the greatest treasure of a culture but, at the same time, they can also be devastating if they become complex-like.

  14. The complex chemical Langevin equation.

    PubMed

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2014-07-14

    The chemical Langevin equation (CLE) is a popular simulation method to probe the stochastic dynamics of chemical systems. The CLE's main disadvantage is its break down in finite time due to the problem of evaluating square roots of negative quantities whenever the molecule numbers become sufficiently small. We show that this issue is not a numerical integration problem, rather in many systems it is intrinsic to all representations of the CLE. Various methods of correcting the CLE have been proposed which avoid its break down. We show that these methods introduce undesirable artefacts in the CLE's predictions. In particular, for unimolecular systems, these correction methods lead to CLE predictions for the mean concentrations and variance of fluctuations which disagree with those of the chemical master equation. We show that, by extending the domain of the CLE to complex space, break down is eliminated, and the CLE's accuracy for unimolecular systems is restored. Although the molecule numbers are generally complex, we show that the "complex CLE" predicts real-valued quantities for the mean concentrations, the moments of intrinsic noise, power spectra, and first passage times, hence admitting a physical interpretation. It is also shown to provide a more accurate approximation of the chemical master equation of simple biochemical circuits involving bimolecular reactions than the various corrected forms of the real-valued CLE, the linear-noise approximation and a commonly used two moment-closure approximation.

  15. Analysis of Genetically Complex Epilepsies

    PubMed Central

    Ottman, Ruth

    2006-01-01

    During the last decade, great progress has been made in the discovery of genes that influence risk for epilepsy. However, these gene discoveries have been in epilepsies with Mendelian modes of inheritance, which comprise only a tiny fraction of all epilepsy. Most people with epilepsy have no affected relatives, suggesting that the great majority of all epilepsies are genetically complex: multiple genes contribute to their etiology, none of which has a major effect on disease risk. Gene discovery in the genetically complex epilepsies is a formidable task. It is unclear which epilepsy phenotypes are most advantageous to study, and chromosomal localization and mutation detection are much more difficult than in Mendelian epilepsies. Association studies are very promising for the identification of complex epilepsy genes, but we are still in the earliest stages of their application in the epilepsies. Future studies should employ very large sample sizes to ensure adequate statistical power, clinical phenotyping methods of the highest quality, designs and analytic techniques that control for population stratification, and state-of-the-art molecular methods. Collaborative studies are essential to achieve these goals. PMID:16359464

  16. Hyperbolic geometry of complex networks.

    PubMed

    Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Vahdat, Amin; Boguñá, Marián

    2010-09-01

    We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as noninteracting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.

  17. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  18. HIV surveillance in complex emergencies.

    PubMed

    Salama, P; Dondero, T J

    2001-04-01

    Many studies have shown a positive association between both migration and temporary expatriation and HIV risk. This association is likely to be similar or even more pronounced for forced migrants. In general, HIV transmission in host-migrant or host-forced-migrant interactions depends on the maturity of the HIV epidemic in both the host and the migrant population, the relative seroprevalence of HIV in the host and the migrant population, the prevalence of other sexually transmitted infections (STIs) that may facilitate transmission, and the level of sexual interaction between the two communities. Complex emergencies are the major cause of mass population movement today. In complex emergencies, additional factors such as sexual interaction between forced-migrant populations and the military; sexual violence; increasing commercial sex work; psychological trauma; and disruption of preventive and curative health services may increase the risk for HIV transmission. Despite recent success in preventing HIV infection in stable populations in selected developing countries, internally displaced persons and refugees (or forced migrants) have not been systematically included in HIV surveillance systems, nor consequently in prevention activities. Standard surveillance systems that rely on functioning health services may not provide useful data in many complex emergency settings. Secondary sources can provide some information in these settings. Little attempt has been made, however, to develop innovative HIV surveillance systems in countries affected by complex emergencies. Consequently, data on the HIV epidemic in these countries are scarce and HIV prevention programs are either not implemented or interventions are not effectively targeted. Second generation surveillance methods such as cross-sectional, population-based surveys can provide rapid information on HIV, STIs, and sexual behavior. The risks for stigmatization and breaches of confidentiality must be recognized

  19. Complex approaches to study complex trait genetics in multiple sclerosis.

    PubMed

    Kálmán, Bernadette

    2014-09-30

    Multiple sclerosis (MS) is a complex trait disorder defined by several genes and their interactions with environmental factors. A comprehensive exploration of the susceptibility variants had not been feasible until recently when new developments in biotechnology and bioinformatics made possible sequencing of the whole human genome, cataloguing of nucleotide variants and alignments of these variants in haplotypes. Earlier observations from epidemiological, candidate gene and linkage studies provided ample evidence to support a complex genetic determination of MS. New biotechnology and bioinformatics resources have been recently applied to further successful explorations of the disease. These efforts were paralleled by more careful and reliable ascertainments of disease phenotypes, collaborations among specialized centers to generate sufficient sample size and involvement of clinician-scientists capable of working both on the clinical and scientific study sides. Data obtained from the whole genome association studies (GWAS) elevated our understanding of MS genetics to a new level by identifying an extensive list of genetic determinants. Pathway analyses of MS-associated variants provided evidence to support the immune etiology of the disease. Future research will likely explore how environmental factors interact with the genome, and contribute to the abnormal immune activation and inflammation. This review summarizes the outcomes of MS genetic explorations including those of recent GWAS, and highlights practical consequences of genetic and genomic studies by pointing out as to how the derived data facilitate further elucidation of MS pathogenesis. A better understanding of disease processes is necessary for future advancements in therapeutics and the development of disease prevention strategies.

  20. Complex Parameter Landscape for a Complex Neuron Model

    PubMed Central

    Achard, Pablo; De Schutter, Erik

    2006-01-01

    The electrical activity of a neuron is strongly dependent on the ionic channels present in its membrane. Modifying the maximal conductances from these channels can have a dramatic impact on neuron behavior. But the effect of such modifications can also be cancelled out by compensatory mechanisms among different channels. We used an evolution strategy with a fitness function based on phase-plane analysis to obtain 20 very different computational models of the cerebellar Purkinje cell. All these models produced very similar outputs to current injections, including tiny details of the complex firing pattern. These models were not completely isolated in the parameter space, but neither did they belong to a large continuum of good models that would exist if weak compensations between channels were sufficient. The parameter landscape of good models can best be described as a set of loosely connected hyperplanes. Our method is efficient in finding good models in this complex landscape. Unraveling the landscape is an important step towards the understanding of functional homeostasis of neurons. PMID:16848639

  1. Complex I function in mitochondrial supercomplexes.

    PubMed

    Lenaz, Giorgio; Tioli, Gaia; Falasca, Anna Ida; Genova, Maria Luisa

    2016-07-01

    This review discusses the functional properties of mitochondrial Complex I originating from its presence in an assembled form as a supercomplex comprising Complex III and Complex IV in stoichiometric ratios. In particular several lines of evidence are presented favouring the concept that electron transfer from Complex I to Complex III is operated by channelling of electrons through Coenzyme Q molecules bound to the supercomplex, in contrast with the hypothesis that the transfer of reducing equivalents from Complex I to Complex III occurs via random diffusion of the Coenzyme Q molecules in the lipid bilayer. Furthermore, another property provided by the supercomplex assembly is the control of generation of reactive oxygen species by Complex I. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt.

  2. Intertextuality for Handling Complex Environmental Issues

    NASA Astrophysics Data System (ADS)

    Byhring, Anne Kristine; Knain, Erik

    2016-02-01

    Nowhere is the need for handling complexity more pertinent than in addressing environmental issues. Our study explores students' situated constructs of complexity in unfolding discourses on socio-scientific issues. Students' dialogues in two group-work episodes are analysed in detail, with tools from Systemic Functional Linguistics. We identify the significance of intertextuality in students' realizations of low- and high-complexity discourses. In the high-complexity event, we show how students take on different roles and use modality and projection as grammatical resources for opening up, for different positions, multiple voices, and various contextual resources. Successful handling of complexity is construed by the interplay between students' roles in the discourse and resources in language for making multiple voices present. In the high-complexity event, the handling of complexity is guided by the students' sense of purpose. Handling complexity is demanding, and explicit scaffolding is necessary to prevent a potentially complex challenge from being treated as a simple one.

  3. Titan's Chemical Complexity and Dust

    NASA Astrophysics Data System (ADS)

    Vuitton, Véronique

    Titan, Saturn's largest satellite, harbors one of the richest atmospheric chemistry in the solar system, initiated by the dissociation of the major neutral species (nitrogen and methane) by ultraviolet solar radiation and associated photoelectrons. Until recently, it was believed that the dust observed in the stratosphere (i.e. micrometer size organic aerosols) was formed in situ through an intense neutral chemistry involving complex organic molecules. However, this understanding of Titan’s atmospheric chemistry is being strongly challenged by recent measurements from the Cassini spacecraft. They revealed an extraordinarily complex thermospheric composition with positive ions extending up to at least hundreds of u/q and negative ions up to at least thousands of u/q. These observations indicate that molecular growth starts at much higher altitudes than previously anticipated and suggest that new formation processes have to be put forward. We review our recent work on Titan's upper atmospheric chemistry. We base our discussion on Cassini observations as well as on a new generation of photochemical/microphysical models and laboratory experiments. We argue that positive ion chemistry is at the origin of complex organic molecules, such as benzene, ammonia and hydrogen isocyanide, and that radiative neutral-neutral association can efficiently form alkanes. We find that macromolecules (m/z > 100) attach electrons and therefore attract the abundant positive ions, which ultimately leads to the formation of the dust. In order to infer the dust chemical composition and structure, we turn towards the analysis of laboratory analogues by ultra-high resolution mass spectrometry. Finally, we emphasize that another space mission to Titan with a new generation of instruments is required to validate the effort currently under progress in the laboratory.

  4. Nipple areola complex sparing mastectomy

    PubMed Central

    Mingozzi, Matteo; Curcio, Annalisa; Buggi, Federico; Folli, Secondo

    2015-01-01

    Breast conservative therapy (BCT) is established as a safe option for most women with early breast cancer (BC). The best conservative mastectomy that can be performed, when mastectomy is unavoidable, is nipple-areola-complex sparing mastectomy (NSM), which allows the complete glandular dissection preserving the skin envelope and the nipple areola complex. In the treatment of BC, the cosmetic outcomes have become fundamental goals, as well as oncologic control. NSM is nowadays considered an alternative technique to improve the overall quality of life for women allowing excellent cosmetic results because it provides a natural appearing breast. The breast surgeon must pay attention to details and skin incision must be planned to minimize vascular impairment to the skin and the nipple. Preservation of the blood supply to the nipple is one of the most important concern during NSM because nipple or areolar necrosis is a well-described complication of this surgery. Another issue associated with the nipple preservation and the surgical technique is oncological safety related to nipple-areola-complex (NAC) involvement in patients with invasive BC. The authors present their experience on 252 NSM performed in the Breast Surgery Unit in Forlì. Careful selection of patients for this surgical procedure is imperative and many patients are not ideal candidates for this procedure because of concerns about nipple-areolar viability as women with significant large/ptotic breast, pre-existing breast scars and history of active cigarette smoking. To extend the benefits of nipple preservation to patients who are perceived to be at higher risk for nipple necrosis the authors describe technical modifications of NSM to allow nipple preservation and obtain good cosmetic outcomes. PMID:26645007

  5. Information communication on complex networks

    NASA Astrophysics Data System (ADS)

    Igarashi, Akito; Kawamoto, Hiroki; Maruyama, Takahiro; Morioka, Atsushi; Naganuma, Yuki

    2013-02-01

    Since communication networks such as the Internet, which is regarded as a complex network, have recently become a huge scale and a lot of data pass through them, the improvement of packet routing strategies for transport is one of the most significant themes in the study of computer networks. It is especially important to find routing strategies which can bear as many traffic as possible without congestion in complex networks. First, using neural networks, we introduce a strategy for packet routing on complex networks, where path lengths and queue lengths in nodes are taken into account within a framework of statistical physics. Secondly, instead of using shortest paths, we propose efficient paths which avoid hubs, nodes with a great many degrees, on scale-free networks with a weight of each node. We improve the heuristic algorithm proposed by Danila et. al. which optimizes step by step routing properties on congestion by using the information of betweenness, the probability of paths passing through a node in all optimal paths which are defined according to a rule, and mitigates the congestion. We confirm the new heuristic algorithm which balances traffic on networks by achieving minimization of the maximum betweenness in much smaller number of iteration steps. Finally, We model virus spreading and data transfer on peer-to-peer (P2P) networks. Using mean-field approximation, we obtain an analytical formulation and emulate virus spreading on the network and compare the results with those of simulation. Moreover, we investigate the mitigation of information traffic congestion in the P2P networks.

  6. Complexity and the Arrow of Time

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.; Davies, Paul C. W.; Ruse, Michael

    2013-08-01

    1. What is complexity? Is it increasing? Charles H. Lineweaver, Paul C. W. Davies and Michael Ruse; 2. Directionality principles from cancer to cosmology Paul C. W. Davies; 3. A simple treatment of complexity: cosmological entropic boundary conditions on increasing complexity Charles H. Lineweaver; 4. Using complexity science to search for unity in the natural sciences Eric J. Chaisson; 5. On the spontaneous generation of complexity in the universe Seth Lloyd; 6. Emergent spatiotemporal complexity in field theory Marcelo Gleiser; 7. Life: the final frontier for complexity? Simon Conway Morris; 8. Evolution beyond Newton, Darwin, and entailing law: the origin of complexity in the evolving biosphere Stuart A. Kauffman; 9. Emergent order in processes: the interplay of complexity, robustness, correlation, and hierarchy in the biosphere D. Eric Smith; 10. The inferential evolution of biological complexity: forgetting nature by learning to nurture David C. Krakauer; 11. Information width: a way for the second law to increase complexity David Wolpert; 12. Wrestling with biological complexity: from Darwin to Dawkins Michael Ruse; 13. The role of generative entrenchment and robustness in the evolution of complexity William C. Wimsatt; 14. On the plurality of complexity-producing mechanisms Philip Clayton; Index.

  7. The formal de Rham complex

    NASA Astrophysics Data System (ADS)

    Zharinov, V. V.

    2013-02-01

    We propose a formal construction generalizing the classic de Rham complex to a wide class of models in mathematical physics and analysis. The presentation is divided into a sequence of definitions and elementary, easily verified statements; proofs are therefore given only in the key case. Linear operations are everywhere performed over a fixed number field {F} = {R},{C}. All linear spaces, algebras, and modules, although not stipulated explicitly, are by definition or by construction endowed with natural locally convex topologies, and their morphisms are continuous.

  8. Addiction Science: Uncovering Neurobiological Complexity

    PubMed Central

    Volkow, N. D.; Baler, R. D.

    2013-01-01

    Until very recently addiction-research was limited by existing tools and strategies that were inadequate for studying the inherent complexity at each of the different phenomenological levels. However, powerful new tools (e.g., optogenetics and designer drug receptors) and high throughput protocols are starting to give researchers the potential to systematically interrogate “all” genes, epigenetic marks, and neuronal circuits. These advances, combined with imaging technologies (both for preclinical and clinical studies) and a paradigm shift towards open access have spurred an unlimited growth of datasets transforming the way we investigate the neurobiology of substance use disorders (SUD) and the factors that modulate risk and resilience. PMID:23688927

  9. Crystallographic refinement of ligand complexes

    PubMed Central

    Kleywegt, Gerard J.

    2007-01-01

    Model building and refinement of complexes between biomacromolecules and small molecules requires sensible starting coordinates as well as the specification of restraint sets for all but the most common non-macromolecular entities. Here, it is described why this is necessary, how it can be accomplished and what pitfalls need to be avoided in order to produce chemically plausible models of the low-molecular-weight entities. A number of programs, servers, databases and other resources that can be of assistance in the process are also discussed. PMID:17164531

  10. Material behavior under complex loading

    SciTech Connect

    Breuer, H.J.; Raule, G.; Rodig, M.

    1984-09-01

    Studies of material behavior under complex loading form a bridge between standard material testing methods and the stress analysis calculations for reactor components at high temperatures. The aim of these studies is to determine the influence of typical load change sequences on material properties, to derive the equations required for stress analyses, to carry out tests under multiaxial conditions, and to investigate the structural deformation mechanisms of creep buckling and ratcheting. The present state of the investigations within the high-temperature gas-cooled reactor materials program is described, with emphasis on the experimental apparatus, the scope of the program, and the initial results obtained.

  11. Complex geometry and string theory

    NASA Astrophysics Data System (ADS)

    Morozov, A. Y.; Perelomov, A. M.

    1990-06-01

    The analytic properties of string theory are reviewed. It is demonstrated that the theory of strings is connected with contemporary fields of complex geometry. A massless classical point-like particle which moves in Minkowski space of D dimensions is considered. The formulation used to develop string theory is based on the Polyakov approach. In order to find the quantum scattering amplitude in the Polyakov approach, the functional integral over all Riemannian surfaces is calculated. The simplest case of the amplitude of vacuum-vacuum transitions Z of a closed string is considered. The description of linear bundles in the divisor terms is given.

  12. Sinh-domain complex integrators

    NASA Astrophysics Data System (ADS)

    Skotis, George-Drosos; Khanday, Farooq A.; Psychalinos, Costas

    2015-07-01

    The basic building blocks for performing complex signal processing in the Sinh-domain are introduced in this article. Attractive offered benefits are the capabilities for achieving resistorless realisations with electronic adjustment of their frequency characteristics, independent tuning of centre frequency and bandwidth and operating in a low-voltage environment. In addition, the inherent class-AB operation of Sinh-domain filters allows the handling of signals greater than the bias current, leading to a power saving. The aforementioned benefits have been evaluated through simulation results, using the Analog Design Environment of the Cadence software.

  13. Complex soundproofing of industrial rooms

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Veres, A.; Biborosch, L.

    1974-01-01

    Some structures treated for sound absorption are described that are used to soundproof industrial rooms with a very high noise level. Soundproofing treatments for the walls and coilings or only for the ceilings are considered. In the case of relatively small rooms having a noise source with a high level, complex treatments involve, in addition to soundproofing of the walls and ceiling, suspended panels specially oriented with respect to the noise source. The efficiency of the adopted solutions is compared with calculated damping values.

  14. Quantization Effects on Complex Networks

    PubMed Central

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  15. Prognostics Methodology for Complex Systems

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Mackey, Ryan

    2003-01-01

    An automatic method to schedule maintenance and repair of complex systems is produced based on a computational structure called the Informed Maintenance Grid (IMG). This method provides solutions to the two fundamental problems in autonomic logistics: (1) unambiguous detection of deterioration or impending loss of function and (2) determination of the time remaining to perform maintenance or other corrective action based upon information from the system. The IMG provides a health determination over the medium-to-longterm operation of the system, from one or more days to years of study. The IMG is especially applicable to spacecraft and both piloted and autonomous aircraft, or industrial control processes.

  16. The Colletotrichum acutatum species complex

    PubMed Central

    Damm, U.; Cannon, P.F.; Woudenberg, J.H.C.; Crous, P.W.

    2012-01-01

    Colletotrichum acutatum is known as an important anthracnose pathogen of a wide range of host plants worldwide. Numerous studies have reported subgroups within the C. acutatum species complex. Multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3) of 331 strains previously identified as C. acutatum and other related taxa, including strains from numerous hosts with wide geographic distributions, confirmed the molecular groups previously recognised and identified a series of novel taxa. Thirty-one species are accepted, of which 21 have not previously been recognised. Colletotrichum orchidophilum clusters basal to the C. acutatum species complex. There is a high phenotypic diversity within this complex, and some of the species appear to have preferences to specific hosts or geographical regions. Others appear to be plurivorous and are present in multiple regions. In this study, only C. salicis and C. rhombiforme formed sexual morphs in culture, although sexual morphs have been described from other taxa (especially as laboratory crosses), and there is evidence of hybridisation between different species. One species with similar morphology to C. acutatum but not belonging to this species complex was also described here as new, namely C. pseudoacutatum. Taxonomic novelties: New combinations - Colletotrichum limetticola (R.E. Clausen) Damm, P.F. Cannon & Crous, C. lupini (Bondar) Damm, P.F. Cannon & Crous, C. salicis (Fuckel) Damm, P.F. Cannon & Crous. New species - C. acerbum Damm, P.F. Cannon & Crous, C. australe Damm, P.F. Cannon & Crous, C. brisbanense Damm, P.F. Cannon & Crous, C. cosmi Damm, P.F. Cannon & Crous, C. costaricense Damm, P.F. Cannon & Crous, C. cuscutae Damm, P.F. Cannon & Crous, C. guajavae Damm, P.F. Cannon & Crous, C. indonesiense Damm, P.F. Cannon & Crous, C. johnstonii Damm, P.F. Cannon & Crous, C. kinghornii Damm, P.F. Cannon & Crous, C. laticiphilum Damm, P.F. Cannon & Crous, C. melonis Damm, P.F. Cannon & Crous, C

  17. Complexed iron removal from groundwater

    SciTech Connect

    Munter, R.; Ojaste, H.; Sutt, J.

    2005-07-01

    The paper demonstrates an intensive work carried out and results obtained on the pilot plant of the City of Kogalym Water Treatment Station (Tjumen, Siberia, Russian Federation) to elaborate on a contemporary nonreagent treatment technology for the local iron-rich groundwater. Several filter materials (Birm, Pyrolox, hydroanthracite, Everzit, granulated activated carbon) and chemical oxidants (ozone, chlorine, hydrogen peroxide, oxygen, and potassium permanganate) were tested to solve the problem with complexed iron removal from groundwater. The final elaborated technology consists of raw water intensive aeration in the gas-degas treatment unit followed by sequential filtration through hydroanthracite and the special anthracite Everzit.

  18. The relationship between complexity (taxonomy) and difficulty

    NASA Astrophysics Data System (ADS)

    Tan, Yih Tyng; Othman, Abdul Rahman

    2013-04-01

    Difficulty and complexity are important factors that occur in every test questions. These two factors will also affect the reliability of the test. Hence, difficulty and complexity must be considered by educators during preparation of the test questions. The relationship between difficulty and complexity is studied. Complexity is defined as the level in Bloom's Taxonomy. Difficulty is represented by the proportion of students scoring between specific score intervals. A chi-square test of independence between difficulty and complexity was conducted on the results of a continuous assessment of a third year undergraduate course, Probability Theory. The independence test showed that the difficulty and complexity are related. However, this relationship is small.

  19. The influence of complexes on implicit learning.

    PubMed

    Shin, Yong-Wook; Lee, Joong-Sun; Han, Oh-Su; Rhi, Bou-Yong

    2005-04-01

    A century ago, Jung looked into the unconscious through complexes by using word association tests. Jung wrote, 'modern psychology with its investigation of complexes has opened up a psychic taboo area riddled with hopes and fears', and complexes remain an unexplored taboo area of research. In the present study, we have investigated the influence of complexes on unconscious cognitive processing, in particular on implicit learning. We have found that complexes shown to disturb conscious cognitive processing in fact enhanced the attention of the subjects and their performance on an implicit learning task. These results suggest that complexes are not just abstractions, but have various actual influences on both conscious and unconscious processing.

  20. Ambipolar diffusion in complex plasma.

    PubMed

    Losseva, T V; Popel, S I; Yu, M Y; Ma, J X

    2007-04-01

    A self-consistent model of the ambipolar diffusion of electrons and ions in complex (dusty) plasmas accounting for the local electric fields, the dust grain charging process, and the interaction of the plasma particles with the dust grains and neutrals is presented. The dependence of the diffusion coefficient on the interaction of the electrons and ions with the dust grains as well as with the neutrals are investigated. It is shown that increase of the dust density leads to a reduction of the diffusion scale length, and this effect is enhanced at higher electron densities. The dependence of the diffusion scale length on the neutral gas pressure is found to be given by a power law, where the absolute value of the power exponent decreases with increase of the dust density. The electric field gradient and its effects are shown to be significant and should thus be taken into account in studies of complex plasmas with not very small dust densities. The possibility of observing localized coherent dissipative nonlinear dust ion-acoustic structures in an asymmetrically discharged double plasma is discussed.

  1. Hydrogen storage via polyhydride complexes

    SciTech Connect

    Jensen, C.M.; Zidan, R.A.

    1998-08-01

    The reversible dehydrogenation of NaAlH{sub 4} is catalyzed in toluene slurries of the NaAlH{sub 4} containing the pincer complex, IrH{sub 4} {l_brace}C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}{r_brace}. The rates of the pincer complex catalyzed dehydrogenation are about five times greater those previously found for NaAlH{sub 4} that was doped with titanium through a wet chemistry method. Homogenization of NaAlH{sub 4} with 2 mole % Ti(OBu{sup n}){sub 4} under an atmosphere of argon produces a novel titanium containing material. TPD measurements show that the dehydrogenation of this material occurs about 30 C lower than that previously found for wet titanium doped NaAlH{sub 4}. In further contrast to wet doped NaAlH{sub 4}, the dehydrogenation kinetics and hydrogen capacity of the novel material are undiminished over several dehydriding/hydriding cycles. Rehydrogenation of the titanium doped material occurs readily at 170 C under 150 atm of hydrogen. TPD measurements show that about 80% of the original hydrogen content (4.2 wt%) can be restored under these conditions.

  2. Control efficacy of complex networks

    PubMed Central

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks. PMID:27324438

  3. Organometallic neptunium(III) complexes.

    PubMed

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  4. Semiotics of constructed complex systems

    SciTech Connect

    Landauer, C.; Bellman, K.L.

    1996-12-31

    The scope of this paper is limited to software and other constructed complex systems mediated or integrated by software. Our research program studies foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. There have really been only two theoretical approaches that have helped us understand and develop computational systems: mathematics and linguistics. We show how semiotics can also play a role, whether we think of it as part of these other theories or as subsuming one or both of them. We describe our notion of {open_quotes}computational semiotics{close_quotes}, which we define to be the study of computational methods of dealing with symbols, show how such a theory might be formed, and describe what we might get from it in terms of more interesting use of symbols by computing systems. This research was supported in part by the Federal Highway Administration`s Office of Advanced Research and by the Advanced Research Projects Agency`s Software and Intelligent Systems Technology Office.

  5. Airflow patterns in complex workplaces

    SciTech Connect

    Mishima, J.; Selby, J.M.; Lynch, T.P.; Langer, G.; Vallario, E.J.

    1987-01-01

    There are many considerations in obtaining an accurate evaluation of aerosols. One aspect that has been neglected is the study of airflow patterns within the workplace. In many nuclear facilities, the operations performed required extensive equipment (e.g., glove boxes, piping) that create complex arrangements of physical barriers to flow. To provide samples of the airborne materials, particularly particles, knowledge of these complex airflow patterns is required for sampler placement. Recent studies have shown that materials introduced into the air flow within a workplace act as plumes embedded in major airflow streams. Portions of the plumes can recycle through the ventilated area, be lost to dead air pockets, or exhaust through unusual, unexpected outlets. Unusual flow patterns are observed even in relatively uncomplicated arrangements of equipment. This behavior must be factored into sampling/monitoring programs for evaluation of the airborne hazard to personnel within the workplace consistent with the objective of the program. Other factors that also must be considered to provide valid samples of airborne particulate materials are objectives of the sampling program, characteristics of the airborne particulate materials, nonsegregatory transport for the extracted materials, and requirements for the measurement techniques used.

  6. Atmospheric modeling in complex terrain

    SciTech Connect

    Williams, M. D.; Streit, G. E.

    1990-05-01

    Los Alamos investigators have developed several models which are relevant to modeling Mexico City air quality. The collection of models includes: meteorological models, dispersion models, air chemistry models, and visibility models. The models have been applied in several different contexts. They have been developed primarily to address the complexities posed by complex terrain. HOTMAC is the meteorological model which requires terrain and limited meteorological information. HOTMAC incorporates a relatively complete description of atmospheric physics to give good descriptions of the wind, temperature, and turbulence fields. RAPTAD is a dispersion code which uses random particle transport and kernel representations to efficiently provide accurate pollutant concentration fields. RAPTAD provides a much better description of tracer dispersion than do Gaussian puff models which fail to properly represent the effects of the wind profile near the surface. ATMOS and LAVM treat photochemistry and visibility respectively. ATMOS has been used to describe wintertime chemistry of the Denver brown cloud. Its description provided reasonable agreement with measurements for the high altitude of Denver. LAVM can provide both numerical indices or pictoral representations of visibility effects of pollutants. 15 refs., 74 figs.

  7. Target recovery in complex networks

    NASA Astrophysics Data System (ADS)

    Sun, Weiman; Zeng, An

    2017-01-01

    The invulnerability of complex networks is an important issue which has been widely analyzed in different fields. A lot of works have been done to measure and improve the stability of complex networks when being attacked. Recently, how to recover networks after attack was intensively studied. The existing methods are mainly designed to recover the overall functionality of networks, yet in many real cases the recovery of important nodes should be given priority, to which we refer target recovery. For example, when the cold wave paralyses the railway networks, target recovery means to repair those stations or railways such that the transport capacity of densely-populated cities can be recovered as fast as possible. In this paper, we first compare the impact of attacks on the whole network and target nodes respectively, and then study the efficiency of traditional recovery methods that are proposed based on global centrality metrics. Furthermore, based on target centrality metrics, we introduce a local betweenness recovery method and we find it has better performance than the traditional methods. We finally propose a hybrid recovery method which includes local betweenness metric and local closeness metric. The performance of the hybrid method is shown to be similar to that of the greedy algorithm.

  8. Efficient Analysis of Complex Structures

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.

    2000-01-01

    Last various accomplishments achieved during this project are : (1) A Survey of Neural Network (NN) applications using MATLAB NN Toolbox on structural engineering especially on equivalent continuum models (Appendix A). (2) Application of NN and GAs to simulate and synthesize substructures: 1-D and 2-D beam problems (Appendix B). (3) Development of an equivalent plate-model analysis method (EPA) for static and vibration analysis of general trapezoidal built-up wing structures composed of skins, spars and ribs. Calculation of all sorts of test cases and comparison with measurements or FEA results. (Appendix C). (4) Basic work on using second order sensitivities on simulating wing modal response, discussion of sensitivity evaluation approaches, and some results (Appendix D). (5) Establishing a general methodology of simulating the modal responses by direct application of NN and by sensitivity techniques, in a design space composed of a number of design points. Comparison is made through examples using these two methods (Appendix E). (6) Establishing a general methodology of efficient analysis of complex wing structures by indirect application of NN: the NN-aided Equivalent Plate Analysis. Training of the Neural Networks for this purpose in several cases of design spaces, which can be applicable for actual design of complex wings (Appendix F).

  9. Physical controllability of complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Le-Zhi; Chen, Yu-Zhong; Wang, Wen-Xu; Lai, Ying-Cheng

    2017-01-01

    A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control.

  10. Programs Automate Complex Operations Monitoring

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Kennedy Space Center, just off the east coast of Florida on Merritt Island, has been the starting place of every human space flight in NASA s history. It is where the first Americans left Earth during Project Mercury, the terrestrial departure point of the lunar-bound Apollo astronauts, as well as the last solid ground many astronauts step foot on before beginning their long stays aboard the International Space Station. It will also be the starting point for future NASA missions to the Moon and Mars and temporary host of the new Ares series rockets designed to take us there. Since the first days of the early NASA missions, in order to keep up with the demands of the intricate and critical Space Program, the launch complex - host to the large Vehicle Assembly Building, two launch pads, and myriad support facilities - has grown increasingly complex to accommodate the sophisticated technologies needed to manage today s space missions. To handle the complicated launch coordination safely, NASA found ways to automate mission-critical applications, resulting in streamlined decision-making. One of these methods, management software called the Control Monitor Unit (CMU), created in conjunction with McDonnell Douglas Space & Defense Systems, has since left NASA, and is finding its way into additional applications.

  11. Getting a Grip on Complexes

    PubMed Central

    Nie, Yan; Viola, Cristina; Bieniossek, Christoph; Trowitzsch, Simon; Vijay-achandran, Lakshmi Sumitra; Chaillet, Maxime; Garzoni, Frederic; Berger, Imre

    2009-01-01

    We are witnessing tremendous advances in our understanding of the organization of life. Complete genomes are being deciphered with ever increasing speed and accuracy, thereby setting the stage for addressing the entire gene product repertoire of cells, towards understanding whole biological systems. Advances in bioinformatics and mass spectrometric techniques have revealed the multitude of interactions present in the proteome. Multiprotein complexes are emerging as a paramount cornerstone of biological activity, as many proteins appear to participate, stably or transiently, in large multisubunit assemblies. Analysis of the architecture of these assemblies and their manifold interactions is imperative for understanding their function at the molecular level. Structural genomics efforts have fostered the development of many technologies towards achieving the throughput required for studying system-wide single proteins and small interaction motifs at high resolution. The present shift in focus towards large multiprotein complexes, in particular in eukaryotes, now calls for a likewise concerted effort to develop and provide new technologies that are urgently required to produce in quality and quantity the plethora of multiprotein assemblies that form the complexome, and to routinely study their structure and function at the molecular level. Current efforts towards this objective are summarized and reviewed in this contribution. PMID:20514218

  12. Algorithms, complexity, and the sciences

    PubMed Central

    Papadimitriou, Christos

    2014-01-01

    Algorithms, perhaps together with Moore’s law, compose the engine of the information technology revolution, whereas complexity—the antithesis of algorithms—is one of the deepest realms of mathematical investigation. After introducing the basic concepts of algorithms and complexity, and the fundamental complexity classes P (polynomial time) and NP (nondeterministic polynomial time, or search problems), we discuss briefly the P vs. NP problem. We then focus on certain classes between P and NP which capture important phenomena in the social and life sciences, namely the Nash equlibrium and other equilibria in economics and game theory, and certain processes in population genetics and evolution. Finally, an algorithm known as multiplicative weights update (MWU) provides an algorithmic interpretation of the evolution of allele frequencies in a population under sex and weak selection. All three of these equivalences are rife with domain-specific implications: The concept of Nash equilibrium may be less universal—and therefore less compelling—than has been presumed; selection on gene interactions may entail the maintenance of genetic variation for longer periods than selection on single alleles predicts; whereas MWU can be shown to maximize, for each gene, a convex combination of the gene’s cumulative fitness in the population and the entropy of the allele distribution, an insight that may be pertinent to the maintenance of variation in evolution. PMID:25349382

  13. Pattern Formation and Complexity Emergence

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2001-03-01

    Success of nonlinear modelling of pattern formation and self-organization encourages speculations on informational and number theoretical foundations of complexity emergence. Pythagorean "unreasonable effectiveness of integers" in natural processes is perhaps extrapolatable even to universal emergence "out-of-nothing" (Leibniz, Wheeler). Because rational numbers (R = M/N) are everywhere dense on real axis, any digital string (hence any "book" from "Library of Babel" of J.L.Borges) is "recorded" infinitely many times in arbitrary many rationals. Furthermore, within any arbitrary small interval there are infinitely many Rs for which (either or both) integers (Ms and Ns) "carry" any given string of any given length. Because any iterational process (such as generation of fractal features of Mandelbrot Set) is arbitrary closely approximatable with rational numbers, the infinite pattern of integers expresses itself in generation of complexity of the world, as well as in emergence of the world itself. This "tunnelling" from Platonic World ("Platonia" of J.Barbour) to a real (physical) world is modern recast of Leibniz's motto ("for deriving all from nothing there suffices a single principle").

  14. Organometallic neptunium(III) complexes

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  15. Robustness Elasticity in Complex Networks

    PubMed Central

    Matisziw, Timothy C.; Grubesic, Tony H.; Guo, Junyu

    2012-01-01

    Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic, with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence that a failure to account for nodal interaction can confound characterizations of complex networked systems. PMID:22808060

  16. A series of complex suicide.

    PubMed

    Demirci, Serafettin; Dogan, Kamil Hakan; Erkol, Zerrin; Deniz, Idris

    2009-06-01

    This article presents 16 complex suicide cases. Complex suicide is defined as the use of more than one method to induce death. Of the victims, 10 were men and the ages ranged from 19 to 70 years. Eight victims left a suicide note. It was observed that 13 victims realized the suicidal act in the house and 5 victims had previous suicidal attempts. It was determined that 10 victims had psychiatric disorders, one of them had alcohol dependence. Six victims were housewives, 4 victims were unemployed, followed by one each victim of student, worker, farmer, tradesman, prayer leader, and animal husbandry lines of business. Ten victims were married; 3 victims were single; and 3 victims were divorced. On investigating the methods of suicide, it was seen that 9 victims preferred sharp instrument usage; 5 victims insecticide ingestion; 4 victims each firearms, medicine overdose; 3 victims each hanging, falling from a height; 2 victims self-strangulation; and 1 victim each drowning, liquefied petroleum gas and natural gas inhalation together, fungicide ingestion, rodenticide ingestion. It was determined that 2 victims used 3 methods and the other 14 victims 2 methods in company, to realize the suicide. In this article, the data obtained from our study was discussed by comparing similar data.

  17. Physical controllability of complex networks

    PubMed Central

    Wang, Le-Zhi; Chen, Yu-Zhong; Wang, Wen-Xu; Lai, Ying-Cheng

    2017-01-01

    A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control. PMID:28074900

  18. Complex Networks and Socioeconomic Applications

    NASA Astrophysics Data System (ADS)

    Almendral, Juan A.; López, Luis; Mendes, Jose F.; Sanjuán, Miguel A. F.

    2003-04-01

    The study and characterization of complex systems is a fruitful research area nowadays. Special attention has been paid recently to complex networks, where graph and network analysis plays an important role since they reduce a given system to a simpler problem. Using a simple model for the information flow on social networks, we show that the traditional hierarchical topologies frequently used by companies and organizations, are poorly designed in terms of efficiency. Moreover, we prove that this type of structures are the result of the individual aim of monopolizing as much information as possible within the network. As the information is an appropriate measurement of centrality, we conclude that this kind of topology is so attractive for leaders because the global influence each actor has within the network is completely determined by the hierarchical level occupied. The effect on the efficiency caused by a change in a traditional hierarchical topology is also analyzed. In particular, by introducing the possibility of communication on the same level of the hierarchy.

  19. Integrin-mediated adhesion complex

    PubMed Central

    Sebé-Pedrós, Arnau

    2010-01-01

    The integrin-mediated adhesion machinery is the primary cell-matrix adhesion mechanism in Metazoa. The integrin adhesion complex, which modulates important aspects of the cell physiology, is composed of integrins (alpha and beta subunits) and several scaffolding and signaling proteins. Integrins appeared to be absent in all non-metazoan eukaryotes so-far analyzed, including fungi, plants and choanoflagellates, the sister-group to Metazoa. Thus, integrins and, therefore, the integrin-mediated adhesion and signaling mechanism was considered a metazoan innovation. Recently, a broad comparative genomic analysis including new genome data from several unicellular organisms closely related to fungi and metazoans shattered previous views. The integrin adhesion and signaling complex is not specific to Metazoa, but rather it is present in apusozoans and holozoan protists. Thus, this important signaling and adhesion system predated the origin of Fungi and Metazoa, and was subsequently lost in fungi and choanoflagellates. This finding suggests that cooption played a more important role in the origin of Metazoa than previously believed. Here, we hypothesize that the integrin adhesome was ancestrally involved in signaling. PMID:21057645

  20. Control efficacy of complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-06-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks.

  1. "Conjectural" links in complex networks

    NASA Astrophysics Data System (ADS)

    Snarskii, A. A.; Zorinets, D. I.; Lande, D. V.

    2016-11-01

    This paper introduces the concept of Conjectural Link for Complex Networks, in particular, social networks. Conjectural Link we understand as an implicit link, not available in the network, but supposed to be present, based on the characteristics of its topology. It is possible, for example, when in the formal description of the network some connections are skipped due to errors, deliberately hidden or withdrawn (e.g. in the case of partial destruction of the network). Introduced a parameter that allows ranking the Conjectural Link. The more this parameter - the more likely that this connection should be present in the network. This paper presents a method of recovery of partially destroyed Complex Networks using Conjectural Links finding. Presented two methods of finding the node pairs that are not linked directly to one another, but have a great possibility of Conjectural Link communication among themselves: a method based on the determination of the resistance between two nodes, and method based on the computation of the lengths of routes between two nodes. Several examples of real networks are reviewed and performed a comparison to know network links prediction methods, not intended to find the missing links in already formed networks.

  2. Control Capacity in Complex Networks

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Liu, Yang-Yu; Slotine, Jean-Jacques; Barabasi, Albert-Laszlo

    2012-02-01

    By combining tools from control theory and network science, an efficient methodology was proposed to identify the minimum sets of driver nodes, whose time-dependent control can guide the whole network to any desired final state. Yet, this minimum driver set (MDS) is usually not unique, but one can often achieve multiple potential control configurations with the same number of driver nodes. Given that some nodes may appear in some MDSs but not in other, a crucial question remain unanswered: what is the role of individual node in controlling a complex system? We first classify a node as critical, redundant, or ordinary if it appears in all, no, or some MDSs. Then we introduce the concept of control capacity as a measure of the frequency that a node is in the MDSs, which quantifies the importance of a given node in maintaining Controllability. To avoid impractical enumeration of all MDSs, we propose an algorithm that uniformly samples the MDS. We use it to explore the control capacity of nodes in complex networks and study how it is related to other characteristics of the network topology.

  3. Consciousness and epilepsy: why are complex-partial seizures complex?

    PubMed Central

    Englot, Dario J.; Blumenfeld, Hal

    2010-01-01

    Why do complex-partial seizures in temporal lobe epilepsy (TLE) cause a loss of consciousness? Abnormal function of the medial temporal lobe is expected to cause memory loss, but it is unclear why profoundly impaired consciousness is so common in temporal lobe seizures. Recent exciting advances in behavioral, electrophysiological, and neuroimaging techniques spanning both human patients and animal models may allow new insights into this old question. While behavioral automatisms are often associated with diminished consciousness during temporal lobe seizures, impaired consciousness without ictal motor activity has also been described. Some have argued that electrographic lateralization of seizure activity to the left temporal lobe is most likely to cause impaired consciousness, but the evidence remains equivocal. Other data correlates ictal consciousness in TLE with bilateral temporal lobe involvement of seizure spiking. Nevertheless, it remains unclear why bilateral temporal seizures should impair responsiveness. Recent evidence has shown that impaired consciousness during temporal lobe seizures is correlated with large-amplitude slow EEG activity and neuroimaging signal decreases in the frontal and parietal association cortices. This abnormal decreased function in the neocortex contrasts with fast polyspike activity and elevated cerebral blood flow in limbic and other subcortical structures ictally. Our laboratory has thus proposed the “network inhibition hypothesis,” in which seizure activity propagates to subcortical regions necessary for cortical activation, allowing the cortex to descend into an inhibited state of unconsciousness during complex-partial temporal lobe seizures. Supporting this hypothesis, recent rat studies during partial limbic seizures have shown that behavioral arrest is associated with frontal cortical slow waves, decreased neuronal firing, and hypometabolism. Animal studies further demonstrate that cortical deactivation and behavioral

  4. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  5. Complex and liquid hydrides for energy storage

    NASA Astrophysics Data System (ADS)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-04-01

    The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements.

  6. Complex and liquid hydrides for energy storage

    SciTech Connect

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-03-10

    The research on complex hydrides for hydrogen storage was imitated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized and the knowledge on the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant part of the research groups active in the field of complex hydrides are collaborators in the IEA task 32. This paper reports about the important issues in the field of the complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides and their thermodynamic properties, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and excellent summary of the recent achievements.

  7. Complex oxides useful for thermoelectric energy conversion

    DOEpatents

    Majumdar, Arunava [Orinda, CA; Ramesh, Ramamoorthy [Moraga, CA; Yu, Choongho [College Station, TX; Scullin, Matthew L [Berkeley, CA; Huijben, Mark [Enschede, NL

    2012-07-17

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  8. Complex trauma of the foot.

    PubMed

    Zwipp, H; Dahlen, C; Randt, T; Gavlik, J M

    1997-12-01

    Following complex foot injuries (incidence up to 52 %) in the multiply-injured patient the ultimate goal remains the same as for all significant foot injuries: the restoration of a painless, stable and plantigrade foot to avoid corrective procedures with moderate results. In the case of a complex trauma of the foot (5 point-score) - e. g. a crush injury - primary amputation in the multiply-injured patient (PTS 3-4) is indicated. Limb salvage (PTS 1-2) depends on the intraoperative aspect during the second look (within 24-48 hours after injury): the debridement has to be radical, the selection of amputation level should be at the most distal point compatible with tissue viability and wound healing. A free tissue transfer should be done early if necessary. Single lesions presenting with a compartment syndrome need an immediate dorsal fasciotomy, in the case of a multiply-injured patient as soon as possible. Open fractures are reduced following radical debridement and temporarily stabilized with K-wires and/or tibiotarsal transfixation with an external fixateur until the definitive ORIF. Dislocation-fractures of the talus type 3 and 4 according to Hawkins' classification need open reduction and internal fixation by screws (titan). Open fractures of the calcaneus are stabilized temporarily by a medial external fixateur after debridement until the definitive treatment. If there is a compartment syndrome an immediate dermatofasciotomy is essential. Like closed, calcanear fractures in multiply-injured patients dislocation-fractures of the Chopart's joint need immediate open reduction only if it is an open fracture or associated with a compartment syndrome. The incidence of a compartment syndrome in the case of dislocation fractures of the Lisfranc's joint is high and therefore a dorsal dermatofasciotomy without delay is critical. Open reduction and internal fixation are achieved either by 1.8 mm K-wires or 3.5 mm cortical screws. To avoid further soft tissue damage a

  9. [Complex trauma of the foot].

    PubMed

    Zwipp, H; Dahlen, C; Randt, T; Gavlik, J M

    1997-12-01

    Following complex foot injuries (incidence up to 52%) in the multiply-injured patient the ultimate goal remains the same as for all significant foot injuries: the restoration of a painless, stable and plantigrade foot to avoid corrective procedures with moderate results. In the case of a complex trauma of the foot (5 point-score)--e.g. a crush injury--primary amputation in the multiply-injured patient (PTS 3-4) is indicated. Limb salvage (PTS 1-2) depends on the intraoperative aspect during the second look (within 24-48 hours after injury): the debridement has to be radical, the selection of amputation level should be at the most distal point compatible with tissue viability and wound healing. A free tissue transfer should be done early if necessary. Single lesions presenting with a compartment syndrome need an immediate dorsal fasciotomy, in the case of a multiply-injured patient as soon as possible. Open fractures are reduced following radical debridement and temporarily stabilized with K-wires and/or tibiotarsal transfixation with an external fixateur until the definitive ORIF. Dislocation-fractures of the talus type 3 and 4 according to Hawkins' classification need open reduction and internal fixation by screws (titan). Open fractures of the calcaneus are stabilized temporarily by a medial external fixateur after debridement until the definitive treatment. If there is a compartment syndrome an immediate dermatofasciotomy is essential. Like closed, calcanear fractures in multiply-injured patients dislocation-fractures of the Chopart's joint need immediate open reduction only if it is an open fracture or associated with a compartment syndrome. The incidence of a compartment syndrome in the case of dislocation fractures of the Lisfranc's joint is high and therefore a dorsal dermatofasciotomy without delay is critical. Open reduction and internal fixation are achieved either by 1.8 mm K-wires or 3.5 mm cortical screws. To avoid further soft tissue damage a delayed

  10. The Colletotrichum boninense species complex

    PubMed Central

    Damm, U.; Cannon, P.F.; Woudenberg, J.H.C.; Johnston, P.R.; Weir, B.S.; Tan, Y.P.; Shivas, R.G.; Crous, P.W.

    2012-01-01

    Although only recently described, Colletotrichum boninense is well established in literature as an anthracnose pathogen or endophyte of a diverse range of host plants worldwide. It is especially prominent on members of Amaryllidaceae, Orchidaceae, Proteaceae and Solanaceae. Reports from literature and preliminary studies using ITS sequence data indicated that C. boninense represents a species complex. A multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3, CAL) of 86 strains previously identified as C. boninense and other related strains revealed 18 clades. These clades are recognised here as separate species, including C. boninense s. str., C. hippeastri, C. karstii and 12 previously undescribed species, C. annellatum, C. beeveri, C. brassicicola, C. brasiliense, C. colombiense, C. constrictum, C. cymbidiicola, C. dacrycarpi, C. novae-zelandiae, C. oncidii, C. parsonsiae and C. torulosum. Seven of the new species are only known from New Zealand, perhaps reflecting a sampling bias. The new combination C. phyllanthi was made, and C. dracaenae Petch was epitypified and the name replaced with C. petchii. Typical for species of the C. boninense species complex are the conidiogenous cells with rather prominent periclinal thickening that also sometimes extend to form a new conidiogenous locus or annellations as well as conidia that have a prominent basal scar. Many species in the C. boninense complex form teleomorphs in culture. Taxonomic novelties: New combination - Colletotrichum phyllanthi (H. Surendranath Pai) Damm, P.F. Cannon & Crous. Name replacement - C. petchii Damm, P.F. Cannon & Crous. New species - C. annellatum Damm, P.F. Cannon & Crous, C. beeveri Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. brassicicola Damm, P.F. Cannon & Crous, C. brasiliense Damm, P.F. Cannon, Crous & Massola, C. colombiense Damm, P.F. Cannon, Crous, C. constrictum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. cymbidiicola Damm, P.F. Cannon

  11. Combinatorial Laplacian and entropy of simplicial complexes associated with complex networks

    NASA Astrophysics Data System (ADS)

    Maletić, S.; Rajković, M.

    2012-09-01

    Simplicial complexes represent useful and accurate models of complex networks and complex systems in general. We explore the properties of spectra of combinatorial Laplacian operator of simplicial complexes and show its relationship with connectivity properties of the Q-vector and with connectivities of cliques in the simplicial clique complex. We demonstrate the need for higher order analysis in complex networks and compare the results with ordinary graph spectra. Methods and results are obtained using social network of the Zachary karate club.

  12. Complexity and synchronization in stochastic chaotic systems

    NASA Astrophysics Data System (ADS)

    Dang, Thai Son; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo

    2016-02-01

    We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.

  13. Modification in band gap of zirconium complexes

    NASA Astrophysics Data System (ADS)

    Sharma, Mayank; Singh, J.; Chouhan, S.; Mishra, A.; Shrivastava, B. D.

    2016-05-01

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  14. Competition and Innovation under Complexity

    DTIC Science & Technology

    2009-01-01

    O M P E T I T I O N A N D I N N O VAT I O N U N D E R C O M P L E X I T Y J E F F R E Y A . D R E Z N E R The products of the Department of...chapter’s end.1 D E F I N I N G C O M P L E X I T Y I N D E F E N S E A C Q U I S I T I O N P R O G R A M S Before we can usefully discuss the...while increased complexity has opened new areas to competition and innovation. T R A D I T I O N A L V I E W S O F C O M P E T I T I O N A N

  15. Saloplastics: processing compact polyelectrolyte complexes.

    PubMed

    Schaaf, Pierre; Schlenoff, Joseph B

    2015-04-17

    Polyelectrolyte complexes (PECs) are prepared by mixing solutions of oppositely charged polyelectrolytes. These diffuse, amorphous precipitates may be compacted into dense materials, CoPECs, by ultracentrifugation (ucPECs) or extrusion (exPECs). The presence of salt water is essential in plasticizing PECs to allow them to be reformed and fused. When hydrated, CoPECs are versatile, rugged, biocompatible, elastic materials with applications including bioinspired materials, supports for enzymes and (nano)composites. In this review, various methods for making CoPECs are described, as well as fundamental responses of CoPEC mechanical properties to salt concentration. Possible applications as synthetic cartilage, enzymatically active biocomposites, self-healing materials, and magnetic nanocomposites are presented.

  16. Complex Networks in Psychological Models

    NASA Astrophysics Data System (ADS)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  17. The Jeanie Point complex revisited

    USGS Publications Warehouse

    Dumoulin, Julie A.; Miller, Martha L.

    1984-01-01

    The so-called Jeanie Point complex is a distinctive package of rocks within the Orca Group, a Tertiary turbidite sequence. The rocks crop out on the southeast coast of Montague Island, Prince William Sound, approximately 3 km northeast of Jeanie Point (loc. 7, fig. 44). These rocks consist dominantly of fine-grained limestone and lesser amounts of siliceous limestone, chert, tuff, mudstone, argillite, and sandstone (fig. 47). The Jeanie Point rocks also differ from those typical of the Orca Group in their fold style. Thus, the Orca Group of the area is isoclinally folded on a large scale (tens to hundreds of meters), whereas the Jeanie Point rocks are tightly folded on a 1- to 3- m-wavelength scale (differences in rock competency may be responsible for this variation in fold style).

  18. Forman curvature for complex networks

    NASA Astrophysics Data System (ADS)

    Sreejith, R. P.; Mohanraj, Karthikeyan; Jost, Jürgen; Saucan, Emil; Samal, Areejit

    2016-06-01

    We adapt Forman’s discretization of Ricci curvature to the case of undirected networks, both weighted and unweighted, and investigate the measure in a variety of model and real-world networks. We find that most nodes and edges in model and real networks have a negative curvature. Furthermore, the distribution of Forman curvature of nodes and edges is narrow in random and small-world networks, while the distribution is broad in scale-free and real-world networks. In most networks, Forman curvature is found to display significant negative correlation with degree and centrality measures. However, Forman curvature is uncorrelated with clustering coefficient in most networks. Importantly, we find that both model and real networks are vulnerable to targeted deletion of nodes with highly negative Forman curvature. Our results suggest that Forman curvature can be employed to gain novel insights on the organization of complex networks.

  19. Interpolymer complexes and polymer compatibility.

    PubMed

    Eckelt, A; Eckelt, J; Wolf, B A

    2012-11-23

    A reliable method to decide whether two polymers A and B are miscible or incompatible would be very helpful in many ways. In this contribution we demonstrate why traditional procedures cannot work. We propose to use the intrinsic viscosities [η] of the polymer blends instead of the composition dependence of the viscosities as a criterion for polymer miscibility. Two macromolecules A and B are miscible because of sufficiently favorable interactions between the two types of polymer segments. For solutions of these polymers in a joint solvent, this Gibbs energetic preference of dissimilar intersegmental contacts should prevail upon dilution and lead to the formation of interpolymer complexes, manifesting themselves in deviations from the additivity of intrinsic viscosities.

  20. Complex dynamics of epileptic EEG.

    PubMed

    Kannathal, N; Puthusserypady, Sadasivan K; Choo Min, Lim

    2004-01-01

    Electroencephalogram (EEG) - the recorded representation of electrical activity of the brain contain useful information about the state of the brain. Recent studies indicate that nonlinear methods can extract valuable information from neuronal dynamics. We compare the dynamical properties of EEG signals of healthy subjects with epileptic subjects using nonlinear time series analysis techniques. Chaotic invariants like correlation dimension (D2) , largest Lyapunov exponent (lambda1), Hurst exponent (H) and Kolmogorov entropy (K) are used to characterize the signal. Our study showed clear differences in dynamical properties of brain electrical activity of the normal and epileptic subjects with a confidence level of more than 90%. Furthermore to support this claim fractal dimension (FD) analysis is performed. The results indicate reduction in value of FD for epileptic EEG indicating reduction in system complexity.

  1. Scheduling Software for Complex Scenarios

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Preparing a vehicle and its payload for a single launch is a complex process that involves thousands of operations. Because the equipment and facilities required to carry out these operations are extremely expensive and limited in number, optimal assignment and efficient use are critically important. Overlapping missions that compete for the same resources, ground rules, safety requirements, and the unique needs of processing vehicles and payloads destined for space impose numerous constraints that, when combined, require advanced scheduling. Traditional scheduling systems use simple algorithms and criteria when selecting activities and assigning resources and times to each activity. Schedules generated by these simple decision rules are, however, frequently far from optimal. To resolve mission-critical scheduling issues and predict possible problem areas, NASA historically relied upon expert human schedulers who used their judgment and experience to determine where things should happen, whether they will happen on time, and whether the requested resources are truly necessary.

  2. Complexity Characteristics of Currency Networks

    NASA Astrophysics Data System (ADS)

    Gorski, A. Z.; Drozdz, S.; Kwapien, J.; Oswiecimka, P.

    2006-11-01

    A large set of daily FOREX time series is analyzed. The corresponding correlation matrices (CM) are constructed for USD, EUR and PLN used as the base currencies. The triangle rule is interpreted as constraints reducing the number of independent returns. The CM spectrum is computed and compared with the cases of shuffled currencies and a fictitious random currency taken as a base currency. The Minimal Spanning Tree (MST) graphs are calculated and the clustering effects for strong currencies are found. It is shown that for MSTs the node rank has power like, scale free behavior. Finally, the scaling exponents are evaluated and found in the range analogous to those identified recently for various complex networks.

  3. Complex Geologic History of Triton

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Part of the complex geologic history of icy Triton, Neptune's largest satellite, is shown in this Voyager 2 photo, which has a resolution of 900 meters (2,700 feet) per picture element. The photo was received as part of a Triton-mapping sequence between 3:30 and 5:30 a.m. (PDT). This view is about 500 kilometers (300 miles) across. It encompasses two depressions, possibly old impact basins, that have been extensively modified by flooding, melting, faulting, and collapse. Several episodes of filling and partial removal of material appear to have occurred. The rough area in the middle of the bottom depression probably marks the most recent eruption of material. Only a few impact craters dot the area, which shows the dominance of internally driven geologic processes on Triton.

    JPL manages the Voyager project for NASA's Office of Space Science.

  4. Genre Complexes in Popular Music

    PubMed Central

    Childress, C. Clayton

    2016-01-01

    Recent work in the sociology of music suggests a declining importance of genre categories. Yet other work in this research stream and in the sociology of classification argues for the continued prevalence of genres as a meaningful tool through which creators, critics and consumers focus their attention in the topology of available works. Building from work in the study of categories and categorization we examine how boundary strength and internal differentiation structure the genre pairings of some 3 million musicians and groups. Using a range of network-based and statistical techniques, we uncover three musical “complexes,” which are collectively constituted by 16 smaller genre communities. Our analysis shows that the musical universe is not monolithically organized but rather composed of multiple worlds that are differently structured—i.e., uncentered, single-centered, and multi-centered. PMID:27203852

  5. Music, New Aesthetic and Complexity

    NASA Astrophysics Data System (ADS)

    Adams, David; Grigolini, Paolo

    This paper illustrates an algorithm to generate a complex acoustic stimulus whose statistical properties are as close as possible to the non-stationary dynamics revealed by the current analysis of the electro-encephalogram activity of the human brain. Thus, the composition is driven by crucial events, namely renewal non-Poisson events with an inter-time distribution density ψ(τ), which is an inverse power law with index μ, fitting the condition 1 ≤ μ ≤ 2. We find that the music composition is more attractive when we fill the time region between two consecutive crucial events so as to enhance the leading role of μ. In all cases the spectra markedly depart from the ideal 1/f condition, thereby suggesting a shift from the 1/f noise perspective of the pioneer work of Voss and Clark to the Zipf’s law perspective advocated by more recent work on music composition.

  6. Genre Complexes in Popular Music.

    PubMed

    Silver, Daniel; Lee, Monica; Childress, C Clayton

    2016-01-01

    Recent work in the sociology of music suggests a declining importance of genre categories. Yet other work in this research stream and in the sociology of classification argues for the continued prevalence of genres as a meaningful tool through which creators, critics and consumers focus their attention in the topology of available works. Building from work in the study of categories and categorization we examine how boundary strength and internal differentiation structure the genre pairings of some 3 million musicians and groups. Using a range of network-based and statistical techniques, we uncover three musical "complexes," which are collectively constituted by 16 smaller genre communities. Our analysis shows that the musical universe is not monolithically organized but rather composed of multiple worlds that are differently structured-i.e., uncentered, single-centered, and multi-centered.

  7. ICDF Complex Remedial Action Report

    SciTech Connect

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  8. Congestion phenomena on complex networks.

    PubMed

    De Martino, Daniele; Dall'asta, Luca; Bianconi, Ginestra; Marsili, Matteo

    2009-01-01

    We define a minimal model of traffic flows in complex networks in order to study the trade-off between topological-based and traffic-based routing strategies. The resulting collective behavior is obtained analytically for an ensemble of uncorrelated networks and summarized in a rich phase diagram presenting second-order as well as first-order phase transitions between a free-flow phase and a congested phase. We find that traffic control improves global performance, enlarging the free-flow region in parameter space only in heterogeneous networks. Traffic control introduces nonlinear effects and, beyond a critical strength, may trigger the appearance of a congested phase in a discontinuous manner. The model also reproduces the crossover in the scaling of traffic fluctuations empirically observed on the Internet.

  9. Quantum Computing: Solving Complex Problems

    ScienceCinema

    DiVincenzo, David [IBM Watson Research Center

    2016-07-12

    One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

  10. Supramolecular Allosteric Cofacial Porphyrin Complexes

    SciTech Connect

    Oliveri, Christopher G.; Gianneschi, Nathan C.; Nguyen, Son Binh T.; Mirkin, Chad A.; Stern, Charlotte L.; Wawrzak, Zdzislaw; Pink, Maren

    2008-04-12

    Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (Rh{sup I} or Cu{sup I} sites) and two cofacially aligned porphyrins (Zn{sup II} sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, 'condensed' or 'open'. Combining the ether-phosphine ligand with the appropriate Rh{sup I} or Cu{sup I} transition-metal precursors results in 'open' macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their 'open' macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the 'open' macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the macrocyclic cavity.

  11. Cognitive dynamics: complexity and creativity

    NASA Astrophysics Data System (ADS)

    Tito Arecchi, F.

    2007-05-01

    A scientific problem described within a given code is mapped by a corresponding computational problem. We call (algorithmic) complexity the bit length of the shortest instruction which solves the problem. Deterministic chaos in general affects a dynamical system making the corresponding problem experimentally and computationally heavy, since one must reset the initial conditions at a rate higher than that of information loss (Kolmogorov entropy). One can control chaos by adding to the system new degrees of freedom (information swapping: information lost by chaos is replaced by that arising from the new degrees of freedom). This implies a change of code, or a new augmented model. Within a single code, changing hypotheses is equivalent to fixing different sets of control parameters, each with a different a-priori probability, to be then confirmed and transformed to an a-posteriori probability via Bayes theorem. Sequential application of Bayes rule is nothing else than the Darwinian strategy in evolutionary biology. The sequence is a steepest ascent algorithm, which stops once maximum probability has been reached. At this point the hypothesis exploration stops. By changing code (and hence the set of relevant variables) one can start again to formulate new classes of hypotheses. We call creativity the action of code changing, which is guided by hints not formalized within the previous code, whence not accessible to a computer. We call semantic complexity the number of different scientific codes, or models, that describe a situation. It is however a fuzzy concept, in so far as this number changes due to interaction of the operator with the context. These considerations are illustrated with reference to a cognitive task, starting from synchronization of neuron arrays in a perceptual area and tracing the putative path towards a model building. Since this is a report on work in progress, we skip technicalities in order to stress the gist of the question, and provide

  12. Structurally Complex Surface of Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a composite of two images of Jupiter's icy moon Europa obtained from a range of 2119 miles (3410 kilometers) by the Galileo spacecraft during its fourth orbit around Jupiter and its first close pass of Europa. The mosaic spans 11 miles by 30 miles (17 km by 49 km) and shows features as small as 230 feet (70 meters) across. This mosaic is the first very high resolution image data obtained of Europa, and has a resolution more than 50 times better than the best Voyager coverage and 500 times better than Voyager coverage in this area. The mosaic shows the surface of Europa to be structurally complex. The sun illuminates the scene from the right, revealing complex overlapping ridges and fractures in the upper and lower portions of the mosaic, and rugged, more chaotic terrain in the center. Lateral faulting is revealed where ridges show offsets along their lengths (upper left of the picture). Missing ridge segments indicate obliteration of pre-existing materials and emplacement of new terrain (center of the mosaic). Only a small number of impact craters can be seen, indicating the surface is not geologically ancient.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  13. Oxovanadium(IV) silsesquioxane complexes.

    PubMed

    Ohde, Christian; Limberg, Christian; Stösser, Reinhard; Demeshko, Serhiy

    2010-03-01

    In the context of a potential modeling of reduced oxovanadium species occurring on the surfaces of silica-supported vanadia catalysts in the course of its turnover, the incompletely condensed silsesquioxane H(3)(c-pentyl)T(7) was reacted with Cl(4)V(THF)(2) (where THF = tetrahydrofuran) in the presence of triethylamine. Precipitation of 3 equiv of HNEt(3)Cl seemed to point to the clean formation of [((c-pentyl)T(7))(V(IV)Cl)] (1), which was supported by electron paramagnetic resonance studies performed for the resulting solutions, but further analytical and spectroscopic investigations showed that the processes occurring at that stage are more complex than that and even include the formation of [((c-pentyl)T(7))(V(V)O)](2) as a side product. Storage of a red-brown hexane solution of this product mixture reproducibly led to the precipitation of blue crystals belonging to the chloride-free compound [((c-pentyl)T(7))(2)(V(IV)=O)(3)(THF)(2)] (2), as revealed by single-crystal X-ray diffraction. Performing the same reaction in the presence of 2 equiv of pyridine leads to an analogous product, where the THF ligands are replaced by pyridine. Subsequent investigations showed that the terminal oxo ligands at the vanadium centers are, on the one hand, due to the presence of adventitious water; on the other hand, the [(c-pentyl)T(7)](3-) ligand also acted as a source of O(2-). The results of SQUID measurements performed for 2 can be interpreted in terms of a ferromagnetic coupling between the vanadyl units. Exposing 2 to a dioxygen atmosphere resulted in its immediate oxidation to yield the V(V) complex [((c-pentyl)T(7))(V(V)O)](2), which may model a fast reoxidation reaction of oxovanadium(IV) trimers on silica surfaces.

  14. Clay complexes support HDS catalyst.

    SciTech Connect

    Marshall, C. L.; Carrado, K.; Chemical Engineering

    2000-01-01

    Hydroprocessing represents a crucial component of petroleum refining operations both in terms of environmental and economic considerations. Regulations concerning maximum amount of sulfur content of gasoline and emissions of sulfur-oxide compounds upon combustion are becoming more and more stringent. One 1994-2000 focus of Argonne National Laboratory (ANL) has been the development of catalysts for hydrodesulfurization (HDS). Typical HDS catalysts are comprised of Co-Mo sulfides or Ni-Mo sulfides on an alumina support. Modification of the pore structure of the support has generated great attention among researchers. Most desulfurization test reactions have used dibenzothiophene (DBT) as the model compound to test various configurations of support material with Co-Mo-S and Ni-Mo-S catalysts. In this testing, the desired product would be biphenyl and hydrogen sulfide (H{sub 2}S). A competing reaction creates cyclohexylbenzene by saturating one aromatic ring prior to desulfurization. Ring saturation requires more costly hydrogen and is not desirable. Fortunately, a more effective catalyst for adding hydrogen at the sulfur site with hydrogenating the aromatic rings has been found. However, this has only been tested on DBT. HDS uses various types of catalysts to add hydrogen to reduce unwanted sulfur compounds. Typically this requires expensive, high-pressure, high-temperature equipment to produce the environmentally friendly low-sulfur fuels. ANL scientists identified several new desulfurization catalysts with improved HDS activity and selectivity. From these new catalysts, it may be possible to achieve HDS processing at lower temperature and pressure. The catalysts used for HDS at ANL are various clay complexes. Natural clays have a history of use in the hydroprocessing industry since they are abundant and inexpensive. ANL's approach is to create synthetic organo-clay complexes (SOCC). An advantage of SOCCs is that the pore size and distribution can be controlled by

  15. Aging, frailty and complex networks.

    PubMed

    Mitnitski, A B; Rutenberg, A D; Farrell, S; Rockwood, K

    2017-03-02

    When people age their mortality rate increases exponentially, following Gompertz's law. Even so, individuals do not die from old age. Instead, they accumulate age-related illnesses and conditions and so become increasingly vulnerable to death from various external and internal stressors. As a measure of such vulnerability, frailty can be quantified using the frailty index (FI). Larger values of the FI are strongly associated with mortality and other adverse health outcomes. This association, and the insensitivity of the FI to the particular health variables that are included in its construction, makes it a powerful, convenient, and increasingly popular integrative health measure. Still, little is known about why the FI works so well. Our group has recently developed a theoretical network model of health deficits to better understand how changes in health are captured by the FI. In our model, health-related variables are represented by the nodes of a complex network. The network has a scale-free shape or "topology": a few nodes have many connections with other nodes, whereas most nodes have few connections. These nodes can be in two states, either damaged or undamaged. Transitions between damaged and non-damaged states are governed by the stochastic environment of individual nodes. Changes in the degree of damage of connected nodes change the local environment and make further damage more likely. Our model shows how age-dependent acceleration of the FI and of mortality emerges, even without specifying an age-damage relationship or any other time-dependent parameter. We have also used our model to assess how informative individual deficits are with respect to mortality. We find that the information is larger for nodes that are well connected than for nodes that are not. The model supports the idea that aging occurs as an emergent phenomenon, and not as a result of age-specific programming. Instead, aging reflects how damage propagates through a complex network of

  16. Complex Functions with GeoGebra

    ERIC Educational Resources Information Center

    Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos

    2016-01-01

    Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…

  17. Graphing Powers and Roots of Complex Numbers.

    ERIC Educational Resources Information Center

    Embse, Charles Vonder

    1993-01-01

    Using De Moivre's theorem and a parametric graphing utility, examines powers and roots of complex numbers and allows students to establish connections between the visual and numerical representations of complex numbers. Provides a program to numerically verify the roots of complex numbers. (MDH)

  18. Highly nucleophilic acetylide, vinyl, and vinylidene complexes

    SciTech Connect

    Not Available

    1991-08-01

    In the past year we have completed our studies of the halide-promoted carbonylation of imido ligands, extended our explorations of Cp(CO)(L)Mn-X complexes which possess highly reactive acetylide, vinylidene, carbyne, and vinylcarbyne ligands, and have briefly investigated the formation of bimetallic complexes using anionic carbene complexes. 5 figs.

  19. Teacher Modeling Using Complex Informational Texts

    ERIC Educational Resources Information Center

    Fisher, Douglas; Frey, Nancy

    2015-01-01

    Modeling in complex texts requires that teachers analyze the text for factors of qualitative complexity and then design lessons that introduce students to that complexity. In addition, teachers can model the disciplinary nature of content area texts as well as word solving and comprehension strategies. Included is a planning guide for think aloud.

  20. Planning and evaluation parameters for offshore complexes

    NASA Technical Reports Server (NTRS)

    Sincoff, M. Z. (Editor); Dajani, J. S. (Editor)

    1976-01-01

    Issues are presented for consideration in the planning and design of offshore artificial complexes. The construction of such complexes, their social, economic, and ecological impacts, and the legal-political-institutional environments within which their development could occur, are discussed. Planning, design, and construction of near-shore complexes located off the Mid-Atlantic coast of the United States is emphasized.

  1. A Computer Story: Complexity from Simplicity

    ERIC Educational Resources Information Center

    DeLeo, Gary; Weidenhammer, Amanda; Wecht, Kristen

    2012-01-01

    In this technological age, digital devices are conspicuous examples of extraordinary complexity. When a user clicks on computer icons or presses calculator buttons, these devices channel electricity through a complex system of decision-making circuits. Yet, in spite of this remarkable complexity, the hearts of these devices are components that…

  2. Understanding Complex Adaptive Systems by Playing Games

    ERIC Educational Resources Information Center

    van Bilsen, Arthur; Bekebrede, Geertje; Mayer, Igor

    2010-01-01

    While educators teach their students about decision making in complex environments, managers have to deal with the complexity of large projects on a daily basis. To make better decisions it is assumed, that the latter would benefit from better understanding of complex phenomena, as do students as the professionals of the future. The goal of this…

  3. Solving Nonlinear Optimization Problems of Real Functions in Complex Variables by Complex-Valued Iterative Methods.

    PubMed

    Zhang, Songchuan; Xia, Youshen

    2016-12-28

    Much research has been devoted to complex-variable optimization problems due to their engineering applications. However, the complex-valued optimization method for solving complex-variable optimization problems is still an active research area. This paper proposes two efficient complex-valued optimization methods for solving constrained nonlinear optimization problems of real functions in complex variables, respectively. One solves the complex-valued nonlinear programming problem with linear equality constraints. Another solves the complex-valued nonlinear programming problem with both linear equality constraints and an ℓ₁-norm constraint. Theoretically, we prove the global convergence of the proposed two complex-valued optimization algorithms under mild conditions. The proposed two algorithms can solve the complex-valued optimization problem completely in the complex domain and significantly extend existing complex-valued optimization algorithms. Numerical results further show that the proposed two algorithms have a faster speed than several conventional real-valued optimization algorithms.

  4. Gibbs sampling of complex-valued distributions

    NASA Astrophysics Data System (ADS)

    Salcedo, L. L.

    2016-10-01

    A new technique is explored for the Monte Carlo sampling of complex-valued distributions. The method is based on a heat bath approach where the conditional probability is replaced by a positive representation of it on the complex plane. Efficient ways to construct such representations are also introduced. The performance of the algorithm is tested on small and large lattices with a λ ϕ4 theory with quadratic nearest-neighbor complex coupling. The method works for moderate complex couplings, reproducing reweighting and complex Langevin results and fulfilling various Schwinger-Dyson relations.

  5. Aging and the complexity of cardiovascular dynamics

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Furman, M. I.; Pincus, S. M.; Ryan, S. M.; Lipsitz, L. A.; Goldberger, A. L.

    1991-01-01

    Biomedical signals often vary in a complex and irregular manner. Analysis of variability in such signals generally does not address directly their complexity, and so may miss potentially useful information. We analyze the complexity of heart rate and beat-to-beat blood pressure using two methods motivated by nonlinear dynamics (chaos theory). A comparison of a group of healthy elderly subjects with healthy young adults indicates that the complexity of cardiovascular dynamics is reduced with aging. This suggests that complexity of variability may be a useful physiological marker.

  6. Sterols as Complex-forming Species

    NASA Astrophysics Data System (ADS)

    Ioffe, D. V.

    1986-02-01

    The formation of complexes of sterols with different compounds determines the biological properties of both sterols and various natural substances such as saponins and polyene antibiotics. Complex formation by sterols with phospholipids, steroid saponins, and polyene antibiotics is determined by the same characteristic features of the structure of the sterol molecule. The principal role in complex formation is played by the hydrophobic reaction of the cyclopentanoperhydrophenanthrene ring. The formation of a hydrogen bond between the hydroxyl group of the sterol and a proton acceptor, which is assumed in most complexes, has been proved only in the complexes of sterols with water and acids. The bibliography contains 122 references.

  7. Exploring the Cellular Accumulation of Metal Complexes

    PubMed Central

    Puckett, Cindy A.; Ernst, Russell J.; Barton, Jacqueline K.

    2010-01-01

    Transition metal complexes offer great potential as diagnostic and therapeutic agents, and a growing number of biological applications have been explored. To be effective, these complexes must reach their intended target inside the cell. Here we review the cellular accumulation of metal complexes, including their uptake, localization, and efflux. Metal complexes are taken up inside cells through various mechanisms, including passive diffusion and entry through organic and metal transporters. Emphasis is placed on the methods used to examine cellular accumulation, to identify the mechanism(s) of uptake, and to monitor possible efflux. Conjugation strategies that have been employed to improve the cellular uptake characteristics of metal complexes are also described. PMID:20104335

  8. Emergent complexity in simple neural systems

    PubMed Central

    Oster, George

    2009-01-01

    The ornate and diverse patterns of seashells testify to the complexity of living systems. Provocative computational explorations have shown that similarly complex patterns may arise from the collective interaction of a small number of rules. This suggests that, although a system may appear complex, it may still be understood in terms of simple principles. It is still debatable whether shell patterns emerge from some undiscovered simple principles, or are the consequence of an irreducibly complex interaction of many effects. Recent work by Boettiger, Ermentrout and Oster on the biological mechanisms of shell patterning has provided compelling evidence that, at least for this system, simplicity produces diversity and complexity. PMID:20195452

  9. Heat Transfer in Complex Fluids

    SciTech Connect

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian

  10. Physical mapping of complex genomes

    DOEpatents

    Evans, Glen A.

    1993-01-01

    Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred

  11. Complex systems in aeolian geomorphology

    NASA Astrophysics Data System (ADS)

    Baas, Andreas C. W.

    2007-11-01

    Aeolian geomorphology provides a rich ground for investigating Earth surface processes and landforms as complex systems. Sand transport by wind is a classic dissipative process with non-linear dynamics, while dune field evolution is a prototypical self-organisation phenomenon. Both of these broad areas of aeolian geomorphology are discussed and analysed in the context of complexity and a systems approach. A feedback loop analysis of the aeolian boundary-layer-flow/sediment-transport/bedform interactions, based on contemporary physical models, reveals that the system is fundamentally unstable (or at most meta-stable) and likely to exhibit chaotic behaviour. Recent field-experimental research on aeolian streamers and spatio-temporal transport patterns, however, indicates that sand transport by wind may be wholly controlled by a self-similar turbulence cascade in the boundary layer flow, and that key aspects of transport event time-series can be fully reproduced from a combination of (self-organised) 1/ f forcing, motion threshold, and saltation inertia. The evolution of various types of bare-sand dunes and dune field patterns have been simulated successfully with self-organising cellular automata that incorporate only simplified physically-based interactions (rules). Because of their undefined physical scale, however, it not clear whether they in fact simulate ripples (bedforms) or dunes (landforms), raising fundamental cross-cutting questions regarding the difference between aeolian dunes, impact ripples, and subaqueous (current) ripples and dunes. An extended cellular automaton (CA) model, currently under development, incorporates the effects of vegetation in the aeolian environment and is capable of simulating the development of nebkhas, blow-outs, and parabolic coastal dunes. Preliminary results indicate the potential for establishing phase diagrams and attractor trajectories for vegetated aeolian dunescapes. Progress is limited, however, by a serious lack of

  12. Complex computation in the retina

    NASA Astrophysics Data System (ADS)

    Deshmukh, Nikhil Rajiv

    Elucidating the general principles of computation in neural circuits is a difficult problem requiring both a tractable model circuit as well as sophisticated measurement tools. This thesis advances our understanding of complex computation in the salamander retina and its underlying circuitry and furthers the development of advanced tools to enable detailed study of neural circuits. The retina provides an ideal model system for neural circuits in general because it is capable of producing complex representations of the visual scene, and both its inputs and outputs are accessible to the experimenter. Chapter 2 describes the biophysical mechanisms that give rise to the omitted stimulus response in retinal ganglion cells described in Schwartz et al., (2007) and Schwartz and Berry, (2008). The extra response to omitted flashes is generated at the input to bipolar cells, and is separable from the characteristic latency shift of the OSR apparent in ganglion cells, which must occur downstream in the circuit. Chapter 3 characterizes the nonlinearities at the first synapse of the ON pathway in response to high contrast flashes and develops a phenomenological model that captures the effect of synaptic activation and intracellular signaling dynamics on flash responses. This work is the first attempt to model the dynamics of the poorly characterized mGluR6 transduction cascade unique to ON bipolar cells, and explains the second lobe of the biphasic flash response. Complementary to the study of neural circuits, recent advances in wafer-scale photolithography have made possible new devices to measure the electrical and mechanical properties of neurons. Chapter 4 reports a novel piezoelectric sensor that facilitates the simultaneous measurement of electrical and mechanical signals in neural tissue. This technology could reveal the relationship between the electrical activity of neurons and their local mechanical environment, which is critical to the study of mechanoreceptors

  13. The Colletotrichum gloeosporioides species complex

    PubMed Central

    Weir, B.S.; Johnston, P.R.; Damm, U.

    2012-01-01

    The limit of the Colletotrichum gloeosporioides species complex is defined genetically, based on a strongly supported clade within the Colletotrichum ITS gene tree. All taxa accepted within this clade are morphologically more or less typical of the broadly defined C. gloeosporioides, as it has been applied in the literature for the past 50 years. We accept 22 species plus one subspecies within the C. gloeosporioides complex. These include C. asianum, C. cordylinicola, C. fructicola, C. gloeosporioides, C. horii, C. kahawae subsp. kahawae, C. musae, C. nupharicola, C. psidii, C. siamense, C. theobromicola, C. tropicale, and C. xanthorrhoeae, along with the taxa described here as new, C. aenigma, C. aeschynomenes, C. alatae, C. alienum, C. aotearoa, C. clidemiae, C. kahawae subsp. ciggaro, C. salsolae, and C. ti, plus the nom. nov. C. queenslandicum (for C. gloeosporioides var. minus). All of the taxa are defined genetically on the basis of multi-gene phylogenies. Brief morphological descriptions are provided for species where no modern description is available. Many of the species are unable to be reliably distinguished using ITS, the official barcoding gene for fungi. Particularly problematic are a set of species genetically close to C. musae and another set of species genetically close to C. kahawae, referred to here as the Musae clade and the Kahawae clade, respectively. Each clade contains several species that are phylogenetically well supported in multi-gene analyses, but within the clades branch lengths are short because of the small number of phylogenetically informative characters, and in a few cases individual gene trees are incongruent. Some single genes or combinations of genes, such as glyceraldehyde-3-phosphate dehydrogenase and glutamine synthetase, can be used to reliably distinguish most taxa and will need to be developed as secondary barcodes for species level identification, which is important because many of these fungi are of biosecurity

  14. Application of the surface complexation concept to complex mineral assemblages

    USGS Publications Warehouse

    Davis, J.A.; Coston, J.A.; Kent, D.B.; Fuller, C.C.

    1998-01-01

    Two types of modeling approaches are illustrated for describing inorganic contaminant adsorption in aqueous environments: (a) the component additivity approach and (b) the generalized composite approach. Each approach is applied to simulate Zn2+ adsorption by a well-characterized sediment collected from an aquifer at Cape Cod, MA. Zn2+ adsorption by the sediment was studied in laboratory batch experiments with a range of pH and Zn(II) concentrations selected to encompass conditions observed in the aquifer. In the generalized composite approach, one, and two-site surface complexation model parameters were calibrated with the experimental data using FITEQL. The pH dependence of Zn2+ adsorption was simulated without explicit representation of electrostatic energy terms. Surface acidity constants and ion pair formation by major electrolyte ions were also not required in the model thereby minimizing the number of fitted parameters. Predictions of Zn2+ adsorption with the component additivity modeling approach did not simulate the experimental data adequately without manipulation of surface area or site density parameter values. To apply the component additivity approach to environmental sorbents, further research is needed to better characterize the composition of sediment surface coatings. The generalized composite modeling approach requires less information and can be viewed as more practical for application within solute transport models. With only three adjustable parameters, this approach could simulate Zn2+ adsorption over a range of chemical conditions that would cause several orders of magnitude variation in the distribution coefficient (K(d)) for Zn2+ within the aquifer.Two types of modeling approaches are illustrated for describing inorganic contaminant adsorption in aqueous environments: (a) the component additivity approach and (b) the generalized composite approach. Each approach is applied to simulate Zn2+ adsorption by a well-characterized sediment

  15. Effects of Task Complexity on L2 Writing Behaviors and Linguistic Complexity

    ERIC Educational Resources Information Center

    Révész, Andrea; Kourtali, Nektaria-Efstathia; Mazgutova, Diana

    2017-01-01

    This study investigated whether task complexity influences second language (L2) writers' fluency, pausing, and revision behaviors and the cognitive processes underlying these behaviors; whether task complexity affects linguistic complexity of written output; and whether relationships between writing behaviors and linguistic complexity are…

  16. Complexities in transplant revenue management.

    PubMed

    Marshall, Barry; Swearingen, Justin P

    2007-06-01

    Numerous payment methodologies, contract types, and income reimbursement methods exist in the highly complex environment of transplantation. A fundamental understanding of the transplant environment and the various compensation schemes involved with transplant revenue management is necessary to stay viable in such a complicated system. Knowledge of resources such as Medicare, commercial insurance, Medicaid, and self-pay individuals will allow a program to fully optimize allowable revenue streams. This multiple payer mix can be challenging, with payment arrangements ranging from a single global case rate that must cover all transplant-related services to individual payment arrangements for each stage of the transplantation process. Transplant programs must track each agreement to ensure optimal payment, and must therefore become proficient with central fiscal operations such as Medicare cost reporting and managed care contract negotiations. Outlier protection and risk pool strategies can also be used to remain competitive and profitable. A transplant program must have a thorough understanding of all available payment schemes and reimbursement optimizing strategies to facilitate the realization of a strong financial outlook.

  17. Electrical potentials in stomatal complexes

    SciTech Connect

    Saftner, R.A.; Raschke, K.

    1981-06-01

    Guard cells of several species, but predominantly Commelina communis, were impaled by micropipette electrodes and potential differences measured that occurred between cell compartments and the flowing bathing medium. The wall developed a Donnan potential that was between -60 and -70 millivolt in 30 millimolar KC1 at pH 7. The density of the fixed charges ranged from 0.3 to 0.5 molar; its dependence on pH was almost identical with the titration curve of authentic polygalacturonic acid. The vacuolar potential of guard cells of Commelina communis L., Zea mays L., Nicotiana glauca Graham, Allium cepa L., and Vicia faba L. was between -40 and -50 millivolt in 30 millimolar KCl when stomata were open and about -30 millivolt when stomata were closed. The vacuolar potential of guard cells of C. communis was almost linearly related to stomatal aperture and responded to changes in the ionic strength in the bathing medium in a Nernstian manner. No specificity for any alkali ion (except Li/sup +/), ammonium, or choline appeared. Lithium caused hyperpolarization. Calcium in concentrations between 1 and 100 millimolar in the medium led to stomatal closure, also caused hyperpolarization, and triggered transient oscillations in the intracellular potential. Gradients in the electrical potential existed across stomatal complexes with open pores. When stomata closed, these gradients almost disappeared or slightly reverted; all epidermal cells were then at potentials near -30 millivolt in 30 millimolar KCl.

  18. Nonlinear Conductivity in Dicyanoquinonediimine Complexes

    NASA Astrophysics Data System (ADS)

    Wakita, Hitoshi; Ozawa, Tatsuhiko; Bando, Yoshimasa; Mori, Takehiko

    2010-09-01

    Nonlinear conductivity is observed below the metal-insulator (M-I) transitions of molecular conductors, halogen-substituted (R1,R2-DCNQI)2Cu (DCNQI: dicyanoquinonediimine, R1,R2: methyl or halogen). Despite the difference of the M-I transition temperatures depending on the halogens, these compounds show nonlinear properties at similar low temperatures (<80 K), and the characteristics are regarded as “activation” type. The complex of deuterated dimethyl-DCNQI (d2-DMeDCNQI)2Cu, which shows reentrant M-I-M transitions, exhibits irreversible switching from a low-conducting state to a high-conducting state in the intermediate I state. Since the Peierls distortion is irreversibly erased by the electric field, this phenomenon is called “Peierls memory”. In addition, “inverse” nonlinear conductivity from a high-conducting state to a low-conducting state is observed at the low-temperature M state, which is not only entirely reversible but also accompanied by a new kind of rapid current oscillation in the order of 3 kHz. These observations demonstrate metastable nature of the intermediate I state.

  19. Steatosis and Steatohepatitis: Complex Disorders

    PubMed Central

    Bettermann, Kira; Hohensee, Tabea; Haybaeck, Johannes

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) which includes steatosis and steatohepatitis, in particular non-alcoholic steatohepatitis (NASH), is a rising health problem world-wide and should be separated from alcoholic steatohepatitis (ASH). NAFLD is regarded as hepatic manifestation of the metabolic syndrome (MetSy), being tightly linked to obesity and type 2 diabetes mellitus (T2DM). Development of steatosis, liver fibrosis and cirrhosis often progresses towards hepatocellular carcinogenesis and frequently results in the indication for liver transplantation, underlining the clinical significance of this disease complex. Work on different murine models and several human patients studies led to the identification of different molecular key players as well as epigenetic factors like miRNAs and SNPs, which have a promoting or protecting function in AFLD/ASH or NAFLD/NASH. To which extent they might be translated into human biology and pathogenesis is still questionable and needs further investigation regarding diagnostic parameters, drug development and a better understanding of the genetic impact. In this review we give an overview about the currently available knowledge and recent findings regarding the development and progression of this disease. PMID:24897026

  20. Spatially Distributed Social Complex Networks

    NASA Astrophysics Data System (ADS)

    Frasco, Gerald F.; Sun, Jie; Rozenfeld, Hernán D.; ben-Avraham, Daniel

    2014-01-01

    We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrat's law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008).]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.

  1. Bronchiectasis: Phenotyping a Complex Disease.

    PubMed

    Chalmers, James D

    2017-03-15

    Bronchiectasis is a long-neglected disease currently experiencing a surge in interest. It is a highly complex condition with numerous aetiologies, co-morbidities and a heterogeneous disease presentation and clinical course. The past few years have seen major advances in our understanding of the disease, primarily through large real-life cohort studies. The main outcomes of interest in bronchiectasis are symptoms, exacerbations, treatment response, disease progression and death. We are now more able to identify clearly the radiological, clinical, microbiological and inflammatory contributors to these outcomes. Over the past couple of years, multidimensional scoring systems such as the Bronchiectasis Severity Index have been introduced to predict disease severity and mortality. Although there are currently no licensed therapies for bronchiectasis, an increasing number of clinical trials are planned or ongoing. While this emerging evidence is awaited, bronchiectasis guidelines will continue to be informed largely by real-life evidence from observational studies and patient registries. Key developments in the bronchiectasis field include the establishment of international disease registries and characterisation of disease phenotypes using cluster analysis and biological data.

  2. Nanofabrication of Doped, Complex Oxides

    SciTech Connect

    Stein, A.; Waller, G.H.; Abiade, J.T.

    2012-01-01

    Complex oxides have many promising attributes, including wide band gaps for high temperature semiconductors, ion conducting electrolytes in fuel cells, ferroelectricity and ferromagnetism. Bulk and thin film oxides can be readily manufactured and tested however these physically hard and chemically inert materials cannot be nanofabricated by direct application of conventional methods. In order to study these materials at the nanoscale there must first be a simple and effective means to achieve the desired structures. Here we discuss the use of pulsed laser deposition at room temperature onto electron beam lithography defined templates of poly methyl methacrylate photoresist. Following a resist liftoff in organic solvents, a heat treatment was used to crystallize the nanostructures. The morphology of these structures was studied using scanning electron microscopy and atomic force microscopy. Crystallinity and composition as determined by x ray diffraction and photo-electron spectroscopy respectively is reported for thin film analogues of the nanostructured oxide. The oxide studied in this report is Nb doped SrTiO{sub 3}, which has been investigated for use as a high temperature thermoelectric material; however the approach used is not materials-dependent.

  3. Tuberous Sclerosis Complex: Perioperative Considerations

    PubMed Central

    Rabito, Matthew J.; Kaye, Alan David

    2014-01-01

    Background Tuberous sclerosis complex (TSC), also known as Bourneville disease, is an inherited, progressive neurocutaneous disorder characterized by the potential for hamartoma formation throughout the body. TSC is an autosomal dominant genetic disorder, but more than two-thirds of cases are sporadic. Methods Clinical manifestations and treatment options are discussed. Both surgical and anesthetic perioperative considerations are described in this review. Results Routine monitoring is appropriate for minor surgical procedures for patients with TSC who have mild disease manifestations. More extensive monitoring is indicated for major procedures that have the potential for significant blood loss and for patients with more severe pathology. Postoperatively, TSC patients should be admitted for monitoring and treatment after more extensive procedures or if significant organ dysfunction occurs. Postoperative complications, which may be related to either the surgery or the TSC pathology itself, may have origins in many different organs and may include seizures, severe hypertension, and bradyarrhythmias. Conclusion TSC is a rare disease with a highly variable clinical presentation and provides a multitude of challenges for the patient, the family, and the healthcare team. PMID:24940133

  4. Complex Contagion of Campaign Donations.

    PubMed

    Traag, Vincent A

    2016-01-01

    Money is central in US politics, and most campaign contributions stem from a tiny, wealthy elite. Like other political acts, campaign donations are known to be socially contagious. We study how campaign donations diffuse through a network of more than 50,000 elites and examine how connectivity among previous donors reinforces contagion. We find that the diffusion of donations is driven by independent reinforcement contagion: people are more likely to donate when exposed to donors from different social groups than when they are exposed to equally many donors from the same group. Counter-intuitively, being exposed to one side may increase donations to the other side. Although the effect is weak, simultaneous cross-cutting exposure makes donation somewhat less likely. Finally, the independence of donors in the beginning of a campaign predicts the amount of money that is raised throughout a campaign. We theorize that people infer population-wide estimates from their local observations, with elites assessing the viability of candidates, possibly opposing candidates in response to local support. Our findings suggest that theories of complex contagions need refinement and that political campaigns should target multiple communities.

  5. Advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  6. Dissociative Recombination of Complex Ions

    NASA Astrophysics Data System (ADS)

    Mitchell, J. Brian A.

    1999-10-01

    The FALP-MS apparatus at the University of Rennes allows the measurement of rate coefficients for the recombination of molecular ions to be made (at 300K) even though several ions may be present in the afterglow. The recombination of a number of hydrocarbon ions derived from alkane ( Lehfaoui et al. J. Chem. Phys. 106, 5406, 1997.), alkene ( Rebrion-Rowe et al. J. Chem. Phys. 108, 7185, 1998.) and aromatic (Rebrion-Rowe et al. (Submitted to J. Chem. Phys.)) parent molecules has been studied. Despite the wide range of complexity of these compounds, the measured recombination rates are remarkably similar having values in the range of 4-10-7 cm^3.s-1. Plans are being laid for a new version of this apparatus that will allow pre-prepared ions to be injected into the inert buffer gas flow. This will allow reactive ions to be studied as well as halogen containing ions whose recombination rates would normally be masked by electron attachment to their parent gases in a conventional flowing afterglow apparatus. A high temperature modification to the CRESU supersonic flow apparatus (J.L. Le Garrec et al. J. Chem. Phys. 107, 54, 1997.) in our laboratory will allow electron attachment to radicals to be studied by means of the mass spectrometric detection of products, Langmuir probe measurement of the electron density in the flow and Laser Induced Fluorescent identification of the radical species. Such measurements are needed for the modeling of semiconductor processing plasmas.

  7. Spreading dynamics in complex networks

    NASA Astrophysics Data System (ADS)

    Pei, Sen; Makse, Hernán A.

    2013-12-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.

  8. Role models for complex networks

    NASA Astrophysics Data System (ADS)

    Reichardt, J.; White, D. R.

    2007-11-01

    We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.

  9. Software Complexity Threatens Performance Portability

    SciTech Connect

    Gamblin, T.

    2015-09-11

    Modern HPC software packages are rarely self-contained. They depend on a large number of external libraries, and many spend large fractions of their runtime in external subroutines. Performance portability depends not only on the effort of application teams, but also on the availability of well-tuned libraries. At most sites, the burden of maintaining libraries is shared by code teams and facilities. Facilities typically provide well-tuned default versions, but code teams frequently build with bleeding-edge compilers to achieve high performance. For this reason, HPC has no “standard” software stack, unlike other domains where performance is not critical. Incompatibilities among compilers and software versions force application teams and facility staff to re-build custom versions of libraries for each new toolchain. Because the number of potential configurations is combinatorial, and because HPC software is notoriously difficult to port to new machines [3, 7, 8], the tuning effort required to support and maintain performance-portable libraries outstrips the available manpower at most sites. Software complexity is a growing obstacle to performance portability for HPC.

  10. National Wind Tunnel Complex (NWTC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Wind Tunnel Complex (NWTC) Final Report summarizes the work carried out by a unique Government/Industry partnership during the period of June 1994 through May 1996. The objective of this partnership was to plan, design, build and activate 'world class' wind tunnel facilities for the development of future-generation commercial and military aircraft. The basis of this effort was a set of performance goals defined by the National Facilities Study (NFS) Task Group on Aeronautical Research and Development Facilities which established two critical measures of improved wind tunnel performance; namely, higher Reynolds number capability and greater productivity. Initial activities focused upon two high-performance tunnels (low-speed and transonic). This effort was later descoped to a single multipurpose tunnel. Beginning in June 1994, the NWTC Project Office defined specific performance requirements, planned site evaluation activities, performed a series of technical/cost trade studies, and completed preliminary engineering to support a proposed conceptual design. Due to budget uncertainties within the Federal government, the NWTC project office was directed to conduct an orderly closure following the Systems Design Review in March 1996. This report provides a top-level status of the project at that time. Additional details of all work performed have been archived and are available for future reference.

  11. Multilevel Complex Networks and Systems

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  12. Robustness surfaces of complex networks

    NASA Astrophysics Data System (ADS)

    Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis

    2014-09-01

    Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared.

  13. Simple molecules as complex systems

    PubMed Central

    Furtenbacher, Tibor; Árendás, Péter; Mellau, Georg; Császár, Attila G.

    2014-01-01

    For individual molecules quantum mechanics (QM) offers a simple, natural and elegant way to build large-scale complex networks: quantized energy levels are the nodes, allowed transitions among the levels are the links, and transition intensities supply the weights. QM networks are intrinsic properties of molecules and they are characterized experimentally via spectroscopy; thus, realizations of QM networks are called spectroscopic networks (SN). As demonstrated for the rovibrational states of H216O, the molecule governing the greenhouse effect on earth through hundreds of millions of its spectroscopic transitions (links), both the measured and first-principles computed one-photon absorption SNs containing experimentally accessible transitions appear to have heavy-tailed degree distributions. The proposed novel view of high-resolution spectroscopy and the observed degree distributions have important implications: appearance of a core of highly interconnected hubs among the nodes, a generally disassortative connection preference, considerable robustness and error tolerance, and an “ultra-small-world” property. The network-theoretical view of spectroscopy offers a data reduction facility via a minimum-weight spanning tree approach, which can assist high-resolution spectroscopists to improve the efficiency of the assignment of their measured spectra. PMID:24722221

  14. Anomalous Transport in Complex Networks

    NASA Astrophysics Data System (ADS)

    Lopez, Eduardo; Buldyrev, Sergey; Havlin, Shlomo; Stanley, H. Eugene

    2005-03-01

    To study transport properties of complex networks, we analyze the equivalent conductance G between two arbitrarily chosen nodes of random scale-free networks with degree distribution P(k)˜k^-λ in which each link has the same unit resistance. We predict a broad range of values of G, with a power-law tail distribution φSF(G)˜G^-gG, where gG=2λ-1, and confirm our predictions by simulations. The power-law tail in φSF(G) leads to large values of G, thereby significantly improving the transport in scale-free networks, compared to Erdos-R'enyi random graphs where the tail of the conductivity distribution decays exponentially. Based on a simple physical ``transport backbone'' picture we show that the conductances are well approximated by ckAkB/(kA+kB) for any pair of nodes A and B with degrees kA and kB. Thus, a single parameter c characterizes transport on scale-free networks.

  15. Complex Contagion of Campaign Donations

    PubMed Central

    2016-01-01

    Money is central in US politics, and most campaign contributions stem from a tiny, wealthy elite. Like other political acts, campaign donations are known to be socially contagious. We study how campaign donations diffuse through a network of more than 50000 elites and examine how connectivity among previous donors reinforces contagion. We find that the diffusion of donations is driven by independent reinforcement contagion: people are more likely to donate when exposed to donors from different social groups than when they are exposed to equally many donors from the same group. Counter-intuitively, being exposed to one side may increase donations to the other side. Although the effect is weak, simultaneous cross-cutting exposure makes donation somewhat less likely. Finally, the independence of donors in the beginning of a campaign predicts the amount of money that is raised throughout a campaign. We theorize that people infer population-wide estimates from their local observations, with elites assessing the viability of candidates, possibly opposing candidates in response to local support. Our findings suggest that theories of complex contagions need refinement and that political campaigns should target multiple communities. PMID:27077742

  16. Collaboration in Complex Medical Systems

    NASA Technical Reports Server (NTRS)

    Xiao, Yan; Mankenzie, Colin F.

    1998-01-01

    Improving our understanding of collaborative work in complex environments has the potential for developing effective supporting technologies, personnel training paradigms, and design principles for multi-crew workplaces. USing a sophisticated audio-video-data acquisition system and a corresponding analysis system, the researchers at University of Maryland have been able to study in detail team performance during real trauma patient resuscitation. The first study reported here was on coordination mechanisms and on characteristics of coordination breakdowns. One of the key findings was that implicit communications were an important coordination mechanism (e.g. through the use of shared workspace and event space). The second study was on the sources of uncertainty during resuscitation. Although incoming trauma patients' status is inherently uncertain, the findings suggest that much of the uncertainty felt by care providers was related to communication and coordination. These two studies demonstrate the value of and need for creating a real-life laboratory for studying team performance with the use of comprehensive and integrated data acquisition and analysis tools.

  17. Complex Generalized Synchronization and Parameter Identification of Nonidentical Nonlinear Complex Systems

    PubMed Central

    Wang, Shibing; Wang, Xingyuan; Han, Bo

    2016-01-01

    In this paper, generalized synchronization (GS) is extended from real space to complex space, resulting in a new synchronization scheme, complex generalized synchronization (CGS). Based on Lyapunov stability theory, an adaptive controller and parameter update laws are designed to realize CGS and parameter identification of two nonidentical chaotic (hyperchaotic) complex systems with respect to a given complex map vector. This scheme is applied to synchronize a memristor-based hyperchaotic complex Lü system and a memristor-based chaotic complex Lorenz system, a chaotic complex Chen system and a memristor-based chaotic complex Lorenz system, as well as a memristor-based hyperchaotic complex Lü system and a chaotic complex Lü system with fully unknown parameters. The corresponding numerical simulations illustrate the feasibility and effectiveness of the proposed scheme. PMID:27014879

  18. Unraveling chaotic attractors by complex networks and measurements of stock market complexity

    NASA Astrophysics Data System (ADS)

    Cao, Hongduo; Li, Ying

    2014-03-01

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel-Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.

  19. Unraveling chaotic attractors by complex networks and measurements of stock market complexity.

    PubMed

    Cao, Hongduo; Li, Ying

    2014-03-01

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel-Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.

  20. Reduction of Subjective and Objective System Complexity

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.

    2015-01-01

    Occam's razor is often used in science to define the minimum criteria to establish a physical or philosophical idea or relationship. Albert Einstein is attributed the saying "everything should be made as simple as possible, but not simpler". These heuristic ideas are based on a belief that there is a minimum state or set of states for a given system or phenomena. In looking at system complexity, these heuristics point us to an idea that complexity can be reduced to a minimum. How then, do we approach a reduction in complexity? Complexity has been described as a subjective concept and an objective measure of a system. Subjective complexity is based on human cognitive comprehension of the functions and inter relationships of a system. Subjective complexity is defined by the ability to fully comprehend the system. Simplifying complexity, in a subjective sense, is thus gaining a deeper understanding of the system. As Apple's Jonathon Ive has stated," It's not just minimalism or the absence of clutter. It involves digging through the depth of complexity. To be truly simple, you have to go really deep". Simplicity is not the absence of complexity but a deeper understanding of complexity. Subjective complexity, based on this human comprehension, cannot then be discerned from the sociological concept of ignorance. The inability to comprehend a system can be either a lack of knowledge, an inability to understand the intricacies of a system, or both. Reduction in this sense is based purely on a cognitive ability to understand the system and no system then may be truly complex. From this view, education and experience seem to be the keys to reduction or eliminating complexity. Objective complexity, is the measure of the systems functions and interrelationships which exist independent of human comprehension. Jonathon Ive's statement does not say that complexity is removed, only that the complexity is understood. From this standpoint, reduction of complexity can be approached

  1. Forces in the complex octonion curved space

    NASA Astrophysics Data System (ADS)

    Weng, Zi-Hua

    2016-04-01

    The paper aims to extend major equations in the electromagnetic and gravitational theories from the flat space into the complex octonion curved space. Maxwell applied simultaneously the quaternion analysis and vector terminology to describe the electromagnetic theory. It inspires subsequent scholars to study the electromagnetic and gravitational theories with the complex quaternions/octonions. Furthermore Einstein was the first to depict the gravitational theory by means of tensor analysis and curved four-space-time. Nowadays some scholars investigate the electromagnetic and gravitational properties making use of the complex quaternion/octonion curved space. From the orthogonality of two complex quaternions, it is possible to define the covariant derivative of the complex quaternion curved space, describing the gravitational properties in the complex quaternion curved space. Further it is possible to define the covariant derivative of the complex octonion curved space by means of the orthogonality of two complex octonions, depicting simultaneously the electromagnetic and gravitational properties in the complex octonion curved space. The result reveals that the connection coefficient and curvature of the complex octonion curved space will exert an influence on the field strength and field source of the electromagnetic and gravitational fields, impacting the linear momentum, angular momentum, torque, energy, and force and so forth.

  2. Superspace de Rham complex and relative cohomology

    NASA Astrophysics Data System (ADS)

    Linch, William D.; Randall, Stephen

    2015-09-01

    We investigate the super-de Rham complex of five-dimensional superforms with N = 1 supersymmetry. By introducing a free supercommutative algebra of auxiliary variables, we show that this complex is equivalent to the Chevalley-Eilenberg complex of the translation supergroup with values in superfields. Each cocycle of this complex is defined by a Lorentz- and iso-spin-irreducible superfield subject to a set of constraints. Restricting to constant coefficients results in a subcomplex in which components of the cocycles are coboundaries while the constraints on the defining superfields span the cohomology. This reduces the computation of all of the superspace Bianchi identities to a single linear algebra problem the solution of which implies new features not present in the standard four-dimensional, N = 1 complex. These include splitting/joining in the complex and the existence of cocycles that do not correspond to irreducible supermultiplets of closed differential forms. Interpreting the five-dimensional de Rham complex as arising from dimensional reduction from the six-dimensional complex, we find a second five-dimensional complex associated to the relative de Rham complex of the embedding of the latter in the former. This gives rise to a second source of closed differential forms previously attributed to the phenomenon called "Weyl triviality".

  3. Biofilm monitoring using complex permittivity.

    SciTech Connect

    Altman, Susan Jeanne; McGrath, Lucas K.; Dolan, Patricia L.; Yelton, William Graham

    2008-10-01

    There is strong interest in the detection and monitoring of bio-fouling. Bio-fouling problems are common in numerous water treatments systems, medical and dental apparatus and food processing equipment. Current bio-fouling control protocols are time consuming and costly. New early detection techniques to monitor bio-forming contaminates are means to enhanced efficiency. Understanding the unique dielectric properties of biofilm development, colony forming bacteria and nutrient background will provide a basis to the effectiveness of controlling or preventing biofilm growth. Dielectric spectroscopy measurements provide values of complex permittivity, {var_epsilon}*, of biofilm formation by applying a weak alternating electric field at various frequencies. The dielectric characteristic of the biofilm, {var_epsilon}{prime}, is the real component of {var_epsilon}* and measures the biofilm's unique ability to store energy. Graphically observed dependencies of {var_epsilon}{prime} to frequency indicate dielectric relaxation or dielectric dispersion behaviors that mark the particular stage of progression during the development of biofilms. In contrast, any frequency dependency of the imaginary component, {var_epsilon}{double_prime} the loss factor, is expressed as dielectric losses from the biofilm due to dipole relaxation. The tangent angle of these two component vectors is the ratio of the imaginary component to the real component, {var_epsilon}{double_prime}/{var_epsilon}{prime} and is referred to as the loss angle tangent (tan {delta}) or dielectric loss. Changes in tan {delta} are characteristic of changes in dielectric losses during various developmental stages of the films. Permittivity scans in the above figure are of biofilm growth from P. Fluorescens (10e7 CFU's at the start). Three trends are apparent from these scans, the first being a small drop in the imaginary permittivity over a 7 hours period, best seen in the Cole-Cole plot (a). The second trend is

  4. Dynamic and interacting complex networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark E.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible

  5. Cnn: a Paradigm for Complexity

    NASA Astrophysics Data System (ADS)

    Chua, Leon O.

    The following sections are included: * What is a CNN? * Part I: Standard CNNs * Standard CNNs are uniquely specified by CNN genes * Oscillations and chaos from standard CNNs * Complete stability criteria for standard CNNs * Bistable criterion * Coding the CNN gene * Edge detection CNN * Corner detection CNN * A gallery of basic CNN genes * Does there exist a CNN gene for solving Minsky's global connectivity problem? * Decoding the CNN gene * Examples of input-output CNN operators * Uncoupled CNN genes * Boolean CNN genes and truth tables * What task can an uncoupled Boolean CNN gene Perform? * Bifurcation of CNN genes * The game-of-life CNN gene * The CNN universal machine * Generalized cellular automata * A glimpse at some real-world CNN applications * Part II: Autonomous CNNs * Pattern formation in standard CNNs * Characterization of stable equilibria * The dynamics of pattern formation * CNN pattern formation in biology and physics * Pattern formation in reaction-diffusion CNNs * Nonlinear waves in reaction-diffusion CNNs * Simulating nonlinear PDEs via autonomous CNNs * Part III: Local Activity: The Genesis of Complexity * Transistors and local activity: What do they have to common? * Nonlinear circuit models for reaction-diffusion CNNs * What is local activity? * Cell equilibrium points * Local state equations and local power flows * Local activity in reaction-diffusion CNN cells * Testing for local activity * Testing one-port CNN cells for local activity * Testing two-port CNN cells for local activity * Why is local activity necessary for pattern formation? * How to choose locally-active CNN parameters? * Local activity and stability are different concepts * The local activity dogma

  6. [Complex pelvic injury in childhood].

    PubMed

    Schmal, H; Klemt, C; Haag, C; Bonnaire, F

    2002-08-01

    Pelvic disruptions are rare in children caused by the flexible anchoring of bony parts associated with a high elasticity of the skeleton. Portion of pelvic fractures in infants is lower than 5% even when reviewing cases of specialized centers. The part of complex pelvic injuries and multiple injured patients in infants is higher when compared to adults, a fact caused by the more intense forces that are necessary to lead to pelvic disruption in children. Combination of a rare injury and the capability of children to compensate blood loss for a long time may implicate a wrong security and prolong diagnostic and therapeutic procedures--a problem that definitely should be avoided. Three cases were analyzed and established algorithms for treatment of patients matching these special injury-features demonstrated. A good outcome may only be achieved when all components of injury pattern get recognized and treatment is organized following the hierarchy of necessity. Therefore in the time table first life-saving steps have to be taken and then accompanying injuries can be treated that often decisively influence life quality. As seen in our cases unstable and dislocated fractures require open reduction and internal fixation ensuring nerval decompression, stop of hemorrhage and realizing the prerequisite for effective treatment of soft tissue damage. The acute hemorrhagic shock is one of the leading causes of death following severe pelvic injuries. After stabilization of fracture, surgical treatment of soft tissue injuries and intraabdominal bleeding sources the immediate diagnostic angiography possibly in combination with a therapeutic selective embolization is a well established part of the treatment. The aim of complete restitution can only be accomplished by cooperation of several different specialists and consultants in a trauma center.

  7. Molecular modeling of polynucleotide complexes.

    PubMed

    Meneksedag-Erol, Deniz; Tang, Tian; Uludağ, Hasan

    2014-08-01

    Delivery of polynucleotides into patient cells is a promising strategy for treatment of genetic disorders. Gene therapy aims to either synthesize desired proteins (DNA delivery) or suppress expression of endogenous genes (siRNA delivery). Carriers constitute an important part of gene therapeutics due to limitations arising from the pharmacokinetics of polynucleotides. Non-viral carriers such as polymers and lipids protect polynucleotides from intra and extracellular threats and facilitate formation of cell-permeable nanoparticles through shielding and/or bridging multiple polynucleotide molecules. Formation of nanoparticulate systems with optimal features, their cellular uptake and intracellular trafficking are crucial steps for an effective gene therapy. Despite the great amount of experimental work pursued, critical features of the nanoparticles as well as their processing mechanisms are still under debate due to the lack of instrumentation at atomic resolution. Molecular modeling based computational approaches can shed light onto the atomic level details of gene delivery systems, thus provide valuable input that cannot be readily obtained with experimental techniques. Here, we review the molecular modeling research pursued on critical gene therapy steps, highlight the knowledge gaps in the field and providing future perspectives. Existing modeling studies revealed several important aspects of gene delivery, such as nanoparticle formation dynamics with various carriers, effect of carrier properties on complexation, carrier conformations in endosomal stages, and release of polynucleotides from carriers. Rate-limiting steps related to cellular events (i.e. internalization, endosomal escape, and nuclear uptake) are now beginning to be addressed by computational approaches. Limitations arising from current computational power and accuracy of modeling have been hindering the development of more realistic models. With the help of rapidly-growing computational power

  8. Complexity of vitamin E metabolism

    PubMed Central

    Schmölz, Lisa; Birringer, Marc; Lorkowski, Stefan; Wallert, Maria

    2016-01-01

    Bioavailability of vitamin E is influenced by several factors, most are highlighted in this review. While gender, age and genetic constitution influence vitamin E bioavailability but cannot be modified, life-style and intake of vitamin E can be. Numerous factors must be taken into account however, i.e., when vitamin E is orally administrated, the food matrix may contain competing nutrients. The complex metabolic processes comprise intestinal absorption, vascular transport, hepatic sorting by intracellular binding proteins, such as the significant α-tocopherol-transfer protein, and hepatic metabolism. The coordinated changes involved in the hepatic metabolism of vitamin E provide an effective physiological pathway to protect tissues against the excessive accumulation of, in particular, non-α-tocopherol forms. Metabolism of vitamin E begins with one cycle of CYP4F2/CYP3A4-dependent ω-hydroxylation followed by five cycles of subsequent β-oxidation, and forms the water-soluble end-product carboxyethylhydroxychroman. All known hepatic metabolites can be conjugated and are excreted, depending on the length of their side-chain, either via urine or feces. The physiological handling of vitamin E underlies kinetics which vary between the different vitamin E forms. Here, saturation of the side-chain and also substitution of the chromanol ring system are important. Most of the metabolic reactions and processes that are involved with vitamin E are also shared by other fat soluble vitamins. Influencing interactions with other nutrients such as vitamin K or pharmaceuticals are also covered by this review. All these processes modulate the formation of vitamin E metabolites and their concentrations in tissues and body fluids. Differences in metabolism might be responsible for the discrepancies that have been observed in studies performed in vivo and in vitro using vitamin E as a supplement or nutrient. To evaluate individual vitamin E status, the analytical procedures used for

  9. Yolla Bolly Complex Wildland Fire

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Yolla Bolly Complex Wildland Fire was started on June 21 by a lightning strike. As of July 11, it had burned 8,000 acres and was 65% contained. This is one of the numerous lightning-triggered blazes burning in northern California this summer. This false-color image was made from visible and infrared data collected by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite on July 6. The image centers on the largest of the fires. The burned area is charcoal-colored, while surrounding forest and other vegetation is red. Smoke is light blue-gray.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 22.5 by 33.2 kilometers (14 by 20.6 miles) Location: 40.1 degrees North latitude, 122.9 degrees West longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49 feet) Dates Acquired: July 6, 2008

  10. Software Performs Complex Design Analysis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Designers use computational fluid dynamics (CFD) to gain greater understanding of the fluid flow phenomena involved in components being designed. They also use finite element analysis (FEA) as a tool to help gain greater understanding of the structural response of components to loads, stresses and strains, and the prediction of failure modes. Automated CFD and FEA engineering design has centered on shape optimization, which has been hindered by two major problems: 1) inadequate shape parameterization algorithms, and 2) inadequate algorithms for CFD and FEA grid modification. Working with software engineers at Stennis Space Center, a NASA commercial partner, Optimal Solutions Software LLC, was able to utilize its revolutionary, one-of-a-kind arbitrary shape deformation (ASD) capability-a major advancement in solving these two aforementioned problems-to optimize the shapes of complex pipe components that transport highly sensitive fluids. The ASD technology solves the problem of inadequate shape parameterization algorithms by allowing the CFD designers to freely create their own shape parameters, therefore eliminating the restriction of only being able to use the computer-aided design (CAD) parameters. The problem of inadequate algorithms for CFD grid modification is solved by the fact that the new software performs a smooth volumetric deformation. This eliminates the extremely costly process of having to remesh the grid for every shape change desired. The program can perform a design change in a markedly reduced amount of time, a process that would traditionally involve the designer returning to the CAD model to reshape and then remesh the shapes, something that has been known to take hours, days-even weeks or months-depending upon the size of the model.

  11. Adaptive Accommodation Control Method for Complex Assembly

    NASA Astrophysics Data System (ADS)

    Kang, Sungchul; Kim, Munsang; Park, Shinsuk

    Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.

  12. Molecular complexes in close and far away

    PubMed Central

    Klemperer, William; Vaida, Veronica

    2006-01-01

    In this review, gas-phase chemistry of interstellar media and some planetary atmospheres is extended to include molecular complexes. Although the composition, density, and temperature of the environments discussed are very different, molecular complexes have recently been considered as potential contributors to chemistry. The complexes reviewed include strongly bound aggregates of molecules with ions, intermediate-strength hydrogen bonded complexes (primarily hydrates), and weakly bonded van der Waals molecules. In low-density, low-temperature environments characteristic of giant molecular clouds, molecular synthesis, known to involve gas-phase ion-molecule reactions and chemistry at the surface of dust and ice grains is extended here to involve molecular ionic clusters. At the high density and high temperatures found on planetary atmospheres, molecular complexes contribute to both atmospheric chemistry and climate. Using the observational, laboratory, and theoretical database, the role of molecular complexes in close and far away is discussed. PMID:16740667

  13. LINCing complex functions at the nuclear envelope

    PubMed Central

    Rothballer, Andrea; Schwartz, Thomas U.; Kutay, Ulrike

    2013-01-01

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell. PMID:23324460

  14. A local Vapnik-Chervonenkis complexity.

    PubMed

    Oneto, Luca; Anguita, Davide; Ridella, Sandro

    2016-10-01

    We define in this work a new localized version of a Vapnik-Chervonenkis (VC) complexity, namely the Local VC-Entropy, and, building on this new complexity, we derive a new generalization bound for binary classifiers. The Local VC-Entropy-based bound improves on the original Vapnik's results because it is able to discard those functions that, most likely, will not be selected during the learning phase. The result is achieved by applying the localization principle to the original global complexity measure, in the same spirit of the Local Rademacher Complexity. By exploiting and improving a recently developed geometrical framework, we show that it is also possible to relate the Local VC-Entropy to the Local Rademacher Complexity by finding an admissible range for one given the other. In addition, the Local VC-Entropy allows one to reduce the computational requirements that arise when dealing with the Local Rademacher Complexity in binary classification problems.

  15. Physics of complex and supermolecular fluids

    SciTech Connect

    Safran, S.A.; Clark, N.A.

    1987-01-01

    The authors present a collection of papers from the International Symposium on Complex and Supermolecular Fluids presents tutorials and minireviews focusing on the physical properties of complex fluids using the concepts and techniques of condensed matter physics. The book stresses the unifying principles, rather than chemical details, behind the physics of diverse materials. Principal topics include colloids, microemulsions, ferrofluids, and micellar systems. It characterizes supermolecular and complex fluids by exploiting their analogies to atomic systems.

  16. Is Echo a complex adaptive system?

    PubMed

    Smith, R M; Bedau, M A

    2000-01-01

    We evaluate whether John Holland's Echo model exemplifies his theory of complex adaptive systems. After reviewing Holland's theory of complex adaptive systems and describing his Escho model, we describe and explain the characteristic evolutionary behavior observed in a series of Echo model runs. We conclude that Echo lacks the diversity of hierarchically organized aggregates that typify complex adaptive systems, and we explore possible explanations for this failure.

  17. Is a Universal Science of Complexity Conceivable?

    NASA Astrophysics Data System (ADS)

    West, Geoffrey B.

    Over the past quarter of a century, terms like complex adaptive system, the science of complexity, emergent behavior, self-organization, and adaptive dynamics have entered the literature, reflecting the rapid growth in collaborative, trans-disciplinary research on fundamental problems in complex systems ranging across the entire spectrum of science from the origin and dynamics of organisms and ecosystems to financial markets, corporate dynamics, urbanization and the human brain...

  18. On the Formation of "Hypercoordinated" Uranyl Complexes

    SciTech Connect

    Schoendorff, George E.; De Jong, Wibe A.; van Stipdonk, Michael J.; Gibson, John K.; Rios, Daniel; Gordon, Mark S.; Windus, Theresa L.

    2011-09-05

    Recent gas phase experimental studies suggest the presence of hypercoordinated uranyl complexes. Coordination of acetone (Ace) to uranyl to form hypercoordinated species is examined using density functional theory (DFT) with a range of functionals and second order perturbation theory (MP2). Complexes with up to eight acetones were studied. It is shown that no more than six acetones can bind directly to uranium and that the observed uranyl complexes are not hypercoordinated.

  19. Analysis of protein complexes using mass spectrometry.

    PubMed

    Gingras, Anne-Claude; Gstaiger, Matthias; Raught, Brian; Aebersold, Ruedi

    2007-08-01

    The versatile combination of affinity purification and mass spectrometry (AP-MS) has recently been applied to the detailed characterization of many protein complexes and large protein-interaction networks. The combination of AP-MS with other techniques, such as biochemical fractionation, intact mass measurement and chemical crosslinking, can help to decipher the supramolecular organization of protein complexes. AP-MS can also be combined with quantitative proteomics approaches to better understand the dynamics of protein-complex assembly.

  20. Fetal and neonatal presentation of OEIS complex.

    PubMed

    Allam, Emad S; Shetty, Vilaas S; Farmakis, Shannon G

    2015-12-01

    OEIS complex is a rare entity comprising a combination of omphalocele, exstrophy of the cloaca, imperforate anus, and spinal defects. We present a case that demonstrates the imaging features of OEIS complex, which also has the rare diagnosis of a terminal myelocystocele, across multiple imaging modalities both prenatally and postnatally. A prenatal diagnosis of OEIS complex allowed for appropriate planned multidisciplinary management of this patient.

  1. Complex visual hallucinations in the hemianopic field.

    PubMed Central

    Kölmel, H W

    1985-01-01

    From 120 patients with an homonymous hemianopia 16 experienced complex visual hallucinations in the hemianopic field. The brain lesion was located in the occipital lobe, though damage was not limited to this area. Complex hallucinations appeared after a latent period. They were weak in colour and stereotypical in appearance, which allowed differentiation from visual hallucinations of other causes. Different behaviour after saccadic eye movement differentiated between complex visual hallucinations in the hemianopic field and visual auras of an epileptic origin. PMID:3973619

  2. Advances in the Theory of Complex Networks

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando

    An exhaustive and comprehensive review on the theory of complex networks would imply nowadays a titanic task, and it would result in a lengthy work containing plenty of technical details of arguable relevance. Instead, this chapter addresses very briefly the ABC of complex network theory, visiting only the hallmarks of the theoretical founding, to finally focus on two of the most interesting and promising current research problems: the study of dynamical processes on transportation networks and the identification of communities in complex networks.

  3. Statistical Complexity of Neural Spike Trains

    DTIC Science & Technology

    2014-08-28

    SECURITY CLASSIFICATION OF: We present closed-form expressions for the entropy rate, statistical complexity, and predictive information for the spike...Triangle Park, NC 27709-2211 information, entropy rate, statistical complexity, excess entropy , integrate and fire neuron REPORT DOCUMENTATION PAGE 11...for the entropy rate, statistical complexity, and predictive information for the spike train of a single neuron in terms of the first passage time

  4. An index of orthodontic treatment complexity.

    PubMed

    Llewellyn, Stuart K; Hamdan, Ahmad M; Rock, William P

    2007-04-01

    The aim of the present study was to develop an index specifically for the measurement of treatment complexity. Input factors were directly related to complexity, and the output was a score measuring the degree of treatment complexity. The sample comprised 120 sets of dental casts, 30 for each of the four main malocclusion classes. Sixteen orthodontists graded the study casts for perceived treatment complexity on a six-point scale and then listed, in order of importance, up to three occlusal features which they felt contributed to complexity from a pre-determined list. Multiple regression analysis was used to derive weightings for each occlusal feature, which would reflect the relevant treatment complexity. In order to obtain an overall treatment complexity score for each case, weightings were then multiplied by the corresponding occlusal feature scores and summed. The relationship between treatment complexity scores and perceived complexity was examined using Spearman's ranked correlation coefficient. The regression equation explained 49.5 per cent of the variance in treatment complexity of the whole sample. Regression analysis on the basis of malocclusion produced R (2) values of 90.7 per cent for Class I, 42.6 per cent for Class II division 1, 62.3 per cent for Class II division 2, and 79.5 per cent for Class III malocclusions. The index of orthodontic treatment complexity (IOTC) scores showed a moderate but highly significant association with the orthodontists' perceived complexity assessments (rho = 0.42, P = 0.000). The proposed IOTC shows sufficient promise to warrant further development.

  5. Identification of Complex Carbon Nanotube Structures

    NASA Technical Reports Server (NTRS)

    Han, Jie; Saini, Subhash (Technical Monitor)

    1998-01-01

    A variety of complex carbon nanotube (CNT) structures have been observed experimentally. These include sharp bends, branches, tori, and helices. They are believed to be formed by using topological defects such as pentagons and heptagons to connect different CNT. The effects of type, number, and arrangement (separation and orientation) of defects on atomic structures and energetics of complex CNT are investigated using topology, quantum mechanics and molecular mechanics calculations. Energetically stable models are derived for identification of observed complex CNT structures.

  6. The Oedipus complex in the contemporary psychoanalysis.

    PubMed

    Borovecki-Jakovljev, Sanja; Matacić, Stanislav

    2005-06-01

    In this article, authors have tried to answer the question: "Where is the place, and what is the meaning of the Oedipus complex in contemporary psychoanalysis?" The review of different theoretical standpoints was given, according to meaning and place of the Oedipus complex in human development. Although it depends on the resolving of preoedipal conflicts, the conflicts of phallic phases of the psychosexual development are universal to all human being, no matter how we call them--Oedipus, Electra or Persephone Complex.

  7. Unusual Metalloporphyrin Complexes of Rhenium and Technetium

    DTIC Science & Technology

    1975-06-06

    homodinuclear porphyrins are centrosymmetric complexes having two metals bonded to the porphyrin, one above and one below the plane of the macrocycle while the...may be said about tnt structural details of the porphyrin macrocycle . S1U 6 Resu’i ts: Unusual Rhenium Metalloporphyrin Complexes Reflux of decalin...purphyrin, one above and one below the plane of the macrocyclic ligand. A comparison of these two complexes of Group Vllb congeners is of interest. The X-ray

  8. Glenohumeral instability associated with Buford complex.

    PubMed

    del Rey, Fernando Canillas; Vázquez, Diego García-Germán; López, Daniel Nieto

    2009-12-01

    Buford complex is described as a normal anatomical variant of the anterosuperior part of the glenoid consisting of the absence of the anterosuperior labrum with the presence of a cord-like middle glenohumeral ligament. Traditionally, reattachment to the glenoid has been discouraged. We present a case of a Buford complex associated with glenohumeral instability. The patient was operated for recurrent instability without a preoperative diagnosis of Buford complex. The diagnosis was made during shoulder arthroscopy and reattachment to the glenoid was performed with a satisfactory outcome. Here, we discuss the relationship of the Buford complex with intraarticular pathology and the surgical treatment in cases when this variant is associated with instability.

  9. CORRELATION PROFILES AND MOTIFS IN COMPLEX NETWORKS.

    SciTech Connect

    MASLOV,S.SNEPPEN,K.ALON,U.

    2004-01-16

    Networks have recently emerged as a unifying theme in complex systems research [1]. It is in fact no coincidence that networks and complexity are so heavily intertwined. Any future definition of a complex system should reflect the fact that such systems consist of many mutually interacting components. These components are far from being identical as say electrons in systems studied by condensed matter physics. In a truly complex system each of them has a unique identity allowing one to separate it from the others. The very first question one may ask about such a system is which other components a given component interacts with? This information system wide can be visualized as a graph, whose nodes correspond to individual components of the complex system in question and edges to their mutual interactions. Such a network can be thought of as a backbone of the complex system. Of course, system's dynamics depends not only on the topology of an underlying network but also on the exact form of interaction of components with each other, which can be very different in various complex systems. However, the underlying network may contain clues about the basic design principles and/or evolutionary history of the complex system in question. The goal of this article is to provide readers with a set of useful tools that would help to decide which features of a complex network are there by pure chance alone, and which of them were possibly designed or evolved to their present state.

  10. An index of floodplain surface complexity

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2016-01-01

    Floodplain surface topography is an important component of floodplain ecosystems. It is the primary physical template upon which ecosystem processes are acted out, and complexity in this template can contribute to the high biodiversity and productivity of floodplain ecosystems. There has been a limited appreciation of floodplain surface complexity because of the traditional focus on temporal variability in floodplains as well as limitations to quantifying spatial complexity. An index of floodplain surface complexity (FSC) is developed in this paper and applied to eight floodplains from different geographic settings. The index is based on two key indicators of complexity, variability in surface geometry (VSG) and the spatial organisation of surface conditions (SPO), and was determined at three sampling scales. FSC, VSG, and SPO varied between the eight floodplains and these differences depended upon sampling scale. Relationships between these measures of spatial complexity and seven geomorphological and hydrological drivers were investigated. There was a significant decline in all complexity measures with increasing floodplain width, which was explained by either a power, logarithmic, or exponential function. There was an initial rapid decline in surface complexity as floodplain width increased from 1.5 to 5 km, followed by little change in floodplains wider than 10 km. VSG also increased significantly with increasing sediment yield. No significant relationships were determined between any of the four hydrological variables and floodplain surface complexity.

  11. Local Geometrical Machinery for Complexity and Control

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    In this Chapter, we present local geometrical machinery for studying complexity and control, consisting of dynamics on Kähler manifolds, which combine three geometrical structures-Riemannian, symplectic and complex (Hermitian)-in a mutually compatible way. In other words, every Kähler manifold is simultaneously Riemannian, symplectic and complex (Hermitian). It is well known that Riemannian manifolds represent the stage on which Lagrangian dynamics is set, symplectic manifolds represent the stage for Hamiltonian dynamics, and complex (Hermitian) varieties comprise the stage for quantum dynamics. Therefore, Kähler manifolds represent the richest dynamical stage available where Lagrangian, Hamiltonian, and quantum dynamics all dance together.

  12. Statistical physics of complex networks

    NASA Astrophysics Data System (ADS)

    Xie, Huafeng

    We live in a connected world. It is of great practical importance and intellectual appeal to understand the networks surrounding us. In this work we study ranking of the nodes in complex networks. In large networks such as World Wide Web (WWW) and citation networks of scientific literature, searching by keywords is a common practice to retrieve useful information. On the WWW, apart from the contents of webpages, the topology of the network itself can be a rich source of information about their relative importance and relevancy to the search query. It is the effective utilization of this topological information [50] which advanced the Google search engine to its present position of the most popular tool on the WWW. The World-Wide Web (WWW) is characterized by a strong community structure in which communities of webpages are densely interconnected by hyperlinks. We study how such network architecture affects the average Google ranking of individual webpages in the community. Using a mean-field approximation, we quantify how the average Google rank of community's webpages depends on the degree to which it is isolated from the rest of the world in both incoming and outgoing directions, and alpha -- the only intrinsic parameter of Google's PageRank algorithm. We proceed with numerical study of simulated networks and empirical study of several internal web-communities within two US universities. The predictions of our mean-field treatment were qualitatively verified in those real-life networks. Furthermore, the value alpha = 0.15 used by Google seems to be optimized for the degree of isolation of communities as they exist in the actual WWW. We then extend Google's PageRank algorithm to citation networks of scientific literature. Unlike hyperlinks, citations cannot be updated after the point of publication. This results in strong aging characteristics of citation networks that affect the performance of the PageRank algorithm. To rectify this we modify the Page

  13. Overview of Hall D Complex

    SciTech Connect

    Chudakov, Eugene A.

    2016-04-01

    Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillator hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is

  14. Physical mapping of complex genomes

    DOEpatents

    Evans, G.A.

    1993-06-15

    A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.

  15. The Exstrophy-epispadias complex

    PubMed Central

    Ebert, Anne-Karoline; Reutter, Heiko; Ludwig, Michael; Rösch, Wolfgang H

    2009-01-01

    Exstrophy-epispadias complex (EEC) represents a spectrum of genitourinary malformations ranging in severity from epispadias (E) to classical bladder exstrophy (CEB) and exstrophy of the cloaca (EC). Depending on severity, EEC may involve the urinary system, musculoskeletal system, pelvis, pelvic floor, abdominal wall, genitalia, and sometimes the spine and anus. Prevalence at birth for the whole spectrum is reported at 1/10,000, ranging from 1/30,000 for CEB to 1/200,000 for EC, with an overall greater proportion of affected males. EEC is characterized by a visible defect of the lower abdominal wall, either with an evaginated bladder plate (CEB), or with an open urethral plate in males or a cleft in females (E). In CE, two exstrophied hemibladders, as well as omphalocele, an imperforate anus and spinal defects, can be seen after birth. EEC results from mechanical disruption or enlargement of the cloacal membrane; the timing of the rupture determines the severity of the malformation. The underlying cause remains unknown: both genetic and environmental factors are likely to play a role in the etiology of EEC. Diagnosis at birth is made on the basis of the clinical presentation but EEC may be detected prenatally by ultrasound from repeated non-visualization of a normally filled fetal bladder. Counseling should be provided to parents but, due to a favorable outcome, termination of the pregnancy is no longer recommended. Management is primarily surgical, with the main aims of obtaining secure abdominal wall closure, achieving urinary continence with preservation of renal function, and, finally, adequate cosmetic and functional genital reconstruction. Several methods for bladder reconstruction with creation of an outlet resistance during the newborn period are favored worldwide. Removal of the bladder template with complete urinary diversion to a rectal reservoir can be an alternative. After reconstructive surgery of the bladder, continence rates of about 80% are

  16. Advances in complex electromagnetic media

    NASA Astrophysics Data System (ADS)

    Kundtz, Nathan

    In this dissertation the tools used in the field of transformation optics will be explored and expanded. Several new designs are discussed, each of which expands upon the ideas that have previously been employed in the field. To begin, I show that the explicit use of a transformation which extends throughout all space may be used to reduce the overall size of an optical device without changing its optical properties. A lens is chosen as a canonical device to demonstrate this behavior. For this work I provided the original idea for a compressing transformation as well as its dielectric-only implementation. For a particular functionality the choice of transformation is, in general, not unique. It is natural, then, to seek optimized transformations which reduce the complexity of the final structure. It was recently demonstrated that for some transformations a numerical scheme could be employed to find quasi-conformal transformations for which the requisite complex material distribution could be well approximated by an isotropic, inhomogeneous media. This process was previously used to demonstrate a carpet cloak---a device which masks a bump in a mirror surface. Unlike the more common transformation optical media, which exhibit strong losses at high frequencies, isotropic designs can be readily made to function at infrared or even optical frequencies. The prospect of leveraging transformation optics in devices which operate at high frequencies, into the infrared and visible, motivates the use of quasi-conformal transformations in lens design. I demonstrate how transformation optics can be used to take a classical lens design based on spherical symmetry, such as a Luneburg lens, and warp it to suit the requirements of a planar imaging array. I report on the experimental demonstration of this lens at microwave frequencies. In the final design a lens is demonstrated in a two-dimensional field mapping waveguide to have a field of view of ˜ 140° and a bandwidth exceeding

  17. Thinking Forbidden Thoughts: The Oedipus Complex as a Complex of Knowing.

    PubMed

    Schein, Michael

    2016-04-01

    The Oedipus complex, considered by Freud the "nuclear complex of development," played a central role in the evolution of psychoanalytic thought. This paper returns to the point of transition from the seduction theory, Freud's initial theorem, to the oedipal model, and suggests that the Oedipus complex is first and foremost a text and as such contains a multiplicity of narratives. In particular, the author articulates the close relation between the Oedipus complex and the subject of knowing, postulating that underlying its surface level, the deep-level structure of this complex is one of knowing. As a complex of knowing it is of dual quality, both promoting and impeding the ability to know.

  18. Complex fuzzy set-valued complex fuzzy measures and their properties.

    PubMed

    Ma, Shengquan; Li, Shenggang

    2014-01-01

    Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail.

  19. A Complex-Valued Projection Neural Network for Constrained Optimization of Real Functions in Complex Variables.

    PubMed

    Zhang, Songchuan; Xia, Youshen; Wang, Jun

    2015-12-01

    In this paper, we present a complex-valued projection neural network for solving constrained convex optimization problems of real functions with complex variables, as an extension of real-valued projection neural networks. Theoretically, by developing results on complex-valued optimization techniques, we prove that the complex-valued projection neural network is globally stable and convergent to the optimal solution. Obtained results are completely established in the complex domain and thus significantly generalize existing results of the real-valued projection neural networks. Numerical simulations are presented to confirm the obtained results and effectiveness of the proposed complex-valued projection neural network.

  20. Definitions of Complexity are Notoriously Difficult

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    Definitions of complexity are notoriously difficult if not impossible at all. A good working hypothesis might be: Everything is complex that is not simple. This is precisely the way in which we define nonlinear behavior. Things appear complex for different reasons: i) Complexity may result from lack of insight, ii) complexity may result from lack of methods, and (iii) complexity may be inherent to the system. The best known example for i) is celestial mechanics: The highly complex Pythagorean epicycles become obsolete by the introduction of Newton's law of universal gravitation. To give an example for ii), pattern formation and deterministic chaos became not really understandable before extensive computer simulations became possible. Cellular metabolism may serve as an example for iii) and is caused by the enormous complexity of biochemical reaction networks with up to one hundred individual reaction fluxes. Nevertheless, only few fluxes are dominant in the sense that using Pareto optimal values for them provides near optimal values for all the others...

  1. Incidental Learning in a Complex Clinical Workplace

    ERIC Educational Resources Information Center

    Harner, Michael Dean

    2013-01-01

    Workplace learning is complex as employees engage in activities to meet organizational objectives. This study investigates incidental learning in a complex clinical environment. The systems created to collect information and perform patient-visit functions involve several people who have distinct roles that can impact how subsequent people in the…

  2. Complexity in Vocational Education and Training Governance

    ERIC Educational Resources Information Center

    Oliver, Damian

    2010-01-01

    Complexity is a feature common to all vocational education and training (VET) governance arrangements, due to the wide range of students VET systems caters for, and the number of stakeholders involved in both decision making and funding and financing. In this article, Pierre and Peter's framework of governance is used to examine complexity in VET…

  3. Variable Complexity Optimization of Composite Structures

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    2002-01-01

    The use of several levels of modeling in design has been dubbed variable complexity modeling. The work under the grant focused on developing variable complexity modeling strategies with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and design against uncertainty using response surface techniques.

  4. Predicting complex mineral structures using genetic algorithms.

    PubMed

    Mohn, Chris E; Kob, Walter

    2015-10-28

    We show that symmetry-adapted genetic algorithms are capable of finding the ground state of a range of complex crystalline phases including layered- and incommensurate super-structures. This opens the way for the atomistic prediction of complex crystal structures of functional materials and mineral phases.

  5. The Complex Origins of the Registrar

    ERIC Educational Resources Information Center

    Smith, Shawn C.

    2012-01-01

    The origins of the registrar's office are complex. According to common tradition, the registrar was, or evolved from, the office of the beadle (sometimes referred to as "bedel") in the medieval university. This tradition is incorrect; the story is more complex. The beadle sometimes performed functions similar to those performed by the…

  6. [Contemporaneous history: complex techniques of assisted reproduction].

    PubMed

    Alvarez Díaz, Jorge Alberto

    2007-05-01

    The work begins with historical considerations about the development of embryology at the beginning of the twentieth century and the vast advance obtained to the arriving of complex assisted reproductive techniques. Afterwards it is reviewed the development of variants and possibilities of the techniques. Finally, it is proposed four historic periods regarding the development of complex assisted reproductive technologies.

  7. Complex Gleason measures and the Nemytsky operator

    NASA Astrophysics Data System (ADS)

    Valles, Miguel A.

    This thesis is devoted to generalize previous results on Gleason measures to complex Gleason measures, and to develop a functional calculus for complex measures in relation to the Nemytsky operator. Furthermore we present the interpretation of our results in the field of quantum mechanics, some concrete examples and further extensions of several theorems.

  8. Thoughts on a Pedagogy OF Complexity

    ERIC Educational Resources Information Center

    Byrne, David

    2014-01-01

    There is now a developed and extensive literature on the implications of the "complexity frame of reference" (Castellani & Hafferty, 2009) for education in general and pedagogy in particular. This includes a wide range of interesting contributions which consider how complexity can inform, inter alia, research on educational systems…

  9. Complex Burn Region Module (CBRM) update

    NASA Technical Reports Server (NTRS)

    Adams, Carl L.; Jenkins, Billy

    1991-01-01

    Presented here is a Complex Burn Region Module (CBRM) update for the Solid Rocket Internal Ballistics Module (SRIBM) Program for the Advanced Solid Rocket Motor (ASRM) design/performance assessments. The goal was to develop an improved version of the solid rocket internal ballistics module program that contains a diversified complex region model for motor grain design, performance prediction, and evaluation.

  10. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  11. Structure of DNA-liposome complexes

    SciTech Connect

    Lasic, D.D.; Strey, H.; Podgornik, R.; Stuart, M.C.A.; Frederik, P.M.

    1997-01-29

    Despite numerous studies and commericially available liposome kits, however, the structure of DNA-cationic liposome complexes is still not yet well understood. We have investigated the structure of these complexes using high-resolution cryo electron microscopy (EM) and small angle X-ray scattering (SAXS). 14 refs., 3 figs.

  12. The Complexity of One-Step Equations

    ERIC Educational Resources Information Center

    Ngu, Bing

    2014-01-01

    An analysis of one-step equations from a cognitive load theory perspective uncovers variation within one-step equations. The complexity of one-step equations arises from the element interactivity across the operational and relational lines. The higher the number of operational and relational lines, the greater the complexity of the equations.…

  13. Density functional theory of complex transition densities.

    PubMed

    Ernzerhof, Matthias

    2006-09-28

    We present an extension of Hohenberg-Kohn-Sham density functional theory to the domain of complex local potentials and complex electron densities. The approach is applicable to resonance (Siegert) [Phys. Rev. 56, 750 (1939)] states and other scattering and transport problems that can be described by a normalized state of a Hamiltonian containing a complex local potential. Such Hamiltonians are non-Hermitian and their eigenvalues are in general complex, the imaginary part being inversely proportional to the lifetime of the system. The one-to-one correspondence between complex local potentials nu and complex electron densities rho is established provided that the complex variables are sufficiently close to real local potentials and densities of nondegenerate ground states. We show that the exchange-correlation functionals, contributing to the complex energy, are determined through analytic continuation of their ground-state-theory counterparts. This implies that the exchange-correlation effects on the lifetime of a resonance are, under appropriate conditions, already determined by the functionals of the ground-state theory.

  14. ICD Complex Operations and Maintenance Plan

    SciTech Connect

    Gibson, P. L.

    2007-06-25

    This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.

  15. Preparation of cerium halide solvate complexes

    SciTech Connect

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  16. On the Concept Image of Complex Numbers

    ERIC Educational Resources Information Center

    Nordlander, Maria Cortas; Nordlander, Edvard

    2012-01-01

    A study of how Swedish students understand the concept of complex numbers was performed. A questionnaire was issued reflecting the student view of own perception. Obtained answers show a variety of concept images describing how students adopt the concept of complex numbers. These concept images are classified into four categories in order to…

  17. Examining Text Complexity in the Early Grades

    ERIC Educational Resources Information Center

    Fitzgerald, Jill; Elmore, Jeff; Hiebert, Elfrieda H.; Koons, Heather H.; Bowen, Kimberly; Sanford-Moore, Eleanor E.; Stenner, A. Jackson

    2016-01-01

    The Common Core raises the stature of texts to new heights, creating a hubbub. The fuss is especially messy at the early grades, where children are expected to read more complex texts than in the past. But early-grades teachers have been given little actionable guidance about text complexity. The authors recently examined early-grades texts to…

  18. Early Childhood Practice and Refrains of Complexity

    ERIC Educational Resources Information Center

    Cumming, Tamara; Sumsion, Jennifer; Wong, Sandie

    2015-01-01

    Early childhood practice has often been described as complex in both policy documents and research literature; however, less attention has been given to exploring the nature and consequences of complexity in early childhood practice. At a time of intense policy attention in many national contexts, there is the potential for closing down, as well…

  19. Phonetic Complexity and Stuttering in Spanish

    ERIC Educational Resources Information Center

    Howell, Peter; Au-Yeung, James

    2007-01-01

    The current study investigated whether phonetic complexity affected stuttering rate for Spanish speakers. The speakers were assigned to three age groups (6-11, 12-17 and 18-years plus) that were similar to those used in an earlier study on English. The analysis was performed using Jakielski's Index of Phonetic Complexity (IPC) scheme in which each…

  20. Managing Complex Problems in Rangeland Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of rangelands, and natural resources in general, has become increasingly complex. There is an atmosphere of increasing expectations for conservation efforts associated with a variety of issues from water quality to endangered species. We argue that many current issues are complex by their...