Yokoyama, Atsutoshi; Cho, Kyung-Bin
2013-01-01
The reaction of an end-on Cr(III)-superoxo complex bearing a 14-membered tetraazamacrocyclic TMC ligand, [CrIII(14-TMC)(O2)(Cl)]+, with nitric oxide (NO) resulted in the generation of a stable Cr(IV)-oxo species, [CrIV(14-TMC)(O)(Cl)]+, via the formation of a Cr(III)-peroxynitrite intermediate and homolytic O-O bond cleavage of the peroxynitrite ligand. Evidence for the latter comes from EPR spectroscopy, computational chemistry, and the observation of phenol nitration chemistry. The Cr(IV)-oxo complex does not react with nitrogen dioxide (NO2), but reacts with NO to afford a Cr(III)-nitrito complex, [CrIII(14-TMC)(NO2)(Cl)]+. The Cr(IV)-oxo and Cr(III)-nitrito complexes were also characterized spectroscopically and/or structurally. PMID:24066924
Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo
2014-02-18
Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).
Neptunium and plutonium complexes with a sterically encumbered triamidoamine (TREN) scaffold
Brown, Jessie L.; Gaunt, Andrew J.; King, David M.; ...
2016-03-11
Here, the syntheses and characterization of isostructural neptunium(IV) and plutonium(IV) complexes [M IV(TREN TIPS)(Cl)] [An = Np, Pu; TREN TIPS = {N(CH 2CH 2NSiPr i 3) 3} 3] are reported, along with the demonstration that they are likely reduced to the corresponding neptunium(III) and plutonium(III) products [M III(TREN TIPS)]; this chemistry provides new platforms from which to target a plethora of unprecedented molecular functionalities in transuranic chemistry and the neptunium(IV) molecule is the first structurally characterized neptunium(IV)–amide complex.
Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo
2014-01-01
Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+. PMID:24394960
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Sherif, Yousery E.
2015-02-01
Three new metal complexes derived from Pd(II), Ru(III) and Zr(IV) with (E)-2-amino-N-(1-(2-aminophenyl)ethylidene)benzohydrazide (2-AAB) have been synthesized. The isolated complexes were characterized by elemental analyses, FT-IR, UV-Vis, ES-MS, 1H NMR, XRD, thermal analyses (TGA and DTA) and conductance. The morphology and the particle size were determined by transmittance electron microscope (TEM). The results showed that, the ligand coordinates to Pd(II) in the enol form, while it coordinates to Ru(III) and Zr(IV) in the keto form. A square planar geometry is suggested for Pd(II) complex and octahedral geometries are suggested for Ru(III) and Zr(IV) complexes. The optical band gaps of the isolated complexes were measured and indicated the semi-conductivity nature of the complexes. The anti-inflammatory and analgesic activities of the ligand and its complexes showed that, Ru(III) complex has higher effect than the well known drug "meloxicam".
Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides
NASA Astrophysics Data System (ADS)
Duckworth, O.; John, B.; Sposito, G.
2006-12-01
Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etschmann, Barbara E.; Liu, Weihua; Pring, Allan
2016-05-01
Tellurium (Te) and bismuth (Bi) are two metal(loid)s often enriched together with gold (Au) in hydrothermal deposits; however the speciation and transport properties for these two metals in hydrothermal systems are poorly understood. We investigated the effect of chloride on the speciation of Te(IV) and Bi(III) in hydrothermal solutions using in-situ XAS spectroscopy. At ambient temperature, oxy-hydroxide complexes containing the [TeO3] moiety (e.g., H3TeO3+ under highly acidic conditions) predominate in salty solutions over a wide range in pH and salt concentrations. Te(IV)-Cl complexes only appear at pH(25 degrees C) <= 2 and high Cl- activity (>= 10). The highest ordermore » Te(IV) chloride complex detected is TeCl4(aq), and contains the [TeCl4] moiety. Upon heating to 199 degrees C, the Te(IV)-Cl complexes become more stable; however they still required highly acidic conditions which are likely to exist only in very limited environments in nature. At ambient temperature, Bi(III) is coordinated to 5.5(5) Cl atoms in high salinity, acidic (HCl >= 0.5 m) chloride solutions. This, combined with large EXAFS-derived structural disorder parameters, suggests that the Bi(III) complex is most likely present as both BiCl52- and BiCl63-. The number of Cl atoms coordinated to Bi(III) decreases with increasing temperature; at around 200 degrees C and above, Bi(III) is coordinated to three Cl atoms. Overall the data show that Te(IV) chloride complexes can be ignored in predicting Te mobility under oxidizing conditions in most geological environments, but that Bi(III) chloride complexes are expected to account for Bi mobility in acidic brines. New thermodynamic properties for Bi(III) chloride complexes are provided to improve reactive transport modeling of Bi up to 500 degrees C. Although higher order complexes such as BiCl52- and BiCl63- exist at ambient temperature, the BiCl3(aq) complex becomes the predominant chloride complex in saline solutions at T >= 200 degrees C.« less
NASA Astrophysics Data System (ADS)
Abou-Hussein, Azza A. A.; Linert, Wolfgang
Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H2L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H2L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO2(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H2L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N2S2 donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis 1H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.
Abou-Hussein, Azza A A; Linert, Wolfgang
2012-09-01
Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H(2)L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H(2)L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO(2)(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H(2)L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N(2)S(2) donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis (1)H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms. Copyright © 2012 Elsevier B.V. All rights reserved.
Hennig, Christoph; Ikeda-Ohno, Atsushi; Kraus, Werner; Weiss, Stephan; Pattison, Philip; Emerich, Hermann; Abdala, Paula M; Scheinost, Andreas C
2013-10-21
Cerium(III) and cerium(IV) both form formate complexes. However, their species in aqueous solution and the solid-state structures are surprisingly different. The species in aqueous solutions were investigated with Ce K-edge EXAFS spectroscopy. Ce(III) formate shows only mononuclear complexes, which is in agreement with the predicted mononuclear species of Ce(HCOO)(2+) and Ce(HCOO)2(+). In contrast, Ce(IV) formate forms in aqueous solution a stable hexanuclear complex of [Ce6(μ3-O)4(μ3-OH)4(HCOO)x(NO3)y](12-x-y). The structural differences reflect the different influence of hydrolysis, which is weak for Ce(III) and strong for Ce(IV). Hydrolysis of Ce(IV) ions causes initial polymerization while complexation through HCOO(-) results in 12 chelate rings stabilizing the hexanuclear Ce(IV) complex. Crystals were grown from the above-mentioned solutions. Two crystal structures of Ce(IV) formate were determined. Both form a hexanuclear complex with a [Ce6(μ3-O)4(μ3-OH)4](12+) core in aqueous HNO3/HCOOH solution. The pH titration with NaOH resulted in a structure with the composition [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)2(H2O)3]·(H2O)9.5, while the pH adjustment with NH3 resulted in [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)4]·(NO3)3(NH4)5(H2O)5. Furthermore, the crystal structure of Ce(III) formate, Ce(HCOO)3, was determined. The coordination polyhedron is a tricapped trigonal prism which is formed exclusively by nine HCOO(-) ligands. The hexanuclear Ce(IV) formate species from aqueous solution is widely preserved in the crystal structure, whereas the mononuclear solution species of Ce(III) formate undergoes a polymerization during the crystallization process.
Yano, Junko; Sauer, Kenneth; Girerd, Jean-Jacques; Yachandra, Vittal K
2004-06-23
The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.
Zhu, Mengqiang; Paul, Kristian W; Kubicki, James D; Sparks, Donald L
2009-09-01
Density functional theory (DFT) calculations were used to investigate As(V) and As(III) surface complex structures and reaction energies on both Mn(III) and Mn(IV) sites in an attempt to better understand As(III) oxidation bybirnessite, a layered Mn-dioxide mineral. Edge-sharing dioctahedral Mn(III) and Mn(IV) clusters with different combinations of surface functional groups (>MnOH and >MnOH2) were employed to mimic pH variability. Results show that As(V) adsorption was more thermodynamically favorable than As(III) adsorption on both Mn(III) and Mn(IV) surface sites under simulated acidic pH conditions. Therefore, we propose that As(V) adsorption inhibits As(III) oxidation by blocking adsorption sites. Under simulated acidic pH conditions, Mn(IV) sites exhibited stronger adsorption affinity than Mn(III) sites for both As(III) and As(V). Overall, we hypothesize that Mn(III) sites are less reactive in terms of As(III) oxidation due to their lower affinity for As(III) adsorption, higher potential to be blocked by As(V) complexes, and slower electron transfer rates with adsorbed As(III). Results from this study offer an explanation regarding the experimental observations of Mn(III) accumulation on birnessite and the long residence time of As(III) adsorption complexes on manganite (r-MnOOH) during As(III) oxidation.
Chromium(IV)–Peroxo Complex Formation and Its Nitric Oxide Dioxygenase Reactivity
Yokoyama, Atsutoshi; Han, Jung Eun; Cho, Jaeheung; Kubo, Minoru; Ogura, Takashi; Siegler, Maxime A.; Karlin, Kenneth D.; Nam, Wonwoo
2012-01-01
The O2 and NO reactivity of a Cr(II) complex bearing a 12-membered tetraazamacrocyclic TMC ligand, [CrII(12-TMC)(Cl)]+ (1), and the NO reactivity of its peroxo derivative, [CrIV(12-TMC)(O2)(Cl)]+ (2), are described. By contrast to the previously reported Cr(III)-superoxo complex, [CrIII(14-TMC)(O2)(Cl)]+, a Cr(IV)-peroxo complex (2) is formed in the reaction of 1 and O2. Full spectroscopic and X-ray analysis reveals that 2 possesses a side-on η2-peroxo ligation. A quantitative reaction of 2 with NO affords a reduction in Cr oxidation state and production of a Cr(III)-nitrato complex, [CrIII(12-TMC)(NO3)(Cl)]+ (3). The latter is suggested to form via a Cr(III)-peroxynitrite intermediate. A Cr(II)-nitrosyl complex, [CrII(12-TMC)(NO)(Cl)]+ (4), derived from 1 andNO could also be synthesized; however, it does not react with O2. PMID:22950528
Deblonde, Gauthier J-P.; Sturzbecher-Hoehne, Manuel; Abergel, Rebecca J.
2013-01-01
The solution thermodynamics of water soluble complexes formed between Ce(III), Ce(IV), Th(IV) and the octadentate chelating agent 3,4,3-LI(1,2-HOPO) were investigated. Several techniques including spectrofluorimetric and automated spectrophotometric titrations were used to overcome the slow spontaneous oxidation of Ce(III) complexes yielding to stability constants of log β110 = 17.4 ± 0.5, log β11-1 = 8.3 ± 0.4 and log β111 = 21.2 ± 0.4 for [Ce(III)(3,4,3-LI(1,2-HOPO))]−, [Ce(III)(3,4,3-LI(1,2-HOPO)(OH)]2− and [Ce(III)(3,4,3-LI(1,2-HOPO)H], respectively. Using the spectral properties of the hydroxypyridinonate chelator in ligand competition titrations against nitrilotriacetic acid, the stability constant log β110 = 41.5 ± 0.5 was determined for [Ce(IV)(3,4,3-LI(1,2-HOPO))]. Finally, the extraordinarily stable complex [Ce(IV)(3,4,3-LI(1,2-HOPO))] was used in Th(IV) competition titrations, resulting in a stability constant of log β110 = 40.1 ± 0.5 for [Th(IV)3,4,3-LI(1,2-HOPO))]. These experimental values are in excellent agreement with previous estimates, they are discussed with respect to the ionic radius and oxidation state of each cationic metal and allow predictions on the stability of other actinide complexes including [U(IV)(3,4,3-LI(1,2-HOPO))], [Np(IV)(3,4,3-LI(1,2-HOPO))] and [Pu(IV)(3,4,3-LI(1,2-HOPO))]. Comparisons with the standard ligand diethylenetriamine pentaacetic acid (DTPA) provide a thermodynamic basis for the observed significantly higher efficacy of 3,4,3-LI(1,2-HOPO) as an in vivo actinide decorporation agent. PMID:23855806
Loza-Rosas, Sergio A; Vázquez-Salgado, Alexandra M; Rivero, Kennett I; Negrón, Lenny J; Delgado, Yamixa; Benjamín-Rivera, Josué A; Vázquez-Maldonado, Angel L; Parks, Timothy B; Munet-Colón, Charlene; Tinoco, Arthur D
2017-07-17
The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox) 2 in solution. The predominant complex at pH 7.4, [Ti(deferasirox) 2 ] 2- , exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and 1 H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox) 2 ] 2- transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion mechanism of these compounds and show their ability to induce early and late apoptosis.
NASA Astrophysics Data System (ADS)
Kanchana Devi, A.; Ramesh, R.
2014-01-01
Synthesis of several new octahedral binuclear ruthenium(III) complexes of the general composition [(EPh3)2(X)Ru-L-Ru(X)(EPh3)2] containing benzene dithiosemicarbazone ligands (where E = P or As; X = Cl or Br; L = binucleating ligands) is presented. All the complexes have been fully characterized by elemental analysis, FT-IR, UV-vis and EPR spectroscopy together with magnetic susceptibility measurements. IR study shows that the dithiosemicarbazone ligands behave as dianionic tridentate ligands coordinating through the oxygen atom of the deprotonated phenolic group, nitrogen atom of the azomethine group and thiolate sulphur. In DMF solution, all the complexes exhibit intense d-d transition and ligand-to-metal charge transfer (LMCT) transition in the visible region. The magnetic moment values of the complexes are in the range 1.78-1.82 BM, which reveals the presence of one unpaired electron on each metal ion. The EPR spectra of the liquid samples at LNT show the presence of three different 'g' values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. All the complexes exhibit two quasi-reversible one electron oxidation responses (RuIII-RuIII/RuIII-RuIV; RuIII-RuIV/RuIV-RuIV) within the E1/2 range of 0.61-0.74 V and 0.93-0.98 V respectively, versus Ag/AgCl.
Leto, Domenick F; Chattopadhyay, Swarup; Day, Victor W; Jackson, Timothy A
2013-09-28
Herein we describe the chemical reactivity of the mononuclear [Mn(II)(N4py)(OTf)](OTf) (1) complex with hydrogen peroxide and superoxide. Treatment of 1 with one equivalent superoxide at -40 °C in MeCN formed the peroxomanganese(III) adduct, [Mn(III)(O2)(N4py)](+) (2) in ~30% yield. Complex 2 decayed over time and the formation of the bis(μ-oxo)dimanganese(III,IV) complex, [Mn(III)Mn(IV)(μ-O)2(N4py)2](3+) (3) was observed. When 2 was formed in higher yields (~60%) using excess superoxide, the [Mn(III)(O2)(N4py)](+) species thermally decayed to Mn(II) species and 3 was formed in no greater than 10% yield. Treatment of [Mn(III)(O2)(N4py)](+) with 1 resulted in the formation of 3 in ~90% yield, relative to the concentration of [Mn(III)(O2)(N4py)](+). This reaction mimics the observed chemistry of Mn-ribonucleotide reductase, as it features the conversion of two Mn(II) species to an oxo-bridged Mn(III)Mn(IV) compound using O2(-) as oxidant. Complex 3 was independently prepared through treatment of 1 with H2O2 and base at -40 °C. The geometric and electronic structures of 3 were probed using electronic absorption, electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), variable-temperature, variable-field MCD (VTVH-MCD), and X-ray absorption (XAS) spectroscopies. Complex 3 was structurally characterized by X-ray diffraction (XRD), which revealed the N4py ligand bound in an unusual tetradentate fashion.
Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex
Cho, Jaeheung; Jeon, Sujin; Wilson, Samuel A.; Liu, Lei V.; Kang, Eun A; Braymer, Joseph J.; Lim, Mi Hee; Hedman, Britt; Hodgson, Keith O.; Valentine, Joan Selverstone; Solomon, Edward I.; Nam, Wonwoo
2012-01-01
Oxygen-containing mononuclear iron species—iron(III)–peroxo, iron(III)–hydroperoxo and iron(IV)–oxo—are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes1–7. It has been difficult to generate synthetic analogues of these three active iron–oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron centre during catalysis and the factors that control their chemical reactivities with substrates. Here we report the high-resolution crystal structure of a mononuclear non-haem side-on iron(III)–peroxo complex, [Fe(III)(TMC)(OO)]+. We also report a series of chemical reactions in which this iron(III)–peroxo complex is cleanly converted to the iron(III)–hydroperoxo complex, [Fe(III)(TMC)(OOH)]2+, via a short-lived intermediate on protonation. This iron(III)–hydroperoxo complex then cleanly converts to the ferryl complex, [Fe(IV)(TMC)(O)]2+, via homolytic O–O bond cleavage of the iron(III)–hydroperoxo species. All three of these iron species—the three most biologically relevant iron–oxygen intermediates—have been spectroscopically characterized; we note that they have been obtained using a simple macrocyclic ligand. We have performed relative reactivity studies on these three iron species which reveal that the iron(III)–hydroperoxo complex is the most reactive of the three in the deformylation of aldehydes and that it has a similar reactivity to the iron(IV)–oxo complex in C–H bond activation of alkylaromatics. These reactivity results demonstrate that iron(III)–hydroperoxo species are viable oxidants in both nucleophilic and electrophilic reactions by iron-containing enzymes. PMID:22031443
Sorption of Ferrioxime B to Synthetic and Biogenic layer type Mn Oxides
NASA Astrophysics Data System (ADS)
Duckworth, O. W.; Bargar, J. R.; Sposito, G.
2005-12-01
Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effect of solid-phase Mn(IV), we studied the sorption reaction of ferrioxamine B [principally the species, Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore, desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over the pH range between 5 and 9. After 72 h equilibration time at pH 8, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-Ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the X-ray absorption spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed with DFOB, but instead is incorporated into the mineral structure, thus implying that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron.
Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Fatalov, Alexey M; Yudanova, Evgenia I; Lyubovskaya, Rimma N
2018-04-14
Reduction methods for the preparation of coordination complexes of titanium(IV) and indium(III) phthalocyanines (Pc) with organic dyes such as indigo, thioindigo, and squarylium dye III (SQ) have been developed, which allow one to obtain crystalline {cryptand(K + )}{(cis-indigo-O,O) 2- Ti IV (Pc 2- )}(Cl - )⋅C 6 H 4 Cl 2 (1), {cryptand(K + )}{(cis-thioindigo-O,O) 2- In III (Pc 2- )} - ⋅C 6 H 4 Cl 2 (2), and {cryptand(K + )}{[(SQ) 2 -O,O] 2- In III (Pc 2- )} - ⋅3.5 C 6 H 4 Cl 2 (3) complexes. The formation of these complexes is accompanied by the reduction of the starting dyes to the anionic state. Transition of trans-indigo or trans-thioindigo to the cis conformation in 1 and 2 provides coordination of both carbonyl oxygen atoms of the dye to Ti IV Pc or In III Pc. SQ is reduced to the radical anion state and forms unusual diamagnetic singly bonded (SQ - ) 2 dimers in 3. These dimers have two closely positioned carbonyl oxygen atoms coordinated to In III Pc. Dianionic Pc 2- macrocycles have been found in 1-3. The complexes contain two chromophore molecules at one metal center. However, their optical spectra are defined mainly by absorption bands of the metal phthalocyanines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A
2017-11-21
Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important step in designing Mn III -peroxo complexes that convert cleanly to high-valent Mn-oxo species. Although some synthetic Mn IV -oxo complexes show great potential for oxidizing substrates with strong C-H bonds, most Mn IV -oxo species are sluggish oxidants. Both two-state reactivity and thermodynamic arguments have been put forth to explain these observations. To address these issues, we generated a series of Mn IV -oxo complexes supported by neutral, pentadentate ligands with systematically perturbed equatorial donation. Kinetic investigations of these complexes revealed a correlation between equatorial ligand-field strength and hydrogen-atom and oxygen-atom transfer reactivity. While this trend can be understood on the basis of the two-state reactivity model, the reactivity trend also correlates with variations in Mn III/IV reduction potential caused by changes in the ligand field. This work demonstrates the dramatic influence simple ligand perturbations can have on reactivity but also illustrates the difficulties in understanding the precise basis for a change in reactivity. In the enzyme manganese lipoxygenase, an active-site Mn III -hydroxo adduct initiates substrate oxidation by abstracting a hydrogen atom from a C-H bond. Precedent for this chemistry from synthetic Mn III -hydroxo centers is rare. To better understand hydrogen-atom transfer by Mn III centers, we developed a pair of Mn III -hydroxo complexes, formed in high yield from dioxygen oxidation of Mn II precursors, capable of attacking weak O-H and C-H bonds. Kinetic and computational studies show a delicate interplay between thermodynamic and steric influences in hydrogen-atom transfer reactivity, underscoring the potential of Mn III -hydroxo units as mild oxidants.
Mixed-valent [FeIV(mu-O)(mu-carboxylato)2FeIII]3+ core.
Slep, Leonardo D; Mijovilovich, Ana; Meyer-Klaucke, Wolfram; Weyhermüller, Thomas; Bill, Eckhard; Bothe, Eberhard; Neese, Frank; Wieghardt, Karl
2003-12-17
The symmetrically ligated complexes 1, 2, and 3 with a (mu-oxo)bis(mu-acetato)diferric core can be one-electron oxidized electrochemically or chemically with aminyl radical cations [*NR3][SbCl6] in acetonitrile yielding complexes which contain the mixed-valent [(mu-oxo)bis(mu-acetato)iron(IV)iron(III)]3+ core: [([9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](ClO4)2 (1(ClO4)2), [(Me3[9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](PF6)2 (2(PF6)(2)), and [(tpb)(2FeIII2)(mu-O)(mu-CH3CO2)2] (3) where ([9]aneN3) is the neutral triamine 1,4,7-triazacyclononane and (Me3[9]aneN3) is its tris-N-methylated derivative, and (tpb)(-) is the monoanion trispyrazolylborate. The asymmetrically ligated complex [(Me3[9]aneN3)FeIII(mu-O)(mu-CH3CO2)2FeIII(tpb)](PF6) (4(PF6)) and its one-electron oxidized form [4ox]2+ have also been prepared. Finally, the known heterodinuclear species [(Me3[9]aneN3)CrIII(mu-O)(mu-CH3CO2)2Fe([9]aneN3)](PF6)2 (5(PF6)(2)) can also be one-electron oxidized yielding [5ox]3+ containing an iron(IV) ion. The structure of 4(PF6).0.5CH3CN.0.25(C2H5)2O has been determined by X-ray crystallography and that of [5ox]2+ by Fe K-edge EXAFS-spectroscopy (Fe(IV)-O(oxo): 1.69(1) A; Fe(IV)-O(carboxylato) 1.93(3) A, Fe(IV)-N 2.00(2) A) contrasting the data for 5 (Fe(III)-O(oxo) 1.80 A; Fe(III)-O(carboxylato) 2.05 A, Fe-N 2.20 A). [5ox]2+ has an St = 1/2 ground state whereas all complexes containing the mixed-valent [FeIV(mu-O)(mu-CH3CO2)2FeIII]3+ core have an St = 3/2 ground state. Mössbauer spectra of the oxidized forms of complexes clearly show the presence of low spin FeIV ions (isomer shift approximately 0.02 mm s(-1), quadrupole splitting approximately 1.4 mm s(-1) at 80 K), whereas the high spin FeIII ion exhibits delta approximately 0.46 mm s(-1) and DeltaE(Q) approximately 0.5 mm s(-1). Mössbauer, EPR spectral and structural parameters have been calculated by density functional theoretical methods at the BP86 and B3LYP levels. The exchange coupling constant, J, for diiron complexes with the mixed-valent FeIV-FeIII core (H = -2J S1.S2; S(1) = 5/2; S2 = 1) has been calculated to be -88 cm(-1) (intramolecular antiferromagnetic coupling) and for the reduced diferric form of -75 cm(-1) in reasonable agreement with experiment (J = -120 cm(-1)).
Bosniak Classification for Complex Renal Cysts Reevaluated: A Systematic Review.
Schoots, Ivo G; Zaccai, Keren; Hunink, Myriam G; Verhagen, Paul C M S
2017-07-01
We systematically evaluated the Bosniak classification system with malignancy rates of each Bosniak category, and assessed the effectiveness related to surgical treatment and oncologic outcome based on recurrence and/or metastasis. In a systematic review according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) criteria, we selected 39 publications for inclusion in this analysis and categorized them into 1) surgical cohorts-all cysts treated surgically and 2) radiological cohorts-cysts with surgical treatment or radiological followup. A total of 3,036 complex renal cysts were categorized into Bosniak II, IIF, III and IV. In surgical and radiological cohorts pooled estimates showed a malignancy prevalence of 0.51 (0.44, 0.58) in Bosniak III and 0.89 (0.83, 0.92) in Bosniak IV cysts, respectively. Stable Bosniak IIF cysts showed a malignancy rate of less than 1% during radiological followup (surveillance). Bosniak IIF cysts, which showed reclassification to the Bosniak III/IV category during radiological followup (12%), showed malignancy in 85%, comparable to Bosniak IV cysts. The estimated surgical number needed to treat to avoid metastatic disease of Bosniak III and IV cysts was 140 and 40, respectively. The effectiveness of the Bosniak classification system for complex renal cysts was high in categories II, IIF and IV, but low in category III, and 49% of Bosniak III cysts was overtreated because of a benign outcome. This surgical overtreatment combined with the excellent outcome for Bosniak III cysts may suggest that surveillance is a rational alternative to surgery. This will require further study to assess whether surveillance of Bosniak III cysts will prove safe. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Zhou, Ang; Crossland, Patrick M; Draksharapu, Apparao; Jasniewski, Andrew J; Kleespies, Scott T; Que, Lawrence
2018-01-01
Nonheme oxoiron(IV) complexes can serve as synthons for generating heterobimetallic oxo-bridged dimetal complexes by reaction with divalent metal complexes. The formation of Fe III -O-Cr III and Fe III -O-Mn III complexes is described herein. The latter complexes may serve as models for the Fe III -X-Mn III active sites of an emerging class of Fe/Mn enzymes represented by the Class 1c ribonucleotide reductase from Chlamydia trachomatis and the R2-like ligand-binding oxidase (R2lox) found in Mycobacterium tuberculosis. These synthetic complexes have been characterized by UV-Vis, resonance Raman, and X-ray absorption spectroscopy, as well as electrospray mass spectrometry. The Fe III -O-Cr III complexes exhibit a three-band UV-Vis pattern that differs from the simpler features associated with Fe III -O-Fe III complexes. The positions of these features are modulated by the nature of the supporting polydentate ligand on the iron center, and their bands intensify dramatically in two examples upon the binding of an axial cyanate or thiocyanate ligand trans to the oxo bridge. In contrast, the Fe III -O-Mn III complexes resemble Fe III -O-Fe III complexes more closely. Resonance Raman characterization of the Fe III -O-M III complexes reveals an 18 O-sensitive vibration in the range of 760-890 cm -1 . This feature has been assigned to the asymmetric Fe III -O-M III stretching mode and correlates reasonably with the Fe-O bond distance determined by EXAFS analysis. The likely binding of an acetate as a bridging ligand to the Fe III -O-Mn III complex 12 lays the foundation for further efforts to model the heterobimetallic active sites of Fe/Mn enzymes.
Kim, Dong-Hun; Kim, Min-Gyu; Jiang, Shenghua; Lee, Ji-Hoon; Hur, Hor-Gil
2013-08-06
The reduction of tellurite (Te(IV)) by dissimilatory metal reducing bacterium, Shewanella oneidensis MR-1, was promoted in the presence of Fe(III) in comparison with Te(IV) bioreduction in the absence of Fe(III). Electron microscopic analyses revealed that iron promoted Te(IV) reduction led to form exclusively extracellular crystalline Te(0) nanorods, as compared to the mostly intracellular formation of Te(0) nanorods in the absence of Fe(III). The Te K-edge X-ray absorption spectrometric analyses demonstrated that S. oneidensis MR-1 in the presence of Fe(III) reduced Te(IV) to less harmful metallic Te(0) nanorods through the precipitation of tellurite (Te(IV)Ox) complex by the bacterial respiration of Fe(III) to Fe(II) under anaerobic conditions. However, Fe(II) ion itself was only able to precipitate the solid tellurite (Te(IV)Ox) complex from the Te(IV) solution, which was not further reduced to Te(0). The results clearly indicated that bacterial S. oneidensis MR-1 plays important roles in the reduction and crystallization of Te(0) nanorods by as yet undetermined biochemical mechanisms. As compared to the slow bacterial Te(IV) reduction in the absence of Fe(III), the rapid reduction of Te(IV) to Te(0) by the concerted biogeochemical reaction between Fe(II) and S. oneidensis MR-1 could be applied for the sequestration and detoxification of Te(IV) in the environments as well as for the preparation of extracellular Te(0) nanorod structures.
Letts, James A; Sazanov, Leonid A
2017-10-05
The oxidative phosphorylation electron transport chain (OXPHOS-ETC) of the inner mitochondrial membrane is composed of five large protein complexes, named CI-CV. These complexes convert energy from the food we eat into ATP, a small molecule used to power a multitude of essential reactions throughout the cell. OXPHOS-ETC complexes are organized into supercomplexes (SCs) of defined stoichiometry: CI forms a supercomplex with CIII 2 and CIV (SC I+III 2 +IV, known as the respirasome), as well as with CIII 2 alone (SC I+III 2 ). CIII 2 forms a supercomplex with CIV (SC III 2 +IV) and CV forms dimers (CV 2 ). Recent cryo-EM studies have revealed the structures of SC I+III 2 +IV and SC I+III 2 . Furthermore, recent work has shed light on the assembly and function of the SCs. Here we review and compare these recent studies and discuss how they have advanced our understanding of mitochondrial electron transport.
Coordination Chemistry of Homoleptic Actinide(IV)-Thiocyanate Complexes
Carter, Tyler J.; Wilson, Richard E.
2015-09-10
Here, the synthesis, X-ray crystal structure, vibrational and optical spectroscopy for the eight-coordinate thiocyanate compounds, [Et 4N] 4[Pu IV(NCS) 8], [Et 4N] 4[Th IV(NCS) 8], and [Et 4N] 4[Ce III(NCS) 7(H 2O)] are reported. Thiocyanate was found to rapidly reduce plutonium to Pu III in acidic solutions (pH<1) in the presence of NCS –. The optical spectrum of [Et 4N][SCN] containing Pu III solution was indistinguishable from that of aquated Pu III suggesting that inner-sphere complexation with [Et 4N][SCN] does not occur in water. However, upon concentration, the homoleptic thiocyanate complex [Et 4N] 4[Pu IV(NCS) 8] was crystallized when amore » large excess of [Et 4N][NCS] was present. This compound, along with its U IV analogue, maintains inner-sphere thiocyanate coordination in acetonitrile based on the observation of intense ligand-to-metal charge-transfer bands. Spectroscopic and crystallographic data do not support the interaction of the metal orbitals with the ligand π system, but support an enhanced An IV–NCS interaction, as the Lewis acidity of the metal ion increases from Th to Pu.« less
Hargreaves, P; Rahman, S; Guthrie, P; Taanman, J W; Leonard, J V; Land, J M; Heales, S J R
2002-02-01
Mitochondrial DNA (mtDNA) depletion syndrome (McKusick 251880) is characterized by a progressive quantitative loss of mtDNA resulting in severe mitochondrial dysfunction. A diagnosis of mtDNA depletion can only be confirmed after Southern blot analysis of affected tissue. Only a limited number of centres have the facilities to offer this service, and this is frequently on an irregular basis. There is therefore a need for a test that can refine sample selection as well as complementing the molecular analysis. In this study we compared the activities of the nuclear-encoded succinate ubiquinone reductase (complex II) to the activities of the combined mitochondrial and nuclear-encoded mitochondrial electron transport chain (ETC) complexes; NADH:ubiquinone reductase (complex I), ubiquinol-cytochrome-c reductase (complex III), and cytochrome-c oxidase (complex IV), in skeletal muscle biopsies from 7 patients with confirmed mtDNA depletion. In one patient there was no evidence of an ETC defect. However, the remaining 6 patients exhibited reduced complex I and IV activities. Five of these patients also displayed reduced complex II-III (succinate:cytochrome-c reductase) activity. Individual measurement of complex II and complex III activities demonstrated normal levels of complex II activity compared to complex III, which was reduced in the 5 biopsies assayed. These findings suggest a possible diagnostic value for the detection of normal levels of complex II activity in conjunction with reduced complex I, III and IV activity in the identification of likely candidates for mtDNA depletion syndrome
Li, Feifei; Meier, Katlyn K; Cranswick, Matthew A; Chakrabarti, Mrinmoy; Van Heuvelen, Katherine M; Münck, Eckard; Que, Lawrence
2011-05-18
We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted. © 2011 American Chemical Society
England, Jason; Farquhar, Erik R; Guo, Yisong; Cranswick, Matthew A; Ray, Kallol; Münck, Eckard; Que, Lawrence
2011-04-04
Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ∼1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.
England, Jason; Farquhar, Erik R.; Guo, Yisong; Cranswick, Matthew A.; Ray, Kallol
2011-01-01
Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of non-heme oxygen activating enzymes. The trigonal bipyramidal complex [FeIV(O)(TMG3tren)]2+ (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG3tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [FeIV(CN)(TMG3tren)]3+ (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [FeII(CN)(TMG3tren)]+ (2), via the S = 5/2 complex [FeIII(CN)(TMG3tren)]2+ (3), the progress of which was conveniently monitored by using UV-Vis spectroscopy to follow the growth of bathochromically shifting LMCT bands. A combination of XAS, Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, EXAFS analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an FeIV/III reduction potential of ~1.4 V vs Fc+/o, the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t1/2 in CD3CN solution containing 0.1 M KPF6 at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to 13C NMR at −40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG3tren ligand to support highly charged high-valent complexes. PMID:21381646
Jiroutková, Kateřina; Krajčová, Adéla; Ziak, Jakub; Fric, Michal; Waldauf, Petr; Džupa, Valér; Gojda, Jan; Němcova-Fürstová, Vlasta; Kovář, Jan; Elkalaf, Moustafa; Trnka, Jan; Duška, František
2015-12-24
Mitochondrial damage occurs in the acute phase of critical illness, followed by activation of mitochondrial biogenesis in survivors. It has been hypothesized that bioenergetics failure of skeletal muscle may contribute to the development of ICU-acquired weakness. The aim of the present study was to determine whether mitochondrial dysfunction persists until protracted phase of critical illness. In this single-centre controlled-cohort ex vivo proof-of-concept pilot study, we obtained vastus lateralis biopsies from ventilated patients with ICU-acquired weakness (n = 8) and from age and sex-matched metabolically healthy controls (n = 8). Mitochondrial functional indices were measured in cytosolic context by high-resolution respirometry in tissue homogenates, activities of respiratory complexes by spectrophotometry and individual functional capacities were correlated with concentrations of electron transport chain key subunits from respiratory complexes II, III, IV and V measured by western blot. The ability of aerobic ATP synthesis (OXPHOS) was reduced to ~54% in ICU patients (p<0.01), in correlation with the depletion of complexes III (~38% of control, p = 0.02) and IV (~26% of controls, p<0.01) and without signs of mitochondrial uncoupling. When mitochondrial functional indices were adjusted to citrate synthase activity, OXPHOS and the activity of complexes I and IV were not different, whilst the activities of complexes II and III were increased in ICU patients 3-fold (p<0.01) respectively 2-fold (p<0.01). Compared to healthy controls, in ICU patients we have demonstrated a ~50% reduction of the ability of skeletal muscle to synthetize ATP in mitochondria. We found a depletion of complex III and IV concentrations and relative increases in functional capacities of complex II and glycerol-3-phosphate dehydrogenase/complex III.
Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species
Wright, Mitchell H.; Geszvain, Kati; Oldham, Véronique E.; Luther, George W.; Tebo, Bradley M.
2018-01-01
The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of manganese. PMID:29706936
Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species.
Wright, Mitchell H; Geszvain, Kati; Oldham, Véronique E; Luther, George W; Tebo, Bradley M
2018-01-01
The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of manganese.
A well-defined terminal vanadium(III) oxo complex.
King, Amanda E; Nippe, Michael; Atanasov, Mihail; Chantarojsiri, Teera; Wray, Curtis A; Bill, Eckhard; Neese, Frank; Long, Jeffrey R; Chang, Christopher J
2014-11-03
The ubiquity of vanadium oxo complexes in the V+ and IV+ oxidation states has contributed to a comprehensive understanding of their electronic structure and reactivity. However, despite being predicted to be stable by ligand-field theory, the isolation and characterization of a well-defined terminal mononuclear vanadium(III) oxo complex has remained elusive. We present the synthesis and characterization of a unique terminal mononuclear vanadium(III) oxo species supported by the pentadentate polypyridyl ligand 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine (PY5Me2). Exposure of [V(II)(NCCH3)(PY5Me2)](2+) (1) to either dioxygen or selected O-atom-transfer reagents yields [V(IV)(O)(PY5Me2)](2+) (2). The metal-centered one-electron reduction of this vanadium(IV) oxo complex furnishes a stable, diamagnetic [V(III)(O)(PY5Me2)](+) (3) species. The vanadium(III) oxo species is unreactive toward H- and O-atom transfer but readily reacts with protons to form a putative vanadium hydroxo complex. Computational results predict that further one-electron reduction of the vanadium(III) oxo species will result in ligand-based reduction, even though pyridine is generally considered to be a poor π-accepting ligand. These results have implications for future efforts toward low-valent vanadyl chemistry, particularly with regard to the isolation and study of formal vanadium(II) oxo species.
Panozzo, C; Laleve, A; Tribouillard-Tanvier, D; Ostojić, J; Sellem, C H; Friocourt, G; Bourand-Plantefol, A; Burg, A; Delahodde, A; Blondel, M; Dujardin, G
2017-12-01
Bcs1p is a chaperone that is required for the incorporation of the Rieske subunit within complex III of the mitochondrial respiratory chain. Mutations in the human gene BCS1L (BCS1-like) are the most frequent nuclear mutations resulting in complex III-related pathologies. In yeast, the mimicking of some pathogenic mutations causes a respiratory deficiency. We have screened chemical libraries and found that two antibiotics, pentamidine and clarithromycin, can compensate two bcs1 point mutations in yeast, one of which is the equivalent of a mutation found in a human patient. As both antibiotics target the large mtrRNA of the mitoribosome, we focused our analysis on mitochondrial translation. We found that the absence of non-essential translation factors Rrf1 or Mif3, which act at the recycling/initiation steps, also compensates for the respiratory deficiency of yeast bcs1 mutations. At compensating concentrations, both antibiotics, as well as the absence of Rrf1, cause an imbalanced synthesis of respiratory subunits which impairs the assembly of the respiratory complexes and especially that of complex IV. Finally, we show that pentamidine also decreases the assembly of complex I in nematode mitochondria. It is well known that complexes III and IV exist within the mitochondrial inner membrane as supramolecular complexes III 2 /IV in yeast or I/III 2 /IV in higher eukaryotes. Therefore, we propose that the changes in mitochondrial translation caused by the drugs or by the absence of translation factors, can compensate for bcs1 mutations by modifying the equilibrium between illegitimate, and thus inactive, and active supercomplexes. Copyright © 2017. Published by Elsevier B.V.
Nakamura, Toshiyuki; Watanabe, Atsushi; Fujino, Takahiro; Hosono, Takashi; Michikawa, Makoto
2009-08-20
Apolipoprotein E allele epsilon4 (apoE4) is a strong risk factor for developing Alzheimer's disease (AD). Secreted apoE has a critical function in redistributing lipids among central nervous system cells to maintain normal lipid homeostasis. In addition, previous reports have shown that apoE4 is cleaved by a protease in neurons to generate apoE4(1-272) fragment, which is associated with neurofibrillary tanglelike structures and mitochondria, causing mitochondrial dysfunction. However, it still remains unclear how the apoE fragment associates with mitochondria and induces mitochondrial dysfunction. To clarify the molecular mechanism, we carried out experiments to identify intracellular apoE-binding molecules and their functions in modulating mitochondria function. Here, we found that apoE4 binds to ubiquinol cytochrome c reductase core protein 2 (UQCRC2) and cytochrome C1, both of which are components of mitochondrial respiratory complex III, and cytochrome c oxidase subunit 4 isoform 1 (COX IV 1), which is a component of complex IV, in Neuro-2a cells. Interestingly, these proteins associated with apoE4(1-272) more strongly than intact apoE4(1-299). Further analysis showed that in Neuro-2a cells expressing apoE4(1-272), the enzymatic activities of mitochondrial respiratory complexes III and IV were significantly lower than those in Neuro-2a cells expressing apoE4(1-299). ApoE4(1-272) fragment expressed in Neuro2a cells is associated with mitochondrial proteins, UQCRC2 and cytochrome C1, which are component of respiratory complex III, and with COX IV 1, which is a member of complex IV. Overexpression of apoE4(1-272) fragment impairs activities of complex III and IV. These results suggest that the C-terminal-truncated fragment of apoE4 binds to mitochondrial complexes and affects their activities, and thereby leading to neurodegeneration.
Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.
Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan
2016-07-28
Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom transfer reaction.
Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja
2016-06-18
Here, the kinetics of oxidation of organic and inorganic reductants by aqueous iron(IV) ions, Fe IV(H 2O) 5O 2+ (hereafter Fe IV aqO 2+), are reported. The substrates examined include several water-soluble ferrocenes, hexachloroiridate(III), polypyridyl complexes M(NN) 3 2+ (M = Os, Fe and Ru; NN = phenanthroline, bipyridine and derivatives), HABTS–/ABTS 2–, phenothiazines, Co II(dmgBF 2) 2, macrocyclic nickel(II) complexes, and aqueous cerium(III). Most of the reductants were oxidized cleanly to the corresponding one-electron oxidation products, with the exception of phenothiazines which produced the corresponding oxides in a single-step reaction, and polypyridyl complexes of Fe(II) and Ru(II) that generatedmore » ligand-modified products. Fe IV aqO 2+ oxidizes even Ce(III) (E 0 in 1 M HClO 4 = 1.7 V) with a rate constant greater than 10 4 M –1 s –1. In 0.10 M aqueous HClO 4 at 25 °C, the reactions of Os(phen) 3 2+ (k = 2.5 × 10 5 M –1 s –1), IrCl 6 3– (1.6 × 10 6), ABTS 2– (4.7 × 10 7), and Fe(cp)(C 5H 4CH 2OH) (6.4 × 10 7) appear to take place by outer sphere electron transfer (OSET). The rate constants for the oxidation of Os(phen) 3 2+ and of ferrocenes remained unchanged in the acidity range 0.05 < [H+] < 0.10 M, ruling out prior protonation of Fe IV aqO 2+ and further supporting the OSET assignment. A fit to Marcus cross-relation yielded a composite parameter (log k 22 + E 0 Fe/0.059) = 17.2 ± 0.8, where k 22 and E 0 Fe are the self-exchange rate constant and reduction potential, respectively, for the Fe IV aqO 2+/Fe III aqO + couple. Comparison with literature work suggests k 22 < 10 –5 M –1 s –1 and thus E 0(Fe IV aqO 2+/Fe III aqO +) > 1.3 V. For proton-coupled electron transfer, the reduction potential is estimated at E 0 (Fe IV aqO 2+, H +/Fe III aqOH 2+) ≥ 1.95 V.« less
Safronov, Alexander V; Shlyakhtina, Natalia I; Everett, Thomas A; VanGordon, Monika R; Sevryugina, Yulia V; Jalisatgi, Satish S; Hawthorne, M Frederick
2014-10-06
As a continuation of work on metallacarborane-based molecular motors, the structures of substituted bis(dicarbollyl)nickel complexes in Ni(III) and Ni(IV) oxidation states were investigated in solution by fluorescence spectroscopy. Symmetrically positioned cage-linked pyrene molecules served as fluorescent probes to enable the observation of mixed meso-trans/dl-gauche (pyrene monomer fluorescence) and dl-cis/dl-gauche (intramolecular pyrene excimer fluorescence with residual monomer fluorescence) cage conformations of the nickelacarboranes in the Ni(III) and Ni(IV) oxidation states, respectively. The absence of energetically disfavored conformers in solution--dl-cis in the case of nickel(III) complexes and meso-trans in the case of nickel(IV)--was demonstrated based on spectroscopic data and conformer energy calculations in solution. The conformational persistence observed in solution indicates that bis(dicarbollyl)nickel complexes may provide attractive templates for building electrically driven and/or photodriven molecular motors.
Garlich, Joshua; Strecker, Valentina; Wittig, Ilka; Stuart, Rosemary A.
2017-01-01
The yeast Rcf1 protein is a member of the conserved family of proteins termed the hypoxia-induced gene (domain) 1 (Hig1 or HIGD1) family. Rcf1 interacts with components of the mitochondrial oxidative phosphorylation system, in particular the cytochrome bc1 (complex III)-cytochrome c oxidase (complex IV) supercomplex (termed III-IV) and the ADP/ATP carrier proteins. Rcf1 plays a role in the assembly and modulation of the activity of complex IV; however, the molecular basis for how Rcf1 influences the activity of complex IV is currently unknown. Hig1 type 2 isoforms, which include the Rcf1 protein, are characterized in part by the presence of a conserved motif, (Q/I)X3(R/H)XRX3Q, termed here the QRRQ motif. We show that mutation of conserved residues within the Rcf1 QRRQ motif alters the interactions between Rcf1 and partner proteins and results in the destabilization of complex IV and alteration of its enzymatic properties. Our findings indicate that Rcf1 does not serve as a stoichiometric component, i.e. as a subunit of complex IV, to support its activity. Rather, we propose that Rcf1 serves to dynamically interact with complex IV during its assembly process and, in doing so, regulates a late maturation step of complex IV. We speculate that the Rcf1/Hig1 proteins play a role in the incorporation and/or remodeling of lipids, in particular cardiolipin, into complex IV and. possibly, other mitochondrial proteins such as ADP/ATP carrier proteins. PMID:28167530
NASA Astrophysics Data System (ADS)
Abdel-Monem, Yasser K.; Abouel-Enein, Saeyda A.; El-Seady, Safa M.
2018-01-01
Multidentate Schiff base (H2L) ligand results from condensation of 5-aminouracil and 2-benzoyl pyridine and its metal chloride (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Fe(III), Cr(III), Ru(III), Zr(IV) and Hf(IV)) complexes were prepared. The structural features of the ligand and its metal complexes were confirmed by elemental analyses, spectroscopic methods (IR, UV-Vis, 1H NMR, mass), magnetic moment measurements and thermal studies. The data refer to the ligand coordinates with metal ions in a neutral form and shows different modes of chelation toward the metal atom. All complexes have octahedral skeleton structure, tetrahedrally Mn(II), Ni(II), trigonalbipyramidal Co(II) and square planner Pd(II). Thermal decomposition of complexes as well as the interaction of different types of solvent of crystallization are assigned by thermogravimetric analysis. Molecular modeling of prepared complexes were investigated to study the expected anticancer activities of the prepared complexes. All metal complexes have no interaction except the complexes of Pd(II), Fe(III) and Mn(II).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Shashi B.; Shopov, Dimitar Y.; Sharninghausen, Liam S.
We describe facial and meridional isomers of [RhIII(pyalk)3], as well as meridional [RhIV(pyalk)3]+ {pyalk =2-(2-pyridyl)-2-propanoate}, the first coordination complex in an N,O-donor environment to show a clean, reversible RhIII/IV redox couple and to have a stable Rh(IV) form, which we characterize by EPR and UV–visible spectroscopy as well as X-ray crystallography. The unprecedented stability of the Rh(IV) species is ascribed to the exceptional donor strength of the ligands, their oxidation resistance, and the meridional coordination geometry.
Redox reactions of V(III) and Cr(III)picolinate complexes in aqueous solutions
NASA Astrophysics Data System (ADS)
Vinayakumar, C. K.; Dey, G. R.; Kishore, K.; Moorthy, P. N.
1996-12-01
Reactions of e aq-, H-atoms, OH, (CH 3) 2COH, and CO 2- radicals with V(III)picolinate and Cr(III)picolinate have been studied by the pulse radiolysis technique. The spectra of V(II)picolinate, V(IV)picolinate, Cr(II)picolinate, OH adduct of Cr(III)picolinate and Cr(IV)picolinate have been obtained and the rate constants of the reactions of various radicals with V(III) and Cr(III)picolinate have been determined. The implications of these results to the chemical decontamination of nuclear reactor systems are discussed.
Dissimilatory Fe(III) and Mn(IV) reduction.
Lovley, D R
1991-01-01
The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process. PMID:1886521
Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk
2015-08-01
The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.
Mn(II,III) oxidation and MnO 2 mineralization by an expressed bacterial multicopper oxidase
Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung -Woo; ...
2013-07-01
Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of themore » enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. Lastly, with the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.« less
Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase
NASA Astrophysics Data System (ADS)
Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.
2013-07-01
Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.
Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase
Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.
2013-01-01
Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588
Pyrazolates advance cerium chemistry: a CeIII/CeIV redox equilibrium with benzoquinone.
Werner, Daniel; Deacon, Glen B; Junk, Peter C; Anwander, Reiner
2017-05-16
Two stable cerium(iv) 3,5-dialkylpyrazolate complexes are presented, namely dimeric [Ce(Me 2 pz) 4 ] 2 (Me 2 pz = 3,5-dimethylpyrazolate) and monomeric Ce(tBu 2 pz) 4 (tBu 2 pz = 3,5-di-tert-butylpyrazolate) along with their trivalent counterparts [Ce(Me 2 pz) 3 ] and [Ce(tBu 2 pz) 3 ] 2 . All complexes were obtained from protonolysis reactions employing the silylamide precursors Ce[N(SiHMe 2 ) 2 ] 4 and Ce[N(SiMe 3 ) 2 ] 3 . Treatment of homoleptic Ce IV and Ce III Me 2 pz complexes with 1,4-hydroquinone (H 2 hq) or 1,4-benzoquinone (bq), respectively, ultimately gave the same trimetallic Ce III species via a cerium redox equilibrium. The Ce III complex Ce 3 (Me 2 pz) 5 (pchd) 2 (L) (pchd = 1,4-bis(3,5-dimethylpyrazol-1-yl)cyclohex-2,5-diene-1,4-diolato; L = Me 2 pzH or (thf) 2 ) results from a di-1,4-pyrazolyl attack on pre-coordinated bq. The reduction of bq by [Ce(Me 2 pz) 3 (thf)] 2 , and re-oxidation by the resulting Ce IV species was supported by UV-vis spectroscopic investigations. Comparisons with the redox-innocent complexes [Ln(Me 2 pz) 3 (thf)] 2 (Ln = La and Pr) revealed far less selective reactions with bq, giving hexametallic and octametallic rare-earth metal side products containing 2-Me 2 pz substituted hq ligands.
Turlington, Michael D; Pienkos, Jared A; Carlton, Elizabeth S; Wroblewski, Karlee N; Myers, Alexis R; Trindle, Carl O; Altun, Zikri; Rack, Jeffrey J; Wagenknecht, Paul S
2016-03-07
Iron(II)-to-titanium(IV) metal-to-metal-charge transfer (MMCT) is important in the photosensitization of TiO2 by ferrocyanide, charge transfer in solid-state metal-oxide photocatalysts, and has been invoked to explain the blue color of sapphire, blue kyanite, and some lunar material. Herein, a series of complexes with alkynyl linkages between ferrocene (Fc) and Ti(IV) has been prepared and characterized by UV-vis spectroscopy and electrochemistry. Complexes with two ferrocene substituents include Cp2Ti(C2Fc)2, Cp*2Ti(C2Fc)2, and Cp2Ti(C4Fc)2. Complexes with a single ferrocene utilize a titanocene with a trimethylsilyl derivatized Cp ring, (TMS)Cp, and comprise the complexes (TMS)Cp2Ti(C2Fc)(C2R), where R = C6H5, p-C6H4CF3, and CF3. The complexes are compared to Cp2Ti(C2Ph)2, which lacks the second metal. Cyclic voltammetry for all complexes reveals a reversible Ti(IV/III) reduction wave and an Fe(II/III) oxidation that is irreversible for all complexes except (TMS)Cp2Ti(C2Fc)(C2CF3). All of the complexes with both Fc and Ti show an intense absorption (4000 M(-1)cm(-1) < ε < 8000 M(-1)cm(-1)) between 540 and 630 nm that is absent in complexes lacking a ferrocene donor. The energy of the absorption tracks with the difference between the Ti(IV/III) and Fe(III/II) reduction potentials, shifting to lower energy as the difference in potentials decreases. Reorganization energies, λ, have been determined using band shape analysis (2600 cm(-1) < λ < 5300 cm(-1)) and are in the range observed for other donor-acceptor complexes that have a ferrocene donor. Marcus-Hush-type analysis of the electrochemical and spectroscopic data are consistent with the assignment of the low-energy absorption as a MMCT band. TD-DFT analysis also supports this assignment. Solvatochromism is apparent for the MMCT band of all complexes, there being a bathochromic shift upon increasing polarizability of the solvent. The magnitude of the shift is dependent on both the electron density at Ti(IV) and the identity of the linker between the titanocene and the Fc. Complexes with a MMCT are photochemically stable, whereas Cp2Ti(C2Ph)2 rapidly decomposes upon photolysis.
Vignesh, Kuduva R; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Rajaraman, Gopalan
2018-02-05
A new family of heterometallic pentanuclear complexes of formulas [Mn IV Mn III 2 Ln III 2 O 2 (benz) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Dy (1-Dy), Tb (2-Tb), Gd (3-Gd), Eu (4-Eu), Sm (5-Sm), Nd (6-Nd), Pr (7-Pr); benz(H) = benzoic acid; mdeaH 2 = N-methyldiethanolamine) and [Mn IV Mn III 2 Ln III 2 O 2 (o-tol) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Gd (8-Gd), Eu (9-Eu); o-tol(H) = o-toluic acid) have been isolated and structurally, magnetically, and theoretically characterized. dc magnetic susceptibility measurements reveal dominant antiferromagnetic magnetic interactions for each complex, except for 2-Tb and 3-Gd, which reveal an upturn in the χ M T product at low temperatures. The magnetic interactions between the spin centers in the Gd derivatives, 3-Gd and 8-Gd, which display markedly different χ M T vs T profiles, were found to be due to the interactions of the Gd III -Gd III ions which change from ferromagnetic (3-Gd) to antiferromagnetic (8-Gd) due to structural differences. ac magnetic susceptibility measurements reveal a nonzero out-of-phase component for 1-Dy and 7-Pr, but no maxima were observed above 2 K (H dc = 0 Oe), which suggests single-molecule magnet (SMM) behavior. Out-of-phase signals were observed for complexes 2-Tb, 4-Eu, 8-Gd, and 9-Eu, in the presence of a static dc field (H dc = 2000, 3000 Oe). The anisotropic nature of the lanthanide ions in the benzoate series (1-Dy, 2-Tb, 5-Sm, 6-Nd, and 7-Pr) were thoroughly investigated using ab initio methods. CASSCF calculations predict that the origin of SMM behavior in 1-Dy and 7-Pr and the applied field SMM behavior in 2-Tb does not solely originate from the single-ion anisotropy of the lanthanide ions. To fully understand the relaxation mechanism, we have employed the Lines model to fit the susceptibility data using the POLY_ANISO program, which suggests that the zero-field SMM behavior observed in complexes 1-Dy and 7-Pr is due to weak Mn III/IV -Ln III and Ln III -Ln III couplings and an unfavorable Ln III /Mn III /Mn IV anisotropy. In complexes 4-Eu, 8-Gd, and 9-Eu ab initio calculations indicate that the anisotropy of the Mn III ions solely gives rise to the possibility of SMM behavior. Complex 7-Pr is a Pr(III)-containing complex that displays zero-field SMM behavior, which is rare, and our study suggests the possibility of coupling weak SOC lanthanide metal ions to anisotropic transition-metal ions to derive SMM characteristics; however, enhancing the exchange coupling in {3d-4f} complexes is still a stubborn hurdle in harnessing new generation {3d-4f} SMMs.
Nakamura, Toshiyuki; Watanabe, Atsushi; Fujino, Takahiro; Hosono, Takashi; Michikawa, Makoto
2009-01-01
Background Apolipoprotein E allele ε4 (apoE4) is a strong risk factor for developing Alzheimer's disease (AD). Secreted apoE has a critical function in redistributing lipids among central nervous system cells to maintain normal lipid homeostasis. In addition, previous reports have shown that apoE4 is cleaved by a protease in neurons to generate apoE4(1–272) fragment, which is associated with neurofibrillary tanglelike structures and mitochondria, causing mitochondrial dysfunction. However, it still remains unclear how the apoE fragment associates with mitochondria and induces mitochondrial dysfunction. Results To clarify the molecular mechanism, we carried out experiments to identify intracellular apoE-binding molecules and their functions in modulating mitochondria function. Here, we found that apoE4 binds to ubiquinol cytochrome c reductase core protein 2 (UQCRC2) and cytochrome C1, both of which are components of mitochondrial respiratory complex III, and cytochrome c oxidase subunit 4 isoform 1 (COX IV 1), which is a component of complex IV, in Neuro-2a cells. Interestingly, these proteins associated with apoE4(1–272) more strongly than intact apoE4(1–299). Further analysis showed that in Neuro-2a cells expressing apoE4(1–272), the enzymatic activities of mitochondrial respiratory complexes III and IV were significantly lower than those in Neuro-2a cells expressing apoE4(1–299). Conclusion ApoE4(1–272) fragment expressed in Neuro2a cells is associated with mitochondrial proteins, UQCRC2 and cytochrome C1, which are component of respiratory complex III, and with COX IV 1, which is a member of complex IV. Overexpression of apoE4(1–272) fragment impairs activities of complex III and IV. These results suggest that the C-terminal-truncated fragment of apoE4 binds to mitochondrial complexes and affects their activities, and thereby leading to neurodegeneration. PMID:19695092
Gantwerker, Eric A; Bannos, Cassandra; Cunningham, Michael J; Rahbar, Reza
2017-01-01
To describe a surgical categorization system to create a universal nomenclature, delineating patient complexity as a first step toward developing a true risk stratification system. Retrospective database review of all otolaryngology surgical procedures performed in a tertiary pediatric hospital system over one academic year (July 2012-June 2013). All otolaryngology surgical procedures were reviewed, encompassing 8478 procedures on 5711 patients. The attending otolaryngologist assigned surgical scheduling category (SSCS) at the time of case booking based on an institution specific guidelines. The guidelines are as follow: Category I was assigned to American Society of Anesthesiologists physical status classification (ASA) I/II patients, designating them appropriate for institution's suburban ambulatory surgery centers; Category II was ASA I/II patients with social or transportation issues; Category III was ASA I/II patients who required case coordination with other medical or surgical departments; Category IV was reserved for patients of any ASA class whom the surgeon designated to be of a higher complexity. 8478 total procedures analyzed with 7198 having complete records. 48% were Category I, 13.6% were Category II, 1.9% were Category III and 36.5% were Category IV. The ASA were 34.7% ASA I, 50% ASA II, 13.39% ASA III, and 1.9% ASA IV. Although the largest proportion of patients were ASA II (50%), 39.6% of all ASA II were Category IV. Category IV was split into 54.2% ASA II and 34% ASA III and shows that peri-operative surgical concerns were not encompassed by the ASA system. This surgical categorization system streamlines surgical scheduling in a tertiary pediatric hospital system, particularly with respect to the designation of cases as ambulatory surgery center or main operating room appropriate. The case mix complexity is also readily apparent, enhancing recognition of the coordination and attention required for the perioperative management of high complexity patients. The SSCS helps convey concerns not addressed by ASA physical status alone. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Metal oxidation states in biological water splitting.
Krewald, Vera; Retegan, Marius; Cox, Nicholas; Messinger, Johannes; Lubitz, Wolfgang; DeBeer, Serena; Neese, Frank; Pantazis, Dimitrios A
2015-03-01
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five S i states ( i = 0-4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called "high-valent scheme"-where, for example, the Mn oxidation states in the S 2 state are assigned as III, IV, IV, IV-the competing "low-valent scheme" that differs by a total of two metal unpaired electrons ( i.e. III, III, III, IV in the S 2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K 55 Mn ENDOR data of the S 2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S 0 (III, III, III, IV) to S 3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S states and the states involved in the assembly of the catalytically active water oxidizing cluster.
Pillai, M R; Kothari, K; Banerjee, S; Samuel, G; Suresh, M; Sarma, H D; Jurisson, S
1999-07-01
The synthesis of four novel ligands using the amino-acid cysteine and its ethyl carboxylate derivative is described. The synthetic method involves a two-step procedure, wherein the intermediate Schiff base formed by the condensation of the amino group of the cysteine substrate and salicylaldehyde is reduced to give the target ligands. The intermediates and the final products were characterized by high resolution nuclear magnetic resonance spectroscopy. Complexation studies of the ligands with 99mTc were optimized using stannous tartrate as the reducing agent under varying reaction conditions. The complexes were characterized using standard quality control techniques such as thin layer chromatography, paper electrophoresis, and paper chromatography. Lipophilicities of the complexes were estimated by solvent extraction into chloroform. Substantial changes in net charge and lipophilicity of the 99mTc complexes were observed on substituting the carboxylic acid functionality in ligands I and II with the ethyl carboxylate groups (ligands II and IV). All the ligands formed 99mTc complexes in high yield. Whereas the complexes with ligands I and II were observed to be hydrophilic in nature and not extractable into CHCl3, ligands III and IV resulted in neutral and lipophilic 99mTc complexes. The 99mTc complex with ligand II was not stable and on storage formed a hydrophilic and nonextractable species. The biodistribution of the complexes of ligands I and II showed that they cleared predominantly through the kidneys, whereas the complexes with ligands III and IV were excreted primarily through the hepatobiliary system. No significant brain uptake was observed with the 99mTc complexes with ligands III and IV despite their favorable properties of neutrality, lipophilicity, and conversion into a hydrophilic species. These ligands offer potential for use as bifunctional chelating agents.
Dassama, Laura M.K.; Krebs, Carsten; Bollinger, J. Martin; Rosenzweig, Amy C.; Boal, Amie K.
2013-01-01
The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) employs a MnIV/FeIII cofactor in each monomer of its β2 subunit to initiate nucleotide reduction. The cofactor forms by reaction of MnII/FeII-β2 with O2. Previously, in vitro cofactor assembly from apo β2 and divalent metal ions produced a mixture of two forms, with Mn in site 1 (MnIV/FeIII) or site 2 (FeIII/MnIV), of which the more active MnIV/FeIII product predominates. Here we have addressed the basis for metal site-selectivity by solving X-ray crystal structures of apo, MnII, and MnII/FeII complexes of Ct β2. A structure obtained anaerobically with equimolar MnII, FeII, and apo protein reveals exclusive incorporation of MnII in site 1 and FeII in site 2, in contrast to the more modest site-selectivity achieved previously. Site-specificity is controlled thermodynamically by the apo protein structure, as only minor adjustments of ligands occur upon metal binding. Additional structures imply that, by itself, MnII binds in either site. Together the structures are consistent with a model for in vitro cofactor assembly in which FeII specificity for site 2 drives assembly of the appropriately configured heterobimetallic center, provided that FeII is substoichiometric. This model suggests that use of an MnIV/FeIII cofactor in vivo could be an adaptation to FeII limitation. A 1.8 Å resolution model of the MnII/FeII-β2 complex reveals additional structural determinants for activation of the cofactor, including a proposed site for side-on (η2) addition of O2 to FeII and a short (3.2 Å) MnII-FeII interionic distance, promoting formation of the MnIV/FeIV activation intermediate. PMID:23924396
Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer
2011-05-01
Briefly, the electron transfer activities of complex I/III (NADH dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from NADH to...ferricytochrome c) and complex II/III (succinate dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from succinate to ferricytochrome...The electron transfer activity of complex IV (cytochrome c oxidase: catalyzes the final step of the respiratory chain by transferring electrons from
Yahsi, Yasemin; Kara, Hulya
2014-06-05
Two novel monomer Mn (IV) [Mn(3,5-ClL1)2]⋅(CH3OH), (1), [3,5-ClL1H2=N-(2-hydroxyethyl)-3,5-dichlorosalicylaldimine] (1) and hydrogen-bonded pseudo-tetramer Mn (III) [Mn(5-BrL2)(H2O)2]2⋅[Mn(5-BrL2)(H2O)]2⋅2⋅(ClO4), (2), [5-BrL2H2=N,N'-bis(5-bromosalicylidenato)-1,2-diamino-2-methylpropane)] (2) Schiff base complexes have been synthesized and their crystal structures have been determined by single crystal X-ray diffraction analysis. A variable temperature magnetic susceptibility measurement study has been performed for complex (2) and the result indicates there is a very weak antiferromagnetic interaction (J=-0.40±0.016cm(-1)) between the two manganese (III) centers. Copyright © 2014 Elsevier B.V. All rights reserved.
Geochemical controls on vanadium accumulation in fossil fuels
Breit, G.N.; Wanty, R.B.
1989-01-01
High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.
Geochemical controls of vanadium accumulation in fossil fuels
Breit, G.N.; Wanty, R.B.
1989-01-01
High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.
NASA Astrophysics Data System (ADS)
Zordok, W. A.; Sadeek, S. A.
2018-04-01
Seven new complexes of2-oxo-4,6-diphenyl-1,2-dihyropyridine-3-carbonitrile (L) with Fe(III), Co(II), Cu(II), Zn(II), Y(III), Zr(IV) and La(III) were synthesized. The isolated solid compounds were elucidated from micro analytical, IR, electronic, mass, 1H NMR, magnetic susceptibility measurements and TG/DTG, DTA analyses. The intensity of ν(Ctbnd N) was changed to strong and shifted to around 2200 cm-1. Also, the ν(Cdbnd O) was shifted to higher frequency value (1644 cm-1). The spectra of the complexes indicate that the free ligand is coordinated to the metal ions via nitrogen of carbonitrile group and oxygen of keto group. From DFT calculations the Cu(II) and Fe(III) complexes behave as regular octahedral, while other complexes are distorted octahedral. The value of energy gap of the free ligand (ΔE = 0.3343 eV) is greater than all new complexes, so they are more reactive than free ligand, also the Fe(III) complex (ΔE = 0.0985 eV) is the most reactive complex, while Cu(II) complex (ΔE = 0.3219 eV) is the least reactive complex. The LMCT in case of Zr(IV) complex was resulted from transitions from HOMO-2 (62%), HOMO-1 (16%)and HOMO (25%), while the d-d transition in Fe(III) complex was resulted from HOMO-1(30%), HOMO-2(62%) and HOMO(30%). Also, the metal complexes exhibit antibacterial activity for Gram-positive and Gram-negative and antifungal activity. The Y(III) and Cu(II) complexes are highly significant for Escherichia coli and salmonella typhimurium.
Incipient class II mixed valency in a plutonium solid-state compound
NASA Astrophysics Data System (ADS)
Cary, Samantha K.; Galley, Shane S.; Marsh, Matthew L.; Hobart, David L.; Baumbach, Ryan E.; Cross, Justin N.; Stritzinger, Jared T.; Polinski, Matthew J.; Maron, Laurent; Albrecht-Schmitt, Thomas E.
2017-09-01
Electron transfer in mixed-valent transition-metal complexes, clusters and materials is ubiquitous in both natural and synthetic systems. The degree to which intervalence charge transfer (IVCT) occurs, dependent on the degree of delocalization, places these within class II or III of the Robin-Day system. In contrast to the d-block, compounds of f-block elements typically exhibit class I behaviour (no IVCT) because of localization of the valence electrons and poor spatial overlap between metal and ligand orbitals. Here, we report experimental and computational evidence for delocalization of 5f electrons in the mixed-valent PuIII/PuIV solid-state compound, Pu3(DPA)5(H2O)2 (DPA = 2,6-pyridinedicarboxylate). The properties of this compound are benchmarked by the pure PuIII and PuIV dipicolinate complexes, [PuIII(DPA)(H2O)4]Br and PuIV(DPA)2(H2O)3·3H2O, as well as by a second mixed-valent compound, PuIII[PuIV(DPA)3H0.5]2, that falls into class I instead. Metal-to-ligand charge transfer is involved in both the formation of Pu3(DPA)5(H2O)2 and in the IVCT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dassama, Laura M.K.; Boal, Amie K.; Krebs, Carsten
2014-10-02
The reaction of a class I ribonucleotide reductase (RNR) begins when a cofactor in the {beta} subunit oxidizes a cysteine residue {approx}35 {angstrom} away in the {alpha} subunit, generating a thiyl radical. In the class Ic enzyme from Chlamydia trachomatis (Ct), the cysteine oxidant is the Mn{sup IV} ion of a Mn{sup IV}/Fe{sup III} cluster, which assembles in a reaction between O{sub 2} and the Mn{sup II}/Fe{sup II} complex of {beta}. The heterodinuclear nature of the cofactor raises the question of which site, 1 or 2, contains the Mn{sup IV} ion. Because site 1 is closer to the conserved locationmore » of the cysteine-oxidizing tyrosyl radical of class Ia and Ib RNRs, we suggested that the Mn{sup IV} ion most likely resides in this site (i.e., {sup 1}Mn{sup IV}/{sup 2}Fe{sup III}), but a subsequent computational study favored its occupation of site 2 ({sup 1}Fe{sup III}/{sup 2}Mn{sup IV}). In this work, we have sought to resolve the location of the Mn{sup IV} ion in Ct RNR-{beta} by correlating X-ray crystallographic anomalous scattering intensities with catalytic activity for samples of the protein reconstituted in vitro by two different procedures. In samples containing primarily Mn{sup IV}/Fe{sup III} clusters, Mn preferentially occupies site 1, but some anomalous scattering from site 2 is observed, implying that both {sup 1}Mn{sup II}/{sup 2}Fe{sup II} and {sup 1}Fe{sup II}/{sup 2}Mn{sup II} complexes are competent to react with O{sub 2} to produce the corresponding oxidized states. However, with diminished Mn{sup II} loading in the reconstitution, there is no evidence for Mn occupancy of site 2, and the greater activity of these 'low-Mn' samples on a per-Mn basis implies that the {sup 1}Mn{sup IV}/{sup 2}Fe{sup III}-{beta} is at least the more active of the two oxidized forms and may be the only active form.« less
Trypanosoma brucei RNA Editing Complex
O'Hearn, Sean F.; Huang, Catherine E.; Hemann, Mike; Zhelonkina, Alevtina; Sollner-Webb, Barbara
2003-01-01
Maturation of Trypanosoma brucei mitochondrial mRNA involves massive posttranscriptional insertion and deletion of uridine residues. This RNA editing utilizes an enzymatic complex with seven major proteins, band I through band VII. We here use RNA interference (RNAi) to examine the band II and band V proteins. Band II is found essential for viability; it is needed to maintain the normal structure of the editing complex and to retain the band V ligase protein. Previously, band III was found essential for certain activities, including maintenance of the editing complex and retention of the band IV ligase protein. Thus, band II and band V form a protein pair with features analogous to the band III/band IV ligase pair. Since band V is specific for U insertion and since band IV is needed for U deletion, their parallel organization suggests that the editing complex has a pseudosymmetry. However, unlike the essential band IV ligase, RNAi to band V has only a morphological but no growth rate effect, suggesting that it is stimulatory but nonessential. Indeed, in vitro analysis of band V RNAi cell extract demonstrates that band IV can seal U insertion when band V is lacking. Thus, band IV ligase is the first activity of the basic editing complex shown able to serve in both forms of editing. Our studies also indicate that the U insertional portion may be less central in the editing complex than the corresponding U deletional portion. PMID:14560033
Cranswick, Matthew A; Meier, Katlyn K; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P; Münck, Eckard; Que, Lawrence
2012-10-01
Oxygenation of a diiron(II) complex, [Fe(II)(2)(μ-OH)(2)(BnBQA)(2)(NCMe)(2)](2+) [2, where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine], results in the formation of a metastable peroxodiferric intermediate, 3. The treatment of 3 with strong acid affords its conjugate acid, 4, in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter-lived than 3 and decays to generate in ~20% yield of a diiron(III/IV) species 5, which can be identified by electron paramagnetic resonance and Mössbauer spectroscopies. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to cleavage of the peroxo O-O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase.
Bimetallic redox synergy in oxidative palladium catalysis.
Powers, David C; Ritter, Tobias
2012-06-19
Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd(II/IV) catalysis has guided the successful development of many reactions. Herein we discuss differences between monometallic Pd(IV) and bimetallic Pd(III) redox catalysis. We address whether appreciation of the relevance of bimetallic Pd(III) redox catalysis is of academic interest exclusively, serving to provide a more nuanced description of catalysis, or if the new insight regarding bimetallic Pd(III) chemistry can be a platform to enable future reaction development. To this end, we describe an example in which the hypothesis of bimetallic redox chemistry guided reaction development, leading to the discovery of reactivity distinct from monometallic catalysts.
Choi, Sunhee; Ryu, DaWeon; DellaRocca, Joseph G; Wolf, Matthew W; Bogart, Justin A
2011-07-18
Among the many mechanisms for the oxidation of guanine derivatives (G) assisted by transition metals, Ru(III) and Pt(IV) metal ions share basically the same principle. Both Ru(III)- and Pt(IV)-bound G have highly positively polarized C8-H's that are susceptible to deprotonation by OH(-), and both undergo two-electron redox reactions. The main difference is that, unlike Pt(IV), Ru(III) is thought to require O(2) to undergo such a reaction. In this study, however, we report that [Ru(III)(NH(3))(5)(dGuo)] (dGuo = deoxyguanosine) yields cyclic-5'-O-C8-dGuo (a two-electron G oxidized product, cyclic-dGuo) without O(2). In the presence of O(2), 8-oxo-dGuo and cyclic-dGuo were observed. Both [Ru(II)(NH(3))(5)(dGuo)] and cyclic-dGuo were produced from [Ru(III)(NH(3))(5)(dGuo)] accelerated by [OH(-)]. We propose that [Ru(III)(NH(3))(5)(dGuo)] disproportionates to [Ru(II)(NH(3))(5)(dGuo)] and [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)], followed by a 5'-OH attack on C8 in [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)] to initiate an intramolecular two-electron transfer from dGuo to Ru(IV), generating cyclic-dGuo and Ru(II) without involving O(2).
Effects of tramadol, clonazepam, and their combination on brain mitochondrial complexes.
Mohamed, Tarek Mostafa; Ghaffar, Hamdy M Abdel; El Husseiny, Rabee M R
2015-12-01
The present study is an unsubstantiated qualitative assessment of the abused drugs-tramadol and clonazepam. The aim of this study is to evaluate whether the effects of tramadol, clonazepam, and their combination on mitochondrial electron transport chain (ETC) complexes were influential at therapeutic or at progressively increasing doses. The study comprised of a total of 70 healthy male rats, aged 3 months. According to the drug intake regimen, animals were divided into seven groups: control, tramadol therapeutic, clonazepam therapeutic, combination therapeutic, tramadol abuse, clonazepam abuse, and combination abuse group. At the end of the experiment, brain mitochondrial ETC complexes (I, II, III, and IV) were evaluated. Histopathological examinations were also performed on brain tissues. The results showed that groups that received tramadol (therapeutic and abuse) suffered from weight loss. Tramadol abuse group and combination abuse group showed significant decrease in the activities of I, III, and IV complexes but not in the activity of complex II. In conclusion, tramadol but not clonazepam has been found to partially inhibit the activities of respiratory chain complexes I, III, and IV but not the activity of complex II and such inhibition occurred only at doses that exceeded the maximum recommended adult human daily therapeutic doses. This result explains the clinical and histopathological effects of tramadol, such as seizures and red neurons (marker for apoptosis), respectively. © The Author(s) 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumakov, Yu. M.; Paholnitcaia, A. Yu.; Petrenko, P. A.
Two crystal modifications of nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper (I and II) and two modifications of chloro-(2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) copper (III and IV) have been synthesized and studied by X-ray diffraction. In structures I and II, the copper atoms coordinate a monodeprotonated molecule of the organic ligand, nitrate ions, and a water molecule. In crystals of I, the complexes are monomeric, whereas complexes II are linked via nitrate ions to form polymeric chains. In both structures the coordination polyhedron of the copper atom can be described as a distorted tetragonal bipyramid—(4 + 1 + 1) in I and (4 + 2) in II. These coordinationmore » polyherdra have different compositions. In structures III and IV, the metal atoms coordinate a monodeprotonated (2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazole molecule and chloride ions. In III the complex-forming ion has square-planar coordination geometry, whereas structure IV consists of centrosymmetric dimers with two bridging chlorine atoms. It was found that nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper possesses antitumor activity.« less
The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation
Matheu, Roc; Ertem, Mehmed Z.; Pipelier, Muriel; ...
2018-01-19
A family of Ru complexes based on the pentadentate ligand t5a 3– ((2,5-bis(6-carboxylatopyridin-2-yl)pyrrol-1-ide) and pyridine (py) that includes {Ru II(Ht5a-κ-N 2O)(py) 3} (1H II(κ-N 2O)), {Ru III(t5a-κ-N 3O 1.5)(py) 2} (2 III(κ-N 3O 1.5)), and {Ru IV(t5a-κ-N 3O 2)(py) 2}+ ({2 IV(κ-N3O 2)}+) has been prepared and thoroughly characterized. Complexes 1HII(κ-N 2O), 2 III(κ-N 3O 1.5), and {2 IV(κ-N 3O 2)}+ have been investigated in solution by spectroscopic methods (NMR, UV–vis) and in the solid state by single-crystal X-ray diffraction analysis and complemented by density functional theory (DFT) calculations. The redox properties of complex 2 III(κ-N 3O 1.5) have beenmore » studied by electrochemical methods (CV and DPV), showing its easy access to high oxidation states, thanks to the trianionic nature of the t5a 3– ligand. Under neutral to basic conditions complex {2 IV(κ-N3O 2)}+ undergoes aquation, generating {Ru IV(OH)(t5a-κ-N 2O)(py) 2} (2 IV(OH)(κ-N 2O)). Further oxidation of the complex forms {Ru V(O)(t5a-κ-N 2O)(py) 2} (2 V(O)(κ-N 2O)), which is a very efficient water oxidation catalyst, reaching a TOF MAX value of 9400 s –1 at pH 7.0, as measured via foot of the wave analysis. The key to fast kinetics for the catalytic oxidation of water to dioxygen by 2 V(O)(κ-N 2O) is due not only to the easy access to high oxidation states but also to the intramolecular hydrogen bonding provided by the noncoordinated dangling carboxylate at the transition state, as corroborated by DFT calculations.« less
The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheu, Roc; Ertem, Mehmed Z.; Pipelier, Muriel
A family of Ru complexes based on the pentadentate ligand t5a 3– ((2,5-bis(6-carboxylatopyridin-2-yl)pyrrol-1-ide) and pyridine (py) that includes {Ru II(Ht5a-κ-N 2O)(py) 3} (1H II(κ-N 2O)), {Ru III(t5a-κ-N 3O 1.5)(py) 2} (2 III(κ-N 3O 1.5)), and {Ru IV(t5a-κ-N 3O 2)(py) 2}+ ({2 IV(κ-N3O 2)}+) has been prepared and thoroughly characterized. Complexes 1HII(κ-N 2O), 2 III(κ-N 3O 1.5), and {2 IV(κ-N 3O 2)}+ have been investigated in solution by spectroscopic methods (NMR, UV–vis) and in the solid state by single-crystal X-ray diffraction analysis and complemented by density functional theory (DFT) calculations. The redox properties of complex 2 III(κ-N 3O 1.5) have beenmore » studied by electrochemical methods (CV and DPV), showing its easy access to high oxidation states, thanks to the trianionic nature of the t5a 3– ligand. Under neutral to basic conditions complex {2 IV(κ-N3O 2)}+ undergoes aquation, generating {Ru IV(OH)(t5a-κ-N 2O)(py) 2} (2 IV(OH)(κ-N 2O)). Further oxidation of the complex forms {Ru V(O)(t5a-κ-N 2O)(py) 2} (2 V(O)(κ-N 2O)), which is a very efficient water oxidation catalyst, reaching a TOF MAX value of 9400 s –1 at pH 7.0, as measured via foot of the wave analysis. The key to fast kinetics for the catalytic oxidation of water to dioxygen by 2 V(O)(κ-N 2O) is due not only to the easy access to high oxidation states but also to the intramolecular hydrogen bonding provided by the noncoordinated dangling carboxylate at the transition state, as corroborated by DFT calculations.« less
NASA Astrophysics Data System (ADS)
Zhang, Yi-Quan; Luo, Cheng-Lin
Molecular magnetism in a series of cyano-bridged first and second transition metal complexes has been investigated using density functional theory (DFT) combined with the broken-symmetry (BS) approach. Several exchange-correlation (XC) functionals in the ADF package were used to investigate complexes I [-(Me3tacn)2(cyclam)NiMo2(CN)6]2+, II [-(Me3tacn)2(cyclam)Ni-Cr2(CN)6]2+, III [(Me3tacn)6MnMo6(CN)18]2+, and IV [(Me3tacn)6MnCr6(CN)18]2+ (Me3tacn = N,N?,N‴-trimethyl-1,4,7-triazacyclononane). For models A (the molded structure of complex I) and B (the modeled structure of complex II), all the XCs given qualitatively reasonable results and predict ferromagnetic coupling character between M (M = MoIII for A or CrIII for B) and NiII in coincidence with the experimental results (see Tables and ). The calculated using Operdew, OPBE, O3LYP, and B3LYP functionals and experimental J values show that substituting CrIII with MoIII will enhance the ferromagnetic exchange coupling interactions. But VWN, PW91, PBE, VSXC, and tau-HCTH functionals have no way to differentiate the relative strength of the intramolecular magnetic exchange coupling interactions of A and B correctly. For models C (the modeled structure of complex III) and D (the modeled structure of complex IV), all the XCs in ADF and B3LYP in Gaussian 03 with several basis sets show that substituting CrIII with MoIII will enhance the antiferromagnetic exchange coupling interactions. From the above calculations, the substitution of CrIII by MoIII will enhance the magnetic coupling interactions, whether the magnetic coupling interactions are ferro- or antiferromagnetic. Moreover, Kahn's model was applied to investigate the above facts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, Samantha K.; Livshits, Maksim; Cross, Justin N.
Thenoyltrifluoroacetone (HTTA)-based extractions represent popular methods for separating microscopic amounts of transuranic actinides (i.e., Np and Pu) from macroscopic actinide matrixes (e.g. bulk uranium). It is well-established that this procedure enables +4 actinides to be selectively removed from +3, + 5, and +6 f-elements. However, even highly skilled and well-trained researchers find this process complicated and (at times) unpredictable. It is difficult to improve the HTTA extraction—or find alternatives—because little is understood about why this separation works. Even the identities of the extracted species are unknown. In addressing this knowledge gap, we report in this paper advances in fundamental understandingmore » of the HTTA-based extraction. This effort included comparatively evaluating HTTA complexation with +4 and +3 metals (M IV = Zr, Hf, Ce, Th, U, Np, and Pu vs M III = Ce, Nd, Sm, and Yb). We observed +4 metals formed neutral complexes of the general formula M IV(TTA) 4. Meanwhile, +3 metals formed anionic M III(TTA) 4 – species. Characterization of these M(TTA) 4 x– (x = 0, 1) compounds by UV–vis–NIR, IR, 1H and 19F NMR, single-crystal X-ray diffraction, and X-ray absorption spectroscopy (both near-edge and extended fine structure) was critical for determining that Np IV(TTA) 4 and Pu IV(TTA) 4 were the primary species extracted by HTTA. Furthermore, this information lays the foundation to begin developing and understanding of why the HTTA extraction works so well. The data suggest that the solubility differences between M IV(TTA) 4 and M III(TTA) 4 – are likely a major contributor to the selectivity of HTTA extractions for +4 cations over +3 metals. Finally and moreover, these results will enable future studies focused on explaining HTTA extractions preference for +4 cations, which increases from Np IV to Pu IV, Hf IV, and Zr IV.« less
Cary, Samantha K.; Livshits, Maksim; Cross, Justin N.; ...
2018-03-21
Thenoyltrifluoroacetone (HTTA)-based extractions represent popular methods for separating microscopic amounts of transuranic actinides (i.e., Np and Pu) from macroscopic actinide matrixes (e.g. bulk uranium). It is well-established that this procedure enables +4 actinides to be selectively removed from +3, + 5, and +6 f-elements. However, even highly skilled and well-trained researchers find this process complicated and (at times) unpredictable. It is difficult to improve the HTTA extraction—or find alternatives—because little is understood about why this separation works. Even the identities of the extracted species are unknown. In addressing this knowledge gap, we report in this paper advances in fundamental understandingmore » of the HTTA-based extraction. This effort included comparatively evaluating HTTA complexation with +4 and +3 metals (M IV = Zr, Hf, Ce, Th, U, Np, and Pu vs M III = Ce, Nd, Sm, and Yb). We observed +4 metals formed neutral complexes of the general formula M IV(TTA) 4. Meanwhile, +3 metals formed anionic M III(TTA) 4 – species. Characterization of these M(TTA) 4 x– (x = 0, 1) compounds by UV–vis–NIR, IR, 1H and 19F NMR, single-crystal X-ray diffraction, and X-ray absorption spectroscopy (both near-edge and extended fine structure) was critical for determining that Np IV(TTA) 4 and Pu IV(TTA) 4 were the primary species extracted by HTTA. Furthermore, this information lays the foundation to begin developing and understanding of why the HTTA extraction works so well. The data suggest that the solubility differences between M IV(TTA) 4 and M III(TTA) 4 – are likely a major contributor to the selectivity of HTTA extractions for +4 cations over +3 metals. Finally and moreover, these results will enable future studies focused on explaining HTTA extractions preference for +4 cations, which increases from Np IV to Pu IV, Hf IV, and Zr IV.« less
Cortes, Pablo A; Bozinovic, Francisco; Blier, Pierre U
2018-07-01
Mammalian torpor is a phenotype characterized by a controlled decline of metabolic rate, generally followed by a reduction in body temperature. During arousal from torpor, both metabolic rate and body temperature rapidly returns to resting levels. Metabolic rate reduction experienced by torpid animals is triggered by active suppression of mitochondrial respiration, which is rapidly reversed during rewarming process. In this study, we analyzed the changes in the maximal activity of key enzymes related to electron transport system (complexes I, III and IV) in six tissues of torpid, arousing and euthermic Chilean mouse-opossums (Thylamys elegans). We observed higher maximal activities of complexes I and IV during torpor in brain, heart and liver, the most metabolically active organs in mammals. On the contrary, higher enzymatic activities of complexes III were observed during torpor in kidneys and lungs. Moreover, skeletal muscle was the only tissue without significant differences among stages in all complexes evaluated, suggesting no modulation of oxidative capacities of electron transport system components in this thermogenic tissue. In overall, our data suggest that complexes I and IV activity plays a major role in initiation and maintenance of metabolic suppression during torpor in Chilean mouse-opossum, whereas improvement of oxidative capacities in complex III might be critical to sustain metabolic machinery in organs that remains metabolically active during torpor. Copyright © 2018 Elsevier Inc. All rights reserved.
Ansari, Azaj; Ansari, Mursaleem; Singha, Asmita; Rajaraman, Gopalan
2017-07-26
Activation of inert C-H bonds such as those of methane are extremely challenging for chemists but in nature, the soluble methane monooxygenase (sMMO) enzyme readily oxidizes methane to methanol by using a diiron(IV) species. This has prompted chemists to look for similar model systems. Recently, a (μ-oxo)bis(μ-carboxamido)diiron(IV) ([Fe IV 2 O(L) 2 ] 2+ L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane) complex has been generated by bulk electrolysis and this species activates inert C-H bonds almost 1000 times faster than mononuclear Fe IV =O species and at the same time selectively activates O-H bonds of alcohols. The very high reactivity and selectivity of this species is puzzling and herein we use extensive DFT calculations to shed light on this aspect. We have studied the electronic and spectral features of diiron {Fe III -μ(O)-Fe III } +2 (complex I), {Fe III -μ(O)-Fe IV } +3 (II), and {Fe IV -μ(O)-Fe IV } +4 (III) complexes. Strong antiferromagnetic coupling between the Fe centers leads to spin-coupled S=0, S=3/2, and S=0 ground state for species I-III respectively. The mechanistic study of the C-H and O-H bond activation reveals a multistate reactivity scenario where C-H bond activation is found to occur through the S=4 spin-coupled state corresponding to the high-spin state of individual Fe IV centers. The O-H bond activation on the other hand, occurs through the S=2 spin-coupled state corresponding to an intermediate state of individual Fe IV centers. Molecular orbital analysis reveals σ-π/π-π channels for the reactivity. The nature of the magnetic exchange interaction is found to be switched during the course of the reaction and this offers lower energy pathways. Significant electronic cooperativity between two metal centers during the course of the reaction has been witnessed and this uncovers the reason behind the efficiency and selectivity observed. The catalyst is found to prudently choose the desired spin states based on the nature of the substrate to effect the catalytic transformations. These findings suggest that the presence of such factors play a role in the reactivity of dinuclear metalloenzymes such as sMMO. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Naranmandura, Hua; Xu, Shi; Sawata, Takashi; Hao, Wen Hui; Liu, Huan; Bu, Na; Ogra, Yasumitsu; Lou, Yi Jia; Suzuki, Noriyuki
2011-07-18
Excessive generation of reactive oxygen species (ROS) is considered to play an important role in arsenic-induced carcinogenicity in the liver, lungs, and urinary bladder. However, little is known about the mechanism of ROS-based carcinogenicity, including where the ROS are generated, and which arsenic species are the most effective ROS inducers. In order to better understand the mechanism of arsenic toxicity, rat liver RLC-16 cells were exposed to arsenite (iAs(III)) and its intermediate metabolites [i.e., monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III))]. MMA(III) (IC(50) = 1 μM) was found to be the most toxic form, followed by DMA(III) (IC(50) = 2 μM) and iAs(III) (IC(50) = 18 μM). Following exposure to MMA(III), ROS were found to be generated primarily in the mitochondria. DMA(III) exposure resulted in ROS generation in other organelles, while no ROS generation was seen following exposures to low levels of iAs(III). This suggests the mechanisms of induction of ROS are different among the three arsenicals. The effects of iAs(III), MMA(III), and DMA(III) on activities of complexes I-IV in the electron transport chain (ETC) of rat liver submitochondrial particles and on the stimulation of ROS production in intact mitochondria were also studied. Activities of complexes II and IV were significantly inhibited by MMA(III), but only the activity of complexes II was inhibited by DMA(III). Incubation with iAs(III) had no inhibitory effects on any of the four complexes. Generation of ROS in intact mitochondria was significantly increased following incubation with MMA(III), while low levels of ROS generation were observed following incubation with DMA(III). ROS was not produced in mitochondria following exposure to iAs(III). The mechanism underlying cell death is different among As(III), MMA(III), and DMA(III), with mitochondria being one of the primary target organelles for MMA(III)-induced cytotoxicity. © 2011 American Chemical Society
Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans
Roden, E.E.; Lovley, D.R.
1993-01-01
The ability of the marine microorganism Desulfuromonas acetoxidans to reduce Fe(III) was investigated because of its close phylogenetic relationship with the freshwater dissimilatory Fe(III) reducer Geobacter metallireducens. Washed cell suspensions of the type strain of D. acetoxidans reduced soluble Fe(III)-citrate and Fe(III) complexed with nitriloacetic acid. The c-type cytochrome(s) of D. acetoxidans was oxidized by Fe(III)- citrate and Mn(IV)-oxalate, as well as by two electron acceptors known to support growth, colloidal sulfur and malate. D. acetoxidans grew in defined anoxic, bicarbonate-buffered medium with acetate as the sole electron donor and poorly crystalline Fe(III) or Mn(IV) as the sole electron acceptor. Magnetite (Fe3O4) and siderite (FeCO3) were the major end products of Fe(III) reduction, whereas rhodochrosite (MnCO3) was the end product of Mn(IV) reduction. Ethanol, propanol, pyruvate, and butanol also served as electron donors for Fe(III) reduction. In contrast to D. acetoxidans, G. metallireducens could only grow in freshwater medium and it did not conserve energy to support growth from colloidal S0 reduction. D. acetoxidans is the first marine microorganism shown to conserve energy to support growth by coupling the complete oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). Thus, D. acetoxidans provides a model enzymatic mechanism for Fe(III) or Mn(IV) oxidation of organic compounds in marine and estuarine sediments. These findings demonstrate that 16S rRNA phylogenetic analyses can suggest previously unrecognized metabolic capabilities of microorganisms.
Wei, Zi; Cady, Clyde W; Brudvig, Gary W; Hou, Harvey J M
2011-01-01
The Mn cluster in photosystem II (PS II) is believed to play an important role in the UV photoinhibition of green plants, but the mechanism is still not clear at a molecular level. In this work, the photochemical stability of [Mn(III)(O)(2)Mn(IV)(H(2)O)(2)(Terpy)(2)](NO(3))(3) (Terpy=2,2':6',2''-terpyridine), designated as Mn-oxo mixed-valence dimer, a well characterized functional model of the oxygen-evolving complex in PS II, was examined in aqueous solution by exposing the complex to excess light irradiation at six different wavelengths in the range of 250 to 700 nm. The photodamage of the Mn-oxo mixed-valence dimer was confirmed by the decrease of its oxygen-evolution activity measured in the presence of the chemical oxidant oxone. Ultraviolet light irradiation induced a new absorption peak at around 400-440 nm of the Mn-oxo mixed-valence dimer. Visible light did not have the same effect on the Mn-oxo mixed-valence dimer. We speculate that the spectral change may be caused by conversion of the Mn(III)O(2)Mn(IV) dimer into a new structure--Mn(IV)O(2)Mn(IV). In the processes, the appearance of a 514 nm fluorescence peak was observed in the solution and may be linked to the hydration or protonation of Terpy ligand in the Mn-oxo dimer. In comparing the response of the PS II functional model compound and the PS II complex to excess light radiation, our results support the idea that UV photoinhibition is triggered at the Mn(4)Ca center of the oxygen-evolution complex in PS II by forming a modified structure, possibly a Mn(IV) species, and that the reaction of Mn ions is likely the initial step. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Pathak, P. N.; Mohapatra, M.; Godbole, S. V.
2013-11-01
UREX process has been proposed for selective extraction of U(VI) and Tc(VII) from nitric acid medium (∼1 M HNO3) using tri-n-butyl phosphate (TBP) as extractant and retaining Pu, Np and fission products in the aqueous phase. The feasibility of the use of luminescence spectroscopy as a technique to understand the complexation of trivalent f-elements cations viz. Eu(III) and Tb(III) with acetohydroxamic acid (AHA) in nitric acid medium has been examined. The luminescence lifetimes for the 1 × 10-3 M Eu(III) and AHA complex system decreased with increased AHA concentration from 116 ± 0.2 μs (no AHA) to 1.6 ± 0.1 μs (0.1 M AHA) which was attributed to dynamic quenching. The corrected fluorescence intensities were used to calculate the stability constant (log K) for the formation of 1:1 Eu3+-AHA complex as 1.42 ± 0.64 under the conditions of this study. By contrast, the Tb(III)-AHA system at pH 3 (HNO3) did not show any significant variation in the life times of the excited state (364 ± 9 μs) suggesting the absence of dynamic quenching. The spectral changes in Tb(III)-AHA system showed the formation of 1:1 complex (log K: 1.72 ± 0.21). These studies suggest that the extent of AHA complexation with the rare earth elements will be insignificant as compared to tetravalent metal ions Pu(IV) and Np(IV) under UREX process conditions.
Franke, Sebastian M; Rosenzweig, Michael W; Heinemann, Frank W; Meyer, Karsten
2015-01-01
We report the syntheses, electronic properties, and molecular structures of a series of mono- and dinuclear uranium(iv) hydrochalcogenido complexes supported by the sterically demanding but very flexible, single N-anchored tris(aryloxide) ligand ( Ad ArO) 3 N) 3- . The mononuclear complexes [(( Ad ArO) 3 N)U(DME)(EH)] (E = S, Se, Te) can be obtained from the reaction of the uranium(iii) starting material [(( Ad ArO) 3 N)U III (DME)] in DME via reduction of H 2 E and the elimination of 0.5 equivalents of H 2 . The dinuclear complexes [{(( Ad ArO) 3 N)U} 2 (μ-EH) 2 ] can be obtained by dissolving their mononuclear counterparts in non-coordinating solvents such as benzene. In order to facilitate the work with the highly toxic gases, we created concentrated THF solutions that can be handled using simple glovebox techniques and can be stored at -35 °C for several weeks.
NASA Astrophysics Data System (ADS)
Mohamed Subarkhan, M.; Ramesh, R.
2015-03-01
A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E = P or As; X = Cl or Br; L = NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d5) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx ≠ gy ≠ gz) at 77 K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (RuIII-RuIII/RuIV-RuIV; RuIII-RuIII/RuII-RuII) within the potential range of 0.38-0.86 V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent RuVdbnd O species is proposed as catalytic intermediate for the catalytic cycle.
Soldatova, Alexandra V; Romano, Christine A; Tao, Lizhi; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G
2017-08-23
The bacterial manganese oxidase MnxG of the Mnx protein complex is unique among multicopper oxidases (MCOs) in carrying out a two-electron metal oxidation, converting Mn(II) to MnO 2 nanoparticles. The reaction occurs in two stages: Mn(II) → Mn(III) and Mn(III) → MnO 2 . In a companion study , we show that the electron transfer from Mn(II) to the low-potential type 1 Cu of MnxG requires an activation step, likely forming a hydroxide bridge at a dinuclear Mn(II) site. Here we study the second oxidation step, using pyrophosphate (PP) as a Mn(III) trap. PP chelates Mn(III) produced by the enzyme and subsequently allows it to become a substrate for the second stage of the reaction. EPR spectroscopy confirms the presence of Mn(III) bound to the enzyme. The Mn(III) oxidation step does not involve direct electron transfer to the enzyme from Mn(III), which is shown by kinetic measurements to be excluded from the Mn(II) binding site. Instead, Mn(III) is proposed to disproportionate at an adjacent polynuclear site, thereby allowing indirect oxidation to Mn(IV) and recycling of Mn(II). PP plays a multifaceted role, slowing the reaction by complexing both Mn(II) and Mn(III) in solution, and also inhibiting catalysis, likely through binding at or near the active site. An overall mechanism for Mnx-catalyzed MnO 2 production from Mn(II) is presented.
Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)-Oxo Complexes.
Massie, Allyssa A; Denler, Melissa C; Cardoso, Luísa Thiara; Walker, Ashlie N; Hossain, M Kamal; Day, Victor W; Nordlander, Ebbe; Jackson, Timothy A
2017-04-03
Manganese(IV)-oxo complexes are often invoked as intermediates in Mn-catalyzed C-H bond activation reactions. While many synthetic Mn IV -oxo species are mild oxidants, other members of this class can attack strong C-H bonds. The basis for these reactivity differences is not well understood. Here we describe a series of Mn IV -oxo complexes with N5 pentadentate ligands that modulate the equatorial ligand field of the Mn IV center, as assessed by electronic absorption, electron paramagnetic resonance, and Mn K-edge X-ray absorption methods. Kinetic experiments show dramatic rate variations in hydrogen-atom and oxygen-atom transfer reactions, with faster rates corresponding to weaker equatorial ligand fields. For these Mn IV -oxo complexes, the rate enhancements are correlated with both 1) the energy of a low-lying 4 E excited state, which has been postulated to be involved in a two-state reactivity model, and 2) the Mn III/IV reduction potentials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Changing interdigestive migrating motor complex in rats under acute liver injury.
Liu, Mei; Zheng, Su-Jun; Xu, Weihong; Zhang, Jianying; Chen, Yu; Duan, Zhongping
2014-01-01
Gastrointestinal motility disorder is a major clinical manifestation of acute liver injury, and interdigestive migrating motor complex (MMC) is an important indicator. We investigated the changes and characteristics of MMC in rats with acute liver injury. Acute liver injury was created by d-galactosamine, and we recorded the interdigestive MMC using a multichannel physiological recorder and compared the indexes of interdigestive MMC. Compared with normal controls, antral MMC Phase I duration was significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The duodenal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The jejunal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury compared with normal controls. Compared with the normal controls, rats with acute liver injury had a significantly prolonged interdigestive MMC cycle, related mainly to longer MMC Phases I and IV, shortened MMC Phase III, and MMC Phase II characterized by increased migrating clustered contractions, which were probably major contributors to the gastrointestinal motility disorders.
Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle.
Greggio, Chiara; Jha, Pooja; Kulkarni, Sameer S; Lagarrigue, Sylviane; Broskey, Nicholas T; Boutant, Marie; Wang, Xu; Conde Alonso, Sonia; Ofori, Emmanuel; Auwerx, Johan; Cantó, Carles; Amati, Francesca
2017-02-07
Mitochondrial dysfunction is a hallmark of multiple metabolic complications. Physical activity is known to increase mitochondrial content in skeletal muscle, counteracting age-related decline in muscle function and protecting against metabolic and cardiovascular complications. Here, we investigated the effect of 4 months of exercise training on skeletal muscle mitochondria electron transport chain complexes and supercomplexes in 26 healthy, sedentary older adults. Exercise differentially modulated respiratory complexes. Complex I was the most upregulated complex and not stoichiometrically associated to the other complexes. In contrast to the other complexes, complex I was almost exclusively found assembled in supercomplexes in muscle mitochondria. Overall, supercomplex content was increased after exercise. In particular, complexes I, III, and IV were redistributed to supercomplexes in the form of I+III 2 +IV. Taken together, our results provide the first evidence that exercise affects the stoichiometry of supercomplex formation in humans and thus reveal a novel adaptive mechanism for increased energy demand. Copyright © 2017 Elsevier Inc. All rights reserved.
Pagano, Justin K.; Dorhout, Jacquelyn M.; Czerwinski, Kenneth R.; ...
2016-03-18
Here, this work demonstrates that the oxidation state and chemistry of uranium hydrides can be tuned with temperature and the stoichiometry of phenylsilane. The trivalent uranium hydride [(C 5Me 5) 2U–H] x (5) was found to be comprised of an equilibrium mixture of U(III) hydrides in solution at ambient temperature. A single U(III) species can be selectively prepared by treating (C 5Me5)2UMe2 (4) with 2 equiv of phenylsilane at 50 °C. The U(III) system is a potent reducing agent and displayed chemistry distinct from the U(IV) system [(C 5Me 5) 2U(H)(μ-H)] 2 (2), which was harnessed to prepare a varietymore » of organometallic complexes, including (C 5Me 5) 2U(dmpe)(H) (6), and the novel uranium(IV) metallacyclopentadiene complex (C 5Me 5) 2U(C 4Me 4) (11).« less
Yang, Chunfa; Ma, Ruishuang; Jiang, Tao; Cao, Muhua; Zhao, Liangliang; Bi, Yayan; Kou, Junjie; Shi, Jialan; Zou, Xiaoming
2016-06-01
Hypercoagulability in gastric cancer is a common complication and a major contributor to poor prognosis. This study aimed to determine procoagulant activity of blood cells and microparticles (MPs) in gastric cancer patients. Phosphatidylserine-positive blood cells and MPs, and their procoagulant properties in particular, were assessed in 48 gastric cancer patients and 35 healthy controls. Phosphatidylserine-positive platelets, leukocytes, and MPs in patients with tumor-node-metastasis stage III/IV gastric cancer were significantly higher than those in stage I/II patients or healthy controls. Moreover, procoagulant activity of platelets, leukocytes, and MPs in stage III/IV patients was significantly increased compared to the controls, as indicated by shorter clotting time, higher intrinsic and extrinsic factor tenase, and prothrombinase complex activity. Interestingly, lactadherin, which competes with factors V and VIII to bind phosphatidylserine, dramatically prolonged clotting time of the cells and MPs by inhibiting factor tenase and prothrombinase complex activity. Although anti-tissue factor antibody significantly attenuated extrinsic tenase complex activity of leukocytes and MPs, it only slightly prolonged clotting times. Meanwhile, treatment with radical resection reduced phosphatidylserine-positive platelets, leukocytes, and MPs, and prolonged the clotting times of the remaining cells and MPs. Our results suggest that phosphatidylserine-positive platelets, leukocytes, and MPs contribute to hypercoagulability and represent a potential therapeutic target to prevent coagulation in patients with stage III/IV gastric cancer.
Böttinger, Lena; Mårtensson, Christoph U.; Song, Jiyao; Zufall, Nicole; Wiedemann, Nils; Becker, Thomas
2018-01-01
Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity. PMID:29386296
Pathak, P N; Mohapatra, M; Godbole, S V
2013-11-01
UREX process has been proposed for selective extraction of U(VI) and Tc(VII) from nitric acid medium (∼1M HNO3) using tri-n-butyl phosphate (TBP) as extractant and retaining Pu, Np and fission products in the aqueous phase. The feasibility of the use of luminescence spectroscopy as a technique to understand the complexation of trivalent f-elements cations viz. Eu(III) and Tb(III) with acetohydroxamic acid (AHA) in nitric acid medium has been examined. The luminescence lifetimes for the 1×10(-3)M Eu(III) and AHA complex system decreased with increased AHA concentration from 116±0.2μs (no AHA) to 1.6±0.1μs (0.1M AHA) which was attributed to dynamic quenching. The corrected fluorescence intensities were used to calculate the stability constant (log K) for the formation of 1:1 Eu(3+)-AHA complex as 1.42±0.64 under the conditions of this study. By contrast, the Tb(III)-AHA system at pH 3 (HNO3) did not show any significant variation in the life times of the excited state (364±9μs) suggesting the absence of dynamic quenching. The spectral changes in Tb(III)-AHA system showed the formation of 1:1 complex (log K: 1.72±0.21). These studies suggest that the extent of AHA complexation with the rare earth elements will be insignificant as compared to tetravalent metal ions Pu(IV) and Np(IV) under UREX process conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
Novel Rhenium(III, IV, and V) Tetradentate N2O2 Schiff Base Mononuclear and Dinuclear Complexes
Rotsch, David A.; Reinig, Kimberly M.; Weis, Eric M.; Taylor, Anna B.; Barnes, Charles L.
2013-01-01
Reaction of (Bu4N)[ReOCl4] with the tetradentate Schiff base ligand α, α’-[(1,1-dimethylethylene)dinitrilo]di-o-cresol (sal2ibnH2) yields cis-[ReVOCl(sal2ibn)], which quickly forms trans-[μ-O(ReVO(sal2ibn))2] in solution. The dinuclear complex can also be isolated by the addition of base (Et3N) to the reaction mixture. Conversely, the mononuclear complex can be trapped as cis-[ReVO(NCS)(sal2ibn)] by addition of (Bu4N)SCN to the reaction mixture. Reduction of cis-[ReVO(NCS)sal2ibn] with triphenylphosphine gives the unique trans-[ReIII(NCS)(PPh3)(sal2ibn)] and rare μ-oxo Re(IV) dimer trans-[μ-O(ReIV(NCS)(sal2ibn))2]. All of the complexes were characterized by 1H and 13C NMR, FT-IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), cyclic voltammetry and single crystal X-ray diffraction. PMID:23824208
NASA Astrophysics Data System (ADS)
El-Shafiy, H. F.; Shebl, Magdy
2018-03-01
A new series of mononuclear oxovanadium(IV), cerium(III), thorium(IV) and dioxouranium(VI) complexes of a quinolinone ligand; 1-ethyl-4-hydroxy-3-(nitroacetyl)quinolin-2(1H)-one (H2L) have been synthesized. The metal complexes were characterized by different techniques such as elemental and thermal analyses, IR, 1H NMR, electronic, ESR, mass spectra and powder XRD, TEM in addition to magnetic susceptibility and conductivity measurements. The quinolinone ligand acts as a dibasic bidentate ligand forming mononuclear complexes, which can be formulated as: [(L)VO(H2O)2]·0.5H2O, [(L)M(NO3)x(H2O)y]·nH2O; M = Ce or Th, x = 1 or 2, y = 3 or 4 and n = 2 or 7 and [(L)UO2(H2O)x(MeOH)y]·nH2O; x = 2 or 3, y = 0 or 1 and n = 0.5 or 2.5. The photoluminescent properties of the prepared complexes were studied. The ligand and its thorium(IV) complex are characterized by an intense green emission. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The geometry of the ligand and its oxovanadium(IV) complex has been optimized using density functional theory (DFT). Total energy, energy of HOMO and LUMO, dipole moment and structure activity relationship were performed and confirmed practical antimicrobial and antitumor results. The antimicrobial activity of the ligand and its metal complexes was conducted against the microorganisms S. aureus, K. pnemonia, E. coli, P. vulgaris and C. albicans and the MIC values were determined. The antitumor activity of the ligand and its metal complexes was investigated against human Hepatocelluar carcinoma and human breast cancer cell lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmieri, M.D.; Fritz, J.S.
Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV),more » Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.« less
Catalytic two-electron reduction of dioxygen by ferrocene derivatives with manganese(V) corroles.
Jung, Jieun; Liu, Shuo; Ohkubo, Kei; Abu-Omar, Mahdi M; Fukuzumi, Shunichi
2015-05-04
Electron transfer from octamethylferrocene (Me8Fc) to the manganese(V) imidocorrole complex (tpfc)Mn(V)(NAr) [tpfc = 5,10,15-tris(pentafluorophenyl)corrole; Ar = 2,6-Cl2C6H3] proceeds efficiently to give an octamethylferrocenium ion (Me8Fc(+)) and [(tpfc)Mn(IV)(NAr)](-) in acetonitrile (MeCN) at 298 K. Upon the addition of trifluoroacetic acid (TFA), further reduction of [(tpfc)Mn(IV)(NAr)](-) by Me8Fc gives (tpfc)Mn(III) and ArNH2 in deaerated MeCN. TFA also results in hydrolysis of (tpfc)Mn(V)(NAr) with residual water to produce a protonated manganese(V) oxocorrole complex ([(tpfc)Mn(V)(OH)](+)) in deaerated MeCN. [(tpfc)Mn(V)(OH)](+) is rapidly reduced by 2 equiv of Me8Fc in the presence of TFA to give (tpfc)Mn(III) in deaerated MeCN. In the presence of dioxygen (O2), (tpfc)Mn(III) catalyzes the two-electron reduction of O2 by Me8Fc with TFA in MeCN to produce H2O2 and Me8Fc(+). The rate of formation of Me8Fc(+) in the catalytic reduction of O2 follows zeroth-order kinetics with respect to the concentrations of Me8Fc and TFA, whereas the rate increases linearly with increasing concentrations of (tpfc)Mn(V)(NAr) and O2. These kinetic dependencies are consistent with the rate-determining step being electron transfer from (tpfc)Mn(III) to O2, followed by further proton-coupled electron transfer from Me8Fc to produce H2O2 and [(tpfc)Mn(IV)](+). Rapid electron transfer from Me8Fc to [(tpfc)Mn(IV)](+) regenerates (tpfc)Mn(III), completing the catalytic cycle. Thus, catalytic two-electron reduction of O2 by Me8Fc with (tpfc)Mn(V)(NAr) as a catalyst precursor proceeds via a Mn(III)/Mn(IV) redox cycle.
Krewald, Vera; Retegan, Marius; Cox, Nicholas; Messinger, Johannes; Lubitz, Wolfgang; DeBeer, Serena; Neese, Frank
2015-01-01
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five Si states (i = 0–4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called “high-valent scheme”—where, for example, the Mn oxidation states in the S2 state are assigned as III, IV, IV, IV—the competing “low-valent scheme” that differs by a total of two metal unpaired electrons (i.e. III, III, III, IV in the S2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K 55Mn ENDOR data of the S2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S0 (III, III, III, IV) to S3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S states and the states involved in the assembly of the catalytically active water oxidizing cluster. PMID:29308133
Kitagishi, Hiroaki; Kurosawa, Shun; Kano, Koji
2016-11-22
The intramolecular oxidation of ROCH 3 to ROCH 2 OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met-hemoCD3) with cumene hydroperoxide in aqueous solution. Met-hemoCD3 is composed of meso-tetrakis(4-sulfonatophenyl)porphinatoiron(III) (Fe III TPPS) and a per-O-methylated β-cyclodextrin dimer having an -OCH 2 PyCH 2 O- linker (Py=pyridine-3,5-diyl). The O=Fe IV TPPS complex was formed by the reaction of met-hemoCD3 with cumene hydroperoxide, and isolated by gel-filtration chromatography. Although the isolated O=Fe IV TPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to Fe II TPPS (t 1/2 =7.6 h). This conversion was accompanied by oxidative O-demethylation of an OCH 3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=Fe IV TPPS from ROCH 3 yields HO-Fe III TPPS and ROCH 2 . . This was followed by radical coupling to afford Fe II TPPS and ROCH 2 OH. The hemiacetal (ROCH 2 OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two-electron oxidation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reversible interconversion between a nitrido complex of Os(VI) and an ammino complex of osmium(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipes, D.W.; Bakir, M.; Vitols, S.E.
1990-07-04
The reaction between (N(n-Bu){sub 4})(Os(N)(X){sub 4}) (X = Cl, Br) and 2,2{prime}:6{prime},2{double prime}-terpyridine (tpy) in acetone under reflux gave the salts (Os(N)(typ)(X){sub 2})X. The X-ray crystal structure of (Os(N)(tpy)(Cl){sub 2})Cl showed that the chloride ligands occupy mutually trans axial positions relative to the nitrido ligand. Reduction potentials were measured or estimated at pH = 3 for the intermediate Os(VI/V), Os(V/IV), Os(IV/III), and Os(III/II) couples. From those measurements, it was shown that the Os(V) intermediate, (Os{sup V}(N)(tpy)(Cl){sub 2}), is both a powerful oxidant and a strong reductant, highly unstable with respect to disproportionation into Os(VI) and Os(IV).
NASA Astrophysics Data System (ADS)
Kraemer, Dennis; Tepe, Nathalie; Pourret, Olivier; Bau, Michael
2017-01-01
We present experimental results on the sorption behavior of rare earth elements and yttrium (REY) on precipitating manganese (hydr)oxide in the presence of the biogenic siderophore desferrioxamine B (DFOB). In marked contrast to inorganic systems, where preferential adsorption of HREY and depletion of LREY is commonly observed in manganese (hydr)oxide precipitates, sorption of REY in presence of the DFOB siderophore leads to HREY-depleted and LREY-enriched patterns in the precipitates. Moreover, our data indicate that surface oxidation of Ce(III) to Ce(IV) during sorption onto manganese (hydr)oxides and the resulting development of a positive Ce anomaly, which are commonly observed in inorganic experiments, are prevented in the presence of DFOB. Instead, Ce(III) is oxidized to Ce(IV) but associated with the dissolved desferrioxamine B which forms complexes with Ce(IV), that are at least twenty orders of magnitude more stable than those with Ce(III) and REY(III). The overall result is the formation of a positive Ce anomaly in the solution and a negative Ce anomaly in the Mn (hydr)oxides. The distribution of the strictly trivalent REY and Eu(III) between the manganese (hydr)oxide phase and the remaining ambient solution mimics the distribution of published stability constants for complexes of REY(III) with DFOB, i.e. the heavy REY form more stable complexes with the ligand and hence are better shielded from sorption than the LREY. Surface complexation modeling corroborates our experimental results. Negative Ce anomalies in Mn precipitates have been described from biogenic Mn oxides. Our results provide experimental evidence for the development of negative Ce anomalies in abiogenic Mn (hydr)oxide precipitates and show that the presence of the widespread siderophore desferrioxamine B during mineral precipitation results in HREY-depleted Mn (hydr)oxides with negative Ce anomalies.
Dutkiewicz, Michał S.; Apostolidis, Christos
2017-01-01
Neptunium complexes in the formal oxidation states II, III, and IV supported by cyclopentadienyl ligands are explored, and significant differences between Np and U highlighted as a result. A series of neptunium(iii) cyclopentadienyl (Cp) complexes [Np(Cp)3], its bis-acetonitrile adduct [Np(Cp)3(NCMe)2], and its KCp adduct K[Np(Cp)4] and [Np(Cp′)3] (Cp′ = C5H4SiMe3) have been made and characterised providing the first single crystal X-ray analyses of NpIII Cp complexes. In all NpCp3 derivatives there are three Cp rings in η5-coordination around the NpIII centre; additionally in [Np(Cp)3] and K[Np(Cp)4] one Cp ring establishes a μ-η1-interaction to one C atom of a neighbouring Np(Cp)3 unit. The solid state structure of K[Np(Cp)4] is unique in containing two different types of metal–Cp coordination geometries in the same crystal. NpIII(Cp)4 units are found exhibiting four units of η5-coordinated Cp rings like in the known complex [NpIV(Cp)4], the structure of which is now reported. A detailed comparison of the structures gives evidence for the change of ionic radii of ca. –8 pm associated with change in oxidation state between NpIII and NpIV. The rich redox chemistry associated with the syntheses is augmented by the reduction of [Np(Cp′)3] by KC8 in the presence of 2.2.2-cryptand to afford a neptunium(ii) complex that is thermally unstable above –10 °C like the UII and ThII complexes K(2.2.2-cryptand)[Th/U(Cp′)3]. Together, these spontaneous and controlled redox reactions of organo-neptunium complexes, along with information from structural characterisation, show the relevance of organometallic Np chemistry to understanding fundamental structure and bonding in the minor actinides. PMID:28553487
Decreased solubilization of Pu(IV) polymers by humic acids under anoxic conditions
NASA Astrophysics Data System (ADS)
Xie, Jinchuan; Lin, Jianfeng; Liang, Wei; Li, Mei; Zhou, Xiaohua
2016-11-01
Pu(IV) polymer has a very low solubility (log[Pu(IV)aq]total = -10.4 at pH 7.2 and I = 0). However, some aspects of their environmental fate remain unclear. Humic acids are able to complex with Pu4+ ions and their dissolved species (<10 kD) in the groundwater (neutral to alkaline pH) may cause solubilization of the polymers. Also, humic acids have the native reducing capacity and potentially reduce the polymeric Pu(IV) to Pu(III)aq (log[Pu(III)aq]total = -5.3 at pH 7.2 and I = 0). Solubilization and reduction of the polymers can enhance their mobility in subsurface environments. Nevertheless, humic acids readily coat the surfaces of metal oxides via electrostatic interaction and ligand exchange mechanisms. The humic coatings are expected to prevent both solubilization and reduction of the polymers. Experiments were conducted under anoxic and slightly alkaline (pH 7.2) conditions in order to study whether humic acids have effects on stability of the polymers. The results show that the polymeric Pu(IV) was almost completely transformed into aqueous Pu(IV) in the presence of EDTA ligands. In contrast, the dissolved humic acids did not solubilize the polymers but in fact decreased their solubility by one order of magnitude. The humic coatings were responsible for the decreased solubilization. Such coatings limited the contact between the polymers and EDTA ligands, especially at the relatively high concentrations of humic acids (>0.57 mg/L). Solubilization of the humic-coated polymers was thus inhibited to a significant extent although EDTA, having the great complexation ability, was present in the humic solutions. Reduction of Pu(IV) polymers by the humic acids was also not observed in the absence of EDTA. In the presence of EDTA, the polymers were partially reduced to Pu(III)aq by the humic acids of 0.57 mg/L and the percentage of Pu(III)aq accounted for 51.7% of the total aqueous Pu. This demonstrates that the humic acids were able to reduce the aqueous Pu(IV), instead of the polymeric Pu(IV). Such a demonstration is supported by the very positive redox potential of aqueous Pu(IV)-EDTA complex: Eho ‧ (PuL24-/PuL25-) = 154.3 mV >>Eh (PuO2 (am) /Pu3+) = -182.7 mV calculated at 10-10 mol/L Pu3+ and pH 7.2. At the higher humic concentrations (>0.57 mg/L), the polymers were reduced to a lesser extent because the much denser humic coatings resulted in lower concentrations of the aqueous Pu(IV). Consequently, humic acids make Pu(IV) polymers pretty stable unless the artificial ligands such as EDTA are present in the groundwater.
Maria, Leonor; Santos, Isabel C; Santos, Isabel
2018-05-23
The reaction of [UI3(thf)4] with the sodium or lithium salts of hydrobis(2-mercapto-1-methylimidazolyl)borate ligands ([H(R)B(timMe)2]-) in a 1 : 2 ratio, in tetrahydrofuran, gave the U(iii) complexes [UI{κ3-H,S,S'-H(R)B(timMe)2}2(thf)2] (R = H (1), Ph (2)) in good yields. Crystals of [UI{κ3-H,S,S'-H(Ph)B(timMe)2}2(thf)2] (2) were obtained by recrystallization from a tetrahydrofuran/acetonitrile solution, and the ion-separated uranium complex [U{κ3-H,S,S'-H(Ph)B(timMe)2}2(CH3CN)3][I] (3-I) was obtained by dissolution of 2 in acetonitrile followed by recrystallization. One-electron oxidation of 2 with AgBPh4 or I2 resulted in the formation of the cationic U(iv) complexes [U{κ3-H,S,S'-H(Ph)B(timMe)2}3][X] (X = BPh4 (6-BPh4), I (6-I)), due to a ligand redistribution process. These complexes are the first examples of homoleptic poly(azolyl)borate U(iv) complexes. Treatment of complex 2 with azobenzene led to the isolation of crystals of the U(iv) compound [UI{κ3-H(Ph)B(timMe)2}2(κ2-timMe)] (7). Treatment of 2 with pyridine-N oxide (pyNO) led to the formation of the uranyl complex [UO2{κ2-S,S'-H(Ph)B(timMe)2}2] (8) and of complex 6-I, while from the reaction of [U{κ3-H(Ph)B(timMe)2}2(thf)3][BPh4] (5) with pyNO, the oxo-bridged U(iv) complex [{U{κ3-H(Ph)B(timMe)2}2(pyNO)}2(μ-O)][BPh4]2 (9) was also obtained. In the U(iii) and U(iv) complexes, the bis(azolyl)borate ligands bind to the uranium center in a κ3-H,S,S' coordination mode, while in the U(vi) complex the ligands bind to the metal in a κ2-S,S' mode. The presence of UH-B interactions in the solid-state, for the nine-coordinate complexes 1, 2, 3, 6 and 7 and for the eight-coordinate complex 9, was supported by IR spectroscopy and/or X-ray diffraction analysis.
Redox and complexation chemistry of the CrVI/CrV-D-glucaric acid system.
Mangiameli, María Florencia; González, Juan Carlos; Bellú, Sebastián; Bertoni, Fernando; Sala, Luis F
2014-06-28
When an excess of uronic acid over Cr(VI) is used, the oxidation of D-glucaric acid (Glucar) by Cr(VI) yields D-arabinaric acid, CO2 and Cr(III)-Glucar complex as final redox products. The redox reaction involves the formation of intermediate Cr(IV) and Cr(V) species. The reaction rate increases with [H(+)] and [substrate]. The experimental results indicated that Cr(IV) and Cr(V) are very reactive intermediates since their disappearance rates are much faster than Cr(VI). Cr(IV) and Cr(V) intermediates are involved in fast steps and do not accumulate in the redox reaction of the mixture Cr(VI)-Glucar. Kinetic studies show that the redox reaction between Glucar and Cr(VI) proceeds through a mechanism combining one- and two-electron pathways: Cr(VI) → Cr(IV) → Cr(II) and Cr(VI) → Cr(IV) → Cr(III). After the redox reaction, results show a slow hydrolysis of the Cr(III)-Glucar complex into [Cr(OH2)6](3+). The proposed mechanism is supported by the observation of free radicals, CrO2(2+) (superoxo-Cr(III) ion) and oxo-Cr(V)-Glucar species as reaction intermediates. The continuous-wave electron paramagnetic resonance, CW-EPR, spectra show that five-coordinate oxo-Cr(V) bischelates are formed at pH ≤ 4 with the aldaric acid bound to oxo-Cr(V) through the carboxylate and the α-OH group. A different oxo-Cr(V) species with Glucar was detected at pH 6.0. The high g(iso) value for the last species suggests a mixed coordination species, a five-coordinated oxo-Cr(V) bischelate with one molecule of Glucar acting as a bi-dentate ligand, using the 2-hydroxycarboxylate group, and a second molecule of Glucar with any vic-diolate sites. At pH 7.5 only a very weak EPR signal was observed, which may point to instability of these complexes. This behaviour contrasts with oxo-Cr(V)-uronic species, and must thus be related to the Glucar acyclic structure. In vitro, our studies on the chemistry of oxo-Cr(V)-Glucar complexes can provide information on the nature of the species that are likely to be stabilized in vivo.
Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.
Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L
2008-05-02
G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.
Biological activity of Fe(III) aquo-complexes towards ferric chelate reductase (FCR).
Escudero, Rosa; Gómez-Gallego, Mar; Romano, Santiago; Fernández, Israel; Gutiérrez-Alonso, Ángel; Sierra, Miguel A; López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J
2012-03-21
In this study we have obtained experimental evidence that confirms the high activity of aquo complexes III and IV towards the enzyme FCR, responsible for the reduction of Fe(III) to Fe(II) in the process of iron acquisition by plants. The in vivo FCR assays in roots of stressed cucumber plants have shown a higher efficiency of the family of complexes III and a striking structure-activity relationship with the nature of the substituent placed in a phenyl group far away from the metal center. The results obtained in this work demonstrate that all the aquo compounds tested interact efficiently with the enzyme FCR and hence constitute a new concept of iron chelates that could be of great use in agronomy.
Lewis super-acid catalyzed cyclizations: a new route to fragrance compounds.
Coulombel, Lydie; Grau, Fanny; Weïwer, Michel; Favier, Isabelle; Chaminade, Xavier; Heumann, Andreas; Bayón, J Carles; Aguirre, Pedro A; Duñach, Elisabet
2008-06-01
This review deals with the application of Lewis super acids such as Al(III), In(III), and Sn(IV) triflates and triflimidates as catalysts in the synthesis of fragrance materials. Novel catalytic reactions involving C-C and C-heteroatom bond-forming reactions, as well as cycloisomerization processes are presented. In particular, Sn(IV) and Al(III) triflates were employed as catalysts in the selective cyclization of unsaturated alcohols to cyclic ethers, as well as in the cyclization of unsaturated carboxylic acids to lactones. The addition of thiols and thioacids to non-activated olefins, both in intra- and intermolecular versions, was efficiently catalyzed by In(III) derivatives. Sn(IV) Triflimidates catalyzed the cycloisomerization of highly substituted 1,6-dienes to gem-dimethyl-substituted cyclohexanes bearing an isopropylidene substituent. The hydroformylation of these unsaturated substrates, catalyzed by a Rh(I) complex with a bulky phosphite ligand, selectively afforded the corresponding linear aldehydes. The olfactory evaluation of selected heterocycles, carbocycles, and aldehydes synthesized is also discussed.
Altunay, Nail; Gürkan, Ramazan
2017-03-01
A new and simple ultrasonic-assisted extraction (UAE) procedure was developed for the determination of inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry (HG-AAS). The various analytical variables affecting complex formation and extraction efficiency were investigated and optimised. The method is based on selective complex formation of As(III) and Se(IV) in the presence of excess As(V) and Se(VI) with toluidine red in the presence of tartaric acid at pH 4.5, and then extraction of the resulting condensation products into the micellar phase of non-ionic surfactant, polyethylene glycol dodecyl ether, Brij 35. Under optimised conditions, good linear relationships were obtained in the ranges of 4-225 and 12-400 ng l - 1 with limits of detection of 1.1 and 3.5 ng l - 1 for As(III) and Se(IV), respectively. The repeatability was better than 3.9% for both analytes (n = 10, 25 ng l - 1 ) while reproducibility ranged from 4.2% to 4.8%. The recoveries of As(III) and Se(IV) spiked at 25-100 ng l - 1 were in the range of 94.2-104.8%. After pre-concentration of a 5.0 ml sample, the sensitivity enhancement factors for As(III) and Se(IV) were 185 and 140, respectively. Accuracy was assessed by analysis of two standard reference materials (SRMs) and spiked recovery experiments. The method was successfully applied to the accurate and reliable determination of total As and total Se by HG-AAS after pre-reduction with a mixture of L-cysteine and tartaric acid. Finally, the method was shown to be rapid and sensitive, with good results for extraction, pre-concentration and determination of total As and Se contents (as As(III) and Se(IV)) from food samples.
Lee, Chien-Ming; Wu, Wun-Yan; Chiang, Ming-Hsi; Bohle, D Scott; Lee, Gene-Hsiang
2017-09-05
A thiolate-bridged binuclear complex [PPN] 2 [(Mn II ( TMS PS3)) 2 ] (1, PPN = bis(triphenylphosphine)iminium and TMS PS3H 3 = (2,2',2″-trimercapto-3,3',3″-tris(trimethylsilyl)triphenylphosphine)), prepared from the reaction of MnCl 2 /[PPN]Cl and Li 3 [ TMS PS3], converts into a mononuclear complex [PPN][Mn II ( TMS PS3)(DABCO)] (2) in the presence of excess amounts of DABCO (DABCO = 1,4-diazabicyclo[2.2.2]octane). Variable temperature studies of solution containing 1 and DABCO by UV-vis spectroscopy indicate that 1 and 2 exist in significant amounts in equilibrium and mononuclear 2 is favored at low temperature. Treatment of 1 or 2 with the monomeric O 2 -side-on-bound [PPN][Mn IV (O 2 )( TMS PS3)] (3) produces the mono-oxo-bridged dimer [PPN] 2 [(Mn III ( TMS PS3)) 2 (μ-O)] (4). The electrochemistry of 1 and 2 reveals anodic peak(s) for a Mn III/ Mn II redox couple at shifted potentials against Fc/Fc + , indicating that both complexes can be oxidized by dioxygen. The O 2 activation mediated by 1 and 2 is investigated in both solution and the solid state. Microcrystals of 2 rapidly react with air or dry O 2 to generate the Mn(IV)-peroxo 3 in high yield, revealing a solid-to-solid transformation and two-electron reduction of O 2 . Oxygenation of 1 or 2 in solution, however, is affected by diffusion and transient concentration of dioxygen in the two different substrates, leading to generation of 3 and 4 in variable ratios.
Cary, Samantha K; Livshits, Maksim; Cross, Justin N; Ferrier, Maryline G; Mocko, Veronika; Stein, Benjamin W; Kozimor, Stosh A; Scott, Brian L; Rack, Jeffrey J
2018-04-02
Thenoyltrifluoroacetone (HTTA)-based extractions represent popular methods for separating microscopic amounts of transuranic actinides (i.e., Np and Pu) from macroscopic actinide matrixes (e.g. bulk uranium). It is well-established that this procedure enables +4 actinides to be selectively removed from +3, + 5, and +6 f-elements. However, even highly skilled and well-trained researchers find this process complicated and (at times) unpredictable. It is difficult to improve the HTTA extraction-or find alternatives-because little is understood about why this separation works. Even the identities of the extracted species are unknown. In addressing this knowledge gap, we report here advances in fundamental understanding of the HTTA-based extraction. This effort included comparatively evaluating HTTA complexation with +4 and +3 metals (M IV = Zr, Hf, Ce, Th, U, Np, and Pu vs M III = Ce, Nd, Sm, and Yb). We observed +4 metals formed neutral complexes of the general formula M IV (TTA) 4 . Meanwhile, +3 metals formed anionic M III (TTA) 4 - species. Characterization of these M(TTA) 4 x- ( x = 0, 1) compounds by UV-vis-NIR, IR, 1 H and 19 F NMR, single-crystal X-ray diffraction, and X-ray absorption spectroscopy (both near-edge and extended fine structure) was critical for determining that Np IV (TTA) 4 and Pu IV (TTA) 4 were the primary species extracted by HTTA. Furthermore, this information lays the foundation to begin developing and understanding of why the HTTA extraction works so well. The data suggest that the solubility differences between M IV (TTA) 4 and M III (TTA) 4 - are likely a major contributor to the selectivity of HTTA extractions for +4 cations over +3 metals. Moreover, these results will enable future studies focused on explaining HTTA extractions preference for +4 cations, which increases from Np IV to Pu IV , Hf IV , and Zr IV .
Structure of the Nav1.4-β1 Complex from Electric Eel.
Yan, Zhen; Zhou, Qiang; Wang, Lin; Wu, Jianping; Zhao, Yanyu; Huang, Gaoxingyu; Peng, Wei; Shen, Huaizong; Lei, Jianlin; Yan, Nieng
2017-07-27
Voltage-gated sodium (Na v ) channels initiate and propagate action potentials. Here, we present the cryo-EM structure of EeNa v 1.4, the Na v channel from electric eel, in complex with the β1 subunit at 4.0 Å resolution. The immunoglobulin domain of β1 docks onto the extracellular L5 I and L6 IV loops of EeNa v 1.4 via extensive polar interactions, and the single transmembrane helix interacts with the third voltage-sensing domain (VSD III ). The VSDs exhibit "up" conformations, while the intracellular gate of the pore domain is kept open by a digitonin-like molecule. Structural comparison with closed Na v PaS shows that the outward transfer of gating charges is coupled to the iris-like pore domain dilation through intricate force transmissions involving multiple channel segments. The IFM fast inactivation motif on the III-IV linker is plugged into the corner enclosed by the outer S4-S5 and inner S6 segments in repeats III and IV, suggesting a potential allosteric blocking mechanism for fast inactivation. Copyright © 2017 Elsevier Inc. All rights reserved.
New Mononuclear Cu(II) Complexes and 1D Chains with 4-Amino-4H-1,2,4-triazole
Dîrtu, Marinela M.; Boland, Yves; Gillard, Damien; Tinant, Bernard; Robeyns, Koen; Safin, Damir A.; Devlin, Eamonn; Sanakis, Yiannis; Garcia, Yann
2013-01-01
The crystal structures of two mononuclear Cu(II) NH2trz complexes [Cu(NH2trz)4(H2O)](AsF6)2 (I) and [Cu(NH2trz)4(H2O)](PF6)2 (II) as well as two coordination polymers [Cu(μ2-NH2trz)2Cl]Cl·H2O (III) and [Cu(μ2-NH2trz)2Cl] (SiF6)0.5·1.5H2O (IV) are presented. Cationic 1D chains with bridging bis-monodentate μ2-coordinated NH2trz and bridging μ2-coordinated chloride ligands are present in III and IV. In these coordination polymers, the Cu(II) ions are strongly antiferromagnetically coupled with J = −128.4 cm−1 for III and J = −143 cm−1 for IV (H = −J∑SiSi+1), due to the nature of the bridges between spin centers. Inter-chain interactions present in the crystal structures were taken into consideration, as well as g factors, which were determined experimentally, for the quantitative modeling of their magnetic properties. PMID:24300095
OuYang, Qiuli; Tao, Nengguo; Zhang, Miaoling
2018-01-01
Citral exhibits strong antifungal activity against Penicillium digitatum. In this study, 41 over-expressed and 84 repressed proteins in P. digitatum after 1.0 μL/mL of citral exposure for 30 min were identified by the iTRAQ technique. The proteins were closely related with oxidative phosphorylation, the TCA cycle and RNA transport. The mitochondrial complex I, complex II, complex III, complex IV and complex V, which are involved in oxidative phosphorylation were drastically affected. Among of them, the activities of mitochondrial complex I and complex IV were apparently suppressed, whereas those of mitochondrial complex II, complex III and complex V were significantly induced. Meanwhile, citral apparently triggered a reduction in the intracellular ATP, the mitochondrial membrane potential (MMP) and glutathione content, in contrast to an increase in the glutathione S-transferase activity and the accumulation of reactive oxygen species (ROS). Addition of exogenous cysteine decreased the antifungal activity. In addition, cysteine maintained the basal ROS level, deferred the decrease of MMP and the membrane damage. These results indicate that citral inhibited the growth of P. digitatum by damaging oxidative phosphorylation and cell membranes through the massive accumulation of ROS. PMID:29503638
OuYang, Qiuli; Tao, Nengguo; Zhang, Miaoling
2018-01-01
Citral exhibits strong antifungal activity against Penicillium digitatum . In this study, 41 over-expressed and 84 repressed proteins in P. digitatum after 1.0 μL/mL of citral exposure for 30 min were identified by the iTRAQ technique. The proteins were closely related with oxidative phosphorylation, the TCA cycle and RNA transport. The mitochondrial complex I, complex II, complex III, complex IV and complex V, which are involved in oxidative phosphorylation were drastically affected. Among of them, the activities of mitochondrial complex I and complex IV were apparently suppressed, whereas those of mitochondrial complex II, complex III and complex V were significantly induced. Meanwhile, citral apparently triggered a reduction in the intracellular ATP, the mitochondrial membrane potential (MMP) and glutathione content, in contrast to an increase in the glutathione S-transferase activity and the accumulation of reactive oxygen species (ROS). Addition of exogenous cysteine decreased the antifungal activity. In addition, cysteine maintained the basal ROS level, deferred the decrease of MMP and the membrane damage. These results indicate that citral inhibited the growth of P. digitatum by damaging oxidative phosphorylation and cell membranes through the massive accumulation of ROS.
Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Binuclear Activation Mechanism.
Soldatova, Alexandra V; Tao, Lizhi; Romano, Christine A; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G
2017-08-23
The bacterial protein complex Mnx contains a multicopper oxidase (MCO) MnxG that, unusually, catalyzes the two-electron oxidation of Mn(II) to MnO 2 biomineral, via a Mn(III) intermediate. Although Mn(III)/Mn(II) and Mn(IV)/Mn(III) reduction potentials are expected to be high, we find a low reduction potential, 0.38 V (vs Normal Hydrogen Electrode, pH 7.8), for the MnxG type 1 Cu 2+ , the electron acceptor. Indeed the type 1 Cu 2+ is not reduced by Mn(II) in the absence of molecular oxygen, indicating that substrate oxidation requires an activation step. We have investigated the enzyme mechanism via electronic absorption spectroscopy, using chemometric analysis to separate enzyme-catalyzed MnO 2 formation from MnO 2 nanoparticle aging. The nanoparticle aging time course is characteristic of nucleation and particle growth; rates for these processes followed expected dependencies on Mn(II) concentration and temperature, but exhibited different pH optima. The enzymatic time course is sigmoidal, signaling an activation step, prior to turnover. The Mn(II) concentration and pH dependence of a preceding lag phase indicates weak Mn(II) binding. The activation step is enabled by a pK a > 8.6 deprotonation, which is assigned to Mn(II)-bound H 2 O; it induces a conformation change (consistent with a high activation energy, 106 kJ/mol) that increases Mn(II) affinity. Mnx activation is proposed to decrease the Mn(III/II) reduction potential below that of type 1 Cu(II/I) by formation of a hydroxide-bridged binuclear complex, Mn(II)(μ-OH)Mn(II), at the substrate site. Turnover is found to depend cooperatively on two Mn(II) and is enabled by a pK a 7.6 double deprotonation. It is proposed that turnover produces a Mn(III)(μ-OH) 2 Mn(III) intermediate that proceeds to the enzyme product, likely Mn(IV)(μ-O) 2 Mn(IV) or an oligomer, which subsequently nucleates MnO 2 nanoparticles. We conclude that Mnx exploits manganese polynuclear chemistry in order to facilitate an otherwise difficult oxidation reaction, as well as biomineralization. The mechanism of the Mn(III/IV) conversion step is elucidated in an accompanying paper .
Pearce, Carolyn I; Wilkins, Michael J; Zhang, Changyong; Heald, Steve M; Fredrickson, Jim K; Zachara, John M
2012-08-07
Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray microprobe and X-ray absorption spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting reoxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.
Chen, Tsun-Ren; Wu, Fang-Siou; Lee, Hsiu-Pen; Chen, Kelvin H-C
2016-03-23
A pair of diiridium bimetallic complexes exhibit a special type of oxidation-reduction reaction that could directly split carbonate into carbon monoxide and molecular oxygen via a low-energy pathway needing no sacrificial reagent. One of the bimetallic complexes, Ir(III)(μ-Cl)2Ir(III), can catch carbonato group from carbonate and reduce it to CO. The second complex, the rare bimetallic complex Ir(IV)(μ-oxo)2Ir(IV), can react with chlorine to release O2 by the oxidation of oxygen ions with synergistic oxidative effect of iridium ions and chlorine atoms. The activation energy needed for the key reaction is quite low (∼20 kJ/mol), which is far less than the dissociation energy of the C═O bond in CO2 (∼750 kJ/mol). These diiridium bimetallic complexes could be applied as a redox switch to split carbonate or combined with well-known processes in the chemical industry to build up a catalytic system to directly split CO2 into CO and O2.
Tanespimycin and Bortezomib in Treating Patients With Advanced Solid Tumors or Lymphomas
2014-02-21
Adult Grade III Lymphomatoid Granulomatosis; AIDS-related Peripheral/Systemic Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
Qin, Hai-Bo; Takeichi, Yasuo; Nitani, Hiroaki; Terada, Yasuko; Takahashi, Yoshio
2017-06-06
The distribution and chemical species of tellurium (Te) in contaminated soil were determined by a combination of microfocused X-ray fluorescence (μ-XRF), X-ray diffraction (μ-XRD), and X-ray absorption fine structure (μ-XAFS) techniques. Results showed that Te was present as a mixture of Te(VI) and Te(IV) species, while selenium (Se) was predominantly present in the form of Se(IV) in the soil contaminated by abandoned mine tailings. In the contaminated soil, Fe(III) hydroxides were the host phases for Se(IV), Te(IV), and Te(VI), but Te(IV) could be also retained by illite. The difference in speciation and solubility of Se and Te in soil can result from different structures of surface complexes for Se and Te onto Fe(III) hydroxides. Furthermore, our results suggest that the retention of Te(IV) in soil could be relatively weaker than that of Te(VI) due to structural incorporation of Te(VI) into Fe(III) hydroxides. These findings are of geochemical and environmental significance for better understanding the solubility, mobility, and bioavailability of Te in the surface environment. To the best of our knowledge, this is the first study reporting the speciation and host phases of Te in field soil by the μ-XRF-XRD-XAFS techniques.
Redox Potential and C-H Bond Cleaving Properties of a Nonheme FeIV=O Complex in Aqueous Solution
Wang, Dong; Zhang, Mo; Bühlmann, Philippe; Que, Lawrence
2010-01-01
High-valent iron-oxo intermediates have been identified as the key oxidants in the catalytic cycles of many nonheme enzymes. Among the large number of synthetic FeIV=O complexes characterized to date, [FeIV(O)(N4Py)]2+ (1) exhibits the unique combination of thermodynamic stability, allowing its structural characterization by X-ray crystallography, and oxidative reactivity sufficient to cleave C-H bonds as strong as those in cyclohexane (DC-H = 99.3 kcal mol-1). However, its redox properties are not yet well understood. In this work, the effect of protons on the redox properties of 1 has been investigated electrochemically in nonaqueous and aqueous solutions. While the cyclic voltammetry of 1 in CH3CN is complicated by coupling of several chemical and redox processes, the FeIV/III couple is reversible in aqueous solution with E1/2 = +0.41 V vs. SCE at pH 4 and involves the transfer of one electron and one proton to give the FeIII-OH species. This is in fact the first example of reversible electrochemistry to be observed for this family of nonheme oxoiron(IV) complexes. C-H bond oxidations by 1 have been studied in H2O and found to have reactions rates that depend on the C-H bond strength but not on the solvent. Furthermore, our electrochemical results have allowed a DO-H value of 78(2) kcal mol-1 to be calculated for the FeIII-OH unit derived from 1. Interestingly, although this DO-H value is 6-11 kcal mol-1 lower than those corresponding to oxidants such as [FeIV(O)(TMP)] (TMP = tetramesitylporphinate), [RuIV(O)(bpy)2(py)]2+ (bpy = bipyridine, py = pyridine) and the tert-butylperoxyl radical, the oxidation of dihydroanthracene by 1 occurs at a rate comparable to those for these other oxidants. This comparison suggests that the nonheme N4Py ligand environment confers a kinetic advantage over the others that enhances the C-H bond cleavage ability of 1. PMID:20476758
Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen
Gan, Zhuohui; Roerig, David L.; Clough, Anne V.
2011-01-01
Rat exposure to 60% O2 (hyper-60) or 85% O2 (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O2. The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH2), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH2 and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (Vmax1) and complex III-mediated DQH2 oxidation (Vmax2) increased by ∼140 and ∼180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, Vmax1 increased by ∼80%, with no effect on Vmax2. Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ∼50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ∼90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O2 observed in hyper-85 rats. PMID:21551015
Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen.
Gan, Zhuohui; Roerig, David L; Clough, Anne V; Audi, Said H
2011-07-01
Rat exposure to 60% O(2) (hyper-60) or 85% O(2) (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O(2). The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH(2)), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH(2) and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (V(max1)) and complex III-mediated DQH(2) oxidation (V(max2)) increased by ∼140 and ∼180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, V(max1) increased by ∼80%, with no effect on V(max2). Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ∼50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ∼90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O(2) observed in hyper-85 rats.
Nowak, Grazyna; Takacsova-Bakajsova, Diana; Megyesi, Judit
2017-01-01
Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. Copyright © 2017 the American Physiological Society.
Takacsova-Bakajsova, Diana; Megyesi, Judit
2016-01-01
Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. PMID:27760765
Characterization of a heterobimetallic nonheme Fe(III)-O-Cr(III) species formed by O2 activation.
Zhou, Ang; Kleespies, Scott T; Van Heuvelen, Katherine M; Que, Lawrence
2015-10-01
We report the generation and spectroscopic characterization of a heterobimetallic [(TMC)Fe(III)-O-Cr(III)(OTf)4] species (1) by bubbling O2 into a mixture of Fe(TMC)(OTf)2 and Cr(OTf)2 in NCCH3. Complex 1 also formed quantitatively by adding Cr(OTf)2 to [Fe(IV)(O)(TMC)(NCCH3)](2+). The proposed O2 activation mechanism involves the trapping of a Cr-O2 adduct by Fe(TMC)(OTf)2.
Characterization of a Heterobimetallic Nonheme Fe(III)-O-Cr(III) Species Formed by O2 Activation
Zhou, Ang; Kleespies, Scott T.; Van Heuvelen, Katherine M.; Que, Lawrence
2015-01-01
We report the generation and spectroscopic characterization of a heterobimetallic [(TMC)FeIII-O-CrIII(OTf)4] species (1) by O2 bubbling into a mixture of Fe(TMC)(OTf)2 and Cr(OTf)2 in NCCH3. Complex 1 also formed quantitatively by adding Cr(OTf)2 to [FeIV(O)(TMC)(NCCH3)]2+. The proposed O2 activation mechanism involves the trapping by a Cr-O2 adduct by Fe(TMC)(OTf)2. PMID:26265081
Magnetic resonance imaging in congenital Brown syndrome.
Kim, Jae Hyoung; Hwang, Jeong-Min
2015-08-01
Our aim was to elucidate the etiology of Brown syndrome by evaluating the trochlea position, morphologic characteristics of the extraocular muscles including superior oblique muscle/tendon complex, and the presence of the cranial nerves (CN) III, IV, and VI using magnetic resonance imaging (MRI) in eight patients with unilateral congenital Brown syndrome and one patient with bilateral congenital Brown syndrome. Nine consecutive patients diagnosed with congenital Brown syndrome had a comprehensive ocular examination and MRI for the CN III, CN VI, and the extraocular muscles. Five of the nine patients underwent additional high resolution MRI for CN IV. The distance from the annulus of Zinn to the trochlea was measured. Normal sized CN III, IV, and VI, as well as all extraocular muscles, could be identified bilaterally in all patients with available MRI. The distance from the annulus of Zinn to the trochlea was the same in both eyes. The findings for our patients, particularly in those who underwent additional high resolution MRI, did not provide evidence of a lack of CN IV as a cause of Brown syndrome.
Lenalidomide Maintenance Therapy After High Dose BEAM With or Without Rituximab
2018-01-13
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia
Alejandra Sánchez-Muñoz, María; Valdez-Solana, Mónica Andrea; Campos-Almazán, Mara Ibeth; Flores-Herrera, Óscar; Esparza-Perusquía, Mercedes; Olvera-Sánchez, Sofia; García-Arenas, Guadalupe; Avitia-Domínguez, Claudia; Téllez-Valencia, Alfredo; Sierra-Campos, Erick
2018-01-01
The increasing prevalence of diabetes continues to be a major health issue worldwide. Alteration of mitochondrial electron transport chain is a recognized hallmark of the diabetic-associated decline in liver bioenergetics; however, the molecular events involved are only poorly understood. Moringa oleifera is used for the treatment of diabetes. However, its role on mitochondrial functionality is not yet established. This study was aimed to evaluate the effect of M. oleifera extract on supercomplex formation, ATPase activity, ROS production, GSH levels, lipid peroxidation, and protein carbonylation. The levels of lipid peroxidation and protein carbonylation were increased in diabetic group. However, the levels were decreased in Moringa -treated diabetic rats. Analysis of in-gel activity showed an increase in all complex activities in the diabetic group, but spectrophotometric determinations of complex II and IV activities were unaffected in this treatment. However, we found an oxygen consumption abolition through complex I-III-IV pathway in the diabetic group treated with Moringa . While respiration with succinate feeding into complex II-III-IV was increased in the diabetic group. These findings suggest that hyperglycemia modifies oxygen consumption, supercomplexes formation, and increases ROS levels in mitochondria from the liver of STZ-diabetic rats, whereas M. oleifera may have a protective role against some alterations.
Alejandra Sánchez-Muñoz, María; Flores-Herrera, Óscar; Esparza-Perusquía, Mercedes; Olvera-Sánchez, Sofia; García-Arenas, Guadalupe; Téllez-Valencia, Alfredo
2018-01-01
The increasing prevalence of diabetes continues to be a major health issue worldwide. Alteration of mitochondrial electron transport chain is a recognized hallmark of the diabetic-associated decline in liver bioenergetics; however, the molecular events involved are only poorly understood. Moringa oleifera is used for the treatment of diabetes. However, its role on mitochondrial functionality is not yet established. This study was aimed to evaluate the effect of M. oleifera extract on supercomplex formation, ATPase activity, ROS production, GSH levels, lipid peroxidation, and protein carbonylation. The levels of lipid peroxidation and protein carbonylation were increased in diabetic group. However, the levels were decreased in Moringa-treated diabetic rats. Analysis of in-gel activity showed an increase in all complex activities in the diabetic group, but spectrophotometric determinations of complex II and IV activities were unaffected in this treatment. However, we found an oxygen consumption abolition through complex I-III-IV pathway in the diabetic group treated with Moringa. While respiration with succinate feeding into complex II-III-IV was increased in the diabetic group. These findings suggest that hyperglycemia modifies oxygen consumption, supercomplexes formation, and increases ROS levels in mitochondria from the liver of STZ-diabetic rats, whereas M. oleifera may have a protective role against some alterations. PMID:29686903
2014-02-21
Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
VenkatRao, V; Chaitanya, R K; Naresh Kumar, D; Bramhaiah, M; Dutta-Gupta, A
2016-12-01
The energy demand for structural remodelling in holometabolous insects is met by cellular mitochondria. Developmental and hormone-induced changes in the mitochondrial respiratory activity during insect metamorphosis are not well documented. The present study investigates activities of enzymes of mitochondrial electron transport chain (ETC) namely, NADH:ubiquinone oxidoreductase or complex I, Succinate: ubiquinone oxidoreductase or complex II, Ubiquinol:ferricytochrome c oxidoreductase or complex III, cytochrome c oxidase or complex IV and F 1 F 0 ATPase (ATPase), during Chilo partellus development. Further, the effect of juvenile hormone (JH) analog, methoprene, and brain and corpora-allata-corpora-cardiaca (CC-CA) homogenates that represent neurohormones, on the ETC enzyme activities was monitored. The enzymatic activities increased from penultimate to last larval stage and thereafter declined during pupal development with an exception of ATPase which showed high enzyme activity during last larval and pupal stages compared to the penultimate stage. JH analog, methoprene differentially modulated ETC enzyme activities. It stimulated complex I and IV enzyme activities, but did not alter the activities of complex II, III and ATPase. On the other hand, brain homogenate declined the ATPase activity while the injected CC-CA homogenate stimulated complex I and IV enzyme activities. Cumulatively, the present study is the first to show that mitochondrial ETC enzyme system is under hormone control, particularly of JH and neurohormones during insect development. Copyright © 2015 Elsevier Inc. All rights reserved.
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana; ...
2017-10-22
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Ce(III, IV)-MOF electrocatalyst as signal-amplifying tag for sensitive electrochemical aptasensing.
Yu, Hua; Han, Jing; An, Shangjie; Xie, Gang; Chen, Sanping
2018-06-30
Metal-organic frameworks (MOFs) as a new class of porous materials have attracted increasing attention in the field of biomimetic catalysis. This study firstly reports a mixed valence state Ce-MOF possessing intrinsic catalytic activity towards thionine (Thi), and its application in constructing an amplified electrochemical aptasensor for thrombin detection. As noticed, the novel catalytic process combines the advantages of 3D infinite extension of the Ce(III, IV)-MOF skeleton containing large amounts of catalytic sites and spontaneous recycling of the Ce(III)/Ce(IV) for electrochemical reduction of Thi, thereby presenting amplified electrochemical signals. To further improve the aptasensor performance, the high selectivity of proximity binding-induced DNA strand displacement and high efficiency of exonuclease III-assisted recycling amplification were incorporated into the assay. The aptasensor was employed to detect thrombin in complex serum samples, which shows high sensitivity, specificity, stability and reproducibility. This work offers an opportunity to develop MOF-based electrocatalyst as signal-amplifying tag for versatile bioassays and catalytic applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Chelation and stabilization of berkelium in oxidation state +IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deblonde, Gauthier J. -P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.
Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here, in this work, we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin - a mammalian metal transporter - in contrast to the negatively charged species obtained withmore » neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Finally, combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.« less
Chelation and stabilization of berkelium in oxidation state +IV
Deblonde, Gauthier J. -P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; ...
2017-04-10
Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here, in this work, we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin - a mammalian metal transporter - in contrast to the negatively charged species obtained withmore » neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Finally, combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.« less
2017-02-21
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia
Alvespimycin Hydrochloride in Treating Patients With Metastatic or Unresectable Solid Tumors
2013-04-09
Male Breast Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Gastric Cancer; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Melanoma; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Ovarian Epithelial Cancer; Recurrent Prostate Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Colon Cancer; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Gastric Cancer; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Melanoma; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Ovarian Epithelial Cancer; Stage III Renal Cell Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Melanoma; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Ovarian Epithelial Cancer; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Unspecified Adult Solid Tumor, Protocol Specific; Untreated Metastatic Squamous Neck Cancer With Occult Primary
2013-05-15
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
High Molecular Weight Forms of Mammalian Respiratory Chain Complex II
Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Kľučková, Katarína; Rohlena, Jakub; Neuzil, Jiri; Houštěk, Josef
2013-01-01
Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase. PMID:23967256
2012-10-30
Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity
Shushakov, Anton A; Pozdnyakov, Ivan P; Grivin, Vjacheslav P; Plyusnin, Victor F; Vasilchenko, Danila B; Zadesenets, Andrei V; Melnikov, Alexei A; Chekalin, Sergey V; Glebov, Evgeni M
2017-07-25
Diazide diamino complexes of Pt(iv) are considered as prospective prodrugs in oxygen-free photodynamic therapy (PDT). Primary photophysical and photochemical processes for cis,trans,cis-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] and trans,trans,trans-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] complexes were studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The process of photolysis is multistage. The first stage is the photosubstitution of an azide ligand to a water molecule. This process was shown to be a chain reaction involving redox stages. Pt(iv) and Pt(iii) intermediates responsible for the chain propagation were recorded using ultrafast kinetic spectroscopy and nanosecond laser flash photolysis. The mechanism of photosubstitution is proposed.
2013-01-04
Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Multiple Myeloma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
Water oxidation catalyzed by the tetranuclear Mn complex [Mn(IV)4O5(terpy)4(H2O)2](ClO4)6.
Gao, Yunlong; Crabtree, Robert H; Brudvig, Gary W
2012-04-02
The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (•)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II.
Genetic Testing Plus Irinotecan in Treating Patients With Solid Tumors or Lymphoma
2013-01-23
AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific
NASA Astrophysics Data System (ADS)
Safitri, Anna; Levina, Aviva; Lee, Joonsup; Carter, Elizabeth A.; Lay, Peter A.
2017-03-01
The prevalence of diabetes, particularly with respect to type 2 diabetes, has reached epidemic proportions and continues to grow worldwide. One of the potential therapeutic targets in the treatment of type 2 diabetes involves the role of protein tyrosine phosphatases in the negative regulation of insulin signaling. The complexes of V(V/IV), Cr(III), W(VI), and Mo(VI), have all been proposed as possible drugs in the treatment of diabetes mellitus. Anti-diabetic activities of V(V/IV), Cr(III), Mo(VI), and W(VI) compounds are likely to be based on similar mechanisms, which involve phosphorylation/dephosphorylation reactions in the glucose uptake and metabolism. In order to clearly understand biological activities and phosphorylation/dephosphorylation reactions involved in anti-diabetic actions of Cr(III), V(V/IV), Mo(VI), and W(VI) complexes, the current research involves the use of cultured insulin-sensitive cells treated with these compounds. These reactions were investigated through vibrational spectroscopy. Protein phosphorylation/dephosphorylation induced conformational changes in secondary protein structure from α-helix to β-sheet, and these changes were detected by the IR spectra, which showed changes in the wavenumber and intensities of signals within the composite protein amide I band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, Carolyn I.; Wilkins, Michael J.; Zhang, Changyong
2012-09-17
Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray Microprobe and X-ray Absorption Spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced inmore » the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting re-oxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.« less
Reduction of RuVI≡N to RuIII-NH3 by Cysteine in Aqueous Solution.
Wang, Qian; Man, Wai-Lun; Lam, William W Y; Yiu, Shek-Man; Tse, Man-Kit; Lau, Tai-Chu
2018-05-21
The reduction of metal nitride to ammonia is a key step in biological and chemical nitrogen fixation. We report herein the facile reduction of a ruthenium(VI) nitrido complex [(L)Ru VI (N)(OH 2 )] + (1, L = N, N'-bis(salicylidene)- o-cyclohexyldiamine dianion) to [(L)Ru III (NH 3 )(OH 2 )] + by l-cysteine (Cys), an ubiquitous biological reductant, in aqueous solution. At pH 1.0-5.3, the reaction has the following stoichiometry: [(L)Ru VI (N)(OH 2 )] + + 3HSCH 2 CH(NH 3 )CO 2 → [(L)Ru III (NH 3 )(OH 2 )] + + 1.5(SCH 2 CH(NH 3 )CO 2 ) 2 . Kinetic studies show that at pH 1 the reaction consists of two phases, while at pH 5 there are three distinct phases. For all phases the rate law is rate = k 2 [1][Cys]. Studies on the effects of acidity indicate that both HSCH 2 CH(NH 3 + )CO 2 - and - SCH 2 CH(NH 3 + )CO 2 - are kinetically active species. At pH 1, the reaction is proposed to go through [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (2a), [(L)Ru III (NH 2 SCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (3), and [(L)Ru IV (NH 2 )(OH 2 )] + (4) intermediates. On the other hand, at pH around 5, the proposed intermediates are [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 )(OH 2 )] + (2b) and [(L)Ru IV (NH 2 )(OH 2 )] + (4). The intermediate ruthenium(IV) sulfilamido species, [(L)Ru IV (NHSCH 2 CHNH 3 CO 2 H)(OH 2 )] 2+ (2a) and the final ruthenium(III) ammine species, [(L)Ru III (NH 3 )(MeOH)] + (5) (where H 2 O was replaced by MeOH) have been isolated and characterized by various spectroscopic methods.
Kulik, Leonid V; Epel, Boris; Lubitz, Wolfgang; Messinger, Johannes
2007-11-07
The heart of the oxygen-evolving complex (OEC) of photosystem II is a Mn4OxCa cluster that cycles through five different oxidation states (S0 to S4) during the light-driven water-splitting reaction cycle. In this study we interpret the recently obtained 55Mn hyperfine coupling constants of the S0 and S2 states of the OEC [Kulik et al. J. Am. Chem. Soc. 2005, 127, 2392-2393] on the basis of Y-shaped spin-coupling schemes with up to four nonzero exchange coupling constants, J. This analysis rules out the presence of one or more Mn(II) ions in S0 in methanol (3%) containing samples and thereby establishes that the oxidation states of the manganese ions in S0 and S2 are, at 4 K, Mn4(III, III, III, IV) and Mn4(III, IV, IV, IV), respectively. By applying a "structure filter" that is based on the recently reported single-crystal EXAFS data on the Mn4OxCa cluster [Yano et al. Science 2006, 314, 821-825] we (i) show that this new structural model is fully consistent with EPR and 55Mn-ENDOR data, (ii) assign the Mn oxidation states to the individual Mn ions, and (iii) propose that the known shortening of one 2.85 A Mn-Mn distance in S0 to 2.75 A in S1 [Robblee et al. J. Am. Chem. Soc. 2002, 124, 7459-7471] corresponds to a deprotonation of a mu-hydroxo bridge between MnA and MnB, i.e., between the outer Mn and its neighboring Mn of the mu3-oxo bridged moiety of the cluster. We summarize our results in a molecular model for the S0 --> S1 and S1 --> S2 transitions.
Casadevall, Carla; Codolà, Zoel; Costas, Miquel; Lloret-Fillol, Julio
2016-07-11
A new family of ruthenium complexes based on the N-pentadentate ligand Py2 (Me) tacn (N-methyl-N',N''-bis(2-picolyl)-1,4,7-triazacyclononane) has been synthesised and its catalytic activity has been studied in the water-oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4 ) to generate the WO intermediates [Ru(II) (OH2 )(Py2 (Me) tacn)](2+) , [Ru(III) (OH2 )(Py2 (Me) tacn)](3+) , [Ru(III) (OH)(Py2 (Me) tacn)](2+) and [Ru(IV) (O)(Py2 (Me) tacn)](2+) , which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [Ru(IV) (O)(Py2 (Me) tacn)](2+) has a long half-life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, (18) O-labelling and theoretical studies, and the conclusion is that the rate-determining step is a single-site water nucleophilic attack on a metal-oxo species. Moreover, [Ru(IV) (O)(Py2 (Me) tacn)](2+) is proposed to be the resting state under catalytic conditions. By monitoring Ce(IV) consumption, we found that the O2 evolution rate is redox-controlled and independent of the initial concentration of Ce(IV) . Based on these facts, we propose herein that [Ru(IV) (O)(Py2 (Me) tacn)](2+) is oxidised to [Ru(V) (O)(Py2 (Me) tacn)](2+) prior to attack by a water molecule to give [Ru(III) (OOH)(Py2 (Me) tacn)](2+) . Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2 )(Py2 (Me) tacn)](2+) (M=Ru, Fe) complexes is due to the difference in the redox stability of the key M(V) (O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-06-10
Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Colon Cancer; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Untreated Metastatic Squamous Neck Cancer With Occult Primary
Yamashita, Mamiko; Ohashi, Hironori; Kobayashi, Yasuhiro; Okaue, Yoshihiro; Kurisaki, Tsutomu; Wakita, Hisanobu; Yokoyama, Takushi
2008-03-01
To elucidate the formation process of precursor of gold-supported manganese dioxide (MnO2), the coprecipitation behavior of [AuCl4-n(OH)n](-) (n=0-4) (Au(III)) complex ions with manganese(II) hydroxide (Mn(OH)2 and the change in their chemical state were examined. The Au(III) complex ions were rapidly and effectively coprecipitated with Mn(OH)(2) at pH 9. According to the Mössbauer spectra for gold (Au) coprecipitated with Mn(OH)2, below an Au content of 60 wt% in the coprecipitates, all of the coprecipitated Au existed in the atomic state (Au(0)), while, above an Au content of 65 wt%, part of the gold existed in the Au(III) state, and the proportion increased with increasing coprecipitated Au content. Based on the results of X-ray photoelectron spectroscopy, Mn(II) in Mn(OH)2 converted to Mn(IV) in conjunction with coprecipitation of Au(III) complex ions. These results indicate that the rapid stoichiometric reduction of Au(III) to Au(0) is caused by electron transfer from Mn(II) in Mn(OH)2 to the Au(III) complex ion through an Mn-O-Au bond.
RO4929097 and Capecitabine in Treating Patients With Refractory Solid Tumors
2014-11-06
Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; HER2-negative Breast Cancer; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Male Breast Cancer; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Rectal Cancer; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Colon Cancer; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Rectal Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Rectal Cancer; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
Protti, Alessandro; Fortunato, Francesco; Caspani, Maria L.; Pluderi, Mauro; Lucchini, Valeria; Grimoldi, Nadia; Solimeno, Luigi P.; Fagiolari, Gigliola; Ciscato, Patrizia; Zella, Samis M. A.; Moggio, Maurizio; Comi, Giacomo P.; Gattinoni, Luciano
2014-01-01
Platelets can serve as general markers of mitochondrial (dys)function during several human diseases. Whether this holds true even during sepsis is unknown. Using spectrophotometry, we measured mitochondrial respiratory chain biochemistry in platelets and triceps brachii muscle of thirty patients with septic shock (within 24 hours from admission to Intensive Care) and ten surgical controls (during surgery). Results were expressed relative to citrate synthase (CS) activity, a marker of mitochondrial density. Patients with septic shock had lower nicotinamide adenine dinucleotide dehydrogenase (NADH)/CS (p = 0.015), complex I/CS (p = 0.018), complex I and III/CS (p<0.001) and complex IV/CS (p = 0.012) activities in platelets but higher complex I/CS activity (p = 0.021) in triceps brachii muscle than controls. Overall, NADH/CS (r2 = 0.00; p = 0.683) complex I/CS (r2 = 0.05; p = 0.173), complex I and III/CS (r2 = 0.01; p = 0.485), succinate dehydrogenase (SDH)/CS (r2 = 0.00; p = 0.884), complex II and III/CS (r2 = 0.00; p = 0.927) and complex IV/CS (r2 = 0.00; p = 0.906) activities in platelets were not associated with those in triceps brachii muscle. In conclusion, several respiratory chain enzymes were variably inhibited in platelets, but not in triceps brachii muscle, of patients with septic shock. Sepsis-induced mitochondrial changes in platelets do not reflect those in other organs. PMID:24787741
2013-05-08
Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx
Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu
2013-02-27
Advanced Adult Primary Liver Cancer; Anaplastic Thyroid Cancer; Bone Metastases; Carcinoma of the Appendix; Distal Urethral Cancer; Fallopian Tube Cancer; Gastrinoma; Glucagonoma; Inflammatory Breast Cancer; Insulinoma; Liver Metastases; Localized Unresectable Adult Primary Liver Cancer; Lung Metastases; Male Breast Cancer; Malignant Pericardial Effusion; Malignant Pleural Effusion; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Parathyroid Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Newly Diagnosed Carcinoma of Unknown Primary; Occult Non-small Cell Lung Cancer; Pancreatic Polypeptide Tumor; Primary Peritoneal Cavity Cancer; Proximal Urethral Cancer; Pulmonary Carcinoid Tumor; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adrenocortical Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Carcinoma of Unknown Primary; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Endometrial Carcinoma; Recurrent Esophageal Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Pancreatic Cancer; Recurrent Parathyroid Cancer; Recurrent Prostate Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Thyroid Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Skin Metastases; Small Intestine Adenocarcinoma; Somatostatinoma; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Adrenocortical Carcinoma; Stage III Bladder Cancer; Stage III Cervical Cancer; Stage III Colon Cancer; Stage III Endometrial Carcinoma; Stage III Esophageal Cancer; Stage III Follicular Thyroid Cancer; Stage III Gastric Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Ovarian Epithelial Cancer; Stage III Pancreatic Cancer; Stage III Papillary Thyroid Cancer; Stage III Prostate Cancer; Stage III Rectal Cancer; Stage III Renal Cell Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Anal Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Anal Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Adrenocortical Carcinoma; Stage IV Anal Cancer; Stage IV Bladder Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Endometrial Carcinoma; Stage IV Esophageal Cancer; Stage IV Follicular Thyroid Cancer; Stage IV Gastric Cancer; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Pancreatic Cancer; Stage IV Papillary Thyroid Cancer; Stage IV Prostate Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer; Stage IVB Vulvar Cancer; Thyroid Gland Medullary Carcinoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer; Urethral Cancer Associated With Invasive Bladder Cancer; WDHA Syndrome
Liu, Wenjing; Al-Oweini, Rami; Meadows, Karen; Bassil, Bassem S; Lin, Zhengguo; Christian, Jonathan H; Dalal, Naresh S; Bossoh, A Martin; Mbomekallé, Israël M; de Oliveira, Pedro; Iqbal, Jamshed; Kortz, Ulrich
2016-11-07
The dichromium(III)-containing heteropoly-16-tungstates [Cr III 2 (B-β-Si IV W 8 O 31 ) 2 ] 14- (1) and [Cr III 2 (B-β-Ge IV W 8 O 31 ) 2 ] 14- (2) were prepared via a one-pot reaction of the composing elements in aqueous, basic medium. Polyanions 1 and 2 represent the first examples of Cr III -containing heteropolytungstates comprising the octatungstate unit {XW 8 O 31 } (X = Si, Ge). Magnetic studies demonstrated that, in the solid state, the two polyanions exhibit a weak antiferromagnetic interaction between the two Cr III centers with J = -3.5 ± 0.5 cm -1 , with no long-range ordering down to 1.8 K. The ground-state spin of polyanions 1 and 2 was thus deduced to be 0, but the detection of a complex set of EPR signals implies that there are thermally accessible excited states containing unpaired spins resulting from the two S = 3 / 2 Cr III ions. A comprehensive electrochemistry study on 1 and 2 in solution was performed, and biological tests showed that both polyanions display significant antidiabetic and anticancer activities.
Organometallic neptunium(III) complexes.
Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L
2016-08-01
Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.
Dickens, J C; Prestwich, G D; Sun, W C
1991-06-01
Competitive field tests with α-fluorinated analogs of compounds III and IV (III-α-F and IV-α-F, respectively) of the boll weevil,Anthonomus grandis Boh., aggregation pheromone showed these compounds, when combined with the other pheromone components [(±)-I and II], to be as attractive as grandlure [(+)-I, II, and III+IV]. Dose-response curves constructed from electroantennograms of male boll weevils to serial stimulus loads of III, IV, III-α-F, IV-α-F, and the corresponding acyl fluorinated analogs (III-acyl-F and IV-acyl-F) showed the α-fiuorinated analogs to be as active as the pheromone components (threshold=0.1 μg), while the acyl fluorinated analogs had a 10-100 x higher threshold (=1-10 μg). Single-neuron recordings showed that IV neurons and II neurons (Dickens, 1990) responded to IV-α-F and III-α-F, respectively, while IV-acyl-F and III-acyl-F were inactive. Since a previous study showed compounds I, II, and IV to be essential for behavioral responses in the field, it seems likely that the activity of the α-fluorinated analogs observed here is due to the stimulation of IV neurons by IV-α-F as indicated in single neuron recordings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakova, I. N., E-mail: polyakova@igic.ras.ru; Poznyak, A. L.; Sergienko, V. S.
Four Cu(II) complexes with the RR,SS-Edds{sup 4-} and SS-HEdds{sup 3-} anions are synthesized, and their crystal structures are studied. In the compounds [Cu2(RR,SS-Edds)] . 6H{sub 2}O (I) and Ba2[Cu(RR,SS-Edds)](ClO{sub 4}){sub 2} . 8H{sub 2}O (II), the ligand forms hexacoordinate chelate [Cu(Edds)]{sup 2-} complexes with the N atoms and O atoms of the propionate groups in the equatorial positions and the O atoms of the acetate groups in the axial vertices. In the compounds Ba[Cu(SS-HEdds)]ClO{sub 4} . 2H{sub 2}O (III) and Ba3[Cu2(RR,SS-Edds){sub 2}](ClO{sub 4}){sub 2} . 6H{sub 2}O (IV), one of the propionate arms, the protonated arm in III and themore » deprotonated arm in IV, does not enter into the coordination sphere of the Cu atom. An acetate arm moves to its position in the equatorial plane, and the free axial vertex is occupied by an O atom of the perchlorate ion. In I-IV, the lengths of the equatorial Cu-N and Cu-O bonds fall in the ranges 1.970-2.014 and 1.921-1.970 A, respectively. The axial Cu-O bonds with the acetate groups and ClO{sub 4}{sup -} anions are elongated to 2.293-2.500 and 2.727-2.992 A, respectively. In structure I, the second Cu atom acts as a counterion forming bonds with the O atoms of two water molecules and three O atoms of the Edds ligands. In II-IV, the Ba{sup 2+} cations are hydrated and bound to the O atoms of the anionic complexes and (except for one of the cations in IV) ClO{sub 4}{sup -} anions. The coordination number of the Ba cations is nine. The structural units in I-IV are connected into layers. In I, an extended system of hydrogen bonds links the layers into a framework. In II and III, the layers are linked only by weak hydrogen bonds, one bond per structural unit. In IV, ClO{sub 4}{sup -} anions are bound to the Ba and Cu atoms of neighboring layers, thus serving as bridges between the layers.« less
Hasanin, Tamer H A; Okamoto, Yasuaki; Fujiwara, Terufumi
2016-02-01
A rapid and sensitive flow method, based on the combination of on-line solvent extraction with reversed micellar mediated chemiluminescence (CL) detection using rhodamine B (RB), was investigated for the selective determination of Au(III) and Ga(III) in aqueous solutions. 2.0 M HCl was the optimum for extracting Au(III) while a 5.0M HCl solution containing 2.5M LiCl was selected as an optimum acidic medium for extraction of Ga(III). The Au(III) and Ga(III) chloro-complex anions were extracted from the above aqueous acidic solutions into toluene as their ion-pair complexes with the protonated RBH(+) ion followed by membrane phase separation in a flow system. In a flow cell of a detector, the extract was mixed with the reversed micellar solution of cetyltrimethylammonium chloride (CTAC) in 1-hexanol-cyclohexane/water (1.0M HCl) containing 0.10 M cerium(IV) and 0.05 M lithium sulfate. Then uptake of the ion-pair by the CTAC reversed micelles and the subsequent CL oxidation of RB with Ce(IV) occurred easily and the CL signals produced were recorded. Using a flow injection system, a detection limit (DL) of 0.4 μM Au(III) and 0.6 μM Ga(III), and linear calibration graphs with dynamic ranges from the respective DLs to 10 μM for Au(III) and Ga(III) were obtained under the optimized experimental conditions. The relative standard deviations (n=6) obtained at 2.0 µM Au(III) and 4.0 µM Ga(III) were 3.0% and 2.4%, respectively. The presented CL methodology has been applied for the determination of Au(III) and Ga(III) in water and industrial samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
2018-02-06
Malignant Female Reproductive System Neoplasm; Malignant Hepatobiliary Neoplasm; Partner; Stage III Breast Cancer; Stage III Cervical Cancer; Stage III Colorectal Cancer; Stage III Lung Cancer; Stage III Prostate Cancer; Stage III Skin Melanoma; Stage III Uterine Corpus Cancer; Stage IIIA Breast Cancer; Stage IIIA Cervical Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Lung Carcinoma; Stage IIIA Skin Melanoma; Stage IIIA Uterine Corpus Cancer; Stage IIIB Breast Cancer; Stage IIIB Cervical Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Lung Carcinoma; Stage IIIB Skin Melanoma; Stage IIIB Uterine Corpus Cancer; Stage IIIC Breast Cancer; Stage IIIC Colorectal Cancer; Stage IIIC Skin Melanoma; Stage IIIC Uterine Corpus Cancer; Stage IV Breast Cancer; Stage IV Cervical Cancer; Stage IV Colorectal Cancer; Stage IV Lung Cancer; Stage IV Prostate Cancer; Stage IV Skin Melanoma; Stage IV Uterine Corpus Cancer; Stage IVA Cervical Cancer; Stage IVA Colorectal Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Cervical Cancer; Stage IVB Colorectal Cancer; Stage IVB Uterine Corpus Cancer
Liu, Wenbo; Langenhoff, Alette A M; Sutton, Nora B; Rijnaarts, Huub H M
2018-05-18
Applying manganese(IV)- or iron(III)-(hydr)oxides to remove pharmaceuticals from water could be attractive, due to the capacity of these metal oxides to remove pharmaceuticals and be regenerated. As pharmaceutical removal under anaerobic conditions is foreseen, Mn(IV) or Fe(III) regeneration under anaerobic conditions, or with minimum oxygen dosage, is preferred. In this study, batch experiments are performed to investigate (1) Mn(IV) and Fe(III) regeneration from Mn(II) and Fe(II); (2) the pharmaceutical removal during biological Mn(IV) and Fe(III) regeneration; and (3) anaerobic abiotic pharmaceutical removal with different Mn(IV) or Fe(III) species. Results show that biological re-oxidation of reduced Mn(II) to Mn(IV) occurs under oxygen-limiting conditions. Biological re-oxidation of Fe(II) to Fe(III) is obtained with nitrate under anaerobic conditions. Both bio-regenerated Mn(IV)-oxides and Fe(III)-hydroxides are amorphous. The pharmaceutical removal is insignificant by Mn(II)- or Fe(II)-oxidizing bacteria during regeneration. Finally, pharmaceutical removal is investigated with various Mn(IV) and Fe(III) sources. Anaerobic abiotic removal using Mn(IV) produced from drinking water treatment plants results in 23% metoprolol and 44% propranolol removal, similar to chemically synthesized Mn(IV). In contrast, Fe(III) from drinking water treatment plants outperformed chemically or biologically synthesized Fe(III); Fe (III) from drinking water treatment can remove 31-43% of propranolol via anaerobic abiotic process. In addition, one of the Fe(III)-based sorbents tested, FerroSorp ® RW, can also remove propranolol (20-25%). Biological regeneration of Mn(IV) and Fe(III) from the reduced species Mn(II) and Fe(II) could be more effective in terms of cost and treatment efficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Neu, M. P.; Matonic, J. H.; Smith, D. M.; Scott, B. L.
2000-07-01
The compounds we have isolated and characterized include plutonium(III) and plutonium(IV) bound by ligands with a range of donor types and denticity (halide, phosphine oxide, hydroxamate, amine, sulfide) in a variety of coordination geometries. For example, we have obtained the first X-ray structure of Pu(III) complexed by a soft donor ligand. Using a "one pot" synthesis beginning with Pu metal strips and iodine in acetonitrile and adding trithiacyclononane we isolated the complex, PuI3(9S3)(MeCN)2 (Figure 1). On the other end of the coordination chemistry spectrum, we have obtained the first single crystal structure of the Pu(IV) hexachloro anion (Figure 2). Although this species has been used in plutonium purification via anion exchange chromatography for decades, the bond distances and exact structure were not known. We have also characterized the first plutonium-biomolecule complex, Pu(IV) bound by the siderophore desferrioxamine E.In this presentation we will review the preparation, structures, and importance of previously known coordination compounds and of those we have recently isolated. We will show the coordination chemistry of plutonium is rich and varied, well worth additional exploration.
Oxidative dissolution potential of biogenic and abiogenic TcO 2 in subsurface sediments
NASA Astrophysics Data System (ADS)
Fredrickson, James K.; Zachara, John M.; Plymale, Andrew E.; Heald, Steve M.; McKinley, James P.; Kennedy, David W.; Liu, Chongxuan; Nachimuthu, Ponnusamy
2009-04-01
Technetium-99 (Tc) is an important fission product contaminant associated with sites of nuclear fuels reprocessing and geologic nuclear waste disposal. Tc is highly mobile in its most oxidized state [Tc(VII)O4-] and less mobile in the reduced form [Tc(IV)O 2· nH 2O]. Here we investigate the potential for oxidation of Tc(IV) that was heterogeneously reduced by reaction with biogenic Fe(II) in two sediments differing in mineralogy and aggregation state; unconsolidated Pliocene-age fluvial sediment from the upper Ringold (RG) Formation at the Hanford Site and a clay-rich saprolite from the Field Research Center (FRC) background site on the Oak Ridge Site. Both sediments contained Fe(III) and Mn(III/IV) as redox active phases, but FRC also contained mass-dominant Fe-phyllosilicates of different types. Shewanella putrefaciens CN32 reduced Mn(III/IV) oxides and generated Fe(II) that was reactive with Tc(VII) in heat-killed, bioreduced sediment. After bioreduction and heat-killing, biogenic Fe(II) in the FRC exceeded that in RG by a factor of two. More rapid reduction rates were observed in the RG that had lower biogenic Fe(II), and less particle aggregation. EXAFS measurements indicated that the primary reduction product was a TcO 2-like phase in both sediments. The biogenic redox product Tc(IV) oxidized rapidly and completely in RG when contacted with air. Oxidation, in contrast, was slow and incomplete in the FRC, in spite of similar molecular scale speciation of Tc compared to RG. X-ray microprobe, electron microprobe, X-ray absorption spectroscopy, and micro X-ray diffraction were applied to the whole sediment and isolated Tc-containing particles. These analyses revealed that non-oxidizable Tc(IV) in the FRC existed as complexes with octahedral Fe(III) within intra-grain domains of 50-100 μm-sized, Fe-containing micas presumptively identified as celadonite. The markedly slower oxidation rates in FRC as compared to RG were attributed to mass-transfer-limited migration of O 2 into intra-aggregate and intraparticle domains where Tc(IV) existed; and the formation of unique, oxidation-resistant, intragrain Tc(IV)-Fe(III) molecular species.
New oxyfluorotellurates(IV): MTeO3F (M = FeIII, GaIII and CrIII).
Laval, Jean Paul; Jennene Boukharrata, Nefla; Thomas, Philippe
2008-02-01
The crystal structures of the new isomorphous compounds iron(III) oxyfluorotellurate(IV), FeTeO(3)F, gallium(III) oxyfluorotellurate(IV), GaTeO(3)F, and chromium(III) oxyfluorotellurate(IV), CrTeO(3)F, consist of zigzag chains of MO(4)F(2) distorted octahedra alternately sharing O-O and F-F edges and connected via TeO(3) trigonal pyramids. A full O/F anionic ordering is observed and the electronic lone pair of the Te(IV) cation is stereochemically active.
Guo, Xiang-Guang; Qiu, Sen; Chen, Xiuting; Gong, Yu; Sun, Xiaoqi
2017-10-16
An uncoordinated salen-containing metal-organic framework (MOF) obtained through postsynthesis removal of Mn(III) ions from a metallosalen-containing MOF material has been used for selective separation of Th(IV) ion from Ln(III) ions in methanol solutions for the first time. This material exhibited an adsorption capacity of 46.345 mg of Th/g. The separation factors (β) of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Lu(III) were 10.7, 16.4, and 10.3, respectively.
2013-01-04
Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma
Vaccine Therapy in Treating Patients With Colorectal, Stomach, or Pancreatic Cancer
2017-07-28
Recurrent Colon Cancer; Recurrent Gastric Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer
2013-02-06
Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Untreated Metastatic Squamous Neck Cancer With Occult Primary
Chauhan, Abha; Gu, Feng; Essa, Musthafa M; Wegiel, Jerzy; Kaur, Kulbir; Brown, William Ted; Chauhan, Ved
2011-04-01
Mitochondria play important roles in generation of free radicals, ATP formation, and in apoptosis. We studied the levels of mitochondrial electron transport chain (ETC) complexes, that is, complexes I, II, III, IV, and V, in brain tissue samples from the cerebellum and the frontal, parietal, occipital, and temporal cortices of subjects with autism and age-matched control subjects. The subjects were divided into two groups according to their ages: Group A (children, ages 4-10 years) and Group B (adults, ages 14-39 years). In Group A, we observed significantly lower levels of complexes III and V in the cerebellum (p<0.05), of complex I in the frontal cortex (p<0.05), and of complexes II (p<0.01), III (p<0.01), and V (p<0.05) in the temporal cortex of children with autism as compared to age-matched control subjects, while none of the five ETC complexes was affected in the parietal and occipital cortices in subjects with autism. In the cerebellum and temporal cortex, no overlap was observed in the levels of these ETC complexes between subjects with autism and control subjects. In the frontal cortex of Group A, a lower level of ETC complexes was observed in a subset of autism cases, that is, 60% (3/5) for complexes I, II, and V, and 40% (2/5) for complexes III and IV. A striking observation was that the levels of ETC complexes were similar in adult subjects with autism and control subjects (Group B). A significant increase in the levels of lipid hydroperoxides, an oxidative stress marker, was also observed in the cerebellum and temporal cortex in the children with autism. These results suggest that the expression of ETC complexes is decreased in the cerebellum and the frontal and temporal regions of the brain in children with autism, which may lead to abnormal energy metabolism and oxidative stress. The deficits observed in the levels of ETC complexes in children with autism may readjust to normal levels by adulthood. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Chauhan, Abha; Gu, Feng; Essa, Musthafa M.; Wegiel, Jerzy; Kaur, Kulbir; Brown, William Ted; Chauhan, Ved
2016-01-01
Mitochondria play important roles in generation of free radicals, ATP formation, and in apoptosis. We studied the levels of mitochondrial electron transport chain (ETC) complexes, that is, complexes I, II, III, IV, and V, in brain tissue samples from the cerebellum and the frontal, parietal, occipital, and temporal cortices of subjects with autism and age-matched control subjects. The subjects were divided into two groups according to their ages: Group A (children, ages 4–10 years) and Group B (adults, ages 14–39 years). In Group A, we observed significantly lower levels of complexes III and V in the cerebellum (p < 0.05), of complex I in the frontal cortex (p < 0.05), and of complexes II (p < 0.01), III (p<0.01), and V (p < 0.05) in the temporal cortex of children with autism as compared to age-matched control subjects, while none of the five ETC complexes was affected in the parietal and occipital cortices in subjects with autism. In the cerebellum and temporal cortex, no overlap was observed in the levels of these ETC complexes between subjects with autism and control subjects. In the frontal cortex of Group A, a lower level of ETC complexes was observed in a subset of autism cases, that is, 60% (3/5) for complexes I, II, and V, and 40% (2/5) for complexes III and IV. A striking observation was that the levels of ETC complexes were similar in adult subjects with autism and control subjects (Group B). A significant increase in the levels of lipid hydroperoxides, an oxidative stress marker, was also observed in the cerebellum and temporal cortex in the children with autism. These results suggest that the expression of ETC complexes is decreased in the cerebellum and the frontal and temporal regions of the brain in children with autism, which may lead to abnormal energy metabolism and oxidative stress. The deficits observed in the levels of ETC complexes in children with autism may readjust to normal levels by adulthood. PMID:21250997
Robertson, Aaron; Schaltz, Kyle; Neimanis, Karina; Staples, James F; McDonald, Allison E
2016-10-01
Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.
Aprile, Antonino; Iversen, Kalon J; Wilson, David J D; Dutton, Jason L
2015-05-18
We report a novel C-H to C-N bond metathesis at the 3-position of 1,2-diphenyltellurophene via oxidation of the Te(II) center to Te(IV) using the I(III) oxidant [PhI(4-DMAP)2](2+). Spontaneous reduction of a transient Te(IV) coordination compound to Te(II) generates an electrophilic equivalent of 4-DMAP that substitutes at a C-H bond at the 3-position of the tellurophene. Theoretical and synthetic reaction pathway studies confirm that a Te(IV) coordination complex with 4-DMAP is an intermediate. In the course of these pathway studies, it was also found that the identity of the I(III) oxidant generated from PhI(OAc)2 and 2 TMS-OTf is PhI(OAc)(OTf) and not PhI(OTf)2, as had been previously thought.
LARGE-SCALE CO MAPS OF THE LUPUS MOLECULAR CLOUD COMPLEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tothill, N. F. H.; Loehr, A.; Stark, A. A.
2009-11-01
Fully sampled degree-scale maps of the {sup 13}CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex-Lupus I, III, and IV-trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from {sup 13}CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km s{sup -1}. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III andmore » IV. Enhanced line widths at the NW end and along the edge of the B 228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding H I shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an H I shell.« less
Self-Advocacy Serious Game in Advanced Cancer
2018-04-05
Ovarian Cancer Stage III; Ovarian Cancer Stage IV; Breast Cancer Stage IV; Cervical Cancer Stage IIIB; Cervical Cancer Stage IVA; Cervical Cancer Stage IVB; Endometrial Cancer Stage III; Endometrial Cancer Stage IV; Vulvar Cancer, Stage III; Vulvar Cancer, Stage IV; Vaginal Cancer Stage III; Vaginal Cancer Stage IVA; Vaginal Cancer Stage IVB
New water soluble heterometallic complex showing unpredicted coordination modes of EDTA
NASA Astrophysics Data System (ADS)
Mudsainiyan, R. K.; Jassal, A. K.; Chawla, S. K.
2015-10-01
A mesoporous 3D polymeric complex (I) having formula {[Zr(IV)O-μ3-(EDTA)Fe(III)OH]·H2O}n has been crystallized and characterized by various techniques. Single-crystal X-ray diffraction analysis revealed that complex (I) crystallized in chiral monoclinic space group Cc (space group no. 9) with unexpected coordination modes of EDTA and mixture of two transition metal ions. In this complex, the coordination number of Zr(IV) ion is seven where four carboxylate oxygen atoms, two nitrogen atoms, one oxide atom are coordinating with Zr(IV). Fe(III) is four coordinated and its coordination environment is composed of three different carboxylic oxygen atoms from three different EDTA and one oxygen atom of -OH group. The structure consists of 4-c and 16-c (2-nodal) net with new topology and point symbol for net is (336·454·530)·(36). TGA study and XRPD pattern showed that the coordination polymer is quite stable even after losing water molecule and -OH ion. Quenching behavior in fluorescence of ligand is observed by complexation with transition metal ions is due to n-π* transition. The SEM micrograph shows the morphology of complex (I) exhibits spherical shape with size ranging from 50 to 280 nm. The minimum N2 (SBET=8.7693 m2/g) and a maximum amount of H2 (high surface area=1044.86 m2/g (STP)) could be adsorbed at 77 K. From DLS study, zeta potential is calculated i.e. -7.94 shows the negative charges on the surface of complex. Hirshfeld surface analysis and fingerprint plots revealed influence of weak or non bonding interactions in crystal packing of complex.
Spectrophotometric study of the thorium-morin mixed-color system
Fletcher, M.H.; Milkey, R.G.
1956-01-01
A spectrophotometric study was made of the thoriummorin reaction to evaluate the suitability of morin as a reagent for the determination of trace amounts of thorium. At pH 2, the equilibrium constant for the reaction is 1 ?? 106, and a single complex having a thorium-morin ratio of 1 to 2 is formed. The complex shows maximum absorbance at a wave length of 410 m??, and its absorbance obeys Beer's law. The absorbance readings are highly reproducible, and the sensitivity is relatively high, an absorbance difference of 0.001 being equivalent to 0.007 ?? of ThO2 per sq. cm. The effects of acid, alcohol, and morin concentration, time, temperature, and age of the morin reagent as well as the behavior of morin with zirconium(IV), iron(III), aluminum(III), ytterbium(III), yttrium(III), uranium(VI), praseodymium(III), lead(II), lanthanum(III), and calcium(II) ions are discussed. A method is presented for the determination of thorium in pure solutions. Appropriate separations for the isolation of thorium may extend the usefulness of the method and permit the determination of trace amounts of thorium in complex materials.
Salvador-Severo, Karina; Gómez-Caudillo, Leopoldo; Quezada, Héctor; García-Trejo, José de Jesús; Cárdenas-Conejo, Alan; Vázquez-Memije, Martha Elisa; Minauro-Sanmiguel, Fernando
Mitochondriopathies are multisystem diseases affecting the oxidative phosphorylation (OXPHOS) system. Skin fibroblasts are a good model for the study of these diseases. Fibroblasts with a complex IV mitochondriopathy were used to determine the molecular mechanism and the main affected functions in this disease. Skin fibroblast were grown to assure disease phenotype. Mitochondria were isolated from these cells and their proteome extracted for protein identification. Identified proteins were validated with the MitoMiner database. Disease phenotype was corroborated on skin fibroblasts, which presented a complex IV defect. The mitochondrial proteome of these cells showed that the most affected proteins belonged to the OXPHOS system, mainly to the complexes that form supercomplexes or respirosomes (I, III, IV, and V). Defects in complex IV seemed to be due to assembly issues, which might prevent supercomplexes formation and efficient substrate channeling. It was also found that this mitochondriopathy affects other processes that are related to DNA genetic information flow (replication, transcription, and translation) as well as beta oxidation and tricarboxylic acid cycle. These data, as a whole, could be used for the better stratification of these diseases, as well as to optimize management and treatment options. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
2013-09-27
Fallopian Tube Cancer; Ovarian Sarcoma; Ovarian Stromal Cancer; Recurrent Cervical Cancer; Recurrent Endometrial Carcinoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Uterine Sarcoma; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Uterine Sarcoma; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IV Endometrial Carcinoma; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Uterine Sarcoma; Stage IV Vulvar Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer
2013-01-24
Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Oropharynx
Nature-Inspired Strategy toward Superhydrophobic Fabrics for Versatile Oil/Water Separation.
Zhou, Cailong; Chen, Zhaodan; Yang, Hao; Hou, Kun; Zeng, Xinjuan; Zheng, Yanfen; Cheng, Jiang
2017-03-15
Phytic acid, which is a naturally occurring component that is widely found in many plants, can strongly bond toxic mineral elements in the human body, because of its six phosphate groups. Some of the metal ions present the property of bonding with phytic acid to form insoluble coordination complexes aggregations, even at room temperature. Herein, a superhydrophobic cotton fabric was prepared using a novel and facile nature-inspired strategy that introduced phytic acid metal complex aggregations to generate rough hierarchical structures on a fabric surface, followed by PDMS modification. This superhydrophobic surface can be constructed not only on cotton fabric, but also on filter paper, polyethylene terephthalate (PET) fabric, and sponge. Ag I , Fe III , Ce III , Zr IV , and Sn IV are very commendatory ions in our study. Taking phytic acid-Fe III -based superhydrophobic fabric as an example, it showed excellent resistance to ultraviolet (UV) irradiation, high temperature, and organic solvent immersion, and it has good resistance to mechanical wear and abrasion. The superhydrophobic/superoleophilic fabric was successfully used to separate oil/water mixtures with separation efficiencies as high as 99.5%. We envision that these superantiwetting fabrics, modified with phytic acid-metal complexes and PDMS, are environmentally friendly, low cost, sustainable, and easy to scale up, and thereby exhibit great potentials in practical applications.
2017-04-13
Nausea and Vomiting; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx
2018-04-02
Clear Cell Renal Cell Carcinoma; Metastatic Malignant Neoplasm in the Bone; Metastatic Penile Carcinoma; Renal Pelvis Urothelial Carcinoma; Squamous Cell Carcinoma of the Penis; Stage III Bladder Adenocarcinoma AJCC v6 and v7; Stage III Bladder Squamous Cell Carcinoma AJCC v6 and v7; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Penile Cancer AJCC v7; Stage III Renal Cell Cancer AJCC v7; Stage III Renal Pelvis Cancer AJCC v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IIIa Penile Cancer AJCC v7; Stage IIIb Penile Cancer AJCC v7; Stage IV Bladder Adenocarcinoma AJCC v7; Stage IV Bladder Squamous Cell Carcinoma AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Penile Cancer AJCC v7; Stage IV Renal Cell Cancer AJCC v7; Stage IV Renal Pelvis Cancer AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma; Urethral Urothelial Carcinoma
Haploidentical Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancer
2017-04-10
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hematopoietic/Lymphoid Cancer; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates.
Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P
2015-03-27
Fe III -hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme Fe III -hypohalite intermediates of possible relevance to iron halogenases. We show that Fe III -OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the Fe III -OCl, and ultimately Fe IV =O, species and provide indirect evidence for a short-lived Fe II -OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shull, J. Michael; Stevans, Matthew; Danforth, Charles
2011-10-01
We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21 cm spectra from the Green Bank Telescope. The wide spectral coverage and higher signal-to-noise ratio, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species (including high ions), and improved abundances in this halo gas. Complex C has a metallicity of 10%-30% solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COSmore » medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from eight elements in low-ionization states (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and three elements in intermediate- and high-ionization states (Si III, Si IV, C IV, N V). Our four active galactic nucleus sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG 1259+593 have high-velocity H I and O VI column densities, log N{sub Hi}= 19.39-20.05 and log N{sub Ovi}= 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized and collisionally ionized gas: N(C IV)/N(O VI) {approx} 0.3-0.5, N(Si IV)/N(O VI) {approx} 0.05-0.11, N(N V)/N(O VI) {approx} 0.07-0.13, and N(Si IV)/N(Si III) {approx}0.2.« less
NASA Astrophysics Data System (ADS)
Saleh, Hanaa M.; EL-Henawee, Magda M.; Ragab, Gamal H.; El-Hay, Soad S. Abd
2007-08-01
A simple, accurate, precise and sensitive colorimetric method for the determination of some skeletal muscle relaxant drugs, namely orphenadrine citrate ( I), baclofen ( II), antihistaminic drugs as acrivastine ( III) and fexofenadine hydrochloride ( IV) is described. This method is based on the formation of charge transfer complex with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) in non-aqueous medium. The orange color products were measured at 472, 465, 475 and 469 nm for drugs I, II, III and IV, respectively. The optimization of various experimental conditions was described. Beer's Law was obeyed in the range (2.5-17.5), (5-70), (2.5-25) and (10-50) μg/ml for drugs I, II, III and IV, respectively. The molar absorptivity ( ɛ), sandell sensitivity, detection (LOD) and quantitation limits (LOQ) are calculated. The procedure was favorably applied for determination of certain pharmaceutical dosage forms containing the studied drugs. The obtained results were compared with the official and reported methods. There were no significant differences between proposed, reported and the official methods.
Kovrugin, Vadim M; Colmont, Marie; Terryn, Christine; Colis, Silviu; Siidra, Oleg I; Krivovichev, Sergey V; Mentré, Olivier
2015-03-02
The PbO-NiO-SeO2 ternary system was fully studied using constant hydrothermal conditions at 473 K. It yields the establishment of the corresponding phase diagram using a systematic assignment of reaction products by both powder and single-crystal X-ray diffraction. It leads to the preparation of three novel lead nickel selenites, α-PbNi(SeO3)2 (I), β-PbNi(SeO3)2 (II), and PbNi2(SeO2OH)2(SeO3)2 (III), and one novel lead cobalt selenite, α-PbCo(SeO3)2 (IV), which have been structurally characterized. The crystal structures of the α-forms I, IV, and III are based on a 3D complex nickel selenite frameworks, whereas the β-PbNi(SeO3)2 modification (II) consists of nickel selenite sheets stacked in a noncentrosymmetric structure, second-harmonic generation active. The pH value of the starting solution was shown to play an essential role in the reactive processes. Magnetic measurements of I, III, and IV are discussed.
Stull, Jamie A; Stich, Troy A; Service, Rachel J; Debus, Richard J; Mandal, Sanjay K; Armstrong, William H; Britt, R David
2010-01-20
Antiferromagnetically coupled Mn(III)Mn(IV) dimers have been commonly used to study biological systems that exhibit complex exchange interactions. Such is the case for the oxygen evolving complex (OEC) in photosystem II (PSII), where we have studied whether the C-terminal carboxylate of D1-Ala344 is directly bound to the Mn cluster. To probe these protein-derived carboxylate hyperfine interactions, which give direct bonding information, Q-band (34 GHz) Mims ENDOR was performed on a Mn(III)Mn(IV) dimer ([Mn(III)Mn(IV)(mu-O)(2)mu-OAc(TACN)(2)](BPh(4))(2)) (1) that was labeled with (13)C (I = (1)/(2)) at the carboxylate position of the acetate bridge. A(dip) is computed based on atomic coordinates from available X-ray crystal structures to be [-2.4, -0.8, 3.2] MHz. The value for A(iso) was determined based on simulation of the experimental ENDOR data, for complex 1 A(iso) = -1 MHz. Similar studies were then performed on PSII from Synechocystis sp. PCC 6803, in which all alanine-derived C=O groups are labeled with (13)C including the C-terminal alpha-COO(-) group of D1 (Ala344), as well as PSII proteins uniformly labeled with (13)C. Using recent X-ray crystallography data from T. elongatus the values for A(dip) were calculated and simulations of the experimental data led to A(iso) values of 1.2, 1, and 2 MHz, respectively. We infer from complex 1 that an A(iso) significantly larger than 1.2 MHz for a Mn-coordinating carboxylate moiety is unlikely. Therefore, we support the closer arrangement of Ala344 suggested by the Loll and Guskov structures and conclude that the C-terminal carboxylate of D1 polypeptide is directly bound to the Mn cluster.
Alaimo, Alysha A; Koumousi, Evangelia S; Cunha-Silva, Luís; McCormick, Laura J; Teat, Simon J; Psycharis, Vassilis; Raptopoulou, Catherine P; Mukherjee, Shreya; Li, Chaoran; Gupta, Sayak Das; Escuer, Albert; Christou, George; Stamatatos, Theocharis C
2017-09-05
One-pot reactions between the [Mn 3 O(O 2 CPh) 6 (py) x ] +/0 triangular precursors and either CaBr 2 ·xH 2 O or CaCl 2 ·6H 2 O, in the presence of salicylhydroxamic acid (shaH 2 ), have afforded the heterometallic complexes [Mn III 4 Ca 2 (O 2 CPh) 4 (shi) 4 (H 2 O) 3 (Me 2 CO)] (1) and (pyH)[Mn II 2 Mn III 4 Ca 2 Cl 2 (O 2 CPh) 7 (shi) 4 (py) 4 ] (2), respectively, in good yields. Further reactions but using a more flexible synthetic scheme comprising the Mn(NO 3 ) 2 ·4H 2 O/Ca(NO 3 ) 2 ·4H 2 O and Mn(O 2 CPh) 2 ·2H 2 O/Ca(ClO 4 ) 2 ·4H 2 O "metal blends" and shaH 2 , in the presence of external base NEt 3 , led to the new complexes (NHEt 3 ) 2 [Mn III 4 Mn IV 4 Ca(OEt) 2 (shi) 10 (EtOH) 2 ] (3) and (NHEt 3 ) 4 [Mn III 8 Ca 2 (CO 3 ) 4 (shi) 8 ] (4), respectively. In all reported compounds, the anion of the tetradentate (N,O,O,O)-chelating/bridging ligand salicylhydroxime (shi 3- ), resulting from the in situ metal-ion-assisted amide-iminol tautomerism of shaH 2 , was found to bridge both Mn and Ca atoms. Complexes 1-4 exhibit a variety of different structures, metal stoichiometries, and Mn oxidation-state descriptions; 1 possesses an overall octahedral metal arrangement, 2 can be described as a Mn 4 Ca 2 octahedron bound to an additional Mn 2 unit, 3 consists of a Mn 8 "ring" surrounding a Ca II atom, and 4 adopts a rectangular cuboidal motif of eight Mn atoms accommodating two Ca II atoms. Solid-state direct-current magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions between the Mn centers, leading to S = 0 spin ground-state values for all complexes. From a bioinorganic chemistry perspective, the reported compounds may demonstrate some relevance to both high-valent scheme (3) and lower-oxidation-level species (1, 2, and 4) of the catalytic cycle of the oxygen-evolving complex.
Treatment of Relapsed and/or Chemotherapy Refractory B-cell Malignancy by CART19
2016-01-26
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
New water soluble heterometallic complex showing unpredicted coordination modes of EDTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudsainiyan, R.K., E-mail: mudsainiyanrk@gmail.com; Jassal, A.K.; Chawla, S.K., E-mail: sukhvinder.k.chawla@gmail.com
2015-10-15
A mesoporous 3D polymeric complex (I) having formula ([Zr(IV)O-μ{sup 3}-(EDTA)Fe(III)OH]·H{sub 2}O){sub n} has been crystallized and characterized by various techniques. Single-crystal X-ray diffraction analysis revealed that complex (I) crystallized in chiral monoclinic space group Cc (space group no. 9) with unexpected coordination modes of EDTA and mixture of two transition metal ions. In this complex, the coordination number of Zr(IV) ion is seven where four carboxylate oxygen atoms, two nitrogen atoms, one oxide atom are coordinating with Zr(IV). Fe(III) is four coordinated and its coordination environment is composed of three different carboxylic oxygen atoms from three different EDTA and onemore » oxygen atom of –OH group. The structure consists of 4-c and 16-c (2-nodal) net with new topology and point symbol for net is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern showed that the coordination polymer is quite stable even after losing water molecule and –OH ion. Quenching behavior in fluorescence of ligand is observed by complexation with transition metal ions is due to n–π⁎ transition. The SEM micrograph shows the morphology of complex (I) exhibits spherical shape with size ranging from 50 to 280 nm. The minimum N{sub 2} (S{sub BET}=8.7693 m{sup 2}/g) and a maximum amount of H{sub 2} (high surface area=1044.86 m{sup 2}/g (STP)) could be adsorbed at 77 K. From DLS study, zeta potential is calculated i.e. −7.94 shows the negative charges on the surface of complex. Hirshfeld surface analysis and fingerprint plots revealed influence of weak or non bonding interactions in crystal packing of complex. - Graphical abstract: The complex (I) crystallized with unexpected coordination modes of EDTA having 4-c, 16-c net with new topology and point symbol is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern proved its stability with high preference of H{sub 2} uptake by complex. - Highlights: • 3D complex having unexpected coordination modes of EDTA with Zr(IV) and Fe(III). • The structure consists of 4-c and 16-c (2-nodal) net with new topology. • Reasonable S{sub BET} (8.7693 m{sup 2}/g) but high H{sub 2} uptake (1044.86 m{sup 2}/g) due to limited pore size. • Quenching behavior due to n–π⁎ transition by complexation with transition metal ions. • From DLS study, zeta potential value is −7.94.« less
Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J; Mudring, Anja-Verena
2015-11-02
Four complex intermetallic compounds BaAu(6±x)Ga(6±y) (x = 1, y = 0.9) (I), BaAu(6±x)Al(6±y) (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104-112, Fm3̅c), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution ("coloring scheme"). Chemical bonding analyses for two different "EuAu6Tr6" models reveal maximization of the number of heteroatomic Au-Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the "EuAu6Tr6" models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. The effective moments of 8.3 μB/f.u., determined from Curie-Weiss fits, point to divalent oxidation states for europium in both III and IV.
Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; ...
2015-10-19
Four complex intermetallic compounds BaAu 6±xGa 6±y (x = 1, y = 0.9) (I), BaAu 6±xAl 6±y (x = 0.9, y = 0.6) (II), EuAu 6.2Ga 5.8 (III), and EuAu 6.1Al 5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn 13-type structure (cF104–112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce 2Ni 17Si 9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupationmore » by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu 6Tr 6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu 6Tr 6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu 6.2Ga 5.8 (III) and EuAu 6.1Al 5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at T C = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. As a result, the effective moments of 8.3 μB/f.u., determined from Curie–Weiss fits, point to divalent oxidation states for europium in both III and IV.« less
2015-06-30
Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult Hepatocellular Carcinoma; Adult Nasal Type Extranodal NK/T-Cell Lymphoma; Adult Solid Neoplasm; Adult T Acute Lymphoblastic Leukemia; Advanced Adult Hepatocellular Carcinoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Localized Non-Resectable Adult Liver Carcinoma; Localized Resectable Adult Liver Carcinoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Progressive Hairy Cell Leukemia Initial Treatment; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Liver Carcinoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides and Sezary Syndrome; Stage IIIB Mycosis Fungoides and Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides and Sezary Syndrome; Stage IVB Mycosis Fungoides and Sezary Syndrome; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenstrom Macroglobulinemia
Preparation and properties of a monomeric Mn(IV)-oxo complex.
Parsell, Trenton H; Behan, Rachel K; Green, Michael T; Hendrich, Michael P; Borovik, A S
2006-07-12
Manganese-oxo complexes have long been investigated because of their proposed roles in biological and chemical catalysis. However, there are few examples of monomeric complexes with terminal oxo ligands, especially those with oxomanganese(IV) units. A oxomanganese(IV) complex has been prepared from [MnIIIH3buea(O)]2- ([H3buea]3-, tris[(N'-tert-butylureaylato)-N-ethylene]aminato), a monomeric MnIII-O complex in which the oxo ligand arises from cleavage of dioxygen. Treating [MnIIIH3buea(O)]2- with [Cp2Fe]BF4 in either DMF at -45 degrees C or DMSO at room temperature produces [MnIVH3buea(O)]-: lambdamax = 635 nm; nu(Mn-16O) = 737 cm-1; nu(Mn-18O) = 709 cm-1; g = 5.15, 2.44, 1.63, D = 3.0 cm-1, E/D = 0.26, aMn = 66 G (A = 190 MHz). These spectroscopic properties support the assignment of a mononuclear MnIV-oxo complex with an S = 3/2 ground state. Density functional theory supports this assignment and the Jahn-Teller distortion around the high-spin MnIV center that would alter the molecular structure of [MnIVH3buea(O)]- from trigonal symmetry (as indicated by the highly rhombic EPR signal). [MnIVH3buea(O)]- is relatively unstable in DMSO, converting to [MnIIIH3buea(OH)]- via a proposed X-H bond cleavage. [MnIVH3buea(O)]- reacts with 1,2-diphenylhydrazine to from azobenzene (95% yield) and [MnIIIH3buea(OH)]-. The MnIV-oxo does not react with triphenyl- or tricyclohexylphosphine. However, O-atom transfer is observed with methyldiphenylphosphine and dimethylphenylphosphine, producing the corresponding phosphine oxides. These results illustrate the diverse reactivity of the MnIV-oxo unit.
2016-06-09
Extensive Stage Small Cell Lung Cancer; Hereditary Paraganglioma; Male Breast Cancer; Malignant Paraganglioma; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Pheochromocytoma; Pancreatic Polypeptide Tumor; Recurrent Breast Cancer; Recurrent Cervical Cancer; Recurrent Endometrial Carcinoma; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Neuroendocrine Carcinoma of the Skin; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pheochromocytoma; Recurrent Prostate Cancer; Recurrent Renal Cell Cancer; Recurrent Small Cell Lung Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Regional Pheochromocytoma; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage III Neuroendocrine Carcinoma of the Skin; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Prostate Cancer; Stage III Renal Cell Cancer; Stage III Uterine Sarcoma; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Endometrial Carcinoma; Stage IV Neuroendocrine Carcinoma of the Skin; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IV Uterine Sarcoma; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Thyroid Gland Medullary Carcinoma
Lafferty, Brandon J.; Ginder-Vogel, Matthew; Zhu, Mengqiang; Livi, Kenneth J. T.; Sparks, Donald L.
2010-01-01
Arsenite (AsIII) oxidation by manganese oxides (Mn-oxides) serves to detoxify and, under many conditions, immobilize arsenic (As) by forming arsenate (AsV). AsIII oxidation by MnIV-oxides can be quite complex, involving many simultaneous forward reactions and subsequent back reactions. During AsIII oxidation by Mn-oxides, a reduction in oxidation rate is often observed, which is attributed to Mn-oxide surface passivation. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) data show that MnII sorption on a poorly-crystalline hexagonal birnessite (δ-MnO2) is important in passivation early during reaction with AsIII. Also, it appears that MnIII in the δ-MnO2 structure is formed by conproportionation of sorbed MnII and MnIV in the mineral structure. The content of MnIII within the δ-MnO2 structure appears to increase as the reaction proceeds. Binding of AsV to δ-MnO2 also changes as MnIII becomes more prominent in the δ-MnO2 structure. The data presented indicate that AsIII oxidation and AsV sorption by poorly-crystalline δ-MnO2 is greatly affected by Mn oxidation state in the δ-MnO2 structure. PMID:20977204
Scotland, Michelle K; Heltzel, Justin M H; Kath, James E; Choi, Jung-Suk; Berdis, Anthony J; Loparo, Joseph J; Sutton, Mark D
2015-09-01
Translesion DNA synthesis (TLS) by specialized DNA polymerases (Pols) is a conserved mechanism for tolerating replication blocking DNA lesions. The actions of TLS Pols are managed in part by ring-shaped sliding clamp proteins. In addition to catalyzing TLS, altered expression of TLS Pols impedes cellular growth. The goal of this study was to define the relationship between the physiological function of Escherichia coli Pol IV in TLS and its ability to impede growth when overproduced. To this end, 13 novel Pol IV mutants were identified that failed to impede growth. Subsequent analysis of these mutants suggest that overproduced levels of Pol IV inhibit E. coli growth by gaining inappropriate access to the replication fork via a Pol III-Pol IV switch that is mechanistically similar to that used under physiological conditions to coordinate Pol IV-catalyzed TLS with Pol III-catalyzed replication. Detailed analysis of one mutant, Pol IV-T120P, and two previously described Pol IV mutants impaired for interaction with either the rim (Pol IVR) or the cleft (Pol IVC) of the β sliding clamp revealed novel insights into the mechanism of the Pol III-Pol IV switch. Specifically, Pol IV-T120P retained complete catalytic activity in vitro but, like Pol IVR and Pol IVC, failed to support Pol IV TLS function in vivo. Notably, the T120P mutation abrogated a biochemical interaction of Pol IV with Pol III that was required for Pol III-Pol IV switching. Taken together, these results support a model in which Pol III-Pol IV switching involves interaction of Pol IV with Pol III, as well as the β clamp rim and cleft. Moreover, they provide strong support for the view that Pol III-Pol IV switching represents a vitally important mechanism for regulating TLS in vivo by managing access of Pol IV to the DNA.
2014-08-08
Chemotherapeutic Agent Toxicity; Mucositis; Radiation Toxicity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Xerostomia
2015-09-27
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
2017-03-26
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
2017-03-14
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
CART19 to Treat B-Cell Leukemia or Lymphoma That Are Resistant or Refractory to Chemotherapy
2017-11-07
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
Organometallic neptunium(III) complexes
NASA Astrophysics Data System (ADS)
Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.
2016-08-01
Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.
Gomez, Mauricio; Pérez-Gallardo, Rocío V; Sánchez, Luis A; Díaz-Pérez, Alma L; Cortés-Rojo, Christian; Meza Carmen, Victor; Saavedra-Molina, Alfredo; Lara-Romero, Javier; Jiménez-Sandoval, Sergio; Rodríguez, Francisco; Rodríguez-Zavala, José S; Campos-García, Jesús
2014-01-01
Biogenesis and recycling of iron-sulfur (Fe-S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe-S clusters are assembled into apoproteins by the iron-sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe-S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe-S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe-S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.
Comparison of the Rome IV and Rome III criteria for IBS diagnosis: A cross-sectional survey.
Bai, Tao; Xia, Jing; Jiang, Yudong; Cao, Huan; Zhao, Yong; Zhang, Lei; Wang, Huan; Song, Jun; Hou, Xiaohua
2017-05-01
The aims of this study were to investigate the proportion of clinical irritable bowel syndrome (IBS) at a tertiary hospital in China, to compare the Rome III and Rome IV criteria with regard to IBS diagnosis, to describe the agreement between the Rome III and Rome IV criteria, and to identify differences between Rome IV-positive and -negative IBS patients. A cross-sectional survey was performed among outpatients in the gastrointestinal (GI) department of a tertiary hospital. The patients were categorized as having IBS using Rome III and Rome IV criteria. In total, 1,376 (91.7%) patients completed a GI symptom questionnaire. Among them, 352 were suspected of having IBS and 175 were diagnosed with IBS using the Rome III or Rome IV criteria. In particular, 170 (12.4%) patients were diagnosed with IBS using the Rome III criteria, and 84 (6.1%) patients were diagnosed using the Rome IV criteria. Rome IV IBS patients experienced more pain symptoms (P<0.01) and showed higher IBS severity scores. In contrast, no significant differences were noted for demographic characteristics, stool frequency, IBS subtype, disease course, operation history or GI infection history between Rome IV IBS patients and IBS patients not diagnosed with the Rome IV criteria. Rome IV-positive IBS patients represented approximately half of Rome III-positive IBS patients at a tertiary hospital in China. More specifically, Rome IV-positive IBS was mainly a subgroup of Rome III-positive IBS with more serious symptoms. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
El-Hamid, S. M. Abd; El-Demerdash, R. S.; Arafat, H. F. H.; Sadeek, S. A.
2017-12-01
The article describes the interaction of Y(III), Zr(IV), La(III), Ce(IV) and U(VI) with moxifloxacin hydrochloride and 2,2‧-bipyridine. Characterization of complexes was made by elemental analyses, molar conductivity, magnetic moment measurements and spectral measurements e.g. IR, UV-Vis., 1H NMR and mass as well as thermal analyses (TG and DTG). The molar conductivity shows that the complexes are electrolytes nature. Spectroscopic investigation of the solid complexes studied here indicate that moxifloxacin hydrochloride and 2,2‧-bipyridine are coordinated to the metal ions in a neutral bidentate manner. After complete characterization, the chemical formulae of the complexes were established. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.756 Å and 637.90 Nm-1, respectively. Kinetic and thermodynamic parameters were determined using Coats-Redfern and Horowitz-Metzger equations. Establishment of hydrochloric acid that induce acute lung injury (ALI) in rats by intratracheal administration through damaging the alveolar epithelium and activation of the neutrophil and subsequent oxidative stress by increasing malondialdehyde (MDA), tumor necrosis factor (TNF-α) and neutrophil, which were confirmed by histopathological investigation while decreasing in antioxidant enzymes and lymphocytes. Whereas treatment with mixed-ligand metal complexes significantly decrease MDA, TNF-α and neutrophils and increase antioxidant and lymphocytes.
Why did Nature choose manganese to make oxygen?
Armstrong, Fraser A
2007-01-01
This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element—it is mobile, weakly complexing, easily taken up by cells and redox-inactive in simple aqueous media. Only in the presence of suitable ligands does Mn2+ become oxidized, so it provides an uncomplicated building unit for the oxygen-evolving centre (OEC). The intermediate oxidation states Mn(III) and Mn(IV) are strongly complexed by O2− and form robust mixed-valence poly-oxo clusters in which the Mn(IV)/Mn(III) ratio can be elevated, one electron at a time, accumulating oxidizing potential and capacity. The OEC is a Mn4CaOx cluster that undergoes sequential oxidations by P680+ at potentials above 1 V, ultimately to a super-oxidized level that includes one Mn(V) or a Mn(IV)-oxyl radical. The latter is powerfully oxidizing and provides the crucial ‘power stroke’ necessary to generate an O–O bond. This leaves a centre still rich in Mn(IV), ensuring a rapid follow-through to O2. PMID:17971329
Koit, Andre; Ounpuu, Lyudmila; Klepinin, Aleksandr; Chekulayev, Vladimir; Timohhina, Natalja; Tepp, Kersti; Puurand, Marju; Truu, Laura; Heck, Karoliina; Valvere, Vahur; Guzun, Rita
2017-01-01
We conducted quantitative cellular respiration analysis on samples taken from human breast cancer (HBC) and human colorectal cancer (HCC) patients. Respiratory capacity is not lost as a result of tumor formation and even though, functionally, complex I in HCC was found to be suppressed, it was not evident on the protein level. Additionally, metabolic control analysis was used to quantify the role of components of mitochondrial interactosome. The main rate-controlling steps in HBC are complex IV and adenine nucleotide transporter, but in HCC, complexes I and III. Our kinetic measurements confirmed previous studies that respiratory chain complexes I and III in HBC and HCC can be assembled into supercomplexes with a possible partial addition from the complex IV pool. Therefore, the kinetic method can be a useful addition in studying supercomplexes in cell lines or human samples. In addition, when results from culture cells were compared to those from clinical samples, clear differences were present, but we also detected two different types of mitochondria within clinical HBC samples, possibly linked to two-compartment metabolism. Taken together, our data show that mitochondrial respiration and regulation of mitochondrial membrane permeability have substantial differences between these two cancer types when compared to each other to their adjacent healthy tissue or to respective cell cultures. PMID:28781720
Synthesis, Electrochemistry, and Excited-State Properties of Three Ru(II) Quaterpyridine Complexes
Rudd, Jennifer A.; Brennaman, M. Kyle; Michaux, Katherine E.; ...
2016-03-09
The complexes [Ru(qpy)LL']2+ (qpy = 2,2':6',2'':6'',2''-quaterpyridine), with 1: L = acetonitrile, L'= chloride; 2: L = L'= acetonitrile; and 3: L = L'= vinylpyridine, have been prepared from [Ru(qpy) (Cl)2]. Their absorption spectra in CH3CN exhibit broad metal-to-ligand charge transfer (MLCT) absorptions arising from overlapping 1A1 → 1MLCT transitions. Photoluminescence is not observed at room temperature, but all three are weakly emissive in 4:1 ethanol/methanol glasses at 77 K with broad, featureless emissions observed between 600 and 1000 nm consistent with MLCT phosphorescence. Cyclic voltammograms in CH3CN reveal the expected RuIII/II redox couples. In 0.1 M trifluoroacetic acid (TFA), 1more » and 2 undergo aquation to give [RuII(qpy)(OH2)2]2+, as evidenced by the appearance of waves for the couples [RuIII(qpy)(OH2)2]3+/[RuII(qpy)(OH2)2]2+, [RuIV(qpy)(O)(OH2)]2+/[RuIII(qpy)(OH2)2]3+, and [RuVI(qpy)(O)2]2+/[RuIV(qpy)(O)(OH2)]2+ in cyclic voltammograms.« less
Health Care Coach Support in Reducing Acute Care Use and Cost in Patients With Cancer
2017-05-12
Acute Myeloid Leukemia; Brain Glioblastoma; Estrogen Receptor Negative; Extensive Stage Small Cell Lung Carcinoma; Head and Neck Carcinoma; HER2/Neu Negative; Hormone-Resistant Prostate Cancer; Limited Stage Small Cell Lung Carcinoma; Myelodysplastic Syndrome; Progesterone Receptor Negative; Progressive Disease; Recurrent Carcinoma; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage IIA Pancreatic Cancer; Stage IIA Rectal Cancer; Stage IIB Pancreatic Cancer; Stage IIB Rectal Cancer; Stage IIC Rectal Cancer; Stage III Colon Cancer; Stage III Esophageal Cancer; Stage III Gastric Cancer; Stage III Non-Small Cell Lung Cancer; Stage III Ovarian Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Skin Melanoma; Stage IIIA Colon Cancer; Stage IIIA Esophageal Cancer; Stage IIIA Gastric Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Rectal Cancer; Stage IIIA Skin Melanoma; Stage IIIB Colon Cancer; Stage IIIB Esophageal Cancer; Stage IIIB Gastric Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Rectal Cancer; Stage IIIB Skin Melanoma; Stage IIIC Colon Cancer; Stage IIIC Esophageal Cancer; Stage IIIC Gastric Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Rectal Cancer; Stage IIIC Skin Melanoma; Stage IV Bladder Cancer; Stage IV Bone Sarcoma; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Gastric Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IV Soft Tissue Sarcoma; Stage IVA Bone Sarcoma; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Bone Sarcoma; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Triple-Negative Breast Carcinoma
Miyadera, Hiroko; Shiomi, Kazuro; Ui, Hideaki; Yamaguchi, Yuichi; Masuma, Rokuro; Tomoda, Hiroshi; Miyoshi, Hideto; Osanai, Arihiro; Kita, Kiyoshi; Ōmura, Satoshi
2003-01-01
Enzymes in the mitochondrial respiratory chain are involved in various physiological events in addition to their essential role in the production of ATP by oxidative phosphorylation. The use of specific and potent inhibitors of complex I (NADH-ubiquinone reductase) and complex III (ubiquinol-cytochrome c reductase), such as rotenone and antimycin, respectively, has allowed determination of the role of these enzymes in physiological processes. However, unlike complexes I, III, and IV (cytochrome c oxidase), there are few potent and specific inhibitors of complex II (succinate-ubiquinone reductase) that have been described. In this article, we report that atpenins potently and specifically inhibit the succinate-ubiquinone reductase activity of mitochondrial complex II. Therefore, atpenins may be useful tools for clarifying the biochemical and structural properties of complex II, as well as for determining its physiological roles in mammalian tissues. PMID:12515859
Nishida, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi
2014-06-04
A non-heme iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was formed by oxidation of an iron(II) complex ([(TMC)Fe(II)](2+)) with dioxygen (O2) and tetraphenylborate (BPh4(-)) in the presence of scandium triflate (Sc(OTf)3) in acetonitrile at 298 K via autocatalytic radical chain reactions rather than by a direct O2 activation pathway. The autocatalytic radical chain reaction is initiated by scandium ion-promoted electron transfer from BPh4(-) to [(TMC)Fe(IV)(O)](2+) to produce phenyl radical (Ph(•)). The chain propagation step is composed of the addition of O2 to Ph(•) and the reduction of the resulting phenylperoxyl radical (PhOO(•)) by scandium ion-promoted electron transfer from BPh4(-) to PhOO(•) to produce phenyl hydroperoxide (PhOOH), accompanied by regeneration of phenyl radical. PhOOH reacts with [(TMC)Fe(II)](2+) to yield phenol (PhOH) and [(TMC)Fe(IV)(O)](2+). Biphenyl (Ph-Ph) was formed via the radical chain autoxidation of BPh3 by O2. The induction period of the autocatalytic radical chain reactions was shortened by addition of a catalytic amount of [(TMC)Fe(IV)(O)](2+), whereas addition of a catalytic amount of ferrocene that can reduce [(TMC)Fe(IV)(O)](2+) resulted in elongation of the induction period. Radical chain autoxidation of BPh4(-) by O2 also occurred in the presence of Sc(OTf)3 without [(TMC)Fe(IV)(O)](2+), initiating the autocatalytic oxidation of [(TMC)Fe(II)](2+) with O2 and BPh4(-) to yield [(TMC)Fe(IV)(O)](2+). Thus, the general view for formation of non-heme iron(IV)-oxo complexes via O2-binding iron species (e.g., Fe(III)(O2(•-))) without contribution of autocatalytic radical chain reactions should be viewed with caution.
2017-06-10
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-Cell Chronic Lymphocytic Leukemia in Relapse (Diagnosis); Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
Adam-Vizi, Vera
2005-01-01
Overwhelming evidence has accumulated indicating that oxidative stress is a crucial factor in the pathogenesis of neurodegenerative diseases. The major site of production of superoxide, the primary reactive oxygen species (ROS), is considered to be the respiratory chain in the mitochondria, but the exact mechanism and the precise location of the physiologically relevant ROS generation within the respiratory chain have not been disclosed as yet. Studies performed with isolated mitochondria have located ROS generation on complex I and complex III, respectively, depending on the substrates or inhibitors used to fuel or inhibit respiration. A more "physiological" approach is to address ROS generation of in situ mitochondria, which are present in their normal cytosolic environment. Hydrogen peroxide formation in mitochondria in situ in isolated nerve terminals is enhanced when complex I, complex III, or complex IV is inhibited. However, to induce a significant increase in ROS production, complex III and complex IV have to be inhibited by >70%, which raises doubts as to the physiological importance of ROS generation by these complexes. In contrast, complex I inhibition to a small degree is sufficient to enhance ROS generation, indicating that inhibition of complex I by approximately 25-30% observed in postmortem samples of substantia nigra from patients suffering from Parkinson's disease could be important in inducing oxidative stress. Recently, it has been described that a key Krebs cycle enzyme, alpha-ketoglutarate dehydrogenase (alpha-KGDH), is also able to produce ROS. ROS formation by alpha-KGDH is regulated by the NADH/NAD+ ratio, suggesting that this enzyme could substantially contribute to generation of oxidative stress due to inhibition of complex I. As alpha-KGDH is not only a generator but also a target of ROS, it is proposed that alpha-KGDH is a key factor in a vicious cycle by which oxidative stress is induced and promoted in nerve terminals.
2018-03-28
Squamous Cell Carcinoma of the Hypopharynx Stage III; Squamous Cell Carcinoma of the Hypopharynx Stage IV; Laryngeal Squamous Cell Carcinoma Stage III; Laryngeal Squamous Cell Carcinoma Stage IV; Oropharyngeal Squamous Cell Carcinoma Stage III; Oropharyngeal Squamous Cell Carcinoma Stage IV; Squamous Cell Carcinoma of the Oral Cavity Stage III; Squamous Cell Carcinoma of the Oral Cavity Stage IV; Locally Advanced Malignant Neoplasm
The role of Ce(III) in BZ oscillating reactions
NASA Astrophysics Data System (ADS)
Nogueira, Paulo A.; Varela, Hamilton; Faria, Roberto B.
2012-03-01
Herein we present results on the oscillatory dynamics in the bromate-oxalic acid-acetone-Ce(III)/Ce(IV) system in batch and also in a CSTR. We show that Ce(III) is the necessary reactant to allow the emergence of oscillations. In batch, oscillations occur with Ce(III) and also with Ce(IV), but no induction period is observed with Ce(III). In a CSTR, no oscillations were found using a freshly prepared Ce(IV), but only when the cerium-containing solution was aged, allowing partial conversion of Ce(IV) to Ce(III) by reaction with acetone.
DISTRIBUTION OF ACTINIDES BETWEEN THE AQUEOUS AND ORGANIC PHASES IN THE TALSPEAK PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.; Kyser, E.
2010-09-02
One objective of the US Department of Energy's Office of Nuclear Energy (DOE-NE) is the development of sustainable nuclear fuel cycles which improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and complement institutional measures limiting proliferation risks. Activities in progress which support this objective include the development of advanced separation technologies to recover the actinides from used nuclear fuels. With the increased interest in the development of technology to allow closure of the nuclear fuel cycle, the TALSPEAK process is being considered for the separation of Am and Cm from the lanthanide fission products in amore » next generation reprocessing plant. However, at this time, the level of understanding associated with the chemistry and the control of the process variables is not acceptable for deployment of the process on an industrial scale. To address this issue, DOE-NE is supporting basic scientific studies focused on the TALSPEAK process through its Fuel Cycle Research and Development (R&D) program. One aspect of these studies is an experimental program at the Savannah River National Laboratory (SRNL) in which temperature-dependent distribution coefficients for the extraction of actinide elements in the TALSPEAK process were measured. The data were subsequently used to calculate conditional enthalpies and entropies of extraction by van't Hoff analysis to better understand the thermodynamic driving forces for the TALSPEAK process. In the SRNL studies, the distribution of Pu(III) in the TALSPEAK process was of particular interest. A small amount of Pu(III) would be present in the feed due to process losses and valence adjustment in prior recovery operations. Actinide elements such as Np and Pu have multiple stable oxidation states in aqueous solutions; therefore the oxidation state for these elements must be controlled in the TALSPEAK process, as the extraction chemistry is dependent upon the actinide's valence. Since our plans included the measurement of Pu(III) distribution coefficients using a Np(V) solution containing small amounts of {sup 238}Pu, it was necessary to demonstrate that the desired oxidation states of Np and Pu are produced and could be stabilized in a buffered lactate solution containing diethylenetriaminepentaacetic (DTPA). The stability of Np(V) and Pu(III) in lactic acid/DTPA solutions was evaluated by ultraviolet-visible (UV-vis) spectroscopy. To perform the evaluation, Np and Pu were added to solutions containing either hydroxylamine nitrate (HAN) or ferrous sulfamate (FS) as the reductant and nominally 1.5 M lactic acid/0.05 M DTPA. The pH of the solution was subsequently adjusted to nominally 2.8 as would be performed in the TALSPEAK process. In the valence adjustment study, we found that it was necessary to reduce Pu to Pu(III) prior to combining with the lactic acid and DTPA. The Pu reduction was performed using either HAN or FS. When FS was used, Np was reduced to Np(IV). The spectroscopic studies showed that Np(V) and Pu(III) are not stable in lactic acid/DTPA solutions. The stability of Np(IV)- and Pu(IV)-DTPA complexes are much greater than the stability of the Np(V)- and Pu(III)-DTPA complexes, and as a result, Np is slowly reduced to Np(IV) and Pu is slowly oxidized to Pu(IV) due to the reduced activity of the more stable complexes. When Np(V) was added to a solution containing a 1.5 M lactic acid/ammonium lactate buffer and 0.05 M DTPA, approximately 50% of the Np was reduced to Np(IV) in the first day. The fraction of Np(V) in the solution continued to diminish with time and was essentially reduced to Np(IV) after one week. When Pu(III) was added to a lactic acid/DTPA solution of the same composition, the spectrum recorded following at least two days after preparation of the solution continued to show some sign of Pu(III). The Pu(III) was completely oxidized to Pu(IV) after 3-4 days. The UV-vis spectroscopy demonstrated that Np(V) and Pu(III) were the predominate valences in the lactic acid/DTPA solution for the better part of a day following solution preparation. Based on these results, we chose to initially add HAN to the actinide tracer solution prepared for the distribution coefficient measurements (to produce Pu(III)) prior to combining with lactic acid and DTPA. The distribution coefficient measurements were expected to be complete in 2-3 h; therefore, Np(V) and Pu(III) valences would predominate in the solution during this time. Prior to adding the HAN to the actinide tracers, we added sufficient Am(III) activity to allow the measurement of distribution coefficients during the extraction experiments. Protactinium (V) distribution coefficients were also measured using the activity which was in secular equilibrium with the {sup 237}Np. The actinide distribution coefficients were measured at pH 2.8 and 3.5 and covered a range of temperatures from nominally 20 to 60 C.« less
Lima-Oliveira, Gabriel; Lippi, Giuseppe; Salvagno, Gian Luca; Montagnana, Martina; Picheth, Geraldo; Guidi, Gian Cesare
2013-04-01
Sometimes in-vitro diagnostic devices (e.g. blood collection tubes) are not validated before use or when the producer's brand is changed. The aim of this study was to validate five brands of sodium citrate vacuum tubes. Blood specimens from 50 volunteers were collected in five different tube brands (I: Venosafe, II: VACUETTE, III: BD Vacutainer, IV: LABOR IMPORT and V: S-Monovette). Routine coagulation tests [activated partial thromboplastin time (aPTT), prothrombin time (PT), and fibrinogen (FIB)] were performed on ACL TOP instrument using HemosIL reagents. The significance of the differences between samples was assessed by paired Student's t-test, set at P < 0.005. Significant differences were observed for: PT when comparing I vs. II, I vs. III, I vs. V, II vs. III, II vs. IV, II vs. V, III vs. IV, III vs. V and IV vs. V; aPTT when comparing I vs. II, I vs. III, I vs. IV, II vs. IV, III vs. IV and IV vs. V. No differences were observed among brands for FIB determination. We suggest that every laboratory management should both standardize the procedures and frequently evaluate the quality of in-vitro diagnostic devices.
2012-07-05
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Plasma Cell Neoplasm; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Small Lymphocytic Lymphoma
2013-01-23
Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Salivary Gland Squamous Cell Carcinoma; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity
WISC-IV and WISC-III profiles in children with ADHD.
Mayes, Susan Dickerson; Calhoun, Susan L
2006-02-01
Wechsler Intelligence Scale for Children, 3rd and 4th editions (WISC-III n = 586 and WISC-IV n = 118), profiles were compared for children with ADHD and normal intelligence. Mean Verbal Comprehension Index (VCI) and Perceptual Organization/Perceptual Reasoning Index (POI/PRI) scores were significantly higher than Freedom From Distractibility/Working Memory Index (FDI/WMI) and Processing Speed Index (PSI), and Symbol Search was higher than Coding. FDI/WMI and PSI scores were similar on both tests, but VCI and POI/PRI were higher on the WISC-IV than on the WISC-III. Therefore, index discrepancies were greater for the WISC-IV, suggesting that the WISC-IV might be better than the WISC-III in delineating the strengths and weaknesses of children with ADHD. All children in the WISC-IV sample scored lowest on WMI or PSI, whereas only 88% of the WISC-III children scored lowest on FDI or PSI. Thus, the WISC-IV may be more helpful in diagnosing ADHD than the WISC-III.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyatnitskii, I.V.; Kostyshina, A.P.
1959-06-01
The stability of aluminum, copper, iron, titunium, and vanadium tartrate complexes was determined using bond magnitudes as criteria (the ratio between the concentrations of complexed and free ions at a certain standard acid condition). A method is suggested for determining the ratio of the bonds combining the complexes of two metals. The partition constaats of aluminum, copper, iron(III), and vanadium hydroxyquinolinates between the aqueous solution and chloroform were 2.6 x 10/sup -33/, 7.3 x 10/sup -23/, 1.5 x 10/sup -37/, and 4.2 x 10/sup -23/, respectively. The relative stability of copper and iron turtrate complexes in alkali solution (pH 13)more » and aluminum, iron(III), titunium, and vanadium(IV) tartrate complexes in ammonium solution (pH 9.5) was determined. (R.V.J.)« less
Titanium(IV)-Catalyzed Stereoselective Synthesis of Spirooxindole-1-pyrrolines
2015-01-01
A stereoselective cyclization between alkylidene oxindoles and 5-methoxyoxazoles has been developed using catalytic titanium(IV) chloride (as low as 5 mol %) to afford spiro[3,3′-oxindole-1-pyrrolines] in excellent yield (up to 99%) and diastereoselectivity (up to 99:1). Using a chiral scandium(III)–indapybox/BArF complex affords enantioenriched spirooxindole-1-pyrrolines where a ligand-induced reversal of diastereoselectivity is observed. This methodology is further demonstrated for the synthesis of pyrrolines from malonate alkylidene and coumarin derivatives. PMID:25474118
Berthet, Jean-Claude; Thuéry, Pierre; Ephritikhine, Michel
2005-07-21
The smooth comproportionation reaction of the U(VI) and U(III) complexes UO2(OTf)2 and U(OTf)3, afforded the hexanuclear U(IV) oxide cluster [U6(micro3-O)8(micro2-OTf)8(py)8], a rare example of a metal oxide with a M6(micro3-O)8 core.
Zaragoza, Jan Paulo T; Baglia, Regina A; Siegler, Maxime A; Goldberg, David P
2015-05-27
The oxygen atom transfer (OAT) reactivity of two valence tautomers of a Mn(V)(O) porphyrinoid complex was compared. The OAT kinetics of Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)) reacting with a series of triarylphosphine (PAr3) substrates were monitored by stopped-flow UV-vis spectroscopy, and revealed second-order rate constants ranging from 16(1) to 1.43(6) × 10(4) M(-1) s(-1). Characterization of the OAT transition state analogues Mn(III)(OPPh3)(TBP8Cz) and Mn(III)(OP(o-tolyl)3)(TBP8Cz) was carried out by single-crystal X-ray diffraction (XRD). A valence tautomer of the closed-shell Mn(V)(O)(TBP8Cz) can be stabilized by the addition of Lewis and Brønsted acids, resulting in the open-shell Mn(IV)(O)(TBP8Cz(•+)):LA (LA = Zn(II), B(C6F5)3, H(+)) complexes. These Mn(IV)(O)(π-radical-cation) derivatives exhibit dramatically inhibited rates of OAT with the PAr3 substrates (k = 8.5(2) × 10(-3) - 8.7 M(-1) s(-1)), contrasting the previously observed rate increase of H-atom transfer (HAT) for Mn(IV)(O)(TBP8Cz(•+)):LA with phenols. A Hammett analysis showed that the OAT reactivity for Mn(IV)(O)(TBP8Cz(•+)):LA is influenced by the Lewis acid strength. Spectral redox titration of Mn(IV)(O)(TBP8Cz(•+)):Zn(II) gives Ered = 0.69 V vs SCE, which is nearly +700 mV above its valence tautomer Mn(V)(O)(TBP8Cz) (Ered = -0.05 V). These data suggest that the two-electron electrophilicity of the Mn(O) valence tautomers dominate OAT reactivity and do not follow the trend in one-electron redox potentials, which appear to dominate HAT reactivity. This study provides new fundamental insights regarding the relative OAT and HAT reactivity of valence tautomers such as M(V)(O)(porph) versus M(IV)(O)(porph(•+)) (M = Mn or Fe) found in heme enzymes.
Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P
2015-01-01
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782
NASA Astrophysics Data System (ADS)
Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki
2017-07-01
Recently, single-layer group III monochalcogenides have attracted both theoretical and experimental interest at their potential applications in photonic devices, electronic devices, and solar energy conversion. Excited by this, we theoretically design two kinds of highly stable single-layer group IV-V (IV =Si ,Ge , and Sn; V =N and P) and group V-IV-III-VI (IV =Si ,Ge , and Sn; V =N and P; III =Al ,Ga , and In; VI =O and S) compounds with the same structures with single-layer group III monochalcogenides via first-principles simulations. By using accurate hybrid functional and quasiparticle methods, we show the single-layer group IV-V and group V-IV-III-VI are indirect bandgap semiconductors with their bandgaps and band edge positions conforming to the criteria of photocatalysts for water splitting. By applying a biaxial strain on single-layer group IV-V, single-layer group IV nitrides show a potential on mechanical sensors due to their bandgaps showing an almost linear response for strain. Furthermore, our calculations show that both single-layer group IV-V and group V-IV-III-VI have absorption from the visible light region to far-ultraviolet region, especially for single-layer SiN-AlO and SnN-InO, which have strong absorption in the visible light region, resulting in excellent potential for solar energy conversion and visible light photocatalytic water splitting. Our research provides valuable insight for finding more potential functional two-dimensional semiconductors applied in optoelectronics, solar energy conversion, and photocatalytic water splitting.
Effects of Mineral Compositions on Matrix Diffusion and Sorption of 75Se(IV) in Granite.
Yang, Xiaoyu; Ge, Xiangkun; He, Jiangang; Wang, Chunli; Qi, Liye; Wang, Xiangyun; Liu, Chunli
2018-02-06
Exploring the migration behaviors of selenium in granite is critical for the safe disposal of radioactive waste. The matrix diffusion and sorption of 75 Se(IV) (analogue for 79 Se) in granite were systematically studied to set reliable parameters in this work. Through-diffusion and batch sorption experiments were conduct with four types of Beishan granite. The magnitudes of the obtained apparent diffusion coefficient (D a ) values are of the following order: monzogranite > granodiorite-2 > granodiorite-1, which is opposite to the sequence of the K d values obtained from both the diffusion model and batch sorption experiments. The EPMA results of the granitic flakes showed that there was no obvious enrichment of Se(IV) on quartz, microcline and albite. Only biotite showed a weak affinity for Se(IV). Macroscopic sorption behaviors of Se(IV) on the four types of granite were identical with the sequence of the granitic biotite contents. Quantitative fitting results were also provided. XPS and XANES spectroscopy data revealed that bidentate inner-sphere complexes were formed between Se(IV) and Fe(III). Our results indicate that biotite can be representative of the Se(IV) sorption in complex mineral assemblages such as granite, and the biotite contents are critically important to evaluate Se(IV) transport in granite.
2013-07-01
Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Salivary Gland Squamous Cell Carcinoma; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary
Pacaud, Fabien; Delaye, Jean-Marc; Charpentier, Thibault; Cormier, Laurent; Salanne, Mathieu
2017-10-28
Sodium borosilicate glasses Na 2 O-B 2 O 3 -SiO 2 (NBS) are complex systems from a structural point of view. Three main building units are present: tetrahedral SiO 4 and BO 4 (B IV ) and triangular BO 3 (B III ). One of the salient features of these compounds is the change of the B III /B IV ratio with the alkali concentration, which is very difficult to capture in force fields-based molecular dynamics simulations. In this work, we develop a polarizable force field that is able to reproduce the boron coordination and more generally the structure of several NBS systems in the glass and in the melt. The parameters of the potential are fitted from density functional theory calculations only, in contrast with the existing empirical potentials for NBS systems. This ensures a strong improvement on the transferability of the parameters from one composition to another. Using this new force field, the structure of NBS systems is validated against neutron diffraction and nuclear magnetic resonance experiments. A special focus is given to the distribution of B III /B IV with respect to the composition and the temperature.
Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H
2011-11-01
Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.
2017-11-07
Iron Overload; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma
Ondansetron in Preventing Nausea and Vomiting in Patients Undergoing Stem Cell Transplant
2017-04-20
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma
Nealon, William H; Bhutani, Manoop; Riall, Taylor S; Raju, Gottumukkala; Ozkan, Orhan; Neilan, Ryan
2009-05-01
Precepts about acute pancreatitis, necrotizing pancreatitis, and pancreatic fluid collections or pseudocyst rarely include the impact of pancreatic ductal injuries on their natural course and outcomes. We previously examined and established a system to categorize ductal changes. We sought a unifying concept that may predict course and direct therapies in these complex patients. We use our system categorizing ductal changes in pseudocyst of the pancreas and severe necrotizing pancreatitis (type I, normal duct; type II, duct stricture; type III, duct occlusion or "disconnected duct"; and type IV, chronic pancreatitis). From 1985 to 2006, a policy was implemented of routine imaging (cross-sectional, endoscopic retrograde cholangiopancreatography, or magnetic resonance cholangiopancreatography). Clinical outcomes were measured. Among 563 patients with pseudocyst, 142 resolved spontaneously (87% of type I, 5% of type II, and no type III, and 3% of type IV). Percutaneous drainage was successful in 83% of type I, 49% of type II, and no type III or type IV. Among 174 patients with severe acute pancreatitis percutaneous drainage was successful in 64% of type I, 38% of type II, and no type III. Operative debridement was required in 39% of type I and 83% and 85% of types II and III, respectively. Persistent fistula after debridement occurred in 27%, 54%, and 85% of types I, II, and III ducts, respectively. Late complications correlated with duct injury. Pancreatic ductal changes predict spontaneous resolution, success of nonoperative measures, and direct therapies in pseudocyst. Ductal changes also predict patients with necrotizing pancreatitis who are most likely to have immediate and delayed complications.
Anti-CD22 CAR-T Therapy for CD19-refractory or Resistant Lymphoma Patients
2017-03-08
Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Stage III/IV Adult Diffuse Large Cell Lymphoma; Stage III/IV Follicular Lymphoma; Stage III/IV Mantle Cell Lymphoma
Nabhan, Fadi; Porter, Kyle; Lupo, Mark A; Randolph, Gregory W; Patel, Kepal N; Kloos, Richard T
2018-06-01
RAS mutations are common in the available mutational analysis of cytologically indeterminate (Cyto-I) thyroid nodules. However, their reported positive predictive value (PPV) for cancer is widely variable. The reason for this variability is unknown, and it causes clinical management uncertainty. A systematic review was performed, evaluating the PPV for cancer in RAS mutation positive Cyto-I nodules, and variables that might affect residual heterogeneity across the different studies were considered. PubMed was searched through February 22, 2017, including studies that evaluated at least one type of RAS mutation in Cyto-I nodules, including any (or all) of the Bethesda III/IV/V categories or their equivalents and where the histological diagnosis was available. The PPV residual heterogeneity was investigated after accounting for Bethesda classification, blindedness of the histopathologist to the RAS mutational status, Bethesda category-specific cancer prevalence for each study, and which RAS genes and codons were tested. This was studied using five meta-regression models fit to different sets of Bethesda classification categories: Bethesda III, IV, or V (III/IV/V); Bethesda III or IV (III/IV); Bethesda III only; Bethesda IV only; and Bethesda V only. Of 1831 studies, 23 were eligible for data inclusion. Wide ranges of PPV were found at 0-100%, 28-100%, and 0-100% in Bethesda III, IV, and V, respectively. Residual heterogeneity remained moderately high for PPV after accounting for the above moderators for Bethesda III/IV/V (21 studies; I 2 = 59.5%) and Bethesda III/IV (19 studies; I 2 = 66.0%), with significant Cochran's Q-test for residual heterogeneity (p < 0.001). Among individual Bethesda categories, residual heterogeneity was: Bethesda III (eight studies; I 2 = 89.0%), IV (12 studies; I 2 = 53.5%), and V (10 studies; I 2 = 34.4%), with significant Cochran's Q-test for Bethesda III (p < 0.001) and IV (p = 0.04). The PPV of RAS mutations in Bethesda III and IV categories is quite heterogeneous across different studies, creating low confidence in the accuracy of a single estimate of PPV. Clinicians must appreciate this wide variability when managing a RAS-mutated Cyto-I nodule. Future studies should seek to resolve this unexplained variability.
2018-05-01
HER2-positive Breast Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor
2017-06-26
Squamous Cell Carcinoma of the Hypopharynx Stage III; Squamous Cell Carcinoma of the Hypopharynx Stage IV; Squamous Cell Carcinoma of the Larynx Stage III; Squamous Cell Carcinoma of the Larynx Stage IV; Squamous Cell Carcinoma of the Oropharynx Stage III; Squamous Cell Carcinoma of the Oropharynx Stage IV; Squamous Cell Carcinoma of the Oral Cavity Stage III; Squamous Cell Carcinoma of the Oral Cavity Stage IV
Maiore, Laura; Cinellu, Maria Agostina; Nobili, Stefania; Landini, Ida; Mini, Enrico; Gabbiani, Chiara; Messori, Luigi
2012-03-01
Gold(III) compounds form a family of promising cytotoxic and potentially anticancer agents that are currently undergoing intense preclinical investigations. Four recently synthesized and characterized gold(III) derivatives of 2-substituted pyridines are evaluated here for their biological and pharmacological behavior. These include two cationic adducts with 2-pyridinyl-oxazolines, [Au(pyox(R))Cl(2)][PF(6)], [pyox(R)=(S)-4-benzyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, I; (S)-4-iso-propyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, II] and two neutral complexes [Au(N,N'OH)Cl(2)], III, and [Au(N,N',O)Cl], IV, containing the deprotonated ligand N-(1-hydroxy-3-iso-propyl-2-yl)pyridine-2-carboxamide, N,N'H,OH, resulting from ring opening of bound pyox(R) ligand of complex II by hydroxide ions. The solution behavior of these compounds was analyzed. These behave as classical prodrugs: activation of the metal center typically takes place through release of the labile chloride ligands while the rest of the molecule is not altered; alternatively, activation may occur through gold(III) reduction. All compounds react eagerly with the model protein cyt c leading to extensive protein metalation. ESI MS experiments revealed details of gold-cyt c interactions and allowed us to establish the nature of protein bound metal containing fragments. The different behavior displayed by I and II compared to III and IV is highlighted. Remarkable cytotoxic properties, against the reference human ovarian carcinoma cell lines A2780/S and A2780/R were disclosed for all tested compounds with IC(50) values ranging from 1.43 to 6.18 μM in the sensitive cell line and from 1.59 to 10.86 μM in the resistant one. The common ability of these compounds to overcome cisplatin resistance is highlighted. The obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold compounds. Copyright © 2011 Elsevier Inc. All rights reserved.
Ozyurt, Dilek; Demirata, Birsen; Apak, Resat
2011-11-01
A Ce(IV)-based reducing capacity (CERAC) assay was developed to measure the total antioxidant capacity (TAC) of foods, in which Ce(IV) would selectively oxidize antioxidant compounds but not citric acid and reducing sugars which are not classified as antioxidants. The method is based on the electron-transfer (ET) reaction between Ce(IV) ion and antioxidants in optimized acidic sulphate medium (i.e., 0.3 M H(2)SO(4) and 0.7 M Na(2)SO(4)) and subsequent determination of the produced Ce(III) ions by a fluorometric method. The fluorescent product, Ce(III), exhibited strong fluorescence at 360 nm with an excitation wavelength of 256 nm, the fluorescence intensity being correlated to antioxidant power of the original sample. The linear concentration range for most antioxidants was quite wide, e.g., 5.0 × 10(-7)-1.0 × 10(-5) M for quercetin. The developed procedure was successfully applied to the TAC assay of antioxidant compounds such as trolox, quercetin, gallic acid, ascorbic acid, catechin, naringin, naringenin, caffeic acid, ferulic acid, glutathione, and cysteine. The proposed method was reproducible, additive in terms of TAC values of constituents of complex mixtures, and the trolox equivalent antioxidant capacities (TEAC coefficients) of the tested antioxidant compounds gave good correlations with those found by reference methods such as ABTS and CUPRAC.
Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions
Shin, Bongki; Sutherlin, Kyle D.; Ohta, Takehiro; ...
2016-11-15
The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co III(Me 3-TPADP)(O 2)] + (Me 3-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co II(Me 3-TPADP)(CH 3CN) 2] 2+ with H 2O 2 in the presence of triethylamine. Upon protonation, the cobalt(III)- peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co III(Me 3-TPADP)(O 2H)(CH 3CN)] 2+. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly showmore » the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CH 3CN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm -1 for 16O 2H samples (803 cm -1 for 18O 2H samples) and its Co-O vibrational energy was observed at 571 cm -1 for 16O 2H samples (551 cm -1 for 18O 2H samples; 568 cm -1 for 16O 2 2H samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density function theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.« less
Reactivity of a Cobalt(III)–Hydroperoxo Complex in Electrophilic Reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Bongki; Sutherlin, Kyle D.; Ohta, Takehiro
The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co III(Me 3-TPADP)(O 2)] + (Me 3-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co II(Me 3-TPADP)(CH 3CN) 2] 2+ with H 2O 2 in the presence of triethylamine. Upon protonation, the cobalt(III)- peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co III(Me 3-TPADP)(O 2H)(CH 3CN)] 2+. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly showmore » the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CH 3CN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm -1 for 16O 2H samples (803 cm -1 for 18O 2H samples) and its Co-O vibrational energy was observed at 571 cm -1 for 16O 2H samples (551 cm -1 for 18O 2H samples; 568 cm -1 for 16O 2 2H samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density function theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.« less
González-García, Raúl; Rodríguez-Campo, Francisco J; Monje, Florencio; Román-Romero, Leticia; Sastre-Pérez, Jesús; Usandizaga, José L Gil-Díez
2010-01-01
Temporomandibular joint (TMJ) arthroscopy has been reported to be an effective and reliable technique for the treatment of chronic closed lock (CCL) of the TMJ. The purpose of the present study was to evaluate whether the status of the joint surface and the synovial lining directly visualized with arthroscopy could determine postoperative results in patients with CCL of the TMJ. In all, 257 of 500 patients (344 joints) fulfilled the inclusion criteria for CCL of the TMJ. Of these patients, 172 with unilateral TMJ involvement were finally selected for the study. Synovitis and chondromalacia were chosen as the main features for evaluation of the joint surface and synovial lining. Two groups of patients were established: 1) patients with scarce affectation (synovitis grades I-II and chondromalacia grades I-II); and 2) patients with severe affectation (synovitis grades III-IV and/or chondromalacia grades III-IV). Pain and maximal interincisal opening were chosen as dependent variables. All patients were assessed at 1, 3, 6, 12, and 24 months postoperatively. The paired-samples Student's t test was used to compare mean values for pain (using a visual analog scale) and maximal interincisal opening (MIO) both pre- and postoperatively. The Student's t test for unpaired data was applied for the statistical analysis. A P value less than .05 was considered statistically significant. Synovitis grades I-II were arthroscopically observed in 87 (50.58%) patients, whereas synovitis grades III-IV were present in 72 (41.86%) patients. Chondromalacia grades I-II were arthroscopically observed in 66 (38.37%) patients, whereas chondromalacia grades III-IV were present in 54 (31.39%) patients. A statistically significant decrease in pain (P < .001) with a parallel increase in mouth opening (P < .001) after arthroscopy was observed for patients with synovitis I-II, synovitis III-IV, chondromalacia I-II, and chondromalacia III-IV during the whole follow-up period. A significant difference (P = .01) in relation to VAS score was observed between patients with synovitis I-II and patients with synovitis III-IV at month 6 postoperatively. However, this difference did not persist during the rest of the follow-up period, as was the case in relation to mouth opening. No significant differences were observed in relation to decrease of pain and increase of MIO between patients with chondromalacia I-II and patients with chondromalacia III-IV at any time during the follow-up period. Although mean values for pain were lower in patients with synovitis I-II plus chondromalacia I-II in comparison to patients with synovitis III-IV plus chondromalacia III-IV for the whole follow-up period, no statistical significant differences were observed. In relation to the increase in mouth opening, slightly higher values were observed for patients with synovitis I-II plus chondromalacia I-II, although no statistical differences were observed with regard to patients presenting with synovitis III-IV plus chondromalacia III-IV. A significant decrease in pain with a parallel increase in MIO was achieved from month 1 postoperatively in patients with any grade of synovitis and/or chondromalacia. No statistical difference in pain or function was observed between patients with scarce involvement of the joint surface and the synovial lining and patients with severe involvement after arthroscopy.
Control of cerium oxidation state through metal complex secondary structures
Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; ...
2015-08-11
A series of alkali metal cerium diphenylhydrazido complexes, M x(py) y[Ce(PhNNPh) 4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li + or Na +, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reductionmore » of 1,2-diphenylhydrazine was not observed when M = K +, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce( IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less
A Molecular-Genetic Study of the Arabidopsis Toc75 Gene Family1
Baldwin, Amy; Wardle, Anthony; Patel, Ramesh; Dudley, Penny; Park, Soon Ki; Twell, David; Inoue, Kentaro; Jarvis, Paul
2005-01-01
Toc75 (translocon at the outer envelope membrane of chloroplasts, 75 kD) is the protein translocation channel at the outer envelope membrane of plastids and was first identified in pea (Pisum sativum) using biochemical approaches. The Arabidopsis (Arabidopsis thaliana) genome contains three Toc75-related sequences, termed atTOC75-I, atTOC75-III, and atTOC75-IV, which we studied using a range of molecular, genetic, and biochemical techniques. Expression of atTOC75-III is strongly regulated and at its highest level in young, rapidly expanding tissues. By contrast, atTOC75-IV is expressed uniformly throughout development and at a much lower level than atTOC75-III. The third sequence, atTOC75-I, is a pseudogene that is not expressed due to a gypsy/Ty3 transposon insertion in exon 1, and numerous nonsense, frame-shift, and splice-junction mutations. The expressed genes, atTOC75-III and atTOC75-IV, both encode integral envelope membrane proteins. Unlike atToc75-III, the smaller atToc75-IV protein is not processed upon targeting to the envelope, and its insertion does not require ATP at high concentrations. The atTOC75-III gene is essential for viability, since homozygous atToc75-III knockout mutants (termed toc75-III) could not be identified, and aborted seeds were observed at a frequency of approximately 25% in the siliques of self-pollinated toc75-III heterozygotes. Homozygous toc75-III embryos were found to abort at the two-cell stage. Homozygous atToc75-IV knockout plants (termed toc75-IV) displayed no obvious visible phenotypes. However, structural abnormalities were observed in the etioplasts of toc75-IV seedlings and atTOC75-IV overexpressing lines, and toc75-IV plants were less efficient at deetiolation than wild type. These results suggest some role for atToc75-IV during growth in the dark. PMID:15908591
Das, Biswanath; Orthaber, Andreas; Ott, Sascha; Thapper, Anders
2016-05-23
The development of molecular water oxidation catalysts based on earth-abundant, non-noble metals is essential for artificial photosynthesis research. Iron, which is the most abundant transition metal in the earth's crust, is a prospective candidate for this purpose. Herein, we report two iron complexes based on the polypyridyl ligand Py5OH (Py5OH=pyridine-2,6-diylbis [di(pyridin-2-yl)methanol]) that can catalyse water oxidation to produce O2 in Ru(III) -induced (at pH 8, highest turnover number (TON)=26.5; turnover frequency (TOF)=2.2 s(-1) ), Ce(IV) -induced (at pH≈1.5 highest TON=16; TOF=0.75 s(-1) ) and photo-induced (at pH 8, highest TON=43.5; TOF=0.6 s(-1) ) reactions. A chloride ligand in one of the iron complexes is shown to affect the activity strongly, improve stability and, thereby, the performance at pH 8 but it inhibits oxygen evolution at pH≈1.5. The observations are consistent with a change in mechanism for catalytic water oxidation with the Fe(Py5OH) complexes between acidic (Ce(IV) ) and near-neutral pH (Ru(III) ). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
26 CFR 1.1441-0 - Outline of regulation provisions for section 1441.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Proof that tax liability has been satisfied. (iii) Liability for interest and penalties. (iv) Special...) General rule. (B) Foreign partnerships. (C) Foreign simple trusts and foreign grantor trusts. (D) Other... amounts. (23) Flow-through entity. (24) Foreign simple trust. (25) Foreign complex trust. (26) Foreign...
2018-05-01
Stage III Fallopian Tube Cancer; Stage III Ovarian Cancer; Stage III Primary Peritoneal Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer
Aratani, Yusuke; Yamada, Yusuke; Fukuzumi, Shunichi
2015-03-18
Selective hydroxylation of benzene derivatives and alkanes to the corresponding phenol and alcohol derivatives with hydrogen peroxide was efficiently catalysed by a manganese tris(2-pyridylmethyl)amine (tpa) complex ([(tpa)Mn(II)](2+)) incorporated into mesoporous silica-alumina with highly acidic surfaces in contrast to the reactions in a homogeneous solution where [(tpa)Mn(II)](2+) was converted catalytically to a much less active bis(μ-oxo)dimanganese(III,IV) complex.
Tsai, Yeu-Harn Lucy; Maron, Steve B; McGann, Patrick; Nightingale, Kendra K; Wiedmann, Martin; Orsi, Renato H
2011-12-01
Listeriamonocytogenes lineages III and IV represent two uncommon lineages of the human and animal pathogen L. monocytogenes, characterized by occurrence of unusual phenotypic and genetic characteristics that differentiate them from the common lineages I and II. To gain further insights into the evolution of lineages III and IV, we amplified and sequenced housekeeping genes (i.e., gap, prs, purM, ribC, and sigB), internalin genes (i.e., inlA, inlB, inlC, inlG, inlC2, inlD, inlE, inlF, and inlH) and the virulence gene cluster containing prfA, plcA, hly, mpl, actA, and plcB for lineages III (n = 7) and IV (n = 4) isolates. Phylogenetic analyses of the sequences obtained along with previously reported sequence data for 40 isolates representing lineages I (n = 18), II (n = 21), and III (n = 1), showed that lineages III and IV represent divergent and monophyletic lineages. The virulence gene cluster as well as the inlAB operon were present in all isolates, with inlF absent from all lineages III and IV isolates. While all lineage IV isolates contained only inlC (in addition to inlAB), lineage III isolates showed considerable diversity with regard to internalin gene presence, including presence of (i) only inlC (n = 2), (ii) inlC and inlGC2DE (n = 3), (iii) only inlGC2DE (n = 2), and (iv) inlC and inlC2DE (n = 1). In addition to evidence for horizontal gene transfer events, among lineages III and IV isolates, in prs, actA, plcB, mpl, inlA, inlB, inlG, inlD, and inlE, we also found significant evidence for positive selection in the hly promoter region and, along the lineages III and IV branches, for actA (including in sites recognized for interactions with proteins involved in actin tail polymerization). In conclusion, lineages III and IV represent two distinct monophyletic groups with contributions of intragenic recombination to the evolution of their internalin genes as well as contributions of positive selection to evolution of the virulence genes island. Copyright © 2011 Elsevier B.V. All rights reserved.
Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard
2015-01-01
Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities V max (complexes I, III, and IV activities), V succ (complexes II, III, and IV activities), V tmpd (complex IV activity), together with mitochondrial coupling (V max/V 0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased V max (-71%; P < 0.0001), V succ (-65%; P < 0.0001), and V tmpd (-3.5%; P < 0.001). Mitochondrial coupling (V max/V 0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke.
NASA Astrophysics Data System (ADS)
Janots, Emilie; Bernier, Felix; Brunet, Fabrice; Muñoz, Manuel; Trcera, Nicolas; Berger, Alfons; Lanson, Martine
2015-03-01
The distribution of trivalent and tetravalent cerium, Ce(III) and Ce(IV) respectively, in a lateritic profile from Madagascar, has been characterized by X-ray-absorption near-edge structure (XANES) spectroscopy at the Ce LIII-edge on the LUCIA beamline (SOLEIL synchrotron, France). XANES spectra were acquired on bulk-rock samples as well as on specific lateritic minerals or polymineral zones (in-situ measurements) of the tonalite bedrock and the three overlying weathered horizons (C-, B- and A-horizons). Geochemically, the bedrock, and the A- and C-horizons show similar rare earth element content (REE = 363-405 mg/kg). They also display the same positive Ce-anomaly (CeCN/Ce∗ = 1.12-1.45), which is therefore likely to be inherited from the bedrock. In the B-horizon, the higher REE content (REE = 2194 mg/kg) and the larger Ce-anomaly (CeCN/Ce∗ = 4.26) are consistent with an accumulation zone caused by the evaporation of groundwater during the dry season. There is a good agreement between the Ce(III)/Cetotal ratio (XCe(III)) deduced from the positive Ce-anomaly (bulk-rock geochemical data) and that derived from XANES spectroscopy on the same bulk-rock samples (BR-XCe(III)-XANES) in the bedrock, and the C- and B-horizons. In the A-horizon, XANES measurements on bulk rock and minerals revealed a higher BR-XCe(III)-XANES (up to 100%) compared to the XCe(III) deduced from geochemical data (XCe(III) = 79%). The preservation of a positive Ce-anomaly in the A-horizon suggests that the Ce mobilization and redistribution during weathering occurred with no significant Ce fractionation from other trivalent REE. Remarkably, the only investigated sample where cerianite is observed belongs to the B-horizon. Within this horizon, Ce oxidation state varies depending on the microstructural position (porosity, cracks, clay-rich groundmass). The highest Ce(IV) concentrations are measured in cerianite (and aluminophosphates) localized in pores at the vicinity of Mn-rich domains (XCe(III)-XANES = 30-51%). Therefore, Ce fractionation from other REE is attributed to a Ce oxidation and precipitation potentially assisted by oxyhydroxide scavenging. In the C-horizon, Ce(III) and Ce(IV) are mainly distributed in REE-minerals of the rhabdophane group found in pores and cracks. The similarity between the Ce(III) proportion of rhabdophane grains (XCe(III)-XANES = 74-89%) with that of the bedrock (BR-XCe(III)-XANES = 79%) suggests no significant fractionation of Ce(III) and Ce(IV) between solution and mineral during the successive stages of primary REE-mineral alteration, transport in solution and secondary precipitation in the incipient stages of weathering. Overall, our novel spectroscopic approach shows that Ce is not necessarily oxidized nor fractionated from other REE during weathering in lateritic conditions. This implies that like Ce(III), Ce(IV) can be mobilized in aqueous fluids during weathering, possibly thanks to complexation with organic molecules, and can precipitate together with Ce(III) in secondary REE-bearing minerals. The corollary is that (paleo)redox reconstructions in soils and/or sediments based on Ce-anomaly in weathered rocks or minerals must be interpreted with caution.
Wang, Yaqiong; Ma, Hong
2015-09-01
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Alexandra C.; Altman, Alison B.; Lohrey, Trevor D.
We report the synthesis and reactivity of paramagnetic heterometallic complexes containing a Ti(III)-μ-H-Al(III) moiety. Combining different stoichiometries amounts of Cp 2TiCl and KH 3AlC(TMS) 3 (Cp = cyclopentadienyl, TMS = trimethylsilyl) resulted in the formation of either bimetallic Cp 2Ti(μ-H) 2(H)AlC(TMS) 3 (2) or trimetallic (Cp 2Ti) 2(μ-H) 3(H)AlC(TMS) 3 (3) via salt metathesis pathways. While these complexes were indefinitely stable at room temperature, the bridging hydrides were readily activated upon exposure to heteroallenes, heating, or electrochemical oxidation. In each case, formal hydride oxidation occurred, but the isolated product maintained the +3 oxidation state at both metal centers. The naturemore » of this reactivity was explored using deuterium labelling experiments and Density Functional Theory (DFT) calculations. It was found that while C–H activation from the Ti(III) bimetallic may occur through a σ-bond metathesis pathway, chemical oxidation to Ti(IV) promotes bimolecular reductive elimination of dihydrogen to form a Ti(III) product.« less
Brown, Alexandra C.; Altman, Alison B.; Lohrey, Trevor D.; ...
2017-05-31
We report the synthesis and reactivity of paramagnetic heterometallic complexes containing a Ti(III)-μ-H-Al(III) moiety. Combining different stoichiometries amounts of Cp 2TiCl and KH 3AlC(TMS) 3 (Cp = cyclopentadienyl, TMS = trimethylsilyl) resulted in the formation of either bimetallic Cp 2Ti(μ-H) 2(H)AlC(TMS) 3 (2) or trimetallic (Cp 2Ti) 2(μ-H) 3(H)AlC(TMS) 3 (3) via salt metathesis pathways. While these complexes were indefinitely stable at room temperature, the bridging hydrides were readily activated upon exposure to heteroallenes, heating, or electrochemical oxidation. In each case, formal hydride oxidation occurred, but the isolated product maintained the +3 oxidation state at both metal centers. The naturemore » of this reactivity was explored using deuterium labelling experiments and Density Functional Theory (DFT) calculations. It was found that while C–H activation from the Ti(III) bimetallic may occur through a σ-bond metathesis pathway, chemical oxidation to Ti(IV) promotes bimolecular reductive elimination of dihydrogen to form a Ti(III) product.« less
[Diagnostic values of serum type III procollagen N-terminal peptide in type IV gastric cancer].
Akazawa, S; Fujiki, T; Kanda, Y; Kumai, R; Yoshida, S
1985-04-01
Since increased synthesis of collagen has been demonstrated in tissue of type IV gastric cancer, we attempted to distinguish type IV gastric cancer from other cancers by measuring serum levels of type III procollagen N-terminal peptide (type III-N-peptide). Mean serum levels in type IV gastric cancer patients without metastasis were found to be elevated above normal values and developed a tendency to be higher than those in types I, II and III gastric cancer patients without metastasis. Highly positive ratios were found in patients with liver diseases including hepatoma and colon cancer, biliary tract cancer, and esophageal cancer patients with liver, lung or bone metastasis, but only 2 out of 14 of these cancer patients without such metastasis showed positive serum levels of type III-N-peptide. Positive cases in patients with type IV gastric cancer were obtained not only in the group with clinical stage IV but also in the groups with clinical stages II and III. In addition, high serum levels of type III-N-peptide in patients with type IV gastric cancer were seen not only in the cases with liver, lung or bone metastasis but also in cases with disseminated peritoneal metastasis alone. These results suggest that if the serum level of type III-N-peptide is elevated above normal values, type IV gastric cancer should be suspected after ruling out liver diseases, myelofibrosis and liver, lung or bone metastasis.
Das, Ankita; Ghosh, Prabir; Priego, José Luis; Jiménez-Aparicio, Reyes; Lahiri, Goutam Kumar
2016-09-06
The present article deals with the structurally characterized unsymmetric oxido/pyrazolato-bridged [(bpy)2Os(III)(μ-oxido)(μ-pz)Os(III)(bpy)2](ClO4)3 ([1](ClO4)3) and symmetric dipyrazolato-bridged [(bpy)2Os(II)(μ-pz)2Os(II)(bpy)2](ClO4)2 ([2](ClO4)2) (pz = pyrazolato, bpy = 2,2'-bipyridine) complexes with the Os···Os separations of 3.484 and 4.172 Å, respectively. The anti-ferromagnetically coupled Os(III) centers [E(S = 1)-E(BS(1,1) S = 0) = 322.504 cm(-1)] in 1(3+) and diamagnetic (S = 0) 2(2+) exhibit well-resolved (1)H NMR resonances. [1](ClO4)3 shows temperature- and magnetic field-dependent paramagnetism at low magnetic field and diamagnetism at high magnetic field. 1(3+) and 2(2+) display successive metal-based oxidation processes involving the intermediate mixed-valent states and isovalent congeners: Os(IV)Os(IV) (1(5+))→Os(III)Os(IV) (1(4+))⇌Os(III)Os(III) (1(3+))⇌Os(III)Os(II) (1(2+)) and Os(III)Os(III) (2(4+))→Os(II)Os(III) (2(3+))⇌Os(II)Os(II) (2(2+)) as well as bpy-centered reductions. The effect of π donor O(2-) and σ/π-donating pz(-) in 1(3+) and 2(2+), respectively, leads to varying oxidation state of the metal ions in the isolated complexes: Os(III)Os(III) versus Os(II)Os(II). UV-visible-near-IR-electron paramagnetic resonance spectro-electrochemistry and density functional theory (DFT)/time-dependent DFT calculations collectively reveal overlapping of the metal- and ligand (pz, O, bpy)-based frontier orbitals in the delocalized mixed-valent states in 1(4+) and 1(2+) with comproportionation constant (Kc) value > 1 × 10(14) as well as in isovalent 1(3+), resulting in mixed metal/ligand to metal/ligand near-IR transitions in all the three states. The mixed-valent Os(II)Os(III) state in 2(3+) exhibits high Kc value of 1 × 10(22) corresponding to a strong electrochemical coupling situation. However, closeness of the bandwidth (Δν1/2, 4861 cm(-1)) of broad and weak intervalence charge transfer transition of 2(3+) at 1360 nm (ε/M(-1) cm(-1): 490) with the calculated Δν1/2 of 4121 cm(-1) based on the Hush formula as well as spin-density distributions of Os1: 0.811/0.799, Os2: 0.045/0042, and pz: 0.162/0.173 in meso and rac diastereomeric forms, respectively, attribute its localized class II state.
2014-04-21
Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Malignant Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineocytoma; Malignant Neoplasm; Meningeal Melanocytoma; Radiation Toxicity; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Brain Tumor; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage I Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity
2018-03-02
Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia
2017-06-26
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
Zhang, Wei; Liu, Caihong; Zheng, Tong; Ma, Jun; Zhang, Gaosheng; Ren, Guohui; Wang, Lu; Liu, Yulei
2018-04-19
Owing to the high toxicity and mobility, the removal of arsenite (As(III)) is significantly more difficult than arsenate (As(V)), thus representing a major challenge in arsenite-contaminated water treatment. For efficient elimination of As(III), we successfully fabricated a novel Ti-Mn binary oxide via a simultaneous oxidation and coprecipitation process. The amorphous oxide was aggregated from nanosized particles with a high specific surface area of 349.5 m 2 /g. It could effectively oxidize As(III) to As(V) and had a high As(III) sorption capacity of 107.0 mg/g. As(III) sorption occurred rapidly and equilibrium was achieved within 24 h. The kinetic data was well fitted by the pseudo-second-order equation, indicating a chemical sorption process. The material was almost independent upon the presence of competitive ions. The As(III) removal by the sorbent is a combined process coupled oxidation with sorption, where the MnO 2 content is mainly responsible for oxidizing As(III) to As(V) and the formed As(V) is then adsorbed onto the surface of amorphous TiO 2 content, through replacing the surface hydroxyl group or the adsorbed As(III) and forming inner-sphere surface complexes. Furthermore, the arsenic-containing oxide could be effectively regenerated and reused. The bi-functional sorbent could be used as a potentially attractive sorbent for As(III) removal in drinking water treatment and environmental remediation. Copyright © 2018. Published by Elsevier B.V.
Memory-enriched CAR-T Cells Immunotherapy for B Cell Lymphoma
2016-04-25
Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
Oxoiron(IV) Complex of the Ethylene-Bridged Dialkylcyclam Ligand Me2EBC.
England, Jason; Prakash, Jai; Cranswick, Matthew A; Mandal, Debasish; Guo, Yisong; Münck, Eckard; Shaik, Sason; Que, Lawrence
2015-08-17
We report herein the first example of an oxoiron(IV) complex of an ethylene-bridged dialkylcyclam ligand, [Fe(IV)(O)(Me2EBC)(NCMe)](2+) (2; Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Complex 2 has been characterized by UV-vis, (1)H NMR, resonance Raman, Mössbauer, and X-ray absorption spectroscopy as well as electrospray ionization mass spectrometry, and its properties have been compared with those of the closely related [Fe(IV)(O)(TMC)(NCMe)](2+) (3; TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), the intensively studied prototypical oxoiron(IV) complex of the macrocyclic tetramethylcyclam ligand. Me2EBC has an N4 donor set nearly identical with that of TMC but possesses an ethylene bridge in place of the 1- and 8-methyl groups of TMC. As a consequence, Me2EBC is forced to deviate from the trans-I configuration typically found for Fe(IV)(O)(TMC) complexes and instead adopts a folded cis-V stereochemistry that requires the MeCN ligand to coordinate cis to the Fe(IV)═O unit in 2 rather than in the trans arrangement found in 3. However, switching from the trans geometry of 3 to the cis geometry of 2 did not significantly affect their ground-state electronic structures, although a decrease in ν(Fe═O) was observed for 2. Remarkably, despite having comparable Fe(IV/III) reduction potentials, 2 was found to be significantly more reactive than 3 in both oxygen-atom-transfer (OAT) and hydrogen-atom-transfer (HAT) reactions. A careful analysis of density functional theory calculations on the HAT reactivity of 2 and 3 revealed the root cause to be the higher oxyl character of 2, leading to a stronger O---H bond specifically in the quintet transition state.
Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors.
Villatoro-Monzón, W R; Mesta-Howard, A M; Razo-Flores, E
2003-01-01
Anaerobic BTEX biodegradation was tested in batch experiments using an anaerobic sediment as inoculum under Fe(III) and Mn(IV) reducing conditions. All BTEX were degraded under the conditions tested, specially under Mn(IV) reducing conditions, where benzene was degraded at a rate of 0.8 micromol l(-1) d(-1), significantly much faster than Fe(III) reducing conditions. Under Fe(III) reducing conditions, ethylbenzene was the compound that degraded at the faster rate of 0.19 micromol l(-1) d(-1). Mn(IV) reducing conditions are energetically more favourable than Fe(III), therefore, BTEX were more rapidly degraded under Mn(IV) reducing conditions. These results represent the first report of the degradation of benzene with Mn(IV) as the final electron acceptor. Amorphous manganese oxide is a natural widely distributed metal in groundwater, where it can be microbiologically reduced, leading to the degradation of monoaromatic compounds.
1L Mark-IV Target Design Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, Paul E.
This presentation includes General Design Considerations; Current (Mark-III) Lower Tier; Mark-III Upper Tier; Performance Metrics; General Improvements for Material Science; General Improvements for Nuclear Science; Improving FOM for Nuclear Science; General Design Considerations Summary; Design Optimization Studies; Expected Mark-IV Performance: Material Science; Expected Mark-IV Performance: Nuclear Science (Disk); Mark IV Enables Much Wider Range of Nuclear-Science FOM Gains than Mark III; Mark-IV Performance Summary; Rod or Disk? Center or Real FOV?; and Project Cost and Schedule.
Phase I Study of IMRT and Molecular-Image Guided Adaptive Radiation Therapy for Advanced HNSCC
2016-10-27
Salivary Gland Squamous Cell Carcinoma; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Oral Cavity
2017-01-24
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, Breakpoint Cluster Region-abl Translocation (BCR-ABL) Negative; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Gastrointestinal Complications; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Childhood Rhabdomyosarcoma; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma
Irita, Kazuo; Kawashima, Yasuo; Tsuzaki, Koichi; Iwao, Yasuhide; Kobayashi, Tsutomu; Seo, Norimasa; Goto, Yasuyuki; Morita, Kiyoshi; Shiraishi, Yoshito; Nakao, Yasuo; Tanaka, Yoshifumi; Tosaki, Youko; Dohi, Shuji; Obara, Hidefumi
2002-01-01
Perioperative mortality and morbidity in Japan from Jan. 1 to Dec. 31, 2000 were studied retrospectively. Committee on Operating Room Safety in Japanese Society of Anesthesiologists (JSA) sent confidential questionnaires to 794 certified training hospitals of JSA and received answers from 67.6% of the hospitals. We analyzed their answers with a special reference to ASA physical status (ASA-PS). The total number of anesthesia available for this analysis was 897,733. The percentages of patients with ASA-PS of I, II, III, IV, I E, II E, III E, and IV E are 38.0, 40.3, 8.5, 0.4, 4.3, 5.3, 2.5, and 0.7%, respectively. Mortality and morbidity from all kinds of causes including anesthetic management, intraoperative events, co-existing diseases, and surgical problems were as follows. The incidences of cardiac arrest (per 10,000 cases of anesthesia) were 1.11, 3.26, 12.25, 54.60, 0.77, 4.46, 21.08 and 217.75 in patients with ASA-PS of I, II, III, IV, I E, II E, III E, and IV E, respectively. The incidences of critical events including cardiac arrest, severe hypotension, and severe hypoxemia were 6.89, 20.22, 62.18, 148.21, 6.71, 20.38, 106.72 and 592.21 in patients with ASA-PS of I, II, III, IV, I E, II E, III E, and IV E, respectively. The mortality rates (death during anesthesia and within 7 postoperative days) after cardiac arrest were 0.26, 0.77, 3.69, 41.60, 0.00, 1.06, 9.42 and 163.31 per 10,000 cases of anesthesia in patients with ASA-PS of I, II, III, IV, I E, II E, III E, and IV E, respectively. The overall mortality rates were 0.32, 1.38, 9.75, 70.20, 0.26, 2.12, 29.15 and 353.02 in patients with ASA-PS of I, II, III, IV, I E, II E, III E, and IV E, respectively. Overall mortality and morbidity were higher in emergency anesthesia than in elective anesthesia. ASA-PS correlated well with overall mortality and morbidity, regardless of etiology. The incidences of cardiac arrest totally attributable to anesthesia were 0.23, 0.50, 1.32, 0.00, 0.00, 0.85, 2.69 and 4.95 in patients with ASA-PS of I, II, III, IV, I E, II E, III E, and IV E, respectively. The incidences of all critical events totally attributable to anesthesia were 3.13, 5.56, 11.46, 5.20, 3.87, 5.94, 13.90 and 14.85 in patients with ASA-PS of I, II, III, IV, I E, II E, III E, and IV E, respectively. The mortality rates after cardiac arrest totally attributable to anesthesia were 0.03, 0.03, 0.00, 0.00, 0.00, 0.21, 0.45 and 3.30 in patients with ASA-PS of I, II, III, IV, I E, II E, III E, and IV E, respectively. The overall mortality rates totally attributable to anesthesia were 0.03, 0.06, 0.00, 0.00, 0.00, 0.21, 0.45 and 6.60 in patients with ASA-PS of I, II, III, IV, I E, II E, III E, and IV E, respectively. The overall mortality rate totally attributable to anesthesia among patients with good physical status (ASA-PS of I, II, I E, II E) was 0.05. Anesthetic management was mainly responsible for critical events in patients with good physical status, while coexisting diseases were in those with poor physical status. Surgical problems including procedures and massive hemorrhage were the leading causes of mortality in patients with good physical status. We reconfirmed that ASA-PS is useful to predict perioperative mortality and morbidity. It also seems likely that we should make much more efforts to reduce anesthetic morbidity in patients with good physical status, and to improve preanesthetic assessment and preparation in those with poor physical status. Reducing mortality and morbidity from surgical problems is also required for improving perioperative mortality.
2017-09-28
Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia
Di Ceglie, Irene; Ascone, Giuliana; Cremers, Niels A J; Sloetjes, Annet W; Walgreen, Birgitte; Vogl, Thomas; Roth, Johannes; Verbeek, J Sjef; van de Loo, Fons A J; Koenders, Marije I; van der Kraan, Peter M; Blom, Arjen B; van den Bosch, Martijn H J; van Lent, Peter L E M
2018-05-02
Osteoclast-mediated bone erosion is a central feature of rheumatoid arthritis (RA). Immune complexes, present in a large percentage of patients, bind to Fcγ receptors (FcγRs), thereby modulating the activity of immune cells. In this study, we investigated the contribution of FcγRs, and FcγRIV in particular, during antigen-induced arthritis (AIA). AIA was induced in knee joints of wild-type (WT), FcγRI,II,III -/- , and FcγRI,II,III,IV -/- mice. Bone destruction, numbers of tartrate-resistant acid phosphatase-positive (TRAP + ) osteoclasts, and inflammation were evaluated using histology; expression of the macrophage marker F4/80, neutrophil marker NIMPR14, and alarmin S100A8 was evaluated using immunohistochemistry. The percentage of osteoclast precursors in the bone marrow was determined using flow cytometry. In vitro osteoclastogenesis was evaluated with TRAP staining, and gene expression was assessed using real-time PCR. FcγRI,II,III,IV -/- mice showed decreased bone erosion compared with WT mice during AIA, whereas both the humoral and cellular immune responses against methylated bovine serum albumin were not impaired in FcγRI,II,III,IV -/- mice. The percentage of osteoclast precursors in the bone marrow of arthritic mice and their ability to differentiate into osteoclasts in vitro were comparable between FcγRI,II,III,IV -/- and WT mice. In line with these observations, numbers of TRAP + osteoclasts on the bone surface during AIA were comparable between the two groups. Inflammation, a process that strongly activates osteoclast activity, was reduced in FcγRI,II,III,IV -/- mice, and of note, mainly decreased numbers of neutrophils were present in the joint. In contrast to FcγRI,II,III,IV -/- mice, AIA induction in knee joints of FcγRI,II,III -/- mice resulted in increased bone erosion, inflammation, and numbers of neutrophils, suggesting a crucial role for FcγRIV in the joint pathology by the recruitment of neutrophils. Finally, significant correlations were found between bone erosion and the number of neutrophils present in the joint as well as between bone erosion and the number of S100A8-positive cells, with S100A8 being an alarmin strongly produced by neutrophils that stimulates osteoclast resorbing activity. FcγRs play a crucial role in the development of bone erosion during AIA by inducing inflammation. In particular, FcγRIV mediates bone erosion in AIA by inducing the influx of S100A8/A9-producing neutrophils into the arthritic joint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruszyna, H.; Kruszyna, R.; Hurst, J.
A series of compounds were synthesized from ruthenium trichloride, and their ip LD50s were determined in mice: pentamminenitrosylruthenium(II) chloride, 8.9; chloronitrobis(2,2'-dipyridyl)ruthenium(II), 55; dichlorobis(2,2'-dipyridyl)ruthenium(II) 63; ruthenium trichloride, 108; and potassium pentachloronitrosylruthenate(II), 127 mg/kg. The two bis-bipyridyl complexes produced death in convulsions within minutes, whereas the remaining compounds resulted in long, debilitating courses with death occuring in 4 to 7 d. When given in massive overdoses, however, the compounds with inorganic ligands also produced rapid convulsive death in mice, and when given iv to anesthetized cats, they produced respiratory arrest. The major toxic effects of all the complexes appeared to be duemore » to the metal and not to its associated ligands. Only complexes having a nitrosyl ligand specifically relaxed vascular smooth muscle. Potassium pentabromoiridate(III) also relaxed rabbit aortic strips that had been contracted by adrenergic argonists, but potassium pentachloroiridate(III) did not. None of the complexes was as active as nitroprusside in relaxing aortic strips or in decreasing arterial blood pressure in cats. No compound tested was as potent as cisplatin in antitumor activity. The pentamminenitrosylruthenium(II) complex also relaxed guinea pig ileum and frog rectus abdominum when these isolated muscles had been contracted by acetylcholine. It appears that these organoruthenium compounds may produce death in central respiratory arrest, as do the inorganic complexes when given iv or ip in massive overdoses. In minimllylethal doses, the complexes with inorganic ligands may affect a variety of contractile tissues, perhaps by a general mechanism involving Ca. These complexes are apt to be generally cytotoxic as well.« less
Vignesh, Kuduva R; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan
2017-03-06
The synthesis and magnetic and theoretical studies of three isostructural heterometallic [Co III 2 Ln III 2 (μ 3 -OH) 2 (o-tol) 4 (mdea) 2 (NO 3 ) 2 ] (Ln = Dy (1), Tb (2), Ho (3)) "butterfly" complexes are reported (o-tol = o-toluate, (mdea) 2- = doubly deprotonated N-methyldiethanolamine). The Co III ions are diamagnetic in these complexes. Analysis of the dc magnetic susceptibility measurements reveal antiferromagnetic exchange coupling between the two Ln III ions for all three complexes. ac magnetic susceptibility measurements reveal single-molecule magnet (SMM) behavior for complex 1, in the absence of an external magnetic field, with an anisotropy barrier U eff of 81.2 cm -1 , while complexes 2 and 3 exhibit field induced SMM behavior, with a U eff value of 34.2 cm -1 for 2. The barrier height for 3 could not be quantified. To understand the experimental observations, we performed DFT and ab initio CASSCF+RASSI-SO calculations to probe the single-ion properties and the nature and magnitude of the Ln III -Ln III magnetic coupling and to develop an understanding of the role the diamagnetic Co III ion plays in the magnetization relaxation. The calculations were able to rationalize the experimental relaxation data for all complexes and strongly suggest that the Co III ion is integral to the observation of SMM behavior in these systems. Thus, we explored further the effect that the diamagnetic Co III ions have on the magnetization blocking of 1. We did this by modeling a dinuclear {Dy III 2 } complex (1a), with the removal of the diamagnetic ions, and three complexes of the types {K I 2 Dy III 2 } (1b), {Zn II 2 Dy III 2 } (1c), and {Ti IV 2 Dy III 2 } (1d), each containing a different diamagnetic ion. We found that the presence of the diamagnetic ions results in larger negative charges on the bridging hydroxides (1b > 1c > 1 > 1d), in comparison to 1a (no diamagnetic ion), which reduces quantum tunneling of magnetization effects, allowing for more desirable SMM characteristics. The results indicate very strong dependence of diamagnetic ions in the magnetization blocking and the magnitude of the energy barriers. Here we propose a synthetic strategy to enhance the energy barrier in lanthanide-based SMMs by incorporating s- and d-block diamagnetic ions. The presented strategy is likely to have implications beyond the single-molecule magnets studied here.
Chandrashekharaiah, K S; Swamy, N Ramachandra; Murthy, K R Siddalinga
2011-12-01
Two carboxylesterases (ME-III and ME-IV) have been purified to apparent homogeneity from the seeds of Mucuna pruriens employing ammonium sulfate fractionation, cation exchange chromatography on CM-cellulose, gel-permeation chromatography on Sephadex G-100 and preparative PAGE. The homogeneity of the purified preparations was confirmed by polyacrylamide gel electrophoresis (PAGE), gel-electrofocussing and SDS-PAGE. The molecular weights determined by gel-permeation chromatography on Sephadex G-200 were 20.89 kDa (ME-III) and 31.62 kDa (ME-IV). The molecular weights determined by SDS-PAGE both in the presence and absence of 2-mercaptoethanol were 21 kDa (ME-III) and 30.2 kDa (ME-IV) respectively, suggesting a monomeric structure for both the enzymes. The enzymes were found to have Stokes radius of 2.4 nm (ME-III) and 2.7 nm (ME-IV). The isoelectric pH values of the enzymes, ME-III and ME-IV, were 6.8 and 7.4, respectively. ME-III and ME-IV were classified as carboxylesterases employing PAGE in conjunction with substrate and inhibitor specificity. The K(m) of ME-III and ME-IV with 1-naphthyl acetate as substrate was 0.1 and 0.166 mM while with 1-naphthyl propionate as substrate the K(m) was 0.052 and 0.0454 mM, respectively. As the carbon chain length of the acyl group increased, the affinity of the substrate to the enzyme increased indicating hydrophobic nature of the acyl group binding site. The enzymes exhibited an optimum temperature of 45°C (ME-III) and 37°C (ME-IV), an optimum pH of 7.0 (ME-III) and 7.5 (ME-IV) and both the enzymes (ME-III and ME-IV) were stable up to 120 min at 35°C. Both the enzymes were inhibited by organophosphates (dichlorvos and phosphamidon), but resistant towards carbamates (carbaryl and eserine sulfate) and sulphydryl inhibitors (p-chloromercuricbenzoate, PCMB). Copyright © 2011 Elsevier Ltd. All rights reserved.
Dickens, J C; Prestwich, G D
1989-02-01
For two decades, the aggregation pheromone of the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae), was thought to consist of four compounds: I [(+)-(Z)-2-isopropenyl-1-methylcyclobutane ethanol]; II [(Z)-3,3-dimethyl-Δ(I,β)-cyclohexane ethanol]; III [(Z)-3,3-dimethyl-Δ(1,α)-cyclohexane acetaldehyde); and IV [(E)-3,3-dimethyl-Δ(1,α)-cyclohexane acetaldehyde). Evidence is presented from behavioral and electrophysiological studies to show that only three of these components, I, II, and IV, are essential for attraction. Competitive field tests, in which each possible three-component blend was tested against the four-component mixture, demonstrated that omission of I, II. or IV resulted in decreased trap captures (P < 0.01). Trap captures by these blends lacking I, II, or IV resembled those by the hexane solvent alone in a similar experiment. However, omission of III did not significantly alter field attractiveness of the blend. Dosage-response curves constructed from electroantennogram responses of both males and females to serial dilutions of III, IV, and a 50∶50 mixture of the geometric isomers III and IV showed both sexes to be 10- to 100-fold more sensitive to IV than III. Data from the electrophysiological studies were consistent with a single acceptor type for the (E)-cyclohexylidene aldehyde, IV, for males, and possibly one or two acceptor types for III and IV for females. Possible roles for the (Z)-cyclohexylidene aldehyde, III, and implications for the pheromonal attractant currently used in boll weevil eradication/suppression programs are discussed.
Vaccine Therapy With or Without Sargramostim in Treating Patients With Advanced or Metastatic Cancer
2013-01-24
Adenocarcinoma of the Colon; Adenocarcinoma of the Gallbladder; Adenocarcinoma of the Pancreas; Adenocarcinoma of the Rectum; Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Gallbladder; Diffuse Adenocarcinoma of the Stomach; Intestinal Adenocarcinoma of the Stomach; Male Breast Cancer; Mixed Adenocarcinoma of the Stomach; Ovarian Endometrioid Adenocarcinoma; Paget Disease of the Breast With Intraductal Carcinoma; Paget Disease of the Breast With Invasive Ductal Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Salivary Gland Adenocarcinoma; Stage II Malignant Testicular Germ Cell Tumor; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Salivary Gland Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Thyroid Gland Medullary Carcinoma; Unresectable Gallbladder Cancer
Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan
2015-05-21
Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.
2014-02-19
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
2012-03-05
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Cancer Survivor; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Depression; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Fatigue; Long-term Effects Secondary to Cancer Therapy in Adults; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Psychosocial Effects of Cancer and Its Treatment; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
Arslan, Zikri; Yilmaz, Vedat; Rose, LaKeysha
2015-01-01
In this study, a highly efficient chemical vapor generation (CVG) approach is reported for determination of cadmium (Cd). Titanium (III) and titanium (IV) were investigated for the first time as catalytic additives along with thiourea, L-cysteine and potassium cyanide (KCN) for generation of volatile Cd species. Both Ti(III) and Ti(IV) provided the highest enhancement with KCN. The improvement with thiourea was marginal (ca. 2-fold), while L-cysteine enhanced signal slightly only with Ti(III) in H2SO4. Optimum CVG conditions were 4% (v/v) HCl + 0.03 M Ti(III) + 0.16 M KCN and 2% (v/v) HNO3 + 0.03 M Ti(IV) + 0.16 M KCN with a 3% (m/v) NaBH4 solution. The sensitivity was improved about 40-fold with Ti(III) and 35-fold with Ti(IV). A limit of detection (LOD) of 3.2 ng L−1 was achieved with Ti(III) by CVG-ICP-MS. The LOD with Ti(IV) was 6.4 ng L−1 which was limited by the blank signals in Ti(IV) solution. Experimental evidence indicated that Ti(III) and Ti(IV) enhanced Cd vapor generation catalytically; for best efficiency mixing prior to reaction with NaBH4 was critical. The method was highly robust against the effects of transition metal ions. No significant suppression was observed in the presence of Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II) and Zn(II) up to 1.0 μg mL−1. Among the hydride forming elements, no interference was observed from As(III) and Se(IV) at 0.5 μg mL−1 level. The depressive effects from Pb(II) and Sb(III) were not significant at 0.1 μg mL−1 while those from Bi(III) and Sn(II) were marginal. The procedures were validated with determination of Cd by CVG-ICP-MS in a number certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), Dogfish liver (DOLT-4), Mussel tissue (SRM 2976) and Domestic Sludge (SRM 2781). PMID:26251554
Que, Feng; Wang, Guang-Long; Li, Tong; Wang, Ya-Hui; Xu, Zhi-Sheng; Xiong, Ai-Sheng
2018-06-16
The homeobox gene family, a large family represented by transcription factors, has been implicated in secondary growth, early embryo patterning, and hormone response pathways in plants. However, reports about the information and evolutionary history of the homeobox gene family in carrot are limited. In the present study, a total of 130 homeobox family genes were identified in the carrot genome. Specific codomain and phylogenetic analyses revealed that the genes were classified into 14 subgroups. Whole genome and proximal duplication participated in the homeobox gene family expansion in carrot. Purifying selection also contributed to the evolution of carrot homeobox genes. In Gene Ontology (GO) analysis, most members of the HD-ZIP III and IV subfamilies were found to have a lipid binding (GO:0008289) term. Most HD-ZIP III and IV genes also harbored a steroidogenic acute regulatory protein-related lipid transfer (START) domain. These results suggested that the HD-ZIP III and IV subfamilies might be related to lipid transfer. Transcriptome and quantitative real-time PCR (RT-qPCR) data indicated that members of the WOX and KNOX subfamilies were likely implicated in carrot root development. Our study provided a useful basis for further studies on the complexity and function of the homeobox gene family in carrot.
2015-11-25
Adult Non-Hodgkin Lymphoma; Adult Grade III Lymphomatoid Granulomatosis; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia
2017-05-25
Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity
Tabelin, Carlito Baltazar; Sasaki, Ryosuke; Igarashi, Toshifumi; Park, Ilhwan; Tamoto, Shuichi; Arima, Takahiko; Ito, Mayumi; Hiroyoshi, Naoki
2017-12-01
Predicting the fates of arsenic (As) and selenium (Se) in natural geologic media like rocks and soils necessitates the understanding of how their various oxyanionic species behave and migrate under dynamic conditions. In this study, geochemical factors and processes crucial in the leaching and transport of arsenite (As III ), arsenate (As V ), selenite (Se IV ) and selenate (Se VI ) in tunnel-excavated rocks of marine origin were investigated using microscopic/extraction techniques, column experiments, dissolution-precipitation kinetics and one-dimensional reactive transport modeling. The results showed that evaporite salts were important because aside from containing As and Se, they played crucial roles in the evolution of pH and concentrations of coexisting ions, both of which had strong effects on adsorption-desorption reactions of As and Se species with iron oxyhydroxide minerals/phases. The observed leaching trends of As V , As III , Se IV and Se VI were satisfactorily simulated by one-dimensional reactive transport models, which predict that preferential adsorptions of As V and Se IV were magnified by geochemical changes in the columns due to water flow. Moreover, our results showed that migrations of As III , Se IV and Se VI could be predicted adequately by 1D solute transport with simple activity-K' d approach, but surface complexation was more reliable to simulate adsorption-desorption behavior of As V . Copyright © 2017 Elsevier Ltd. All rights reserved.
Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.
1989-01-01
The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.
Membrane extraction with thermodynamically unstable diphosphonic acid derivatives
Horwitz, Earl Philip; Gatrone, Ralph Carl; Nash, Kenneth LaVerne
1997-01-01
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.
2018-06-05
Metastatic Urothelial Carcinoma; Recurrent Bladder Urothelial Carcinoma; Recurrent Urethral Urothelial Carcinoma; Recurrent Urothelial Carcinoma of the Renal Pelvis and Ureter; Renal Pelvis Urothelial Carcinoma; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Renal Pelvis Cancer AJCC v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Renal Pelvis Cancer AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma
Quantification of functional abilities in Rett syndrome: a comparison between stages III and IV
Monteiro, Carlos BM; Savelsbergh, Geert JP; Smorenburg, Ana RP; Graciani, Zodja; Torriani-Pasin, Camila; de Abreu, Luiz Carlos; Valenti, Vitor E; Kok, Fernando
2014-01-01
We aimed to evaluate the functional abilities of persons with Rett syndrome (RTT) in stages III and IV. The group consisted of 60 females who had been diagnosed with RTT: 38 in stage III, mean age (years) of 9.14, with a standard deviation of 5.84 (minimum 2.2/maximum 26.4); and 22 in stage IV, mean age of 12.45, with a standard deviation of 6.17 (minimum 5.3/maximum 26.9). The evaluation was made using the Pediatric Evaluation of Disability Inventory, which has 197 items in the areas of self-care, mobility, and social function. The results showed that in the area of self-care, stage III and stage IV RTT persons had a level of 24.12 and 18.36 (P=0.002), respectively. In the area of mobility, stage III had 37.22 and stage IV had 14.64 (P<0.001), while in the area of social function, stage III had 17.72 and stage IV had 12.14 (P=0.016). In conclusion, although persons with stage III RTT have better functional abilities when compared with stage IV, the areas of mobility, self-care, and social function are quite affected, which shows a great functional dependency and need for help in basic activities of daily life. PMID:25061307
2015-08-12
Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogart, Justin A.; Lewis, Andrew J.; Medling, Scott A.
2014-06-25
Electrochemical experiments performed on the complex Ce-IV[2-((BuNO)-Bu-t)py](4), where [2-((BuNO)-Bu-t)py](-) = N-tert-butyl-N-2-pyridylnitroxide, indicate a 2.51 V stabilization of the 4+ oxidation state of Ce compared to [(Bu4N)-Bu-n](2)[Ce(NO3)(6)] in acetonitrile and a 2.95 V stabilization compared to the standard potential for the ion under aqueous conditions. Density functional theory calculations suggest that this preference for the higher oxidation state is a result of the tetrakis(nitroxide) ligand framework at the Ce cation, which allows for effective electron donation into, and partial covalent overlap with, vacant 4f orbitals with delta symmetry. The results speak to the behavior of CeO2 and related solid solutions inmore » oxygen uptake and transport applications, in particular an inherent local character of bonding that stabilizes the 4+ oxidation state. The results indicate a cerium(IV) complex that has been stabilized to an unprecedented degree through tuning of its ligand-field environment.« less
Cirocchi, Roberto; Kelly, Michael Denis; Griffiths, Ewen A; Tabola, Renata; Sartelli, Massimo; Carlini, Luigi; Ghersi, Stefania; Di Saverio, Salomone
2017-12-01
The incidence of duodenal perforation after ERCP ranges from 0.09% to 1.67% and mortality up to 8%. This systematic review was registered in Prospective Register of Systematic Reviews, PROSPERO. Stapfer classification of ERCP-related duodenal perforations was used. The systematic search yielded 259 articles. Most frequent post-ERCP perforation was Stapfer type II (58.4%), type I second most frequent perforation (17.8%) followed by Stapfer type III in 13.2% and type IV in 10.6%. Rate of NOM was lowest in Stapfer type I perforations (13%), moderate in type III lesions (58.1%) and high in other types of perforations (84.2% in type II and 84.6% in IV). In patients underwent early surgical treatment (<24 h from ERCP) the most frequent operation was simple duodenal suture with or without omentopexy (93.7%). In patients undergoing late surgical treatment (>24 h from ERCP) interventions performed were more complex. In type I lesions post-operative mortality rate was higher in patients underwent late operation (>24 h). In type I lesions, failure of NOM occurred in 42.8% of patients. In type II failure of NOM occurred in 28.9% of patients and in type III there was failure of NOM in only 11.1%, none in type IV. Postoperative mortality after NOM failure was 75% in type I, 22.5% in type II and none died after surgical treatment for failure of NOM in type III perforations. This systematic review showed that in patients with Stapfer type I lesions, early surgical treatment gives better results, however the opposite seems true in Stapfer III and IV lesions. Copyright © 2017 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
Kumata, Hidetoshi; Mori, Mika; Takahashi, Sho; Takamiya, Shohei; Tsuzuki, Mikio; Uchida, Tatsuya; Fujiwara, Kitao
2011-12-01
To propose new molecular markers for tire-wear emissions, four dihydroresin acids, that is, 8-isopimaren-18-oic acid (I), 8-pimaren-18-oic acid (II), 13β(H)-abieten-18-oic acid (III), and 13α(H)-abiet-8-en-18-oic acid (IV), were identified and investigated for source specificities, distributions, and environmental stabilities. The absence of I-IV in natural sources and the linear correlations between dihydroresin acids with different skeletons in tires and in environmental samples demonstrated that I-IV are specific markers for synthetic rubbers. The ratio of III + IV to the sum of III + IV plus abietic acid showed the resin acids distribution between different environmental compartments receiving contributions from traffic and natural sources. The physicochemical properties and results of photolysis experiments suggested that I-IV can set lower limits for tire-wear contributions to environmental loads of particulate matter (PM) and polycyclic aromatic hydrocarbons with molecular weight ≥202. By comparing III + IV concentrations or (III+IV)/pyrene or (III+IV)/benzo[a]pyrene ratios in tires and those in environmental matrices, the contributions of tire-wear emissions to PM, pyrene, and benzo[a]pyrene were estimated to be 0.68 ± 0.54%, 6.9 ± 4.8%, and 0.37 ± 0.18% in roadside PM and 0.83 ± 0.21%, 0.88 ± 0.52%, and 0.08 ± 0.06% in rooftop PM.
PIPAC Nab-pac for Stomach, Pancreas, Breast and Ovarian Cancer
2018-05-31
Peritoneal Carcinomatosis; Ovarian Cancer Stage IIIB; Ovarian Cancer Stage IIIC; Ovarian Cancer Stage IV; Breast Cancer Stage IIIB; Breast Cancer Stage IIIc; Breast Cancer Stage IV; Stomach Cancer Stage III; Stomach Cancer Stage IV With Metastases; Pancreas Cancer, Stage III; Pancreas Cancer, Stage IV
46 CFR 164.019-3 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Guard-approved PFDs. Commandant means the Chief of the Lifesaving and Fire Safety Division, Office of... code PFD type acceptable for use 1 I, II, and III. 2 II and III. 3 III. 4B IV (all Ring Buoys). 4BC IV (Buoyant Cushions). 4RB IV (Recreational Ring Buoys only). 5 Wearable Type V (intended use must be...
Effects of Swallowing Exercises on Patients Undergoing Radiation Treatment for Head and Neck Cancer
2017-05-25
Head and Neck Cancer; Stage I Hypopharyngeal Cancer; Stage I Laryngeal Cancer; Stage I Oropharyngeal Cancer; Stage II Hypopharyngeal Cancer; Stage II Laryngeal Cancer; Stage II Oropharyngeal Cancer; Stage III Hypopharyngeal Cancer; Stage III Laryngeal Cancer; Stage III Oropharyngeal Cancer; Stage IV Hypopharyngeal Cancer; Stage IV Laryngeal Cancer; Stage IV Oropharyngeal Cancer
Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**
Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P
2015-01-01
FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379
NASA Astrophysics Data System (ADS)
Cavazos, A. R.; Taillefert, M.; Glass, J. B.
2016-12-01
The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.
Aziz, Imran; Törnblom, Hans; Palsson, Olafur S; Whitehead, William E; Simrén, Magnus
2018-06-08
The diagnostic criteria for irritable bowel syndrome (IBS) have recently been updated from Rome III to Rome IV. Whereas in Rome III a diagnosis of IBS entailed chronic abdominal pain or discomfort at least 3 days per month, in Rome IV the term discomfort has been removed and the frequency of abdominal pain increased to at least 1 day per week. We examined how this change in IBS criteria impacts on clinical characteristics and pathophysiological factors. A total of 542 Swedish subjects with Rome III IBS completed a baseline questionnaire enquiring for the number of abdominal pain days in the last 10 days; this was subsequently used as a surrogate marker to identify Rome IV IBS, in that (a) those with 0 or 1 day of pain were classed as Rome IV-negative, and (b) those with ≥2 days of pain were classed as Rome IV-positive. Comparisons were made between Rome IV-positive and -negative IBS groups for demographics, IBS subtype, gastrointestinal and psychological symptoms, somatisation, fatigue, disease-specific quality of life, rectal sensitivity, and oro-anal transit time. Overall, 85% of Rome III IBS patients fulfilled the Rome IV criteria for IBS, but 15% did not. Rome IV-positive subjects were significantly more likely to be female, have poorer quality of life, greater pain severity, bloating, somatisation, fatigue, and rectal sensitivity than Rome IV-negative subjects. There were no differences in severity of anxiety or depression, IBS subtypes, bowel habit dissatisfaction, or oro-anal transit time. Finally, increasing number of pain days correlated positively with symptoms and visceral hypersensitivity. Most Rome III-positive IBS patients seeking healthcare fulfil the Rome IV IBS criteria. They constitute a more severe group than those who lose their IBS diagnosis.
2018-04-02
Glioma; Lymphoma; Metastatic Malignant Solid Neoplasm; Neuroendocrine Neoplasm; Recurrent Adult Soft Tissue Sarcoma; Recurrent Bladder Carcinoma; Recurrent Breast Carcinoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Colorectal Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Lung Carcinoma; Recurrent Malignant Solid Neoplasm; Recurrent Melanoma; Recurrent Pancreatic Carcinoma; Recurrent Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Thyroid Gland Carcinoma; Refractory Chronic Lymphocytic Leukemia; Refractory Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Refractory Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage III Breast Cancer AJCC v7; Stage III Colorectal Cancer AJCC v7; Stage III Cutaneous Melanoma AJCC v7; Stage III Lung Cancer AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage III Prostate Cancer AJCC v7; Stage III Renal Cell Cancer AJCC v7; Stage III Soft Tissue Sarcoma AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Colorectal Cancer AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Lung Cancer AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IV Prostate Cancer AJCC v7; Stage IV Renal Cell Cancer AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7; Unresectable Solid Neoplasm
Kobayashi, Ryoji; Takimoto, Tetsuya; Nakazawa, Atsuko; Fujita, Naoto; Akazai, Ayumi; Yamato, Kazumi; Yazaki, Makoto; Deguchi, Takao; Hashii, Yoshiko; Kato, Koji; Hatakeyama, Naoki; Horibe, Keizo; Hori, Hiroki; Oda, Megumi
2014-06-01
T cell lymphoblastic lymphoma (T-LBL) accounts for 30 % of all childhood non-Hodgkin's lymphomas (NHL) in Japan. Twenty-nine patients with T-LBL in stages III and IV were eligible for and enrolled in the JACLS NHL-T98 trial (1998-2002), and 72 patients with T-ALL were enrolled in the JACLS ALL-T97 trial (1997-2001). The 10-year overall survival (OS) (61.1 ± 11.5 %) and the 10-year event-free survival (EFS) (44.4 ± 11.7 %) of stage III LBL were lower than those of other diseases, and the OS and EFS were nearly the same when comparing stage IV LBL and ALL (OS: stage IV LBL, 80.0 ± 12.7 % vs. ALL, 80.2 ± 4.9 %; EFS: stage IV, LBL 70.0 ± 14.5 % vs. ALL, 70.7 ± 5.5 %). Outcomes were worse for stage III LBL than for stage IV LBL or T-ALL. Given that the treatment results of T-ALL and LBL stage IV did not differ when compared with previous reports, LBL stage III in Japanese children may differ from LBL stage III in children in other countries.
2018-05-23
Lymphoma; Metastatic Malignant Solid Neoplasm; Metastatic Melanoma; Metastatic Renal Cell Cancer; Recurrent Bladder Carcinoma; Recurrent Classical Hodgkin Lymphoma; Recurrent Head and Neck Squamous Cell Carcinoma; Recurrent Lymphoma; Recurrent Malignant Solid Neoplasm; Recurrent Renal Cell Carcinoma; Stage III Bladder Cancer; Stage III Lymphoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Renal Cell Cancer; Stage III Skin Melanoma; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Bladder Cancer; Stage IV Lymphoma; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IVA Bladder Cancer; Stage IVB Bladder Cancer; Unresectable Head and Neck Squamous Cell Carcinoma; Unresectable Solid Neoplasm
Pembrolizumab and XL888 in Patients With Advanced Gastrointestinal Cancer
2018-04-11
Adenocarcinoma of the Gastroesophageal Junction; Colorectal Adenocarcinoma; Metastatic Pancreatic Adenocarcinoma; Non-Resectable Cholangiocarcinoma; Non-Resectable Hepatocellular Carcinoma; Recurrent Cholangiocarcinoma; Recurrent Colorectal Carcinoma; Recurrent Gastric Carcinoma; Recurrent Hepatocellular Carcinoma; Recurrent Pancreatic Carcinoma; Recurrent Small Intestinal Carcinoma; Small Intestinal Adenocarcinoma; Stage III Colorectal Cancer; Stage III Gastric Cancer; Stage III Hepatocellular Carcinoma; Stage III Pancreatic Cancer; Stage III Small Intestinal Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Gastric Cancer; Stage IIIA Hepatocellular Carcinoma; Stage IIIA Small Intestinal Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Gastric Cancer; Stage IIIB Hepatocellular Carcinoma; Stage IIIB Small Intestinal Cancer; Stage IIIC Gastric Cancer; Stage IV Colorectal Cancer; Stage IV Gastric Cancer; Stage IV Hepatocellular Carcinoma; Stage IV Pancreatic Cancer; Stage IV Small Intestinal Cancer; Stage IVA Colorectal Cancer; Stage IVA Hepatocellular Carcinoma; Stage IVA Pancreatic Cancer; Stage IVB Colorectal Cancer; Stage IVB Hepatocellular Carcinoma; Stage IVB Pancreatic Cancer; Unresectable Pancreatic Carcinoma; Unresectable Small Intestinal Carcinoma
NASA Astrophysics Data System (ADS)
Morozov, I. V.; Fedorova, A. A.; Albov, D. V.; Kuznetsova, N. R.; Romanov, I. A.; Rybakov, V. B.; Troyanov, S. I.
2008-03-01
The cobalt(II) and nickel(II) nitrate complexes with an island structure (Na2[Co(NO3)4] ( I) and K2[Co(NO3)4] ( II)] and a chain structure [Ag[Co(NO3)3] ( III) and K2[Ni(NO3)4] ( IV)] are synthesized and investigated using X-ray diffraction. In the anionic complex [Co(NO3)4]2- of the crystal structure of compound I, the Co coordination polyhedron is a twisted tetragonal prism formed by the O atoms of four asymmetric bidentate nitrate groups. In the anion [Co(NO3)4]2- of the crystal structure of compound II, one of the four NO3 groups is monodentate and the other NO3 groups are bidentate (the coordination number of the cobalt atom is equal to seven, and the cobalt coordination polyhedron is a monocapped trigonal prism). The crystal structures of compounds III and IV contain infinite chains of the compositions [Co(NO3)2(NO3)2/2]- and [Ni(NO3)3(NO3)2/2]2-, respectively. In the crystal structure of compound III, seven oxygen atoms of one monodentate and three bidentate nitrate groups form a dodecahedron with an unoccupied vertex of the A type around the Co atom. In the crystal structure of compound IV, the octahedral polyhedron of the Ni atom is formed by five nitrate groups, one of which is terminal bidentate. The data on the structure of Co(II) coordination polyhedra in the known nitratocobaltates are generalized.
Martins, Vicente P.; Dinamarco, Taisa M.; Soriani, Frederico M.; Tudella, Valéria G.; Oliveira, Sergio C.; Goldman, Gustavo H.; Curti, Carlos; Uyemura, Sérgio A.
2011-01-01
Paracoccidioides brasiliensis is a thermodimorphic human pathogenic fungus that causes paracoccidioidomycosis (PCM), which is the most prevalent systemic mycosis in Latin America. Differentiation from the mycelial to the yeast form (M-to-Y) is an essential step for the establishment of PCM. We evaluated the involvement of mitochondria and intracellular oxidative stress in M-to-Y differentiation. M-to-Y transition was delayed by the inhibition of mitochondrial complexes III and IV or alternative oxidase (AOX) and was blocked by the association of AOX with complex III or IV inhibitors. The expression of P. brasiliensis aox (Pbaox) was developmentally regulated through M-to-Y differentiation, wherein the highest levels were achieved in the first 24 h and during the yeast exponential growth phase; Pbaox was upregulated by oxidative stress. Pbaox was cloned, and its heterologous expression conferred cyanide-resistant respiration in Saccharomyces cerevisiae and Escherichia coli and reduced oxidative stress in S. cerevisiae cells. These results reinforce the role of PbAOX in intracellular redox balancing and demonstrate its involvement, as well as that of other components of the mitochondrial respiratory chain complexes, in the early stages of the M-to-Y differentiation of P. brasiliensis. PMID:21183691
Al-Otaiba, Amna; John, Annie; Al-Belooshi, Thekra; Raza, Haider
2010-11-01
We have previously reported the occurrence of multiple forms of drug-metabolizing enzymes in camel tissues. Here, we investigate glutathione (GSH)-dependent redox homeostasis, reactive oxygen species (ROS) production and mitochondrial respiratory functions in camel tissues and compare them with imported domestic goats and laboratory rats and mice. Cytochrome P450 2E1 (CYP 2E1) and GSH-metabolizing enzymes were differentially expressed in the liver and kidney of these animals. Camel liver has significantly lower GSH pool than that in goats, rats and mice. Mitochondria isolated from the tissues of these animals showed a comparable ability to metabolize specific substrates for respiratory enzyme complexes I, II/III and IV. These complexes were metabolically more active in the kidney than in the liver of all the species. Furthermore, the activity of complex IV in camel tissues was significantly lower than in other species. On the other hand, complex II/III activity in camel kidney was higher compared to the other species. In addition, as expected, we observed that inhibitors of these enzyme complexes augment the production of mitochondrial ROS in camel and goat tissues. These results help to better understand the metabolic ability and adaptation in desert camels in comparison with domestic goats and laboratory rats and mice since they are exposed to different environmental and dietary conditions. Our study may also have implications in the pharmacology and toxicology of drugs and pollutants in these species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.
2014-08-20
We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for Cmore » IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.« less
Properties of the highly ionized disk and halo gas toward two distant high-latitude stars
NASA Technical Reports Server (NTRS)
Savage, Blair D.; Sembach, K. R.
1994-01-01
Goddard High Resolution Spectrograph (GHRS) intermediate -resolution observations of S III, Si III, Al III, Si IV, C IV, and N V absorption along the sight lines to HD 18100 (l = 217.9 deg, b = -62.7, d = 3.1 kpc, z = -2.8 kpc) and HD 100340 (l = 258.9 deg, b = +61.2 deg, d = 5.3 kpc, z = 4.6 kpc) are presented. These small science aperture spectra have resolutions ranging from 11 to 20 km/s full width at half maximum (FWHM) and S/N from 30 to 65 per diode substep. Strong absorption by moderately and highly ionized gas is seen in each direction. The absorption in the direction of the south Galactic polar region (HD 18100) is kinematically simple, while the absorption in the direction of north Galactic polar region (HD 100304) is kinematically complex. In each case the absorption by the highly ionized gas lies within the velocity range of absorption by neutral and weakly ionized gas. Along each sight line, the velocity dispersion determined from the unsaturated absorption lines increases with the energy required to create each ion. The logarithmic column densities for Al III, Si IV, C IV, and N V are log N(atoms/sq cm = 12.71, 13.10, 13.58, and 12.75 toward HD 18100 and log N = 12.88, 13.31, 13.83, and 13.04 toward HD 100340. Average ionic ratios among these species are very similar along the two sight lines. Differences in profile shape between the absorption for AL II, Si IV, C IV, and N V provide additional support for the claim of Savage, Sembach, & Cardelli (1994) that there exists two types of highly ionized gas in the interstellar medium. One type of highly ionized gas is responsible for the structured Si IV absorption and part of the C IV absorption. In this gas N(C IV)/N(Si IV) approximately 3.0 and N(C IV)/N(N V) greater than 6. The absorption by this gas seems to be associated with some type of self-regulating interface or mixing layer between the warm and hot interstellar medium. The other type of highly ionized gas is responsible for most of the N V absorption, part of the C IV absorption, and has very little associated Si IV absorption. In this gas N(C IV)/N(N V) is approximately 1 to 3. This gas is hot (T greater than 2 x 10(exp 5) K) and may be tracing the cooling gas of supernova (SN) bubbles or a Galactic fountain. The relative mixture of these two types of highly ionized gas varies from one sight line to the next. The two sight lines in this study sample halo gas in the solar neighborhood and have a smaller percentage of the more highly ionized gas than inner Galaxy sight lines.
2013-05-15
Mucositis; Oral Complications of Chemotherapy; Oral Complications of Radiation Therapy; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Basal Cell Carcinoma of the Lip; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Lymphoepithelioma of the Oropharynx; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity
Transoral Robotic Surgery in Treating Patients With Benign or Stage I-IV Head and Neck Cancer
2014-11-07
Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Lymphoepithelioma of the Oropharynx; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... Receipts/SPDRs (``SPY''); (ii) the PowerShares QQQ Trust (``QQQ'') [reg]; (iii) Apple, Inc. (``AAPL''); (iv... initially filed a proposed rule change \\6\\ to pay a different Customer Complex Order Rebate to Add Liquidity... the Exchange from continuing to increase its order flow. Currently, the Exchange pays a Customer...
2018-04-17
Ann Arbor Stage III Grade 1 Follicular Lymphoma; Ann Arbor Stage III Grade 2 Follicular Lymphoma; Ann Arbor Stage III Grade 3 Follicular Lymphoma; Ann Arbor Stage IV Grade 1 Follicular Lymphoma; Ann Arbor Stage IV Grade 2 Follicular Lymphoma; Ann Arbor Stage IV Grade 3 Follicular Lymphoma; Grade 3a Follicular Lymphoma
40 CFR 147.650 - State-administrative program-Class I, II, III, IV, and V wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTROL PROGRAMS Idaho § 147.650 State-administrative program—Class I, II, III, IV, and V wells. The UIC program for Class I, II, III, IV, and V wells in the State of Idaho, other than those on Indian lands, is the program administered by the Idaho Department of Water Resources, approved by EPA pursuant to...
Study on reduction and back extraction of Pu(IV) by urea derivatives in nitric acid conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, G.A.; Xiao, S.T.; Yan, T.H.
2013-07-01
The reduction kinetics of Pu(IV) by hydroxyl-semicarbazide (HSC), hydroxyurea (HU) and di-hydroxyurea (DHU) in nitric acid solutions were investigated separately with adequate kinetic equations. In addition, counter-current cascade experiments were conducted for Pu split from U in nitric acid media using three kinds of reductant, respectively. The results show that urea derivatives as a kind of novel salt-free reductant can reduce Pu(IV) to Pu(III) rapidly in the nitric acid solutions. The stripping experimental results showed that Pu(IV) in the organic phase can be stripped rapidly to the aqueous phase by the urea derivatives, and the separation factors of plutonium /uraniummore » can reach more than 10{sup 4}. This indicates that urea derivatives is a kind of promising salt-free agent for uranium/plutonium separation. In addition, the complexing effect of HSC with Np(IV) was revealed, and Np(IV) can be back-extracted by HSC with a separation factor of about 20.« less
2013-01-15
Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Uterine Sarcoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer
2017-09-29
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenström Macroglobulinemia
Eriksson, Hanna; Lyth, Johan; Andersson, Therese M-L
2016-06-15
The survival in cutaneous malignant melanoma (CMM) is highly dependent on the stage of the disease. Stage III-IV CMM patients are at high risk of relapse with a heterogeneous outcome, but not all experience excess mortality due to their disease. This group is referred to as the cure proportion representing the proportion of patients who experience the same mortality rate as the general population. The aim of this study was to estimate the cure proportion of patients diagnosed with Stage III-IV CMM in Sweden. From the population-based Swedish Melanoma Register, we included 856 patients diagnosed with primary Stage III-IV CMM, 1990-2007, followed-up through 2013. We used flexible parametric cure models to estimate cure proportions and median survival times (MSTs) of uncured by sex, age, tumor site, ulceration status (in Stage III patients) and disease stage. The standardized (over sex, age and site) cure proportion was lower in Stage IV CMMs (0.15, 95% CI 0.09-0.22) than non-ulcerated Stage III CMMs (0.48, 95% CI 0.41-0.55) with a statistically significant difference of 0.33 (95% CI = 0.24-0.41). Ulcerated Stage III CMMs had a cure proportion of 0.27 (95% CI 0.21-0.32) with a statistically significant difference compared to non-ulcerated Stage III CMMs (difference 0.21; 95% CI = 0.13-0.30). The standardized MST of uncured was approximately 9-10 months longer for non-ulcerated versus ulcerated Stage III CMMs. We could demonstrate a significantly better outcome in patients diagnosed with non-ulcerated Stage III CMMs compared to ulcerated Stage III CMMs and Stage IV disease after adjusting for age, sex and tumor site. © 2016 UICC.
NASA Astrophysics Data System (ADS)
Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju
2016-04-01
High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.
O'Brien, Kieran T P; Kaltsoyannis, Nikolas
2017-01-17
A systematic computational study of organoactinide complexes of the form [LAnX] n+ has been carried out using density functional theory, the quantum theory of atoms in molecules (QTAIM) and Ziegler-Rauk energy decomposition analysis (EDA) methods. The systems studied feature L = trans-calix[2]benzene[2]pyrrolide, An = Th(iv), Th(iii), U(iii) and X = BH 4 , BO 2 C 2 H 4 , Me, N(SiH 3 ) 2 , OPh, CH 3 , NH 2 , OH, F, SiH 3 , PH 2 , SH, Cl, CH 2 Ph, NHPh, OPh, SiH 2 Ph, PHPh 2 , SPh, CPh 3 , NPh 2 , OPh, SiPh 3 PPh 2 , SPh. The PBE0 hybrid functional proved most suitable for geometry optimisations based on comparisons with available experimental data. An-X bond critical point electron densities, energy densities and An-X delocalisation indices, calculated with the PBE functional at the PBE0 geometries, are correlated with An-X bond energies, enthalpies and with the terms in the EDA. Good correlations are found between energies and QTAIM metrics, particularly for the orbital interaction term, provided the X ligand is part of an isoelectronic series and the number of open shell electrons is low (i.e. for the present Th(iv) and Th(iii) systems).
Kruszyna, H; Kruszyna, R; Hurst, J; Smith, R P
1980-07-01
A series of compounds were synthesized from ruthenium trichloride, and their ip LD50s were determined in mice: pentamminenitrosylruthenium(II) chloride, 8.9; chloronitrobis(2,2'-dipyridyl)ruthenium(II), 55;dichlorobis(2,2'-dipyridyl)ruthenium(II), 63; ruthenium trichloride, 108; and potassium pentachloronitrosylruthenate(II), 127 mg/kg. The two bis-bipyridyl complexes produced death in convulsions within minutes, whereas the remaining compounds resulted in long, debilitating courses with death occurring in 4-7d. When given in massive overdoses, however, the compounds with inorganic ligands also produced rapid convulsive death in mice, and when given iv to anesthetized cats, they produced respiratory arrest. The major toxic effects of all the complexes appeared to be due to the metal and not to its associated ligands. Only complexes having nitrosyl ligand specifically relaxed vascular smooth muscle. Potassium pentabromoiridate(III) also relaxed rabbit aortic strips that had been contracted by adrenergic agonists, but potassium pentachloroiridate(III) did not. None of the complexes was as active as nitroprusside in relaxing aortic strips or in decreasing arterial blood pressure in cats. No compound tested was as potent as cisplatin in antitumor activity. The pentamminenitrosylruthenium(II) complex also relaxed guinea pig ileum and frog rectus abdominus when these isolated muscles had been contracted by acetylcho line. It appears that these organoruthenium compounds may produce death in central respiratory arrest, as do the inorganic complexes when given iv or ip in massive overdoses. In minimally lethal doses, the complexes with inorganic ligands may affect a variety of contractile tissues, perhaps by a general mechanism involving Ca. These complexes are apt to be generally cytotoxic as well.
Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco
2014-01-01
Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems.
Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco
2014-01-01
Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems. PMID:25565987
Kaczmarek, Małgorzata
2011-11-01
The chemiluminescence (CL) of oxidation of non-steroidal anti-inflammatory drugs (NSAIDs) by Ce(IV) ions, was recorded in the presence and absence europium(III) ions, in solution of pH ~ 4 of solution. Kinetic curves and CL emission spectra of the all studied systems were discussed. CL of measurable intensity was observed in the Ce(IV)-NP-Eu(III) reaction system only in acidic solutions. The CL spectrum rcegistered for this system shows emission bands, typical of Eu(III) ions, with maximum at λ ~ 600 nm. The chemiluminescent method, based on Eu(III) emission in reaction system of NP-Ce(IV)-Eu(III) in acid solution was therefore used for the determination of naproxen in mixture of non-steroidal anti-inflammatory drugs.
2017-05-23
Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia
40 CFR 147.2200 - State-administered program-Class I, III, IV, and V wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the in situ combustion of coal are regulated by the Rail Road Commission of Texas under a separate UIC... program for Class I, III, IV, and V wells in the State of Texas, except for those wells on Indian lands... (SDWA). Notice of the original approval for Class I, III, IV, and V wells was published in the Federal...
40 CFR 147.2200 - State-administered program-Class I, III, IV, and V wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the in situ combustion of coal are regulated by the Rail Road Commission of Texas under a separate UIC... program for Class I, III, IV, and V wells in the State of Texas, except for those wells on Indian lands... (SDWA). Notice of the original approval for Class I, III, IV, and V wells was published in the Federal...
Lee, Yong-Min; Bang, Suhee; Yoon, Heejung; Bae, Seong Hee; Hong, Seungwoo; Cho, Kyung-Bin; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo
2015-07-20
Redox-inactive metal ions play important roles in tuning chemical properties of metal-oxygen intermediates. Herein we report the effect of water molecules on the redox properties of a nonheme iron(III)-peroxo complex binding redox-inactive metal ions. The coordination of two water molecules to a Zn(2+) ion in (TMC)Fe(III) -(O2 )-Zn(CF3 SO3 )2 (1-Zn(2+) ) decreases the Lewis acidity of the Zn(2+) ion, resulting in the decrease of the one-electron oxidation and reduction potentials of 1-Zn(2+) . This further changes the reactivities of 1-Zn(2+) in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1-Zn(2+) , whereas 1-Zn(2+) coordinating two water molecules, (TMC)Fe(III) -(O2 )-Zn(CF3 SO3 )2 -(OH2 )2 [1-Zn(2+) -(OH2 )2 ], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1-Zn(2+) was converted to its corresponding iron(IV)-oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1-Zn(2+) -(OH2 )2 . The present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal-oxygen intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Differences in time until dispersal between cryptic species of a marine nematode species complex.
De Meester, Nele; Derycke, Sofie; Moens, Tom
2012-01-01
Co-occurrence of closely related species may be achieved in environments with fluctuating dynamics, where competitively inferior species can avoid competition through dispersal. Here we present an experiment in which we compared active dispersal abilities (time until first dispersal, number and gender of dispersive adults, and nematode densities at time of dispersal) in Litoditis marina, a common bacterivorous nematode species complex comprising four often co-occurring cryptic species, Pm I, II, III, and IV, as a function of salinity and food distribution. The experiment was conducted in microcosms consisting of an inoculation plate, connection tube, and dispersal plate. Results show species-specific dispersal abilities with Pm I dispersing almost one week later than Pm III. The number of dispersive adults at time of first dispersal was species-specific, with one dispersive female in Pm I and Pm III and a higher, gender-balanced, number in Pm II and Pm IV. Food distribution affected dispersal: in absence of food in the inoculation plate, all species dispersed after ca four days. When food was available Pm I dispersed later, and at the same time and densities irrespective of food conditions in the dispersal plate (food vs no food), suggesting density-dependent dispersal. Pm III dispersed faster and at a lower population density. Salinity affected dispersal, with slower dispersal at higher salinity. These results suggest that active dispersal in Litoditis marina is common, density-dependent, and with species, gender- and environment-specific dispersal abilities. These differences can lead to differential responses under suboptimal conditions and may help to explain temporary coexistence at local scales.
Lee, Yong-Min; Bang, Suhee; Yoon, Heejung; ...
2015-06-19
Here we report redox-inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. We describe the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox-inactive metal ions. The coordination of two water molecules to a Zn 2+ ion in (TMC)Fe III-(O 2)-Zn(CF 3SO 3) 2 (1-Zn 2+) decreases the Lewis acidity of the Zn 2+ ion, resulting in the decrease of the one-electron oxidation and reduction potentials of 1-Zn 2+. This further changes the reactivities of 1-Zn 2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidantmore » (e.g., cerium(IV) ammonium nitrate (CAN)) to 1-Zn 2+, whereas 1-Zn 2+ coordinating two water molecules, (TMC)Fe III-(O 2)-Zn(CF 3SO 3) 2-(OH 2) 2 [1-Zn 2+-(OH 2) 2], releases the O 2 unit in the oxidation reaction. In the reduction reactions, 1-Zn 2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1-Zn 2+-(OH 2) 2. Finally, the present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.« less
Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe-Mn hydrous oxide.
Szlachta, Małgorzata; Gerda, Vasyl; Chubar, Natalia
2012-01-01
The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6 mg/g) and Se(IV) (up to 29.0 mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH(-) groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO(3) did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption. Copyright © 2011 Elsevier Inc. All rights reserved.
Schmidt, Anna-Corina; Heinemann, Frank W; Maron, Laurent; Meyer, Karsten
2014-12-15
A series of uranium tritylimido complexes with structural continuity across complexes in different oxidation states, namely U(IV), U(V), and U(VI), is reported. This series was successfully synthesized by employing the trivalent uranium precursor, [(((nP,Me)ArO)3tacn)U(III)] (1) (where ((nP,Me)ArO)3tacn(3-) = trianion of 1,4,7-tris(2-hydroxy-5-methyl-3-neopentylbenzyl)-1,4,7-triazacyclononane), with the organic azides Me3SiN3, Me3SnN3, and Ph3CN3 (tritylazide). While the reaction with Me3SiN3 yields an inseparable mixture of both the azido and imido uranium complexes, applying the heavier Sn homologue yields the bis-μ-azido complex [{(((nP,Me)ArO)3tacn)U(IV)}2(μ-N3)2] (2) exclusively. In contrast to this one-electron redox chemistry, the reaction of precursor 1 with tritylazide solely leads to the two-electron oxidized U(V) imido [(((nP,Me)ArO)3tacn)U(V)(N-CPh3)] (3). Oxidation and reduction of 3 yield the corresponding U(VI) and U(IV) complexes [(((nP,Me)ArO)3tacn)U(VI)(N-CPh3)][B(C6F5)4] (4) and K[(((nP,Me)ArO)3tacn)U(IV)(N-CPh3)] (5), respectively. In addition, the U(V) imido 3 engages in a H atom abstraction reaction with toluene to yield the closely related amido complex [(((nP,Me)ArO)3tacn)U(IV)(N(H)-CPh3)] (6). Complex 6 and the three tritylimido complexes 3, 4, and 5, with oxidation states ranging from +IV to +VI and homologous core structures, were investigated by X-ray diffraction analyses and magnetochemical and spectroscopic studies as well as density functional theory (DFT) computational analysis. The series of structurally very similar imido complexes provides a unique opportunity to study electronic properties and to probe the uranium imido reactivity solely as a function of electron count of the metal-imido entity. Evidence for the U-N bond covalency and f-orbital participation in complexes 3-6 was drawn from the in-depth and comparative DFT study. The reactivity of the imido and amido complexes with CO2 was probed, and conclusions about the influence of the formal oxidation state are reported.
Brentuximab Vedotin + Rituximab as Frontline Therapy for Pts w/ CD30+ and/or EBV+ Lymphomas
2015-04-28
Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Epstein-Barr Virus Infection; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia
Membrane extraction with thermodynamically unstable diphosphonic acid derivatives
Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.
1997-10-14
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.
Extracting metal ions with diphosphonic acid, or derivative thereof
Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.
1994-01-01
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.
Extracting metal ions with diphosphonic acid, or derivative thereof
Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.
1994-07-26
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.
2018-05-18
Metastatic Bladder Urothelial Carcinoma; Metastatic Renal Pelvis Urothelial Carcinoma; Metastatic Ureter Urothelial Carcinoma; Metastatic Urethral Urothelial Carcinoma; Metastatic Urothelial Carcinoma; Recurrent Bladder Urothelial Carcinoma; Recurrent Renal Pelvis Urothelial Carcinoma; Recurrent Ureter Urothelial Carcinoma; Recurrent Urethral Urothelial Carcinoma; Stage III Bladder Cancer AJCC v8; Stage III Renal Pelvis Cancer AJCC v8; Stage III Ureter Cancer AJCC v8; Stage III Urethral Cancer AJCC v8; Stage IV Bladder Cancer AJCC v8; Stage IV Renal Pelvis Cancer AJCC v8; Stage IV Ureter Cancer AJCC v8; Stage IV Urethral Cancer AJCC v8; Stage IVA Bladder Cancer AJCC v8; Stage IVB Bladder Cancer AJCC v8
Cognitive-Behavioral Intervention for Worry, Uncertainty, and Insomnia for Cancer Survivors
2017-04-04
Anxiety Disorder; Worry; Uncertainty; Sleep Disorders; Insomnia; Fatigue; Pain; Depression; Cognitive-behavioral Therapy; Psychological Intervention; Esophageal Cancer; Pancreatic Cancer; Leukemia; Lung Cancer; Multiple Myeloma; Ovarian Neoplasm; Stage III or IV Cervical or Uterine Cancer; Stage IIIB, IIIC, or IV Breast Cancer; Glioblastoma Multiforme; Relapsed Lymphoma; Stage III or IV Colorectal Cancer; Stage IIIC or IV Melanoma
Ng, Ho-Yuen; Cheung, Wai-Man; Kwan Huang, Enrique; Wong, Kang-Long; Sung, Herman H-Y; Williams, Ian D; Leung, Wa-Hung
2015-11-14
Ruthenium thio- and seleno-nitrosyl complexes containing chelating sulfur and oxygen ligands have been synthesised and their de-chalcogenation reactions have been studied. The reaction of mer-[Ru(N)Cl3(AsPh3)2] with elemental sulfur and selenium in tetrahydrofuran at reflux afforded the chalcogenonitrosyl complexes mer-[Ru(NX)Cl3(AsPh3)2] [X = S (1), Se (2)]. Treatment of 1 with KN(R2PS)2 afforded trans-[Ru(NS)Cl{N(R2PS)2}2] [R = Ph (3), Pr(i) (4), Bu(t) (5)]. Alternatively, the thionitrosyl complex 5 was obtained from [Bu(n)4N][Ru(N)Cl4] and KN(Bu(t)2PS)2, presumably via sulfur atom transfer from [N(Bu(t)2PS)2](-) to the nitride. Reactions of 1 and 2 with NaLOEt (LOEt(-) = [Co(η(5)-C5H5){P(O)(LOEt)2}3](-)) gave [Ru(NX)LOEtCl2] (X = S (8), Se (9)). Treatment of [Bu(n)4N][Ru(N)Cl4] with KN(R2PS)2 produced Ru(IV)-Ru(IV)μ-nitrido complexes [Ru2(μ-N){N(R2PS)2}4Cl] [R = Ph (6), Pr(i) (7)]. Reactions of 3 and 9 with PPh3 afforded 6 and [Ru(NPPh3)LOEtCl2], respectively. The desulfurisation of 5 with [Ni(cod)2] (cod = 1,5-cyclooctadiene) gave the mixed valance Ru(III)-Ru(IV)μ-nitrido complex [Ru2(μ-N){N(Bu(t)2PS)2}4] (10) that was oxidised by [Cp2Fe](PF6) to give the Ru(IV)-Ru(IV) complex [Ru2(μ-N){N(Bu(t)2PS)2}4](PF6) ([10]PF6). The crystal structures of 1, 2, 3, 7, 9 and 10 have been determined.
Possibilities in identification of genomic species of Burkholderia cepacia complex by PCR and RFLP.
Navrátilová, Lucie; Chromá, Magdalena; Hanulík, Vojtech; Raclavský, Vladislav
2013-01-01
The strains belonging to Burkholderia cepacia complex are important opportunistic pathogens in immunocompromised patients and cause serious diseases. It is possible to obtain isolates from soil, water, plants and human samples. Taxonomy of this group is difficult. Burkholderia cepacia complex consists of seventeen genomic species and the genetic scheme is based on recA gene. Commonly, first five genomovars occurre in humans, mostly genomovars II and III, subdivision IIIA. Within this study we tested identification of first five genomovars by PCR with following melting analysis and RFLP. The experiments were targeted on eubacterial 16S rDNA and specific gene recA, which allowed identification of all five genomovars. RecA gene appeared as more suitable than 16S rDNA, which enabled direct identification of only genomovars II and V; genomovars I, III and IV were similar within 16S rDNA sequence.
2018-05-23
Metastatic Ureteral Neoplasm; Metastatic Urethral Neoplasm; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma; Urethral Urothelial Carcinoma
2017-05-25
Advanced Malignant Mesothelioma; Carcinoma of the Appendix; Ovarian Sarcoma; Ovarian Stromal Cancer; Pseudomyxoma Peritonei; Recurrent Colon Cancer; Recurrent Malignant Mesothelioma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Stage III Colon Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage IV Colon Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
USDA-ARS?s Scientific Manuscript database
We have previously shown that oxLDL-immune complexes (oxLDL-IC) binding to Fcgamma receptors (Fc gamma R) expressed on human monocytes leads to induction of pro-inflammatory cytokines. Four classes of mouse Fc gamma Rs have been defined: Fc gamma RI, II, III, and IV. Functionally, Fc gamma Rs can be...
MH-53J/M Pave Low III/IV Systems Engineering. Case Study
2010-01-01
53H Black Knight ............................................................................................. 15 Figure 10. General Dynamics YF-16...boundary was defined; • they used disciplined methodologies for complex systems ; • human systems integration was accomplished; • problem solving ...wartime) • Power plant: 2× General Electric T64-GE-100 turboshaft, 4,330 shaft horsepower ( shp ) each Performance • Maximum speed: 170 knots (196
Gunst, S; Weinbruch, S; Wentzel, M; Ortner, H M; Skogstad, A; Hetland, S; Thomassen, Y
2000-02-01
Aerosol particle samples were collected at ELKEM ASA ferromanganese (FeMn) and silicomanganese (SiMn) smelters at Porsgrunn, Norway, during different production steps: raw material mixing, welding of protective steel casings, tapping of FeMn and slag, crane operation moving the ladles with molten metal, operation of the Metal Oxygen Refinement (MOR) reactor and casting of SiMn. Aerosol fractions were assessed for the analysis of the bulk elemental composition as well as for individual particle analysis. The bulk elemental composition was determined by inductively coupled plasma atomic emission spectrometry. For individual particle analysis, an electron microprobe was used in combination with wavelength-dispersive techniques. Most particles show a complex composition and cannot be attributed to a single phase. Therefore, the particles were divided into six groups according to their chemical composition: Group I, particles containing mainly metallic Fe and/or Mn; Group II, slag particles containing mainly Fe and/or Mn oxides; Group III, slag particles consisting predominantly of oxidized flux components such as Si, Al, Mg, Ca, Na and K; Group IV, particles consisting mainly of carbon; Group V, mixtures of particles from Groups II, III and IV; Group VI, mixtures of particles from Groups II and III. In raw material mixing, particles originating from the Mn ores were mostly found. In the welding of steel casings, most particles were assigned to Group II, Mn and Fe oxides. During the tapping of slag and metal, mostly slag particles from Group III were found (oxides of the flux components). During movement of the ladles, most particles came from Group II. At the MOR reactor, most of the particles belonged to the slag phase consisting of the flux components (Group III). The particles collected during the casting of SiMn were mainly attributed to the slag phase (Groups III and V). Due to the compositional complexity of the particles, toxicological investigations on the kinetics of pure compounds may not be easily associated with the results of this study.
Rollin-Genetet, Françoise; Seidel, Caroline; Artells, Ester; Auffan, Mélanie; Thiéry, Alain; Vidaud, Claude
2015-12-21
The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine-cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce(4+)/Ce(3+) redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce(3+) disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules.
2013-01-08
Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia
Heterometallic [Mn5-Ln4] single-molecule magnets with high anisotropy barriers.
Mereacre, Valeriu; Ako, Ayuk M; Clérac, Rodolphe; Wernsdorfer, Wolfgang; Hewitt, Ian J; Anson, Christopher E; Powell, Annie K
2008-01-01
The reaction of [Mn6O2(Piv)(10)(4-Me-py)(2.5)(PivH)(1.5)] (1) (py: pyridine, Piv: pivilate) with N-methyldiethanolamine (mdeaH2) and Ln(NO3)3 x 6 H2O in MeCN leads to a series of nonanuclear compounds [Mn5Ln4(O)6(mdea)2(mdeaH)2(Piv)6(NO3)4(H2O)2]2 MeCN (Ln=Tb(III) (2), Dy(III) (3), Ho(III) (4), Y(III) (5)). Single-crystal X-ray diffraction shows that compounds 2-5 are isostructural, with the central core composed of two distorted {Mn(IV)Mn(III)Ln2O4} cubanes sharing a Mn(IV) vertex, representing a new heterometallic 3d-4f motif for this class of ligand. The four new compounds display single-molecule magnet (SMM) behaviour, which is modulated by the lanthanide ion used. Moreover, the values found for Delta(eff) and tau(o) for 3 of 38.6 K and 3.0 x 10(-9) s respectively reveal that the complex 3 exhibits the highest energy barrier recorded so far for 3d-4f SMMs. The slow relaxation of the magnetisation for 3 was confirmed by mu-SQUID measurements on an oriented single crystal and the observation of M versus H hysteresis loops below 1.9 K.
DSM-IV: a nosology sold before its time?
Zimmerman, M; Jampala, V C; Sierles, F S; Taylor, M A
1991-04-01
The purpose of this study was to determine whether American psychiatrists believe that DSM-IV is being published too soon after DSM-III-R. The authors conducted a mail survey of the attitudes of practicing psychiatrists (N = 454), residency program directors (N = 128), residents (N = 1,331), and researchers (N = 196) toward the scheduled publication of DSM-IV in the early 1990s. They found that the majority of all four groups believed that DSM-IV is being published prematurely. In contrast to respondents who believed that the timing of DSM-IV is appropriate, those who indicated that it is being published too soon had more recently completed their residency training and also believed that DSM-III-R was published prematurely. There was no association between the psychiatrists' responses and their theoretical orientation, Board certification status, ownership of the DSM manuals, the length of time they had used DSM-III, and the diagnostic manual (DSM-III or DSM-III-R) they were currently using. The belief that DSM-IV is being published too soon could contribute to underuse of DSM-IV by substantial numbers of psychiatrists. Thus, to foster compliance with it, APA must preserve in its efforts to demonstrate that the advantages of publishing it in 1993 outweigh the disadvantages of adopting yet another manual.
PHASE II TRIAL OF THE CYCLIN-DEPEDENT KINASE INHIBITOR PD 0332991 IN PATIENTS WITH CANCER
2016-08-24
Adult Solid Tumor; Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Benign Teratoma; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; Familial Testicular Germ Cell Tumor; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Male Breast Cancer; Ovarian Immature Teratoma; Ovarian Mature Teratoma; Ovarian Monodermal and Highly Specialized Teratoma; Progesterone Receptor-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Extragonadal Germ Cell Tumor; Recurrent Extragonadal Non-seminomatous Germ Cell Tumor; Recurrent Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Melanoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Rectal Cancer; Stage III Extragonadal Non-seminomatous Germ Cell Tumor; Stage III Extragonadal Seminoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Extragonadal Non-seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Melanoma; Stage IV Ovarian Germ Cell Tumor; Stage IV Rectal Cancer; Testicular Immature Teratoma; Testicular Mature Teratoma
Transferable tight-binding model for strained group IV and III-V materials and heterostructures
NASA Astrophysics Data System (ADS)
Tan, Yaohua; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2016-07-01
It is critical to capture the effect due to strain and material interface for device level transistor modeling. We introduce a transferable s p3d5s* tight-binding model with nearest-neighbor interactions for arbitrarily strained group IV and III-V materials. The tight-binding model is parametrized with respect to hybrid functional (HSE06) calculations for varieties of strained systems. The tight-binding calculations of ultrasmall superlattices formed by group IV and group III-V materials show good agreement with the corresponding HSE06 calculations. The application of the tight-binding model to superlattices demonstrates that the transferable tight-binding model with nearest-neighbor interactions can be obtained for group IV and III-V materials.
DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Paul Y
2010-12-10
An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.
Polynuclear Hydroxido-Bridged Complexes of Platinum(IV) with Terminal Nitrato Ligands.
Vasilchenko, Danila; Berdugin, Semen; Tkachev, Sergey; Baidina, Iraida; Romanenko, Galina; Gerasko, Olga; Korenev, Sergey
2015-05-18
For the first time the polynuclear hydroxido-bridged platinum(IV) nitrato complexes with nuclearity higher than two were isolated from nitric acid solutions of [Pt(H2O)2(OH)4] and crystallized as supramolecular compounds of macrocyclic cavitands cucurbit[n]uril (CB[n], n = 6,8) and 18-crown-6 ether: [Pt4(μ3-OH)2(μ2-OH)4(NO3)10]·CB[6]·25H2O (I), [Pt6(μ3-OH)4(μ2-OH)6(NO3)12](NO3)2·CB[8]·50H2O (II), and [H3O⊂18-crown-6]2[Pt2(μ2-OH)2(NO3)8][Pt4(μ3-OH)2(μ2-OH)4(NO3)10] (III). The isolation of the compounds in the single crystalline state allows the determination of the structure of the tetranuclear and hexanuclear complexes [Pt4(μ3-OH)2(μ2-OH)4(NO3)10] and [Pt6(μ3-OH)4(μ2-OH)6(NO3)12](2+), which have been previously unknown in the solid state. Stability of Ptx(OH)y cores of the polynuclear nitrato complexes toward alkaline hydrolysis was verified by (195)Pt NMR spectroscopy. Analysis of (195)Pt NMR spectra of the compound III reveals that addition of every Pt(μ-OH)2Pt ring results in ∼260 ppm downfield shift relative to the mononuclear form, which allows the prediction of signal positions for complexes of higher nuclearity.
Danylovych, H V
2016-01-01
We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM) induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM), a complex IV inhibitor, and CCCP (10 μM), a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex) is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+- dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.
Gajic, Ognjen; Afessa, Bekele
2012-01-01
Background: There are few comparisons among the most recent versions of the major adult ICU prognostic systems (APACHE [Acute Physiology and Chronic Health Evaluation] IV, Simplified Acute Physiology Score [SAPS] 3, Mortality Probability Model [MPM]0III). Only MPM0III includes resuscitation status as a predictor. Methods: We assessed the discrimination, calibration, and overall performance of the models in 2,596 patients in three ICUs at our tertiary referral center in 2006. For APACHE and SAPS, the analyses were repeated with and without inclusion of resuscitation status as a predictor variable. Results: Of the 2,596 patients studied, 283 (10.9%) died before hospital discharge. The areas under the curve (95% CI) of the models for prediction of hospital mortality were 0.868 (0.854-0.880), 0.861 (0.847-0.874), 0.801 (0.785-0.816), and 0.721 (0.704-0.738) for APACHE III, APACHE IV, SAPS 3, and MPM0III, respectively. The Hosmer-Lemeshow statistics for the models were 33.7, 31.0, 36.6, and 21.8 for APACHE III, APACHE IV, SAPS 3, and MPM0III, respectively. Each of the Hosmer-Lemeshow statistics generated P values < .05, indicating poor calibration. Brier scores for the models were 0.0771, 0.0749, 0.0890, and 0.0932, respectively. There were no significant differences between the discriminative ability or the calibration of APACHE or SAPS with and without “do not resuscitate” status. Conclusions: APACHE III and IV had similar discriminatory capability and both were better than SAPS 3, which was better than MPM0III. The calibrations of the models studied were poor. Overall, models with more predictor variables performed better than those with fewer. The addition of resuscitation status did not improve APACHE III or IV or SAPS 3 prediction. PMID:22499827
2017-05-03
Stage I Ovarian Cancer; Stage IA Fallopian Tube Cancer; Stage IB Fallopian Tube Cancer; Stage IC Fallopian Tube Cancer; Stage II Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIB Fallopian Tube Cancer; Stage IIC Fallopian Tube Cancer; Stage III Ovarian Cancer; Stage III Primary Peritoneal Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIC Fallopian Tube Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Richmann, Michael K.; Reed, Donald T.
2015-10-30
The degree of conservatism in the estimated sorption partition coefficients (K ds) used in a performance assessment model is being evaluated based on a complementary batch and column method. The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected at the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV).
Mechanism of neem limonoids-induced cell death in cancer: role of oxidative phosphorylation
Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph; O’Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay; Yadava, Nagendra; Chandra, Dhyan
2016-01-01
We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. PMID:26627937
Mechanism of neem limonoids-induced cell death in cancer: Role of oxidative phosphorylation.
Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph R; O'Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay K; Yadava, Nagendra; Chandra, Dhyan
2016-01-01
We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. Copyright © 2015 Elsevier Inc. All rights reserved.
Wasser, Ian M; Fry, H Christopher; Hoertz, Paul G; Meyer, Gerald J; Karlin, Kenneth D
2004-12-27
Steady state and laser flash photolysis studies of the heme/non-heme mu-oxo diiron complex [((6)L)Fe(III)-O-Fe(III)-Cl](+) (1) have been undertaken. The anaerobic photolysis of benzene solutions of 1 did not result in the buildup of any photoproduct. However, the addition of excess triphenylphosphine resulted in the quantitative photoreduction of 1 to [((6)L)Fe(II)...Fe(II)-Cl](+) (2), with concomitant production by oxo-transfer of 1 equiv of triphenylphosphine oxide. Under aerobic conditions and excess triphenylphosphine, the reaction produces multiple turnovers (approximately 28) before the diiron complex is degraded. The anaerobic photolysis of tetrahydrofuran (THF) or toluene solutions of 1 likewise results in the buildup of 2. The oxidation products from these reactions included gamma-butyrolactone (approximately 15%) for the reaction in THF and benzaldehyde (approximately 23%) from the reaction in toluene. In either case, the O-atom which is incorporated into the carbonyl product is derived from dioxygen present under workup or under aerobic photolysis conditions. Transient absorption measurements of low-temperature THF solutions of 1 revealed the presence of an (P)Fe(II)-like [P = tetraaryl porphyrinate dianion] species suggesting that the reactive species is a formal (heme)Fe(II)/Fe(IV)=O(non-heme) pair. The non-heme Fe(IV)=O is thus most likely responsible for C-H bond cleavage and subsequent radical chemistry. The photolysis of 1 in chlorobenzene or 1,2-dichlorobenzene resulted in C-Cl cleavage reactions and the formation of [[((6)L)Fe(III)-Cl...Fe(III)-Cl](2)O](2+) (3), with chloride ligands that are derived from solvent dehalogenation chemistry. The resulting organic products are biphenyl trichlorides or biphenyl monochlorides, derived from dichlorobenzene and chlorobenzene, respectively. Similarly, product 3 is obtained by the photolysis of benzene-benzyl chloride solutions of 1; the organic product is benzaldehyde (approximately 70%). A brief discussion of the dehalogenation chemistry, along with relevant environmental perspectives, is included.
Biotransformations of anticancer ruthenium(III) complexes: an X-ray absorption spectroscopic study.
Levina, Aviva; Aitken, Jade B; Gwee, Yee Yen; Lim, Zhi Jun; Liu, Mimi; Singharay, Anannya Mitra; Wong, Pok Fai; Lay, Peter A
2013-03-11
An anti-metastatic drug, NAMI-A ((ImH)[Ru(III) Cl4 (Im)(dmso)]; Im=imidazole, dmso=S-bound dimethylsulfoxide), and a cytotoxic drug, KP1019 ((IndH)[Ru(III) Cl4 (Ind)2 ]; Ind=indazole), are two Ru-based anticancer drugs in human clinical trials. Their reactivities under biologically relevant conditions, including aqueous buffers, protein solutions or gels (e.g, albumin, transferrin and collagen), undiluted blood serum, cell-culture medium and human liver (HepG2) cancer cells, were studied by Ru K-edge X-ray absorption spectroscopy (XAS). These XAS data were fitted from linear combinations of spectra of well-characterised Ru compounds. The absence of XAS data from the parent drugs in these fits points to profound changes in the coordination environments of Ru(III) . The fits point to the presence of Ru(IV/III) clusters and binding of Ru(III) to S-donor groups, amine/imine and carboxylato groups of proteins. Cellular uptake of KP1019 is approximately 20-fold higher than that of NAMI-A under the same conditions, but it diminishes drastically after the decomposition of KP1019 in cell-culture media, which indicate that the parent complex is taken in by cells through passive diffusion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biodegradation of PuEDTA and Impacts on Pu Mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, H., Jr.; Rai, D.; Xun, L.
The contamination of many DOE sites by Pu presents a long-term problem because of its long half-life (240,000 yrs) and the low drinking water standard (<10{sup -12} M). EDTA was co-disposed with radionuclides (e.g., Pu, {sup 60}Co), formed strong complexes, and enhanced radionuclide transport at several DOE sites. Biodegradation of EDTA should decrease Pu mobility. One objective of this project was to determine the biodegradation of EDTA in the presence of PuEDTA complexes. The aqueous system investigated at pH 7 (10{sup -4} M EDTA and 10{sup -6} M Pu) contained predominantly Pu(OH){sub 2}EDTA{sup 2-}. The EDTA was degraded at amore » faster rate in the presence of Pu. As the total concentration of both EDTA and PuEDTA decreased (i.e., 10{sup -5} M EDTA and 10{sup -7} M PuEDTA), the presence of Pu decreased the biodegradation rate of the EDTA. It is currently unclear why the concentration of Pu directly affects the increase/decrease in rate of EDTA biodegradation. The soluble Pu concentration decreased, in agreement with thermodynamic predictions, as the EDTA was biodegraded, indicating that biodegradation of EDTA will decrease Pu mobility when the Pu is initially present as Pu(IV)EDTA. A second objective was to investigate how the presence of competing metals, commonly encountered in geologic media, will influence the speciation and biodegradation of Pu(IV)-EDTA. Studies on the solubilities of Fe(OH){sub 3}(s) and of Fe(OH){sub 3}(s) plus PuO{sub 2}(am) in the presence of EDTA and as a function of pH showed that Fe(III) out competes the Pu(IV) for the EDTA complex, thereby showing that Pu(IV) will not form stable complexes with EDTA for enhanced transport of Pu in Fe(III) dominated subsurface systems. A third objective is to investigate the genes and enzymes involved in EDTA biodegradation. BNC1 can use EDTA and another synthetic chelating agent nitrilotriacetate (NTA) as sole carbon and nitrogen sources. The same catabolic enzymes are responsible for both EDTA and NTA degradation except that additional enzymes are required for EDTA degradation. When the catabolic genes were cloned and sequenced, the gene cluster also contained genes encoding a hypothetical ABC-type transporter. RT-PCR analysis showed that the transporter genes and EDTA monooxygenase gene (emoA) are co-transcribed. EppA is one of the transporter genes, and it codes for a periplasmic binding protein responsible for binding to the substrate before transport across the membrane can occur. EppA was cloned, expressed, and purified in Escherichia coli and found to bind, MgEDTA, CaEDTA, Fe(III)EDTA, MgNTA, CaNTA, and Fe(III)NTA. Our data also suggest that BNC1 uses the same ABC-type transporter for both EDTA and NTA uptake. Results from these studies can provide mechanistic understanding and approaches to assist in the bioremediate PuEDTA and other radionuclide-EDTA complexes at DOE sites.« less
Jia, Xiaoyu; Gong, Dirong; Zhao, Junyi; Ren, Hongyun; Wang, Jiani; Zhang, Xian
2018-03-19
This paper describes the preparation of zwitterion-functionalized polymer microspheres (ZPMs) and their application to simultaneous enrichment of V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) from environmental water samples. The ZPMs were prepared by emulsion copolymerization of ethyl methacrylate, 2-diethylaminoethyl methacrylate and triethylene glycol dimethyl acrylate followed by modification with 1,3-propanesultone. The components were analyzed by elemental analyses as well as Fourier transform infrared spectroscopy, and the structures were characterized by scanning electron microscopy and transmission electron microscopy. The ZPMs were packed into a mini-column for on-line solid-phase extraction (SPE) of the above metal ions. Following extraction with 40 mM NH 4 NO 3 and 0.5 M HNO 3 solution, the ions were quantified by ICP-MS. Under the optimized conditions, the enrichment factors (from a 40 mL sample) are up to 60 for the ions V(V), As(III), Sb(III) and Hg(II), and 55 for Cr(III) and Sn(IV). The detection limits are 1.2, 3.4, 1.0, 3.7, 2.1 and 1.6 ng L -1 for V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II), respectively, and the relative standard deviations (RSDs) are below 5.2%. The feasibility and accuracy of the method were validated by successfully analyzing six certified reference materials as well as lake, well and river waters. Graphical abstract Zwitterion-functionalized polymer microspheres (ZPMs) were prepared and packed into a mini-column for on-line solid-phase extraction (SPE) via pump 1. Then V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) ions in environmental waters were eluted and submitted to ICP-MS via pump 2.
76 FR 36095 - Defense Transportation Regulation, Part IV
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... with the Defense Personal Property Program (DP3) Phase III Domestic Small Shipments (dS2) and... Regulation, Part IV Web site at http://www.transcom.mil/dtr/part-iv/phaseiii.cfm . All identified changes... based on completion of Defense Personal Property System (DPS) Phase III programming projected for FY15...
Kitahara, Tadashi; Okamoto, Hidehiko; Fukushima, Munehisa; Sakagami, Masaharu; Ito, Taeko; Yamashita, Akinori; Ota, Ichiro; Yamanaka, Toshiaki
2016-01-01
Meniere's disease, a common inner ear condition, has an incidence of 15-50 per 100,000. Because mental/physical stress and subsequent increase in the stress hormone vasopressin supposedly trigger Meniere's disease, we set a pilot study to seek new therapeutic interventions, namely management of vasopressin secretion, to treat this disease. We enrolled 297 definite Meniere's patients from 2010 to 2012 in a randomized-controlled and open-label trial, assigning Group-I (control) traditional oral medication, Group-II abundant water intake, Group-III tympanic ventilation tubes and Group-IV sleeping in darkness. Two hundred sixty-three patients completed the planned 2-year-follow-up, which included assessment of vertigo, hearing, plasma vasopressin concentrations and changes in stress/psychological factors. At 2 years, vertigo was completely controlled in 54.3% of patients in Group-I, 81.4% in Group-II, 84.1% in Group-III, and 80.0% in Group-IV (statistically I < II = III = IV). Hearing was improved in 7.1% of patients in Group-I, 35.7% in Group-II, 34.9% in Group-III, and 31.7% in Group-IV (statistically I < II = III = IV). Plasma vasopressin concentrations decreased more in Groups-II, -III, and -IV than in Groups-I (statistically I < II = III = IV), although patients' stress/psychological factors had not changed. Physicians have focused on stress management for Meniere's disease. However, avoidance of stress is unrealistic for patients who live in demanding social environments. Our findings in this pilot study suggest that interventions to decrease vasopressin secretion by abundant water intake, tympanic ventilation tubes and sleeping in darkness is feasible in treating Meniere's disease, even though these therapies did not alter reported mental/physical stress levels. ClinicalTrials.gov NCT01099046.
2018-03-02
Advanced Bile Duct Carcinoma; Stage II Esophageal Cancer AJCC v7; Stage II Pancreatic Cancer AJCC v6 and v7; Stage IIA Esophageal Cancer AJCC v7; Stage IIA Pancreatic Cancer AJCC v6 and v7; Stage IIB Esophageal Cancer AJCC v7; Stage IIB Pancreatic Cancer AJCC v6 and v7; Stage III Colon Cancer AJCC v7; Stage III Esophageal Cancer AJCC v7; Stage III Gastric Cancer AJCC v7; Stage III Liver Cancer; Stage III Pancreatic Cancer AJCC v6 and v7; Stage III Rectal Cancer AJCC v7; Stage III Small Intestinal Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIA Esophageal Cancer AJCC v7; Stage IIIA Gastric Cancer AJCC v7; Stage IIIA Rectal Cancer AJCC v7; Stage IIIA Small Intestinal Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIB Esophageal Cancer AJCC v7; Stage IIIB Gastric Cancer AJCC v7; Stage IIIB Rectal Cancer AJCC v7; Stage IIIB Small Intestinal Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7; Stage IIIC Esophageal Cancer AJCC v7; Stage IIIC Gastric Cancer AJCC v7; Stage IIIC Rectal Cancer AJCC v7; Stage IV Colon Cancer AJCC v7; Stage IV Esophageal Cancer AJCC v7; Stage IV Gastric Cancer AJCC v7; Stage IV Liver Cancer; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IV Rectal Cancer AJCC v7; Stage IV Small Intestinal Cancer AJCC v7; Stage IVA Colon Cancer AJCC v7; Stage IVA Liver Cancer; Stage IVA Rectal Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Stage IVB Liver Cancer; Stage IVB Rectal Cancer AJCC v7
Ponzanelli, Anna; Vigo, Viviana; Marcenaro, Michela; Bacigalupo, Almalina; Gatteschi, Beatrice; Ravetti, Jean-Luis; Corvò, Renzo; Benasso, Marco
2008-08-01
Concomitant chemo-radiotherapy is the standard treatment for advanced nasopharyngeal carcinoma (NPC). Induction chemotherapy may improve the results further by enhancing both loco-regional and distant control. Fifty patients with untreated, stage IV (UICC 1992) undifferentiated NPC were initially treated with three courses of epidoxorubicin, 90 mg/m(2), day 1 and cisplatin, 40 mg/m(2), days 1 and 2, every three weeks and then underwent three courses of cisplatin, 20 mg/m(2)/day, days 1-4 and fluorouracil, 200mg/m(2)/day, days 1-4 (weeks 1, 4, 7), alternated to three splits of radiation (week 2-3, 5-6, 8-9-10) up to 70 Gy. All patients but one received 3 cycles of induction chemotherapy. Toxicities from induction chemotherapy were grade III or IV mucositis (2%), grade III or IV nausea/vomiting (22%), grade III or IV hematological toxicity (6%). At the end of induction phase 12% of CRs, 84% of PRs were recorded. Toxicities from alternating chemo-radiotherapy were grade III or IV mucositis (30%), grade III or IV nausea/vomiting (8%), grade III or IV hematological toxicity (24%). Overall, 86% of CRs and 14% of PRs were observed. Four-year progression free survival and overall survival rates are 71% and 81%, respectively. In a small number of patients studied, no correlation between the level of EGFR overexpression and outcomes was detected. In locally advanced UNPC our combined program including induction chemotherapy followed by alternating chemo-radiotherapy is active and gives promising long-term outcomes with acceptable toxicity and optimal patients' compliance. This program merits to be tested in a phase III trial.
Bolster, Eline A M; Dallmeijer, Annet J; de Wolf, G Sander; Versteegt, Marieke; Schie, Petra E M van
2017-05-01
To determine the test-retest reliability and construct validity of a novel 6-Minute Racerunner Test (6MRT) in children and youth with cerebral palsy (CP) classified as Gross Motor Function Classification System (GMFCS) levels III and IV. The racerunner is a step-propelled tricycle. The participants were 38 children and youth with CP (mean age 11 y 2 m, SD 3 y 7 m; GMFCS III, n = 19; IV, n = 19). Racerunner capability was determined as the distance covered during the 6MRT on three occasions. The intraclass correlation coefficient (ICC), standard error of measurement (SEM), and smallest detectable differences (SDD) were calculated to assess test-retest reliability. The ICC for tests 2 and 3 were 0.89 (SDD 37%; 147 m) for children in level III and 0.91 for children in level IV (SDD 52%; 118 m). When the average of two separate test occasions was used, the SDDs were reduced to 26% (104 m; level III) and 37% (118 m; level IV). For tests 1 to 3, the mean distance covered increased from 345 m (SD 148 m) to 413 m (SD 137 m) for children in level III, and from 193 m (SD 100 m) to 239 m (SD 148 m) for children in level IV. Results suggest high test-retest reliability. However, large SDDs indicate that a single 6MRT measurement is only useful for individual evaluation when large improvements are expected, or when taking the average of two tests. The 6MRT discriminated the distance covered between children and youth in levels III and IV, supporting construct validity.
Slobodkina, G B; Panteleeva, A N; Sokolova, T G; Bonch-Osmolovskaya, E A; Slobodkin, A I
2012-04-01
A thermophilic, anaerobic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium (strain SLM 61T) was isolated from a terrestrial hot spring on the Kamchatka peninsula. The cells were straight rods, 0.5-0.6 µm in diameter and 1.0-6.0 µm long, and exhibited tumbling motility by means of peritrichous flagellation. The strain grew at 26-70 °C, with an optimum at 58-60 °C, and at pH 5.5-8.0, with an optimum at pH 6.5. Growth of SLM 61T was observed at 0-2.0 % (w/v) NaCl, with an optimum at 0.5 % (w/v). The generation time under optimal growth conditions was 40 min. Strain SLM 61T grew and reduced Mn(IV), Fe(III) or nitrate with a number of organic acids and complex proteinaceous compounds as electron donors. It was capable of chemolithoautotrophic growth using molecular hydrogen as an electron donor, Fe(III) but not Mn(IV) or nitrate as an electron acceptor and CO2 as a carbon source. It also was able to ferment pyruvate, yeast extract, glucose, fructose, sucrose and maltose. The G+C content of DNA of strain SLM 61T was 50.9 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Carboxydocella thermautotrophica 41T (96.9 % similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Carboxydocella manganica sp. nov. is proposed. The type strain is SLM 61T (=DSM 23132T=VKM B-2609T). C. manganica is the first described representative of the genus Carboxydocella that possesses the ability to reduce metals and does not utilize CO.
Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Peng, Shie-Ming; Wong, Wing-Tak; Lau, Tai-Chu
2010-01-04
The reaction of [Ru(VI)(N)(L)(MeOH)](PF(6)) [1; L = N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion] with a stoichiometric amount of RSH in CH(3)CN gives the corresponding (salen)ruthenium(IV) sulfilamido species [Ru(IV){N(H)SR}(L)(NCCH(3))](PF(6)) (2a, R = (t)Bu; 2b, R = Ph). Metathesis of 2a with NaN(3) in methanol affords [Ru(IV){N(H)S(t)Bu}(L)(N(3))] (2c). 2a undergoes further reaction with 1 equiv of RSH to afford a (salen)ruthenium(III) sulfilamine species, [Ru(III){N(H)(2)S(t)Bu}(L)(NCCH(3))](PF(6)) (3). On the other hand, 2b reacts with 2 equiv of PhSH to give a (salen)ruthenium(III) ammine species [Ru(III)(NH(3))(L)(NCCH(3))](PF(6)) (4); this species can also be prepared by treatment of 1 with 3 equiv of PhSH. The X-ray structures of 2c and 4 have been determined. Kinetic studies of the reaction of 1 with excess RSH indicate the following schemes: 1 --> 2a --> 3 (R = (t)Bu), 1 --> 2b --> 4 (R = Ph). The conversion of 1 to 2 probably involves nucleophilic attack of RSH at the nitrido ligand, followed by a proton shift. The conversions of 2a to 3 and 2b to 4 are proposed to involve rate-limiting H-atom abstraction from RSH by 2a or 2b. 2a and 2b are also able to abstract H atoms from hydrocarbons with weak C-H bonds. These reactions occur with large deuterium isotope effects; the kinetic isotope effect values for the oxidation of 9,10-dihydroanthracene, 1,4-cyclohexadiene, and fluorene by 2a are 51, 56, and 11, respectively.
Cundari, Thomas R; Grimes, Thomas V; Gunnoe, T Brent
2007-10-31
Recent reports of 1,2-addition of C-H bonds across Ru-X (X = amido, hydroxo) bonds of TpRu(PMe3)X fragments {Tp = hydridotris(pyrazolyl)borate} suggest opportunities for the development of new catalytic cycles for hydrocarbon functionalization. In order to enhance understanding of these transformations, computational examinations of the efficacy of model d6 transition metal complexes of the form [(Tab)M(PH3)2X]q (Tab = tris-azo-borate; X = OH, NH2; q = -1 to +2; M = TcI, Re(I), Ru(II), Co(III), Ir(III), Ni(IV), Pt(IV)) for the activation of benzene C-H bonds, as well as the potential for their incorporation into catalytic functionalization cycles, are presented. For the benzene C-H activation reaction steps, kite-shaped transition states were located and found to have relatively little metal-hydrogen interaction. The C-H activation process is best described as a metal-mediated proton transfer in which the metal center and ligand X function as an activating electrophile and intramolecular base, respectively. While the metal plays a primary role in controlling the kinetics and thermodynamics of the reaction coordinate for C-H activation/functionalization, the ligand X also influences the energetics. On the basis of three thermodynamic criteria characterizing salient energetic aspects of the proposed catalytic cycle and the detailed computational studies reported herein, late transition metal complexes (e.g., Pt, Co, etc.) in the d6 electron configuration {especially the TabCo(PH3)2(OH)+ complex and related Co(III) systems} are predicted to be the most promising for further catalyst investigation.
Overview of Solar Radio Bursts and their Sources
NASA Astrophysics Data System (ADS)
Golla, Thejappa; MacDowall, Robert J.
2018-06-01
Properties of radio bursts emitted by the Sun at frequencies below tens of MHz are reviewed. In this frequency range, the most prominent radio emissions are those of solar type II, complex type III and solar type IV radio bursts, excited probably by the energetic electron populations accelerated in completely different environments: (1) type II bursts are due to non-relativistic electrons accelerated by the CME driven interplanetary shocks, (2) complex type III bursts are due to near-relativistic electrons accelerated either by the solar flare reconnection process or by the SEP shocks, and (3) type IV bursts are due to relativistic electrons, trapped in the post-eruption arcades behind CMEs; these relativistic electrons probably are accelerated by the continued reconnection processes occurring beneath the CME. These radio bursts, which can serve as the natural plasma probes traversing the heliosphere by providing information about various crucial space plasma parameters, are also an ideal instrument for investigating acceleration mechanisms responsible for the high energy particles. The rich collection of valuable high quality radio and high time resolution in situ wave data from the WAVES experiments of the STEREO A, STEREO B and WIND spacecraft has provided an unique opportunity to study these different radio phenomena and understand the complex physics behind their excitation. We have developed Monte Carlo simulation techniques to estimate the propagation effects on the observed characteristics of these low frequency radio bursts. We will present some of the new results and describe how one can use these radio burst observations for space weather studies. We will also describe some of the non-linear plasma processes detected in the source regions of both solar type III and type II radio bursts. The analysis and simulation techniques used in these studies will be of immense use for future space based radio observations.
Kim, Jeong Tae; Kim, Youn Hwan; Ghanem, Ali M
2015-11-01
Complex defects present structural and functional challenges to reconstructive surgeons. When compared to multiple free flaps or staged reconstruction, the use of chimeric flaps to reconstruct such defects have many advantages such as reduced number of operative procedures and donor site morbidity as well as preservation of recipient vessels. With increased popularity of perforator flaps, chimeric flaps' harvest and design has benefited from 'perforator concept' towards more versatile and better reconstruction solutions. This article discusses perforator based chimeric flaps and presents a practice based classification system that incorporates the perforator flap concept into "Perforator Chimerism". The authors analyzed a variety of chimeric patterns used in 31 consecutive cases to present illustrative case series and their new classification system. Accordingly, chimeric flaps are classified into four types. Type I: Classical Chimerism, Type II: Anastomotic Chimerism, Type III: Perforator Chimerism and Type IV Mixed Chimerism. Types I on specific source vessel anatomy whilst Type II requires microvascular anastomosis to create the chimeric reconstructive solution. Type III chimeric flaps utilizes the perforator concept to raise two components of tissues without microvascular anastomosis between them. Type IV chimeric flaps are mixed type flaps comprising any combination of Types I to III. Incorporation of the perforator concept in planning and designing chimeric flaps has allowed safe, effective and aesthetically superior reconstruction of complex defects. The new classification system aids reconstructive surgeons and trainees to understand chimeric flaps design, facilitating effective incorporation of this important reconstructive technique into the armamentarium of the reconstruction toolbox. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Krause, Frank; Scheckhuber, Christian Q; Werner, Alexandra; Rexroth, Sascha; Reifschneider, Nicole H; Dencher, Norbert A; Osiewacz, Heinz D
2004-06-18
To elucidate the molecular basis of the link between respiration and longevity, we have studied the organization of the respiratory chain of a wild-type strain and of two long-lived mutants of the filamentous fungus Podospora anserina. This established aging model is able to respire by either the standard or the alternative pathway. In the latter pathway, electrons are directly transferred from ubiquinol to the alternative oxidase and thus bypass complexes III and IV. We show that the cytochrome c oxidase pathway is organized according to the mammalian "respirasome" model (Schägger, H., and Pfeiffer, K. (2000) EMBO J. 19, 1777-1783). In contrast, the alternative pathway is composed of distinct supercomplexes of complexes I and III (i.e. I(2) and I(2)III(2)), which have not been described so far. Enzymatic analysis reveals distinct functional properties of complexes I and III belonging to either cytochrome c oxidase- or alternative oxidase-dependent pathways. By a gentle colorless-native PAGE, almost all of the ATP synthases from mitochondria respiring by either pathway were preserved in the dimeric state. Our data are of significance for the understanding of both respiratory pathways as well as lifespan control and aging.
2017-12-22
Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Langerhans Cell Histiocytosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Mast Cell Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelofibrosis; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenstrom Macroglobulinemia
2015-03-05
Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Disease, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma
2018-02-08
Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Refractory Chronic Lymphocytic Leukemia; Refractory Plasma Cell Myeloma; Waldenstrom Macroglobulinemia; Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Lymphoma; Childhood Myelodysplastic Syndrome; Stage II Contiguous Adult Burkitt Lymphoma; Stage II Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Contiguous Immunoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Contiguous Follicular Lymphoma; Stage II Grade 2 Contiguous Follicular Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Contiguous Mantle Cell Lymphoma; Stage II Non-Contiguous Adult Burkitt Lymphoma; Stage II Non-Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Non-Contiguous Immunoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Non-Contiguous Follicular Lymphoma; Stage II Grade 2 Non-Contiguous Follicular Lymphoma; Stage II Grade 3 Non-Contiguous Follicular Lymphoma; Stage II Non-Contiguous Mantle Cell Lymphoma; Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Burkitt Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Myelodysplastic Syndrome; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Burkitt Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Burkitt Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Burkitt Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Burkitt Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
Armand-Ugon, Mercedes; Ansoleaga, Belen; Berjaoui, Sara; Ferrer, Isidro
2017-01-01
It is well established that mitochondrial damage plays a role in the pathophysiology of Alzheimer's disease (AD). However, studies carried out in humans barely contemplate regional differences with disease progression. To study the expression of selected nuclear genes encoding subunits of the mitochondrial complexes and the activity of mitochondrial complexes in AD, in two regions: the entorhinal cortex (EC) and frontal cortex area 8 (FC). Frozen samples from 148 cases processed for gene expression by qRT-PCR and determination of individual activities of mitochondrial complexes I, II, IV and V using commercial kits and home-made assays. Decreased expression of NDUFA2, NDUFB3, UQCR11, COX7C, ATPD, ATP5L and ATP50, covering subunits of complex I, II, IV and V, occurs in total homogenates of the EC in AD stages V-VI when compared with stages I-II. However reduced activity of complexes I, II and V of isolated mitochondria occurs as early as stages I-II when compared with middle-aged individuals in the EC. In contrast, no alterations in the expression of the same genes and no alterations in the activity of mitochondrial complexes are found in the FC in the same series. Different mechanisms of impaired energy metabolism may occur in AD, one of them, represented by the EC, is the result of primary and early alteration of mitochondria; the other one is probably the result, at least in part, of decreased functional input and is represented by hypometabolism in the FC in AD patients aged 86 or younger. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese.
Nakano, Yoko; Ikemoto, Yu; Jacob, Gunnar; Clahsen, Harald
2016-01-01
The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic) scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i) a past-tense form of the same verb, (ii) a stem-related form with the epenthetic vowel -i, (iii) a semantically-related form, and (iv) a phonologically-related form. Significant priming effects were obtained for prime types (i), (ii), and (iii), but not for (iv). This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i), but not for non-affixal and semantically-related primes of types (ii), and (iii). In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts-orthographically related, but which-in their commonly written form-share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system) affect the processing of (morphologically) complex words.
How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese
Nakano, Yoko; Ikemoto, Yu; Jacob, Gunnar; Clahsen, Harald
2016-01-01
The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic) scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i) a past-tense form of the same verb, (ii) a stem-related form with the epenthetic vowel -i, (iii) a semantically-related form, and (iv) a phonologically-related form. Significant priming effects were obtained for prime types (i), (ii), and (iii), but not for (iv). This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i), but not for non-affixal and semantically-related primes of types (ii), and (iii). In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts—orthographically related, but which—in their commonly written form—share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system) affect the processing of (morphologically) complex words. PMID:27065895
Effect of Sea buckthorn on liver fibrosis: A clinical study
Gao, Ze-Li; Gu, Xiao-Hong; Cheng, Feng-Tao; Jiang, Fo-Hu
2003-01-01
AIM: To appraise the effect of sea buckthorn (Hippophae rhamnoides) on cirrhotic patients. METHODS: Fifty cirrhotic patients of Child-Pugh grade A and B were randomly divided into two groups: Group A as the treated group (n = 30), taking orally the sea buckthorn extract, 15 g 3 times a day for 6 mo. Group B as the control group (n = 18), taking vitamin B complex one tablet, 3 times a day for 6 mo. The following tests were performed before and after the treatment in both groups to determine LN, HA, collagens types III and IV, cytokines IL-6 and TNFα, liver serum albumin, total bile acid, ALT, AST and prothrombin time. RESULTS: The serum levels of TNFα, IL-6, laminin and type IV collagen in group A were significantly higher than those in the control group. After a course of sea buckthorn treatment, the serum levels of LN, HA, collagen types III and IV, total bile acid (TBA) decreased significantly as compared with those before and after treatment in the control group. The sea buckthorn notably shortened the duration for normalization of aminotransferases. CONCLUSION: Sea buckthorn may be a hopeful drug for prevention and treatment of liver fibrosis. PMID:12854177
Zheng, Ming; Chen, Fang-Yuan; Tian, Jia-Nan; Pan, Qing-Jiang
2018-04-02
To provide deep insight into cation-cation interactions (CCIs) involving hexavalent actinyl species that are major components in spent nuclear fuel and pose important implications for the effective removal of radiotoxic pollutants in the environment, a series of homo- and heterobimetallic actinide complexes supported by cyclopentadienyl (Cp) and polypyrrolic macrocycle (H 4 L) ligands were systematically investigated using relativistic density functional theory. The metal sort in both parts of (THF)(H 2 L)(OAn VI O) and (An') III Cp 3 from U to Np to Pu, as well as the substituent bonding to Cp from electron-donating Me to H to electron-withdrawing Cl, SiH 3 , and SiMe 3 , was changed. Over 0.70 electrons are unraveled to transfer from the electron-rich U III to the electron-deficient An VI of the actinyl moiety, leading to a more stable An V -U IV isomer; in contrast, uranylneptunium and uranylplutonium complexes behave as electron-resonance structures between VI-III and V-IV. These were further corroborated by geometrical and electronic structures. The energies of CCIs (i.e., O exo -An' bonds) were calculated to be -19.6 to -41.2 kcal/mol, affording those of OUO-Np (-23.9 kcal/mol) and OUO-Pu (-19.6 kcal/mol) with less electron transfer (ET) right at the low limit. Topological analyses of the electron density at the O exo -An' bond critical points demonstrate that the CCIs are ET or dative bonds in nature. A positive correlation has been built between the CCIs' strength and corresponding ET amount. It is concluded that the CCIs of O exo -An' are driven by the electrostatic attraction between the actinyl oxo atom (negative) and the actinide ion (positive) and enhanced by their ET. Finally, experimental syntheses of (THF)(H 2 L)(OU VI O)(An') III Cp 3 (An' = U and Np) were well reproduced by thermodynamic calculations that yielded negative free energies in a tetrahydrofuran solution but a positive one for their uranylplutonium analogue, which was synthetically inaccessible. So, our thermodynamics would provide implications for the synthetic possibility of other theoretically designed bimetallic actinide complexes.
2017-04-17
Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Aggressive NK-cell Leukemia; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; HIV Infection; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Central Nervous System Lymphoma; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
Postils, Verònica; Company, Anna; Solà, Miquel; Costas, Miquel; Luis, Josep M
2015-09-08
The reaction mechanisms for alkane hydroxylation catalyzed by non-heme Fe(V)O complexes presented in the literature vary from rebound stepwise to concerted highly asynchronous processes. The origin of these important differences is still not completely understood. Herein, in order to clarify this apparent inconsistency, the hydroxylation of a series of alkanes (methane and substrates bearing primary, secondary, and tertiary C-H bonds) through a Fe(V)O species, [Fe(V)(O)(OH)(PyTACN)](2+) (PyTACN = 1-(2'-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane), has been computationally examined at the gas phase and in acetonitrile solution. The initial breaking of the C-H bond can occur via hydrogen atom transfer (HAT), leading to an intermediate where there is an interaction between the radical substrate and [Fe(IV)(OH)2(PyTACN)](2+), or through hydride transfer to form a cationic substrate interacting with the [Fe(III)(OH)2(PyTACN)](+) species. Our calculations show the following: (i) except for methane in the rest of the alkanes studied, the intermediate formed by R(+) and [Fe(III)(OH)2(PyTACN)](+) is more stable than that involving the alkyl radical and the [Fe(IV)(OH)2(PyTACN)](2+) complex; (ii) in spite of (i), the first step of the reaction mechanism for all substrates is a HAT instead of hydride abstraction; (iii) the HAT is the rate-determining step for all analyzed cases; and (iv) the barrier for the HAT decreases along methane → primary → secondary → tertiary carbon. The second part of the reaction mechanism corresponds to the rebound process. Therefore, the stereospecific hydroxylation of alkane C-H bonds by non-heme Fe(V)(O) species occurs through a rebound stepwise mechanism that resembles that taking place at heme analogues. Finally, our study also shows that, to properly describe alkane hydroxylation processes mediated by Fe(V)O species, it is essential to consider the solvent effects during geometry optimizations. The use of gas-phase geometries explains the variety of mechanisms for the hydroxylation of alkanes reported in the literature.
Afatinib in Advanced Refractory Urothelial Cancer
2017-09-28
Distal Urethral Cancer; Proximal Urethral Cancer; Recurrent Bladder Cancer; Recurrent Urethral Cancer; Stage III Bladder Cancer; Stage III Urethral Cancer; Stage IV Bladder Cancer; Stage IV Urethral Cancer; Ureter Cancer
14 CFR 61.5 - Certificates and ratings issued under this part.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (iii) Glider. (iv) Lighter-than-air. (v) Powered-lift. (vi) Powered parachute. (vii) Weight-shift...—Airplane. (ii) Instrument—Helicopter. (iii) Instrument—Powered-lift. (c) The following ratings are placed.... (iii) Glider. (iv) Powered-lift. (2) Airplane class ratings— (i) Single-engine. (ii) Multiengine. (3...
14 CFR 61.5 - Certificates and ratings issued under this part.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (iii) Glider. (iv) Lighter-than-air. (v) Powered-lift. (vi) Powered parachute. (vii) Weight-shift...—Airplane. (ii) Instrument—Helicopter. (iii) Instrument—Powered-lift. (c) The following ratings are placed.... (iii) Glider. (iv) Powered-lift. (2) Airplane class ratings— (i) Single-engine. (ii) Multiengine. (3...
NASA Astrophysics Data System (ADS)
Yao, Zhiliang; Wu, Bobo; Wu, Yunong; Cao, Xinyue; Jiang, Xi
2015-12-01
To mitigate NOx and other emissions from diesel vehicles, China I, China II, China III and China IV emissions standards for new vehicles have been implemented nationwide. However, recent on-road measurements using a portable emission measurement system (PEMS) have revealed no significant reductions in the NOx emissions factors of diesel trucks due to the change from China II emissions standards to the more stringent China III standards. Thus, it is important to understand the effect of the China IV emissions standard on NOx emissions. In this study, nine China III and nine China IV diesel trucks of three sizes (light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs)) were tested on real roads in Beijing using a PEMS. Compared to the tested China III diesel trucks, the China IV diesel trucks showed significant reductions of the average NOx emissions factors in terms of both distance travelled and fuel consumption. However, the driving conditions had an important impact on the reduction. Under non-highway driving (NHD), several of the tested China IV diesel trucks experienced no reduction or an increase in NOx emissions compared to their China III counterparts. The NOx emissions factors of the 18 tested diesel trucks under NHD were on average 1.5-times greater than those under highway driving (HD), and the effects on NOx emissions removal from China III to China IV diesel trucks were greater under HD than under NHD. In addition, no significant reduction of NOx based on fuel consumption for China IV diesel trucks was observed for MDDTs and HDDTs compared to the test results for similar China II vehicles reported in a previous study. To reduce NOx emissions in China, additional control measures of vehicular NOx emissions should be formulated.
2015-06-03
Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia
Snohomish Estuary Wetlands Study Volume III. Classification and Mapping
1978-07-01
Marine plant communities form the basis for some of the most complex i food webs known to man. Because of their complexity any destruction of these plant... NCV ) Ř fv;1 4 CV r% . coI * ".444 Ř m- 0mf n4 ~ ’ oC- . -4c C4 C CJL t o% P o I-""C4enc n S qw qt "* *n *nL P o% 0zwk oU a "C-4 2 C" Iv3gMNIV~ I.z -I
Then we all fall down: fall mortality by trauma center level.
Roubik, Daniel; Cook, Alan D; Ward, Jeanette G; Chapple, Kristina M; Teperman, Sheldon; Stone, Melvin E; Gross, Brian; Moore, Forrest O
2017-09-01
Ground-level falls (GLFs) are the predominant mechanism of injury in US trauma centers and accompany a spectrum of comorbidities, injury severity, and physiologic derangement. Trauma center levels define tiers of capability to treat injured patients. We hypothesized that risk-adjusted observed-to-expected mortality (O:E) by trauma center level would evaluate the degree to which need for care was met by provision of care. This retrospective cohort study used National Trauma Data Bank files for 2007-2014. Trauma center level was defined as American College of Surgeons (ACS) level I/II, ACS III/IV, State I/II, and State III/IV for within-group homogeneity. Risk-adjusted expected mortality was estimated using hierarchical, multivariable regression techniques. Analysis of 812,053 patients' data revealed the proportion of GLF in the National Trauma Data Bank increased 8.7% (14.1%-22.8%) over the 8 y studied. Mortality was 4.21% overall with a three-fold increase for those aged 60 y and older versus younger than 60 y (4.93% versus 1.46%, P < 0.001). O:E was lowest for ACS III/IV, (0.973, 95% CI: 0.971-0.975) and highest for State III/IV (1.043, 95% CI: 1.041-1.044). Risk-adjusted outcomes can be measured and meaningfully compared among groups of trauma centers. Differential O:E for ACS III/IV and State III/IV centers suggests that factors beyond case mix alone influence outcomes for GLF patients. More work is needed to optimize trauma care for GLF patients across the spectrum of trauma center capability. Copyright © 2017 Elsevier Inc. All rights reserved.
2015-10-13
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Intraocular Lymphoma; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Chronic Lymphocytic Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Central Nervous System Hodgkin Lymphoma; Secondary Central Nervous System Non-Hodgkin Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
Synthesis, characterization and antimicrobial investigation of some moxifloxacin metal complexes
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; El-Attar, Mohamed S.
2011-12-01
The new complexes of moxifloxacin (MOX), with Ti(IV), Y(III), Pd(II) and Ce(IV) have been synthesized. These complexes were then characterized by melting point, magnetic studies and spectroscopic techniques involving infrared spectra (IR), UV-Vis, 1H NMR. C, H, N and halogen elemental analysis and thermal behavior of complexes also investigated. The results suggested that the molar ratio for all complexes is M: MOX = 1:2 where moxifloxacin acts as a bidentate via one of the oxygen atoms of the carboxylate group and through the ring carbonyl group and the complexes have the following formula [Ti(MOX) 2](SO 4) 2·7H 2O, [Y(MOX) 2Cl 2]Cl·12H 2O, [Pd(MOX) 2(H 2O) 2]Cl 2·6H 2O and [Ce(MOX) 2](SO 4) 2·2H 2O. The activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DrTG) curves, using Coats-Redfern (CR) and Horowitz-Metzger (HM) methods. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and three Gram-negative bacteria and compared with the reference drug moxifloxacin. The antibacterial activity of Ti(IV) complex is significant for E. coli K32 and highly significant for S. aureus K1, B. subtilis K22, Br. otitidis K76, P. aeruginosa SW1 and K. oxytoca K42 compared with free moxifloxacin.
Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju
2016-04-05
High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. Copyright © 2016 Elsevier B.V. All rights reserved.
30 CFR 57.22201 - Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22201 Section 57.22201 Mineral Resources MINE SAFETY AND HEALTH....22201 Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). All mines shall...
30 CFR 57.22501 - Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22501 Section 57.22501 Mineral Resources MINE SAFETY AND... Illumination § 57.22501 Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines...
30 CFR 57.22501 - Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22501 Section 57.22501 Mineral Resources MINE SAFETY AND... Illumination § 57.22501 Personal electric lamps (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines...
30 CFR 57.22227 - Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22227 Section 57.22227 Mineral Resources MINE SAFETY AND... Ventilation § 57.22227 Approved testing devices (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). (a...
30 CFR 57.22201 - Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). 57.22201 Section 57.22201 Mineral Resources MINE SAFETY AND HEALTH....22201 Mechanical ventilation (I-A, I-B, I-C, II-A, II-B, III, IV, V-A, and V-B mines). All mines shall...
40 CFR 147.251 - EPA-administered program-Class I, III, IV and V wells and Indian lands.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., IV and V wells and Indian lands. 147.251 Section 147.251 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS California § 147.251 EPA-administered program—Class I, III, IV and V wells and...
40 CFR 147.301 - EPA-administered program-Class I, III, IV, V wells and Indian lands.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., IV, V wells and Indian lands. 147.301 Section 147.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Colorado § 147.301 EPA-administered program—Class I, III, IV, V wells and Indian...
46 CFR 164.019-3 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Guard-approved PFDs. Commandant means the Chief of the Lifesaving and Fire Safety Division, Office of Engineering and Design Standards, U.S. Coast Guard. Address: Commandant (CG-ENG-4), Attn: Lifesaving and Fire... and III. 3 III. 4B IV (all Ring Buoys). 4BC IV (Buoyant Cushions). 4RB IV (Recreational Ring Buoys...
46 CFR 164.019-3 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Guard-approved PFDs. Commandant means the Chief of the Lifesaving and Fire Safety Division, Office of Engineering and Design Standards, U.S. Coast Guard. Address: Commandant (CG-ENG-4), Attn: Lifesaving and Fire... and III. 3 III. 4B IV (all Ring Buoys). 4BC IV (Buoyant Cushions). 4RB IV (Recreational Ring Buoys...
40 CFR 147.251 - EPA-administered program-Class I, III, IV and V wells and Indian lands.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., IV and V wells and Indian lands. 147.251 Section 147.251 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS California § 147.251 EPA-administered program—Class I, III, IV and V wells and...
40 CFR 147.301 - EPA-administered program-Class I, III, IV, V wells and Indian lands.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., IV, V wells and Indian lands. 147.301 Section 147.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Colorado § 147.301 EPA-administered program—Class I, III, IV, V wells and Indian...
Facile CO Cleavage by a Multimetallic CsU2 Nitride Complex.
Falcone, Marta; Kefalidis, Christos E; Scopelliti, Rosario; Maron, Laurent; Mazzanti, Marinella
2016-09-26
Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU(IV) -N-U(IV) core to yield CsU(III) (OTf) and [MeN=U(V) ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Indefinitely stable iron(IV) cage complexes formed in water by air oxidation
NASA Astrophysics Data System (ADS)
Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.
2017-01-01
In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.
Indefinitely stable iron(IV) cage complexes formed in water by air oxidation.
Tomyn, Stefania; Shylin, Sergii I; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O
2017-01-19
In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.
Indefinitely stable iron(IV) cage complexes formed in water by air oxidation
Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.
2017-01-01
In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge. PMID:28102364
Barros, Juliana Helena S; Xavier, Samanta Cristina C; Bilac, Daniele; Lima, Valdirene Santos; Dario, Maria Augusta; Jansen, Ana Maria
2017-08-01
Trypanosoma cruzi is a parasitic protozoan responsible for Chagas disease. Seven different Discrete Typing Units (DTUs) of T. cruzi are currently identified in nature: TcI-TcVI, and TcBat whose distribution patterns in nature, hosts/reservoirs and eco-epidemiological importance are still little known. Here, we present novel data on the geographic distribution and diversity of mammalian hosts and vectors of T. cruzi DTUs TcIII and TcIV. In this study, we analyzed 61 T. cruzi isolates obtained from 18 species of mammals (five orders) and two Hemiptera genera. Samples were collected from five Brazilian biomes (Pantanal, Caatinga, Cerrado, Atlantic Rainforest, and Amazon) previously characterized as Z3 or mixed infection (TcI-Z3) by mini-exon gene PCR. To identify TcIII and TcIV genotypes, we applied restriction fragment length polymorphism analysis to the PCR-amplified histone 3 gene. DTUs TcIII and TcIV were identified in single and mixed infections from wide dispersion throughout five Brazilian biomes studied, with TcIV being the most common. Pantanal was the biome that displayed the largest number of samples characterized as TcIII and TcIV in single and mixed infections, followed by Atlantic Rainforest and Amazon. Species from the Didelphimorphia order displayed the highest frequency of infection and were found in all five biomes. We report, for the first time, the infection of a species of the Artiodactyla order by DTU TcIII. In addition, we describe new host species: five mammals (marsupials and rodents) and two genera of Hemiptera. Our data indicate that DTUs TcIII and TcIV are more widespread and infect a larger number of mammalian species than previously thought. In addition, they are transmitted in restricted foci and cycles, but in different microhabitats and areas with distinct ecological profiles. Finally, we show that DTUs TcIII and TcIV do not present any specific association with biomes or host species. Copyright © 2017. Published by Elsevier B.V.
Effects of acute brainstem compression on auditory brainstem response in the guinea pig.
Tu, T Y; Yu, L H; Chiu, J H; Shu, C H; Shiao, A S; Lien, C F
1998-11-01
The purpose of this study was to establish the norm for parameters of auditory brainstem response (ABR) in the guinea pig and to investigate if acute brainstem compression results in significant changes to these parameters. Thirty-six guinea pigs with positive Preyer's reflex were anesthetized. A craniectomy was performed to remove the right occipital bone and the dura mater was opened to expose the brain, cerebellum and cerebellopontine angle (CPA). A small inflatable balloon was placed into the CPA precisely and slowly. ABR was recorded before incision of the skin as a baseline value, after placement and after inflation of the balloon with water at 0.1-ml intervals. Five stable peaks were recorded in 27 experimental animals. When the balloon was inflated with 0.1 ml water, the absolute latency (AL) of peaks IV and V and the interpeak latency (IPL) of peaks III and IV, and IV and V were prolonged. The amplitude ratios (AR) of peaks II, III, IV and V to peak I decreased. Inflation of the balloon with 0.2 ml of water caused further elongation of ALs of peaks IV and V and decreases in each AR. When the balloon volume increased to 0.3 ml, peak V became unrecognizable and peaks III and IV showed significant elongation of AL; peaks I and II did not show significant change in ALs. Further increase of the balloon volume to 0.4 ml resulted in disappearance of peaks III, IV and V; AL of peak II was also elongated. However, the amplitude and AL of peak I remained unchanged. Similar changes were observed in IPLs. This study establishes the norm of parameters of ABR in guinea pigs and demonstrates that acute brainstem compression causes elongation of ALs and IPLs of peaks II, III, IV and V. This suggests that peaks II, III, IV and V come from the brainstem and that peak I is not generated from the brainstem in the guinea pig.
Level III and IV Ecoregions by State
Information and links to downloadable maps and datasets for Level III and IV ecoregions, listed by state. Ecoregions are areas of general similarity in the type, quality, and quantity of environmental resources.
Level III and IV Ecoregions by EPA Region
Information and downloadable maps and datasets for Level III and IV ecoregions, listed by EPA region. Ecoregions are areas of general similarity in the type, quality, and quantity of environmental resources.
Seol, Yeonee; Hardin, Ashley H.; Strub, Marie-Paule; Charvin, Gilles; Neuman, Keir C.
2013-01-01
Type II topoisomerases are essential enzymes that regulate DNA topology through a strand-passage mechanism. Some type II topoisomerases relax supercoils, unknot and decatenate DNA to below thermodynamic equilibrium. Several models of this non-equilibrium topology simplification phenomenon have been proposed. The kinetic proofreading (KPR) model postulates that strand passage requires a DNA-bound topoisomerase to collide twice in rapid succession with a second DNA segment, implying a quadratic relationship between DNA collision frequency and relaxation rate. To test this model, we used a single-molecule assay to measure the unlinking rate as a function of DNA collision frequency for Escherichia coli topoisomerase IV (topo IV) that displays efficient non-equilibrium topology simplification activity, and for E. coli topoisomerase III (topo III), a type IA topoisomerase that unlinks and unknots DNA to equilibrium levels. Contrary to the predictions of the KPR model, topo IV and topo III unlinking rates were linearly related to the DNA collision frequency. Furthermore, topo III exhibited decatenation activity comparable with that of topo IV, supporting proposed roles for topo III in DNA segregation. This study enables us to rule out the KPR model for non-equilibrium topology simplification. More generally, we establish an experimental approach to systematically control DNA collision frequency. PMID:23460205
Chatterjee, Debabrata; Banerjee, Priyabrata; Bose, Jagadeesh C K; Mukhopadhyay, Sudit
2012-03-07
The oxidation of [Ru(II)(tpy)(pic)H(2)O](+) (tpy = 2,2',6',2''-terpyridine; pic(-) = picolinate) by peroxidisulfate (S(2)O(8)(2-)) as precursor oxidant has been investigated kinetically by UV-VIS, IR and EPR spectroscopy. The overall oxidation of Ru(II)- to Ru(IV)-species takes place in a consecutive manner involving oxidation of [Ru(II)(tpy)(pic)H(2)O](+) to [Ru(III)(tpy)(pic)(OH)](+), and its further oxidation of to the ultimate product [Ru(IV)(tpy)(pic)(O)](+) complex. The time course of the reaction was followed as a function of [S(2)O(8)(2-)], ionic strength (I) and temperature. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. Anti-microbial activity of Ru(II)(tpy)(pic)H(2)O](+) complex by inhibiting the growth of Escherichia coli DH5α in presence of peroxydisulfate has been explored, and the results of the biological studies have been discussed in terms of the [Ru(IV)(tpy)(pic)(O)](+) mediated cleavage of chromosomal DNA of the bacteria.
Manganese inhibition of microbial iron reduction in anaerobic sediments
Lovley, D.R.; Phillips, E.J.P.
1988-01-01
Potential mechanisms for the lack of Fe(II) accumulation in Mn(IV)-containing anaerobic sediments were investigated. The addition of Mn(IV) to sediments in which Fe(II) reduction was the terminal electron-accepting process removed all the pore-water Fe(II), completely inhibited net Fe(III) reduction, and stimulated Mn(IV) reduction. Results demonstrate that preferential reduction of Mn(IV) by FE(III)-reducing bacteria cannot completely explain the lack of Fe(II) accumulation in anaerobic, Mn(IV)-containing sediments, and indicate that Mn(IV) oxidation of Fe(II) is the mechanism that ultimately prevents Fe(II) accumulation. -Authors
18F-FSPG PET/CT for Cancer Patients on Therapy
2017-02-15
B-Cell Neoplasm; Estrogen Receptor Negative; HER2/Neu Negative; Metastatic Renal Cell Cancer; Progesterone Receptor Negative; Stage III Mesothelioma; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Mesothelioma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Triple-Negative Breast Carcinoma
2014-12-18
Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer
40 CFR 80.1457 - Petition process for aggregate compliance approach for foreign countries.
Code of Federal Regulations, 2013 CFR
2013-07-01
... data. (ii) Aerial photography. (iii) Census data. (iv) Agricultural survey data. (v) Agricultural...: (i) Satellite imagery or data. (ii) Aerial photography. (iii) Census data. (iv) Agricultural surveys...
40 CFR 80.1457 - Petition process for aggregate compliance approach for foreign countries.
Code of Federal Regulations, 2011 CFR
2011-07-01
... data. (ii) Aerial photography. (iii) Census data. (iv) Agricultural survey data. (v) Agricultural...: (i) Satellite imagery or data. (ii) Aerial photography. (iii) Census data. (iv) Agricultural surveys...
40 CFR 80.1457 - Petition process for aggregate compliance approach for foreign countries.
Code of Federal Regulations, 2014 CFR
2014-07-01
... data. (ii) Aerial photography. (iii) Census data. (iv) Agricultural survey data. (v) Agricultural...: (i) Satellite imagery or data. (ii) Aerial photography. (iii) Census data. (iv) Agricultural surveys...
40 CFR 80.1457 - Petition process for aggregate compliance approach for foreign countries.
Code of Federal Regulations, 2012 CFR
2012-07-01
... data. (ii) Aerial photography. (iii) Census data. (iv) Agricultural survey data. (v) Agricultural...: (i) Satellite imagery or data. (ii) Aerial photography. (iii) Census data. (iv) Agricultural surveys...
Panda, Dulal; Kunwar, Ambarish
2016-01-01
Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII >> αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher binding affinities for tubulin isotypes. PMID:27227832
Sehouli, Jalid; Tomè, Oliver; Dimitrova, Desislava; Camara, Oumar; Runnebaum, Ingo Bernhard; Tessen, Hans Werner; Rautenberg, Beate; Chekerov, Radoslav; Muallem, Mustafa Zelal; Lux, Michael Patrick; Trarbach, Tanja; Gitsch, Gerald
2017-03-01
In recurrent ovarian cancer (ROC), there is a high demand on effective therapies with a mild toxicity profile. Treosulfan is an alkylating agent approved as oral (p.o.) and intravenous (i.v.) formulation for the treatment of recurrent ovarian cancer. Data on safety and efficacy for either formulation are rare. For the first time we conducted a randomized phase III study comparing both formulations in women with ROC. Patients having received at least two previous lines of chemotherapy were randomly assigned to one of two treatment arms: treosulfan i.v. 7000 mg/m 2 d1 q4w or treosulfan p.o. 600 mg/m 2 d1-28 q8w. Primary endpoint was safety regarding hematological and gastrointestinal toxicity grade III/IV, secondary endpoints were other toxicities, clinical benefit rate (CBR), time to progression (TTP), overall survival (OS) and quality of life. 250 patients were treated with treosulfan i.v. (128) or treosulfan p.o. (122). In general treosulfan therapy was well tolerated in both treatment arms. Leukopenia grade III/IV occurred significantly more frequently in the p.o. arm (3.9% i.v. arm, 14.8% p.o. arm, p = 0.002). Other toxicities were similar in both arms. CBR was comparable between arms (41.4% i.v. arm, 36.9% p.o. arm). No difference in TTP (3.7 months i.v. arm, 3.5 months p.o. arm) or OS (13.6 months i.v. arm, 10.4 months p.o. arm, p = 0.087) occurred. Given the safety and efficacy results treosulfan is an acceptable option for heavily pretreated OC patients. Regarding the toxicity profile the i.v. application was better tolerated with less grade III and IV toxicities.
Zhang, Dongliang; Li, Mei; Gao, Kai; Li, Jianfei; Yan, Yujun; Liu, Xingyu
2017-11-01
In this study, we investigated an alternative to the conventional hydrochloric acid leaching of roasted bastnaesite. The studies suggested that the rare earth oxyfluorides in non-oxidatively roasted bastnaesite can be selectively leached only at elevated temperatures Further, the Ce(IV) in oxidatively roasted bastnaesite does not leach readily at low temperatures, and it is difficult to induce it to form a complex with F - ions in order to increase the leaching efficiency. Moreover, it is inevitably reduced to Ce(III) at elevated temperatures. Thus, the ultrasonically-assisted hydrochloric acid leaching of non-oxidatively roasted bastnaesite was studied in detail, including, the effects of several process factors and the, physical and chemical mechanisms underlying the leaching process. The results show that the leaching rate for the ultrasonically assisted process at 55°C (65% rare earth oxides) is almost the same as that for the conventional leaching process at 85°C. Based on the obtained results, it is concluded that ultrasonic cavitation plays a key role in the proposed process, resulting not only in a high shear stress, which damages the solid surface, but also in the formation of hydroxyl radicals (OH) and hydrogen peroxide (H 2 O 2 ). Standard electrode potential analysis and experimental results indicate that Ce(III) isoxidized by the hydroxyl radicals to Ce(IV), which can be leached with F - ions in the form of a complex, and that the Ce(IV) can subsequently be reduced to Ce(III) by the H 2 O 2. This prevents the Cl - ions in the solution from being oxidized to form chlorine. These results imply that the ultrasonically-assisted process can be used for the leaching of non-oxidatively roasted bastnaesite at low temperatures in the absence of a reductant. Copyright © 2017 Elsevier B.V. All rights reserved.
Progress in the chemistry of chromium(V) doping agents used in polarized target materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumpolc, M.; Hill, D.; Struhrmann, H.B.
1990-01-01
We wish to report progress in two areas of the chromium (V)-based doping agents: Two commonly used chromium (V) complexes, I and II, have been synthesized in perdeuterated form (i.e., all hydrogens replaced by deuterium). They are sodium bis(2-ethyl-2-deuteroxy-butyrato)oxochromate(V)monodeuterate, IV, (acronym EDBA-Cr(V)), and sodium bis(2-deuteroxy-2-methylpropionato)oxochromate(V), III, (acronym DMPA-Cr(V)). A synthetic route leading to the preparation of stable, chromium(III)-free solutions of chromium(V) in diols (1,2-ethanediol/ethylene glycol/and 1,2-propanediol/propylene glycol/) has been outlined.
75 FR 70230 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... Numbers: ER10-2411-001. Applicants: Meadow Lake Wind Farm III LLC. Description: Meadow Lake Wind Farm III...: ER10-2412-001. Applicants: Meadow Lake Wind Farm IV LLC. Description: Meadow Lake Wind Farm IV LLC submits tariff filing per 35: Meadow Lake Wind Farm IV LLC MBR Tariff to be effective 8/26/2010. Filed...
Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa
2015-01-01
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. PMID:26324721
Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa
2015-10-23
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Selenium adsorption to aluminum-based water treatment residuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.
2009-09-02
Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR inmore » an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.« less
Houreld, Nicolette N; Masha, Roland T; Abrahamse, Heidi
2012-07-01
Low-intensity laser irradiation (LILI) has been used to modulate a variety of biological processes, including diabetic wound healing. The mechanism of action is thought to exist primarily with the mitochondria. This study aimed to determine the effect of irradiation on normal, diabetic, and ischemic mitochondrial electron transport chain (ETC) complexes. Normal, diabetic and ischemic human skin fibroblast mitochondria were irradiated in vitro at a wavelength of 660 nm and a fluence of either 5 or 15 J/cm(2). Non-irradiated mitochondria served as controls. Enzyme activities of mitochondrial complexes I, II, III, and IV were determined immediately post-irradiation. Normal, diabetic, and ischemic cells were irradiated and adenosine triphosphate (ATP) and active mitochondria were determined by luminescence and fluorescent microscopy, respectively. Irradiated diabetic mitochondria at a fluence of 15 J/cm(2) showed a significant decrease in complex III activity (P < 0.05). Normal (P < 0.01) and diabetic (P < 0.05) mitochondria irradiated at either 5 or 15 J/cm(2) showed a significant increase in complex IV activity. ATP results showed a significant increase in irradiated normal cells (5 J/cm(2); P < 0.05) and diabetic cells (15 J/cm(2); P < 0.01). There was a higher accumulation of active mitochondria in irradiated cells than non-irradiated cells. Irradiation at 660 nm has the ability to influence mitochondrial enzyme activity, in particular cytochrome c oxidase. This leads to increased mitochondrial activity and ATP synthesis. Copyright © 2012 Wiley Periodicals, Inc.
AN INTEGRATED PERSPECTIVE ON THE ASSESSMENT OF TECHNOLOGIES: INTEGRATE-HTA.
Wahlster, Philip; Brereton, Louise; Burns, Jacob; Hofmann, Björn; Mozygemba, Kati; Oortwijn, Wija; Pfadenhauer, Lisa; Polus, Stephanie; Rehfuess, Eva; Schilling, Imke; van der Wilt, Gert Jan; Gerhardus, Ansgar
2017-01-01
Current health technology assessment (HTA) is not well equipped to assess complex technologies as insufficient attention is being paid to the diversity in patient characteristics and preferences, context, and implementation. Strategies to integrate these and several other aspects, such as ethical considerations, in a comprehensive assessment are missing. The aim of the European research project INTEGRATE-HTA was to develop a model for an integrated HTA of complex technologies. A multi-method, four-stage approach guided the development of the INTEGRATE-HTA Model: (i) definition of the different dimensions of information to be integrated, (ii) literature review of existing methods for integration, (iii) adjustment of concepts and methods for assessing distinct aspects of complex technologies in the frame of an integrated process, and (iv) application of the model in a case study and subsequent revisions. The INTEGRATE-HTA Model consists of five steps, each involving stakeholders: (i) definition of the technology and the objective of the HTA; (ii) development of a logic model to provide a structured overview of the technology and the system in which it is embedded; (iii) evidence assessment on effectiveness, economic, ethical, legal, and socio-cultural aspects, taking variability of participants, context, implementation issues, and their interactions into account; (iv) populating the logic model with the data generated in step 3; (v) structured process of decision-making. The INTEGRATE-HTA Model provides a structured process for integrated HTAs of complex technologies. Stakeholder involvement in all steps is essential as a means of ensuring relevance and meaningful interpretation of the evidence.
2017-09-08
Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
Seeking Ways to Break Energy Storage Limits
2016-05-02
system sizes that we simulated. 15. SUBJECT TERMS density functional theory, guest-host structures, carbon nanotubes , free atom limit, geometry...unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Xenon-Buckminsterfullerene (Xe-C60) 3 3. Xe-C980 4 4. Xe-Carbon Nanotube (CNT) 4 5...calculations. 4. Xe-Carbon Nanotube (CNT) Because of our inability to attain guest-host complexes that would achieve energies in excess of the
Lightweight Payload for High Altitude Balloons
1991-05-21
common at microwave frequencies. Examples of such transponders are DSCS-fl, DSCS-Ill, NATO- III, Nato-IV, and Skynet-4.I Rx Translation Tx Wideband BPF ...Narrowband Limiter BPF Bank BankI Figure 2.4-2. Channelized Transponder ArchitectureI The disadvantage of channelization is the hardware complexity. We...excessive electromagnetic interference (EMI), either conducted or radiated, from one part of the circuit to another. There are three major guidelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadt, Ryan G.; Hayes, Dugan; Brodsky, Casey N.
2016-08-12
In this paper, the formation of high-valent states is a key factor in making highly active transition metal-based catalysts of the oxygen-evolving reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which is difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co 4O 4 cubanes, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combinationmore » of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allow Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the ligand field environment and covalency of the t 2g-based redox active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co 4O 4. Guided by the data, calculations show electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co 4O 4 to CoM 3O 4 structures (M = redox-inactive metal) defines electronic structure contri-butions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E 0 over hundreds of mVs.« less
Assembly and Properties of Heterobimetallic CoII/III/CaII Complexes with Aquo and Hydroxo Ligands
Lacy, David C.; Park, Young Jun; Ziller, Joseph W.; Yano, Junko; Borovik, A. S.
2012-01-01
The use of water as a reagent in redox-driven reactions is advantageous because it is abundant and environmentally compatible. The conversion of water to dioxygen in photosynthesis illustrates one example, in which a redox-inactive CaII ion and four manganese ions are required for function. In this report we describe the stepwise formation of two new heterobimetallic complexes containing CoII/III and CaII ions, and either hydroxo or aquo ligands. The preparation of a 4-coordinate CoII synthon was achieved with the tripodal ligand, N,N′,N″-[2,2′,2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido, [MST]3−. Water binds to [CoIIMST]− to form the 5-coordinate [CoIIMST(OH2)]− complex that was used to prepare the CoII/CaII complex [CoIIMST(μ-OH2)CaII⊂15-crown-5(OH2)]+ ([CoII(μ-OH2)CaIIOH2]+). [CoII(μ-OH2)CaOH2]+ contained two aquo ligands, one bonded to the CaII ion and one bridging between the two metal ions and thus represents an unusual example of a heterobimetallic complex containing 2 aquo ligands spanning different metal ions. Both aquo ligands formed intramolecular hydrogen bonds with the [MST]3− ligand. [CoIIMST(OH2)]− was oxidized to form [CoIIIMST(OH2)] that was further converted to [CoIIIMST(μ-OH)CaII⊂15-crown-5]+ ([CoIII(μ-OH)CaII]+) in the presence of base and CaIIOTf2/15-crown-5. [CoIII(μ-OH)CaII]+ was also synthesized from the oxidation of [CoIIMST]− with PhIO in the presence of CaIIOTf2/15-crown-5. Allowing [CoIII(μ-OH)CaII]+ to react with diphenylhydrazine afforded [CoII(μ-OH2)CaIIOH2]+ and azobenzene. Additionally, the characterization of [CoIII(μ-OH)CaII]+ provides another formulation for the previously reported CoIV–oxo complex, [(TMG3tren)CoIV(μ-O)ScIII(OTf)3]2+ to one that instead could contain a CoIII–OH unit. PMID:22998407
40 CFR 211.210-2 - Labeling requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... constant); (ii) Ear cup volume or shape; (iii) Mounting of ear cup on head band; (iv) Ear cushion; (v... tension (spring constant); (ii) Mounting of plug on head band; (iii) Shape of plug; (iv) Material...
Level III and IV Ecoregions of the Continental United States
Information and downloadable maps and datasets for Level III and IV ecoregions of the continental United States. Ecoregions are areas of general similarity in the type, quality, and quantity of environmental resources.
Vincent, Carr D; Vogel, Joseph P
2006-08-01
Many bacterial pathogens require a functional type IV secretion system (T4SS) for virulence. Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Dot/Icm T4SS to inject a large number of protein substrates into its host, thereby altering phagosome trafficking. The L. pneumophila T4SS substrate SdeA has been shown to require the accessory factor IcmS for its export. IcmS, defined as a type IV adaptor, exists as a heterodimer with IcmW and this complex functions in a manner similar to a type III secretion chaperone. Here we report an interaction between IcmS and the previously identified virulence factor LvgA. Similar to the icmS mutant, the lvgA mutant appears to assemble a fully functional Dot/Icm complex. Both LvgA and IcmS are small, acidic proteins localized to the cytoplasm and are not exported by the Dot/Icm system, suggesting they form a novel type IV adaptor complex. Inactivation of lvgA causes a minimal defect in growth in the human monocytic cell line U937 and the environmental host Acanthamoeba castellanii. However, the lvgA mutant was severely attenuated for intracellular growth of L. pneumophila in mouse macrophages, suggesting LvgA may be a critical factor that confers host specificity.
2018-06-07
Advanced Pleural Malignant Mesothelioma; HLA-A*0201 Positive Cells Present; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Pleural Malignant Mesothelioma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Pleural Malignant Mesothelioma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Pleural Malignant Mesothelioma AJCC v7; WT1 Positive
2017-10-27
Recurrent Adult Hodgkin Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Refractory Childhood Hodgkin Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult T-Cell Leukemia/Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-Cell Leukemia/Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Childhood Hodgkin Lymphoma
2017-04-19
Human Papilloma Virus Infection; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Verrucous Carcinoma of the Larynx
Oxygen isotope analysis of bacterial and fungal manganese oxidation.
Sutherland, K M; Wankel, S D; Hansel, C M
2018-07-01
The ability of micro-organisms to oxidize manganese (Mn) from Mn(II) to Mn(III/IV) oxides transcends boundaries of biological clade or domain. Many bacteria and fungi oxidize Mn(II) to Mn(III/IV) oxides directly through enzymatic activity or indirectly through the production of reactive oxygen species. Here, we determine the oxygen isotope fractionation factors associated with Mn(II) oxidation via various biotic (bacteria and fungi) and abiotic Mn(II) reaction pathways. As oxygen in Mn(III/IV) oxides may be derived from precursor water and molecular oxygen, we use a twofold approach to determine the isotope fractionation with respect to each oxygen source. Using both 18 O-labeled water and closed-system Rayleigh distillation approaches, we constrain the kinetic isotope fractionation factors associated with O atom incorporation during Mn(II) oxidation to -17.3‰ to -25.9‰ for O 2 and -1.9‰ to +1.8‰ for water. Results demonstrate that stable oxygen isotopes of Mn(III/IV) oxides have potential to distinguish between two main classes of biotic Mn(II) oxidation: direct enzymatic oxidation in which O 2 is the oxidant and indirect enzymatic oxidation in which superoxide is the oxidant. The fraction of Mn(III/IV) oxide-associated oxygen derived from water varies significantly (38%-62%) among these bio-oxides with only weak relationship to Mn oxidation state, suggesting Mn(III) disproportionation may account for differences in the fraction of mineral-bound oxygen from water and O 2 . Additionally, direct incorporation of molecular O 2 suggests that Mn(III/IV) oxides contain a yet untapped proxy of δ18OO2 of environmental O 2 , a parameter reflecting the integrated influence of global respiration, photorespiration, and several other biogeochemical reactions of global significance. © 2018 John Wiley & Sons Ltd.
Structural and thermochemical Aspects of (III-V)IV3 Material Assembly from First Principles
NASA Astrophysics Data System (ADS)
Chizmeshya, Andrew; Kouvetakis, John
2014-03-01
Alloys with (III-V)-(IV) compositions, including Si3(AlP), Si5-2y(AlP)y, Si3Al(As1-xNx), Si5-2yAl(P1-xNx)y and Ge5-2y(InP)y and have recently been synthesized as mono-crystalline films on Si substrates, using a synthesis route specifically designed to avoid phase separation between the III-V and IV constituents. Molecular ``building blocks'' containing group-V-centered III-V-IV3 cores, formed via interactions of group-III atoms and reactive silyly/germyl hydride precursors of desired composition (e.g, P(SiH3)3 , P(GeH3)3 , etc), assemble to form stable, covalent, diamond-like materials with the inherent tetrahedral symmetry and composition of the III-V-IV3 units. The resulting systems may provide access to a broad range of new semiconductor systems with extended optoelectronic properties, provided that the required molecular sources are available, the thermodynamic processes are viable, and the resulting alloy composition can be tuned to lattice-match the growth substrate. Molecular/solid-state simulations are used to identify promising synthetic pathways and guide the epitaxial creation of new (III-V)-(IV) materials. The thermodynamics of gas phase synthesis reactions, energetic stability of the alloys, and their epitaxial/chemical compatibility with the substrate are combined to form a global figure of merit. The latter corroborates the synthesis of known systems and predicts that formation of GaPSi3/Si(100), GaAsSi3/SiGe(100), AlPGe3/Ge(100) and InAsSi3/Ge(100) may also be favorable. Supported by NSF-DMR under SusChEM award #1309090.
2018-01-04
Stage II Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7; Stage III Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7; Stage III Nasopharyngeal Undifferentiated Carcinoma AJCC v7; Stage IV Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7; Stage IV Nasopharyngeal Undifferentiated Carcinoma AJCC v7
Williamson, Adam J; Morris, Katherine; Law, Gareth T W; Rizoulis, Athanasios; Charnock, John M; Lloyd, Jonathan R
2014-11-18
Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.
NASA Astrophysics Data System (ADS)
Shelton, Robin L.
2018-06-01
High velocity clouds (HVCs) and turbulent mixing layers (TMLs) emit light across a wide range of wavelengths. In order to aid in the detection of their ultraviolet emission, we predict the UV emission line intensities emitted by C II, C III, C IV, N II, N III, N IV, N V, O III, O IV, O V, O VI, Si II, Si III, and Si IV in a variety of simulated HVCs and TMLs. These predictions are based on detailed hydrodynamic simulations made with the FLASH code and employing non-equilibrium ionization calculations for carbon, nitrogen, oxygen, and silicon. The results are compared with FUSE and SPEAR/FIMS observations and with predictions from other models of hot/cool interfaces. We also present methods for scaling the results so that they can be applied to more or less dense environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Zhuk, N.A.; Korolev, D.A.
2016-01-15
The comparative analysis of magnetic behavior of manganese-containing solid solutions Bi{sub 3}Nb{sub 1−x}Mn{sub x}O{sub 7−δ} (x=0.01−0.10) of cubic and tetragonal modifications was performed. Based on the results of magnetic susceptibility studies paramagnetic manganese atoms in solid solutions of cubic and tetragonal modifications were found to be in the form of Mn(III), Mn(IV) monomers and exchange-coupled dimers of Mn(III)–O–Mn(III), Mn(IV)–O–Mn(IV), Mn(III)–O–Mn(IV). The exchange parameters and the distribution of monomers and dimers in solid solutions as a function of the content of paramagnetic atoms were calculated. - Graphical abstract: Structural transition of cubic to tetragonal Bi{sub 3}NbO{sub 7−δ}.
Marasco, Michelle; Li, Weiyi; Lynch, Michael
2017-01-01
Abstract All eukaryotes have three essential nuclear multisubunit RNA polymerases, abbreviated as Pol I, Pol II and Pol III. Plants are remarkable in having two additional multisubunit RNA polymerases, Pol IV and Pol V, which synthesize noncoding RNAs that coordinate RNA-directed DNA methylation for silencing of transposons and a subset of genes. Based on their subunit compositions, Pols IV and V clearly evolved as specialized forms of Pol II, but their catalytic properties remain undefined. Here, we show that Pols IV and V differ from one another, and Pol II, in nucleotide incorporation rate, transcriptional accuracy and the ability to discriminate between ribonucleotides and deoxyribonucleotides. Pol IV transcription is considerably more error-prone than Pols II or V, which may be tolerable in its synthesis of short RNAs that serve as precursors for siRNAs targeting non-identical members of transposon families. By contrast, Pol V exhibits high fidelity transcription, similar to Pol II, suggesting a need for Pol V transcripts to faithfully reflect the DNA sequence of target loci to which siRNA–Argonaute silencing complexes are recruited. PMID:28977461
NASA Astrophysics Data System (ADS)
Haque, Rosenani A.; Iqbal, Muhammad Adnan; Mohamad, Faisal; Razali, Mohd R.
2018-03-01
The article describes syntheses and characterizations of carbonyl functionalized benzimidazolium salts, I-IV. While salts I-III are unstable at room temperature, salt IV remained stable and was further utilised to form N-heterocyclic carbene (NHC) compounds of silver(I), V and VI, and selenium compound, VII respectively. Compounds IV-VII were tested for their antibacterial potential against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Salt IV shows a very low inhibition potential (minimum inhibitory concentration, MIC 500 μg/mL) compared to the respective silver(I)-NHC, V and VI (MIC 31.25 μg/mL against both, E. coli and S. aureus) and selenium compound, VII (MIC 125 μg/mL against E. coli and 62.50 μg/mL against S. aureus). In DNA cleavage abilities, all the test compounds cleave DNA in which the VII cleaves the DNA at the faster rate. Meanwhile, the silver(I)-NHC complexes V and VI act at the same mode and pattern of DNA cleavage while VII is similar to IV.
Ma, Xiao-Kui; Ding, Ning; Peterson, Eric Charles
2015-06-01
Heavy contamination of soil with crude oil has caused significant negative environmental impacts and presents substantial hazards to human health. To explore a highly efficient bioaugmentation strategy for these contaminations, experiments were conducted over 180 days in soil heavily contaminated with crude oil (50,000 mg kg(-1)), with four treatments comprised of Bacillus subtilis inoculation with no further inoculation (I), or reinoculation after 100 days with either B. subtilis (II), Acremonium sp.(III), or a mixture of both organisms (IV). The removal values of total petroleum hydrocarbons were 60.1 ± 2.0, 60.05 ± 3.0, 71.3 ± 5.2 and 74.2 ± 2.7 % for treatment (I-IV), respectively. Treatments (III-IV) significantly enhanced the soil bioremediation compared with treatments (I-II) (p < 0.05). Furthermore, significantly (p < 0.05) greater rates of degradation for petroleum hydrocarbon fractions were observed in treatments (III-IV) compared to treatments (I-II), and this was especially the case with the degradative rates for polycyclic aromatic hydrocarbons and crude oil heavy fractions. Dehydrogenase activity in treatment (III-IV) containing Acremonium sp. showed a constant increase until the end of experiments. Therefore reinoculation with pure fungus or fungal-bacterial consortium should be considered as an effective strategy in bioaugmentation for soil heavily contaminated with crude oil.
Tributyltin (TBT) and mitochondrial respiration in mussel digestive gland.
Nesci, Salvatore; Ventrella, Vittoria; Trombetti, Fabiana; Pirini, Maurizio; Pagliarani, Alessandra
2011-06-01
The toxicity of organotins and especially tri-n-butyltin (TBT) on mitochondria is well known. However as far as we are aware, effects on mitochondrial respiration are unexplored in mollusks. In this work mitochondria isolated from the digestive gland of Mytilus galloprovincialis and susceptive to the classical respiratory chain inhibitors, were assayed in the presence of micromolar TBT concentrations to investigate mitochondrial respiratory activities. Intact and freeze-thawed mitochondria were used. TBT significantly inhibited oxygen consumption in the presence of glutamate/malate or succinate as substrates. Conversely cytochrome c oxidase activity (complex IV), assayed both polarographically and spectrophotometrically, was unaffected. The addition of 1,4-dithioerythritol (DTE) decreased the TBT-driven inhibition of complexes I and III. The TBT capability of covalent binding to thiol groups of mitochondrial proteins in a dose-dependent manner was confirmed by the aid of Ellman's reagent. Data strongly suggests that TBT may prevent the electron transfer from complexes I and III to downhill respiratory chain complexes by binding to critical SH residues. Copyright © 2011 Elsevier Ltd. All rights reserved.
2018-05-24
Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Mantle Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Noncontiguous Stage II Mantle Cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Stage 0 Chronic Lymphocytic Leukemia; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific
2017-12-05
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia
2017-01-24
Recurrent Thyroid Gland Carcinoma; Stage III Thyroid Gland Follicular Carcinoma; Stage III Thyroid Gland Papillary Carcinoma; Stage IV Thyroid Gland Follicular Carcinoma; Stage IV Thyroid Gland Papillary Carcinoma
2018-04-26
Ciliary Body and Choroid Melanoma, Medium/Large Size; Extraocular Extension Melanoma; Iris Melanoma; Metastatic Intraocular Melanoma; Recurrent Intraocular Melanoma; Recurrent Melanoma; Stage III Melanoma; Stage IV Melanoma
Cetuximab and Radiation Therapy in Treating Patients With Stage III-IV Head and Neck Cancer
2017-11-15
Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Larynx; Tongue Cancer
NASA Astrophysics Data System (ADS)
Schöneborn, M.; Glaum, R.; Reinauer, F.
2008-06-01
Single crystals of the oxidephosphates Ti IIITi IV3O 3(PO 4) 3 (black), Cr III4Ti IV27O 24(PO 4) 24 (red-brown, transparent), and Fe III4Ti IV27O 24(PO 4) 24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2 dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [Ti IIITi IV3O 3(PO 4) 3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, w R2=0.084, 6055 independent reflections, 301 variables; Cr III4Ti IV27O 24(PO 4) 24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, w R2=0.097, 1524 independent reflections, 111 variables; Fe III4Ti IV27O 24(PO 4) 24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, w R2=0.140, 1240 independent reflections, 112 variables). For Ti IIITi IVO 3(PO 4) 3 a well-ordered structure built from dimers [Ti III,IV2O 9] and [Ti IV,IV2O 9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr 4Ti 27O 24(PO 4) 24 and Fe 4Ti 27O 24(PO 4) 24, consisting of dimers [ MIIITi IVO 9] and [Ti IV,IV2O 9], monomeric [Ti IVO 6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs Ti III4Ti IV27O 24(PO 4) 24 ( a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4Ti IV27O 24(PO 4) 24 ( MIII: Cr, Fe). The UV/vis spectrum of Cr 4Ti 27O 24(PO 4) 24 reveals a rather small ligand-field splitting Δ o=14,370 cm -1 and a very low nephelauxetic ratio β=0.72 for the chromophores [Cr IIIO 6] within the dimers [Cr IIITi IVO 9].
Hoelzle, James B; Nelson, Nathaniel W; Smith, Clifford A
2011-03-01
Dimensional structures underlying the Wechsler Memory Scale-Fourth Edition (WMS-IV) and Wechsler Memory Scale-Third Edition (WMS-III) were compared to determine whether the revised measure has a more coherent and clinically relevant factor structure. Principal component analyses were conducted in normative samples reported in the respective technical manuals. Empirically supported procedures guided retention of dimensions. An invariant two-dimensional WMS-IV structure reflecting constructs of auditory learning/memory and visual attention/memory (C1 = .97; C2 = .96) is more theoretically coherent than the replicable, heterogeneous WMS-III dimension (C1 = .97). This research suggests that the WMS-IV may have greater utility in identifying lateralized memory dysfunction.
2018-04-24
Non-Squamous Non-Small Cell Lung Carcinoma; Stage III Large Cell Lung Carcinoma AJCC v7; Stage III Lung Adenocarcinoma AJCC v7; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Large Cell Lung Carcinoma AJCC v7; Stage IIIA Lung Adenocarcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Large Cell Lung Carcinoma AJCC v7; Stage IIIB Lung Adenocarcinoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Large Cell Lung Carcinoma AJCC v7; Stage IV Lung Adenocarcinoma AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7
Nanoparticle Albumin-Bound Rapamycin in Treating Patients With Advanced Cancer With mTOR Mutations
2018-06-01
Advanced Malignant Neoplasm; Cervical Squamous Cell Carcinoma; Endometrial Carcinoma; Malignant Uterine Neoplasm; Recurrent Bladder Carcinoma; Recurrent Breast Carcinoma; Recurrent Cervical Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Malignant Neoplasm; Recurrent Ovarian Carcinoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Solid Neoplasm; Stage III Bladder Cancer; Stage III Prostate Cancer; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIA Cervical Cancer; Stage IIIA Ovarian Cancer; Stage IIIB Breast Cancer; Stage IIIB Cervical Cancer; Stage IIIB Ovarian Cancer; Stage IIIC Breast Cancer; Stage IIIC Ovarian Cancer; Stage IV Breast Cancer; Stage IV Ovarian Cancer; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IVA Bladder Cancer; Stage IVA Cervical Cancer; Stage IVB Bladder Cancer; Stage IVB Cervical Cancer
Long-Term Outcomes of Elagolix in Women With Endometriosis: Results From Two Extension Studies.
Surrey, Eric; Taylor, Hugh S; Giudice, Linda; Lessey, Bruce A; Abrao, Mauricio S; Archer, David F; Diamond, Michael P; Johnson, Neil P; Watts, Nelson B; Gallagher, J Chris; Simon, James A; Carr, Bruce R; Dmowski, W Paul; Leyland, Nicholas; Singh, Sukhbir S; Rechberger, Tomasz; Agarwal, Sanjay K; Duan, W Rachel; Schwefel, Brittany; Thomas, James W; Peloso, Paul M; Ng, Juki; Soliman, Ahmed M; Chwalisz, Kristof
2018-06-06
To evaluate the efficacy and safety of elagolix, an oral, nonpeptide gonadotropin-releasing hormone antagonist, over 12 months in women with endometriosis-associated pain. Elaris Endometriosis (EM)-III and -IV were extension studies that evaluated an additional 6 months of treatment after two 6-month, double-blind, placebo-controlled phase 3 trials (12 continuous treatment months) with two elagolix doses (150 mg once daily and 200 mg twice daily). Coprimary efficacy endpoints were the proportion of responders (clinically meaningful pain reduction and stable or decreased rescue analgesic use) based on average monthly dysmenorrhea and nonmenstrual pelvic pain scores. Safety assessments included adverse events, clinical laboratory tests, and endometrial and bone mineral density assessments. The power of Elaris EM-III and -IV was based on the comparison to placebo in Elaris EM-I and -II with an expected 25% dropout rate. Between December 28, 2012, and October 31, 2014 (Elaris EM-III), and between May 27, 2014, and January 6, 2016 (Elaris EM-IV), 569 participants were enrolled. After 12 months of treatment, Elaris EM-III responder rates for dysmenorrhea were 52.1% at 150 mg once daily (Elaris EM-IV=50.8%) and 78.1% at 200 mg twice daily (Elaris EM-IV=75.9%). Elaris EM-III nonmenstrual pelvic pain responder rates were 67.8% at 150 mg once daily (Elaris EM-IV=66.4%) and 69.1% at 200 mg twice daily (Elaris EM-IV=67.2%). After 12 months of treatment, Elaris EM-III dyspareunia responder rates were 45.2% at 150 mg once daily (Elaris EM-IV=45.9%) and 60.0% at 200 mg twice daily (Elaris EM-IV=58.1%). Hot flush was the most common adverse event. Decreases from baseline in bone mineral density and increases from baseline in lipids were observed after 12 months of treatment. There were no adverse endometrial findings. Long-term elagolix treatment provided sustained reductions in dysmenorrhea, nonmenstrual pelvic pain, and dyspareunia. The safety was consistent with reduced estrogen levels and no new safety concerns were associated with long-term elagolix use. ClinicalTrials.gov, NCT01760954 and NCT02143713.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, P.V.; Lawrance, G.A.; Sangster, D.F.
The square-planar nickel(II) complexes of the ligands 8-methyl-8-nitro-1,3,6,10,13,15-hexaazatricyclo(13.1.1.1/sup 13,15/)octadecane, 8-amino-8-methyl-1,3,6,10,13,15-hexaazatricyclo(13.1.1.1/sup 13,15/)octadecane, 3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane, and 9-methyl-9-nitro-1,4,7,11-tetraazacyclotridecane (I-IV) react rapidly with hydroxyl radicals and aquated electrons (e/sub aq/). The initial transient products of these reactions decay via first-order kinetics within a few milliseconds in neutral aqueous solution at 22/degrees/C in all cases. Electronic spectra and decay rate constants, as well as formation rate constants, are reported for all transients. Reaction of the nitro-substituted complexes with e/sub aq/ led to electron addition to the nitro group rather than to the metal center; otherwise, a Ni/sup I/ transient is observed. Following reaction with OH, themore » product of the initial decay remains a Ni/sup III/ species. This is more long-lived, and stabilization of Ni/sup III/ by axial coordination of the pendant amine in II is indicated. No notable stabilization of Ni/sup I/ or Ni/sup III/ from the presence of the bicyclic azamethylene football in I-III occurs. Cyclic voltammetry in acetonitrile identified both one-electron oxidation and one-electron reduction processes for the nickel(II) complexes, as well as nitro group reduction, where this group was pendant to the macrocycle. 34 references, 3 figures, 3 tables.« less
Effect of Pressure on Conductivity in Poly(Ethylene Oxide) Complexed with Alkali Metal Salts.
1983-05-01
I. ill thii ai lIion o lim ;oPlb - :11 orde e to I i u PIil I I . !IO ent, dynawical where lo~ isutll-r:lail coii’,iii:Sililty. Iiif cdl IV. it IC...iacek :,w-:.,i (e n mpr:]v 1)Dr .Janet Ostero ung
The Coast Artillery Journal. Volume 57, Number 6, December 1922
1922-12-01
theorems ; Chapter III, to application; Chapters IV, V and VI, to infinitesimals and differentials, trigonometric functions, and logarithms and...taneously." There are chapters on complex numbers with simple and direct discussion of the roots of unity; on elementary theorems on the roots of an...through the centuries from the time of Pythagoras , an interest shared on the one extreme by nearly every noted mathematician and on the other extreme by
2017-09-19
Adult Solid Neoplasm; Recurrent Ovarian Carcinoma; Recurrent Uterine Corpus Carcinoma; Stage III Ovarian Cancer; Stage III Uterine Corpus Cancer; Stage IV Ovarian Cancer; Stage IV Uterine Corpus Cancer
Essential core of the Hawking–Ellis types
NASA Astrophysics Data System (ADS)
Martín-Moruno, Prado; Visser, Matt
2018-06-01
The Hawking–Ellis (Segre–Plebański) classification of possible stress–energy tensors is an essential tool in analyzing the implications of the Einstein field equations in a more-or-less model-independent manner. In the current article the basic idea is to simplify the Hawking–Ellis type I, II, III, and IV classification by isolating the ‘essential core’ of the type II, type III, and type IV stress–energy tensors; this being done by subtracting (special cases of) type I to simplify the (Lorentz invariant) eigenvalue structure as much as possible without disturbing the eigenvector structure. We will denote these ‘simplified cores’ type II0, type III0, and type IV0. These ‘simplified cores’ have very nice and simple algebraic properties. Furthermore, types I and II0 have very simple classical interpretations, while type IV0 is known to arise semi-classically (in renormalized expectation values of standard stress–energy tensors). In contrast type III0 stands out in that it has neither a simple classical interpretation, nor even a simple semi-classical interpretation. We will also consider the robustness of this classification considering the stability of the different Hawking–Ellis types under perturbations. We argue that types II and III are definitively unstable, whereas types I and IV are stable.
2018-04-12
Advanced Malignant Solid Neoplasm; Estrogen Receptor Negative; HER2/Neu Negative; Hodgkin Lymphoma; Metastatic Malignant Neoplasm; Metastatic Malignant Solid Neoplasm; Non-Hodgkin Lymphoma; Progesterone Receptor Negative; Stage III Breast Cancer AJCC v7; Stage III Colon Cancer AJCC v7; Stage III Lung Cancer AJCC v7; Stage III Ovarian Cancer AJCC v6 and v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v6 and v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v6 and v7; Stage IIIC Breast Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7; Stage IIIC Ovarian Cancer AJCC v6 and v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Colon Cancer AJCC v7; Stage IV Lung Cancer AJCC v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IVA Colon Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Triple-Negative Breast Carcinoma; Unresectable Malignant Neoplasm; Unresectable Solid Neoplasm
Eluding liver transplantation in POSTTEXT III and IV Hepatoblastoma.
El-Gendi, Ahmed; Fadel, Shady; El-Shafei, Mohamed; Shawky, Ahmed
2018-06-15
Primary liver transplantation is recommended for central POSTTEXT III and POSTTEXT IV hepatoblastoma. Aim is to prospectively assess safety, oncological efficacy of aggressive non-transplant extended hepatic resections in those patients. A prospective study included 18 children with central PRETEXT III and IV, 3 had primary liver transplantation whereas 15 underwent hepatic resection after neoadjuvant chemotherapy. Median tumor volume was 317 ml (range 135-546). After 4 cycles chemotherapy, POST-TEXT was III in 12 and IV in 3 patients. There was no perioperative mortality. Postoperative complications were 2 bile leaks, one temporary decompensation and one sub-phrenic collection requiring drainage. 1 and 3 years disease free survival was 93.3% and 73.3% respectively. 3 years overall survival was 86.6%. Four patients developed recurrence, of which two died. Early recurrence within one year occurred in one patient. All recurrences were distant metastases. Extended major hepatic resection for selected cases of POST-TEXT III and IV hepatoblastoma is technically challenging but feasible approach with acceptable morbidity and mortality rates. Oncological outcomes are comparable to liver transplantation without the long-term commitment of immunosuppression or donor risk and morbidity however; potential donor should always be prepared for plan B if needed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Brodsky, Casey N; Hadt, Ryan G; Hayes, Dugan; Reinhart, Benjamin J; Li, Nancy; Chen, Lin X; Nocera, Daniel G
2017-04-11
The Co 4 O 4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2 (IV) 2 cubane. We demonstrate that the Co(III) 2 (IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III) 2 (IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4 O 4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O-O bond formation.
Brodsky, Casey N.; Hadt, Ryan G.; Hayes, Dugan; ...
2017-03-27
The Co 4O 4 cubane is a representative structural model of oxidic cobalt oxygen evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2(IV) 2 cubane. We demonstrate that the Co(III) 2(IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge transfer (IVCT) bands in the near-IR are observed for the Co(III) 2(IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurementsmore » reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4O 4 cubane model system and the high valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O–O bond formation.« less
Comparison of LSS-IV and LISS-III+LISS-IV merged data for classification of crops
NASA Astrophysics Data System (ADS)
Hebbar, R.; Sesha Sai, M. V. R.
2014-11-01
Resourcesat-1 satellite with its unique capability of simultaneous acquisition of multispectral images at different spatial resolutions (AWiFS, LISS-III and LISS-IV MX / Mono) has immense potential for crop inventory. The present study was carried for selection of suitable LISS-IV MX band for data fusion and its evaluation for delineation different crops in a multi-cropped area. Image fusion techniques namely intensity hue saturation (IHS), principal component analysis (PCA), brovey, high pass filter (HPF) and wavelet methods were used for merging LISS-III and LISS-IV Mono data. The merged products were evaluated visually and through universal image quality index, ERGAS and classification accuracy. The study revealed that red band of LISS-IV MX data was found to be optimal band for merging with LISS-III data in terms of maintaining both spectral and spatial information and thus, closely matching with multispectral LISS-IVMX data. Among the five data fusion techniques, wavelet method was found to be superior in retaining image quality and higher classification accuracy compared to commonly used methods of IHS, PCA and Brovey. The study indicated that LISS-IV data in mono mode with wider swath of 70 km could be exploited in place of 24km LISS-IVMX data by selection of appropriate fusion techniques by acquiring monochromatic data in the red band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Casey N.; Hadt, Ryan G.; Hayes, Dugan
The Co 4O 4 cubane is a representative structural model of oxidic cobalt oxygen evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2(IV) 2 cubane. We demonstrate that the Co(III) 2(IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge transfer (IVCT) bands in the near-IR are observed for the Co(III) 2(IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurementsmore » reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4O 4 cubane model system and the high valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O–O bond formation.« less
Chemical Properties And Toxicity of Chromium(III) Nutritional Supplements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levina, A.; Lay, P.A.
2009-05-19
The status of Cr(III) as an essential micronutrient for humans is currently under question. No functional Cr(III)-containing biomolecules have been definitively described as yet, and accumulated experience in the use of Cr(III) nutritional supplements (such as [Cr(pic){sub 3}], where pic = 2-pyridinecarboxylato) has shown no measurable benefits for nondiabetic people. Although the use of large doses of Cr(III) supplements may lead to improvements in glucose metabolism for type 2 diabetics, there is a growing concern over the possible genotoxicity of these compounds, particularly of [Cr(pic){sub 3}]. The current perspective discusses chemical transformations of Cr(III) nutritional supplements in biological media, withmore » implications for both beneficial and toxic actions of Cr(III) complexes, which are likely to arise from the same biochemical mechanisms, dependent on concentrations of the reactive species. These species include: (1) partial hydrolysis products of Cr(III) nutritional supplements, which are capable of binding to biological macromolecules and altering their functions; and (2) highly reactive Cr(VI/V/IV) species and organic radicals, formed in reactions of Cr(III) with biological oxidants. Low concentrations of these species are likely to cause alterations in cell signaling (including enhancement of insulin signaling) through interactions with the active centers of regulatory enzymes in the cell membrane or in the cytoplasm, while higher concentrations are likely to produce genotoxic DNA lesions in the cell nucleus. These data suggest that the potential for genotoxic side-effects of Cr(III) complexes may outweigh their possible benefits as insulin enhancers, and that recommendations for their use as either nutritional supplements or antidiabetic drugs need to be reconsidered in light of these recent findings.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... carried [persistent (groups II, III, and IV) or non-persistent (group I)]; and the geographic area(s) in... type of petroleum oil carried [persistent (groups II, III, and IV) or non-persistent (group I)]; and... Petroleum Oil Cargo Groups Non-persistent oil 72 G: Group I 1.0 Persistent oil: Group II 1.8 Group III 2.0...
Code of Federal Regulations, 2010 CFR
2010-07-01
... carried [persistent (groups II, III, and IV) or non-persistent (group I)]; and the geographic area(s) in... type of petroleum oil carried [persistent (groups II, III, and IV) or non-persistent (group I)]; and... Petroleum Oil Cargo Groups Non-persistent oil 72 G: Group I 1.0 Persistent oil: Group II 1.8 Group III 2.0...
Code of Federal Regulations, 2013 CFR
2013-07-01
... carried [persistent (groups II, III, and IV) or non-persistent (group I)]; and the geographic area(s) in... type of petroleum oil carried [persistent (groups II, III, and IV) or non-persistent (group I)]; and... Petroleum Oil Cargo Groups Non-persistent oil 72 G: Group I 1.0 Persistent oil: Group II 1.8 Group III 2.0...
History of surgery for atrial fibrillation.
Edgerton, Zachary J; Edgerton, James R
2009-12-01
There is a rich history of surgery for atrial fibrillation. Initial procedures were aimed at controlling the ventricular response rate. Later procedures were directed at converting atrial fibrillation to normal sinus rhythm. These culminated in the Cox Maze III procedure. While highly effective, the complexity and morbidity of the cut and sew Maze III limited its adoption. Enabling technology has developed alternate energy sources designed to produce a transmural atrial scar without cutting and sewing. Termed the Maze IV, this lessened the morbidity of the procedure and widened the applicability. Further advances in minimal access techniques are now being developed to allow totally thorascopic placement of all the left atrial lesions on the full, beating heart, using alternate energy sources.
Edwards, Trent; Friesen, Craig; Schurman, Jennifer V
2018-03-17
The primary purpose of this study was to compare Rome III and IV evaluation criteria for irritable bowel syndrome (IBS), functional dyspepsia (FD), and an overlap syndrome consisting of both IBS and FD by assessing the frequency of each diagnosis in a population of children with chronic abdominal pain. Frequencies of Rome IV FD subtypes of postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS) were determined and FD/IBS overlap symptom associations were also assessed. We conducted a cross-sectional retrospective chart review of 106 pediatric patients who had completed standardized medical histories as part of their evaluation for chronic abdominal pain. The patients ranged from eight to 17 years of age and reported having abdominal pain at least weekly for 8 weeks. Patients whose evaluation revealed gastrointestinal disease were excluded. The patients' diagnoses were determined by a single pediatric gastroenterologist utilizing the specific criteria for Rome III and IV, respectively. Patients were significantly more likely to be diagnosed with FD (84.9% vs. 52.8%), IBS (69.8% vs. 34%), and FD/IBS overlap (58.5% vs. 17.9%) by Rome IV criteria, as compared to Rome III criteria. With regard to Rome IV FD subtypes, 81.1% fulfilled criteria for PDS, 11.1% fulfilled criteria for EPS, 6.7% fulfilled criteria for both, and 1.1% did not fulfill criteria for either. Finally, we found an increased frequency of diarrhea and pain with eating in the overlap group compared to the non-overlap group of Rome III, while only an increased frequency of diarrhea was found in the overlap group compared to the non-overlap group of Rome IV. Our data demonstrate that utilizing Rome IV criteria, as compared to Rome III, results in an increase in the diagnosis of FD, a two-fold increase in the diagnosis of IBS, and a three-fold increase in the diagnosis of FD/IBS overlap. Rome IV criteria appears to result in greater heterogeneity within diagnostic categories. It is important to determine whether Rome IV diagnoses are predictive of treatment response, and if so, whether assessing symptom variability within a diagnosis will enhance the ability to select patients for a particular treatment.
Type-III and IV interacting Weyl points
NASA Astrophysics Data System (ADS)
Nissinen, J.; Volovik, G. E.
2017-04-01
3+1-dimensional Weyl fermions in interacting systems are described by effective quasi-relativistic Green's functions parametrized by a 16-element matrix e α μ in an expansion around the Weyl point. The matrix e α μ can be naturally identified as an effective tetrad field for the fermions. The correspondence between the tetrad field and an effective quasi-relativistic metric gμν governing the Weyl fermions allows for the possibility to simulate different classes of metric fields emerging in general relativity in interacting Weyl semimetals. According to this correspondence, there can be four types of Weyl fermions, depending on the signs of the components g 00 and g 00 of the effective metric. In addition to the conventional type-I fermions with a tilted Weyl cone and type-II fermions with an overtilted Weyl cone for g 00 > 0 and, respectively, g 00 > 0 or g 00 < 0, we find additional "type-III" and "type-IV" Weyl fermions with instabilities (complex frequencies) for g 00 < 0 and g 00 > 0 or g 00 < 0, respectively. While the type-I and type-II Weyl points allow us to simulate the black hole event horizon at an interface where g 00 changes sign, the type-III Weyl point leads to effective spacetimes with closed timelike curves.
Large-Scale CO Maps of the Lupus Molecular Cloud Complex
NASA Astrophysics Data System (ADS)
Tothill, N. F. H.; Löhr, A.; Parshley, S. C.; Stark, A. A.; Lane, A. P.; Harnett, J. I.; Wright, G. A.; Walker, C. K.; Bourke, T. L.; Myers, P. C.
2009-11-01
Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex—Lupus I, III, and IV—trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km s-1. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B 228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding H I shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an H I shell.
Mitchell, V; Sigala, J; Ballot, C; Jumeau, F; Barbotin, A L; Duhamel, A; Rives, N; Rigot, J M; Escalier, D; Peers, M C
2015-03-01
Although electron microscopy provides a detailed analysis of ultrastructural abnormalities, this technique is not available in all laboratories. We sought to determine whether certain characteristics of the flagellum as assessed by light microscopy were related to axonemal abnormalities. Forty-one patients with an absence of outer dynein arms (type I), a lack of a central complex (type III) and an absence of peripheral doublets (type IV) were studied. Sperm morphology was scored according to David's modified classification. Flagella with an irregular thickness were classified as being of normal length, short or broken. There were correlations between missing outer dynein arms and abnormal, short or coiled flagellum. Type III patients showed the highest flagellar defects (a short (P = 0.0027) or an absent flagellum (P = 0.011)). Just over 68% of the irregular flagella were short in Type III patients, whereas this value was only 34.5% in type I and 26.4% in type IV (P = 0.002). There was a negative correlation between misassembly and spermatozoa of irregular flagella (r = -0.79; P = 0.019). It is concluded that light microscopy analysis of flagellum abnormalities may help provide a correct diagnosis, identify sperm abnormalities with fertility potentials and outcomes in assisted reproduction technologies and assess the genetic risk. © 2014 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek
Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less
Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek; ...
2017-11-01
Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less
Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L
2015-02-15
During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. Copyright © 2015 the American Physiological Society.
Petitjean, Hugues; Rodeau, Jean-Luc; Schlichter, Rémy
2012-12-01
In acute rat spinal cord slices, the application of capsaicin (5 μm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Incidence and predictors of difficult laryngoscopy in 11,219 pediatric anesthesia procedures.
Heinrich, Sebastian; Birkholz, Torsten; Ihmsen, Harald; Irouschek, Andrea; Ackermann, Andreas; Schmidt, Joachim
2012-08-01
Difficult laryngoscopy in pediatric patients undergoing anesthesia. This retrospective analysis was conducted to investigate incidence and predictors of difficult laryngoscopy in a large cohort of pediatric patients receiving general anesthesia with endotracheal intubation. Young age and craniofacial dysmorphy are predictors for the difficult pediatric airway and difficult laryngoscopy. For difficult laryngoscopy, other general predictors are not yet described. Retrospectively, from a 5-year period, data from 11.219 general anesthesia procedures in pediatric patients with endotracheal intubation using age-adapted Macintosh blades in a single center (university hospital) were analyzed statistically. The overall incidence of difficult laryngoscopy [Cormack and Lehane (CML) grade III and IV] was 1.35%. In patients younger than 1 year, the incidence of CML III or IV was significantly higher than in the older patients (4.7% vs 0.7%). ASA Physical Status III and IV, a higher Mallampati Score (III and IV) and a low BMI were all associated (P < 0.05) with difficult laryngoscopy. Patients undergoing oromaxillofacial surgery and cardiac surgery showed a significantly higher rate of CML III/IV findings. The general incidence of difficult laryngoscopy in pediatric anesthesia is lower than in adults. Our results show that the risk of difficult laryngoscopy is much higher in patients below 1 year of age, in underweight patients and in ASA III and IV patients. The underlying disease might also contribute to the risk. If the Mallampati score could be obtained, prediction of difficult laryngoscopy seems to be reliable. Our data support the existing recommendations for a specialized anesthesiological team to provide safe anesthesia for infants and neonates. © 2012 Blackwell Publishing Ltd.
2017-11-29
Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Fanconi Anemia; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Paroxysmal Nocturnal Hemoglobinuria; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia
Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F
2016-04-28
Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters.
2017-06-02
Adult Germ Cell Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Germ Cell Tumor; Extragonadal Embryonal Carcinoma; Grade 2 Immature Ovarian Teratoma; Grade 3 Immature Ovarian Teratoma; Malignant Germ Cell Tumor; Stage I Ovarian Choriocarcinoma; Stage I Ovarian Embryonal Carcinoma; Stage I Ovarian Teratoma; Stage I Ovarian Yolk Sac Tumor; Stage I Testicular Choriocarcinoma; Stage I Testicular Embryonal Carcinoma; Stage I Testicular Yolk Sac Tumor; Stage II Ovarian Choriocarcinoma; Stage II Ovarian Embryonal Carcinoma; Stage II Ovarian Yolk Sac Tumor; Stage II Testicular Choriocarcinoma; Stage II Testicular Embryonal Carcinoma; Stage II Testicular Yolk Sac Tumor; Stage III Ovarian Choriocarcinoma; Stage III Ovarian Embryonal Carcinoma; Stage III Ovarian Yolk Sac Tumor; Stage III Testicular Choriocarcinoma; Stage III Testicular Embryonal Carcinoma; Stage III Testicular Yolk Sac Tumor; Stage IV Ovarian Choriocarcinoma; Stage IV Ovarian Embryonal Carcinoma; Stage IV Ovarian Yolk Sac Tumor; Testicular Mixed Choriocarcinoma and Embryonal Carcinoma; Testicular Mixed Choriocarcinoma and Teratoma; Testicular Mixed Choriocarcinoma and Yolk Sac Tumor
Talimogene Laherparepvec and Pembrolizumab in Treating Patients With Stage III-IV Melanoma
2018-06-18
Recurrent Melanoma; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7
2014-05-29
Endometrial Papillary Serous Carcinoma; Recurrent Endometrial Carcinoma; Recurrent Renal Cell Cancer; Stage III Endometrial Carcinoma; Stage III Renal Cell Cancer; Stage IV Endometrial Carcinoma; Stage IV Renal Cell Cancer; Unspecified Adult Solid Tumor, Protocol Specific
Phase 2 Sequential and Concurrent Chemoradiation for Advanced Nasopharyngeal Carcinoma (NPC)
2016-12-09
Stage II Lymphoepithelioma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx
2018-05-24
Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenström Macroglobulinemia
2018-02-14
Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Serous Neoplasm; High Grade Ovarian Serous Adenocarcinoma; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Primary Peritoneal Serous Adenocarcinoma; Stage III Fallopian Tube Cancer AJCC v7; Stage III Ovarian Cancer AJCC v6 and v7; Stage III Primary Peritoneal Cancer AJCC v7; Stage IIIA Fallopian Tube Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v6 and v7; Stage IIIA Primary Peritoneal Cancer AJCC v7; Stage IIIB Fallopian Tube Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v6 and v7; Stage IIIB Primary Peritoneal Cancer AJCC v7; Stage IIIC Fallopian Tube Cancer AJCC v7; Stage IIIC Ovarian Cancer AJCC v6 and v7; Stage IIIC Primary Peritoneal Cancer AJCC v7; Stage IV Fallopian Tube Cancer AJCC v6 and v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Primary Peritoneal Cancer AJCC v7
A Phase 2 Study of Cediranib in Combination With Olaparib in Advanced Solid Tumors
2018-06-04
Estrogen Receptor Negative; HER2/Neu Negative; Metastatic Pancreatic Adenocarcinoma; Pancreatic Ductal Adenocarcinoma; Progesterone Receptor Negative; Stage III Breast Cancer AJCC v7; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage III Small Cell Lung Carcinoma AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Small Cell Lung Carcinoma AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Small Cell Lung Carcinoma AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IV Small Cell Lung Carcinoma AJCC v7; Triple-Negative Breast Carcinoma; Unresectable Pancreatic Carcinoma
Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo
2015-11-01
One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.
NASA Astrophysics Data System (ADS)
Michotey, V.; Aigle, A.; Armougom, F.; Mejean, V.; Guasco, S.; Bonin, P.
2016-02-01
In sedimentary systems, the repartition of terminal electron-accepting molecules is often stratified on a permanent or seasonal basis. Just below to oxic zone, the suboxic one is characterized by high concentrations of oxidized inorganic compounds such as nitrate, manganese oxides (MnIII/IV) and iron oxides that are in close vicinity. Several studies have reported unexpected anaerobic nitrite/nitrate production at the expense of ammonium mediated by MnIII/IV, however this transient processes is difficult to discern and poorly understood. In the frame of this study, genes organization of nitrate and MnIII/IV respiration was investigated in S.algae. Additional genes were identified in S. algae compare to S. oneidensis: genes coding for nitrate and nitrite reductase (napA-a and nrfA-2) and an OMC protein (mtrH). In contrast to S. oneidensis, an anaerobic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during growth with MnIII/IV, concomitantly with expression of nitrate/nitrite reductase genes (napA, nrfA, nrfA-2). Among the hypothesis explaining this data, the potential putative expression of unidentified gene able to perform ammonium oxidation was not observed on the global transcriptional level, however several signs of oxidative stress were detected and the existence of a secondary reaction generated by a putative oxidative s could not be excluded. Another option could be the action of reverse reaction by an enzyme such as NrfA or NrfA-2 due to the electron flow equilibrium. Whatever the electron acceptor (Nitrate/ MnIII/IV), the unexpected expression level of of omcA, mtrF, mtrH, mtrC was observed and peaked at the end of the exponential phase. Different expression patterns of the omc genes were observed depending on electron acceptor and growth phase. Only mtrF-2 gene was specifically expressed in Mn(III/IV) condition. Nitrate and Mn(III/IV) respirations seem connected at physiological as well as at transcriptional level
Resonance lines and energy levels of Cs III, Ba IV, and La V
NASA Technical Reports Server (NTRS)
Epstein, G. L.; Reader, J.
1976-01-01
Spectra of Cs III, Ba IV, and La V were photographed in a low-voltage sliding spark on a 10.7 m normal-incidence vacuum spectrograph. These ions are isoelectronic with neutral iodine and display a halogen-like energy level structure. Detailed isoelectronic comparisons, level transition diagrams, and tabular data on the transitions of the ions and percentage compositions of Cs III configurations are presented.